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Abstract We develop probabilistic upper bounds for the matrix two-norm, the
largest singular value. These bounds, which are true upper bounds with a user-
chosen high probability, are derived with a number of different polynomials that
implicitly arise in the Lanczos bidiagonalization process. Since these polynomials
are adaptively generated, the bounds typically give very good results. They can be
computed efficiently. Together with an approximation that is a guaranteed lower
bound, this may result in a small probabilistic interval for the matrix norm of
large matrices within a fraction of a second.

Keywords Matrix two-norm · probabilistic bound · SVD · singular value problem ·
singular value decomposition · subspace method · Lanczos bidiagonalization ·
Lanczos polynomial · Ritz polynomial · condition number · large (sparse) matrix.

Mathematics Subject Classification (2000) 65F35, 65F15, 65F50, 15A12,
15A18.

1 Introduction

(Golub–Kahan–) Lanczos bidiagonalization [5] (see also, e.g., [6]) is a popular
method to approximate singular values of large sparse matrices. Let A be a real
m× n matrix with singular value decomposition (SVD) A = XΣY T with singular
values

0 ≤ σmin = σp ≤ σp−1 ≤ · · · ≤ σ2 ≤ σ1 = σmax = ‖A‖,

where p := min{m,n}, and ‖ · ‖ stands for the 2-norm. Denote the corresponding
right singular vectors by y1, . . . ,yn. Usually, Lanczos bidiagonalization approxi-
mates the largest singular values, and, to a lesser extent, the smallest singular
values, well. However, the results of the method depend on the choice of the initial
vector v1. The obtained approximation to largest singular value σmax is always
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a lower bound. However, if a poor choice is made for v1, that is, if v1 is almost
deficient in the direction y1, the true value of ‖A‖ may be arbitrarily larger. Often
there is no apriori information on y1 available. For this reason a random choice
for v1 is considered relatively safe; v1 is usually selected randomly in (industrial)
codes.

Using the fact that v1 is chosen randomly, we will develop probabilistic bounds
for ‖A‖; i.e., bounds that hold with a user-selected probability 1 − ε, for ε � 1.
The bounds may be viewed as a side-product or post-processing step of Lanczos
bidiagonalization and may be computed efficiently: for large A, the computational
costs are very modest compared to the Lanczos bidiagonalization process itself.

The fact that it is unlikely that a random vector is near-deficient in y1 enables
us to develop probabilistic inclusion intervals for the matrix norm. Hereby we
exploit the fact that the Lanczos polynomials tend to increase rapidly to the right
of its largest zero (see Section 2). Therefore, with our new low-cost process as
addition to the Lanczos bidiagonalization method, we usually not only get good
lower bounds to ‖A‖, but also get sharp upper bounds with a high probability.

Efficient state-of-the-art methods based on Lanczos bidiagonalization use some
restart mechanism; see, e.g., [1], [12]. We will not consider restarts in this paper for
two main reasons: first, the unrestarted case makes possible the theoretical analysis
of Sections 2, 3 and 4; and second, it will turn out that usually a modest number of
Lanczos bidiagonalization steps already suffices for quality probabilistic inclusion
intervals. We will also assume exact arithmetic; in the experiments in Section 5
we exploit a stable variant with reorthogonalization.

This paper is inspired by [13] and has been organized as follows. Section 2
studies polynomials that are implicitly formed in the Lanczos bidiagonalization
process. These are used in Sections 3 and 4 to develop probabilistic upper bounds
for the matrix 2-norm. Numerical experiments are presented in Section 5, and a
discussion and some conclusions can be found in Section 6.

2 Polynomials arising in Lanczos bidiagonalization

Given a vector v1 with unit norm, the defining relations of Lanczos bidiagonaliza-
tion are β0 = 0, u0 = 0, and for k ≥ 1:

αkuk = Avk − βk−1uk−1

βkvk+1 = ATuk − αkvk
(1)

where

αj = uTjAvj , βj = uTjAvj+1 (2)

are nonnegative. After k steps of the method, these relations can be written in
matrix form as

AVk = UkBk,

ATUk = Vk+1B̂
T
k = VkB

T
k + βkvk+1eTk ,

where ek is the kth unit vector, and Uk = [u1 · · ·uk] and Vk = [v1 · · ·vk] have
orthonormal columns spanning the subspaces Uk and Vk, respectively. The k × k
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matrix

Bk =


α1 β1

. . .
. . .

αk−1 βk−1

αk


and the k × (k + 1) matrix B̂k = [Bk 0] + βkeke

T
k+1 are both upper bidiagonal

matrices. We will not consider the rather exceptional situation of a breakdown of
the method (a zero αj or βj) in this paper.

Introduce the bilinear forms

〈f, g〉 := vT1 f(ATA) g(ATA) v1

and
[f, g] := vT1 A

T f(AAT ) g(AAT )Av1 = vT1 f(ATA)ATA g(ATA) v1

for functions f and g that are analytic in a neighborhood of the squares of the
singular values of A. The following result is the starting point for this paper.

Proposition 1 The uk and vk can be written as a polynomial of degree k−1 in AAT ,

resp. ATA, applied to Av1, resp. v1:

uk = pk−1(AAT )Av1, vk = qk−1(ATA) v1.

The following recurrence relations hold: p−1(t) = 0, q0(t) = 1, and for k ≥ 0:

αk+1 pk(t) = qk(t)− βk pk−1(t),

βk+1 qk+1(t) = t pk(t)− αk+1 qk(t).

Moreover,
αk = 〈pk−1, t qk−1〉 = [pk−1, qk−1],

βk = 〈pk−1, t qk〉 = [pk−1, qk].

Proof This follows by induction; the recurrence relations follow from substitution
into (1). The inner products can be derived from (2).

We now study several useful properties of these Lanczos bidiagonalization poly-
nomials pk and qk that will be used in the rest of the paper. First, we point out
close relations between Lanczos bidiagonalization and two other Lanczos processes.
Note that

ATAVk = ATUkBk

= VkB
T
k Bk + βkvk+1eTkBk (3)

= VkB
T
k Bk + αkβkvk+1eTk

and

AATUk = AVkB
T
k + βkAvk+1eTk

= UkBkB
T
k + βkUk+1Bk+1ek+1eTk (4)

= UkB̂kB̂
T
k + αk+1βkuk+1eTk .
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We see from these equations that Lanczos bidiagonalization simultaneously per-
forms a Lanczos process on ATA with starting vector v1, and a Lanczos process
on AAT with starting vector u1 := α−1

1 Av1 (the normalized Av1). The symmet-

ric tridiagonal matrices BTk Bk and B̂kB̂
T
k , respectively, that arise in the Lanczos

methods are decomposed as the product of the bidiagonal matrices that arise in
Lanczos bidiagonalization. We use (3) and (4) to characterize the zeros of the
polynomials pk and qk; see Proposition 2.

Denote the singular values of Bk by

θ
(k)
k ≤ · · · ≤ θ(k)1

and the corresponding right singular vectors by d
(k)
k , . . . , d

(k)
1 . We write θ̂

(k)
k ≤

· · · ≤ θ̂(k)1 for the singular values of B̂k and ĉ
(k)
k , . . . , ĉ

(k)
1 for its left singular vectors.

To avoid a heavy notation we will often omit the superscript (k) in the sequel. A
key aspect of Lanczos bidiagonalization is that often the singular values of both
Bk and B̂k are good approximations to the singular values of A; in particular to
the largest and (to a lesser extent) to the smallest singular values.

In the next proposition, Ik stands for the identity of dimension k.

Proposition 2 (a) The zeros of qk are exactly θ21, . . . , θ
2
k.

This implies that qk(t) is a nonzero multiple of det(tIk −BTk Bk).

(b) The zeros of pk are exactly θ̂21, . . . , θ̂
2
k.

This implies that pk(t) is a nonzero multiple of det(tIk − B̂kB̂Tk+1).

Proof From (3) it may be checked that the pairs (θ2j , Vkdj), j = 1, . . . , k, satisfy
the Galerkin condition

ATAVkdj − θ2j Vk dj ⊥ Vk.

Since Vkdj ∈ Vk, we can write

Vkdj = sj(A
TA) v1 (5)

for a polynomial sj = s
(k)
j of degree at most k − 1. For all j = 1, . . . , k, we have

that (ATA− θ2j I)Vkdj is in Vk+1 but is orthogonal to Vk. Therefore, these vectors

have to be nonzero multiples of the vector vk+1 = qk(ATA) v1. Hence, qk(t) should
contain all factors (t− θ2j ), and therefore is a nonzero multiple of

µ(t) = (t− θ21) · · · (t− θ2k).

Part (b) follows in a similar manner starting with the Galerkin condition

AATUkĉj − θ̂2j Uk ĉj ⊥ Uk

for the pairs (θ̂2j , Ukĉj). Since Ukĉj ∈ Uk, we can write

Ukĉj = rj(AA
T )Av1 (6)

for a polynomial rj = r
(k)
j of degree at most k−1. For all j = 1, . . . , k, we have that

(AAT− θ̂2j I)Ukĉj is in Uk+1 but is orthogonal to Uk. Therefore, these vectors have
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to be nonzero multiples of the vector uk+1 = pk(AAT )Av1. Hence, pk(t) should

contain all factors (t− θ̂2j ), and therefore is a nonzero multiple of

µ̂(t) = (t− θ̂21) · · · (t− θ̂2k);

cf. also the discussion in [11, p. 266–267].

Corollary 3

Vkdj = νj(A
TA)v1 / ‖νj(ATA)v1‖ (j = 1, . . . , k),

‖µ(ATA)v1‖ = min ‖ω(ATA)v1‖,

Ukĉj = ν̂j(AA
T )Av1 / ‖ν̂j(AAT )Av1‖, (j = 1, . . . , k),

‖µ̂(AAT )Av1‖ = min ‖ω(AAT )Av1‖,

where νj(t) = µ(t)/(t− θ2j ), ν̂j(t) = µ̂(t)/(t− θ̂2j ), and the minimum is taken over all

monic polynomials ω of degree k.

Proof This follows from the proof of the previous proposition; cf. also [11, p. 266].

The following result will be used for an efficient numerical procedure in the next
section.

Proposition 4 The polynomials pk and qk have positive leading coefficients and in-

crease strictly monotonically to the right of their largest zeros θ̂21 and θ21, respectively.

Proof This follows from Proposition 2 and the fact that pk and qk are polynomials
of degree k.

Proposition 5 For 1 ≤ j ≤ k the convergence to the largest singular values is mono-

tonic:

θ
(k)
j ≤ θ̂(k)j ≤ θ(k+1)

j ≤ σj .

Proof This follows from the fact that B̂k is the matrix Bk expanded with an extra
(k+1)st column. Likewise, Bk+1 is B̂k expanded with an extra (k+1)st row. Now
apply [8, (3.3.17)], see also [7, Theorem 4.3].

Taking j = 1 in Proposition 5, this implies that the largest singular values of Bk
and B̂k are guaranteed lower bounds for ‖A‖ of increasing quality. Furthermore,
the polynomials pk and qk will be used for probabilistic bounds for the matrix
norm in the next section.

3 Probabilistic bounds for the matrix norm

We will now develop probabilistic bounds for ‖A‖ (= σ1 = σmax), making use of
the fact that the polynomials pk and qk tend to increase rapidly to the right of
their largest zeros θ̂1 and θ1, respectively. Let

v1 =
n∑
j=1

γj yj

be the decomposition of the starting vector v1 with respect to the right singular
vectors.
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Lemma 6 We have pk(σ21) > 0 and qk(σ21) > 0.

Proof This follows from the combination of Propositions 4 and 5.

We now arrive at the main argument. From

1 = ‖vk+1‖2 = ‖qk(ATA)v1‖2 =
n∑
j=1

γ2j qk(σ2j )
2

and qk(σ21) > 0 (see Lemma 6) it follows that

1 ≥ |γ1| qk(σ21).

If γ1 would be known, this estimate would provide an upper bound σup for ‖A‖ =
σmax: let σup be the largest zero of

f1(t) = qk(t2)− 1/|γ1|. (7)

One may check that this number σup exists and is larger than θ1 = θ
(k)
1 ; it may

for instance be determined numerically efficiently by bisection on the interval

[θ
(k)
1 , ‖A‖F ] which is guaranteed to contain σmax. (Note that σup might inciden-

tally even be larger than ‖A‖F for small k; in this case we proceed with a larger
k, as the information is not useful.)

Since we generally do not know (an estimate to) γ1 in practice, we are interested
in the probability that |γ1| is smaller than a given (small) constant. A small |γ1|
corresponds to an unlucky choice of an initial vector: in this case v1 is almost
orthogonal to y1. The following lemma states a suitable result and enables us to
establish probabilistic bounds, i.e., bounds that hold with a certain (user-defined,
high) probability. The proof uses the fact that if v1 has been chosen randomly
with respect to the uniform distribution over the unit sphere Sn−1 in Rn, then, as
a result, (γ1, . . . , γn) is also random in Sn−1. It is easy to construct this random
vector (Matlab code: v1=randn(n,1); v1=v1/norm(v1)); see, e.g., [9, p. 1116].

Lemma 7 Assume that the starting vector v1 has been chosen randomly with respect

to the uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P (|γ1| ≤ δ) = 2G(n−1
2 , 12 )−1 ·

∫ arcsin(δ)

0

cosn−2(t) dt,

where G denotes Euler’s Beta function: G(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Proof See [13, Lemma 3.1].

If we would like to have an upper bound for ‖A‖ that is correct with probability
at least 1− ε, then we first determine the value of δ for which∫ arcsin(δ)

0

cosn−2(t) dt = ε
2 G(n−1

2 , 12 )

(
= ε

∫ π/2

0

cosn−2(t) dt

)
(8)

holds, e.g., by bisection on the interval [0, π2 ]. The integrals in (8) may be computed
using an appropriate quadrature formula.
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Moreover, for small ε, which is our main interest, the behavior of δ as a function
of ε is roughly δ = δ(ε) ≈ ε · 12 G(n−1

2 , 12 ) as is proven in the next result. As an
example, we mention that for n = 1000 and ε = 0.01, the true and estimated value
for δ with Proposition 8 differ only ≈ 2.6 · 10−5 relatively.

Proposition 8 Given 0 < ε� 1, let δ = δ(ε) satisfy (8). Then

δ′(0) = lim
ε→0

δ(ε)

ε
= 1

2 G(n−1
2 , 12 ).

Proof First note that arcsin(δ) = δ+O(δ3) for δ → 0. Let F (δ(ε)) =
∫ δ(ε)
0

cosn−2(t) dt.
Then

lim
ε→0

F (δ(ε))− F (0)

ε
= cosn−2(0) · δ′(0) = 1

2G(n−1
2 , 12 ),

which proves the statement.

When we replace |γ1| in (7) by the value δ computed from (8) and determine the

zero σup > θ
(k)
1 , this σup is an upper bound for the largest singular value σmax

of A with probability at least 1 − ε, which we call a probabilistic upper bound.
This zero may be computed efficiently, since the evaluation of pk and qk may be
carried out via the recurrence relations as in Proposition 1. (Note that a loop is
often preferable over a recursion for a fast implementation.)

A similar line of reasoning can also be followed for the pk polynomials: from

1 = ‖uk+1‖2 = ‖pk(AAT )Av1‖2 =
n∑
j=1

γ2j σ
2
j pk(σ2j )2

it follows that (using Lemma 6)

1 ≥ |γ1|σ1 pk(σ21).

Again, if γ1 would be known, the largest zero of

f2(t) = t pk(t2)− 1/|γ1|

would yield an upper bound σup for σmax; where we replace the unknown γ1 by δ.
Hence we have proved the following theorem.

Theorem 9 Assume that we have carried out k steps of Lanczos bidiagonalization

with starting vector v1 which has been chosen randomly with respect to the uniform

distribution over Sn−1, and let ε ∈ (0, 1). Then the largest zero of the polynomials

f1(t) = qk(t2)− 1/δ (9)

f2(t) = t pk(t2)− 1/δ (10)

with δ given by (8), are upper bounds for ‖A‖ with probability at least 1− ε.
In Figure 1 we give an idea of the behavior of the polynomials p and q. For
A = diag(1 : 100), we carry out 10 steps of Lanczos bidiagonalization with a random
starting vector.

We take ε = 0.01, then it follows from (8) that 1/δ ≈ 792. The largest singular
value of B10 is θ1 ≈ 99.83, while that of B̂10 is θ̂1 ≈ 99.86. Determining the t > θ1
for which q10(t2) = 1/δ gives the probabilistic bound σup ≈ 105.87 which is correct
with probability at least 99%. Likewise, t p10(t2) = 1/δ yields σup ≈ 105.35. We
refer to Section 5 for many more numerical experiments.
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Fig. 1 The Lanczos polynomials q10(t2) and t p10(t2) after 10 steps of Lanczos bidiagonal-
ization, with ε = 0.01. Their largest zeros determine guaranteed lower bounds for ‖A‖. The
intersection points with the line 1/δ determine upper bounds for ‖A‖ with probability at least
99%. The only difference between the two figures is the scale on the vertical axis.

4 Ritz polynomials

In Section 2 we have also introduced, in addition to the “Lanczos” polynomials pk
and qk, the “Ritz” polynomials rj = r

(k)
j and sj = s

(k)
j , for j = 1, . . . , k; see (5) and

(6). These polynomials are associated with the approximate right and left singular
vectors Vkdj and Ukĉj , which are sometimes called Ritz vectors in the context of
eigenvalue problems; we will use the same terminology in this situation. We will
now exploit the polynomials r1 and s1 corresponding to the largest approximate
singular vectors (that is, the approximate left and right singular vectors corre-

sponding to the largest approximate singular values θ̂
(k)
1 and θ

(k)
1 , respectively).

The following result is similar to Proposition 4.

Proposition 10 The polynomials r1 and s1 have positive leading coefficients and in-

crease strictly monotonically to the right of their largest zeros θ̂22 and θ22, respectively.

Proof This follows from Corollary 3 and the fact that r1 and s1 are polynomials
of degree k − 1.

Recall from (5) that Vkd1 = s1(ATA) v1 is the approximation to the right singular
vector corresponding to the largest singular value θ1 of Bk, which is an approxi-
mation (more precisely, a lower bound) for ‖A‖. Since

θ21 = ‖AVkd1‖2 =
n∑
j=1

γ2j σ
2
j s1(σ2j )2

we derive
θ1 ≥ |γ1|σ1 s1(σ21).

Analogously, since from (6) we have Ukĉ1 = r1(AAT )Av1, we get

θ̂21 = ‖ATUkĉ1‖2 =
n∑
j=1

γ2j σ
4
j r1(σ2j )2
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so

θ̂1 ≥ |γ1|σ21 r1(σ21).

The next result follows in a similar way as Theorem 9.

Theorem 11 Assume that the starting vector v1 has been chosen randomly with re-

spect to the uniform distribution over Sn−1 and let ε ∈ (0, 1). Then the largest zero of

the polynomials

f3(t) = t s1(t2)− θ1/δ (11)

f4(t) = t2 r1(t2)− θ̂1/δ (12)

with δ given by (8), are upper bounds for ‖A‖ with probability at least 1− ε.

Remark In [13], Chebyshev polynomials of the first kind were also studied. These
polynomials on a given interval have the property that their absolute value is at
most 1 on this interval and that they tend to sharply increase outside this inter-
val. Nevertheless, experience in [13] shows that the Lanczos and Ritz polynomials,
which are implicitly generated and “adapted” to the problem at hand, naturally
tend to give better probabilistic bounds than “fixed” Chebyshev polynomials that
only use partial information, such as the approximations θ1 and θk to the largest,
respectively smallest singular value. Therefore, we do not study this type of poly-
nomial in this paper.

5 Numerical experiments

First, we give a pseudocode for Lanczos bidiagonalization with reorthogonalization
and the computation of the probabilistic bounds.

Algorithm: Lanczos bidiagonalization method with probabilistic upper bounds.

Input: Matrix A, random starting vector v1, probability level ε, Krylov dimension
k.
Output: A lower bound approximation θ̂1 to ‖A‖ and a probabilistic upper bound
σup, where ‖A‖ ≤ σup holds with probability at least 1− ε.
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1: Determine δ from n and ε, see (8)
2: for j = 1, . . . , k
3: u = Avj
4: if j > 1
5: u = u− βj−1uj−1

6: u = u− Uj−1(uTUj−1)T

7: end

8: αj = ‖u‖
9: uj = u /αj

10: v = ATu

11: v = v − αjvj
12: v = v − Vj(vTVj)T
13: βj = ‖v‖
14: vj+1 = v / βj
15: end

16: Determine largest singular value θ̂1 of B̂k
17: Determine probabilistic upper bound σup for ‖A‖ with probability ≥ 1− ε

using f2 (see (10))

A few remarks about the algorithm: lines 6 and 12 implement reorthogonalization
in a computationally efficient way. (Although reorthogonalization turned out to
be unnecessary in the experiments, we still recommend it to ensure stability.) The
probabilistic bounds may be computed in line 16, but also if desired after lines 8
or 13. We propose to use polynomial f2 (see (10) and below for the motivation).
As explained earlier in the paper, breakdowns as well as restarts are not included.

Experiment 1 To get an idea of the behavior of the probabilistic bounds, we first
take n = 1000, A = diag(1:1000), ε = 0.01, and a random v1 on Sn−1 as explained
before Lemma 7; see Figure 2. Indicated are as a function of the iteration number
k:

– the largest singular values θ̂
(k)
1 of the bidiagonal k× (k+1) matrices B̂k, which

are guaranteed lower bounds for ‖A‖ (dots);
– the probabilistic upper bounds based on the polynomials f1 using the Lanczos

polynomials qk (see (9), dashed);
– the probabilistic upper bounds based on the polynomials f2 using the Lanczos

polynomials pk (see (10), solid);
– the probabilistic upper bounds based on the polynomials f3 using the Ritz

polynomials s
(k)
1 (see (5) and (11), dash-dotted); and

– the probabilistic upper bounds based on the polynomials f4 using the Ritz

polynomials r
(k)
1 (see (6) and (12), dotted).

As may be seen and expected, the Lanczos polynomials pk and qk (degree k, largest
zero θ̂1 and θ1, respectively) yield better bounds than the Ritz polynomials r1 and
s1 (degree k − 1, largest zero θ̂2 and θ2, respectively; recall that θ̂1 ≥ θ̂2 and
θ1 ≥ θ2). Comparing the two Lanczos polynomials, f2 with degree 2k + 1 gives
better results than the polynomial f1 with degree 2k; note also that the largest
zero θ̂1 of pk is not smaller than the largest zero θ1 of qk.

We see that for rather modest k we already obtain reasonably sharp guaranteed
lower bounds and probabilistic upper bounds. Based on this experience, we will
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Fig. 2 Ritz values θ̂1 and probabilistic upper bounds (ε = 0.01) for the matrix norm of A =
diag(1:1000).

only consider the lower bounds θ̂
(k)
1 in the following experiments (note that θ̂

(k)
1 ≥

θ
(k)
1 ), and the probabilistic upper bounds derived from the polynomials f2, based

on the Lanczos polynomials pk, as these tend to be sharper than those obtained
with the other polynomials.

Experiment 2 We now experiment with some common SVD test matrices of rela-
tively small size, available either from the MatrixMarket [10] or from SVDPACK1,
to be able to compare with the exact ‖A‖. In Table 1 we compare the performances
of Matlab’s normest, a power method on ATA (third column), and Lanczos bidiag-
onalization (fourth column), where we allow 20 iterations in both cases, that is, 20
matrix-vector products (MVs) with A and 20 MVs with AT . As expected, Lanczos
bidiagonalization always gives better results and sometimes much better results.
The reason for this is that the estimation of normest is based on ‖ATw‖/‖w‖, where
w = (ATA)19Av1, while Lanczos bidiagonalization maximizes the same norm over
all vectors w in the Krylov space

K20(ATA, Av1) := span(Av1, (A
TA)Av1, . . . , (A

TA)19Av1)

In addition, we give the error σup − ‖A‖, where we have computed probabilistic
upper bounds σup for ‖A‖ using f2 (see (10)) with ε = 0.01, i.e., which are correct
with probability at least 99%. We see from Table 1 that the overestimation of
the probabilistic upper bounds is always smaller than the the underestimation of
normest; sometimes even much smaller.

Experiment 3 Next, we consider the 11390× 1265 term-by-document matrix hy-

patia2, a term-by-document matrix with 109056 nonzeros. The computation of a
few of the largest singular triplets is commonly asked for such a matrix. These
determine a low-rank approximation of the matrix, and the angles between the
search vectors and the columns of the computed low-rank approximation are used
for informational retrieval; see [2] and references. After 10 steps of Lanczos bidi-
agonalization applied to this matrix we get θ̂1 ≈ 342.2469 while the upper bound

1 www.netlib.org/svdpack/
2 Available via www.math.uri.edu/∼jbaglama/
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Table 1 For several SVD test matrices: normest: the error ‖A‖ − ν, where ν is the approx-
imation obtained with 20 steps of the power method on ATA as implemented in Matlab’s

normest; bidiag: the error ‖A‖ − θ̂1, where θ̂1 is the approximation acquired with 20 steps of
Lanczos bidiagonalization; bdprob: the error σup − ‖A‖, where the probabilistic upper bound
σup, computed after 20 steps of Lanczos bidiagonalization, is a true upper bound for ‖A‖ with
probability at least 99%.

Matrix Size normest bidiag bdprob

abb313 313× 176 1.20 · 10−3 8.88 · 10−15 8.25 · 10−7

hor131 434× 434 7.07 · 10−2 1.11 · 10−16 1.15 · 10−10

pores3 532× 532 1.67 · 103 1.41 · 10−3 3.12 · 102

sherman1 1000× 1000 3.48 · 10−2 7.30 · 10−8 6.64 · 10−3

illc1033 1033× 320 3.15 · 10−2 7.25 · 10−8 3.83 · 10−3

well1033 1033× 320 4.42 · 10−2 4.80 · 10−12 4.48 · 10−5

well1850 1850× 712 1.52 · 10−3 2.68 · 10−10 1.13 · 10−3

amoco 1436× 330 1.67 · 10−5 3.20 · 10−14 2.49 · 10−14

apple1 3206× 44 4.77 · 10−7 3.33 · 10−15 1.29 · 10−12

apple2 1472× 294 5.59 · 10−7 2.22 · 10−15 2.66 · 10−15

jagmesh8 1141× 1141 1.00 · 10−1 2.06 · 10−3 5.62 · 10−2

fidap004 1601× 1601 4.81 · 10−3 5.28 · 10−8 2.33 · 10−3

illc1850 1850× 712 2.16 · 10−2 5.99 · 10−7 5.76 · 10−3

west0479 479× 479 9.23 · 102 5.82 · 10−12 1.16 · 10−10

west2021 2021× 2021 7.23 · 102 2.30 · 101 1.75 · 102

diag(1:1000) 1000× 1000 1.10 · 101 7.10 · 10−1 1.24 · 101

rand-1/2 1000× 1000 4.04 · 10−1 3.14 · 10−2 7.45 · 10−2

randn 1000× 1000 1.39 · 100 1.25 · 10−2 7.86 · 10−1

rand(-1,0,1) 1000× 1000 4.02 · 10−1 1.21 · 10−1 6.69 · 10−1

triu(randn) 1000× 1000 6.15 · 10−1 1.07 · 10−1 5.74 · 10−1

with probability at least 99% is θ̂1 + 2.43 · 10−5, leaving just a small interval for
‖A‖. The upper bound with probability at least 99.9% is θ̂1+2.43 ·10−4; therefore,
we may have confidence in the value of θ̂1.

Experiment 4 Finally, we take the 23560×23560 matrix af23560 [10], with 460598
nonzeros, arising in computational fluid dynamics. Ten steps of Lanczos bidiago-
nalization applied to this matrix yields θ̂1 ≈ 645.7. The probabilistic upper bound
with ε = 0.01 (probability at least 99%) is σup ≈ 646.8, while ε = 0.001 leads to
σup ≈ 652.0. We may therefore conclude that ‖A‖ is in the interval [θ̂1, 1.01 θ̂1]
with probability at least 99.9%. This small probabilistic interval (the lower bound
θ̂1 as well as the probabilistic upper bound) is obtained in about 0.15 second on
a laptop with processor speed about 7 · 109 flops/sec. This clearly indicates the
usefulness of the developed probabilistic bounds for large (sparse) matrices.

6 Discussion and conclusions

We have developed probabilistic upper bounds for the matrix norm. The bounds
may be efficiently computed during or after the Lanczos bidiagonalization pro-
cess. As we have seen from the experiments, Lanczos bidiagonalization with the
probabilistic bounds may give very good results and may be superior to the power
method on ATA, as for instance implemented in Matlab’s function normest, using
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the same number of MVs.3 We have proposed various functions f1, f2, f3, and f4;
for reasons described in Experiment 1 we advocate the use of f2 (see (10)).

Multiple runs of the method may also be combined to increase the reliability
of the estimates. If v1 and v̂1 are two independently chosen random initial vectors

leading to probabilistic upper bounds σ
(1)
up and σ

(2)
up with probability at least 1− ε,

then max{σ(1)up , σ
(2)
up } is an upper bound with probability at least 1− ε2.

As many other iterative subspace methods, the proposed method is matrix-
free, which means that A need not be known explicitly, as long as Av and ATu

can be computed for arbitrary vectors v and u of appropriate sizes.
It would be very desirable to be able to develop probabilistic upper bounds for

the condition number κ(A) = ‖A‖ ‖A−1‖. Unfortunately, the polynomials gener-
ated in Lanczos bidiagonalization are not useful for this, as they do not increase
near the origin; in fact the polynomials are either even or odd. The Lanczos bidi-
agonalization process only provides guaranteed upper bounds (θ̂k or θk) for σmin.
Indeed, finding a lower bound for the smallest singular value is known to be diffi-
cult; see, e.g., [3] and references. (Note that the results in [4] are based on expensive
matrix factorizations.) In the context of Lanczos bidiagonalization, the best avail-
able “probabilistic estimate” for κ(A) might be σup/θ̂k, where θ̂k is the smallest
singular value of B̂k and σup is the probabilistic upper bound of f2. However, we
note that since the approximation θ̂k ≈ σmin might be arbitrarily poor, this is not
a bound of any type. Indeed, experiments with the matrices of Table 1 sometimes
gave disappointing results (such as underestimation by a factor 1000). Further
progress in reliable and inexpensive estimation of the matrix condition number
would be very welcome.
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9. J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1094–1122.

10. The Matrix Market. http://math.nist.gov/MatrixMarket, a repository for test matrices.
11. B. N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, 1998.

3 We hereby would like to make a case for the replacement of normest in Matlab by a
procedure based on Lanczos bidiagonalization.



14 Michiel E. Hochstenbach

12. M. Stoll, A Krylov–Schur approach to the truncated SVD, Linear Algebra Appl., 436
(2012), pp. 2795–2806.

13. J. L. M. van Dorsselaer, M. E. Hochstenbach, and H. A. van der Vorst, Comput-
ing probabilistic bounds for extreme eigenvalues of symmetric matrices with the Lanczos
method, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 837–852.



PREVIOUS PUBLICATIONS IN THIS SERIES: 
 

 

 

Number Author(s) Title Month 

13-03 
 
 
 
 
 
13-04 
 
 
 
 
13-05 
 
 
13-06 
 
 
 
 
13-07 

T. Aiki 
A. Muntean 
 
 
 
 
J.H.M. Evers 
A. Muntean 
A.A.F. v.d. Ven 
 
 
J. de Graaf 
 
 
S.P. Korzilius 
W.H.A. Schilders 
M.J.H. Anthonissen 
 
 
M.E. Hochstenbach 
 
 
 

Large-time asymptotics of 
moving-reaction interfaces 
involving nonlinear 
Henry’s law and time-
dependent Dirichlet data 
 
Crowds reaching targets by 
maximizing entropy: a 
Clausius-Duhem 
inequality approach 
 
Geodesics and connexions 
on matrix Lie groups 
 
An improved corrective 
smoothed particle method 
approximation for second-
order derivatives 
 
Probabilistic upper bounds 
for the matrix two-norm 
 

Jan. ‘13 
 
 
 
 
 
Jan. ‘13 
 
 
 
 
Febr. ‘13 
 
 
Apr. ‘13 
 
 
 
 
Apr. ‘13 

   
 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ontwerp: de Tantes, 

Tobias Baanders, CWI 
                                          




