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Abstract

We explore the achievable delay performance in wireless random-access networks. While
relatively simple and inherently distributed in nature, suitably designed queue-based random-
access schemes provide the striking capability to match the optimal throughput performance of
centralized scheduling mechanisms in a wide range of scenarios. The specific type of activation
rules for which throughput optimality has been established, may however yield excessive queues
and delays.

Motivated by that issue, we examine whether the poor delay performance is inherent to the
basic operation of these schemes, or caused by the specific kind of activation rules. We derive
delay lower bounds for queue-based activation rules, which offer fundamental insight in the cause
of the excessive delays. For fixed activation rates we obtain lower bounds indicating that delays
and mixing times can grow dramatically with the load in certain topologies as well.

1 Introduction

Emerging wireless mesh networks typically lack any centralized access control entity, and instead
vitally rely on the individual nodes to operate autonomously and fairly share the medium in a
distributed fashion. A particularly popular mechanism for distributed medium access control is
provided by the so-called Carrier-Sense Multiple-Access (CSMA) protocol. In the CSMA protocol
each node attempts to access the medium after a certain random back-off time, but nodes that
sense activity of interfering nodes freeze their back-off timer until the medium is sensed idle.

While the CSMA protocol is fairly easy to understand at a local level, the interaction among
interfering nodes gives rise to quite intricate behavior and complex throughput characteristics on
a macroscopic scale. In recent years relatively parsimonious models have emerged that provide a
useful tool in evaluating the throughput characteristics of CSMA-like networks. These models were
originally developed by Boorstyn et al. [2], and further pursued by Wang & Kar [30], Durvy et
al. [6, 7] and Garetto et al. [10]. Although the representation of the CSMA back-off mechanism
in the above-mentioned models is less detailed than in the landmark work of Bianchi [1], they
accommodate a general interference graph and thus cover a broad range of topologies. Experimental
results of Liew et al. [17] demonstrate that these models, while idealized, provide throughput
estimates that match remarkably well with measurements in actual real-life networks.

∗This work was supported by Microsoft Research through its PhD Scholarship Programme, by the European
Research Council (ERC) and by the Netherlands Organisation for Scientific Research (NWO).
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Despite their asynchronous and distributed nature, CSMA-like algorithms have been shown to
offer the capability of achieving the full capacity region and thus match the optimal throughput
performance of centralized scheduling mechanisms operating in slotted time, see for instance Jiang
& Walrand [15], Liu et al. [18] and Tassiulas & Ephremides [28]. Based on this observation, various
clever algorithms have been developed for finding the back-off rates that yield a particular target
throughput vector or that optimize a certain concave throughput utility function in scenarios with
saturated buffers, see for instance Jiang et al. [14, 15] and Marbach & Eryilmaz [20].

In the same spirit, several powerful approaches have been devised for adapting the transmission
periods based on the queue lengths in non-saturated scenarios, see for instance Rajagopalan et
al. [22], Shah & Shin [24] and Shah et al. [25]. Roughly speaking, the latter algorithms provide
maximum-stability guarantees under the condition that the transmission durations of the various
nodes behave as logarithmic functions of the queue lengths.

Unfortunately, however, simulation experiments demonstrate that such activation rules can in-
duce excessive queues and delays, which has sparked a strong interest in developing approaches
for improving the delay performance, see for instance Ghaderi & Srikant [12], Lotfinezhad & Mar-
bach [19], Ni et al. [21] and Shah & Shin [23]. In particular, it has been shown that more aggressive
schemes, where the transmission durations grow faster as function of the queue lengths, can reduce
the delays, see for instance Bouman et al. [3].

In order to gain insight in the root cause for the poor delay performance, we establish in the
present paper lower bounds for the average steady-state delay. To the best of our knowledge,
the derivation of lower bounds for the average steady-state delay in random-access networks has
received hardly any attention so far. An interesting paper by Shah et al. [26] showed that low-
complexity schemes cannot be expected to achieve low delay in arbitrary topologies (unless P equals
NP), since that would imply that certain NP-hard problems could be solved efficiently. However,
the notion of delay in [26] is a transient one, and it is not exactly clear what the implications are
for the average steady-state delay in specific networks, if any.

Jiang et al. [13, 16] derived upper bounds for the average steady-state delay based on mixing
time results for Glauber dynamics, where the mixing time represents the amount of time required
for the process to come close to its equilibrium distribution. The bounds show that for sufficiently
low load the delay only grows polynomially with the number of nodes in bounded-degree inter-
ference graphs. Subramanian & Alanyali [27] presented similar upper bounds for bounded-degree
interference graphs with low load based on analysis of neighbor sets and stochastic coupling ar-
guments. While some of the conceptual notions in the present paper are similar (cliques, mixing
times), we focus on lower rather than upper bounds, and exploit quite different techniques.

The lower bounds that we derive for queue-based activation schemes provide fundamental insight
why the kind of rules that guarantee maximum stability yield excessive delays. We further obtain
lower bounds for the delay and mixing time in case fixed back-off rates are used. In both cases, the
bounds bring to light that the delay and mixing time can grow dramatically with the load of the
system. Specifically, we establish that the expected delay grows as F (1/(1−ρ)) as ρ ↑ 1, where ρ is
the load and F (·) is a superlinear function, implying that the growth rate may be polynomially or
even exponentially faster than is typically the case in queueing systems at high load. The specific
form and growth rate of the function F (·) depends on the activation rule as well as the topology of
the network, as we will show for several scenarios of interest. Various partial versions of the results
presented here appeared in Bouman et al. [4, 5].

The remainder of the paper is organized as follows. In Section 2 we present a detailed model

2



description, followed by some preliminary results in Section 3. In Section 4 we derive delay lower
bounds for queue-based activation schemes. We establish generic lower bounds for the delay and
mixing time in case of fixed back-off rates in Section 5. In Sections 6 and 7 we apply these generic
bounds to a canonical class of partite interference graphs, which includes several specific cases of
interest such as grid topologies. Simulation experiments are conducted in Section 8 to support the
analytical results. In Section 9, we make some concluding remarks and identify topics for further
research.

2 Model description

Network, interference graph, and traffic model. We consider a network of several nodes
sharing a wireless medium according to a random-access mechanism. The network is represented
by an undirected graph G = (V,E) where the set of vertices V = {1, . . . , N} correspond to the
various nodes and the set of edges E ⊆ V × V indicate which pairs of nodes interfere. Nodes
that are neighbors in the interference graph are prevented from simultaneous activity, and thus the
independent sets of G correspond to the feasible joint activity states of the network. A node is said
to be blocked whenever the node itself or any of its neighbors is active, and unblocked otherwise.
Define Ω ⊆ {0, 1}N as the set of all feasible joint activity states of the network.

Packets arrive at node i as a Poisson process of rate λi. The packet transmission times at node i
are independent and exponentially distributed with mean 1/µi. Denote by ρi = λi/µi the traffic
intensity of node i.

Let U(t) ∈ Ω represent the joint activity state of the network at time t, with Ui(t) indicating
whether node i is active at time t or not. Denote by Li(t) the number of packets at node i at time t
(including any packet that may be in the process of being transmitted).

Random-access mechanism. The nodes share the medium according to a random-access mech-
anism. When a node ends an activity period (consisting of possibly several back-to-back packet
transmissions), it starts a back-off period. The back-off times of node i are independent and ex-
ponentially distributed with mean 1/νi. The back-off period of a node is suspended whenever it
becomes blocked by activity of any of its neighbors, and is only resumed once the node becomes un-
blocked again. Thus the back-off period of a node can only end when none of its neighbors are active.
Now suppose a back-off period of node i ends at time t. Then the node starts a transmission with
probability φi(Li(t)), and begins a next back-off period otherwise. When a transmission of node i
ends at time t, it releases the medium and begins a back-off period with probability ψi(Li(t

+)),
or starts the next transmission otherwise. We allow for φi(0) > 0 and ψi(0) < 1, so a node may
be active even when its buffer is empty, and transmit dummy packets. A dummy transmission is
terminated when a new packet arrives and the transmission of this packet is started immediately.
Equivalently, node i may be thought of as activating at an exponential rate fi(Li(t)) = νiφi(Li(t)),
whenever it is unblocked at time t, and de-activating at rate gi(Li(t)) = µiψi(Li(t)− 1), whenever
it is active at time t. For conciseness, the functions fi(·) and gi(·) will be referred to as activation
and de-activation functions, respectively, and we define hi(·) = fi(·)/gi(·) as the nominal activation
function.

Network dynamics. Under the above-described queue-based schemes, the process {(U(t), L(t))}t≥0

evolves as a Markov process with state space Ω × N
N
0 . Transitions (due to arrivals) from a state
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(U,L) to (U,L + ei) occur at rate λi, transitions (due to activations) from a state (U,L) with
Ui = 0 and Uj = 0 for all neighbors j of node i to (U + ei, L) occur at rate fi(Li), transitions
(due to transmission completions followed back-to-back by a subsequent transmission) from a state
(U,L) with Ui = 1 to (U,L − eiI{Li>0}) occur at rate µi − gi(Li), transitions (due to transmission
completions followed by a back-off period) from a state (U,L) with Ui = 1 to (U − ei, L− eiI{Li>0})
occur at rate gi(Li).

Product-form distribution. We now proceed with some additional notation and preliminary
results. For any u ∈ Ω, define π(u) = limt→∞ P{U(t) = u} as the steady-state probability that the
activity process resides in state u. Further define θi =

∑

u∈Ω π(u)ui as the steady-state fraction of
time that node i is active. Note that for fixed activation and de-activation rates, i.e., φi(·) ≡ φi
and ψi(·) ≡ ψ, the activity process {U(t)} does not depend on the process {L(t)}, and in fact
constitutes a reversible Markov process with product-form stationary distribution [2]

π(u) = Z−1
N
∏

i=1

σui

i , u ∈ Ω, (1)

and normalization constant

Z =
∑

u∈Ω

N
∏

i=1

σui

i ,

with σi = νiφi/(µiψi) representing a nominal activity factor.

Stability. In general it is difficult to establish under what conditions the system is stable, i.e.,
when the process {(U(t), L(t))}t≥0 is positive recurrent. Denoting by conv(·) the convex hull
operator and by int(conv(·)) its interior, it is easily seen that (ρ1, . . . , ρN ) ∈ int(conv(Ω)) is a
necessary condition for stability.

In [12, 22, 24] it is shown that this condition is in fact also sufficient for activation and de-
activation functions fi(l) = ri(l)/(1 + ri(l)) and gi(l) = 1/(1 + ri(l)) with suitably chosen ri(·),
e.g., ri(l) = log(l + 1). For more aggressive queue-based activation functions, [11] shows that the
necessary condition is not always sufficient though.

In the case of fixed activation and de-activation rates, a simple necessary and sufficient condition
for stability is ρi < θi, for all i = 1, . . . , N . Furthermore, there exists a unique vector (σ1, . . . , σN )
that yields (θ1, . . . , θN ) ∈ int(conv(Ω)) [15, 29]. Hence, for any traffic intensity vector obeying the
necessary stability condition, (ρ1, . . . , ρN ) ∈ int(conv(Ω)), there exists a vector (σ1, . . . , σN ) such
that (ρ1, . . . , ρN ) < (θ1, . . . , θN ) ∈ int(conv(Ω)), though determining the right vector (σ1, . . . , σN )
is non-trivial in general.

3 Preliminary results

In this section we state some preliminary results in preparation for the derivation of delay lower
bounds in the next sections. Throughout we assume that the system under consideration is stable,
because otherwise such lower bounds are not particularly meaningful. More specifically, we derive
lower bounds for the expected aggregate stationary queue length in subsets of nodes A ⊆ V . Note
that, using Little’s law, this also provides a lower bound for the expected aggregate stationary
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delay. That is,
∑

i∈A E{Li} ≥ α implies that
∑

i∈A λiE{Wi} ≥ α, with Wi a random variable
representing the delay (waiting time plus service time) of an arbitrary packet at node i.

The notion of a clique will play a pivotal role in the derivation of the lower bounds. A clique
is a subset C ⊆ V of vertices in the interference graph G such that the subgraph induced by C is
complete. Note that in a clique at most one node can be active at a time. The aggregate load in
a clique should therefore be less than one if the system is to be stable. For compactness, we use
the notation λC =

∑

j∈C λj and ρC =
∑

j∈C ρj . We say that a clique C is in heavy traffic when ρC
is close to one. Further we denote by Li,C the number of packets at node i at an arbitrary epoch
during a non-serving interval for the clique C, i.e., a time interval during which none of the nodes
in C is transmitting a packet.

Observe that the total number of packets in the clique C is bounded from below by that in a
single node carrying the aggregate traffic, yielding the simple lower bound

∑

i∈C

E{Li} ≥
λC

∑

i∈C λi/µ
2
i

1− ρC
+ ρC . (2)

Thus, the total expected number of packets in any system grows at least linearly in 1/(1 − ρ) as ρ
increases to one, with ρ = maxC ρC the maximum traffic intensity in any clique.

The lower bound in (2) is only based on sheer load considerations and does not account for the
effect of the back-off mechanism. In the next sections we will derive lower bounds for queue-based
strategies as well as fixed-rate strategies that do capture the effect of the back-off mechanism, and
turn out to be considerably tighter and exhibit superlinear growth in 1/(1 − ρC).

The derivation of the lower bounds starts from the observation that stability of the system
requires the non-serving intervals for a clique in heavy traffic to be short or happen infrequently.
That is, in each clique, most of the time, one of the nodes should be active, since otherwise the
average rate of arriving packets would exceed the average rate of departing packets. For this to be
the case, the activity factors should be big at high load. The next lemma quantifies this statement.

Lemma 3.1. Assume that the system is stable. Then, for any clique C ⊆ V containing node i,

E{fi(Li,C)}

E{gi(Li)}
≥

ρi
1− ρC

. (3)

Proof Observing that the mean number of activations at node i equals the mean number of
de-activations at node i per unit of time, we obtain

E{fi(Li)I{Uj=0 for all j∈N+
i
}} = ρiE{gi(L

d
i )}, (4)

where N+
i denotes the set of neighbors of node i in the graph G, along with i itself, and Ld

i denotes
the number of packets waiting for transmission at node i at a departure epoch. Note that Ld

i is, in
distribution, equal to Li.

Further,

E{fi(Li)I{Uj=0 for all j∈N+
i }} ≤ E{fi(Li)I{Uj=0 for all j∈C}}

= E{fi(Li,C)}P{Uj = 0 for all j ∈ C}. (5)
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Since the events {Uj = 1} are mutually exclusive for all j ∈ C, it follows that

P{Uj = 0 for all j ∈ C} = 1− P{Uj = 1 for some j ∈ C}

= 1−
∑

j∈C

P{Uj = 1} = 1−
∑

j∈C

θj. (6)

Thus, we find (3) using (4), (5), and the fact that ρi ≤ θi for all i ∈ V is a necessary condition for
stability of the system.

In particular, for fixed-rate strategies it follows that stability entails

σi ≥
ρi

1− ρC
, (7)

which in fact could also have been established using the product-form distribution (1).

Lemma 3.1 shows that the activity factors in each clique should be big at high load. In the next
sections we will demonstrate that this also causes the delay and mixing time to grow dramatically
in heavy traffic.

Queue-based strategies. For queue-based strategies we examine in Section 4 activation func-
tions that are such that a node becomes increasingly more aggressive when the total number of
packets at that node increases. For that natural class of activations functions, we exploit the result
of Lemma 3.1 to find a lower bound of the form h−1(1/(|C|(1 − ρC))) for the aggregate number of
packets in the clique C, where h−1(·) is the inverse function of h(·).

A prominent example is f(l) = r(l)/(1 + r(l)) and g(l) = 1/(1 + r(l)) with r(l) = log(l + 1),
so that h−1(l) = exp(l) − 1, the class of backlog-based strategies for which maximum stability
is guaranteed as mentioned earlier. In this case we find that the queue length scales at least
exponentially in 1/(1 − ρC).

Fixed-rate strategies. In the case of fixed-rate strategies the delay lower bounds revolve around
two simple observations: (i) high activation rates cause long mixing times, in particular slow
transitions between dominant activity states; (ii) slow transitions between dominant states imply
long starvation periods for some nodes, and hence huge queue lengths and delays. In Section 5 we
formalize (ii), and establish lower bounds for the expected aggregate weighted queue length and
delay in terms of the expected return times of the process {U(t)}.

In order to lower bound these return times, we will build in Sections 6 and 7 on insight (i)
for a canonical class of partite interference graphs. That is, we examine topologies where the
nodes belong to one of K different components such that nodes in the same component do not
interfere with each other and every node belongs to a clique of size K (of which the other K − 1
nodes necessarily belong to K−1 different components). This class of K-partite interference graphs
covers a wide range of network topologies with nearest-neighbor interference, e.g., linear topologies,
ring networks with an even number of nodes, two-dimensional grid networks, tori (two-dimensional
grid networks with a wrap-around boundary), and complete K-partite graphs, where all nodes
are connected except those that belong to the same component, with star topologies as a prime
example.
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4 Queue-based strategies

In this section we derive delay lower bounds for queue-based strategies that use a concave activation
function or a convex de-activation function.

Theorem 4.1. Assume λi, νi, µi, fi(·) and gi(·), i = 1, . . . , N , are such that the system is stable.
Then, for any clique C ⊆ V ,

(i) If fi(·) ≡ f(·) for i ∈ C is an increasing concave function and gi(·) ≥ ξi > 0 for i ∈ C, then

∑

i∈C

E{Li} ≥
λC

∑

i∈C λi/µ
2
i

1− ρC
+ |C|f−1

( 1

|C|

∑

i∈C ρiξi

1− ρC

)

+ ρC . (8)

(ii) If fi(·) ≤ ξi for i ∈ C and gi(·) ≡ g(·) for i ∈ C is a decreasing convex function, then

∑

i∈C

ρiE{Li} ≥ ρCg
−1

((1− ρC)
∑

i∈C ξi

ρC

)

. (9)

(iii) If fi(·) ≡ f(·) for i ∈ C is an increasing concave function and gi(·) ≡ g(·) for i ∈ C is a
decreasing convex function, then

∑

i∈C

E{Li} ≥ h−1
( 1

|C|

ρC
1− ρC

)

. (10)

Proof The Fuhrmann-Cooper decomposition property [9] (applied to the total number of pack-
ets in the clique C) implies

∑

i∈C

E{Li} =
λC

∑

i∈C λi/µ
2
i

1− ρC
+

∑

i∈C

E{Li,C}+ ρC . (11)

This corroborates (2) since the second term in (11) is non-negative, but in case (i) that term might
in fact be dominant as we now proceed to show. From (3) we know that, in case (i),

(1− ρC)
∑

i∈C

E{fi(Li,C)} ≥
∑

i∈C

ρiξi.

Since f(·) is concave, it follows from Jensen’s inequality that

∑

i∈C

E{f(Li,C)} ≤ |C|f
( 1

|C|

∑

i∈C

E{Li,C}
)

. (12)

Because f(·) is increasing we thus get

∑

i∈C

E{Li,C} ≥ |C|f−1
( 1

|C|

∑

i∈C ρiξi

1− ρC

)

,

which completes the proof for case (i).
The proof for case (ii) proceeds along similar lines. From (3) we obtain

∑

i∈C

ρiE{g(Li)} ≤ (1− ρC)
∑

i∈C

ξi.
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Since g(·) is convex, it follows from Jensen’s inequality that

∑

i∈C

ρiE{g(Li)} ≥ ρCg
( 1

ρC

∑

i∈C

ρiE{Li}
)

. (13)

Since g(·) is decreasing we thus get

∑

i∈C

ρiE{Li} ≥ ρCg
−1

((1− ρC)
∑

i∈C ξi

ρC

)

,

yielding (9).
To prove case (iii), note that combining (11) and (12) gives

∑

i∈C

E{f(Li,C)} ≤ |C|f
( 1

|C|

(

∑

i∈C

E{Li} −
λC

∑

i∈C λi/µ
2
i

1− ρC
− ρC

))

and hence, because f(·) is increasing,
∑

i∈C

E{f(Li,C)} ≤ |C|f
(

∑

i∈C

E{Li}
)

.

Further, since ρi ≤ ρC for i ∈ C and because g(·) is decreasing we obtain from (13) that
∑

i∈C

ρiE{g(Li)} ≥ ρCg
(

∑

i∈C

E{Li}
)

.

From (3) we then find

|C|f
(

∑

i∈C

E{Li}
)

(1− ρC) ≥ ρCg
(

∑

i∈C

E{Li}
)

,

or

h
(

∑

i∈C

E{Li}
)

≥
1

|C|

ρC
1− ρC

.

Thus as h(·) = f(·)/g(·) is increasing because f(·) is increasing and g(·) is decreasing, we get (10).

The three cases covered in Theorem 4.1 all reveal the same effect, namely that the mean
number of packets in a clique is at least of the order of h−1(1/(|C|(1 − ρC))), where h−1(·) is
the inverse function of h(·). In case (ii) this effect is observed because the argument of g−1(·) is
reciprocal. Further, noting that f(l) = log(l+ 1)/(1 + log(l+ 1)) is an increasing concave function
and g(l) = 1/(1 + log(l + 1)) is a decreasing convex function, we have

∑

i∈C

E{Li} ≥ Exp
( 1

|C|

ρC
1− ρC

)

− 1

for the class of functions for which maximum stability is guaranteed.
The results of Theorem 4.1 suggest that in order to improve the delay performance one should

use more aggressive access schemes. In fact, if h(·) is a superlinear function, i.e., if h(·) grows
faster than linear, we find a lower bound that is loose in heavy traffic and (2) provides a better
lower bound in that case. Remember however that maximum stability is not guaranteed in case a
superlinear function h(·) is used, hence the delay performance might actually deteriorate, and even
instability could occur as shown in [11].
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5 Fixed-rate strategies

In the previous section we derived delay bounds for queue-based activation rules and we saw that
the type of activation rules for which throughput optimality has been established yield excessive
delays and queues. We now proceed to construct lower bounds for the expected aggregate weighted
queue length and delay in the case of fixed activation and de-activation rates, i.e., we take φi(·) ≡ φi
and ψi(·) ≡ ψi.

We first introduce some useful notation. Define Q(S) as the transition rate out of the subset S ⊆
Ω, i.e.,

Q(S) =
∑

u∈S

∑

u′∈Ω\S

π(u)q(u, u′) =
∑

u∈Ω\S

∑

u′∈S

π(u)q(u, u′),

with q(u, u′) denoting the transition rate from state u to state u′ of the component {U(t)} of the
Markov process as specified in Section 2, i.e., q(u, u+ei) = νiφi and q(u+ei, u) = µiψi, u, u+ei ∈ Ω.
With minor abuse of notation, denote by π(S) =

∑

u∈S π(u) the fraction of time that the system
resides in one of the activity states in the subset S. The bottleneck ratio of the subset S is defined
as

Φ(S) =
Q(S)

π(S)
.

Further define for arbitrary weights w ∈ R
N
+ and for any A ⊆ V , S ⊆ Ω,

Y (w,A, S) = max
u∈S

∑

i∈A

wiµiui,

and denote
D(w,A, S) =

∑

i∈A

wiλi − Y (w,A, S).

The coefficient Y (w,A, S) represents the maximum aggregate weighted service rate of the nodes
in A when the system resides in one of the activity states in the subset S. Noting that

∑

i∈A wiλi
is the weighted arrival rate of the nodes in A, the coefficient D(w,A, S) may thus be interpreted
as the minimum drift in the aggregate weighted queue length of the nodes in A when the system
resides in one of the activity states in the subset S.

Proposition 5.1. For any w ∈ R
N
+ , A ⊆ V ,

∑

i∈A

wiE{Li} ≥
1

2
max
S⊆Ω

D(w,A, S)π(S)
1

Φ(S)
. (14)

Proof Denote by TS a random variable representing the equilibrium return time to the subset
of activity states Ω \ S and denote by T e

S a random variable representing the elapsed equilibrium
lifetime of TS , i.e.,

P{T e
S < t} =

1

E{TS}

∫ t

s=0
P{TS > s}ds. (15)

Now observe that when the system resides in one of the activity states in S, which is the case
with probability π(S), the aggregate weighted queue length of the nodes in A have experienced a
drift no less than D(w,A, S) for an expected amount of time E{T e

S}. This observation indicates
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that the expected aggregate weighted queue length of the nodes in A is bounded from below by
π(S)D(w,A, S)E{T e

S} for any choice of S and hence

∑

i∈A

wiE{Li} ≥ max
S⊆Ω

D(w,A, S)π(S)E{T e
S}. (16)

Using (15) we obtain

E{T e
S} =

1

E{TS}

∫ ∞

t=0

∫ ∞

s=t
P{TS > s}dsdt =

E{T 2
S}

2E{TS}
≥

1

2
E{TS}.

Finally, because Q(S) is the expected number of times the process enters S per unit of time and
E{TS} is the expected amount of time the process stays in S after entering, the expected fraction
of the time the process resides in S, π(S), is given by π(S) = Q(S)E{TS}. Thus, E{TS} = 1

Φ(S) ,

and (14) follows.
The question arises how to choose S such that the maximum and thus the tightest possible lower

bound in (14) is obtained. Evidently, the more S includes states with some of the nodes in A active,
the larger the potential aggregate weighted service rate of the nodes in A, i.e., the larger Y (w,A, S),
and the smaller D(w,A, S). In other words, we need to ensure that S excludes some of the states
with nodes in A active. Indeed, if S includes all states with maximal subsets of the nodes in A
active, then Y (w,A, S) = maxu∈Ω

∑N
i=1 ŵiµiui, with ŵi = wi if i ∈ A and ŵi = 0 otherwise. The

fact that (ρ1, . . . , ρN ) ∈ int(conv(Ω)) then implies that Y (w,A, S) ≥
∑N

i=1 ŵiµiρi =
∑N

i=1 ŵiλi =
∑

i∈A wiλi, so that D(w,A, S) ≤ 0, yielding an irrelevant lower bound. However, observe that the
expected equilibrium return time to Ω \S, denoted E{TS}, may be small when S includes very few
states. Hence, to obtain the sharpest possible lower bound, it may not necessarily be optimal to
exclude all the states with nodes in A active from S. For high values of ν, which are necessary for
stability at high load as Lemma 3.1 showed, the above argument suggests that we should choose S
so that it contains a state with many active nodes, while the boundary of S only contains states
with few active nodes.

Define
∂S = {u ∈ S :

∑

u′ 6∈S

q(u, u′) > 0}

as the ‘boundary’ of S and K(S′,A′) = maxu∈S′

∑

i∈A′ ui. In order to get a tight lower bound
in (14) we thus need to find a subset S such that K(S, V ) is large, K(∂S, V ) is small, and K(S,A)
is small.

We will now first give an example to illustrate the use of Proposition 5.1.

Example 5.1. Suppose that S is such that u+ ei 6∈ Ω \ S for all u ∈ ∂S. In case φi ≡ 1, ψi ≡ 1,
µi ≡ 1 and νi ≡ ν ≥ 1, we then have Q(S) ≤ Nπ(∂S), and thus using (1),

1

Φ(S)
=
π(S)

Q(S)
≥

∑

u∈S
π(u)

N
∑

u∈∂S
π(u)

=

∑

u∈S
ν
∑N

i=1 ui

N
∑

u∈∂S
ν
∑N

i=1 ui

≥
1

N
νK(S,V )−K(∂S,V ).

We thus see that in this example we indeed need to choose S such that K(S, V ) − K(∂S, V ) is
maximized.
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Now suppose the interference graph is a symmetric complete bipartite graph. That is, the nodes
in V1 = {1, . . . , N/2} interfere with, and only with, the nodes in V2 = {N/2 + 1, . . . , N}. In this
case we have K(S, V ) ≤ N/2. Further, as S is such that u+ ei 6∈ Ω \ S, we have S = Ω if and only
if K(∂S, V ) = 0. Thus, because S = Ω yields an irrelevant lower bound, we have K(∂S, V ) ≥ 1.

Assuming that A ⊆ V1 it is clear that K(S,A) = 0 if S only contains states where nodes in V2
are active. Hence in this case we should choose S = {u ∈ Ω :

∑

i∈V2
ui ≥ 1}, the set of activity

states where at least one of the nodes in V2 is active, as this gives K(S, V ) = N/2, K(∂S, V ) = 1
and K(S,A) = 0. We thus see that the delay grows at least as fast as νN/2−1.

As mixing times are typically long when transitions between dominant activity states are slow,
it is likely that we can construct a lower bound for the mixing time that is similar to (14). The
mixing time of a process represents the amount of time required for the process to come close to
its equilibrium distribution, and is formally defined as

tmix(ǫ) = inf{t : d(t) ≤ ǫ},

where d(t) denotes the maximal distance (in total variation) between U(t) and π, i.e.,

d(t) = max
U(0)∈Ω

1

2

∑

u∈Ω

|P{U(t) = u} − π(u)|.

As the next proposition shows, the bottleneck ratio Φ(·) provides a lower bound on the mixing
time of the activity process {U(t)}.

Proposition 5.2. The mixing time of {U(t)} satisfies

tmix(ǫ) ≥ max
S⊆Ω

(1− 2ǫ− π(S))
1

Φ(S)
. (17)

Proof Zocca et al. [31] show that

tmix(ǫ) ≥ (1− 2ǫ− r)
1

Φ∗
r

,

with
Φ∗
r = min

{S⊆Ω:π(S)≤r}
Φ(S).

Therefore,

tmix(ǫ) ≥ max
r

max
{S⊆Ω:π(S)≤r}

(1− 2ǫ− r)
1

Φ(S)

= max
r

max
{S⊆Ω:π(S)=r}

(1− 2ǫ− r)
1

Φ(S)
,

and (17) follows.
We thus found a lower bound for the mixing time that has a similar form as the bound we

found in Proposition 5.1 for the aggregate weighted queue length. Note, however, that to find a
tight lower bound for the mixing time, for sufficiently small ǫ, we only need K(S, V ) to be large
and K(∂S, V ) to be small.
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6 Complete partite graphs

In the previous section we derived generic lower bounds for the expected aggregate weighted queue
length and delays in terms of the bottleneck ratio of any subset S ⊆ Ω, an approach that is also used
to find a lower bound for the mixing time of the activity process {U(t)}. In this section and the
next we describe how to find a subset S ⊆ Ω with the desired properties discussed in the previous
section, for a broad class of K-partite interference graphs. We additionally assume that each of the
nodes belongs to at least one clique of size K (of which the other K − 1 nodes necessarily belong
to K − 1 different components).

We first introduce some further notation and state a few preparatory lemmas. Denote by
Vk ⊆ V the subset of nodes that belong to the k-th component and Mk = |Vk|, k = 1, . . . ,K. For
compactness, define

Υk =
∏

i∈Vk

(1 + σi)− 1 =
∑

I⊆Vk

∏

i∈I

σi − 1 =
∑

∅6=I⊆Vk

∏

i∈I

σi.

In particular when σi ≡ σ̂k for all i ∈ Vk, we have Υk = (1 + σ̂k)
Mk − 1.

Throughout we assume that ρi = ρ̂k for all i ∈ Vk, and denote ρ =
∑K

k=1 ρ̂k, and ρmin =
mink=1,...,K ρ̂k. For convenience, we also assume φi ≡ 1, ψi ≡ 1, µi ≡ 1, so that σi = νi for all
i = 1, . . . , N . Define M = maxk=1,...,K Mk as the maximum component size.

In order to gain some useful intuition, we focus first on complete K-partite graphs, where
all nodes are connected except those that belong to the same component. In other words, the
complement of the graph consists of K fully connected components. Thus, transmission activity is
mutually exclusive across the various components.

In this case, the normalization constant in (1) satisfies

Z = 1 +
K
∑

k=1

∑

∅6=I⊆Vk

∏

i∈I

σi = 1 +
K
∑

k=1

Υk.

For any k = 1, . . . ,K, define Sk = {u ∈ Ω :
∑

i∈Vk
ui ≥ 1} as the set of activity states where at

least one of the nodes in Vk is active. We will use these sets to find a lower bound for the delay
and mixing time. As discussed in Example 5.1, these sets are likely to provide a tight lower bound.

Lemma 6.1. For any activation rate vector (ν1, . . . , νN ) such that the system is stable, for any
k = 1, . . . ,K,

Q(Sk) = Q(Ω \ Sk) < Mk(1−
∑

l 6=k

ρ̂l)

(

1− ρ

ρ̂k

)Mk−1

, (18)

ρ̂k < π(Sk) < 1−
∑

l 6=k

ρ̂l, (19)

∑

l 6=k

ρ̂l < π(Ω \ Sk) < 1− ρ̂k. (20)

Proof Using (1) we obtain

θi = Z−1
∑

u∈Ω,ui=1

N
∏

j=1

σ
uj

j ≥ Z−1σi
∏

l∈Vk\{i}

(1 + σl) = Z−1 σi
1 + σi

(Υk + 1).
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Also, from (1) we know
θi = σiP{Uj = 0 for all j ∈ N+

i }.

Furthermore,
P{Uj = 0 for all j ∈ N+

i } ≤ P{Uj = 0 for all j ∈ C},

and hence we get

θi ≤ σi[1−
∑

j∈C

θj ],

from (6), which may be rewritten as

θi ≤
σi

1 + σi
[1−

∑

j∈C\{i}

θj],

so that
Υk ≤ Z[1−

∑

j∈C\{i}

θj]− 1,

and thus, using the fact that ρi < θi for all i ∈ V is a necessary condition for stability,

Υk < Z[1−
∑

j∈C\{i}

ρj]− 1. (21)

Next, note that Q(Ω \ Sk) = π(0)
∑

i∈Vk
σi, and similarly,

Q(Sk) = π(0)
∑

i∈Vk

σi =
1

Z

∑

i∈Vk

σi.

Using this we get,

Q(Sk) ≤
Mk

Z
max
i∈Vk

σi =Mk max
i∈Vk

σi

1+σi
(Υk + 1)

1
1+σi

(Υk + 1)
=
Mk

Z
max
i∈Vk

σi

1+σi
(Υk + 1)

∏

l∈Vk\{i}

(1 + σl)

<
Mk(Υk + 1)

Z(1 + mini∈Vk
σi)Mk−1

.

Invoking Lemma 3.1 and (21) gives (18).
Also, because ρ̂k < π(Sk) = Υk/Z is needed for stability, (21) gives,

π(Sk) < 1−
∑

l 6=k

ρ̂l −
1

Z
,

which proves (19). Noting that π(Sk) + π(Ω \ Sk) = 1 gives (20).
Using Lemma 6.1 we can find a lower bound for the expected aggregate weighted queue length

at some subset of nodes in A ⊆ Vk.

Theorem 6.2. For any activation rate vector (ν1, . . . , νN ) such that the system is stable and for
any w ∈ R

N
+ , A ⊆ Vk,

∑

i∈A

wiE{Li} >
1

2M
(ρmin)

M+1
∑

i∈A

wiλi

(

1

1− ρ

)M−1

.
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For the symmetric scenario Mk ≡M and ρ̂k ≡ ρ/K for all k = 1, . . . ,K,

E{Li} >
(K − 1)2ρM+2

2MKM+1(K − (K − 1)ρ)

(

1

1− ρ

)M−1

.

Proof The proof relies on applying Proposition 5.1, taking S to be (i) Ω \Sk and (ii) Sl, l 6= k.
In either case, ui = 0 for all i ∈ A, u ∈ S, so that Y (w,A, S) = 0, i.e.,

D(w,A, S) =
∑

i∈A

λiwi.

First consider case (i). In this case we obtain the lower bound

∑

i∈A

wiE{Li} >

(

∑

l 6=k ρ̂l

)2

2Mk

∑

i∈A

wiλi

(

ρ̂k
1− ρ

)Mk−1

from Proposition 5.1 and Lemma 6.1. Taking A = Vk yields the second statement of the lemma for
a symmetric scenario.

In order to complete the proof of the first part of the lemma, we now turn to case (ii). Using
Proposition 5.1 and Lemma 6.1, we arrive at the lower bound

∑

i∈A

wiE{Li} >
ρ̂2l
2Ml

∑

i∈A

wiλi

(

ρ̂l
1− ρ

)Ml−1

.

Combining the above two lower bounds yields the first part of the lemma.
Theorem 6.2 states that in a complete K-partite graph the expected queue length grows at least

as fast as 1/(1 − ρ)M−1, with M the size of the largest component. Based on the observations in
Section 3, this may be heuristically explained as follows. In order for the system to be stable, each
node must at least have an activation rate of the order 1/(1 − ρ), see Lemma 3.1. In turn, the
transition times between the various activity states as governed by the maximum-size component
occur on a time scale of the order νM−1, when each node has a fixed activation rate ν.

For M = 1 (full interference graph), the lower bound established in Theorem 6.2 is loose,
reflecting that it is not the slow transitions between the various components that cause the delays
to be long in that case, but the sheer load. For M = 2, the lower bound could also have been
obtained by treating cliques as single-resource systems and is in fact similar to (2). For M ≥ 3,
the lower bound is particularly relevant, and reflects that the slow transitions between the various
components cause the delays to be exponentially larger than can be explained from sheer load
considerations alone.

Lemma 6.1 also provides a corresponding lower bound for the mixing time of the activity process
{U(t)} as established in the next theorem.

Theorem 6.3. For any activation rate vector (ν1, . . . , νN ) such that the system is stable,

tmix(ǫ) > ((K − 1)ρmin − 2ǫ)
(ρmin)

M

M

(

1

1− ρ

)M−1

.
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Proof Applying Proposition 5.2 for S = Sk and using Lemma 6.1 gives

tmix(ǫ) > (1− 2ǫ− (1−
∑

l 6=k

ρ̂l))
ρ̂k

Mk(1−
∑

l 6=k ρ̂l)

(

ρ̂k
1− ρ

)Mk−1

> ((K − 1)ρmin − 2ǫ)
ρmin

Mk

(

ρmin

1− ρ

)Mk−1

,

for k = 1, . . . ,K, and the result follows.
Note that the bound derived in Theorem 6.3 is not necessarily the tightest bound we can find

using the results of Lemma 6.1. In fact, the bound is irrelevant if ǫ > (K − 1)ρmin/2. However, if
ρmin > 0 and ǫ is small enough, we can conclude that the mixing time grows at least like 1/(1−ρ)M−1

as ρ increases to 1.
For equal activation rates, i.e., for the activation rate vector (ν, . . . , ν), it is shown in [31] that

tmix(ǫ) ∼ νM
∗−1 as ν → ∞, with M∗ the size of the second largest component, so that the heavy-

traffic behavior is governed byM∗ instead ofM . Note however that this activation rate vector does
not provide a stable system, unless ρmin = 0 or M = M∗, as follows from Lemma 6.1 and the fact
that π(Sk) → 0 as ν → ∞ for all k such that Mk < M . Hence the activity process mixes slower in
heavy traffic if the system is stable as compared to a system with equal activation rates.

7 Extensions

In this section we turn attention to the broader class of (not necessarily complete) K-partite graphs.
Thus, transmission activity is no longer mutually exclusive across the various components. However,
we make the next assumption implying that joint activity across various components is relatively

inefficient. Denote by v(k) = 1Vk
the incidence vector of Vk, i.e., v

(k)
i = 1 if i ∈ Vk and v

(k)
i = 0

otherwise, and define Ω∗ = {v(1), . . . , v(K)}.

Assumption 7.1. For any u ∈ Ω,

H(u) =

K
∑

k=1

∑

i∈Vk

ui
Mk

≤ 1,

with strict inequality for any u 6∈ Ω∗.

Based on the above assumption, we define

ζ = 1− max
u∈Ω\Ω∗

H(u) > 0.

An illustrative example is provided by a 2B×2B grid with nodes labeled as {(i, j)}, i, j = 1, . . . , 2B,
and nearest-neighbor interference. The two components are V1 = {(i, j) : (i + j) mod 2 = 1} and
V2 = {(i, j) : (i + j) mod 2 = 0}, with M1 = M2 = 2B2. In order for m ≥ 1 nodes in V1 to be
active, at least m + 1 or m + 3 nodes in V2 must be inactive (depending on whether or not we
assume a wrap-around boundary). Thus

∑2B
i=1

∑2B
j=1 u(i,j) ≤ 2B2−1 (or 2B2−3) for all u ∈ Ω\Ω∗,

and ζ = 1
2B2 (or 3

2B2 ).
The next lemma shows that in order for the system to be stable, joint activity across the various

components can only occur a negligible fraction of the time at high load.
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Lemma 7.1. In order for the system to be stable, it should hold that

∑

u∈Ω\Ω∗

π(u) <
1− ρ

ζ
,

and

π(v(k)) > ρ̂k −
1− ρ

ζ
.

Proof In order for the system to be stable, we must have ρi < θi for all i = 1, . . . , N . Thus,

ρ =

K
∑

k=1

ρ̂k =

K
∑

k=1

1

Mk

∑

i∈Vk

ρi

<

K
∑

k=1

1

Mk

∑

i∈Vk

∑

u∈Ω

π(u)ui =
∑

u∈Ω

π(u)

K
∑

k=1

1

Mk

∑

i∈Vk

ui

=
∑

u∈Ω∗

π(u)
K
∑

k=1

1

Mk

∑

i∈Vk

ui +
∑

u∈Ω\Ω∗

π(u)
K
∑

k=1

1

Mk

∑

i∈Vk

ui

≤
∑

u∈Ω∗

π(u) + (1− ζ)
∑

u∈Ω\Ω∗

π(u)

= 1− ζ
∑

u∈Ω\Ω∗

π(u),

where the last inequality follows from Assumption 7.1. The first part of the lemma follows.
Also, for any i ∈ Vk,

ρ̂k = ρi <
∑

u∈Ω

π(u)ui ≤ π(v(k)) +
∑

u∈Ω\Ω∗

π(u),

which combined with the first statement yields the second part of the lemma.
In the next lemma we show that the fraction of time the activity process {U(t)} spends in any

component Vk relative to the traffic intensity of the nodes in that component, is almost equal for
all components if ρ is large enough.

Lemma 7.2. Assume the system is stable and ρ ≥ ργ = 1− γζρ2min, γ > 0. Then

min
k=1,...,K

1

ρ̂k

∏

i∈Vk

σi ≥ (1− 3γ) max
k=1,...,K

1

ρ̂k

∏

i∈Vk

σi.

Proof For compactness, we denote Πk =
∏

i∈Vk
σi and Rk = Πk/ρ̂k, and define kmin =

argmink=1,...,K Rk and kmax = argmaxk=1,...,K Rk.
Lemma 7.1 implies

ρ̂kmin
− γρ2min ≤ ρ̂kmin

− (1− ρ)/ζ ≤ π(v(kmin)) = Z−1Πkmin

≤
Πkmin

∑K
k=1Πk

=
Πkmin

Πkmin
+Πkmax +

∑

k 6=kmin,kmax
Πk

≤
Πkmin

Πkmin
+Πkmax +

∑

k 6=kmin,kmax

ρ̂k
ρ̂kmin

Πkmin

,
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yielding

(1− (ρ̂kmin
+

∑

k 6=kmin,kmax

ρ̂k)(1 −
γρ2min

ρ̂kmin

))
Πkmin

Πkmax

≥ ρ̂kmin
− γρ2min,

or equivalently,

(1− (ρ− ρ̂kmax)(1 − γρ2min/ρ̂kmin
))Πkmin

≥ (ρ̂kmin
− γρ2min)Πkmax .

Using ρ ≥ 1− γζρ2min and ρmin ≤ ρ̂kmin
, it follows that

(1− (1− γζρ2min − ρ̂kmax)(1− γρmin))Πkmin
≥ (1− γ)ρ̂kmin

Πkmax .

This yields
(1 + 2γ)ρ̂kmaxΠkmin

≥ (1− γ)ρ̂kmin
Πkmax ,

and thus,

Rkmin
≥

(1− γ)Rkmax

1 + 2γ
≥ (1− 3γ)Rkmax .

In order to state a lower bound for the expected aggregate weighted queue length at some subset
of nodes A ⊆ Vk, we now first introduce some further notation and concepts.

A sequence of states (u(0), u(1), . . . , u(l)), with u(k) ∈ Ω, k = 0, . . . , l, is called a path from u(0)

to u(l) if (u(k), u(k+1)) are feasible transitions, i.e., q(u(k), u(k+1)) > 0 for all k = 0, . . . , l − 1. For
a given path p = (u(0), u(1), . . . , u(l)), denote by m(p) = mink=0,1,...,lH(u(k)) the minimum value
of the function H(·), as defined in Assumption 7.1, along the path. For given states u, v ∈ Ω,
denote by P (u, v) the collection of all paths from u to v. Define M(u, v) = maxp∈P (u,v)m(p) as the
maximum of the minimum value of the function H(·) along any path from state u to state v, with
the convention that M(u, u) = ∞.

For all A ⊆ V such that A ⊆ Vk for some k ∈ {1, . . . ,K}, denote by ∆(A) the set of states in
which the expected drift of the aggregate weighted queue length in A is non-positive, i.e.,

∆(A) = {u ∈ Ω :
∑

i∈A

wiλi ≤
∑

i∈A

wiµiui}.

Further define δ(A) as the minimal expected drift of the aggregate weighted queue length in A if
the system does not reside in of one of the states in ∆(A), i.e.,

δ(A) =
∑

i∈A

wiλi − max
u∈Ω\∆(A)

∑

i∈A

wiµiui.

Note that δ(A) > 0 by construction. For all l 6= k, define ml(A) = maxu∈∆(A)M(v(l), u), and

Sl(A) = {u ∈ Ω :M(v(l), u) > ml(A)}

as the set of states that can be reached from v(l) via a path p with m(p) > ml(A). Also, define
mk(A) = maxl 6=kml(A), and

Sk(A) = {v ∈ Ω : max
u∈∆(A)

M(u, v) > mk(A)}
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as the set of states that can be reached from ∆(A) via a path p with m(p) > mk(A).
Finally, defineHl(A) = maxu∈∂Sl(A)H(u), H∗(A) = minl=1,...,K Hl(A) andH∗

min = minA⊆V :∃k:A⊆Vk
H∗(A).

In the remainder of this subsection we will assume that the activation rates of nodes in the
same component are equal, i.e. σi = σ̂k if i ∈ Vk for all k = 1, . . . ,K. Denote σ∗ = mink=1,...,K σ̂Mk

k

and k∗ = argmink=1,...,K σ̂Mk

k .

Remark. It is not clear when there exists an activation rate vector (ν1, . . . , νN ) with νi = νj if
i, j ∈ Vk that stabilizes the system. For symmetric topologies, e.g. ring networks with an even
number of nodes or tori with an even number of nodes in both directions, it seems plausible that
such an activation rate vector can stabilize the system for any ρ < 1. For asymmetric typologies,
e.g. linear topologies and two-dimensional grid networks, this is not clear.

In the next lemma we derive an upper bound for the fraction of the time the system spends in
the boundary of Sl(A) for any l = 1, . . . ,K.

Lemma 7.3. Assume the system is stable and ρ ≥ ργ = 1− γζρ2min, γ > 0. Then

max
u∈∂Sl(A)

N
∏

j=1

σ
uj

j ≤

(

σ∗

(1− 3γ)ρmin

)Hl(A)

.

Proof Since σi = σ̂k for all k = 1, . . . ,K, we obtain

max
u∈∂Sl(A)

N
∏

j=1

σ
uj

j = max
u∈∂Sl(A)

K
∏

k=1

∏

i∈Vk

σui

i = max
u∈∂Sl(A)

K
∏

k=1

σ̂

∑

i∈Vk

ui

k

= max
u∈∂Sl(A)

K
∏

k=1

(σ̂Mk

k )

1
Mk

∑

i∈Vk

ui

.

Lemma 7.2 gives

σ̂Mk

k ≤
ρ̂k

1− 3γ
min

l=1,...,K

1

ρ̂l
σ̂Ml

l ≤
σ∗

(1− 3γ)ρmin
,

and thus,

max
u∈∂Sl(A)

N
∏

j=1

σ
uj

j ≤ max
u∈∂Sl(A)

K
∏

k=1

(

σ∗

(1− 3γ)ρmin

)
1

Mk

∑

i∈Vk

ui

≤ max
u∈∂Sl(A)

(

σ∗

(1− 3γ)ρmin

)

∑K
k=1

1
Mk

∑

i∈Vk

ui

=

(

σ∗

(1− 3γ)ρmin

)maxu∈∂Sl(A) H(u)

=

(

σ∗

(1− 3γ)ρmin

)Hl(A)

.

We are now in the position to derive bounds for Q(Sl(A)), π(Sl(A)) and π(Ω \ Sl(A)) that are
qualitatively similar to the bounds in Lemma 6.1.
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Lemma 7.4. Assume ρ ≥ ργ = 1 − γζρ2min, γ > 0. For any activation rate vector (ν1, . . . , νN )
such that the system is stable and with νi = νj if i, j ∈ Vk for some k, for any l = 1, . . . ,K,

Q(Sl(A)) = Q(Ω \ Sl(A))

<
2N

(1− 3γ)ρmin

(

ρk∗

1− ρ

)M(Hl(A)−1)

, (22)

(1− γ)ρmin < π(Sl(A)) < 1− (1− γ)ρmin, (23)

(1− γ)ρmin < π(Ω \ Sl(A)) < 1− (1− γ)ρmin. (24)

Proof First note that
Q(Sl(A)) =

∑

u∈∂Sl(A)

π(u)

and
Q(Ω \ Sl(A)) =

∑

u∈∂Sl(A)

π(u).

Further,

Q(Sl(A)) =
∑

u∈∂Sl(A)

π(u) = Z−1
∑

u∈∂Sl(A)

N
∏

j=1

σ
uj

j

≤ Z−1|∂Sl(A)| max
u∈∂Sl(A)

N
∏

j=1

σ
uj

j .

Noting that Z ≥ σ∗ and |∂Sl(A)| ≤ 2N yields, using Lemma 7.3,

Q(Sl(A)) ≤
2N

(

σ∗

(1−3γ)ρmin

)Hl(A)

σ∗
≤

2N (σ∗)Hl(A)−1

(1− 3γ)ρmin
,

and (22) follows from Lemma 3.1.
Further, using Lemma 7.1,

π(Sl(A)) = π(Sl(A)) ≥ π(v(l)) > ρ̂l −
1− ρ

ζ
≥ (1− γ)ρmin.

Now note that by definition Sl ∩∆(A) = ∅ for l 6= k and ∆(A) ⊆ Sk if A ⊆ Vk. Hence, for l 6= k,

π(Sl(A)) ≤ 1− π(v(k)) < 1− (1− γ)ρmin,

and
π(Sk(A)) ≤ 1−

∑

l 6=k

π(v(l)) < 1− (K − 1)(1 − γ)ρmin,

which gives (23). Noting that π(Sl(A)) + π(Ω \ Sl(A)) = 1 gives (24).
Using a similar approach as in Section 6, the bounds in Lemma 7.4 can be utilized to establish

a lower bound for the expected aggregate weighted queue length in some subset of nodes and for
the mixing time of the activity process.
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Theorem 7.5. Assume ρ ≥ ργ = 1 − γζρ2min, γ > 0. For any activation rate vector (ν1, . . . , νN ),
with νi = νj if i, j ∈ Vk for some k, such that the system is stable and for any w ∈ R

N
+ , A ⊆ Vk,

∑

i∈A

wiE{Li} >
δ(A)(1 − 4γ)ρM+3

min

2N+1

(

1

1− ρ

)M(1−H∗(A))

,

Proof The proof of this theorem proceeds along similar lines as the proof of Theorem 6.2 and
relies on applying Proposition 5.1, taking S to be (i) Ω \ Sk(A) and (ii) S = Sl(A), l 6= k. First
note that by definition Sl(A) ∩∆(A) = ∅, and thus D(w,A, Sl(A)) ≥ δ(A), l 6= k. Also note that
∆(A) ⊆ Sk(A), so that D(w,A,Ω \ Sk(A)) ≥ δ(A).

Further, using Lemma 7.4 we obtain the lower bound

∑

i∈A

wiE{Li} >
δ(A)(1 − 4γ)ρM+3

min

2N+1

(

1

1− ρ

)M(1−Hl(A))

,

for l = 1, . . . ,K, and the result follows.
Theorem 7.5 states that in a general K-partite interference graph the expected queue length

grows at least as fast as 1/(1−ρ)M(1−H∗), where the coefficient H∗ depends on the specific topology
and is in general hard to calculate. We however know that 1

M ≤ H∗ ≤ 1 and for some specific
topologies we can explicitly determine H∗.

The next theorem provides a corresponding lower bound for the mixing time of the activity
process {U(t)}.

Theorem 7.6. Assume ρ ≥ ργ = 1 − γζρ2min, γ > 0. For any activation rate vector (ν1, . . . , νN )
such that the system is stable and with νi = νj if i, j ∈ Vk for some k,

tmix(ǫ) > ((1− γ)ρmin − 2ǫ)
(1− 4γ)ρM+2

min

2N

(

1

1− ρ

)M(1−H∗
min)

.

Proof Take A ⊆ V such that there exists a k such that A ⊆ Vk. Using Lemma 6.1 we then
find for any l ∈ {1, . . . ,K},

1

Φ(Sl(A))
>

(1− γ)ρmin(1− 3γ)ρmin

2N

(

ρk∗

1− ρ

)M(1−Hl(A))

≥
(1− 4γ)ρM+2

min

2N

(

1

1− ρ

)M(1−Hl(A))

.

Hence, using Proposition 5.2,

tmix(ǫ) > ((1− γ)ρmin − 2ǫ)
(1− 4γ)ρM+2

min

2N

(

1

1− ρ

)M(1−Hl(A))

,

and the result follows by optimizing over l and A.
The value of the coefficient H∗(A) depends strongly on the specific properties of the interference

graphG. For a complete partite graph, the sets Sl(A) coincide with those in the previous subsection,
and we have ∂Sl(A) =

⋃

i∈Vl
{ei}, so that Hl(A) = 1/Ml, and H∗(A) = 1/M , recovering the

result of Theorem 6.2. On the other hand, when the graph consists of N/K fully connected
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Figure 1: Average total number of packets for several fixed activation rates.

components, we have Hl(A) ≡ 1, and the result trivializes. An interesting intermediate situation
is the 2B × 2B grid mentioned earlier with M = M1 = M2 = 2B2, for which we conjecture that
H∗(A) = H1 = H2 = 1 − 1/B or 1 − 1/(2B) if B ≥ 2, depending on whether or not we assume
a wrap-around boundary, suggesting that the mean queue lengths would grow as 1/(1 − ρ)B or
1/(1 − ρ)2B .

8 Simulation experiments

In this section we will illustrate the theoretical results for the growth behavior of the aggregate
queue length through simulation experiments. For cross comparison, we consider a system that can
be represented by a symmetric complete bipartite (K = 2) interference graph with components of
size M = 5. Because of space considerations, we do not report simulation results for other cases,
but we observed qualitatively similar behavior in a broad range of scenarios.

To estimate the expected aggregate queue length for a given value of ρ, we set t = 106 and
calculate the average total number of packets in the time intervals [0, t] and [t+1, 2t], starting from
an initially empty system. We take the average of the two values to be our estimate if the values
are less than 5% apart. Otherwise we set t = 2t and repeat the procedure.

Figure 1 shows the average total number of packets in the system for various fixed activation
rates. Note that we used a log-lin scale. We see that the simulated curves lie well above the lower
bound of Theorem 6.2 for all chosen values of ν. Note that the system is not stable for all values
of ρ, e.g. for ν = 1 the system is unstable if ρ ≥ 2θi =

32
63 , explaining the jumps in the simulation

result. Further note that the expected time between activation of nodes in the two components is
smaller for small values of ν. This explains why small values of ν tend to perform better in case ρ
is small, i.e., for large values of ν the nodes in one component will often be transmitting dummy
packets while the nodes in the other component do have packets waiting to be transmitted.

Figure 2 shows the average total number of packets in the system for f(l) = l and g(l) = 1. We
see that the lower bound of Theorem 4.1 is remarkably close to the simulation result for small values
of ρ. For larger values of ρ the bound and simulation result are farther apart. One explanation for
this lies in the approximation made in (5). For small values of ρ this approximation is relatively

21



0 0.2 0.4 0.6 0.8 1
10−9

10−3

103

109

ρ

∑
i∈

V
E
{
L

i
}

Simulation for f(l) = l and g(l) = 1

Lower bound for f(l) = l and g(l) = 1

Lower bound for any fixed activation rate vector

Figure 2: Average total number of packets for f(l) = l and g(l) = 1.

good while for large values of ρ this approximation is off by a factor of about 2 in this case. While
this does not explain the total discrepancy in this case, it does explain all discrepancies in case the
rate of increase of the activation function is slow, e.g. f(l) = log(l + 1).

Finally note that the simulation result lies, for large values of ρ, below the lower bound for fixed
activation rates established in Theorem 6.2. This suggests that the activation function fi(l) ≡
f(l) = l performs better in heavy traffic than fi(l) = νi for any choice of the activation rate vector
(ν1, . . . , νN ).

9 Conclusions

We have established lower bounds for the expected queue lengths and delays in wireless random-
access networks. Both for queue-based strategies and fixed activation rates, the derivation of
the bounds starts from the observation that stability of the system requires the activity factors
to be big at high load. The specific subsequent arguments considerably differ however in both
cases. Queue-based strategies for which maximum stability has been established, involve slow,
logarithmic, activation functions, which require huge queue lengths at every node for the activity
factors to be big enough, and cause the exponential delay scaling. In contrast, the delays for
fixed activation rates are shown to result from excessive mixing times due to a bottleneck in the
network topology together with the big activity factors required for stability. We also observe that
the network topology plays a major role in case of fixed activation rates, while it only appears to
matter somewhat implicitly in case of queue-based strategies as will be further discussed below.

For complete partite interference graphs, a comparison of both cases reveals that the expected
delay for queue-based strategies grows faster than the lower bound 1/(1−ρ)M−1 for fixed activation
and de-activation rates when h(l) increases slower than l1/(M−1), with M denoting the maximum
component size. This is for example the case if f(l) = r(l)/(1 + r(l)) and g(l) = 1/(1 + r(l)), with
r(l) = log(l + 1). Conversely, when h(l) increases faster than l1/(M−1), the lower bound for fixed
activation and de-activation rates could potentially be beaten by sufficiently aggressive queue-based
strategies. Simulation experiments demonstrate that the actual expected delays indeed exhibit the
cross-over suggested by the lower bounds.
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A challenging issue for further research is to examine whether more aggressive queue-based
strategies can improve the delay performance in more general topologies as well. As noted earlier,
maximum-stability guarantees in arbitrary topologies have only been established so far for nominal
activation functions that grow logarithmically with the queue lengths [22, 24, 25]. Inspection of
the proof arguments indicates that maximum stability will remain guaranteed as long as the fluid
limits of the queue length process exhibit fast mixing behavior. This in turn means that the activity
process for such queue-based strategies in fact behaves as if the activation rates are essentially fixed.
Thus, in arbitrary topologies it is questionable whether queue-based strategies have the capability
to outperform fixed-rate strategies.

In some specific topologies, however, maximum stability is maintained for highly aggressive
queue-based strategies for which the fluid limits of the queue length process may exhibit slow
mixing behavior [8, 11]. The complete partite interference graphs considered in the present paper
are crucial examples of such topologies. In these scenarios there seems to be scope for more
aggressive queue-based strategies to reduce the delays, as confirmed by the lower bounds and
simulation results that we presented.

In conclusion, the question in what kind of scenarios more aggressive queue-based strategies
can improve the delay performance appears to be inextricably linked to the question under what
conditions such strategies provide maximum-stability guarantees. In both these questions, the
mixing properties of the activity process seem to play a central role, and it would be interesting to
explore this three-way connection further.
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