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Complex colloidal fluids, such as emulsions stabilized by particles with complex shapes, play an impor-
tant role in many industrial applications. However, understanding their physics requires a study at suf-
ficiently large length scales while still resolving the microscopic structure of a large number of particles
and of the local hydrodynamics. Due to its high degree of locality, the lattice Boltzmann method, when
combined with a molecular dynamics solver and parallelized on modern supercomputers, provides a tool
that allows such studies. Still, running simulations on hundreds of thousands of cores is not trivial. We
report on our practical experiences when employing large fractions of an IBM Blue Gene/P system for
our simulations. Then, we extend our model for spherical particles in multicomponent flows to aniso-
tropic ellipsoidal objects rendering the shape of, e.g., clay particles. The model is applied to a number
of test cases including the adsorption of single particles at fluid interfaces and the formation and stabil-
ization of Pickering emulsions or bijels.

Ellipsoid

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Colloidal particles are highly attractive in the food, cosmetics,
and medical industries to stabilize emulsions or to develop sophis-
ticated ways to deliver drugs at the right position in the human
body. The underlying microscopic processes of emulsion stabiliza-
tion with particles can be explained by assuming an oil-water mix-
ture. Without additives, both liquids phase separate, but the
mixture can be stabilized by adding small particles which diffuse
to the interface and stabilize it due to a reduced interfacial free en-
ergy. If for example individual droplets of one phase are covered by
particles, such systems are referred to as “Pickering emulsions”,
which have been known since the beginning of the 20th century
[1,2]. Particularly interesting properties of such emulsions are the
blocking of Ostwald ripening and the rheological properties due
to irreversible particle adsorption at interfaces or interface bridg-
ing due to particle monolayers [3]. Recently, interest in particle-
stabilized emulsions has led to the discovery of a new material
type, the “bicontinuous interfacially jammed emulsion gel” (bijel),
which shows an interface between two continuous fluid phases
that is covered by particles. The existence of the bijel was predicted
in 2005 by Stratford et al. [4] and experimentally confirmed by
Herzig et al. in 2007 [5].

Computer simulations are promising to understand the dy-
namic properties of particle-stabilized multiphase flows. However,
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the shortcomings of traditional simulation methods quickly be-
come obvious: a suitable simulation algorithm is not only required
to deal with simple fluid dynamics but has to be able to simulate
several fluid species while also considering the motion of the par-
ticles and the fluid-particle interactions. Some recent approaches
trying to solve these problems utilize the lattice Boltzmann meth-
od for the description of the solvents [6]. The lattice Boltzmann
method can be seen as an alternative to conventional Navier—
Stokes solvers and is well-established in the literature. It is attrac-
tive for the current application since a number of multiphase and
multicomponent models exist which are comparably straightfor-
ward to implement. In addition, boundary conditions have been
developed to simulate suspended finite-size particles in flow.
These are commonly used to study the behavior of particle-laden
single phase flows [7]. A few groups combined multiphase lattice
Boltzmann solvers with the known algorithms for suspended par-
ticles [4,8]. In this paper we follow an alternative approach based
on the multicomponent lattice Boltzmann model of Shan and Chen
[9] which allows the simulation of multiple fluid components with
surface tension. Our model generally allows arbitrary movements
and rotations of rigid particles of arbitrary shape. Further, it allows
an arbitrary choice of the particle wettability - one of the most
important parameters for the dynamics of multiphase suspensions
[3]. For a detailed introduction to the method see Ref. [10], where
our model has been applied to spherical particles at fluid inter-
faces. We have presented a thorough validation of the method
for single particle situations and have shown that a transition from
a bijel to a Pickering emulsion can be found by varying the particle
concentration, the particle’s contact angle, or the volume ratio of
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the solvents. Further, we investigated the temporal evolution of
the droplet/domain growth in emerging Pickering emulsions and
bijels.

Modelling colloidal particles as perfect spheres is a strong sim-
plification of systems appearing in nature. There, the particles are
generally not spherical, but might show geometrical distortions
or fully anisotropic shapes, as is, for example, common for clay par-
ticles. As a first step to investigate the impact of particle anisotropy
on the adsorption and stabilization properties, this paper focuses
on ellipsoidal particles. In addition to the properties of spheres ad-
sorbed at an interface, in the case of anisotropic ellipsoidal parti-
cles the orientation becomes important and the process of
adsorption is in this case more complex [11]. Furthermore the
anisotropy of the ellipsoids leads in general to a deformation of
the interface. However, an adsorbed sphere or ellipsoid with a con-
tact angle 0 =90° does not deform the interface in absence of an
external potential such as gravitation. For multiple particles capil-
lary interactions, which depend on the distance and the orientation
of the particles, become relevant [12] and orientational discontin-
uous phase transitions of the particles can be found [13]. Experi-
mentally it was shown that the number of ellipsoidal particles
required to stabilize a fluid-fluid interface decreases with increas-
ing particle aspect ratio and that a tip-to-tip arrangement is dom-
inant [14].

The remaining sections are organized as follows: In Section 2
the simulation method (lattice Boltzmann combined with molecu-
lar dynamics) is illustrated. Since studying particle-stabilized
emulsions demands an exceptional amount of computing re-
sources we focus on specific implementation details of our simula-
tion code in Section 3. In particular, we highlight specifically code
improvements that allow to harness the power of massively paral-
lel supercomputers, such as the Blue Gene/P system JUGENE at
Jilich Supercomputing Centre with its ability to run up to
294 912 MPI (Message Passing Interface) tasks in parallel. The fol-
lowing section reports on simulations of single particle adsorption
of ellipsoidal particles and the formation of bijels and Pickering
emulsions. Finally, we conclude in Section 5.

2. Simulation method

The lattice Boltzmann method is a very successful tool for mod-
elling fluids in science and engineering. Compared to traditional
Navier-Stokes solvers, the method allows an easy implementation
of complex boundary conditions and—due to the high degree of
locality of the algorithm—is well suited for the implementation
on parallel supercomputers. For a thorough introduction to the lat-
tice Boltzmann method we refer to Ref. [6]. The method is based on
a discretized version of the Boltzmann equation

ffx+e,t+1)=f(xt)+ Q(x,0), (1)

where ff(x,t) is the single-particle distribution function for fluid
component c after discretization in space x and time t with a dis-
crete set of lattice velocities ¢; and

_fix ) — f (X 1), we(x, 1))

T

Q(x,t) = (2)
is the Bhatnagar-Gross-Krook (BGK) collision operator. f%(p¢, u¢) is
the equilibrium distribution function and 7 is the relaxation time.
We use a three-dimensional lattice and a D3Q19 implementation

(i=1,...,19). From Eq. (1), the Navier-Stokes equations can
be recovered with density p°(x,t) = > ff(x,t) and velocity
u® =3 ffe;/p° in the low- compresmblhty and low Mach number

limit. If further fluid species ¢ with a single-particle distribution
function ff(x,t) are to be modeled, the inter-species interaction
force

F(x,t) = —P°(x, t)%jgw;ll’c’ X, t)(X —X), (3)

with a monotonous weight function ¥(x, t) for the effective mass is
calculated locally according to the approach by Shan and Chen and
incorporated into the collision term Qf in Eq. (1) [9]. In our case, the
coupling strength g, is negative in order to obtain de-mixing and
the sum over X’ runs over all sites separated from x by one of the
discrete c;. Colloidal particles are discretized on the lattice and cou-
pled to both fluid species by means of a moving bounce-back
boundary condition [15,7]: if x is part of the surface of a colloid then
Eq. (1) for adjacent fluid sites x + ¢; is replaced with
ffx4e,t+1) =ff(xX+¢,t) + Q(x+¢,t) + C, (4)
where C = “ PC(X + €, DUy - ¢ is a linear function of the local
particle surface velocity ug,s and the direction i is defined via
¢ = —C;. 0, and ¢, are constants of the D3Q19 lattice. The particle
configuration is evolved in time solving Newton’s equation in the
spirit of classical molecular dynamics simulations. As the total
momentum should be conserved, an additional force

F(t) = 2ff(x+ ¢, t) + O)¢ (5)

acting on the particle is needed to compensate for the momentum
change of the fluid caused by Eq. (4). The potential between the par-
ticles is a Hertz potential which approximates a hard core potential
and has the following form for two spheres with the same radius R
[16]:

éy =Ku(2R— 1)} for ry < 2R. (6)

rij is the distance between the two sphere centers and Ky the force
constant. For the simulations which are discussed later in this text a
value of Ky =100 is used. In the next step the potential is general-
ized to the case of ellipsoids with the parallel radius R, and the
orthogonal radius R, by following the method which was applied
by Berne and Pechukas for the case of an intermolecular potential
[17]. We define ¢ =2R and € = Ky0? and extend ¢ and ¢ to the
anisotropic case so that

€(0;,0) = ;2 and
1-7%(00))
g

b}
1 ruo,+ruoj) (r,Jo, r,jo])
\/1 ( 1+70;0; + —70;0;

with 6 = 2R,y = ﬁz o and o; the orientation vector of particle i.
The scaled potentla"l can be written as

(7)

0(61, 6]‘7 i‘ij) =

bu(01,0;,1;) = €(61,0))n (ﬁ) for ry < Ae. 8)
¢y is a dimensionless function which takes the specific form of the
potential form into account. In addition to adding the direct interac-
tion described by the Hertz potential we correct for the limited
description of hydrodynamics when two particles come very close
by means of a lubrication correction. If the number of lattice points
between two particles is sufficient, the lattice Boltzmann algorithm
reproduces the correct lubrication force automatically. The error
that occurs if the flow is not sufficiently resolved can be corrected

by

TR o e ! 1 ’
ST (w, “J))<ru_2R Ac> ”

in the case of two spheres with radius R. We choose a cut-off at
A =% and u; is the velocity of particle i. This equation is generalized
to ellipsoids in a similar way as the Hertz potential using Eq. (7).
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The force in Eq. (3) also includes interactions between lattice
nodes outside of particles with a lattice node inside a particle. To
calculate these interactions the lattice nodes x in the outer shell
of the particle are filled with fluid densities

AC ] C
Prew = P = {2 P (X +Ciy,. ) (10)
NP

corresponding to the average over the Nyp non-particle lattice nodes
adjacent to x in directions iyp. We consider a system of two immis-
cible fluids, which we call red and blue fluid, and in which particles
are suspended. By defining a parameter Ap, the particle color, we
are able to control the interaction between the particle surface
and the two fluids and thus control the contact angle @ as it is de-
fined in the inset of Fig. 1. If Ap has a positive value, we add it to the
red fluid component as p},,, = p" + Ap. Otherwise we add its abso-
lute value to the blue fluid as p,,, = p® + |Ap|. In Fig. 1 it is depicted
that the dependence of the contact angle on the particle color can
be fitted by the linear relation

6 =243.2°Ap + 90", (11)

where the slope depends on the actual simulation parameters. For a
more detailed description of our simulation algorithm the reader is
referred to Ref. [10].

3. Implementation

Development of our simulation code LB3D started in 1999 as a
parallel LB solver capable of describing systems of up to three fluid
species coupled by Shan and Chen’s aforementioned approach
[9,18]. In 2008, a—since then severely extended—parallel molecu-
lar dynamics code [19] was integrated into LB3D using a common
3-dimensional spatial decomposition scheme. It is employed here
to implement the colloidal particles.

The strong locality of the LB equation Eq. (1) as well as the
short-range interaction forces relevant in colloidal systems gener-
ally allow for an efficient parallelization. However, while several
authors presented highly efficient combined single-component
LB-suspension codes for the massively parallel simulation of blood
flows on IBM Blue Gene/P systems [20,21], it still is not trivial to
achieve good scalability on this platform. For example, the network
employed for MPI point-to-point communication provides direct
links only between nearest neighbors in a three-dimensional
torus. Allowing MPI_Cart_create() to reorder process ranks
and manually choosing a domain decomposition that fits the
known hardware topology can therefore increase the performance

115 . . ; ]
110 |}
105 |
10} @ L 1
95 | 1
% | o 1
8 | x .
80 | 4 ]
75 F >4 4
70 | J

65 ——— : -
01 005 0 005 0d

particle color Ap

contact angle ©[°]

Fig. 1. Relation between the particle color Ap and the contact angle ©. A linear
relation is found: © =243.2°Ap + 90°. Inset: Definition of the contact angle @ for an
ellipsoidal particle adsorbed at an interface between two fluids.

significantly at high degrees of parallelism. Fig. 2a demonstrates
this on the basis of strong scaling speedup for a system of
10242 x 2048 lattice sites carrying only one fluid species and no
particles. Consequently, only Eq. (1) demands significant computa-
tional effort, which makes possible communication bottlenecks
more visible. On the other hand, JUGENE, the IBM Blue Gene/P sys-
tem at Jiilich Supercomputing Centre, consisting of 294 912 cores,
brings to light serial parts of a code which would stay undetected
at lower core counts. Fig. 2b visualizes the effect of parallelizing a
loop over the global number of colloidal particles present in earlier
versions of our particle-fluid coupling routines which—in this
strong scaling benchmark—had a visible effect only when scaling
beyond 8192 cores. The test system of 10242 x 2048 lattice nodes
contains two fluid species and 4 112 895 uniformly distributed
particles of spherical shape with a radius of 5 lattice units at a vol-
ume concentration of 20% and is thus very close to the Pickering
systems of interest. When running on 262 144 cores, our two-com-
ponent LB-suspension solver achieves an average of 8.97 x 10° lat-
tice updates per second (LUPS) in total at a decomposition of
32 x 162 LB sites per core. This corresponds to 3.42 x 10* LUPS
per core compared to 3.66 x 10 LUPS per core for the minimum
core count of 2048 or a relative parallel efficiency of 93.5%. On
average, for 262 144 cores, 41.8% of the computing time is spent
on the Shan-Chen force evaluation Eq. (3), followed by 29.6% for
the particle-fluid coupling and 18.7% for the LB equation Eq. (1).
The remaining costs are mainly caused by communication.

While the benchmarks above relate to the pure time evolution,
actual production runs require checkpointing and the output of
physical observables to disk. Using parallel HDF5 output, we suc-
ceed in storing fluid density fields of 4.6 GB size for a system of
1024% x 1152 lattice sites and 454 508 particles in 29 s (on aver-
age) when employing the whole system (294 912 cores). This cor-
responds to the time required to simulate about 100 LB steps and is
acceptable since output is required less than once per 100 to
1000 time steps.

Finally, it is important to be aware of possible peculiarities of
the MPI implementations found on large supercomputing systems.
Due to their relatively small size in memory we collect and write
particle configuration data serially on the root process. When run-
ning on 131 072 cores of JUGENE, we encounter a speedup of 77
when employing the specially optimized MPI_Allgatherv()
compared to the more intuitive MPI_Gatherv(), at the cost of
requiring one receive buffer per task.

4. Results and discussion

After having discussed the implementation of our program code
some of the results obtained by this program will be presented. We
study a system of two immiscible fluids (called red and blue fluid
in the following) stabilized by prolate ellipsoidal particles. A first
step to understand fundamental physical properties of such sys-
tems is the study of the behavior of a single ellipsoidal particle at
a flat fluid-fluid interface. If the particle touches the interface the
particle is adsorbed to it. The binding energy of the particle is usu-
ally of the order 10* kT so that the adsorption is an irreversible
process. This binding energy arises from the fact that an adsorbed
particle reduces the interfacial area between two fluids with repul-
sive interactions. The adsorption was studied in Ref. [11] using a
free energy method. There, the free energy is calculated for all par-
ticle orientations and particle center-interface distances. Then, the
equilibrium state is found by minimizing the free energy function.
In contrast to our simulations, in the approach given in Ref. [11]
the interface is infinitely thin and undeformable, while we take
a finite interface thickness and a interface deformability into
account.
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Fig. 2. Strong scaling of LB3D on the Blue Gene/P before and after the optimizations. (a) Relates to a system with only one fluid component so that the effect of matching or
mismatching topologies of network and domain decomposition can be examined better. (b) Refers to a system with two fluid species and suspended particles as they are of
interest in this paper. The absolute execution times for small core counts did not change significantly.

To simulate a single-particle adsorption we use a cubic volume
with a side length of 64 lattice units with two lamellae of different
fluids where each lamella has a thickness of 31 lattice units. The
boundary conditions are periodic in the two directions parallel to
the fluid-fluid interface. Impenetrable walls are installed in the
third direction at z=1 and z = 64 with a thickness of 1 lattice unit
each. To keep the interface thin enough the fluid—fluid interaction
parameter between red and blue (Eq. (3)) is set to g, = 0.1. Snap-
shots of the adsorption for a single ellipsoidal particle with a con-
tact angle ® =90° and an aspect ratio m :2—’: =2 are shown in
Fig. 3a for a starting angle ¢ = 0.0057°. R, and R, are the ellipsoidal
radii parallel and orthogonal to the symmetry axis. It can be ob-
served that at the beginning of the simulation (first 2600 time
steps in the present example) the particle moves in the direction
of the interface without changing its orientation significantly.
Thereafter (t=2600...6500 steps) the orientation changes from
¢ ~ 0° to ¢ ~ 90° and the particle reaches its equilibrium position.

Each snapshot in Fig. 3a is related to a square symbol in Fig. 3b.
Here, z is the distance between the particle center and the inter-
face, ¢ is the angle between the ellipsoid main axis and the inter-
face normal. The solid lines correspond to the points where the
particle just would touch an infinitely thin and undeformed inter-
face. The dashed lines correspond to the adsorption trajectories
and the two equilibria are illustrated by circles. The upper circle
(at ¢ =90°) corresponds to the stable point being in relationship

.."’-

t=5000 t=6000

t=0
t=5600

(a)

t=2600 t=6500

with the global free energy minimum whereas the lower one (at
¢ = 0°) shows a metastable point. The value of the z coordinate of
the stable and metastable point depends on the contact angle. In
the example shown above both points have the value z = 0. If the
adsorption trajectory of the particle starts with ¢(t=0)=0° it
reaches the metastable point. For any other starting angle (¢
(t=0) # 0°) the adsorption trajectory of the particle ends in the
stable point. The adsorption lines approach attractor lines. For ini-
tial angles much larger than ¢ = 0° there are two attractor lines,
one on each side. The adsorption trajectories coming from the
respective sides approach this attractor line. There is a third attrac-
tor line at z=0. The adsorption trajectories starting at very small
angles approach this attractor line. Qualitatively comparable theo-
retical calculations of the adsorption have been presented in Ref.
[11]. Quantitative comparisons are not easily possible since the
theoretical approach assumes an infinitely thin and undeformable
interface, while our diffuse interface simulations take the interfa-
cial deformability into account.

In the following we consider emulsions stabilized by a large
number of anisotropic colloidal particles. To simulate a bulk sys-
tem we use a cubic volume with a side length of 256 lattice units
and periodic boundary conditions. To obtain a phase separation
the fluid-fluid interaction parameter between red and blue (see
Eq. (3)) is set to g, = 0.08. The initial density distributions of the
two fluids are chosen to be random.

100 T T T T T

z [lattice units]

(b)

Fig. 3. (a) Snapshots of the adsorption of an ellipsoid with aspect ratio m = 2 and a contact angle ® = 90° for a starting angle of ¢ = 0.0057°. Every snapshot is related to a
square symbol in Fig. 3. (b) Adsorption diagram for an ellipsoid with a parallel diameter R, = 12, an orthogonal diameter R, = 6, and a contact angle @ =90°. z is the distance
between the particle center and the interface, ¢ is the angle between the ellipsoid main axis and the interface normal. The adsorption trajectories are presented by the dashed
lines. The solid lines depict where the particle would touch an infinitely thin and undeformed interface. The circles correspond to the stable (¢ = %) and the metastable (¢ = 0)

equilibrium point. The squares correspond to the snapshots in Fig. 3a.
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Fig. 4. Two snapshots of emulsions stabilized by particles are shown for an aspect ratio m = 2, a volume concentration of C ~ 0.2 and a contact angle ® =90°. (a) Bijel for a

fluid ratio of 1:1. (b) Pickering emulsion for a fluid ratio of 5:2.

As stated in the introduction we distinguish between two differ-
ent phases for these emulsions, the Pickering emulsion and the
bicontinuous interfacially jammed emulsion gel (bijel). The bijel
[4] (see Fig. 4a) consists of two continuous phases whereas the Pick-
ering emulsion [1,2] (see Fig. 4b) consists of droplets of one fluid
immersed in a second fluid phase. Bijels and Pickering emulsions
stabilized by spherical particles have been investigated in Ref.
[10]. In this paper simulation results for ellipsoids with an aspect
ratio of m =2 are presented. The choice of the control parameters
decides into which of the two phases the system evolves. The left
plot in Fig. 5 shows the transition from a bijel to a Pickering emul-
sion for an aspect ratio of m = 2 and a particle volume concentration
of C~0.2. The two control parameters used for the study of the
phase transition are the fluid ratio and the contact angle @. The
squares show the configurations which lead to a bijel whereas the
circles denote a Pickering emulsion. If the amount of the two fluids
present in the simulation is equal or not too different (e.g., a ratio of
4:3) we find a bijel for all considered contact angles. However, if the
fluid ratio is increased we find a Pickering emulsion. For intermedi-
ate fluid ratios the obtained phase depends on the chosen contact
angle. For example for a ratio of 9:5 we get a bijel for a contact angle
of 90° and a Pickering emulsion for all higher values of ©.

To characterize an emulsion the time dependent lateral domain
size L(t) = § (L«(t) + Ly(t) + L,(t)) is calculated. Its Cartesian compo-
nents (i =x,y, z) are defined as

D AGN )
(ki(0) = =

27
Li(t) = —,

(k7 (1))

(kZ(t)) is the second-order moment of the three-dimensional struc-
ture function S(k. t) = % |¢x(t)]. ¢ = ¢ — (¢) is the Fourier transform
of the fluctuations of the order parameter ¢ = p, — p,. The right plot
in Fig. 5 shows the dependence of the domain size on the volume
concentration of particles C for different concentrations between
C=0.08 and C=0.24 for an emulsion with a fluid ratio of 1:1 and
@ =90°.

The results for anisotropic particles (here: m =2) and spheres
(m=1) are compared. As can be seen in the left part of Fig. 5 these
parameters for the case of m =2 lead to a bijel. For too small vol-
ume concentrations such as C~0.04 there are not sufficiently
many particles available to stabilize the emulsion. The system fi-
nally reaches a fully demixed state. The simulation data is dis-
played by circles for m=2 and squares for m=1 (see [10]). L
decreases with an increasing value of C. An increasing number of
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Fig. 5. Left plot: Phase diagram demonstrating the transition from a bijel to a Pickering emulsion. The contact angle @ and the ratio between the two fluids are varied. The
squares show the configurations which lead to a bijel whereas the circles denote a Pickering emulsion. Right plot: Average domain size L in equilibrium versus the volume
concentration of the particles C for a bijel with particles of neutral wettability (& = 90°). The plot compares the data for spheres (m = 1, squares) [10] with ellipsoids (here:
m =2, circles). The behavior can be described by L = ¢+ b (see solid line (m = 2) and dashed line (m = 1)), where a and b are fit parameters.
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particles stabilizing the emulsion leads to an increase of the total
interfacial area and thus to smaller domain sizes. The results can
be fitted by the equation L(C) =4+ b [10] (see solid (m=2) and
dashed (m=1) lines in the right plot in Fig. 5) with values
b~ 11.08 for m=2 and b ~ 10.85 for m = 1. The offset b is due to
the finite system size in our simulation and is approximately inde-
pendent of the particle shape. The factor a depends on the shape of
the particles. For spheres we find a value of a ~ 3.86 whereas for
m =2 we find a ~ 2.20. The right plot in Fig. 5 shows that the do-
main size L is larger for spherical particles than for the case of
anisotropic particles. If a spherical particle with a radius R and a
contact angle @ =90° is adsorbed it reduces the interfacial area
by an amount of A(m=1)=27R? If an anisotropic ellipsoid with
aspect ratio m > 1 and the same volume as the sphere is adsorbed
and reaches the stable point (see results of the single-particle
adsorption (Fig. 3a)) the interfacial area is reduced by an amount
of A(m)=2nR,R, = 2mm'*R?. For the example of m =2 we obtain
a reduction of the interface area of A(m=2)~ 2.52nR%. Thus, if
the particle anisotropy increases, the occupied area A(m) increases.
This means that if the particle number is kept constant and the
anisotropy is increased, the particles can stabilize a larger interface
which leads to smaller domain sizes. As the structure of a bijel
interface is quite complicated and the interfaces are generally
curved it is not possible to utilize the relations given above to de-
rive an exact dependence of the domain size L on the particle as-
pect ratio m. However, the qualitative difference of using spheres
or ellipsoids as emulsion stabilizers can be well understood.

5. Conclusion and outlook

We have demonstrated simulations of anisotropic ellipsoidal
particles stabilizing fluid-fluid interfaces based on a combined
multicomponent lattice Boltzmann and molecular dynamics ap-
proach. We provided a description of the code implementation
and its recent improvements enabling our code for efficient
large-scale simulations of Pickering/bijel systems on hundreds of
thousands of cores on an IBM Blue Gene/P system while sampling
physical observables such as density fields or colloidal particle con-
figurations with sufficient temporal resolution. After basic studies
of adsorption trajectories for single ellipsoids we demonstrated
that ellipsoidal particles can lead to a transition between bijels
and Pickering emulsions depending on contact angle, particle vol-
ume concentration or fluid ratio. Further, we demonstrated that
the average lateral domain size of bijels depends on the particle
concentration and can be fitted by a simple 1/C relation where
the prefactor depends on the particle aspect ratio demonstrating
that particles with m>1 are more efficient emulsion stabilizers
than spheres.
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