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SUMMARY 

The study of the application of algorithms for automatic speech recog­

nition, as described in this thesis, consists of two parts. The frrst 

part is concerned with finding suitable parameters to describe a speech 

signal. Log area ratio parameters were chosen. Based on these para­

meters, a segmentation algorithm for speech is developed. 

The second part discusses the recognition process. A new method is 

developed based on a new model: the Recursive Markov Model (RMM). This 

method is an extension of the existing Hidden Markov Model (HMM). It 

has some important advantages: 

• Shorter computations. By using a flexible form of state pruning, 

various states can be temporary removed during the training and 

recognition process. 

• Hierarchical modelling. All levels (like the syntax- , phoneme­

level) share the same structure. 

• State sharing. For instance syllables that are used in various 

different words need only be defined once. This sharing is possible 

at all levels, and constitutes a considerable improvement, 

especially when extensive vocabularies are used. 

Two new algorithms are developed· for RMM-based training and recogni­

tion. Based on training sequences, the Recursive Forward Backward 

Training algorithm adjusts all parameters. Supervised training is 

possible. Like the corresponding Forward Backward algorithm as used in 

HMM, the RMM-algorithm yields a local maximum of the likelihood 

function. The Recursive Viterbi algorithm is developed for speech 

recognition; by applying this algorithm speech can be segmented and 

recognized simultaneously. The Recursive Viterbi algorithm is therefore 

more effective in speech segmentation than is the segmentation algo­

rithm developed in the frrst part of this thesis. 

The speech analysis algorithm is implemented on a TMS320C25 Digital 

Signal Processor (DSP). The log area ratio parameters can be calculated 

in real-time. Because the memory of the used DSP-system was too Sll\all, 

the remaining algorithms are not implemented on this DSP. The segmen­

tation algorithm developed in the frrst part is implemented using 
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MA TLAB on a PC. This algorithm locates segment border locations very 

accurately; the problem is that too many borders are missed and too 

many extra borders inserted. For correction of these mistakes more 

information about the speech signal is needed. which is not available. 

The Recursive Forward Backward Training algorithm and the Recursive 

Viterbi algorithm are implemented using ANSI-C on an APOLLO DN3000 

workstation. The software is hardware independent, so it can be run by 

any system using ANSI-C and having sufficient memory. 

Two languages are used to test the algorithms. First the syntax of the 

numbers 1 to 999999 was converted to an RMM-structure. The Recursive 

Viterbi algorithm was found to recognize sequences whose parameters 

were disturbed by random Oaussian noise, using the syntax constraints 

available. The calculation times needed for recognition were short 

(10 sec .. 3 min.), dependent on the desired accuracy. The training 

algorithm was tested and found to work very well. 

Another language, the Speech Controlled Robot-language (SCR), is con­

verted to an RMM. Tests show that this grammar is very suitable for RMM 

speech recognition. 
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SAMENV ATTING 

Het onderzoek aan algoritmen voor automatische spraakherkenning, zoals 

beschreven in dit proefschift, bestaat uit twee gedeelten. Het eerste 

deel houdt zich bezig met het beschrijven van een spraaksignaal door 

middel van een geschikte set parameters. Een keuze is gemaakt voor de 

log area ratio parameters. Er is een segmentatie-algoritme ontworpen 

gebaseenl op deze parameters. 

Het tweede gedeelte beschijft het herkenningsproces. Er is een nieuwe 

methode ontwikkeld, gebaseerd op een nieuw model: het Recursive Markov 

Model (RMM). Deze methode is een uitbreiding van het bestaande Hidden 

Markov Model (HMM), met de volgende voordelen: 

• Vennindering van rekentijd. Onwaarschijnlijke toestanden kunnen 

tijdelijk verwijderd warden als de kans laag genoeg is. 

• Hie!rarchische modellen worden ondersteund, waarin zowel hoge als 

lage niveaus (syntax I phonemen) dezelfde structuur hebben. 

• Hergebruik van modellen is ondersteund. Bijvoorbeeld lettergrepen 

die in meerdere woorden voorkomen hoeven slechts een keer gedefi­

nieerd te warden. Dit is mogelijk op alle niveaus, en leidt vooral 

bij een grate woordenschat tot een aanzienlijke geheugenbesparing. 

Twee nieuwe algoritmen zijn ontwikkeld voor training en herkenning op 

basis van het RMM. Het Recursive Forward Backward algoritme is in staat 

alle parameters te trainen enkel op basis van trainingszinnen. Ook 

'supervised' training, waarbij de identiteit van elk woord gegeven 

wordt, is mogelijk. In dit proefschift wordt een bewijs afgeleid, dat 

dit algoritme altijd convergeert naar een lokaal maximum van de 

gedefmieerde waarschijnlijkheidsfunctie, zoals ook het overeenkomstige 

HMM-algoritme doet. Het Recursive Viterbi algoritme is de basis voor de 

herkenning. Met dit algoritme kan tegelijkertijd met de herkenning een 

segmentatie uitgevoerd worden, ook rekening houdend met informatie over 

hogere niveaus. Daarom bleek dit algoritme beter te zijn dan die in het 

eerste deel. 
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Het algoritme voor spraak-analyse is ge'fmplementeerd op een TMS320C25 

digitale signaalprocessor (DSP). De log area ratio parameters kunnen in 

real-time berekend worden met behulp van de geschreven software. Omdat 

het geheugen van het DSP-systeem te klein was, zijn de segmentering en 

herkenning niet hierop ge'fmplementeerd. Het segmentatie-algoritme, 

geschreven in MA TLAB op een PC, is in staat zeer nauwkeurig segment­

grensposities te bepalen; alleen is het probleem dat te veel grenzen 

overgeslagen worden en ook te veel toegevoegd. Om deze fouten te 

corrigeren is meer informatie over het spraaksignaal nodig, wat niet 

beschikbaar is. 

Het Recursive Forward Backward Training algoritme en het Recursive 

Viterbi algoritme zijn ge'fmplementeerd in ANSI-C op een APOLLO DN3000 

workstation. De software is hardware-onafhankelijk, dus het kan 

gebruikt worden op ieder systeem met ANSI-C en genoeg geheugen. 

Twee abstracte talen zijn gebruikt om de algoritmes te testen. 

Allereerst is de syntax van de nummers 1 tot 999999 (Engels) 

geconverteerd naar een RMM-struktuur. Het Recursive Viterbi algoritme 

bleek sequenties, waarin de . parameters verstoord waren door Gaussisch 

verdeelde ruis, zeer nauwkeurig te kunnen herkennen, gebruik makend van 

de beschikbare syntax-informatie. De rekentijden benodigd voor deze 

herkenning waren kort (10 sec .. 3 min.), afhankelijk van de vereiste 

nauwkeurigheid. Ook de training is getest, en bleek naar verwachting 

zeer goed te werken. 

Een andere abstracte taal, de Speech Controlled Robot-taal (SCR) is 

omgezet naar een RMM. De gedane tests laten zien dat deze taal zeer 

geschikt is om gebruikt te worden in een spraakherkenningssysteem 

volgens het RMM-principe. 
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1. INTRODUCTION 

One of the most popular imaginations of human beings are machines that 

can act and think like humans. Many Science Fiction films and books 

show fuDy operational robots or speaking computers, assisting humans 

in their everyday work. Apart from the question whether this would be 

desirable or not, it is highly questionable whether such machines could 

actually be built. However, in the near future there are many useful 

applications for speech processing combined with artificial intelligence. 

Nowadays, many machines are operated by keyboard and display. For some 

people this operation entails severe restrictions. Speech would be a 

much more natural means of operating machines. It would be a lot 

simpler if money could be drawn from a bank by voice, instead of typing 

the required amount and the PIN-code. Bank transactions could be done 

by telephone, allowing the identity of the speaker to be checked simul­

taneously. For blind people, being much more dependent on speech, a 

voice controlled robot could become a valuable help for some specific 

tasks. AU kinds of apparatus would be more readily accessible to much 

more people. 

The history of speech recognition starts in the late 1960s, when 

available computer power made it feasible. The first computer systems 

used a recognition methodology known as dynamic time warping. The 

restrictions in the frrst systems were: 

• Only isolated words were recognized. 

• Only a single person could be understood. 

• Only a limited vocabulary (20-50 words) was available. 

The frrst commercial speech recognitiOn systems appeared in the early 

1970. The VIP 100 developed by Threshold Technology Inc. even won a US 

National award in 1972. However, because of the limited computer power 

available in those days, systems could hardly be improved without 

ending up with unacceptable processing times. 
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Chapter 1 

In 1971 a project was started (ARPA-SUR) to study the use of upper­

level information, like syntax, for increasing the realm and the 

quality of a speech recognizer. When the project was finished, in 1976, 

several systems had been built. The most successful one, the HARPY 

system [28], required so much computer power that it could not be used 

in practice. The main conclusion was that acoustic-phonetic modelling 

was still too primitive, because it was not able to use upper-level 

information. 

After the classical paper of Baum in 1972 [10], the Hidden Markov Model 

(also used in HARPY) became very popular. Human speech, however, is so 

complex that the basic HMM is not powerful enough to handle aspects like: 

• Connected speech. When words are pronounced without a pause, the 

pronunciation of one word can influence the pronunciation of the 

words following and preceding it. 

• Extensive vocabulary. Each word (or other chosen unit) requires a 

separate model, so the memory use grows proportional to the size of 

the vocabulary. 

• Duration modelling. The exponential duration of the basic HMM is in 

conflict with the physical duration of real speech. 

• Acoustic-Phonetic preprocessing. As the basic HMM is discrete while 

speech is continuous, some preprocessing is necessary. 

Several solutions to the above problems have been found, resulting in 

systems like Tangora [4] and SPHINX [30]. These systems use specialized 

hardware to execute their complex algorithms in real time. These 

methods use some basic unit (like word, syllable, diphone). Each unit 

has a separate HMM as its model, which has internal states representing 

the speech frames. Further improvements have been realized on two scores: 

• The HMM state model. Usually successive speech frames are highly 

correlated. Proper segmentation or more accurate duration modelling 

could result in calculation reductions or improve the quality of the 

succeeding HMM recognizer. 

• The Language model. Imposing constraints requiring the sentences to 

be valid English, also reduces the number of words to be searched. 
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Introduction 

In 1988, the Circuit Design group (EEB) of the University of Technology 

in Eindhoven started a research project on speech recognition with the 

idea that classical signal-processing systems, constructed with dedica­

ted hardware and circui't/system design methods could yield an improved 

system for speech recognition. The group had some past experience in 

Linear Predictive Coding speech analysis (LPC). Among others, the Schur 

algorithm, for calculating the reflection coefficients, has been imple­

mented on a TMS 32010 processor [45]. These reflection coefficients 

show characteristics useful in a speech recognition system. This idea 

lead to the current investigation of speech recognition algorithms, 

which forms the basis for this thesis. However, no specific use is made 

of the reflection coefficients any more. A more general approach is 

taken, that allows many parameter sets, including LPC-parameters. 

The research resulted in a new Recursive Markov Model (RMM), which can 

be seen as a generalization of the Hidden Markov Model (HMM). The algo­

rithms for training and recognition of HMMs are extended to be used 

with the RMM .. These extended algorithms, using additional features of 

the RMM. do not suffer from some of the drawbacks of HMM-algorithms. 

Speech analysis has preceded the recognition. The analysis algorithm 

extracts a set of parameters from the speech signal, thus capturing its 

most important features. Many parameter sets are feasible. Good para­

meter sets have a smaller information content than the original speech 

signal, while yielding adequate description for training and recog­

nition. LPC-parameters are good, but there are alternatives. 

The feature parameters are needed both in the training and the recog­

nition algorithm. They represent the speech signal. Apart from these 

parameters, the RMM contains a set of model parameters. For these para­

meters a training process is needed. Using training sequences, a 

Maximum Likelihood estimate for the RMM parameters can be found. After 

training the full model, a recognition algorithm compares the analyzed 

speech signals with the trained RMM. This algorithm results in a 

sequence of RMM states that fits the speech signal best. This siate 

sequence constitutes the desired recognition result. 
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O!apter 1 

This research is treated in a number of chapters that can be summarized 

as follows: 

Chapter 2 considers the possibilities of efficient implementation of 

the analysis algorithms. The Schur algorithm is implemented on a 

Digital Signal Processor (DSP), of type TMS 320C25. The LPC-parameters, 

and several other parameter sets suitable for use in a speech recog­

nition system are compared. Especially an integrated derivation of the 

Levinson and Schur algorithms and its "split" counterparts are given. 

The used method stresses, more then others, the strong relation between 

the various parameter sets. This relation can be expressed in matrix 

transformations only. 

Some other components of a traditional speech recognition system, like 

vector quantization and segmentation, are discussed in Chapter 3. The 

described techniques are similar to the ones used in the first systems 

to appear on the market around 1970. The various components give a good 

indication of the complexity of the speech recognition problem. Despite 

of the restricted model, the number of calculations that have to be 

executed is enormous. Therefore it '·is necessary to look for algorithms 

that save calculations wherever possible, otherwise no practical system 

can be realized. 

In Chapter 4 the Dynamic Time Warping method (D1W) and the Hidden 

Markov Model (HMM) are discussed in greater detail. Especially, the 

relation between DTW and the Viterbi algorithm is explained. Also 

extensions like 'duration modelling' and the use of continuous symbols 

are discussed. 

A new extension to HMM is derived in Chapter 5. In the Recursive Markov 

Model (RMM) two already mentioned deviations of the basic HMM approach 

are integrated. 'duration modelling' and 'language processing' can now 

be implemented simultaneously. 

The principles of Scaling and State pruning are introduced in Chapter 

6. With the help of these principles the practical problems that arise 

in Chapter 5 can be solved. 
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Chapter 7 describes the implementation of the Schur algorithm, the 

Recursive Forward Backward algorithm and the Recursive Viterbi algo~ 

rithm. Several comparative tests are executed with these algorithms. 

Finally, Chapter 8 gives the result of several tests of the implemented 

algorithms and considers relative merits of the methods of speech 

recognition or other fields. Suggestions are also given for a follow~up. 
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2. THE SPEECH ANALYSIS PROBLEM 

The initial step in speech recognition consists of speech analysis. 

The incoming speech is divided into frames, which are represented by a 

set of parameters. The aim of this representation is to describe the 

speech signal with less bits, without /oosing the information necessary 

for successful recognition. One important consideration is the choice 

of the parameter set to be used. The best known sets are the £PC­

parameters and its variants. These parameters are all derived from the 

Yule-Walker equation. Well known algorithms for calculating the £PC­

parameters are the Levinson and Schur recursion algorithms. Recently, 

the more efficient "split" algorithms were discovered. 

In this chapter we consider four . algorithms: the Levinson, Schur, Split 

Levinson and Split Schur algorithm. These algorithms can be derived 

along the same lines, the only difference being the set of variables. A 

matrix transformation can map each parameter set onto the others. 

Each algorithm is evaluated for implementation on a TMS320C25 DSP. This 

processor is specially designed for fast matrix operations. We will 

show that on the TMS320C25 the "Split" algorithms have no advantage. 

The main reason is the extra division operations which are needed to 

calculate the reflection coefficients. If the number of coefficients is 

low, these divisions take a large percentage of time. Therefore, only 

the Schur algorithm is implemented. 

2.1 The Speech Production Model 

Before speech can be recognized, it must be converted into an electri­

cal signal. After sampling and quantization, further digital processing 

is possible. The sequence of quantized speech samples can be seen as a 

stochastic signal, which can be represented by a suitable set of 

parameters. 
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Otapter 2 

An often used characterization procedure originates from the following 

speech production model, which describes how the speech signal is pro­

duced physically. The human speech production system consists of the 

vocal chords, followed by a flexible tube (the vocal tract) which ends 

at the lips. The sound wave originating from the mouth can be seen as a 

function of the vibration of the vocal chords, the shape of the vocal 

tract and the radiation at the lips. 

Hard palate 

Fig. 2.1: The human vocal tract 

For vowels (e.g. 'a','o') the vocal chords produce a periodic sound 

wave, that is filtered by the vocal tract. For fricatives ('s' ,'f') a 

noise excitation is formed further forward in the vocal tract. The 

speech production can also be modelled by an excitation source - produ­

cing a periodic pulse train or noise - followed by a filter. Some 

systems also allow a combination of these two. For instance 'z' is 

periodic, but contains a lot of noise generated inside the mouth. 

8 



The Speech Analysis Problem 

AIR FLOW 
FROM LUNGS 

TRACHEA VOCAL 
CORDS VOCAL TRACT 

Fig. 2.2: The vocal tract model 

LIPS 

The spectrum of the excitation is generally not white. However, any 

periodic wave fonn can be produced by filtering a periodic pulse train 

using the appropriate filter. In the same way any coloured noise can be 

produced by filtering white noise. Without any restriction we can 

combine this filter with the vocal tract fllter. 

Another simplification arises when we restrict the fllter to the all­

pole type. This is equivalent to supposing that the fllter consists of 

a single tube, neglecting airflow through the nose. In this way diffi­

culties arise with producing nasal sounds like 'm' and 'n'. However, 

most sounds are produced with the soft palate (see Fig. 2.1) closed, so 

that the nasal cavity does not contribute to the final sound emitting 

the mouth. 

Usually the speech data will be available in sampled form. Sampling 

frequencies normally used range from 6.67 to 20 kHz. This means that 

for the filter a discrete model can be used, equivalent to an acoustic 

tube consisting of multiple fixed length sections, each having its own 

diameter. The transfer function of such a fllter can be modelled by· an 

all-pole filter. 
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Fig. 2.3: The simplified vocal tract model 

With these simplifications we arrive at the speech production model of 

Fig. 2.3. Having determined the voiced/unvoiced bit, the pitch, the 

amplitude and the width of each tube section, all information needed 

about the character of the speech sigt'!al is available. 

2.2 Various Parameter Sets for Speech Characterization 

The above speech production model is common in literature. For the 

various parts (excitation, filtering) suitable parameter sets can be 

developed, which are as good a description of the speech signal as are 

its quantized samples. Specific use can be made of the fact that speech 

is either noise-like or periodic. 

If the excitation is noise-like, it can be described as a white noise 

generator followed by a filter. The noise generator only has to be 

specified with a single parameter, its amplitude, which is slowly 

varying in time. The filter can be combined with the vocal tract 

filter. If the excitation is periodic, the noise generator is replaced 

by a pulse source, fully specified with its amplitude and its period. 

Hence, apart from the filter, only three additional parameters are 

needed: 

10 
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• Voiced/Unvoiced bit, specifying the type of excitation. 

• Amplitude of the excitation source. 

• The Period of the excitation source, in case of voiced sounds. 

This Period is known as the pitch. 

For speech recognition these parameters are not so interesting. The 

amplitude and the pitch of the speech signals have no influence on the 

identity of spoken words. At first sight the voiced/unvoiced bit seems 

more important, but in fact it is not. If in the speech production the 

pulse excitation is replaced by white noise, the effect is similar to 

whispering. Without any pitch, we are still able to understand speech. 

Therefore our main concern will be the vocal tract filter parameters. 

The transfer function of the vocal tract filter can be specified in 

many ways. One possibility is to suppose that the filter is of the 

all-pole type, and to use the coefficients of this filter, as suggested 

in Fig. 2.3. This results in the so-called LPC-parameters (Linear 

Predictive Coding}. This name derives from an alternative way of 

viewing these parameters, in which each sample s is supposed to be 
t 

predicted by a linear combination of past samples. This assumption 

leads to a prediction error filter, which can be shown to be the 

inverse of the vocal tract filter. This is worked out in more detail in 

Section 2.3. Many alternative parameter sets can be derived from the 

LPC-parameters. 

Another way of specifying the vocal tract filter, is splitting the 

signal in separate frequency bands. The energy in each band can be used 

for specification of the speech signal, because the human ear is insen­

sitive to phase-information contained in the speech signal. If the 

frequency bands are chosen equi-distant, then the spectrum can be 

calculated by the Fast Fourier Transform (FFf). A choice has to be made 

about the number of frequency bands and the number of bits used in each 

band. 

11 
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A typical example of a system using such an approach is the Ensigma 

SRS-1 [12] specifying a sampling rate of 8 kHz, using a standard tele­

phone codec IC delivering 8 bits/sample (such as the TCM 29C18). The 

bit rate of the input signal is 64 kbit/s. This signal is filtered by a 

bank of ten fourth-order bessel filters, whose centre frequencies are 
spaced uniform on a logarithmic scale between 300 and 3200 Hz. The 

power estimate of each frequency band is calculated each 20 ms in loga­

rithmic form with 16 bits. The bit rate after this filter bank is 

8 kbit/s. Without this reduction it would not be possible to perform 

speech recognition in real time using a single DSP type TMS320Cl7, even 

with the limited library of only 12 words. 

In this thesis a choice has been made to use LPC-derived parameters. 

They have the advantage that the operations involved are mainly matrix 

operations, that can be implemented very efficiently on a DSP. How this 

is done, will be shown in the remaining part of this chapter. 

2.3 The LPC method, the Yule-Walker equation 

The Linear Predictive Coding (LPCf theory assumes that a speech signal 

can be produced by a signal source (white noise or periodic delta 

pulses) followed by an all-pole filter. Comparison with the human 

speech production shows that this is a logical assumption, since the 

vocal chords behave like a signal source and the vocal tract behaves 

like a filter. If the vocal tract behaves like a single tube without 

energy loss in the sections, this can be represented by using an all-

pole filter. 1 

Let us try to predict sample s from the speech signal, using previous 
t 

samples s .. s 
1
• We suppose that the first sample is available at 

t-p t• 

time t=l, and that before this time all sample values are zero. The 

prediction of future samples can be done applying a transversal filter 

with coefficients -a. (j=l..n). The minus sign is used here, to prevent 
J 

minus signs to appear in formula (2.2): 
n n s = I -a:s . = -I a:s . 

t • I t-1 I 1-1 
1=1 i=l 

where s = 0 for t<l 
I 

12 
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The prediction error e can be written as : 
t 

e=s-s= 
I I I 

n n 
s - l: -a:s . = L a:s . 

l j = J I 1·1 j., O I t-1 

with: a
0 

= 1. 

(2.2) 

This can be seen as a filter, the prediction error filter. Its inverse, 

which is an all-pole filter, can be used to restore the speech signal 

from the prediction error: 
n 

s = s + e = e + l: -a·s 
t I I t i t-i 

i= I 

(2.3) 

In order to estimate the filter coefficients a., the power E of the 
I 

error signal e is minimized 
I 

during a given sample interval t=l..T. 

This energy is defmed as: 
T 

E = l:e 2 
I 

t=l 

(2.4) 

The second derivative of E with respect to any coefficient a. can be 
I 

calculated as: 

2 T 
8 E = 2· l: s 2 { i = l..n} (2.5) 
a a~ •=• •-i 

I 

Because this second derivative is always positive, if there exists a 

point where the first derivative aE/aa.=O, this must be a unique 
I 

minimum. This minimum can be determined by zeroing the derivatives of E 

with respect to all coefficients a. (i=l..n). 
I 

T 

~ L e
2 = 0 => 

aai 1=1 I 

8 T ( n )2 
aa L s

1 
+ L a.-s

1
_. 

it=l j=l J ~ 
= 0 => 

f 2· ( s + f a.-s . ) ·s . = 0 => 
t=l I j=l J I·J 1·1 

n T T 

L a.- L s .-s . = -L s ·s . 
j = 1 J I= l I·J l-t I= 1 t l·l 

If we define the following correlation coefficients + .. as: 
T U 

•.. = L s :S . {i,j = o .. n} 
IJ I= I l·J ... 

l3 

(2.5) 

(2.6) 
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Then we can re·write (2.5) as: 

n 

.L aj.,ij = - 'io 
j=l 

{i = l..n} (2.7) 

The coefficients +.. can be calculated in about O(n·T) multiplications 
IJ 

and additions. The n equations with n unknown coefficients (2.7) can be 

solved in O(n3
) multiplications and additions. The calculation of the 

correlation coefficients +.. costs significantly more time than the 
IJ 

solving of the set of equations if T » n2
, which is usually the case. 

A significant calculation reduction can be achieved if an additional 

assumption is made. If the sample interval considered is large enough, 

then + .. becomes almost the same as + ... We could as well replace 
IJ t·I,J·I 

all + .. by autocorrelation coefficients R. .• where: 
u ~ 

T 

R. = L S •S 
I I t•i 

t=i+l 

{i = O .. n} (2.8) 

Another way to view this simplification is extending the sample 

interval from t=·oo.,oo, pre-multiplying the samples by a window function 

which is zero outside the region t=l..T. The number of coefficients to 

be computed is reduced from i<n2 +n) to n. Equation (2. 7) can also be 

written as a Toeplitz matrix equation: 

[ 

~0 ::: ~n-1 l [ ~1 l = _ [ ~1 l (2.9) 
R ... R a R 

n·l 0 n n 

This equation, the Yule-Walker equation, forms the basis of the auto· 

correlation method. Because this matrix equation hds a special shape 

(Toeplitz), a significant reduction in calculations . is possible from 

0(n3
) to only O(n2

). Several related algorithms are derived in the 

following sections. 

2.4 The Levinson recursion 

The Levinson approach to determine the LPC·coefficients a. consists of 
I 

an iterative procedure, replacing equation (2.9) with a sequence of 

solutions of lower order Yule-Walker equations, ranging from orders 1 
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to n. Instead of solving the nth-order Yule-Walker equation directly, 

we start with the ftrst order. Then we have simply: 

R ·a0 > = -R => 
0 l l 

a0 > =- R 1R 
I l 0 

(2.10) 

The additional index of the LPC-coefficients denotes the order of the 

currently solved equation. If it is possible to describe the pth order 

solution of the Yule-Walker equation in terms of the p-lth order, we 

can reach the desired nth-order solution by iterating this procedure 

over every order, starting with p=l. 

Consider the following pth·order problem, which consists of the Yule­

Walker equation. In the first row, an extra yariable d~P> is added, 

through its defining equation. The advantage of this formulation is 

that all autocorrelation coefficients only appear on the left side in a 

single matrix. 

Ro RI ... RP 

RI Ro ... Rp·t = 0 

R. R. R a· <P> 
t ... 0 p p· p 

0 

We will derive a~> in a recursive way, whereby 
I 

1 to n. R to R are supposed to be specified 

variables n!p·t>, d~P~ and k are defmed as follows: 
p -1 p 

n<p-t) = R + \ a<P-1> R 
o p Li p-j 

j=t 

p 

d<P> = R + \ a<P> R 
o o L j j 

j =I 

(2.11) 

we let p increase from 

constants. The auxiliary 

(2.12) 

(2.13) 

k = - n<p-t)/d(p-t} (2.14) 
p 0 0 

Equation (2.11) will be solved by supposing that the solution of the 

(p-l)th-order system has already been determined: 

Ro Rt ... RI 1 d ( p-1) 
p· 0 

RI Ro ... R 2 
a<p-t) 

0 (2.15) p· I = 

~ (p·l) 
. 

R R 
2 

... R
0 

0 
p·l P' p·l 

15 
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To this purpose, the solved equation (2.15) is extended to: (using the 

definition of n~p·t>and the symmetry of R) 

Ro RI •.. R 
1 

R 1 0 d(p-1) n<p·t> 
p- p 0 0 

RI Ro •.. Rp-2 Rp-t 
a <p·t> a (p·t> 

0 0 1 p·l 
= (2.16) 

i (p·l) i . 
Rp-t Rp·2 •.. Ro RI 0 0 p·l 1 
R R R Ro 0 1 

n Cp-t) d (p-I) 
p p·l ... 1 0 0 

Multiplication the left and right side matrices by ( ~P ) gives: 

Ro RI ••• R 
1 

R 1 d<p·l)+k n<p-t) 
p· p 

a<p·I)+k a<p·t> 
0 p 0 

Rt Ro ..• R 2 R t 0 p- p· I p p·l = (2.17) 

R R 2 .•• R
0 p-1 p· R1 a<p·l).f.k a<P·I> 

p·l p I 0 
R R R Ro k 0 p p·l ... 1 p 

This equation is similar to equation (2.11). This relation indicates 

how the coefficients have to be updated: 

p ·1 

n<p-1) = \ a<P> R + R 
o Lj p-j p 

j =I 
k = - n<p-l)/d<p-1> 

p 0 0 

a<P> a<P·Il + k a<P·Il 
I l p p·l for p = 1 ... n (2.18) 

a<P> = a<P·1> + k a<p·tl 
p·l p p I 

a<P> k 
p p 

d(p) = d<p-1) + k n<p·t> 
0 0 p 0 

What remains is the initialization of all variables, which follows 

immediately from (2.11) for p=O: 

d(O) = R 
0 0 

The total number of multiplications and additions is i: (2p-l) = n2. p=l 
The number of divisions is n. 

16 
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A side-product of these iterations is the set of reflection coef­

ficients k , that can also be used as frame coefficients. After the 
p 

Schur recursion is derived we will see that the use of the reflection 

coefficieats is especially advantageous when the processing must be 

done by a fixed point DSP. 

2.5 The Schur recursion 

The Schur-algorithm can be derived using the same notation. The 

auxiliary variables n~>, d~> and k are defined as follows. 
l I p 

p 

nl.l) = R + \ a(p> R 
i p+i+l L ; p+i+l·j 

(2.19) 

j =l 
p 

d(p) = R + \ aep> R (2.20) 
i o L; i+j 

j=l 

k = - n<p-t)/d(p-t) (2.21) 
p 0 0 

In the following explanation will be shown, how these variables can be 

used in a recursive updating algorithm without using {a. I i=l..p }. 
I 

The first step is to extend equation (2.11) to include the additional 

variables n~> and d~>. By using matrix notation the relation with the 
I I 

Levinson recursion is made clear. 

R R ... R 
D D·l D·p 

~ (p) 

. l 
a <P> 1 

p 

17 
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Again, assume first that the solution of the (p-l)lh order system has 

already been determined: 

R p·l 
R p-2 1 a <p·t> 

p-1 
a<P·O : 

1 • (p·l) = 
. a, 
a<p-t) 1 

p-1 

d(p- 1) 0 
0 

0 0 

. . 
R R ... R n<p-t) d<p·t> 

n n-1 n·p-1 n ·p·2 n ·p-1 

(2.23) 

Equation (2.23) can be rearranged in the same form as equation (2.22). 

A column is added to the R-matrix and the second column of the two 

other matrices are shifted down. This is allowed because the R-matrix 

is Toeplitz. 

Ro RI ... R d<p·I) n<p·I> 
p 0 0 

RI Ro R 1 0 0 0 p-1 
a (p-1) a <p-1) 0 0 

l p-1 
n<p·I> d(p-1} R Rp.f" Ro = (2.24) p 0 0 

a (p·l) a Cp-1) ... ._ ................... ,._..,,_.......,,_MM 

R R Rt p·l 'l n<P· 1> d<p·O 
p+1 p 1 1 

0 1 . 
n<p-1) d<p·l) R R R n n-1 n·p n·p n-p 

Afta: post-multiplying both sides by [ ~' ~· ]· the form becomes iden­

tical to equation (2.22). So the solution of the (p-l)lh order equation 

can be updated to the plh order solution by: 

0 

n <P> d<P> 
n ·p·2 n·p-1 

n <P> d<P> 
n·p·l n·p 

= 

n<P·1> d<p·l) 
0 0 

n<P·I) d(p·t> 
1 1 

n<p-1) d<p-1) 
n-p-1 n·p·l 

n<p·l) d<p-t) 
n-p n-p 

(2.25) 

(2.26) 
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The coefficient d<P> does not need to be calculated because its value 
ll·p 

is not used any more in the algorithm. The initialization of the algo-

rithm can be derived directly from (2.24) at p=l: 

.~ d'"] Rt Ro 0 0 

)o) d~o> = 
(2.27) 

R R 
•·I n·l n n·l 

n·l 
The updating costs n divisions and :E 2(n-p) = n2-n multiplications and 

p=l 
additions. The difference between the Schur and the Levinson algorithm 

is that the LPC-coefficients a. are no longer calculated. These can 
I 

still be derived from the reflection coefficients k by repeating the 
p 

update of a~> from formula (2.18). but this costs an additional 
I 

n 

P~1(p-1) = n·(n-1)/2 multiplications and additions. 

At this point in the analysis we have formulated three alternative 

representations of a speech frame in terms of various coefficients, 

that in principle could all be used for speech recognition: 

• Autocorrelation coefficients R .. R . In order to make them inde­o n 
pendent from the signal energy, we could divide them all by R

0
• 

• LPC-coefficients a
1 
.. a

8
• These are best calculated by the 

Levinson algorithm. 

• Reflection coefficients. These are best calculated by the Schur 

algorithm. 

The use of reflection coefficients, compared to the other alternatives, 

has several advantages, such as: 

• They allow for an easy switch between orders, without re­

. calculation of lower order coefficients. 

• All variables used in the Schur algorithm can be proven to be 

limited in value, which is a considerable advantage when a fixed 

point DSP is used. If the prediction error filter has all zeros 

within the unit circle, we can prove that: 

In <P> 1 < R • 1 d<P> 1 < R • 1 k 1 < 1· 
i o' i o' p • 

If at the start of the Schur algorithm, all autocorrelation coef-

ficients are normalized in such a way that R
0
=1. the maximum 

range of the processor is used with (in theory) no possibility of 

overflow. 

19 



Olapter 2 

Equation (2.22) shows a very useful relation between the 'Levinson' 

variables a<P •. > and the 'Schur' variables n<:'> and d<:'>. The nth order 
l l 

autocorrelation matrix can be seen as a transformation between the 

Levinson and the Schur domain. The multiplications by the vector [~] 
(Levinson) and the matrix (~ ~P) (Schur) serve the same purpose in ;e 

two algorithms. P 

2.6 Split recursion algorithms 

The Levinson and Schur algorithms are using different sets of variables 

that have a strong relationship. If the a.-coefficients were used for 
l 

calculating n~P>and d~P>, the outcome was the Levinson algorithm. If 

n<:'> and d<:'> were used, the outcome was the Schur-algorithm. Recently 
l I 

a method has been developed to reduce the number of multiplications 

even further. It results in the so-called split algorithms. As before, 

a split-Levin~n or a split-Schur algorithm can be derived. The term 

'split' originates from the fact that the variables are split in a 

symmetric and an anti symmetric part. Only one of these is used in a 

three-term recursion, instead of using both in a two-term recursion. 

The advantage is that the number of multiplications can be reduced in 

this way. One possible form of the split Schur algorithm will be 

derived below, from the Levinson and Schur algorithms. 

First two new sets of variables are defmed, and then the new update­

formulas will be derived accordingly: 

b<P> = a<P·I> + a<P·I) i = 1 .. p-1 (2.28) 
i i p-i 

q<:'> = n<:"n + d<:-''1> i = 0 .. n-p (2.29) 
I I I 

One should note that b<:'l = b<P~, so in fact we only have to store half 
I p•l 

of the b-variables. Similarly, instead of n~P> and d<:'l we only have a 
I I 

single vector q<:'>. Reconsidering equation (2.24), we see that multi-

plying both sid;s by G) results in a new equation containing the new 

variables b<:'l and q<:'>: 
I I 
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R
0 

R
1 

... RP q (p) 
0 

1 0 
b(p) 0 

I 

= q(p) (2.30) 
b(p) 

0 

q(p) p-1 
1 

RI Ro ... Rp·t 

!J?_ .. ,_~p-1''~"~'~""""" 
R R .•• R 

p+l p 1 
1 . . 

R R 
1 
... R q<P> 

n n· n-p n ·p 

The same can be applied to the two previous order solutions. combined 

in one matrix equation: 

. 
R 

n 

R 
p 

R 
p·l 

. . 
R ... R 

n·l n·p 

0 

1 0 0 0 

(2.31) 

b (p-I) 1 1 0 0 
1 b(p·1) b{p-2) ( ·I) 
' I 1 qP 0 . . = 0 b (p·l) • b ( p-2) 
p·2 b(p·l) p-3 q(p·1) q<p·l) q<p-2) 
1 p ·2 1 ,__!. ___ _!)_ .. ,_ .. __ !_,_ 
0 1 0 q<p-1) q<p·l) a<p-2) 

2 1 -"2 

0 

q<p-t) q<p-1) 
0

<p·2) 
n·p+l n ·P -"n·p+l 

Now it is not so difficult to see how to combine these three columns in 
order to get a new equation similar to equation (2.30). First a new 

auxiliary variable ~ is defined: 
p 

~p = q:t>tqi,p·2}; (2.32) 

Exactly the same form as (2.30) will be attained if we multiply the 

left and right side of (2.31) by the vector [ J J 
So q~> can be updated by (Schur version): 

I 

q~) = q~ll + q:p·l} _ ~ q~p-2) {i=O .. n-p} 
I I 1+1 p 1+1 

(2.33) 

Alternatively (Levinson version) the coefficients b<P> could be updated 
i 

with: 
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while %P> can be calculated by (compare with (2.30)): 
p • 1 

a<P> = R + !. b~>-R. + R 
~'() 0 j:l I I p 

Olapler 2 

(2.36) 

Only the initialization still has to be considered. Equation (2.31) for 

p=2 shows: 

Ro Rt R2 

RI Ro RI 

R2 R Ro [ l 1 
-·~··---~-----· 

R3 R2 Rt 

. 
R R R 

n n·l o·2 
So the initialization becomes: 

a<0> ·- R · '() .- 0' 

0 
1 
1 

q<O> ·= 2·R · 
i . i' i = l...n-1; 

~~> := }\ + Ri+t; i = O ... n-1; 

(2.37) 

Now ~ 1 and q~> can be calculated for all p and i, but if we are only 
p+ I 

interested in the reflection coefficients k these still have to be 
p 

calculated. It is possible to express the reflection coefficients k in 
p 

the 'split reflection coefficients' ~ . 
p 

note that: 

d(p-1) = d<P·2> + k ·n<P·2> = d<P·2> - k2 ·d<P·2) 
0 0 p-1 0 0 p·l 0 

= (1 - k2 )-d(p-2) 
p-1 0 

thus: 
q<P> n<p-1) + d<P·1> (1-k )·d(p·t> 

~ p+ I = q ~ p·l) = -n_,~-p·-:-2 )-+-d-.,.~ p-·=2)- = -(-1--k_,_P_)·-d-:-~ p-:· 2:-:-) 
0 0 0 p·l 0 

(1-k ) 
= p (1 - k2 

) = (1-k )·(1 +k ) 
(1-k ) p-1 p p-1 

p·l 

=> k = 1 - ~p+l 
p (l+kp) 
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Because k, n~> and d~> are bounded in value, we can show that p and 
p I I p 

q~> must be bounded in value too: 
I 

0 < p < 4 
p 

~(p)l = lntl) + dt1>1 < 2· R
0 

The final number of additions, multiplications and divisions are: 

Split Schur: n2 additions 

calculation of k : 
p 

n 

P~2 n-p+l = n(n-1)/2 multiplications 

n-1 divisions 

2n additions 

n divisions 

Indeed. as compared with the Levinson and Schur algorithms the number 

of multiplications is halved while the number of additions remains the 

same. If, in addition, the reflection coefficients k are needed, this 
p 

costs an extra 2n additions and n divisions. If n is small or if a 

system is used in which divisions are very time consuming. the Schur 

algorithm may be faster. 

It may be a better alternative to directly use the p -coefficients 
p 

{p=2 .. n} as frame parameters. together with the fli'St reflection coef-

ficient kl' The purpose of considering these alternative parameter sets 

is to determine the best set for a small speech recognition system 

using the DSP (the TMS320C25). Only after the recognition system is 

completed a valid comparison can be made. to decide which set will 

result in the highest score within an acceptable calculation time. 

Again relation (2.30) shows the duality between the 'Split Levinson' 

variables b~> and the 'Split Schur' variables ~<P>. The nth-order 

autocorrelation matrix can be seen as a transformation between the 

'Split Levinson' and the 'Split Schur' domain. 
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2.7 Implementation of the Schur algorithm 

Before describing any implementations let us consider the relative 

merits of a fixed-point DSP. Some of the remarks only apply for the 

TMS320C25, others are of a more general character. 

Signal processing algorithms usually require many additions and multi­

plications. These are optimized to use only a single instruction cycle, 

by an on-chip hardware multiplier. Thus, an addition is not cheaper 

than a multiplication, as is the case in normal microprocessors. 

Because DSP's do not contain a hardware division unit. divisions are 

much less efficient than multiplications. On the TMS320C25 a division 

costs at least 16 cycles. This makes the "Split" algorithms less 

attractive if the reflection coefficients need to be calculated, as an 

extra division is required for each order. 

Because the TMS320C25 is fixed point, all variables must be scaled to 

use the full range of the processor. For the "Schur" and "Split Schur" 

variables, the maximum range is ' known, which can be successfully 

applied in the implementation of the Schur algorithms. 

Because of the above arguments, the Schur algorithm wa.s chosen for 

implementation on the TMS320C25. A library of various functions has 

been developed. The AID-converter is read at a sample rate of 10 kHz. 

Each 12 ms a new window of 240 samples (50% overlap) is taken. These 

windows are multiplied by a Hamming window. Then.' 11 autocorrelation 

coefficients are calculated. These are used in the Schur algorithm as 

described in Section 2.5. All parameters mentioned, such as the 

sampling rate, can be easily changed in the program. Only, the maximum 

window length is 256 samples, because of the limited on-chip memory. 

With the above parameters, calculation of the reflection coefficients 

requires about 10000 cycles (= 1 ms) for each frame. The majority of 

them (about 3000 cycles = 0.3 ms) is used for the calculation of the 

autocorrelation coefficients. The processor is only used for 8% of the 

time, which means that real-time speech analysis is possible on a DSP 
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without any problem. Even more tasks could be easily assigned to the 

same processor, if desired. 

1.8 Otber parameter sets 

Several other parameter sets are possible, however, at an extra expense 

of time. An important set consists of the log area ratio parameters. 

These are defined as: 

g. = bllog(k.) = log [ 
1 

+ ki ] 
I I 1 - k 

i 
where the coefficients k. are the reflection coefficients. The inverse 

I 

transformation is: 
1 + exp(g.) 

k. = blexp(g.) = 1 

1 1 1 - exp(g.) 
I 

These coefficients have been shown by several authors to be very useful 

in quantization, because of its relatively flat spectral sensitivity 

(Gray and Markel [18]). Calculation of the log function is very time 

consuming, but considering the total transformation from k. to g.. a 
I I 

good approximation can be made. If the function is divided in 9 linear 

segments, as is shown in Fig. 2.4 and Table 2.1, a very simple 

approximation function results. It can be computed in only 3.3 JlS on 

the TMS320C25. Because the slope in each segment is a power of 2, the 

function can be implemented using additions, conditional jumps and 

shifts only. Further specification of the realization of this function 

can be found in Chapter 7. 

k. = blexp(g.) 
I I 

g. = bllog(k.) 
I I 

slope 

-1 -6 ( -oo ) 
64 -0.96875 ( -31/32) -4 ( -4.1431 ) 16 -0.90625 (-29/32) -3 ( -3.0123 ) 8 -0.8125 (-13/16) -2.25 ( -2.2687 ) 4 -0.5 ( -1/2 ) -1 ( -1.0986 ) 2 0.5 ( 1/2 ) 1 ( 1.0986) 4 0.8125 ( 13/16) 2.25 ( 2.2687 ) 8 0.90625 ( 29/32) 3 ( 3.0123 ) 16 0.96875 ( 31/32) 4 ( 4.1431 ) 64 1 6 ( 00 ) 

Table 2.1: Piecewise linear approximation of the bllogO function 
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Fig. 2.4: Piecewise linear approximation of the bllogO function 
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Fig. 2.5: Relative error on bllogO approximation 

Fig. 2.5 shows that the maximum error is 9.0 %, at k.=0.5. At k.=0.9965 
J I 

the error again reaches 9.0 % and increases continuously while k. is 
I 

further approaching 1. In practice this will be no problem because, if 

the reflection coefficients are approaching· ±1, the zeros of the 

prediction error filter approach the unit circle. This indicates that 

the synthesis filter (the inverse of the prediction error filter) is 

approaching instability. Therefore it is better to restrict the range 

of the log area ratio parameters to such an extent that small errors in 

the reflection coefficients have not much influence on the calculated 

log area ratio parameters. 
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The Speech Analysis Problem 

Other parameter sets, like the Line Spectral Pair (LSP) and the 

Cepstrum parameters, are not discussed, because they require 

significaatly more calculations than the sets mentioned in this 

chapter. The LSP-parameters are closely related to the zeros of the 

predictor polynomial. These zeros only can be calculated using an 

iterative procedure because no direct method is known for polynomial 

orders higher than 3. The Cepstrum parameters involve an additional 

recursion starting with the LPC parameters (compare Rabiner and Schafer 

[52] page 442), but they have a nice interpretation. 

In speecb not only the frame parameters can contain information about 

the spoken words. Much information is usually contained in the transi­

tions between stationary regions. Several speech recognition systems 

try to use this fact by adding first (or even higher) derivatives of 

other parameters to the frame vector. The general approach is called a 

Linear Predictive HMM, which is discussed in Kenny et al. [24]. Because. 

the aim of this thesis does not include carrying out an exhaustive 

search for possible parameter sets, this possibility is not further 

considered. 

Even though very good results applying the Cepstrum parameters have 

been reported, other, less expensive, parameter sets will be used. 

Currently. the set most promising for application on a fixed point DSP 

like the TMS320C25 seems to be the log area ratio parameter set. How­

ever, the ideal set will probably be a combination of various type 

parameters, which still has to be determined. 
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3. SOME COMPONENTS OF A SPEECH RECOGNITION SYSTEM 

General early day speech recognition systems consist of four parts: 

analysis, vector quantization, segmentation and dynamic time warping 

(D1W). The analysis has already been treated in the previous chapter. 

In this chapter the global structure of a general speech recognition 

system is analyzed. Special attention is paid to the use of vector 

quantization and segmentation. 

3.1 Outline of a speech recognition system 

Speech recognition takes several steps. The speech signal has to be 

transformed into a representation that is suitable for further digital 

processing. A library has to be created that contains a description of 

all words in the recognition system. This library has to be trained by 

the speakers that will later use the system. A matching algorithm will 

compare the incoming speech with the contents of the library. 

The earliest speech recognition systems had a very simple structure. 

They employed vector quantization and isolated word recognition. In 

addition, the systems had a small library and were trained by only one 

person. These restrictions were necessary to make speech recognition at 

all possible. 

Presenting a speech signal to a small scale digital computer poses 

several problems. A sample frequency of at least 6.67 kHz is necessary 

to support telephone quality speech. A processor, handling this 

sampling rate, has hardly time left for additional processing. This 

problem can be solved by special hardware, that transforms the speech 

signal in a limited number of slowly varying parameters, as described 

in Chapter 2. 

Vector quantization 

LPC-analysis yields for every frame a set of coefficients, often called 

the feature vector. If the feature vector contains N coefficients, any 

vector can be assigned a single point in a N-dimensional space. A large 
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O.apter 3 

collection of these feature vectors yields a nonuniforrn density in this 

N-dimensional space, which is shown in Fig. 3.1 (page 33). A vector 

quantizer can be used to exploit this fact The parameter space is 

divided in a fixed number of segments, each of them is assigned a 

label. In regions containing many vectors the segments are smaller. 

Each segment has its own centre vector, which is used as a represen· 

tation for all vectors within the segment. 

Isolated words 

In continuous speech, words are often connected and it is impossible to 

locate the word boundaries from the speech signal alone. To avoid this 

problem, one could insert a silent period between words. Now each word 

can be compared with previously stored words. Such systems will be 

called "isolated", while unrestricted systems will be called 

"connected". In literature occasionally the terms "discrete utterance" 

versus "continuous" are used, but this might cause confusion because 

HMM's also have a "continuous" and a "discrete" version. The Dynamic 

Time Warping (DTW) method, also known as Template Matching (TM), is 

basically an isolated recognizer. It can, however, be adapted to 

continuous speech. 

Limited Vocabulary 

Another choice in developing speech recognizers has to do with library 

size. A larger library will result in a larger overlap between words 

because many words share common syllables. The recognition system can 

make use of this fact by selecting a shorter recognition unit such as a 

syllable, di-syllable, demi-syllable, phoneme, di-phohe, tri-phone and 

so on. The smaller the unit the smaller the accuracy. Loss of accuracy 

can be compensated for by higher levels of processing. Note that the 

recognizer is expected to recognize the spoken words and not the units. 

Single person 

The library is highly simplified if only a single person needs to be 

recognized. The training process is simplified, because only one or 

several examples of each word are needed. Because different people can 

have very different pronunciations of the same words, all these 

possibilities need to be present in the library. 
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Some Components of a Speech Recognition System 

A simple recognizer thus performs: 

• Analysis 

• Vector quantization 

• Segmentation 

• Dynamic Time Warping 

In addition a training algorithm is needed to make up the library. 

Vector quantization and Segmentation will be discussed in the next 

sections, while Dynamic Time Warping is explained in greater detail in 

Chapter 4. 

3.2 Vector quantization. 

After the analysis, vectors of parameters are available for each time 

frame. These can be quantized into a fixed set of feature vectors ji 
m 

(m=LM) by a vector quantizer. The feature vector closest to the 

incoming parameter vector is selected as a representation of the 

original vector. The representation set ji (m=LM) has to be computed 
m 

beforehand. 

If the number of segments is chosen large enough, the quantization 

error cao be made arbitrary small. The number of bits needed to 

describe dle frame vector is reduced to 2Iog(M), where M is the number 

of segments. Because the English language contains about 40 phonemes, 

that must be assigned a minimum of one label each, M must be at least 

40. In practical systems the vector quantizer has a size ranging from 

64 to 1024 (6 to 10 bits/frame). This is much less than the size of any 

parameter vector, for which 6 coefficients of 6 bits each per frame 

appears to be the absolute minimum. 

A "distance measure" between incoming speech vectors and representation 

vectors is needed. Often the squared Euclidean distance, 

* d(m,t) = (Jim·Y) ·(Jim-Y) (3.1} 

is used. 
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If the parameters have a different range but are still supposed to be 

uncorrelated, this can be extended to 

d(m,t) = t [ ~-~~~rl t (3.2) 

1:=1 

which is a special case of the Mahalanobis distance. Here 0'
1 

is the 

expected variance of parameter y d' For each frame y
1 

the distance 

d(m,t) to each of the representation vectors ji (m=l..M) is calculated. 
m 

The index m of vector ji with minimum distance is input to the 
m 

remainder of the recognition algorithm. 

An algorithm to calculate a suitable set of representation vectors ji 
m 

is the k-means clustering algorithm. First a large set of candidate 

vectors are created using sample vectors from various input samples. 

Two vectors from the set which have the maximum distance are taken as 
the initial centres of a two-element vector quantizer. Using these 

centres the frame vectors are divided into two groups. Then the two 

centres are replaced by the respective centres-of-gravity. Another 

re-assignment ·of each vector is made and again the new centre of each 

group is calculated. This process is repeated until it converges and no 

further changes take place. 

After convergence of the process, each group is split in two by again 

selecting two candidate vectors with maximum distance. The process is 

iterated until the required number of representation vectors is 

obtained. Note that M will be a power of 2. Fine tuning by hand is 

possible, removing templates containing not enough ~ectors or splitting 

templates with too many vectors. After each change . this iteration must 

be started again until no further changes take place in the vector 

library. 

Implementation 

The vector quantization and k-means clustering algorithms are implemen­

ted using a TMS320C25 emulator (SWDS, produced by Texas Instruments), a 

conversion program written in TURBO PASCAL, and MATLAB (a mathematical 

laboratory toolbox). First, the log area ratio parameters of the dutch 

sentence "De bal vloog over de schutting" are calculated in real time 
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using an assembler program on the TMS320C25. The speech signal is 

sampled with a 10 kHz sampling rate. Each 12 ms a group of 240 samples 

(50% overlap) is multiplied by a Hamming window. For each frame 10 

reflection coefficients are calculated and converted to the log area 

ratio parameters. The result is stored in memory. The SWDS-emulator, 

which is used for debugging the program, is able to store the para­

meters to disk. This disk file is converted to MA TLAB format by a 

specially written conversion program. In the end, all 200 vectors are 

available as a 200x10 matrix in MATLAB, ready for further processing. 

The k-means clustering algorithm is implemented in MATLAB. Because 

MA TLAB is a general toolbox - which is not optimized for storage 

efficiency - the algorithm was very slow. The clustering lasted several 

minutes, depending on the number of vectors used. 

4~----~~--~----~----~ X\~ • 
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Fig. 3.1: result of the k-means clustering algorithm 
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3.3 Isolated word segmentation 

In order to be able to segment the speech, a unit has to be defined. 

One possibility is to choose linguistic units like words, syllables, 

demi-syllables, phonemes etc. This kind of segments has the disadvan­

tage that the segment borders can not be located using the speech 

signal only. Additional assumptions are needed. Isolated words sepa­

rated by silent periods [22] are often used. One could also use di­

phones as segmentation units, as is done by van Hemert [19]. 

The simplest algorithms assume that speech consists of isolated words, 

separated by periods of silence. A speech recognition system based on 

this assumption requires a very cooperative speaker which distinctly 

pronounces each separate word. The input signal is squared (calculating 

the power), low pass filtered and compared with some threshold. If the 

power falls below the threshold a silent period is declared. The 

problems with such an approach are: 

• sensitivity to background noise 

• glottal stops might be confused with silent periods 

• short sounds (like coughs) 'are considered as words 

A way to overcome these possible problems is to use a Finite State 

machine (FSM) as in (22]. This FSM has 4 states (Fig. 3.4), each 

representing a distinguished speech state as: 

• Silence 

• Increasing level 

• Decreasing level 

• Word 

The energy level E is compared to 3 fixed levels: 

E.L h : Maximum level for transition to state Silence 
UJ!'eS oJd 

E . : Minimum level for transition from state Silence 
POISe 

Ehish: Minimum level required for state Word 
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Fig. 3.4: Finite State Machine for word detection 

Initially the FSM is in the Silence state. As long as the level is 

below E noise' the FSM remains here. As soon as E :2: E noise a transition 
is made to the Increasing state. The moment of transition is recorded. 

The FSM remains in the Increasing state, as long as E . S E < Eh. h. 
DOISC 1g 

If the energy level is lower, then the segments up to this point are 
considered belonging to a silent period, and the process starts again. 

If the energy level becomes higher than E . h' a transition is made to 
hlg 

state Word. The moment of transition is marked as the beginning of a 

new word. 

If the energy level decreases below Ehigh the Decreasing state is 

entered. indicating the possible ending of the word. Further decrease 

below E
11

ueshold' results in a transition back to the Silence state. A 
final decision as to a silent period is made after a certain elapse . of 

time, for otherwise a glottal stop could be confused with · a silent 

period. 
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This mechanism has been implemented on a small TMS32010 system, as 

described in [22]. It works well, but it is only useful for isolated 

word recognition. When connected words belonging to a large vocabulary 

are to be recognized, a more sophisticated segmentation in smaller 

units is necessary. 

3.4 Segmentation of speech in phoneme-like units 

Next we consider segmentation in phoneme-like segments. Speech consists 

of stationary segments and transitions. During stationary segments the 

parameters are varying slowly. They can be calculated very accurately, 

and succeeding frames have a lot of correlation. On the other hand, 

during transitions the parameters are rapidly varying. The correlation 

between frames is low, but parameter values will not be accurate. We 

will describe an algorithm that is able to use these changes in para­

meter variations for determining local boundaries in the speech signal. 

This algorithm is implemented and evaluated. 

We start out by defining a correlation measure between frames. This 

measure will have a value of 1 if the frames are identical, and it will 

approach 0 as frames become more distinct. A useful function is: 

c, 2 exp[- it. [\~•f] {3.3) 

where i and j are frame indices and Yu O=l..L) are the log area ratio 

coefficients (or any other parameter set). 

The summation term in (3.3) is again the Mahalanobis distance, where cr
1 

is a weight factor (the variance of the parameter). This can be 

explained as follows. Suppose that the parameters of frame j are formed 

by adding Gaussian noise with variance ~ to the parameters y n· Then 

the probability density of y j1 and yi is: 

P(yjl) = 1 exp[ - ! [yjl~YnJ2] (3.4) 
cr1 • /2;;' 2 1 
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P(Y.) = ~ P(yjl) = IT 1 
. exp[ - ! t 

J 1 =1 1 ,., cr1· ,;-:;;;: 2 1 =• 
(3.5) 

This is, apart from a constant scaling factor, equal to c ... The 
IJ 

function C... with i fixed and j varying, will have a maximum at j = i. 
IJ 

Let us define a 'centre of gravity' function G(i) that is positive if 

the centte of gravity occurs right from the maximum and that is nega­

tive otherwise: 
i+N 

G{i) = i: G-i).C.. 
j=i-N IJ 

(3.6) 

If the centre of gravity is left from the maximum ( G(i) < 0 ), then 

frame i has more correlation with previous frames than with future 

frames. So previous frames are more stable, and future frames are more 

unstable. Zero-crossings of the function G(i) indicate the locations of 

stability extremes, both maxima and minima. If G(i) has a negative 

zero-crossing, then frame i is the centre of a region where the stabi­

lity is (locally) maximal. In a positive zero-crossing the stability is 

minimal, which constitutes an indication of a transition between two 

more stable regions. 

Note that still a value N must be defined. When, for j farther from i, 

C.. is increasing again, these frames should not be included in G(i). 
IJ 

They are likely to belong to another region having about the same 

parameters. 

In this way the incoming speech can be segmented. The borders of the 

segments are located by searching for the positive zero-crossings of 

G(i). The centres are the negative zero-crossings of G(i). 

For each segment the vector quantizer will deliver a label, the 

duration and the correlation C , for which s is the central frame of 
sv 

the segment and v is the chosen library vector. It is also possible to 

deliver more candidates with probabilities. During input the incoming 

frame vectors are compared with the library vectors. The resulting 

label(s) can be input to a DTW, HMM or RMM recognizer (as described in 

Chapter 4, 5 and 6). 
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Fig. 3.5: Correlation function C.. applied to the sentence: 
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"De bal vloog" 
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Fig. 3.6: Centre of Gravity function G(i) applied to the sentence: 

"De bal vloog" 

A test was performed to see how this segmentation works, and whether it 

could be used for reduction of the number of frames. Also, an optimal 

value of N had to be determined. The algorithm described above is 

implemented in MATLAB. A choice of N=lO produced the best results. For 

the same sentence as used in the vector quantizer test, the correlation 

function C.. (i-N<j<i+N) has partly been drawn in Fig. 3.5 while the 
IJ 

centre of gravity function G(i) has been plotted in Fig. 3.6. 
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The centte of gravity function G(i) has very clear zero crossings. This 

confmns the results of van Hemert [19], who uses this algorithm for a 

different purpose. The borders between rather stationary segments can 

be estimated very accurately. However, a big disadvantage is that 

insertions and deletions of segment borders are very likely to occur. 

This can be explained as follows: 

During long steady sounds (like vowels) the centre of gravity function 

G(i) will be around zero. Small fluctuations in the parameters will 

cause additional zero crossings, that will be interpreted as extra 

segment borders. This causes extra undesired insertions. This effect 

especially arises during silence periods, like in frames 1-20 in 

Fig. 3.6. Increasing N will reduce this effect, but increases the pro­

bability of undesired deletions. 

Very fast changes, like "vl" in "vloog" (frame 70-80), could easily be 

missed. Of course N could be decreased, but this will increase the 

number of undesired insertions. A definite solution to this problem is 

only possible when upper level information is available. If it is known 

beforehand which phonemes occur in the sentence, another algorithm can 

be used comparing the sentence with the given phonemes [19]. This algo­

rithm makes no selection mistakes, because the phonemes are already 

given, but the estimation of the segment border positions will be much 

less accurate. Matching of the segment borders as found by these two 

algorithms yields a new algorithm, combining the advantages of both 

previous algorithms. 

In our case upper level information about the phoneme content of the 

sentence is only available after the speech recognition is complete, 

while the segmentation is used before the recognition. In Chapter 5 
it will be shown that it is possible to construct a speech recognition 

system without pre-segmentation the incoming speech. Segmentation can 

only be done during the recognition process, using upper level informa· 

tion about the structure of the spoken sentence. 
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4. THE SPEECH RECOGNITION PROBLEM 

For a good understanding of the current state of speech recognition, it 

is useful to compare various methods that are presently used. Despite 

their differences, Dynamic Time Warping (DTW) and the Hidden Markov 

Model method (HMM) have a number of features in common. This chapter 

will show the strong and weak points of each method, and discuss the 

differences. 

The mathematical notation used in this chapter is different from nota­

tions used in other publications. This is necessary to develop a common 

framework for comparison. Besides, the notation introduced in this 

chapter will also be used in Chapter 5, in which a more general method 

of recognition is developed. 

4.1 Dynamic Time Warping 

The ft.rst method that was used for isolated word recognition is Dynamic 

Time Warping (DTW), also known as Template Matching (TM). This approach 

starts with the segmentation of the incoming speech into words, using 

.yf {]!tenc~ as a separator between words. Each word has a discrete label 

or a set of parameters (for instance LPC-parameters) for each discrete 

instance of time. Such a label or set of parameters describing the 

momenta!y symbol is called a frame. A word library is present which 

contains a template of each word using the same labels or parameters. 

With these assumptions the recognition problem can be re-formulated as 

follows. A procedure is needed by which a 'distance' can be calculated 

that gives an indication of the measure of correspondence between an 

incoming word and each word template in the library. If the incoming 

word and the template are of equal duration, each corresponding frame 

of the two words can be compared using a local distance measure. The 

total distance could be defined as the sum of all local distances 

found. 
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Usually, the two words will not be of equal duration because words are 

rarely spoken at the same rate. For various words the duration even 

might vary a lot. The method of Dynamic Time Warping handles this by 

allowing each frame t of the incoming speech (t=l..T) to be matched 

with another frame i of the template (i=l..N). If the library word 

contains frames U. and the incoming speech supplies frames Y, a func-
• I 

tion d(i,t) is defined to describe the 'distance' between these. 

If U. and Y are discrete labels, a table containing the distance of 
I I 

each pair of U. and Y is used. If U. and Y are N-dimensional vectors 
I I I I 

(represented by u. and y) then we could use the euclidean distance 
I l 

measure: 

d(i,t) = (U. - y) *·(ii. - y) (4.1) 
I t I I 

Other functions are possible as long as these are valid distance 

functions, i.e. at least satisfy the following conditions: 

• d(i,t) = 0 if U.=Y 
I t 

• d(i,t) > 0 if U.:;t:Y 
I t 

Suppose we have defined such a function d(i,t). If the two words differ 

in time scale, we have to develop· the path in such a way that the 

cumulative sum of distances reaches its maximum, or: 

i,t 

D(i,t) = :E 
x,y:l,l 

along the 

best path 

d(x,y) (4.2) 

Fig. 4.1. shows a representation of this procedure. Along the horizon­

tal axis are the incoming speech frames, along the1 vertical axis are 

the template frames. A path needs to be found with a minimum cumulative 

distance from the lower left to the upper right corner. 
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Fig. 4.1. Illustration of the Dynamic Time Warping (DTW) approach 

Two versions of the algorithm exist, a symmetric and an asymmetric one. 

In the symmetric version any point (i,t) has three predecessors (i-1,t) 

(i-l,t-1) and (i,t-1). Exchanging the incoming speech and the template 

speech has no influence on the DTW-algorithm. In the asymmetric 

version, each point (i,t) also has three predecessors, but instead of 

(i-1,t) the point (i-2,t-1) is selected. 

Let D(i,t) be the sum of all path distances up to point (i,t), where 

each point has only three predecessors as indicated above. Then we can 

express D(i,t) in a recursive relation. The symmetric version becomes: . 

D(i,t) = min ( D(i ,t-1) + d(i,t), 

D(i-1,t-1) + 2·d(i,t), 

D(i-l,t ) + d(i,t) ) (4.3) 

For a diagonal step the local distance is counted double, because a 

diagonal step is comparable to a horizontal and a vertical step 

together. This assures that all possible paths have the same number of 

distances included in the cumulative distance. 

The asymmetric version becomes: 

D(i,t) = min( D(i,t-1), D(i-1,t-1), D(i-2,t-1) ) + d(i,t) (4.4) 
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The initialization in case of the asymmetric version starts with: 

D(l,l) = d(l,l); D(i,1) = 0 for i=2 .. N; (4.5) 

And in case of the symmetric version: 

D(l,l) = d(l,l); D(i,l) = D(i-1,1) + d(i,l) for i=2 .. N (4.6) 

In the symmetric algorithm, the sum contains N+T local distances, one 

for each horizontal and vertical step. In the asymmetric algorithm only 

horizontal steps are counted, resulting in only T terms. 

In this approach it is assumed that all possible paths from (1,1) to 

(N,T) are equally likely. In practice, diagonal steps are more likely 

to correspond with the input speech than horizontal and vertical steps. 

The algorithms can be extended by introducing extra penalties for each 

different step. From now on, only the asymmetrical algorithm will be 

used, but for the symmetrical algorithm a similar derivation can be 

developed: 

Initialization: 

Updating: 

D(l,l) = d(l,l); D(i,l) = 0 for i=2 .. N; 

D(i,t) = min ( D(i ,t-1) + hp, 

D(i-l,t-1) + dp, 

(4.5) 

D(i-2,t-1) + vp ) + d(i,t) (4.7) 

hp = horizontal penalty 

dp = diagonal penalty 

vp = vertical penalty 

A major class of dynamic time warping methods belongs to this group. In 

case penalties are selected, as in the last example, their values have 

to be determined experimental. No method is known for training these 

penalties. Training of words from the word library is easily done. Each 

word that has to be recognized by the recognition system has first to 

be pronounced once. 
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The advantage of simple training, is a disadvantage at the same time. 

If a word is trained by only one pronunciation, any error in pronoun­

cing it affects the perfonnance of the recognition system. Therefore, 

it is advantageous to provide multiple pronunciations. Using a larger 

library entails longer searches. 

It is clear that the quality of the speech recognition system can be 

improved by adding more parameters. But these additional parameters 

must be set to the correct value. Improperly trained parameters might 

impair the recognition process. The number of parameters should be 

proportional to the amount of available training data. 

4.2 The Hidden Markov Model 

The Dynamic Time Warping method is reported to work very well in small 

speech recognition systems. Still, if recognition systems with a large 

vocabulary or speaker independent systems are required, the disadvan­

tages of DTW become apparent If the number of words or the number of 

pronunciations for each word increases, a longer training session 

becomes necessary. Time and storage required for recognition grow in 

proportion to the vocabulary. It should be possible to model a spoken 

word from multiple training sequences, using a kind of average of the 

various pronunciations. This makes the training more difficult, but the 

recognition will require less time and memory. 

A theory has been developed, mainly thanks to Baum [10], which presents 

a probabilistic interpretation of the dynamic time warping method. If 

instead of using distances, the algorithms are re-formulated using 

probabilities, a different method can be derived for recognition: the 

Forward algorithm. First, the Hidden Markov Model (HMM) is introduced. 

Secondly. the relation with the dynamic time warping algorithm is 

explained. 
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Suppose we have a state machine, as in Fig. 4.2., having states Sl".SN. 

At discrete time instance t=l this machine performs a transition to one 

of the states S.. At time t=2 a transition is made to another state S .. 
I J 

This process continues until at time t=T + 1 a transition is performed to 

node F. The machine produces symbols Yl".YT. 

F 

Fig. 4.2: An example of a Hidden Markov Model 

Such a machine exists for each word in the library. Supposing we have a 

model W and a sequence Y = Y I"" Y T' we will derive a method of calcula­

ting the probability of word W producing sequence Y. Repeating this for 

all words, the word with the highest probability is selected as the 

recognized word. According to Bayes' theorem we can write: 

P(WIY) = P(YIW) • P(W) I P(Y) (4.8) 
where: P(WIY) = probability that W is the correct word, given sequence Y 

P(YIW) = probability that W produces sequence Y 

P(W) = a priori probability for word W 

P(Y) = probability that any word produces sequ,nce Y 

Here P(Y) is independent of the word, so it has no effect on the word 

selection. P(W) is the a priori word probability. If all words are 

equally likely, P(W) is a constant that as well could be removed 

without influencing the selection algorithm. The selection then only 

consists of calculating P(YIW) for each word and selecting the word 

with maximum probability. If the word probabilities are not equally 

likely, we need to calculate P(W)·P(YIW) in order to find the word with 

maximum a posteriori probability. 
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Associated with each transition is a parameter a... indicating the 
IJ 

probability that state S. will be active at any time t+l, given that 
j 

state S. is active on time t. This transition probability is assumed to 
1 

be time independent. 

The training algorithm uses the same model. All parameters a.. will be 
IJ 

trained to maximize the above probability P(WIY). 

4.3 Recognition using the HMM: The Forward algorithm. 

For calculation of the probabilities P(YIW) for each word, a recursive 

algorithm exists, the Forward algorithm. Some a priori probabilities 

need to be trained first before they can be used in the recognition. 

For now we suppose this training has already been done. We define: 

a.. 
lJ 

= a priori probability of making a transition to state S. 
J 

coming from node I. 

= a priori probability of making a transition to state S. 
J 

after leaving state S .. 
I 

= a priori probability of making a transition to node F 

after leaving state S .. 
I 

The symbol a .. 
IJ 

is not only used as a parameter associated with a 

state S. to S.. but also as the transition itself. transition from 

This allows us 
I J 

to write about transition a.. instead of the transition 
IJ 

from state S. to S .• which is much easier. 
I J 

There two basic alternative formulations of the forward algorithm. The 

difference is, that we can assume that the output is associated with a 

transition or with a state. If the output is associated with the 

transitions, two further possibilities exist, because the symbol can be 

produced before or after the transition takes place: 

Version la: 

First, let us assume that all transitions aij and aiF have a prob_a­

bility function p(i,U) describing the probability that symbol U is 

produced. We see that this function is only dependent on the state the 

transition is coming from, and is independent from j. The transitions 
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a
1
j have no output symbol. Then the initial probability that the state 

machine is in a particular state S., assumed that at time t::l the ftrst 
J 

transition ar has been taken, can be written as: 
f J 

P 
1
(Sj'l) :: a

1
j (4.9) 

where P~(Sl) is equivalent to a.G,t) in other publications (like Baum 

[10)) and is defined as: 

~1(S.,t) :: P(Y
1 
•• Y 

1
.S. active at time t) 

J t- J 

Or, in other words: ~(S/) represents the probability that the HMM is 

in state S. at time t, and sequence Y
1 
•• Y 

1 
is produced, assumed that 

J ~ 

at time t=l the ftrst transition occurred. State S. can only be 
J 

initiated after any state S. has finished, thereby producing symbol Y 
I t 

and performing transition a... The state probabilities for times t=2 .. T 
IJ 

can also be calculated applying the following recursive relation: 

f Npf . 
P

1
(S.,t) = l 

1
(Si,t-l) · p(t,Y) · a.. (4.10) 

J i= I IJ 

The probability that, finally, at time t=T a transition aiF is per­

formed, thereby producing the fmal output symbol Y T' is: 
. N 

P(YIW) === ;~t~(S;,T) · p(i,Y.J_ · aiF (4.11) 

This is what we need to know, as was stated in the beginning of this 

section. This algorithm is known as the forward algorithm, because its 

probabilities are calculated in a forward recursive way. 

Version lb: 

An alternative formulation is possible if we assume that each output 

symbol connected with transition a.. is only dependedt on j. Also we 
IJ 

assume that transition a
1
j produces an output symbol . and aiF does not. 

Then we can write: 

P!(Sf2) ::: a1j · p(j,Y1) 

where P!(S/) is defined as: 

pFf(S .• t) = P(Y
1 
.. Y ,S. active at time t-1) 

J t-1 J 
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Or, in other words: P!(S/) represents the probability that the HMM is 

in state S. at time t-1, and sequence Y .. Y is produced, assuming 
J 1 ~ 

that at time t=l the first transition occurred. The state probabilities 

for times t=2 .. T+l can be calculated employing the following recursive 

relation: 

~F{S.,t) = [ r PFf(S.,t·l) · a .. ]· p(j,Y ) (4.13) 
J j: 1 I IJ 1·1 

The probability that, finally, at time t=T a transition aiF occurs, is: 

N 

P(YIW) = .L P!(Si,T+l) · aiF (4.14) 
•=1 

Again we have developed a recursive relation that calculates the proba­

bility that the HMM produces sequence Y t'' Y T' In order to illustrate 

the relalion between these two versions, a third interpretation is 

described in which each symbol is associated with a state. 

Version 2: 

In this case, we make a distinction between two possible definitions of 

the stale probabilities, before or after a symbol is produced. Each 

time a symbol is produced, time increases with one unit. Therefore, any 

state S. that is initiated at time t will produce a symbol Y according 
I t 

to probability function p(i,Y) and perform a transition to the next 
t 

state at time t+ 1. 

We defme: 

~1(S.,t) = P(Y
1 
.. Y 

1
,S. initiated at time t) 

I I- I 

P!<s .• t) = P(Y
1 
•• Y 

1
,S. finished at time t) 

r I I• I 

It will be no surprise that these definitions are equivalent to the two 

versions of the state probabilities. Also, if state S. is active at 
I 

time t it will finish the state at time t+ 1, which explains the use of 

t-1 instead of t in the previous definition of P!(si,t). Using both 

variables in one recursive algorithm, the forward algorithm can be 

written as: 
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The probability of each state before any symbol is emitted, P~(S1,t), 
is already described in equation (4.9). For any other time t=2 .. T, the 

probability of initiating any state S. consists of the probabilities of 
J 

leaving each state S. and perfonning transition a ... 
N' ~ 

f f P
1
(S.,t) = !, PF(S.,t) · a.. (4.15) 

J j =I I IJ 

For any other time t=l..T-1 the probability of each state after a 

symbol has been emitted, can be written as: 

P!(si,t+l) = ~(S1,t) · p(i,Y
1
) (4.16) 

Finally, we already derived in equation (4.14) how to calculate P(YIW). 

Summarized, the forward algorithm can be executed as: 

1) Calculate pf(S.,l) using formula (4.9) 
I I 

2) Calculate P!(s;,2) using formula (4.16) 

3) Calculate ~(S1,2) using formula (4.15) 

4) repeat step 2) and 3) for t=3 .. T 
. f 

5) Calculate PF(Si,T+l) wi~ formula (4.16) 

6) Use formula (4.14) to calculate P(YIW) 

If we substitute equation (4.9) into (4.16) for t=1 and (4.15) in 

(4.16) for t>l then we get relations (4.12) and (4.13). This shows that 

the algorithm where each output symbol is assigned to each state is 

mathematically fully equivalent to the algorithm where each symbol is 

associated with a transition and only depends on the dest;nation state. 

If the symbols are discrete, the probabilities of each state S. 
I 

producing a symbol Y = 
t 

can replace: 

p(i,m) = b. 
llll 

m is stored in a matrix b. . For this case we 
un 

(4.17) 
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4.4 Tbe Viterbi algorithm 

Instead of adding the probabilities of all possible paths, an alterna­

tive approach is developed, only calculating the probability of the 

best path. This is called the Viterbi algorithm. The probability of the 

best path can be calculated by replacing all additions in (4.9) .. (4.11) 

by the maximum operator. 

The Viterbi probabilities are defined by: 

Pv
1
(S.,t) = P(Y

1 
.. Y 

1
,best path initiating S. at time t) 

I 1· I 

PvF(S.,t) = .P(Y
1 
.. Y 

1
,best path finishing S. at time t) 

I 1· I 

This defmition is similar to the forward probabilities. The difference 

with the forward probabilities is that instead of the sum of all path 

probabilities, only the probability of the best path is used. The 

Viterbi algorithm can be written in three versions, corresponding with 

the three versions of the Forward algorithm: 

Version la) Only using Pv
1
(S.,t): symbol associated with index i of a .. 

I g 

Version lb) Only using P~(S.,t): symbol associated with index j of a .. 
r I g 

Version 2) Using both of them: symbol associated with state S .. 
I 

If we start with, for example, version lb), replacing all additions in 

the corresponding Forward algorithm by the maximum operator, the 

Viterbi algorithm becomes: 

initialization: P:(Sj'l) = a1j • p(j,Y1) (4.18) 

P;(s.,t) = max ( P;(s.,t-1) · a .. ) · p(j,Y) 
J j I IJ 

for t=2 .. T: (4.19) 

P;(Yt'.YTIW) = m~ ( P;(si,T) · aiP ) 
I 

finally: (4.20) 

Pv(Y
1 
.. Y

1
1W) is the probability of the best path in word W that 

produces sequence Y t'' Y T' 
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Now we are able to see the correspondence between the Viterbi algorithm 

and the asymmetrical Dynamic Time Warping algorithm. All we have to do 

is to transform all probabilities of the Viterbi algorithm into their 

logarithms. We define: 

D(i,t) = - log P;(sj,t) 

d(i,t) = - log p(i,Y
1
) 

With these variables we can re-formulate the Viterbi algorithm as: 

initialization: D(j,l) = - log (a
1
j) + d(j,l) 

D(j,t) = min ( D(i,t-1) - log a .. + d(j,t) ) 
• IJ 
I 

for t=2 .. T: 

finally: Distance = ~ ( D(i,T) - log aiF ) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The above equations are a generalization of the asymmetrical DTW­

algorithm where each state S. corresponds to one template frame U .• We 
I I 

see that the HMM model is much more general than the DTW method, in the 

sense that: 

• Each state need not to correspond with one template frame. 

• More than three transitions are allowed, with the corresponding 

penalties described by coefficients ( -log a . .). 
lJ 

There is a price to be paid for in the HMM method for this 

improvement. Because the number of parameters has increased, the 

training becomes more complex. In the DTW method, the parameters were 

fixed and for the penalties it was sufficidnt to fill in 

some heuristically reasonable values. For HMM, a. separate training 

algorithm has to be developed for training. Such an algorithm is known 

as the Forward-Backward algorithm, and it makes use of the 

probabilistic interpretation as introduced in this chapter. 
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4.5 Training of the HMM-data: The Forward-Backward algorithm 

The training of all parameters in the HMM can be done as follows. Each 

parameter a.. denotes the relative frequency of making a transition 
IJ 

from state S. to state S.. If several training sequences are supplied, 
I J 

we could try to estimate how many of these transitions occur in the 

training· sequences. Based on these estimates, a new value for a.. can 
IJ 

be calculated by dividing the number of times each transition occurs in 

the training sequence by the total number of expected transitions 

leaving from the same point. The same can be done for b. in the case 
IRI 

of discrete parameters. We introduce the following definitions: 

t .. = expected number of times that transition a.. is made, given 
IJ IJ 

sequence Yf.YT. Equivalent for t
1
j and t;p· 

u = expected number of times that state S. emits symbol Y =m, 
im I l 

given sequence Y 1'' Y r· 
wit= probability that at time t state Si produces symbol Y

1
, given 

sequence Yt'.YT. 

Each of the variables t .. , u. and w. can be expressed in forward and 
IJ un 11 

backward probabilities. These backward probabilities are not yet 

defined, but they are symmetrical to the forward probabilities: 

Pb
1
(S.,t) = P(Y .. YTIS. initiated at time t) 

I I I 

~F(S.,t) = P(Y .. YTIS. finished at time t) 
I I I 

They can be calculated by the backward algorithm that is symmetrical to 

the forward algorithm. The probability that at time T + 1 the final node 

F is reached, given that state S. is finished at that time, is 
I 

described by the coefficients aiF: 

P~(Si,T+l) = a
1
F (4.25} 

For any other time t=T .. l, the probability that at time T+l node F is 

reached starting at state S. at time t, consists of making transition 
I 

a .. to all states S. at time t and creating the remaining symbols: 
IJ J 

b N b 
P ,(S.,t) = I a .. · P 

1 
(S .• t) (4.26) 

I j:JIJ J 
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For any other time t=T-1..1 the probability of each state after a 

symbol Y has been emitted, can be written as: 
t 

Pb
1 
(S .,t) = p(i, Y ) · pbp(S .• t+ 1) 

I t I 
(4.27) 

Finally, by the same reasoning we can easily see that: 
N 

P(YIW) = :Ear · P~(S .• T+l) 
j =I J J 

(4.28) 

Summarized, the backward algorithm can be executed as: 

1) Calculate P~(Sj'T+l) using formula (4.25) 

2) Calculate P~(Sj'T) using formula (4.27) 

3) Calculate P~(Sj'T) using formula (4.26) 

4) repeat step 2) and 3) for t=T-1..1 

5) Calculate P~(Sj'l) using formula (4.27) 

6) Use formula (4.28) to calculate P(YIW) 

The probability of executing transition a.. at time t is equal to the 
. ij 

probability of emitting symbols Y
1 
•• Y 

1
, finishing state S. at time t, 

~ I 

followed by a transition a.. and followed by the probability of 
IJ 

emitting the remaining output symbols. The extra assumption that YJ'.YT 

is produced by this model is accounted for by dividing by P(Y c· Y TIW). 

Adding this for all t=2 .. T (at t=1 a transition a
1
j is made) results in 

the expected number of times transition a.. is made: 
IJ 

. T f b 
\ PF(S .• t) ·a .. ·P 1 (S.,t) 

't' = L I IJ J 

ij P(Y .. YTIW) 
t=2 1 

(4.29) 

The same reasoning holds for 't
1
j and 'tiP' with the difference that 

transition a
1
i can only be performed at time t=l and transition aiF on 

time t=T+l. Therefore: 

b a
1
j·P

1
(Sj,l) 

P(Y I .. YTIW) 
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1 
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The probability that state S. is active at time is equal to the 
I 

probability of emitting symbols Y .. Y while S. is initiated at time 
I t·l I 

t, followed by the production of symbol Y , followed by the production 
t 

of the remaining symbols Y .. YT. Again we assume that sequence Y .. Y 
t+l I T 

is produced by word W: 

P~(S., t) ·p( i, Y )·P~(S.,t+1) 
Wit = I l I (4.31) 

P(Y
1 
.. YT I W) 

If the symbols are discrete we can calculate the expected number of 

occurrences of each output symbol (having index m) at each state, by 

summing w. for all t where symbol Y =m. 
ll l 

T 

uim = L witiY=m 
t =I t 

Hence, we can write as re-estimation formulas: 

t 1J. t.. t
1
.F 

1\ 1\ IJ 1\ 

alj = ~ tile; aij = -~-t-+-t-; aiF = ----: 
~ ~ ile iF ~ tile +tiF' 

When discrete symbols are used, we write: 
U. 

1\ •m 
b =--­im 

4.6 Continuous Parameter Distributions 

(4.32) 

(4.33) 

(4.34) 

If the symbols are continuous vectors, we can replace function p(i,Y) 
l 

with any other function. For instance if vector ii produced by state S. 
I 

is supposed to be a random gaussian vector with mean ii. and covariance 
I 

matrix :E.. we have instead: 
I 

I ~ 1
-1n [ (---)* ~·1.(---)l ""i u J.li ·""i u J.li 

p(i,ii) = N/2. exp- ------
(2x) 2 

(4.35) 

For re-estimation of :E. and ji,, remember that w. refers to the 
I I Jt 

probability that state S. is producing a symbol at time t. If w. is 
I ll' 

near 1, then state S. is very likely at time t, while state S. is very 
I I 

unlikely if w. is near 0. In the re-estimation formulas for the mean 
ll 
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vector ii. and covariance matrix 1:., w. is used as a weight factor, in 
I I ll 

such a manner that likely states have a higher influence than unlikely 

states. 

I W.·Y 
/1. I 11 I 

J..li == 
I w. 

ll 
I 

(4.36) 

(4.37) 

These estimation formulas are proven by Liporace [39] to lead to the 

Maximum Likelihood solution. 

4.7 Variable Duration Modelling 

The probability to stay in some state S. for d time periods depends on 
. I 

transition aii. Defining P d(Si,d) as th~. probability, we can write: 

We can easily check that: 

if dSO 

ifd>O 

oo oo (1-a.J 
I Pd(S.,d) = (1-a.} I a~:1 = ---r7..-1 -=-a'~

1) = 1 
d:l I 

11 d=l 11 
\ - ii 

(4.38) 

(4.39) 

The above formula shows that if state S. is entered at time t, it is 
I 

guaranteed to be finished at some time t+d · with d>O. Figures 

representing this distribution using several values of a.. are drawn in 
u 

Fig 4.1. 
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0.8 .--.--------r----------, 

0.6 

0.4 
a .. = 0.4 

11 

0.2 

10 
Fig. 4.1: Duration distribution of a single HMM-state 

The expected duration of state S .• or the expected number of frames the 
I 

HMM will remain in state S., can be shown to be: 
I 

E(d) = ~ Pd(S)5)·o = (1-a.} ~ a~:1 ·o = 7T""7"Ta
1 

0=1 I 11 0=1 11 \.l-''i/ 
(4.40) 

The expected duration of state S. is not the duration with the highest 
I 

probability. We can see in Fig. 4.1 that the most likely duration is 1. 

This is not what we would expect in practical situations. In practical 

speech each phoneme has some most likely duration. Durations shorter or 

longer than the most likely value should have a lower probability. 

Therefore different approaches are possible. One way is introducing 

alternative distributions like: 

• Gamma distribution, see Levinson [37]: 
V. 

11 . 
1 

v.-1 -Tt:d 
Pd(S.,d) = - 1

- • d 
1 

e 
1 

I r(v.) 
I 

mean value vJTt .• variance V}Tt: 
I I 1 I 

• Poisson distribution, see Russell [53]: 

A.d -A. 
P d(Si,d) = <lT · e 

mean value A., variance A. 

• Binomial distribution, see Chang [13]: 

Pd(S.,d) = (dn)·p~·(1-p.)n-d 
I I I 

mean value p.-n, variance p.-(1-p}n 
I I ' I 
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The easiest way to implement this is by replacing a single state S. by 
I 

the following structure of sub-states Sid (d=LT), as shown in Fig. 

4.2. The values of function P d(Si,d) are the transition probabilities 

to each sub-state sid' 

Fig. 4.2: Including state duration in HMM 

For each sub-state we can write the following relations: 

P;(S1d,t) = P!(Sid+t't) + P d(S1,d)> P~(S1,t) 
P!(S1d,t+ 1) = P~(Sid't) · p(i, Yt) 

f f 
PF(S

1
,t) = PF(S

11
,t) 

For the backward variables, we write: 

P~(S1d,t) = P~(S1d,t+ 1) · p(i,Y J 
b T b 

PI (S.,t) = L pI (Sid't) . Pd(S.,d) 
I d cl I 

b b 
p F(Sid't) = pI (Sid·l't) 

F 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

For each state more probabilities have to be stored (maximal T). 

Instead of O(N· T) the revised algorithm will be proportional to 

O(N· T). This can be reduced by introducing a minimum and a maximum 

duration for each state. The training of the parameters of the Poisson 

(A..), Gamma (v.,n.) or Binomial (p.) distribution can be performed by 
I I I 1 

maximizing P(YIW) with given sequences Y. This has been worked out in 

the already mentioned publications. 
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The three possibilities can be ranked in the following order: 

Gamma: Most complicated (2 parameters), and has therefore less 

restrictions. 

Poisson: Possesses only one parameter, and is therefore easier 

to calculate. 

Binomial: Possesses also only one parameter and, in addition, 

only n sub-states are needed. 

Why the Binomial distribution is the easiest to calculate can be illus­

trated in an alternative way. Let us suppose we replace state S. with 
I 

multiple sub-states Sid as in Fig.4.4. The number of possible paths of 

duration d will be exactly <a> while d times a transition pi is made 

and n-d times transition (1-p.). This representation delivers exactly 
l 

the binomial distribution, while resulting in very straightforward 

relations between all probabilities. 

~ 
X~F 

1-p. 
l 

Fig. 4.4: representation of Binomial distribution in an HMM 

The forward relations following this sub-division become: 

P!"<sn,t) = P~(Si,t) · P; 

P!"<sid,t) = P!<sid·l't) . Pi 

P!(Sid't+1) = P~(Sid't) · p(i,Y) + (1-p)·~(Sid·t't) 

The backward relations become: 

b b 
PF(Sm,t) = P P(Si,t) 

P~(Sid't) = p(i,Y
1
) ·P~(Sid't+ 1) 

b b f 
p ,(Sid't) = pi . pI (Sid+l't) + (l-pi) . p F(Sid+l't) 
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The training of the coefficients p. can be done by estimating the 
I 

number of times any transition p. and 1-p. is made: 
I I 

f b 
T n PF(S.d 1 , t) · p . · P1 (S.d,t) 

't=l:l: I• I I 

Pi t=t d=l P(Y
1 
.. YTIW) 

(4.53) 

f . b 
p F(Sid-1 't) -(1-p i )· p F(Sid't) 

P(Y t"' YTIW) 

T n 

,;l-p. = l: l: 
I t:J d:J 

(4.54) 

Hence, a new estimate ~- of p. can be estimated by: 
't I I 

6 = pi p (4.55) 
i 'tp.+ 'tl-p, 

I I 

Re-estimation formulas for the parameters of the Gamma and the Poisson 

distribution can be determined by maximizing P(Y 
1 
.. Y lvl), setting its 

derivatives in respect to all parameters to be trained to zero. 

4.8 Conclusion 

The models described in this chapter share some very important 

properties: 

• Each word (or other chose unit) has its own model. 

• Some 'score • is defined to judge the correspondence between the 

incoming speech and the model. 

• This score can be calculated using a time-recursive procedure. 

• Maximum score (or minimum, in the case of DTW) indicates the most 

suitable word, which is selected as the recognized word. 

• The more parameters in the model, the more training data are 

needed for estimation of these parameters. 

HMM, in principle, works the same as DTW, only here the number of para­

meters has increased and the 'score' metric has been improved (Forward 

instead of Viterbi). Making the model more complex, by introducing 

continuous symbols or different duration models, . results in an increase 

of the number of parameters. However, the estimation of these 

additional parameters can still be determined using Bayes' rule, 

maximizing P(Y 
1 
•• Y TIW). 
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Many further extensions of the basic HMM are possible, further 

increasing the number of parameters to be estimated. The problems of 

these methods that are still unsolved can be grouped as (See Mariani 

[42]): 

A. Speech has no separator. In fluent speech there is no silence 

between words. 

B. Models are usually context dependent, which is difficult to 

include in HMM. 

C. Variability due to different speakers in different speaking model 

(singing, shouting etc.). 

D. The fundamental phoneme properties (what makes an 'a' an 'a'?) 

are still unknown. The only solution is comparing the speech with 

many examples (or a large model), which costs many calculations. 

E. Speech is redundant It contains more information than only the 

identity of the spoken words. 

F. Speech has multiple levels of information, that are difficult to 

represent in a recognition system. 

Point A, E and F are the ones that need special· attention. These handle 

about the information inside the acoustic signal. The ideal speech 

recognition system should not use silences, but higher level informa­

tion, in order to be able to distinguish various words. 

Point B, C and D are problems that need further study by linguistic 

experts. Too little is known about the speech production rules used by 

humans. If these rules could be formulated, they could in principle be 

included in the recognition model. 
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S. THE RECURSIVE MARKOV MODEL 

In this chapter the Recursive Markov Model (RMM) is defined, which is 

an extension of the Hidden Markov Model (HMM). Some examples show given 

how this model can form the basis of a speech recognition system. One 

of the poweiful techniques that can be used within the RMM, is State 

Sharing. An example demonstrates that state sharing makes use of the 

shared speech elements from everyday language, like common syllables 

used in many words, common phonemes used in many syllables etc. 

A new algorithm, which is an extension to the Forward Backward algo­

rithm, is derived to train all parameters in the RMM . . In appendix A 

it is proved that the model parameters calculated by this algorithm 

always converge to a local maximum of the likelihood function. 

As an extension to the Viterbi algorithm, the Recursive Viterbi 

algorithm is derived, which peiforms the recognition. 

For every state machine, statistical properties are defined that give 

an indication of the complexity of the state machine. A new recursive 

algorithm is derived to calculate the entropy and state duration of all 

states in an RMM. 

5.1 Definition of the Recursive Markov Model 

In the preceding chapters we have seen how the HMM is implemented in 

current speech recognition systems. Many extensions to HMM have been 

proposed, such as for example duration and language modelling. These 

extensions deviate more and more from the original model. For all 

extensions additional parameters have been introduced and more training 

data was needed. Computation time for recognition and training 

increases as well. 

For a practical speech recognition system, the number of parameters 

will have to be reduced without simplifying the model. This can be d6ne 

by sharing common parameters. For example, if a library contains the 

words 'four', 'fourteen' and 'fourty', then these words have the ftrst 
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syllable in common. However, HMM does not contain a technique to 

combine the parameters of this syllable. In contrast with that, an 

extension to HMM is introduced in this chapter, which makes such a 

sharing approach possible. It turns out that the well-known Forward 

Backward and Viterbi algorithms. as used in HMM training and recogni­

tion, can be adapted to the new model. 

A HMM consists of a collection of states and a set of transition proba­

bilities. At every frame time the model will change state in accordance 

with these transition probabilities. Also at every frame time an output 

symbol is produced, according to another probability law defined on the 

states. 

The extension of the HMM as presented in this chapter will be called 

RMM, which differs from HMM in the states that are allowed to produce 

more than one symbol. This means that a transition does not have to 

occur every frame time. Elementary states are introduced to be compa­

tible with HMM-states. 

Definition of RMM: 

• A RMM consists of a collection of states and transitions. Each 

transition is associated with a parameter, describing its proba­

bility of occurance. 

• These states can be elementary or non-elementary. Elementary 

states are similar to the states in HMM. 

• Elementary states are active during one frame time period, and 

produce a single symbol. 

• Non-elementary states are active during one or more frame time 

periods, and produce one symbol for each active frame time. 

Both elementary and non-elementary states need to be further specified. 

Elementary states: 

• A function P E(S,U) is specified to describe the probability (or 

probability density) that an elementary state S produces symbol 

U. This symbol may be discrete or continuous. Any multivariate 

random function for P E(S,U) is allowed. 
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Non-elementary states: 

• A non-elementary state S consists of a set of child states and a 

set of transition probabilities stored in a matrix A. 

• The elements of A only depend on the assigned state S, and not on 

timet 
• If state S is initiated, a transition is made to one of its child 

states, according to the associated transition probability from 

matrix A. 

• After a child state has finished to produce symbols, either a 

transition is made to another child state or state S itself has 

finished. These probabilities are also stored in matrix A. 

If a transition is made from state S. to S. at time t, we say that 
I J 

state S. has finished and S. is initiated at time t. If S. is initiated 
I J I 

at time t=to and has fmished at time t=t1, then we can state that S. 
I 

is active in the interval [to,tl> (to is included but not tl). In the 

RMM, transitions do not take time. The production of an output symbol 

by an elementary state however takes one time unit. 

The Variable Duration Modelling, as described in Section 4.6, is an 

extension to HMM which allows more symbols to be produced for each 

state. This is equivalent to a replacement of a state with multiple 

sub-states, as shown in Fig. 4.2. In RMM, non-elementary states are 

introduced which can be employed for the same purpose in a more 

versatile way. Therefore, this Variable Duration Modelling is already 

contained in the RMM. 

An example of an RMM with three states is drawn in Fig. 5.1: 

I 

Fig. 5.1: Example RMM with 3 states. 
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For all states that produce more than one symbol, a further specifi­

cation is needed. Such a non-elementary state is supposed to be a 

Markov chain of sub-states. In the same way, these sub-states must be 

further specified if they also produce more than a single symbol. This 

recursive process ends in elementary states that produce only a single 

symbol. The name Recursive Markov Model (RMM) refers to this recursive 

way of splitting states into sub-states. The whole RMM can be consi­

dered as a single Root state, containing all other states. 

Let us now consider some state S 

itself may be a sub-state of some 

further into smaller sub-states. Such 

and its sub-states St".SN. State S 

other state, and S. may be split 
I 

an organization looks like a tree 

structure, which describes the relation between the states. On top will 

be a single Root state, representing the whole RMM. On the bottom we 

find all elementary states as leaves of the tree, as is shown in Fig. 5.2. 

Fig. 5.2: Tree structure of an RMM 

Attached to State S with sub-states S .. SN is a matrix A which contains 
1 . 

all state transition probabilities, which are assumed to be independent 

of time t: 

a 11 a 1N 0 

A = all ·· atN atF (5.1) 

aNI .. aNN alF 

a
1
. = P(S. is initiated at time t 1 S is initiated at t) 
~ J 

a .. = P(S. is initiated at time t 1 S. has finished at t) 
IJ J I 

aiF = P(S has finished at time t I si has finished at t) 
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The fll'St row of the matrix contains the probabilities for transitions 

to one of S
1 
.. SN, after state S is initiated. No other transitions are 

possible. The other rows contain the probabilities of initiating S. or 
J 

finishing S, after S. is fmished. One and only one of these transi-
• 

tions can be made at each time t, independent from t. This puts some 

restrictions on the values of a
1
., a .. and aiP: 
J IJ 

N 

I. ar = 1; 
j=l J 

N 

I. a .. + a.F= 1; 
j ., 1 IJ I 

{i=l..N} (5.2) 

Each non-elementary state S has such a matrix A attached to it. For 

elementaly states another approach is needed. For these a function 

P 
1
(S,U) has been defined on page 64 as the probability of producing 

symbol U: 

P E(S,U) = P(symbol U emitted I state S) 

If the output symbols are discrete, each elementary state S has an 

attached symbol Y(S). Thus the function P E{S,U) can be specified as: 

if U=Y(S) 
otherwise 

For the following sections no assumption will be made about the func­

tion P 
8
(S,U), except that it must be a valid probability (density) 

function. Summed for all possible output symbols (or integrated for 

continuous symbols) the result must yield 1. For now we only assume 

that P 
8
(S,U) is known for each elementary state S and can be evaluated. 

This assumption will be a sufficient condition to derive and prove the 

correctness of the Recursive Forward-Backward and the Recursive Viterbi 

algorithm. In Section 5.4 the training of the elementary states will be 

considered. 

An important feature of RMM is the possibility of State Sharing. This 

allows for more complex model descriptions without increasing the 

number of parameters to be trained and it is equivalent to tied transi­

tion probabilities in HMM. With RMM the recursive model enables the 

description of much more complex relations between states, which recur­

sion can easily be used in the training and recognition algorithms. 

This will be illustrated by the following example. 
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Suppose, an RMM has been constructed for modelling the pronunciation of 

all numbers between 1 and 999999. The Root state (1-999999), represen­

ting all possible numbers, can be divided in 4 sub-states. The flrst 

and the last of these, representing the numbers 1-999, are identical. 

The structures of the Root state (1-999999) and state (1-99) are shown 

in Fig. 5.3. 

Fig. 5.3: An example RMM: numbers 1-999999 

Each of the states in this model has its own matrix A. However, because 

the frrst and the last child state of (1-999999) are identical, it 

makes sense to form one matrix A which is shared between these two 

states. In a high-level language like C or Pascal this sharing is 

easily implemented by using pointers. If state (1-999) is decomposed 

further into smaller states, new identical states will arise. For 

instance, there may eventually exist states named 'four' in eight dif­

ferent places. These represent the eight different functions of 'four', 

which are all used in the words 'fourtyfourthousendandfourtyfour' and 

'fourhundredfourteenthousendandfourhundredfourteen'. Because these 

states not only share their matrices A but also the full lower level 

state structure, this principle is called State Sharing. All algorithms 

derived in this thesis operating on an RMM fully support State Sharing. 

In a tree like in Fig. 5.2 each child state only has one parent. If 

State Sharing is allowed, states could have more than one parent state. 

The tree structure changes into a directed graph, as is shown on 

page 149. The full model of this example can be found in appendix C, 

page 143-149. In the graph, eight different paths to 'four' exist, 

which indicates the eight different functions that this word can have. 
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S.l The Recursive Forward Backward algorithm 

The Recursive Forward-Backward algorithm is an iterative training 
A 

procedUR: which calculates new matrices A from old estimates A, in such 

a manner that the probability that the RMM would produce the given 

training sentences will be increased. This algorithm is guaranteed to 

reach a local maximum of the likelihood function. This property has 

already been proven by Baum [10] for the HMM and extended by Liporace 

[39] for continuous output distributions with ellipsoidal symmetry. In 

Appendix A we will prove that this also holds for the re-estimation of 

matrices A and functions P 
8
(S,U) by the methods derived in this 

chapter. even with multiple training sequences and State Sharing. 

As each state S has its own matrix A, we should always write a~. in­
•J 

stead of a... However, because all relations derived are only local to 
IJ 

a single state S, no misunderstanding can occur about .the state which 

is meant Therefore, index S will be removed and assumed implicitly. 

The Recursive Forward Backward algorithm will now be derived in the 

next sections. 

5.2.1 The Forward recursion 

Let YCYT be an observed sequence of symbols, and P( ... ) represent the 

probability (or probability density) of the description between paren­

thesis. The following notation will be introduced: 

P!(S,t) = P(Y
1 
.. Y

1
_
1

, S is initiated at time t) 

P!(S,t) = P(Y
1 
.. Y

1
_
1

, S has finished at time t) 

f P (S,t) = P(Y .. Y , S is active at time t) 
1 I 

(5.3) 

In words: ~(S,t) represents the probability that state S produces the 

sequence Y .. Y 
1 

and state S is initiated at time L 
1 I• 

These probabilities are called the forward probabilities, because tney 

can be calculated in a forward recursive way. The interrelations among 

the probabilities are derived for the various states as follows: 
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a) Initiation of elementary state S at time t will automatically mean 

producing a symbol Y, being active at time t and finishing at time 
t 

t+l, hence for elementary states: 

P!(S,t+l) = pf(S,t) = ~(S,t) · P E(S,Y
1
) (5.4) 

b) Non-elementary states. For these states we have to consider three 

possibilities: 

1) Any sub-state S. of a non-elementary state S can only be 
J 

initiated if S is initiated and a transition to S. is made, or 
J 

any state S. has finished and a transition to S. is made. These 
I J 

transitions are independant, hence: 

f f f P
1
(S.,t) = a

1
:P

1
(S,t) + l: a.:PF(S.,t) (5.5) 

J J • IJ I 
I 

2} A non-elementary state S can only have finished when any of its 

sub-states S. has finished and a transition is made that fmishes 
I 

state S, yielding: 

f f 
PF(S,t+l) = ~ aiF.pF(Si,t+l) (5.6) 

I 

3) Finally,. non-elementary state S can only be active if one of its 

sub-states is active: 

f f P (S,t) = I P (S.,t) 
• I 

(5.7) 
I 

If S is an elementary state, P!(S,t+l) and pf(S,t) can be calculated 

directly using (5.4). Otherwise, the problem is recursively divided in 

smaller problems by the following algorithm: 

Recursive Forward Algorithm (for non-elementary states) 

Given: P 
1 
(S,t), P F(Sj,t) for every sub-state Si 

calculate: Pf(S,t) and P!(S,t+l) 

1. for every child si 
f _f f 

P
1
(S.,t) = ~:Pi(S,t) + I a.:P F(S.,t) 

J J j IJ 1 

calculate Pf(S.,t), PFf(S.,t+l) (Recursive) 
J J 

2. finally: pf(S,t) = L Pf(S.,t) 
• I 
1 

f f 
PF(S,t+l) = ~ aiF.PF(Si,t+l) 

I 
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This algorithm contains two recursions. One of these is the time 

recursion, similar to HMM. It means that for the calculation of the 

probabilities at time t all probabilities on time t·l must have been 

determined. The other recursion is called the state recursion, which 

works up and down in the hierarchy. Formula (5.5) expresses the initial 

probability of S. in the initial probability of its parent state S. The 
J 

formulas (5.6) and (5.7) work the opposite way. They express the state 

probability and the final probability of state S, in the state probabi­

lities and the final probabilities of all the sub-states S.. Assembling 
I 

these fonnulas together in the given order, assures that all probabi-

lities are known when they are needed. 

To initialize all variables, we assume that the Root state is initiated 

at time t= 1. This means that: 

~(Root,t)~A~ !=~; pf(S,O)=O; P!(S,l)=O; for all states S (5.8) 

Starting at t=l, the Recursive Forward Algorithm can be used to 

calculate all initial and state probabilities at t=l and all final 

probabilities at t=2. This can be repeated for t=l..T. So, all forward 

probabilities can be determined. 

5.2.1 The Backward recursion 

The backward probabilities Pb( .. ) are defined as: 

P~(S,t) = P(Y t .. Y T IS is initiated at time t) 

P~(S,t) = P(Yt •. YT IS has finished at timet) 

b b {P 1(S,t) 
P (S,t) = b 

k P ( S .• t) otherwise 
j J 

if S is an elementary state 
(5.9) 

These probabilities are called 'backward', because they can be calcu­

lated in a backward recursive way. The difference in definition with 

(5.3) is necessary to end up with a symmetrical algorithm. Pb(S,t) 

cannot be interpreted as a probability, because it may become > 1 duri_ng 

the Recursive Backward algorithm. However, as described in chapter 6, 

this quantity will prove to be very useful later on. 
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Using the same steps as in the forward recursion, we obtain the 

following relations, which are equivalent to (5.4) .. (5. 7). Again we 

subdivide into elementary and non-elementary states: 

a) An elementary state S, initialized at time t, will produce a symbol 

Y and must fmish at time t+l: 
t b b b 

p I(S,t) = p (S,t) = PE(S,Y) . p F(S,t+l) (5.10) 

b) Non-elementary states. Again three situations must be considered: 

1) A non-elementary state S, after having finished a sub-state S., 
I 

either must make a transition to finish S or initialize another 

sub-state S.: 
b J b b 

P F(Si,t+1) = aiF.p F(S,t+1) + ~ aij·P 
1 
(Sj't) (5.11) 

J 
2) Mter non-elementary state S is initialized a transition will be 

made to some sub-state S., which will be initialized too. 
b b J 

P 
1 
(S,t) = 2: ar· P 

1 
(S .,t) (5.12) 

j ~ J 

3) From the definition (5.9) we conclude that for non-elementary 

state S: 
b b P (S,t) = 2: P (S.,t) 

j J 
(5.13) 

If S is an elementary state, Pb(S,t) and P~(S,t) can be calculated in a 

direct way using (5.10). Otherwise the problem is divided recursively 

into smaller problems by the Recursive Backward Algorithm: 

Recursive Backward Algorithm (for non-elementary states) 

Given: P F(S,t+ 1), P 
1 
(Si,t+ 1) for every sub-state Si 

calculate: Pb(S,t) and P~(S,t) 
-·--··-··---·-··-··-.. - ... ---------'-

1. for every child S.: 
I 

pbF(S.,t+l) = a.F.pbF(S,t+l) + 2: a.:Pb
1
(S.,t+l) 

I I • IJ J 
J 

calculate Pb(S.,t), Pb
1
(S.,t+l) (Recursive) 

I I 

b b 2. finally: P (S,t) = 2: P (S.,t) 
• J 

b J b 
P

1
(S,t) = 2: ar·PF(S .• t) 

j J J 
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As an initialization, the RMM is assumed to finish the Root state at 

time T+l: 

b ={l:t=T+l. b . b . PF(Root,t)- O:t:FT+l' P (S,T+l)=O, P
1
(S,1)=0, for all states S (5.14) 

5.2.3 The training or the model 

With the two algorithms from the previous sections, all forward and 

backward probabilities can be calculated. The actual goal is to train 

the model parameters A of all non-elementary states: given initial 
1\ 

estimates A, we want to calculate better estimates A for all states. 
1\ 

These estimates A can be approximated from frequency distributions for 

the transition probabilities calculated with the Recursive Forward and 

Recursive Backward algorithms. This approximation can be continued, 

until it converges to a solution that maximizes P!(S,T+l). For simpli­

city, in this chapter the relations are derived in a heuristic way. In 
appendix A is proved that the parameters in the model converge to a 

(local) maximum of the likelihood function P!(s, T + 1 ). 

Let t.. be the expectation value for the number of times the ·transition 
lJ 

aij is made given the sequence YI".YT. Equivalently t 1j and tiP are 

defined. Like the case for the coefficients a... each state S also has 
lJ 

its own t
1
.• t.. and t.p· For reasons of simplicity, we do not write s J IJ I 

t. .• to indicate which state is meant. Since all relations derived are 
IJ 

only valid locally for some state S, we implicitly assume that this 

state is meant. We can determine the t
1
., t .. and tiF from the calcu-
~ IJ 

lated forward and backward probabilities. Performing transition a.. at 
lJ 

time t is equivalent to first finishing some state S. producing Y
1 
•• Y, 

I t 

next making transition a... and fmally producing Y 
1 
•• YT. However, 

lJ ~ 

the expectation value for t.. is determined by the sum of the contribu-
•J 

ted probabilities for all t divided by the probability of all possible 

paths: 
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l: P
1
(S, t)· a 

1
. ·P 

1 
(S .,t) 

t J J 

P:(Root, T+l) 
'tlj = 

f b l: PP(S.,t)·a .. ·P
1
(S.,t) 

( I l J J 

'tij = ____:.._p"""!,....(R_o_o_t_, T_+_l_) ---- (5.15) 

f b 7 PP(Si,t)·aiF·P,(S,t) 

P!(Root, T + 1) 

The coefficients a.. are re-estimated by dividing the expected number 
IJ 

of transitions from state S. to S. by the total expected number of 
I J 

transitions finishing S.: 
l 

~ - 'tlj . 
lj -~· 

k It 

I). 'tiF 
aiF =---­

L 't.L + 't.F 
k lo. I 

(5.16) 

The update of t .. , tlj and tiP can be combined with the backward algo-
. IJ 

rithm. We have to make sure that only quantities are used that have 

been calculated before. It turns out that t.. can be updated before 
IJ 

step 1 of the Recursive Backward algorithm is executed, and 'tlj and tiP 

can be calculated between step 1 and step 2. Adding these two steps to 

the Recursive Backward algorithm results in the Recursive Backward 

Training Algorithm. The advantage of this set-up is that all calculated 

quantities that are not needed any more for the recursion neither are 

needed for the t-update any longer. Hence, these quantities do not have 

to be stored, which conserves memory. 

Let { denote the righthand side of (5.15) when the summation is per­
•J 

formed from time t .. T, instead of time l..T. The algorithm becomes: 
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Recursive Backward Training Algorithm (for non-elementary state S) 

Given: P F(S,t+ 1), P 
1 
(Si,t+ 1) for every sub-state Si 

calculate: Pb(S,t) and P~(S,t) 
··-... ··--·-.. ·-·-···-·---·-·-·--·--·------·--·---·----

1. update t .. for all i,j: 
IJ 

f b PF(S., t+l) ·a .. · P
1
(S.,t+l) 

I ~ J 
tt+l = tt+2 + ---.....-------
ij ij P!(Root,T+l) 

2. for every child S.: 
I 

pbF(S.,t+1) = a.F.pbF{S,t+l) + I, a.:Pb
1
(S.,t+1) 

I I . IJ J 
J 

calculate Pb(S.,t), Pb
1 
(S.,t) (Recursive) 

I I 

f b P 
1 
(S,t) ·a I j · P 

1 
( S j, t) 

P!(Root, T+l) 
tt+l = tt+2 + 

lj lj 

f b 
PF(Si, t+l) ·aiF · P F(S,t+1) 

t' = tt+l + ---r--------iF iF f PF(Root,T+1) 

4. finally: Pb(S,t) = I. Pb(S.,t) 
. J 

b J b 
P 

1 
(S,t) = I. ar·P F(S.,t) 

j J J 

The above way of processing has another advantage. If state sharing is 

used, the transition probabilities of two or more states are forced to 

have the same value. The usual way of processing this is to use the sum 

of the expectations for each copy of a.. ·for the update. In our 
IJ 

algorithm this is automatically performed if we share the variables t .. 
IJ 

between the shared states, just like matrix A is shared between the 

same states. During the backward algorithm all contributions from the 

different states will be added together automatically. 
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If the coefficients have to be trained by using more training sequen­

ces, each training sequence delivers its own values for 't... The total 
IJ 

expected number of transitions , in all training sequences is the sum of 

the expected number of transition from each training sequence. This sum 

can also be obtained by performing the Forward Backward Training Algo­

rithm for the second to the last training sequence without initializing 

tij, t
1
j and 'tiP again. The procedure for multiple training sequences 

then becomes: 

1. 

2. 

3. 

4. 

5. 

initialize t .. = t
1
. = t.P = 0 for all states. 

IJ J I 

perform the Recursive Forward algorithm for the first 

training sequence, for t=l..T. 

perform the Recursive Backward Training algorithm to update 

t... t
1
. and t.F' for t=T .. l. 

IJ J I 

repeat step 2 and 3 for all other training sequences, without 

re-initializing t ... 
1\ IJ 

update A for all states, using (5.16). 

This forgoing algorithm will train all coefficients in the RMM. State. 

Sharing and multiple training sequences are handled by sharing 

variables between states. This heaviiy reduces memory requirements. In 

the algorithm only local variables are used, except for one value: 

P!(Root,T + 1). 

Some additional improvement can be obtained by storing t.Ja.. instead 
IJ IJ 

of t .. , and correspondingly for t
1
. and t.p• Because a.. is a constant 

IJ J I IJ 

factor in t .. , as can be seen in (5.15), the multiplication by a.. can 
IJ IJ 

be done after all training sequences are processed. 

If training is done with a single training sequence only, the division 

by P!(Root,T+l) has no influence on the training and need not be per­

formed. However, the training is normally performed with many training 

sequences. Removing this division in the Recursive Backward Training 

algorithm has the same effect as weighting the influence of each trai­

ning sequence in the training. Sequences with a higher probability will 

have a higher influence on the training than sequences with a lower 

probability. This effect is not desirable, because sequences with a low 

probability indicate that the RMM is not yet trained sufficiently. 
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These requences should rather be given a high weight in the training. 

Sequence length differences have the same adverse effect. Longer 

training sequences will automatically have a much lower probability, 

but they contain much more data. In Appendix A is shown that the factor 

P!<Root, T + 1) is essential for the algorithm to guarantee Maximum Like­

lihood estimation. 

Another remark is that a different initialization is possible as well. 

The training as described will cause problems if some transition, say 

a.. of state S, never occurs in the training data. This will result in 
IJ 

the expected number of transitions t .. = 0 (or at least « 1). This does 
IJ 

not mean that in rea1ity this transition is not allowed to occur, but 

the re-estimation formulas (5.16) will give a zero result for t... A 
IJ 

way to cope with this situation is to set t .. = a.. instead of initia-
'J IJ 

lizing t.. = 0. If transition a.. does not occur in the training data, 
IJ IJ 

a.. will not change during the training. If a.. occurs many times in 
IJ IJ 

the training data then t.. » 1, so adding a.. has only little 
IJ IJ 

influence. It looks like another training sequence has been added which 

follows exactly the current transition probabilities. Another advantage 

of this initialization is that the denominator of (5.16) is guaranteed 

to be ~ 1, hence division by zero will not occur. 

Conclusion: 

• The Recursive Forward Backward Training Algorithm is able to 

train the matrices A of all states, given multiple training 

sequences Y
1 
.. YT. 

• Multiple training sequences and State Sharing are handled by 

sharing variables t.. in the training algorithm between all 
IJ 

shared states and all training sequences. No fundamental 

change in the algorithm itself is needed. 

• The training for each non-elementary state S only uses local 

variables of state S and all its child states S., except for 

P!(Root,T+l). 
1 
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5.3 The Recursive Viterbi algorithm 

The actual problem to solve is the recognition problem. Given a symbol 

sequence, the corresponding word sequence with the highest probability 

has to be determined. In HMM each word has its own model, but in RMM 

the total library is represented by the Root state and the words are 

represented by sub-states as well. 

We can re-formulate the recognition problem as: given a symbol sequence 

Y
1 
.. Y

1
, what is the state-sequence (on all levels) with the highest 

probability of producing y f' y T' 

The recognition can be produced by the Recursive Viterbi algorithm. 

Like the Recursive Forward Backward algorithm, this algorithm consists 

of two parts. The frrst part calculates the probabilities of the best 

path reaching any state for t=l..T. The second part back-traces the 

states in these paths, so that afterwards the best state sequence can 

be reproduced. 

To start, only the calculation of' the probabilities of the best path 

reaching any state will be considered. After that, the tracing 

algorithm will be explained, showing that at each time t the state 

sequence of the best path can be reproduced. The probabilities used in 

the algorithm will be called the Viterbi probabilities. because they 

are calculated in a Viterbi-type recursion. This algorithm will have a 

structure very similar to the Recursive Forward algorithm. Therefore 

the needed variables are defined in a similar way, hereby enabling the 

same structure used in the previous section to be used in the Recursive 

Viterbi algorithm. 

The Viterbi probabilities are defined by: 

V P
1
(S,t) = P(Yt'.Y

1
_
1

, best path initiating S at time t) 

V PF(S,t) = P(Y
1 
.. Y

1
_
1

• best path finishing S at timet) (5.17) 

Pv(S,t) = P(Y
1 
.. Y

1 
• best path activating S at time t) 
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As before, we again differentiate between elementary and non-elementary 

states: 

a) An elementary state S initiated at time t will produce a symbol Y t 

and finish at time t+ 1. The best path leading towards state S at 

time t ,is also the best path finishing S at time t+ 1. The Viterbi 

probabilities of elementary state S have the relation: 

(5.18) 

b) Non-elementary states. Again three situations are possible: 

1) For a non-elementary state S the best path initiating S. at time 
• J 
t must be selected from the best path initiating S at time t and 

the paths finishing other states S., and making a transition to S.: 
I J 

P~(SJ") ~ max [ 'v·P~(S,t) , "':"' [ a,-P;(S;,t) l] (5.19) 

2) A non-elementary state S, can only have finished if its sub­

states have finished and a transition is made to the finishing 

node of S. To calculate the probability of the best paths 

fmishing S, the probability of the paths finishing S. must be 
I 

calculated and the maximum selected: 

P;(S,t+1) = m~ ( aiF·P;(Si,t+l) ) (5.20) 
I 

3) The best path that activates non-elementary state S at time t, 

can only be one of the best paths that activates S.: 
I 

Pv (S,t) = m~ ( Pv (Si,t) ) 
I 

(5.21) 

Comparing these relations with (5.4) .. (5.7), we see that the relations 

between the Viterbi probabilities are similar to the relations of the 

Forward probabilities. If in (5.4) .. (5.7) the index 'f' is replaced by 

'v' and all additions are replaced by the maximum operator. This yields 

exactly the Viterbi relations. 

Previously we have derived the Recursive Forward Algorithm. The known 

relations had to be arranged in such order that variables are only u~ 

after they have been calculated. Because of the similarity, we can 

formulate the Recursive Viterbi algorithm right away by replacing 
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'Forward' with 'Viterbi' probabilities and additions by the maximum­

operator in the Recursive Forward algorithm: 

The Recursive Viterbi Algorithm 

Given: P~(S,t), P;(Sj't) for every sub-state Sj 

calculate: Pv(S,t) and P;(S,t+l) 

1. for every child S / 

P~(Sf') = max ["/~{S,t) , ~ [ "o;'P~(S;,t) ] l 
calculate Pv(S.,t), PvF(S.,t+l) (Recursive) 

J J 

2. finally: Pv(S,t) == m~ ( Pv(Si,t) ) 
I 

P;(S,t+l) = max ( aiF·P;(si,t+l) ) 

After all Viterbi probabilities have been calculated for t=l..T, we 

want to find . the best path up to time T from these data. Starting with 

the Root state, we can compare Pv(S.,T) for all sub-states S. of the 
, I I 

Root The largest value indicates · the state that contains the most 

probable path. Then all sub-states of the selected state S. can be 
I 

compared in the same way. When an elementary state has been reached 

(say SE), this state is the most likely state at time T. Knowing that 

the best path is initiating SE at time t, we can trace it back, 

comparing the already calculated Viterbi probabilities. This method 

contains two disadvantages: 

• all Viterbi probabilities must be stored 

• the best path only can be determined after all symbols Y
1 
.. YT 

have been processed. 

An alternative for the previous algorithm is to store for each state a 

list of previous states. This list can be updated with every max­

operation, and pruned when the state is pruned. Additional memory is 

needed to store these lists for all states, but the advantage is that 

Viterbi probabilities for previous times do not need to be stored any 

more. The same memory locations used at time t, can be used at time t+ 1 

again. At any time t during the Recursive Viterbi algorithm the best 
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state up to time t can be found, and the best path leading to this 

state is immediately available. This search strategy is implemented, 

and will be treated in more detail in Chapter 7. 

5.4 Training of elementary state parameters 

In this section elementary states are considered. Until now we simply 

defined a function P iS,U) for every elementary state. For the Forward­

Backward and Viterbi algorithm, this function has to be evaluated for 

all elementary states and all symbols Yt".Yr. If the function contains 

parameters that have to be trained, additional re-estimation formulas 

for the elementary states have to be specified. 

The probability density function of many stochastic processes that 

occur in nature, can be approximated well by the Gaussian distribution. 

If many different Gaussian distributions are available , each with a 

different mean and covariance, these can be combined to a multivariate 

Gaussian distribution. Any continuous probability distribution can be 

approximated at any desired accuracy by multiple Gaussian distributions 

with different mean and covariance matrix. Therefore a suitable choice 

for an elementary state S would be (* = transpose): 

l:tl·l/2 [ <u-m*-:t·l·<u-w] PE(S,ii) = · exp - _,___........._ _ __,__,_,_ 
(21t)N/2 2 

(5.22) 

2 

(J 1 (J ~2 .. (J 1Nl 
l: = cr2t cr2 .. cr2N 

• • • :1 
cr~t cr~2.:crN 

with: ii = 

This probability function can be applied safely to the RMM. 

In Section 5.2 we considered multiple training sequences Y t"' Y r· These 

are used in the Recursive Forward Backward Training algorithm to 

estimate the matrices A for all non-elementary states. If these symbols 

Y are discrete, they are fixed and cannot be trained. In this section 
t 

we will consider training of the parameters ji and l: of each elementary 

state, using multiple training sequences y
1 
.. yr which are now 

continuous N-dimensional vectors. 
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By specifying an N-dimensional mean vector ji and a positive defmite 

N x N covariance matrix I for each elementary state, multiple states 

can create any mixed Gaussian distribution. State sharing must also be 

allowed, so multiple elementary states can share the same ji and I. 

Again index S is dropped from ji and I, because all update formulas only 

refer to a single state S. It is implicitly assumed that ji and I refer 

to this state S. 

Consider any elementary state S, that is assumed to produce an N­

dimensional vector ii any time it is initialized. This vector is 

randomly selected using a Gaussian distribution with mean ji and a 

positive definite covariance matrix I. For this state we want new esti-
A A f 

mates j.1 and I, that will increase the likelihood PF(Root,T+l) for the 

given vector sequence Yc·YT· 

For each of the vectors Yc·YT it is possible to calculate an estimate 

for the probability that y is produced by S. We define w as the 
I l 

probability that S is active at time t, given that the Root state is 

initiated at t=l, finished at t=T+l, and produces Yc·YT· This can be 
expressed in both already known 'forward and backward probabilities, 

that were used in the Recursive Backward Training algorithm: 

P~(S,t)·P~(S,t) P!(S,t+l) ·P~(S,t+l) 
w = = (5.23) 

1 P:(Root, T + 1) P!(Roo t , T + 1) 

The expected number of times that S was active can be expressed as: 
T 

t = l: w (5.24) 
I 

I= 1 
A heuristic way of estimating a new mean vector, is to consider yt'.yT 

as a set of observations and wf.wT as a set of weight-factors. As an 

estimate for the mean vector the weighted average of the observations 

is used: 
T 
l: wJ, . T 

A t= 1 1 "' -
j.1 = = - . ,4, w ·y 

T t 1 I t k W I= 
t 

I= 1 

(5.25) 
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For the covariance matrix also the standard estimation formula can be 

used, with w as weight factors (* denotes transpose) 
I 

T A A* 
I. w ·(y ~ ll) ·(y ·IJ.) 

i = t=l 

1 1 1 

=.!. ·[ f w·y·y* ]· ~-~* (5.26) T 't I I I I. w 1=1 

I= I 
I 

These estimation formulas contain terms that are a sum of individual 

contributions at time t=l..T. These terms are useful as intermediate 

variables,. because they can be updated like \• t
1
j and tiP in the 

Backward Training algorithm. We define: 

m= f w
1
·y

1 
= [ 71

]; V= f wJ,·( = [ ::: ::::::::] (5.27) 
t=t m t=l 

N v~1 v~2':vNN 
The Backward Training algorithm for such an elementary state can be 

formulated as follows. Let t\ nr and V' denote partial summations for 

t, m and V, with the summation is performed from t..T. We then have by 

(5.25) to (5.27): 

Backwanl Training for elementary state with Gaussian distribution 

Given: P~(S,t+l) 
calculate: ~b(S,t) and ~~(S,t) 

·---·-.. ----·-.. -· .. ·------·------

1. calculate w : 
t 

2. Update t: 

P!(S, t+l) · P~(S,t+l) 
w -~r-------------
1- P!(Root,T+l) 

-r = 'tt+l + w 
I 

3 Upda - --t --t+l -
. te m: m = m + w,·Y, 

t 1+1 - -* 4. Update V: V =V + w·y·y 
I I I 

5. P~(S,t) = Pb(S,t) = P~(S,t+ 1) · P E(S,y
1
) 

This training is included in the Recursive Backward Training Algorithm 

for the elementary states. In Appendix A, it is proved that this 

algorithm supplies the Maximum Likelihood estimate for the elementary 

state coefficients. 
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If the training is performed while t, m and V are shared between 

multiple elementary states, the contributions of individual states are 

added together in the algorithms. When training is performed with more 

than one trammg sequence, the individual contributions are also 

added. If all sequences and all states are processed, t, m and V for 

state S collect the sum of the contributions from all training 

sequences. From these the new mean vector and covariance matrix can be 

calculated: 

(5.28) 

Note that because V and 1: are symmetrical, only half of their elements 

have to be calculated and stored. 

It is not so easy to employ matrix 1: directly in the calculation of 

P E(S,t) because a matrix inversion would be involved. To store the 

inverse of the matrix is neither suitable, because a matrix inversion 

has to be performed after each re-estimation. It is much more practical 

to use a lower triangular matrix L, defined as: 

[

111 0 :· ~ '] 
L = : 1

22 • • . . 0 
lNI'' ' .. :INN 

* L·L = 1:; (5.29) 

This matrix can be seen as a transformation from a random variable x 
with a unit covariance matrix into the random variable (ii-JI) with 

covariance matrix 1:: 

ii-ji = L x; or x = L'1 (U-JI); (5.30) 

Because L is triangular, it is calculated from 1: by Cholesky 

decomposition. After that, x and ILl are easily calculated by: 
i - 1 

u. - ll. - L 1 ·X 
: I I j = l ij j 

X. 
I 

{i=l .. N} (5.31) 

N 
ii 

ILl = I1 1.. 
i =I 

11 
(5.32) 
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Using (5.31) and (5.32), an easier way to calculate P iS,U) is flrst to 

transform ii in an intennediate random variable x. Then P E(S,U) is 

calculated by: 

p .,(S,U) = I u·t . exp [- x*. x l (5.33) 
"' (21t)N/2 2 

The transformation matrix L and the mean vector ji are treated as model 

parameters, like the matrix A in non-elementary states. The scalar t, 

the vector m and the matrix · V are updated like the variables t... t . 
. IJ lj 

and tiP in non-elementary states. Therefore, the training algorithm for 

elementary states can be included very easily in the Recursive Backward 

Training algorithm derived in the previous sections. 

Normally, the variables t, m and V are initialized at zero, just as the 

coefficients t
1
.• t.. and tiP could be initialized to be zero. As 
J IJ 

already described, this will cause problems when the training data do 

not contain all possible transitions. In case of the A-matrix this can 

solved by initializing t.. = a... as already explained. A similar 
IJ IJ 

procedure also holds for elementary states. One could pretend that all 

elementary states have already produced a symbol once, fulfilling 

exactly the given parameters. 

Thus, an alternative initialization could be (being the reverse of 

(5.28) with t=l): 

t = 1; m= ji; * V =I:+ ji·ji 

If no symbol from the concerned elementary state is present in the 

training data, t, iii and V are not updated. Using (5.28) now results in 
A A 
1.1 = ji and I: = I:. This is the best possible estimation in these circum-

stances. If the elementary state is used in the training data many 

times (t»l) this initialization has very little influence. 
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5.6 Efficient calculation of various statistical measures 

A measure for the complexity of a finite state machine is the entropy 

as defined by Shannon. A particular method for calculating this entropy 

has been derived by Sondhi and Levinson. In the finite state machine 

that they use, the transition probabilities are undefined, making it 

impossible to calculate the language entropy. However, two measures can 

be calculated: the equal probability entropy and the maximum entropy. 

The method described by Sondhi is only valid when the used language is 

finite. But for infinite languages a useful approximation can be 

formulated by halting after a sufficient number of iterations. 

RMM is in fact a finite state machine with given transition probabili­

ties, so it is possible to calculate the entropy. In general the RMM 

contains self-loops, which means that the language is infinite. In the 

following a new recursive method will be developed for calculating the 

entropy and the average duration of any state in the RMM. 

First some assumptions must be made. For calculating the entropy it is 

necessary that all elementary states are uncorrelated. In general they 

are not, because many elementary states produce the same symbol. Let us 

suppose however, that we have a perfect speech recognizer, which is 

able to construct from every possible symbol sequence the corresponding 

unique state sequence without any mistake. Thus, the information 

contained in the symbol sequence (= the entropy) is equal to the infor­

mation in the state sequence. The calculated entropy is only valid when 

the speech recognizer is perfect. 

H elementary states in the RMM have correlation, the state sequence 

cannot be uniquely reconstructed. This means that the actual entropy 

will be lower than the calculated entropy, indicating the loss of 

information in the speech production/recognition process. 
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Suppose we have an RMM with given transition probabilities. This RMM 

produces a continuous random symbol sequence, starting at t=-oo. Every 

time the Root state has fmished, it is initiated again. Equivalently, 

the final node is again connected with the initial node. This model is 

continuously producing symbols. Now we can define, for any state S: 

P(S) : probability that the RMM is in state S 

PF(S): probability that the RMM is leaving state S 

P
1
(S): probability that the RMM is initiating state S 

These probabilities have become independent of time t, because the RMM 

is producing symbols continuously. Any state which is initiated will be 

finished some time later. This means that for any state S (not only for 

the root) the following relation holds: 

(5.34) 

In order to calculate the entropy let us first consider the definition. 

Suppose from some node in a fmite state machine a transition is made. 

There are N possible paths each with a probability a. (l~jSN). Then the 
J 

entropy involved in this transition is: 

H(a) = - L a.-lo~(a.) 
j J J 

(5.35) 

A large model contains many of these transitions, and we do not know 

which transition is made at time t. In this case we multiply the 

entropy of each possible transition with its relative probability of 

occurrence. 

In a large RMM, the same principle can be applied. The entropy of any 

state S is an information measure, describing the information concerned 

with all possible transitions within that state. Many transitions are 

possible at the same time, which partly belong to lower level states. 

If we split the entropy in multiple terms, partly from transition 

occurring inside lower level states and partly from transitions inside 

state S, the result yields formula (5.36). Each term in it has to be 

multiplied with the relative likelihood for each transition, because 

they are not equally likely. These relative likelihood factors are )let 

unknown, but we will describe a procedure to calculate them. 
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H(S) = ~ au·lo~(a1j) 
J 

P
1
(S) 

- I -- · ( I a . .-log2(a . .) + a.F·log2(aiF)) 
i p (S) j IJ IJ I • 

I 

(5.36) 

The fl:rst term is the weighted entropy of the child states. The second 

is the entropy involved in the frrst transition into one of the child 

states. The last term is the entropy involved in transitions between 

child states and flnal transitions. Now we only have left to calculate 

P
1
(S)IP

1
(S) for every state. 

P
1
(S) 

for this purpose deflne: u = ---
i P

1
(S) 

(5.37) 

With this defmition the entropy per state becomes: 

H(S) = I u.- ( H(S.) - I a . .-log2(a . .) • a.,·log
2
(a. )) 

.I I .IJ IJ h- 1F' 
I J 

- I l):lo~(ar) 
j J J 

(5.38) 

The relation between P
1
(Si), P F(Si) and P

1
(S) at any time t is: 

PI(St) all a2t .. aNI PF(S,l) [all 

Pl(S2) = a~2 a~2 :: ~N2 · PF;S2) + a~2 ·P
1
(S) 

Pl(SN) atN a2N .. aNN P F(SN) a,N 

(5.39) 

Dividing by P1(S) and using (5.34) and (5.37), this can be re-

formulated as: 

au- 1 a21 .. aNI 

al2 a22 -1.. aN2 
. 

alN a2N .. aNN·l UN alN 

These are N equations with N unknowns, therefore, in general 

solved. The result can be used in the entropy formula (5.38). 

(5.40) 

u. can be 
I 

Suppose we let the RMM produce T symbols, then any state S will produce 

on average T·P(S) symbols. In the same time period state S will start a 

new sequence T·P
1
(S) times. Hence, the average state duration L(S) of 

state S can be deflned as: 

L(S) = P(S) I P
1
(S) (5.41) 
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To calculate the average duration of state S we use: 

P(S) = I, P(S.) 
i 

I 
(5.42) 

Using the definitions of L(S) and u. we can fonnulate this as: 
I 

L<s> = r u.-L<s.> (5.43) 
. I I 
I 

If the elementary states are uncorrelated, they contain no infonnation 

and they produce one symbol each. For all elementary states SE we then 

have: 

H(S ) = 0 ; L(S ) = 1; 
E E 

(5.44) 

In this way we derived a recursive method to calculate the entropy and 

the average duration of any state inside a RMM. For each state S, first 

u!".uN are calculated by solving (5.40). The entropy and average state 

duration then can be calculated from the entropy and average state 

duration of its child states, using (5.38) and (5.43). 

Solving equation (5.40) in general requires 0(N3) multiplications. For 

many practical languages, however, most coefficients are zero. For 

instance, if only forward- and self-transitions (a .. =O for i>j) exist, 
IJ 

then equation (5.40) can be solved explicitly by: 

j . I 

a1. + L a.:U. 
J i =I IJ I 

u = 
j 

{ j = l..n } (5.45) 
1- a .. 

J J 

More calculations can be saved employing State Sharing, because the 

entropy and average duration of any state lower in the hierarchy are 

not dependent on higher level states. If any state model is used more 

than once in the RMM, the entropy and the average state duration only 

have to be calculated once. 
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6. SCALING AND STATE PRUNING IN RMM 

The algorithms described in the previous chapter coiTectly peifonn 

training and speech recognition. Still, two main problems will occur 

when these methods are used in a practical speech recognition systems 

with a large vocabulary. Solutions to these problems are provided in 

this chapter. 

As a first problem, the derived Recursive algorithms suffer from 

numerical underjlow in exactly the same way as the algorithms nonnally 

used in HMM. The most common approach in HMM is to represent all proba­

bilities by their logarithms. In this way, all multiplications change 

to additions, and for implementing additions, a procedure had already 

been developed. Another less common solution is to use appropriate 

scaling. In this chapter an alternative scaling method is introduced 

that solves the numerical underjlow problem, and has several additional 

advantages as well. 

A second problem in developing speech recognition systems with a large 

vocabulary is that the used model can become very large. State sharing 

already saves a lot of work and complexity, but in the Recursive 

algorithms still too many variables have to be processed. The scaling, 

introduced in this chapter, allows for a new state pruning approach. 

The Recursive For.vard Backward and Viterbi algorithm are re1onnulated 

in terms of the scaled variables. Nonnally, the number of variables to 

be processed grows linear with the vocabulary size. State sharing and 

pruning allow . to reduce this size, by using the redundancy in the 

applied language model. 

6.1 The Principles of Scaling and Pruning 

A common problem in HMM is numerical underflow. During each time step 

all probabilities are multiplied by transition probabilities (for non­

elementary states) or output probabilities (for elementary states), 

which are all smaller than 1, and thus eventually result in underflow. 

On any computer, no matter what floating point format is used, for 
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training sequences being long enough, all probabilities will · approach 

zero until they are actually rounded to zero. 

Two solutions for this problem have been proposed by various authors. 

One is to use the logarithms of all variables. This changes all 

multiplications to additions. For adding numbers that are represented 

logarithmically an efficient method has been described by Kingsbury and 

Rayner [26]. A short summary of this method can be found in Holmes [20] 

in Section 8.11 (page 149/150). The disadvantage of this method is the 

loss of accuracy, but this does not seem to be a severe problem in 

actual practice. 

Another way to solve this problem is to use scaling. As soon as proba­

bilities become lower than some threshold, a scale factor is used to 

bring them back into range. All training and recognition algorithms 

must be adapted for the use of this scale factor. The scale factors 

used during the forward algorithm, for instance, can be stored in 

memory, thereby enabling correction during the backward algorithm. 

One of the advantages of RMM is· that the total library is represented 

by a single state, and the final probability of this state, 

PFf(Root,T+l), is used already as scaling factor in the update of t ... 
tj 

If, during the forward algorithm, all probabilities are multiplied by a 

constant, then P!(Root,T + 1) is also multiplied by the same constant. 

Hence, the update of t.. does not change at all. In case of recognition 
IJ 

using the Recursive Viterbi algorithm we are only interested in the 

identity of the best path. Multiplication by a constant factor does not 

influence the result of this algorithm. This observation suggests that 

it should be possible to introduce scale factors in the algorithm, such 

that the update formulas become insensitive for that scaling but for 

which the product of all scale factors is not needed in the algorithm. 

This algorithm called the Scaled Recursive Forward-Backward Training 

Algorithm is derived in the following section. In the remaining 

sections the other algorithms of Chapter 5 are re-formulated in the 

same way. 
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In addition it will be shown that scaling can be used for state pruning 

(ignoring states with too low probabilities) resulting in more 

efficiency in the computations and reduction in storage requirements. 

6.2 The Scaled Recursive Forward Backward algorithm 

Consider the defined probabilities for any state S and its child states 

S .. According to (5.7) we can immediately conclude that: 
I 

Pf(S .• t) s; Pf(S,t) (6.1) 
I 

If we replace all probabilities by scaled probabilities, dividing them 

by Pf(S,t), the previous Recursive Forward and Backward Training algo­

rithm can be re-formulated in terms of the new variables. This does not 

hold when Pf(S,t) is zero, but then the solution to the problem is 

trivial: pf(S.,t)=O; 
I 

If pf(S,t) ;t: 0, the following new variables are defined: 

f Pt(S.,t) f P~(S.,t) f P~(Si,t+1) 
].5 (S.,t)- t I ; 151(S.,t) t I ; 15F(S.,t+1)=--],t--

l p (S ,t) I p (S ,t) I p (S ,t) 
(6.2) 

This definition assures that: 

l: pf(S.,t) = 1 ~ pf(S.,t) s; 1 
. I I 

(6.3) 
I 

This definition is not valid for the Root state, because the Root has 

no parent state. Instead we use the state probability of the Root state 

as its own scale factor, yielding: 

f f P!(Root,t) f P~(Root,t+l) 
15 (Root,t)=1; P 

1 
(Root,t) f ; P F(Root,t+ 1)- f (6.4) 

P (Root,t) P (Root,t) 

A scaled state probability of one of the sub-states S. of S approaching 
I 

zero, implies the existence of another sub-state having a higher state 

probability. Hence, when S. is not considered any more in the calcula-
1 

tion, hardly any calculation error will be made. This observation forms 

the basis of the state pruning. A threshold e is selected (£ « 1), and 

all scaled probabilities smaller than £ are set to zero during the 
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algorithm. If e is chosen small enough, the error made by this approxi­

mation is negligible. However, the amount of work to be performed is 

drastically reduced, improving the efficiency by an order of magnitude. 

In order to be able to re-formulate the previous algorithms we also 

need a new set of variables, that are scaled according to time t-1. 

Three different definitions are necessary for three different situations: 

If pf(S,t-1) > e (so automatically Pf(S,t-1)~) we define: 

If P1(S,t-1) ~ e and JS!<S,t) > e: 

Otherwise: 

These three situations have the following interpretation: 

1) State S is not pruned at time t-1. 

2) State S is pruned at time t-1, but will be considered again at 

time t. 

3) State S is pruned at time t-1, and also at time t. 

(6.6) 

(6.7) 

With these new variables, regardless whether in situation 1, 2 or 3, 

the elementary state relations become: 

(6.8) 

For non-elementary states in all three situations the Recursive Forward 

Backward algorithms must be re-formulated in terms of the new varia­

bles. This adaptation leads to the following set of algorithms: 
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The Scaled Recursive Forward Algorithm (situation 1) 

Given: 

calculate: 

1. for every child S.: 
J 

"f 
M Pr(S,t) f 
P"'

1
,(S.,t) = a

1
: f + L a.:PF(S.,t) 

J J 15 (S 't-1) i IJ I 

calculate Pf(S.,t), pfF(S.,t+l) (Recursive) 
J J 

2. finally: Pf(S,t) = pf(S,t-l)·L Pf(S.,t) 
• I 
I 

P!(S,t+l) = pf(S,t-l)·L a;F·P;(si,t+l) 
i 

These formulas can be checked easily by substituting the definitions of 

the scaled variables. pf(S,t), P~(S,t) and P!(S,t) have to be calcula­

ted as well, but this is not possible yet because for their calculation 

the state probability of the parent of S is needed. Yet, for the sub­

states this is possible: 

"f f P (S.,t) 
p (S.,t) = Af J ; 

J I P (S.,t) 
• I 

(6.9) 

I 

"f 
..,f PF(S.,t+l) 
~(S.,t+l) = Af J ; 

J L P (S.,t ) 
. I 
I 

These relations can also be checked by using the definitions. The 

complete Scaled Recursive Forward Algorithm as used in situation 1) 

then becomes: 
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Scaled Recursive Forward algorithm (situation 1) with nonnalization 

Given: 

calculate: 

1. for every child S.: 
J 

Af 
Af PI(S,t) f 
PI(S.,t) = alj· f + r a.:i>p(S.,t) 

J i> (S,t-1) i IJ I 

calculate ~f(S.,t), ~fP(S.,t+l) (Recursive) 
J J 

2. re-nonnalize: ~f(S t) 
T<f ·• 
r (S.,t) = 1\f J ; 

J r P <s .• t) 
• I 
I 

Af Af 
-f PI(S.,t) f PF(S .• t+l) 
p (S.,t) = Xt J ; i>F(SJ_,t+l) = "f J ; 

1 
J r P <s.,t> r P <S.,t > 

j I j I 

3. finally: ~f(S,t) = rsfcs,t-I)·L. ~f<s .• t) 
• I 

Af f I Af 
P F(S,t+ 1) = i> (S,t-1)· ~ aiP.P F(Si,t+ 1) 

I 

Chapter 6 

In situation 2) a different scale factor is used. Because at time t 

state S was pruned, all previous probabilities are also supposed to be 

zero. From step 1. only the first term is non-zero. The result is: 

Scaled Recursive Forward algorithm in situation 2) 

Given: P
1
(S,t) 

calculate: ~f(S,t) and ~!(S,t+l) 
- .. -----·-·-···-·:-·-···-······-··-···-·······7'\r.;::···-·····--·--·----

1. for every chlld S.: P
1
(S.,t) = a

1
.; 

J J J 

calculate ~f(S.,t), ~Ff(S.,t+l) (Recursive) 
J J 

2. re-nonnalize: ~f(S.,t) 
rsfcs.,t) = X£ J : 

1 r P <s .• o 
I 

Af i Af 
f Pl(S.,t) f PF(S.,t+l) 

i>I(S.,t) = Xf J ; i>F(S .• t+l) = 1\fJ 
J r P cs .. t> J r P cs .. t> 

j I j I 

~f Af Af 
3. Finally: P"(S,t) = P1 (S,t)·~ P (Si,t) 

Af Af IAf 
PF(S,t+l) = P1 (S,t)·~ aiF.pF(Si,t+l) 

I 
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In situation 3) all probabilities are assumed to be zero. Thus, the 

solution becomes: 

ts!(S,t+1) = tsf(S,t) = IS~(S,t) = 0 (6.10) 

From the above formulas all the scaled forward probabilities can be 

calculated. 

In the same way the Recursive Backward algorithm has to be reformu­

lated, using new Scaled Backward probabilities that will be defined in 

the sequel. In addition, the relations for updating tlj, tij and tiF 

need to be changed in order to be able to apply the new variables. 

If Pb(S,t) ;~~: 0, we define: 

If pb{S,t+ 1) > e (so automatically Pb(S,t+ 1);1!:0) we define: 

Ab Pb(S .• t) Ab P~(S.,t) Ab P~(S.,t+1) 
p (Si,t)-Pb(S:t+1); pI (Si,t)-Pb(S:t+1); p F(Si,t+1)-Pb(S:t+ 1) (6.12) 

If Pb(S,t+ 1) S e and P~(S,t+ 1) > e: 

"b Pb(S.,t) "b P~(S.,t) "b P~(S.,t+1) 
p (S t) I • p (S t)- I • p (S t+1)- I (6.13) 

i' P~(S,t+1)' I i' P~(S,t+1)' F i' P~(S,t+1) 

Otherwise: 

(6.14) 

For the Root state again two different situations have to be dis­

tinguished, because this state is never pruned. We define for t=T: 

b P 
1 

(Root,T) 
b P (Root, T) -'-,-----

Pb(Root,T) p b (Root,T) ; I P~(Root,T+1) 
P F(Root,T+1) "b 

P F(Root,T+ 1) =1 

(6.15) 
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and for t<T: 

b Ab P (Root,t) 
P (Root,t)- ; 

P6(Root,t+1) 

Ab P
1
(Root,t) 

P 
1 
(Root,t) = -,---­

P6(Root,t+l) 

b Ab p F(Root,t+l) 
P F(Root,t+l)=-6.,..----­

P (Root,t+l) 

For updating t... t 1. and t.F a new scale factor is defined: 
IJ J I 

if Pb(S,t+ 1) > e: (situation 1) 

pf ( s 't) . p b ( s 't+ 1) 
c1(S1

) = ------.1-----­
PF(Root, T+l) 

Otherwise (situation 2): 

Pf(S, t) · P~ (S,t+l) 
Ct(S) = ----:.f,...---__;__--­

PF(Root, T+l) 

(6.16) 

(6.17) 

(6.18) 

This scale factor for the Root state has to be initialized at t=T and 
updated for other times T. This'· can be done with the following 

relations. Note that at t=T we have situation 2), otherwise we have 

situation 1): 

Pf(Root,T) b 1 
<;<Root) = f · P F(Root,T+l) = 1 (6.19) 

PF(Root,T+l) PF(Root,T+1) 

~b(Root,t) 
Ct(Root) = ct+l(Root) . TAfr----­

p (Root,t+l) 
{ t<T } (6.20) 

Using all previous definitions, the Scaled Recursive Backward Training 

algorithm can now be formulated. Its correctness can again be checked 

by substitution of the defmition of all variables (situation 1) in the 

unsealed Recursive Backward Training algorithm. 

The elementary state backward relations become: 

Ab Ab Ab 
pI (S,t) = p (S,t) = p F(S,t+ 1) . p B(S, Yl) (6.21) 
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For non-elementary states the algorithm becomes : 

Scaled Recursive Backward Training algorithm (situation 1) 

Given: P~(S,t+1), P~(Si,t+1) for every sub-state si 

calculate: ~b(S,t) and ~~(S,t) 

1. new scale factor for child states and update t .. : 
c (S.) = c (S)-Pf(S,t)-Pb(S,t+ 1) IJ 

l I l 

{ = t~~~ + C(S}i5Ff(S.,t+1)·a.:Pb
1
(S.,t+1) 

IJ IJ l I I IJ J 

5. Finally: 

In situation 2) all previous probabilities are supposed to be zero. 

Therefore. all expressions that contain these zero probabilities can be 

simplified. It turns out that the update of t.. will always be zero, 
IJ 

but not for t
1
j and tiP. The algorithm becomes: 
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Scaled Recursive Backward Training algorithm (situation 2) 

Given: P P(S,t+l) 

calculate: ~b(S,t) and ~~(S,t) 

1; new scale factor for child states: 

C(S.) = C(S)·pf(S,t}~bF(S,t+l) 
I I t 

. "b 
2. for every child S.: PF(S.,t+ 1) = a.F 

I I I 

calculate ~b(S .• t), ~b1 (S .,t) (Recursive) 
I I 

3. Update t 1j and tiF: 
t t+l .,f "b "b 

t
1
j = t

1
i + C

1
(S)·tr;(S,t)·a

1
j·P 

1 
(S/)·P F(S,t+ 1) 

t~ = t:;' + C1(S)-i>!(Si,t+l)·pf(S,t)·aiF·~~(S,t+l) 
"b 4. re-nonnalize: b _ P (Si,t). 

j5 (S.,t) - Ab , 
I L p (S.,t) 

J 

"b b PF(Si,t+l) 
i5F(S.,t+l) = Ab ; 

I L p {S.,t) 
J 

"b 
b P,(Si,t). 

PI (S.,t) = Ab • 
I . L p {S.,t) 

J 

5. Finally: 

Using the state pruning of the Recursive Forward Algorithm, a large 

number of calculations can be saved when applying the Recursive 

Backward Training algorithm. Let us suppose that pf(S,t) S: e, then in 

the forward algorithm tsf(S,t), i>~(S,t) and ts!(S,t+l) are set to zero. 

In the backward algorithm this means that all updates of t
1
., t.. and 
J IJ 

tiP will be zero, independent of the values of the backward probabili-

ties. Hence, it is of no use to calculate these backward probabilities, 

which are set to zero, in order to force this state to be pruned in the 

Backward Training algorithm. The values calculated for the backward 

probabilities will be wrong, but because we are only interested in \• 

t .. and t.F this does not matter. 
IJ I 
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With this algorithm we can calculate tij, t.. and t.F for all states in 
IJ I 

the RMM. Only local variables are used in the re-estimation formulas. 

State sharing and multiple training sequences can be handled in the 

same way as the unsealed version of the Recursive Forward Backward 

Training algorithm. The most important advantage of the scaling is that 

state pruning can be used. Later on in this thesis we will show that 

this state pruning can reduce the number of calculations to a great 

extent 

6.3 The Scaled Recursive Viterbi algorithm 

The state pruning as used in the Recursive Forward algorithm also can 

now be used in the Recursive Viterbi algorithm. First we define the 

scaled viterbi variables as follows, (analogous to the scaled forward 

variables): 

If Pv (S,t) -:1: 0: 

(6.22) 

This definition assures that: 

max 15v (S.,t) = 1 ~ pv (S.,t) s; 1 (6.23) 
. I I 
I 

Only in case of the Root state this definition is not valid because the 

Root has no parent state. Instead we define: 

Pv (Root,t) P;(Root,t+ 1) 
pv(Root,t)=l; P~(Root,t)= ! ; ts;(Root,t+l) (6.24) 

P (Root,t) Pv (Root,t) 

Also, if Pv(S,t-1) > e (so automatically Pv{S,t-1)-:1:0) we define: 

"v Pv(Si,t) v P~(Si,t) "v P;(si,t+l) 
p (S.,t)- V ; pI (S.,t)= V ; p F(S .• t+ 1) (6.25) 

1 P (S,t-1) 1 P (S,t-1) 1 Pv(S,t-1) 

If Pv(S,t-1) s; e and P~(S,t) > e: 

(6.20) 

101 



Clulpter 6 

Otherwise: 

(6.27) 

With these new variables, regardless whether situation 1, 2 or 3 is 

concerned, the elementary state relations become: 

(6.28) 

These definitions are similar to (6.2) .. (6.8) for the forward proba­

bilities. The Scaled Recursive Viterbi algorithm has the same structure 

as the Scaled Forward algorithm, except that all summations are 
replaced by the maximum-operator. With this similarity in mind, we can 

formulate the Scaled Recursive Viterbi algorithm for non-elementary 

states right away: 

Scaled Recursive Viterbi algorithm (situation 1) 

Given: P~ (S,t), ts;(sft) for every sub-state Sj 

=·~lculat~·~··--· __ !v (~ ,t) an~_.!i.~~,t+ 1? ------·----·----·-··--··-··-·-
1. for every child S.: 

J 

Ay [ ~~(S,t) ( v J] P
1
(S.,t) = max a1: v , max a.:PF(S.,t) 

J JP (S,t-1) i IJ I 

calculate ~v (S.,t), ~vF(S.,t+ 1) (Recursive) 
J J 

2. re-normalize: ~v (S.,t) 
i>v(S t) = J • 

·' V ' 
J max P (S.,t) 

I 
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In situation 2) a different scale factor is used, like in the Scaled 

Recursive Forward algorithm: 

Scaled Recursive Viterbi algorithm in situation 2) 

Given: P~ (S,t) 

calculate: ~v(S,t) and ~;(S,t+l) 
-·-·-·-"""-"'-'"1\"""'-""'""""""'_"' __ ... _ .. , ____ ""'"'-""'"" ______ _ 

1. for every child S.: Pv
1
(S.,t) = a

1
.; 

J J J 
Ay Ay 

calculate P (S.,t),PF(S.,t+l) (Recursive) 
J J 

2. re-normalize: ~v(S t) 
V ·• 
~ (S.,t) = ~v J ; 

J max P (S.,t) 
• I 

Ay 1 Ay 
V PI(S.,t) V PF(S .• t+l) 

1\(S .• t) = a.v J ; ~F(S.,t+l) = a./ 
J max P (S.,t) J max P (S., t) 

i I i I 

3. Finally: ~v(S,t) = ~~(S,t) · m~ ( ~v(Si,t) ) 
I 

Ay Ay ( Ay ) P F(S,t+ 1) = P 1 (S,t) · m~x aiF. P F(Si,t+ 1) 

This algorithm enables us to calculate the probability of the best path 

at each time t. Just like in the unsealed version of this algorithm, a 

backtracking algorithm has to be implemented, in order to be able to 

define the state sequence of the best path. This backtracking algorithm 

needs to know at each time, which of the states have the highest proba­

bilities. The result of the scaling is, that the absolute probabilities 

are no longer available. If the scaled variables are used instead, this 

makes no difference for the tracing. 

6.4 Scaled training of elementary state parameters 

The training of elementary states with a continuous output distri­

bution, as described in Section 5.4, can also be expressed by the 

scaled forward and backward probabilities. 
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If relation. (5.23) is re-formulated, the result is: 

(6.29) 

All other variables are already expressed in terms of w. Apart from 
t 

replacing (5.23) by (6.29) the algorithm remains unchanged: 

Backward Training for elementary state with Gaussian distribution 

Given: P~(S,t+l) 
calculate: ~b(S,t) and ~~(S,t) 
--·-------·--··----··--a-:····--·············1\o--··--·-----

L calculate w: w = C (S)·fiF(S,t+ l)·PF(S,t+ 1) 
t t t 

2. Update t: 

3 Upd - --tm = --tm+1 + w .-y . ate m: 
I I 

* 4. Update V: V1 = V1+1 + w ·y ·y 
I I I 

Ab Ab Ab -
5. p J (S,t) = p (S,t) = p F(S,t+ 1) . p E(S,y,) 

6.5 Conclusions 

• All recursive algorithms from the previous chapter can be 

reformulated to use scaled probabilities instead of absolute 

probabilities. Basically, the algorithm remains unchanged. 

• If e is chosen subbiciently small, the results of the scaled 

training and recognition algorithms are largely identical to the 

results of the unsealed algorithms. 

• The scaled algorithms do not suffer from numerical underflow. 

• The choice of E influences the trammg and recogmnon 

processes. If e is chosen smaller, less states are pruned (= more 

accurate) but more states will be involved in the calculations (= 

more calculation time). For selectiong the right £, a balance 

must be made between required accuracy and acceptable calculation 

time. Especially for large vocabularies this is important. 
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7. IMPLEMENTATION 

The Schur algorithm as derived in Chapter 2 was implemented on a Texas 

Instruments TMS320C25 digital signal processor (DSP ), which was chosen 

because of availability and past experience. A small software library 

was set up with routines that allowed to sample incoming speech using a 

fu:ed sampling rate. It used partly overlapping frames multiplied by a 

Hamming window, and calculated the autocorrelation coefficients, per­

forming the Schur algorithm. The resulting parameters are written to a 

DIA-converter (for inspection on an oscilloscope) and written to memory 

(for further processing). 

Because the DSP has only limited memory (24576 x 16 bits), the 

remaining software was implemented in ANSI-C on an APOUO DN3000 work­

station. All routines necessary for using the Recursive Markov Model 

(RMM) are written and tested on artificial data files. In order to 

demonstrate the use of RMMs, models for the numbers from J to 999999 

and for a small Speech Controlled Robot (SCR) language are created. 

These examples show that the RMM-model is very poweiful as a tool in 

speech recognition systems. Especially the flexible way of constructing 

hierarchical models that can be employed right away for training and 

recognition shows the usefulness of the RMM model. 

7.1 LPCanalysis on the TMS320C25 

An assembler program is implemented on the TMS320C25 processor. perfor­

ming the Schur algorithm as derived in Chapter 2. A number of separate 

functions are written for different tasks that have to be performed. 

They are collected in a small library, called LPCBIOS. This library 

serves three functions: 

• I/0, reading and writing blocks of samples from the AID-converter 

or 10 the 0/A-converter. Pre-multiplication by a window function 

is also supported. 

• Mathematical block-operations like Hamming window, autocorrelation 

coefficients and reflection coefficients calculations. 

• Other mathematical functions like the logarithm, exponential, 

square root, bllog and blexp (see Chapter 2). 
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The basis for sample handling is a cyclic buffer, to be imagined as an 

infinite buffer, from which samples are read and written, interrupt­

basis: 

D/A-pointer ~interrupt-pointer--+ AID-pointer 
! --... -··-····-··-~ !···---~ 

---.--------------------------~·-----

--·--·---··-----'----------------------------'-----~--

i. 
user pomter 

Every clock tick a sample is read from the AID converter and stored in 

the infinite buffer at the AID-pointer. At the same time the value at 

the D/A-pointer is written to the D/A-converter. This process is fully 

transparent to the user, because it is interrupt-based. The user only 

has access to a user pointer which lies somewhere between the D/A- and 

the AID-pointer. The user can freely read samples from the buffer, 

which where delivered by the AID-converter some time back in the 

process. Samples can also freely be written to the buffer. After some 

time delay the.se samples will be sent to the 0/A-converter. 

Because in reality the buffer is cyclic, the AID- and the D/A-pointer 

are identical. All LPCBIOS functions are accessed through macros, in 

order to make parameter passing transparent for the user. Besides, 

macros are easier to remember if suitable names are used. For the user 

the following macros are available: 

PROGRAM start 

This sets up the vector table for the TMS320C25. The inter­

rupt vector is set to the assigned service routine, while the 

reset vector is set to start. 

INIT smptime,bujbeg ,bufend 

A timer interrupt is enabled to generate an interrupt each 

smptime·O.l J..I.S. The area between bujbeg and bufend will be 

reserved for the sample buffer. 

start,smptime,bujbeg and bufend must be constants. 
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MODPTR num 
Modify user pointer by num. If num is negative, then the 

pointer is set back in time. This function tests whether the 

AID-pointer is passed. If it is, MODPTR waits until all 

requested samples are available. Therefore, the user does not 

have to place a wait loop anywhere in the program. An 

automatic wait will be generated if samples required from the 

AID-converter are not yet available. 

WRSMP samp/es,num 

Write num samples to the buffer. The user pointer will be 

incremented by num (using MODPTR). The samples are expected 

to start at address samples 

RDSMP samples,num 
Read num samples from the buffer, incrementing the user 

pointer with num. The samples are written starting · with 

address samples. 
RWSMP samples,num,window. 

The same as RDSMP, only the samples are pre-multiplied by a 

window function. window indicates the starting address of the 

used window. 

Before the Schur algorithm can be executed, the autocorrelation coef­

ficients R
0 

•• R
0 

have to be calculated first: 

AUCOR samp/es,numJltord 
Calculate autocorrelation coefficients. num samples starting 

at address samples are expected. fltord coefficients are 

calculated, overwriting addresses samples and further. All 

values are first calculated in 32 bits, then shifted in such 

a way that 0.5::R
0 
<1.0 and then rounded to 16 bits. The used 

shift value is returned in the accumulator. 

SCHUR samplesjltord 
Calculate reflection coefficients from the autocorrelation 

coefficients. The coefficients R. are replaced by k .. 
I I 

samples, num, window and fltord are addresses of variables. 
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Other useful functions are: 

INITH window,num 

SQRT 

LOG 

EXP 

Create Hamming window of num samples, for use in RWSMP. 

w= (o.54- 046 ·cos( 2·1t·(i+ll2) J )· /-1-' 
i • num num 

The square root factor is used to make R
0 

independent from 

the chosen window length and at the same time to prevent 

overflow in AUCOR. The cos( .. ) is approximated using a 

polynomiaL 

Calculate square root of accumulator content. Used in INITH. 

Calculate 2log of accumulator content. 

Inverse function of LOG 
BLLOG 

BLEXP 

Calculation of log U ~~). using the piecewise linear 

approximation of Table 2.1. 

Calculation of (1 +exp(x)) using the same piecewise linear 1-exp(x) • 
approximation. 

The main program consists of initialization, followed by the main loop. 

Inside this loop a block of samples is read from the buffer. The 

autocorrelation, reflection and log area ratio coefficients are calcu­

lated and written back to the buffer and to the data memory. If the 

data memory is full a TRAP instruction is reached which is able to 

create a breakpoint and stop the program. This makes it possible to 

display the memory contents or store them in a disk file for further 

processing. 

108 



The TMS320C25 board contains 8192 words program memory and 16384words 

data memory divided in several sections as follows: 

OOOOh Program Memory Vecs OOOOh Data Memor 
0020~ 0006h:l r;;:;;;;:;;;;;::;::;::;;d 

0060h-+ b::~-:::::~ 
0080h-+. 

Ex t _ P r o g 0200h-+ !-LL~ir\¥:~""-'r'im"'.Lt 

0300h-+ 1--r'M"'::'-::-r::--rr..--i 

2~-+~----------~ 0400h-+r---------~ 

Ext_Da t a 

4000h-+ ~----------' 

Vecs: Contains jump vectors, in our case only the Reset- and 
interrupt-vector. 

Ext_Prog: Contains the .data and .text segments (tables and program 
code) 

Regs: Contains the IMR (Interrupt Mask Register) and the PRO 
(Timer period) Register. 

Block_B2: Small region reserved for local LPCBIOS-variables. 

Block_BO: Freely available, but is used by AUCOR. 

Block_Bl: Freely available. 

Ext_Data: Freely available. Now contains the window shape table, cyclic 
samplebuffer and resultvectors. 

The LPCBIOS only uses several variables in Block._B2, and the cyclic 

buffer in the Ext_Data area. The Block_BO area is used by the AUCOR 

function for speed reasons. Because, relatively speaking, the 

calculation of the autocorrelation coefficients costs most time, every 

optimization of this calculation is beneficial. The fastest way is 

first to copy all samples to Block_BO, then re-configure this block to 

reside in Program memory. Block_BO is the only block for which this is 

possible. After this the MAC-instruction can be used, which multiplies 

a sample taken from Data memory by a sample from the Program memory, at 

the same time accumulating the result of the previous multiplication. 

The result of this trick is that every multiply-accumulate operation 

costs only 1 cycle (0.1 ~s). 
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For the remaining part of the program Block_Bl and Ext_Data (except the 

buffer) are free to use. Block_B 1 is preferred, because it is fast 

on-chip memory. 

A special note has to be made about the Schur algorithm, because the 

internal structure of the TMS320C25 makes it possible to implement the 

matrix multiplication in equation (2.26) very efficiently. The main 

loop only needs 7 instructions. . Initially a matrix is set up containing 

all autocorrelation coefficients. The auxiliary registers ARO and AR2 

are used for tracing the two columns. Before the loop starts, this 

matrix looks like: 

n <O> d<O> 
n·l n 

After incrementing ARO, k
1 

can be calculated by dividing n~0> by 

d~0>, which are pointed at by ARO _and AR2. After this k
1 

is placed in 

the T-register as preparation for a number of multiplications. Then 

n~0)·k1 is calculated and stored in the P-register. n~0) is no longer 

needed. so k
1 

can be written to this place. After this the following 

code is performed. As a reference, the contents of the accumulator (A) 

and the P-register (P) are given after each instruction. 

SCHURLP:ZALR *+ 

MPYA *­

SACH *+,ARO 

ZALR * 

MPYA * 

SACH *+,ARl 

· A=d<P·I>. P=k *n<P-1). 
• i • p i • 

· A=d<P-l)+k *n<P·I>. P=k *d<p·tt 
' i p i ' p i+l ' 

· d<P>=A- AR2 points to dCp·l). 
' j , i+l ' 

· A=n<p-l) · 
' i+l ' 

· A=n<p·I)+k *d<P-n. P=k *n(p·t>. 
' i+l p i ' p i+l ' 

· n<P>=A- ARO points to n(p+ll. 
' j ' i+l , 

BANZ SCHURLP,*-,AR2; Repeat this for next i 
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The MPY A instruction performs a multiplication and an addition at the 

same time. For each row in the matrix two multiplications and two addi­

tions are needed. These can be implemented using only two instructions. 

Reading and writing of one element from each column cannot be done in 

less than 4 instructions. All these instructions are single cycle. 

Together with the branch instruction (BANZ), which is 3 cycles. the 

total loop costs only 9 cycles (= 0.9 J..lS) for each row. 

After performing this code and resetting the pointers ARO and AR2, the 

matrix looks like: 

Ro 
d(l) 

0 
t-AR2 

AR~ kl 
d(l) 

1 

nO> 
0 

d(l) 
n-1 

n n> d(O) 
n-2 n 

Again after incrementing ARO, k2 can be calculated in the same way as 

kl' Exactly the same code can be used for each succeeding order. After 

having performed this n times, the final content of the matrix is: 

Ro 
d(n) 

0 
t-AR2 

kl 
d(l} 

n-1 

ARO~ k d(O) 
n n 

As a comparison, the same code has already been implemented on the 

TMS32010 before [45]. Because the ZALR and MPYA instructions are not 

available in this processor, the fastest possible code on the TMS32010 

uses 12 instructions (13 cycles). Because of the lower clock speed, the 

time involved is 13-0.2)ls = 2.6J..lS. The speed gain between these two 

processors for the Schur algorithm is almost a factor 3, while the 

clock rate only increased a factor 2. This gain became possible by 

using the new pipelined instruction MPY A. 
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7.2 Structure-based handling of the RMM 

In Chapter 5 has been shown that in a RMM each state has a number of 

child states and a number of parameters. All states can be stored in a 

tree structure. In a higher level language like C it is possible to 

exploit and implement such kinds of tree structures by means of poin­

ters. Each state has its own name. It would be very useful if in the 

program each state could be addressed by its name instead of a number. 

A collection of procedures has been written for various purposes. 

Together these form a library, that is used to manage RMM's and to 

perform all kinds of algorithms. The available functions are divided in 

several files: 

rmm.h 

buildmm.c 

entropy.c 

crtest.c 

forback.c 

viterbi.c 

Contains all structure definitions and the headers of 
all global functions. This file is included in all 
other files. 

Contains all functions for reading, writing, creating 
and accessing states of a RMM. 

Contains the procedure for calculation of the entropy 
and state duration, as described in Section 5.6. 

Contains all functions for reading, writing, creating 
and using discrete and continuous symbol sequences. 

Contains the Recursive Forward Backward Training 
algorithm as described in Chapter 6. 

Contains the Recursive Viterbi algorithm as described 
in Chapter 6. 

main.c This is the main program, that is accessing the other 
functions. 

The structure M_MODEL contains the following fields: 

type: 

nchild: 
name: 
child: 
parm: 

type of the state. Four different types are 
mented: (elem,full,para,forw). Also options 
train) are stored in this field. 
number of child states 
state name 
pointer array to child state model 
pointer to parameters, depending on type 

imple­
(unit, 

More fields are present for various purposes, but they are not impor­

tant for the further description. The definition of all structures can 

be found in the file RMM.H, which has been added to this thesis as 

appendix B. New fields can always be added as desired. However, all 

files must then be re-compiled. 
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The following functions are implemented in buildmm.c: 

read_model(filename): 
read a collection of states from the given file. 

write_model(filename ): 
write complete model to disk. 

find_model(name): 
returns a pointer to a state with the given name. If this 
state does not exist, a new one is created. 

set_dsymbol(symbol): 
calculates P E(SE,symbol) for all elementary states, where 

symbol is any discrete symbol. 

set_csymbol(vector): 
calculates P E(SE,vector) for all elementary states, where 

vector is any parameter vector. At the same time the vector 

elements and its square are stored in the variable cvector as 

preparation for the RMM training. 

For example, if one needs to know how many child states the "Root" 

state in flle "words.rmm" has, this can be performed using the 

following code: 

read_model("words.rmm"); 
model = find_model("Root"); 
n = model->nchild; 

To print the name of the first child state, this requires: 

printf(model· >child[O]->name); 

Remember that in C an N-dimensional array uses indices O .. N-1 and not 

l .. N. The ASCII-ftle containing the RMM, that is accessed using 

read.:._model( .. ) and write_model( .. ), contains a list of descriptions for 

each state in the RMM, separated by empty lines. Two examples of such 

files can be found in appendix C. Each state description has the 

following format: 

<name> <type> <options> 
<description> 
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<name> can be any string except "elem", "full", "forw", "para", "train" 

and "unit" because these have another function. <name> can be surroun­

ded by single or double quotes. Quotes can be used in the <name> by 

preceding it by a backslasb. A backslash must be replaced by a double 

backslash. This convention is almost the same as used in C language 

strings. The backslasb only serves this special function if it is the 

frrst character or if the name is surrounded by single or double quotes. 

Therefore the following names are considered identical: 

a = \a = 'a' = "a" = '\a' = ''\a" 
\' = tttn = '\'' = '\'u 

\\ = '\\' = '\\" 

While writing an RMM to a disk file, the names are converted according 

to the following rules: 

• If the name contains no spaces or tabs, no conversion occurs. 

Except if the ftrst character is a backslash, or a single or 

double quote, the name is preceded by a backslash. 

• Otherwise, if the name contains single quotes but no double 

quotes, the name is surrounded by double quotes and all back­

slashes are doubled. 

• Otherwise, it is surrounded by single quotes. All backslashes and 

single quotes are preceded by a backslash. 

Four types of states have been implemented. One of these is the elemen­

tary state, the others are three types of non-elementary states. This 

has been done because matrix A in many cases contains many zero 

elements, which makes it possible to reduce the storage space for these 

states. 

If discrete symbols are used, elementary states need not be present in 

the file. Any state name that is referred to but is never defined, must 

be an elementary state. The associated symbol is supposed to be the 

frrst character of the state name. If the name is longer than one cha­

racter, a warning is given. This makes it possible to use the output 

symbol of an elementary state as its name without declaring it. Elemen­

tary states with a continuous output vector have the following format: 
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<name> [elem] <options> 

ll1 ll2 ll3 •••• 

a, az a3 ···· 

In the current implementation not the whole matrix I: is stored for each 

state. Only the square root of the diagonal elements (a
1
, the standard 

deviation) are used, the others are supposed to be zero. This state 

will, whenever it is activated, emit a symbol ji with each element 1!
1 

disturbed by an uncorrelated Gaussian noise source with standard devia­

tion ar The reason for this choice is that Cbolesky decomposition of 

matrix I (solving equation (5.29)) need not to be implemented yet, 

while the behavior of the RMM-training can still be fully tested. Less 

parameters need to be trained, which reduces the possibility of under­

training. If in the future correlated noise needs to be modelled, this 

extension is straightforward, as already described in Chapter 6. 

The next state type is the "full" model. The syntax is: 

<name> full <options> 

<childl> <child2> . 

<childl> a
11 

<child2> a
21 

Many times the full A-matrix is not needed. The "forw" model only 

contains transitions from state to i, i+l and i+2. This model is 

also known as the Bakis model. Another useful simplification is the 

"para" model, in which all states are parallel. The syntax of these two 

state types is: 

<name> forw <options> 

all ai2 
<childl> all a,2 a,3 
<child2> a22 a23 a24 

<childn> a anF nn 
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<name> para <options> 

<childl> a
11 

<child2> a
12 

<childn> aln 

Chapter 7 

By now, two possible options have been implemented: 

"train" 

"unit" 

Indicates that this state must be trained. If this option is 
not present, calculations are saved. 
This option is only used by the Viterbi algorithm and the 
entropy calculation. It means that child states are not 
traced any more, which also saves calculations and storage. 

Additionally, the routine read_model(fi/ename) calculates the entropy 

and state duration using the algorithm described in Chapter 5. Because 

for a "unit" state (a state with the option "unit" set) the internal 

structure is no longer traced, the entropy of a "unit" state is set to 

zero. 

7.3 Implementation of the Recursiv(! Forward-Backward algorithm 

The Recursive Forward Backward Algorithm as described in the previous 

chapter has been implemented in the file "forback.c". For storage of 

the forward and backward variables another structure (M_PROB) is used 

with four fields: 

ip: stores Pi(S,t) or P~(S,t) 
sp: stores pf(S,t) or Pb(S,t) 

fp: stores P;(S,t+l) or P~(S,t+l) 

eh: pointer to probabilities of child states. 

Child states belonging to the same parent state are always stored on 

succeeding memory locations, implying that (eh) points to the first 

child state, (ch+l) to the second, and so on. The number of child 

states is not stored here, because it can be found in the m_model 

structure as described in 7 .2. 
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Two functions are implemented for dynamic allocation and freeing of 

these structures: 

new _mprob(mprob,model): 
Storage is allocated for the child states of mprob, where 
model is a pointer to the model description. This function 
is not allowed for elementary states, having no child states. 

free_mprob(mprob,model): 
Free child states of mprob. If mprob still contains lower 
level child states these are freed too. 

The recursive forward and backward training algorithms must be prepared 

by one of set_dsymbol( .. ) or set_csymbol( .. ). These will calculate 

P E(S,symbol) for all elementary states, the results of which are needed 

in all further calculations. The different parts and versions of the 

Recursive Forward Backward Training algorithm are implemented in the 

following routines: 

build_forw(model,prob ): 
Implements the recursive forward algorithm without using 
previous time information. This routine can only be used in 
case of elementary states, or when previously the current 
state has been pruned. The resulting tree will be written in 
prob, freeing and allocating memory as needed, using both 
preceding routines. Before calling this or following 
functions, the current symbol must be set using 
set_dsymbol( .. ) or set_csymbol( .. ). 

calc_forw(model..prob..prev): 
Implements the recursive forward algorithm using previous 
time probabilities. If these are not available or the state 
is elementary, build_forw(model,prob) is called instead. If 
prob and prev (which are pointers) point to the same tree, 
the previous time probabilities will be overwritten with the 
new values. This is allowed. 

build_bactw(model,backw jorw,scale): 
Similar to build_forw( .. ), only the training is integrated in 
the backward algorithm. Therefore, additionally, the forward 
probabilities at the same time and the scale factor, as 
described in Chapter 6, are needed. Again, this procedure 
only operates on elementary states, or else when previously 
the current state was pruned. 

calc_backw(mode/,backwjorw,scale): 
Implements the backward training algorithm. For elementJ!ry 
states or when previous time probabilities are not available, 
build_backw( .. ) is called. Before entering this procedure, 
backw points to the previous time probabilities. Afterwards, 
the current time probabilities are stored in the same place. 
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These functions are implemented in the file "forback.c" and are 

normally not used directly. Because the recursive forward and backward 

training algorithms are always executed on a whole sequence, and not on 

a single symbol at a single time, four functions are available that are 

easier to use than the ones above: 

d_forward(model,prob,sequence): 
Now prob is an array where for each element the recursive 
forward algorithm is executed. Afterwards, the array contains 
all forward probabilities of all states (as far as they are 
not pruned). Discrete symbols are expected in sequence. The 

Forward score, P!(mode/ ,T + 1 ), is returned. 

d_backward(mode/,prob,sequence ): 
The forward probabilities are used to execute the recursive 
backward training algorithm. All states with the option 
"train" set are trained. During the backward pass, prob is 
cleared as far as it is no longer needed. The Backward score, 

P~(mode/,1), is returned. This value should be the same as 

the Forward score; only some small differences are possible 
because of state pruning. The parameters are not yet updated 
in order to make training with multiple sequences possible. 
This update is done by another function: update_model( .. ); 

c_forward(mode/,prob,vectors,length) 
The same as d_forward, except that the sequence is expected 
to consist of continuous vectors. 

c_backward(model,prob, vectors,leng th) 
The same as d_backward, except the sequence is expected to 
consist of continuous vectors. 

After the Recursive Forward Backward algorithm has calculated all 
expected numbers of transitions (t..) for non-elementary states, or the 

IJ 
updating parameters (t,m,V) for elementary states, the RMM can be 

updated by: 

update_modelO: 
calculates all updated parameters for all states, being 
trained using the Recursive Forward Backward algorithm. 

Let us suppose we have a file "sequence.t" containing a symbol sequence 

that is supposed to be produced by an RMM contained in the file 

"gramrnar.rmm" with root state "Root". The training code looks like: 
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M_PROB prob[MAX]; /* declare storage array *I 
char sequence[MAX+l]; I* declare array for sequence *I 
M_MODEL *model; I* declare pointer to model *I 
FILE *f; I* declare file variable *I 
read_model("grammar.rmm"); 
model = find_model("Root"); 
f = fopen("sequence.t","r"); 
read_dseq(f,sequence); /* declared in crtest.c */ 
fclose(f); 
d_forward(model,prob,sequence ); 
d_backward(model,prob,sequence); 
update_model(); 

Multiple training sequences can be handled by executing read_dseq( .. ) 

(from "crtest.c"), d_forward( .. ) and d_backward( .. ) for each sequence. 

update_model( .. ) must be called after all sequences are handled. 

Multiple iterations can be executed, repeating the whole process 

(without loading "grammar.rmm" again, of course). It is possible to 

match multiple training sequences with different states. If training 

sequences are present which are known to be produced by another state 

in the model (the "Root" state is not the only possibility), training 

can be performed using only a subset of the RMM. This can be used for 

so called supervised training. Because of the hierarchical structure of 

the model, it makes no difference at all whether the whole RMM or only 

a part of it is trained. Another way to imagine this, is to assign to 

each sequence its own root state. In appendix A is shown that this 

still assures Maximum Likelihood training. 

7.4 Implementation of the Recursive Viterbi algorithm 

Basically, the Recursive Viterbi algorithm has the same structure as 

the Recursive Forward algorithm. However, since there is no backward 

pass, the previous time probabilities can always be overwritten when 

new ones are calculated. This is a simplification, because no separate 

tree is needed for current time and previous time probabilities. In 

order to trace the . states that have been visited in the past, an 

additional tree structure is needed. The structure V _PROB contains the 

following fields: 
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ip: stores P ~ (S,t) 

sp: stores Pv (S,t) 

fp: stores P~(S,t+l) 
eh: pointer to probabilities of child states. 

vtree: pointer to history infonnation. 

Olapler 1 

The correspondence with the structure M_PROB is evident. Only an 
I 

additional field is used for reconstructing the whole history. This 

history infonnation is stored like a linked list, where for each list 

element the structure V_ TREE is used, containing the following fields: 

nref: number of pointers pointing to this address 
prev: link to past history. For the last element of the 

list, this is zero. 
model: pointer to model of visited state. If this field has 

the value 0, this indicates that the current state 
has been left Only "unit" states and elementary 
states are supposed to finish immediately, without 
indicating this in the history list. 

Each state in the Viterbi algorithm has its own history list, but if 

multiple lists· . are partially the same, the identical parts are only 

stored once. Therefore, it is possible that multiple pointers point to 

the same list element. 

If during the Viterbi algorithm states are pruned, it . is necessary that 

the corresponding history list is removed. If the list elements, 

however, are still in use by other states this is not allowed. For this 

the field nref is used. Only if nref becomes zero, the memory occupied 

by this list element is released. This memory management is very 

important, because otherwise the lists could easily become very large. 

The option .. unit" of each state is used in the Viterbi algorithm for 

further reduction of the history list "Unit" states are the lowest 

level states included · in the history list Only the identity of each 

word is usually needed for recognition. Therefore it is not necessary 

for the list to contain the detailed infonnation about the visiting of 

each state. 
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The functions new_vprob( .. ), free_vprob( .. ), new_vtree( .. ) and 

free_vtree( .. ) need no further explanation. They behave exactly as 

expected, as suggested by their appointed names. The function 

new_vtree( .. ) has an additional parameter, indicating the list it 

should be linked to. The field nref is incremented, indicating the 

creation of an additional pointer. Also free_vtree( .. ) checks nref, 

refusing deletion if nref> 1. 

The functions build_viterbi( .. ) and calc_viterbi( .. ) are counterparts 

of build_forw( .. ) and calc_forw( .. ). Instead of additions, the maximum 

operator is used, and the history list of field vtree is updated as 

well. Because unit states and its lower level states do not require 

updating of the history list, additional functions build_lower( .. ) and 

calc_lower( .. ) are implemented, identical to build_viterbi( .. ) and 

calc_viterbi( .. ) except that the history list can only be passed to 

other states or be pruned, but not extended. 

As is the case with the forward backward algorithm, two functions are 

available that are able to perform the Viterbi algorithm for a whole 

sequence. These are: 

d_ viterbi(model,prob,sequence.file) 
prob is a single tree, used for storing all Viterbi proba­
bilities dynamically. The Viterbi algorithm is executed for 
the whole sequence. The result of the training is written to 
file, together with some diagnostics information. 

c_viterbi(model,prob,vectors,length.file) 
The same, only continuous symbols are used. 

Finally, the code to recognize a sequence stored in file "sequence.t", 

using an RMM stored in file "grammar.rmm", writing the recognition 

result to file "main.lst" looks like: 

M_PROB prob; /* declare storage */ 
char sequence[MAX+l]; /* declare array for sequence */ 
M_MODEL *model; /* declare pointer to model */ 
FILE f; /* declare file variable */ 
read_model("grammar.rmm"); 
model = find_model("Root"); 
f = fopen("sequence.t","r"); 
read_dseq(f,sequence ); 
fclose(f); 
f = fopen("main.lst", "w"); 
d_ viterbi(model,prob,sequence,f); 
fclose(f); 

121 



0\apter 7 

7.5 Simulations 

For the reading and creation of artificial data files, another module 

is implemented: "cnest.c". It contains two internal functions and four 

functions that are accessible from outside. The internal functions are: 

sel_trans(pann,n) 
Select a random number, and, accordingly, select a transition 
(O •• n), guided by the probability distribution given in pann. 

gnoiseO Gaussian random generator with mean 0 and standard deviation 
1. This is approximated by summing 9 uniform distributions. 

The global functions are: 

read_dseq(jile,sequence): 
Read discrete symbol sequence from disk. One line from disk 
is read into a string. 

read_cseq(jile,sequence,vectors): 
Read a discrete and continuous symbol sequence from disk. 
Each line in the file contains a discrete symbol (only for 
readability), followed by a vector of floating point values. 
An empty line or the e!ld of file indicates the end of the 
sequence. · 

outp_dmm(modelJile) 
Create discrete output symbols by simulating the operation of 
an RMM. Each time random transitions are made, using 
sel_trans( .. ), and for each elementary state, a symbol is 
written to file. 

outp_cmm(model.file) 
This function is identical to the function above, only now 
each elementary state produces a continuous symbol vector, 
using the mean vector ji (J.t. .. IJ. ), disturbed by uncorrelated 
Gaussian noise with standard deviation 0' • 

main.c contains the main program, currently performing the following: 

• Files on the command line are read, using read_model( .. ). Some 

diagnostics like the size, the entropy etc. are printed. 

• The user is asked for the number of training sequences. If a posi­

tive number is given, these are created and stored in the file 

"sequence.t". If zero is given, no new sequences are generated. 
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• The user is asked for the value of c:psilon, used for pruning in 

the Viterbi and the Forward Backward algorithm. Practical values 

are around 10·5• 

• The Recursive Viterbi, Forward and Backward Training algorithms 

are executed at each sequence in "sequence.t". Some diagnostics, 

like the time duration and the tree size during the Viterbi 

algorithm, are printed in the file "main.lst". 

• Some diagnostics are provided about the total memory requirement 

of the Viterbi and Forward Backward algorithms. 

• Finally update_modelO is called, and the updated RMM is written 

to the file "trained.rmm" 

Appendix C contains the listings of "words.rmm", "grammar.rmm", 

"scr.nnm" and the directed graph of "grammar.rmm". 

"words.nnm" is a set of states representing all kinds of words. Each 

word is expected to consist of its ASCII-characters. The "forw" model 

is used, which models additional transitions, repeating and skipping 

characters. The state "anychar" is also induded to represent random 

characters. The probabilities of repeating. skipping and replacing 

characters are all set to 2%. Each ASCII-character represents a vector 

(A,O,O,O,O), where each vector is disturbed by Gaussian white noise 

with standard deviation (0.2, 0.2, 0.2, 0.2, 1.0>. 

"grammar.rmm" contains the grammar of all numbers 1..999999. This model 

describes how any number in this range can be represented by 21 units. 

These units are present in "words.rmm" 

"scr.rmm" contains the grammar of a small SCR-language. The specifica­

tion has been borrowed from Brown and Wilpon [11], having made some 

minor changes. In our system it is advantageous to use a hierarchical 

description (the original language is not hierarchical), many inter­

mediate states are introduced to simplify the ch:scription. 
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8. RESULTS AND CONCLUSION 

8.1 Simulation results 

The command: main words grammar 

starts the main program, loading the words from "words.rmm" and the 

grammar from "grammar.rmm" (see Appendix C for a listing). A specified 

number of test sequences can be generated, stored in "sequence.t". An 

example test sequence, generated using "grammar.rmm", is: 

e 4.6341 0.1010 0.0879 0.2974 0.4864 
i 9.0702 0.3027 -0.1280 0.1231 -0.1542 
g 6.8387 0.1930 -0.0174 -0.4797 -1.2646 
h 7.7956 -0.1152 0.0777 -0.1716 -0.1518 
t 19.7507 -0.1222 -0.1848 0.1071 0.3885 
y 24.9349 0.3453 0.0799 0.2096 -1.4035 
0 15.1136 0.0717 0.2137 0.0877 -1.2298 
n 13.6729 -0.1127 0.1025 0.0469 0.0961 
e 5.1522 -0.1755 0.0579 0.0106 0.8079 

Running the Viterbi and the Forward Backward algorithm (e=10~ on this 

sequence, the following output is generated: 

sequence: "eightyone" 

size after 1:426 
size after 2:252 
size after 3:24 
size after 4:30 
size after 5:35 
size after 6:56 
size after 7:120 
size after 8:6 
size after 9:6 

Best sequence: 
1Root 
1 1-999999 
1 1-999 
1 1-99 
1 20-90 
1 thir-9 
1 eigh 
1 ty 
1 1-9 
7 1 
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viterbi score: 4.77061e-05, 
forward score: 4.80335e-05, 
Backward score: 4.80335e-05, 

3.917 sec 
2.833 sec 
0.333 sec 

The re-trained parameters of some states have been determined: 

e elem train 

thir-9 
thir 
fif 
eigh 
4,6,7,9 

4.9288 -0.0248 0.0486 0.1027 0.4314 
0.2462 0.1624 0.1211 0.1798 0.6661 

elem train 
9.0351 0.1514 -0.0640 0.0616 -0.0771 
0.1457 0.2071 0.1552 0.1542 0.7113 

para train 
0.0714286 
0.0714286 
0.571429 

0.285714 

Olapier 8 

We can see that despite the random disturbance of the vectors the word 

"eightyone" is correctly recognized. From the output we can conclude 

how this sequence is produced by different states at different levels. 

The number at the beginning of each line indicates how many pointers 

are pointing to this item in the -history list. If this is 1, it means 

that all other possible paths are pruned, which means that this state 

is the only possibility left. 

The state parameters are updated to confmn better to the given 

training sequence. Of course, one sentence is a too small amount of 

data, but we can already see the effect of training. 

During each time step of the Viterbi algorithm the history lists of all 

states are continuously updated. Therefore, it is not necessary to wait 

until the end of the sentence (which will never come when no 

segmentation has been performed). If all history lists share the same 

beginning, this beginning can already be output as the recognition 

result. The recognition system needs no pre-segmentation any more, and 

the result is delivered while the Recursive Viterbi algorithm is 

running somewhat delayed. A word may even be recognized while it is not 

even fully pronounced yet, as soon as all alternative word probabili­

ties are lower than e. 
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Results and ~onclusion 

For example, the sequence: 

t 19.8673 -0.0278 0.1005 0.5362 1.7200 
w 22.9870 -0.2995 0.1347 0.0221 -0.3224 
0 15.1734 -0.1049 -0.1848 -0.1719 0.5485 
t 20.0667 -0.0522 0.1411 0.0067 -0.0256 
h 8.1792 -0.1579 0.0526 0.0049 -0.9493 
0 14.9541 0.0295 . 0.3610 -0.0808 -2.1353 
u 20.9735 0.0021 0.2191 0.0065 -1.1071 
s 18.8304 0.2839 -0.2459 -0.1759 1.9774 

gives as recognition result: 

sequence: "twothous" 

size after 1:462 
size after 2:336 
size after 3:218 
size after 4:21 
size after 5:6 
size after 6:6 
size after 7:7 
size after 8:7 

Best sequence: 
!Root 
1 1-999999 
1 1-999 
1 1-99 
1 1-9 
1 2 
6 1000 

viterbi score: 0, 
forward score: 0, 
Backward score: 0, 

3.050 sec 
2.217 sec 
0.050 sec 

The word "thousand" is already recognized, even when it has not yet 

finished. The Forward, Backward and Viterbi scores are all zero, 

because "twothous" is not a valid number at all. Still, the history 

list of the best state already contains "1000" as recognized state. 
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O!apter 8 

8.2 Conclusion 

The aim of this thesis has been to search for efficient algorithms for 

automatic speech recognition. As this is a very wide area, it cannot be 

covered completely by one single person. Therefore, the search has been 

restricted to algorithms that can be implemented on a digital signal 

processor (DSP) and adress the various aspects as presented in this 

thesis, summarized below. 

First, the calculation of the log area parameters has been implemented 

on a DSP (the TMS320C25). If these parameters are used as a start of a 

speech recognition system, the only reasonable judgment possible is the 

score of the total speech recognition system. As long as this system 

has not been completed, real evaluation is not possible. 

A segmentation algorithm based on the log area parameters has been 

developed and tested. The idea behind it was that speech consists of a 

number of stationary segments, connected by transitions. Using the 

correlation between nearby frames, the borders between segments could 

be estimated quite accurately. The only problem was that many borders 

were missing, and many unwanted borders had been inserted. If addi­

tional information would be available about the structure of the 

pronounced sentence, this could be solved: However, this information is 

only available after recognition has taken place, while the segmen­

tation will be used before recognition. The only possible conclusion is 

that accurate segmentation of speech is not possible without using 

higher level knowledge. The segmentation should be integrated in the 

recognition process, instead of being performed in advance. 

A new algorithm has been derived that is able to perform recognition 

without segmentation. It has been based on a hierarchical stochastic 

model of the whole speech production process. This model is called the 

Recursive Markov Model (RMM). It is an extension to the Hidden Markov 

Model (HMM), that is currently very popular in speech recognition re­

search. Another new algorithm, the Recursive Forward Backward Training 

algorithm, had been developed, which has proved to be able to train all 

parameters in the RMM, fully supporting state sharing, multiple 
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Rcsulu and conclusion 

tra.J.mng sequences and supervised tra1mng. These algorithms have been 

implemented using ANSI-C on an APOLLO DN3000 workstation. The results 

show that the RMM is especially advantageous in large vocabulary speech 

recognition using syntax. The current system is not able to perform 

recognition in real time, because the Apollo system on which it has 

been tested is too slow. Neither could it be implemented on the 

available DSP-system because it has insufficient memory. Since the 

current calculation times on the APOLLO are seconds rather than hours, 

real time large vocabulary speech recognition is not far away. 

The following experiment shows that the memory requirement and calcu­

lation time needed for a speech recognition system based on RMM grows 

much less than linear with the library size. Let us suppose we have a 

recognition system with N words, that needs to be increased to 2N 

words. The library is doubled in the worst case, so, in principle, the 

memory requirement and calculation time will also be doubled. However, 

many words in the two libraries contain identical syllables. Using 

State Sharing for these syllables reduces the memory requirement for 

this new system. State Pruning allows that not the whole model needs to 

be searched for recognition. In practice this will mean that many of 

the added words will be pruned before the word to be recognized is 

fully pronounced. This reduces the number of calculations. The larger 

the library, the more State Sharing and Pruning can be used. This makes 

RMM speech recognition especially attractive for large vocabulary 

speech recognition. 

The current implementation assumes that the graph describing the state 

relations (as in appendix C for the numbers 1-999999) is a directed 

graph without loops. If the Forward, Backward or Viterbi algorithm 

reach such a loop, it will be traced deeper and deeper without ending 

in an elementary state. This situation occurs when a state contains 

itself. For instance a sentence might contain another sentence ("John 

said: 'I am ill' "), or a PASCAL procedure might contain another proce­

dure. Grammars using this feature (like PASCAL) are not supported by 

the current implementation, but this can be solved by limiting the 

number of levels. This is reasonable, since "John said: 'Mary said: 'I 

am ill"" is not a very likely sentence, and a PASCAL program is not 
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Chaplet 8 

very likely to use procedure nesting of more than 5 levels. During the 

entropy calculation a test will be executed to locate this kind of 

loops in the state relation graph. H loops are discovered a warning is 

given indicating the offending state name. 

The following suggestions can be made for a follow-up: 

Testing the algorithm using real speech. The LPC-analysis and recogni­

tion have now been performed on different systems, that are not linked 

to each other. Implementation of both processes on a fast system with 

sufficient memory plus the possibility to sample speech would provide a 

valid proof that the algorithms developed in this thesis operate prac­

tically and efficiently. 

Implementing other state types. Apart from the four state types already 

implemented (elem,full,forw,para), various others are possible. The 

elementary state with correlated noise (currently only uncorrelated 

noise has been used) has already been mentioned. Other probability 

distributions than only Gaussian are possible too. 

Using a neural net as elementary state seems very interesting. This has 

already been suggested for HMM by Niles [47], but the same approach is 

possible for the RMM. Neural nets cannot be trained using Maximum Like­

lihood, but corrective training is normally possible. All other states 

can still be trained using ML, because the Recursive Forward Backward 

algorithm only uses local variables that are still available. 

Besides speech recognition, RMM can as well be used for other types of 

applications. The model has many properties in common with the Neural 

Net approach. Any pattern that can be subdivided in sub-patterns, while 

the pattern score is a linear combination of the sub-pattern scores, is 

suitable ·for RMM pattern recognition. The main difference is that the 

RMM will be especially useful if structural (hierarchical) information 

about the recognition problem is available, which a Neural Net does not 

require nor uses. On the other hand RMM has less parameters, which 

makes it better trainable. 
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APPENDIX A: ML·ESTIMA TION 

The training algorithm, derived in a heuristic way in chapter 5, is 

similar in structure to the training algorithm used in HMM. Baum [10] 

has proven that the Forward-Backward algorithm is guaranteed to 

converge to a local maximum of the likelihood function. This proof is 

extended by Liporace [39], who showed that this is also valid for a 

much larger class of re-estimation formulas. In RMM the model structure 

is further extended. The question arises whether this extension still 

guarantees convergence of the training algorithm. In this appendix will 

be shown that it does. 

The outline of this proof follows the same lines as Liporace [39], 

containing three basic differences: 

• State Sharing 

• Hierarchical modelling 

• Multiple training sequences 

The state sharing and hierarchical modelling cause extra terms in the 

re-estimation formulas, but the structure is not changed. To allow for 

multiple training sequences the definition of the auxiliary function 

Q(A.~) as used by Liporace had to be changed such that this only causes 

extra terms in the re-estimation formulas. 

The outline of the proof is as follows: 

• The likelihood function is defined for the RMM. 

• An auxiliary function is defined, and some properties of this 

function that are needed later on are unfolded. 

• Prove that increase of the auxiliary function assures increase of 

the likelihood function. 

• Derive a re-estimate of A-matrix for each state by maximizing the 

auxiliary function, using the Lagrange multiplier method. 

• Derive re-estimate of ii: and I. for elementary states by maximizing 

the auxiliary function. 

• Prove that the critical point of the auxiliary function is a 

unique maximum. 
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Appendix A 

The Maximum Likelihood training must maximize the probability that the 

RMM produces the given training sequences. This function is defined as 

P!(Root,T+l) (see chapter 5 for details) for one training sequence 

produced by the Root state. More general is, to consider more training 

sequences yk {k=l..K} that are supposed to be produced by (possibly the 

same) Root states Rt. In this appendix we will use the following 

notation: 

PA. (R•:,yt) = probability of Rk to produce yk, given parameters A. 

The likelihood function for multiple training sequences is the product 

of the likelihood of each training sequence, because they are supposed 

to be independent: 
K k le 

PA.(R,Y) = n PA.(R,Y) 
k=l 

Where R is the set of Root states, and Y the set of training sequences. 

Further let S(Rk) be the set of all possible paths in state R\ and 

· PA. (Rt,Yt,s) the probability of a single path s in Rli: to produce Yt. 

Then: 

PA.(R,Y) = li: t •• Ki: K PA.(R,Yi .. sK) 
s e S(R ) s e S(R ) '· 

( 
k le 't" k k 

PA. R ,Y ) = ""' t PA. (R ,Y ,s) 
seS(R) 

We define the auxiliary function Q(A.,~) as: 

1 
i: 

1 
•• Ki: K PA. (R, Y ,s1.;sK)-log P~(R, Y ,s1 .• sK) 

Q(A,~) = s eS(R) s eS(R ) 

PA.(R,Y) 

This can be rewritten as the sum of individual contributions of the 

training sequences. The first step is splitting all terms as the 

product over all training sequences: 
K K 

li: I .• Ki: K n PA.(Rm,ym,sm)·log n P~(Rk,YI'\s") 
Q(A,~) = s e S(R ) s e S(R ) m = t 1c = 1 

K 
n PA.(Rm,Ym) 

m= I 

The product over k can be pulled out of the log function, as a summa-

tion over k in front of the fraction: 
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K 

Q(A..t) = 2: K 
ll PA.(Rm,Ym) k=l 

m= 1 

Because the training sequences are independent, the summations in the 

nominator can be rearranged, except for sequence k: 

K ll PA.(Rm,Ym)· kL "PA.(R",yk ,sk)-log P~(Rk,Yt,s") 
Q(A.,~) = L m;i:k s eS(~ ) 

k=l ll PA.(Rm,Ym) 
m=l 

The nominator and denominator con~n a large number of common factors, 

that can be removed: 

't" k k k k 
K ~ k PA. (R , Y ,s)·log P~(R , Y ,s) 

Q<A..t) = \ s_e_S_,_(R__,_) --:----:-------
{;:, , PA. (Rk,Yt) 

This expression will be used in further processing, because each term 

in the sum contains only information of one training sequence yt. 

In order to show that Q(A.,~) > Q(A.,A.) implies that P~(R,Y) > PA.(R,Y), 

note that log(x) S x" 1, with equality if and only if x = 1. Therefore: 

0 < Q(A.,~) • Q(A.,A.) = 
I K [ P~(R, y ,sr .• sK) l 

I .. I P'\ (R,Y ,s .. s )·log 
reS(R1

) sKeS(RK) "" PA.(R,Y,s1 
•• sK) 

= 

= P~(R,Y) " l 

PA.(R,Y) 

PA. (R,Y) 

P~(R,Y) 
--- > 1 ~ P~(R,Y) > PA.(R,Y) 
PA. (R,Y) 
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Appendix A 

All we have to do is to detennine the maximum of QO.J). This would 

provide us with at least an increase of the likelihood. By iterating 

this procedure, the maximum of the likelihood function can be esta­

blished. If after a sufficient number of iterations P~(R,Y)=P~(R,Y), 

then we can conclude that also Q(A.,A.)=Q(l.,~). Because ~ is the maximum 

of Q(l.,~) and this maximum is unique (which will be proved later), ~..=t 
So the algorithm always converges to a critical point of Q(l.,~). 

A 
For the parameters A of non~elementary state S the maximum of the auxi-

liary function is detennined applying the Lagrange multiplier method, 

because an extra restriction is put on this matrix that all row 

elements must sum to 1. 

If some recursive state sequence s (a state sequence on all levels of 

the recursion) is given, the probability of the RMM following this path 

producing the given sequence yk can be expressed by: 

PA.(Rk,Yk,s) = ~{ TI a · PE(SE(s1),Y~)} 
1 = 1 ae s 

I 

where SE(s) ·is the elementary state visited in path s on time t, and 

s
1 

is the set of transitions visited in path s on time t. Thus, we have: 

K l: PA.(Rk,Y\s) · f { l: log a+ log PE!(SE!(s1),Y~)} 
~ _ \ s 1=1 aes1 

Q(l., > - L ----:-k .,.. . .,..k -------------

k = t p A. (R 'y ) 

A typical initial probability a
1
j of some state S can be re-estimated 

applying the Lagrange multiplier method, by solving: 

o = ! (o<A..~> -e <I ~bn - 1)) 
aal. m 

J T 
K l: PA. (Rk, yk ,s) ·l: L l~lj 

::: \ S t =I a1je S 1 • e 
L P.,. (Rk,Yk) 
k==l 11. 

K T l: l: PA.(Rk,Yk,s) 

- _1_ \ \ S a1je S1 • e 
~IJ. L L P.,.(Rk,Yk) 

k=l t=l 11. 
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M!Astimation 

The summation in the nominator is taken over all paths that contain a 

transition aij at time t. All probabilities of these paths are added. 

We could also reverse this summation. For all copies of transition aij 

(because of State Sharing) the probabilities of all paths that make 

transition ar at time t are added. This results in the equation: 
~ k k 
K T I, I, PA. (R , Y ,s) 

-
1_ \ \ a I j st 3 a I j L L --=-----=~--=--- - 9 = o 
~Ij k=l t=l PA. (Rk' yk) 

The fraction in this equation in fact comprises nothing more than the 

probability that transition aij is made at time t, divided by the pro­

bability that any transition is made. This is the definition of tij' 

that can be calculated by the Recursive Forward Backward algorithm. The 

summation over all copies of aij is automatically performed, because 

tij is shared among all copies of state S. Hence, we can write: 

1 A tr 
-·t -9=0 ~ a =-J 
~ Ij Ij 9 

Ij 

To determine the value of 9, we sum for all j: 

tr A 
I.-J=I.a.=1 ~ 9=I.t. . 9 . lj . IJ 
J J J 

The re-estimation formula becomes: 
ti . 

~ =--J 
Ij L t 

m Im 

In exactly the same way we find the re-estimation formulas: 
t.. A t.F A IJ 0 I 

aij = ---=-- aiF = ----
I, t. + t.F L t. + t.F •m a 1m 1 
m m 

These are the same as expected in equation (5.16). 

In order to show that Q(A..~) has a unique maximum, let us consider the 

second derivative in respect to all parameters aij' aij and aiF' To 

handle the restriction that rows of matrix A must sum to one, we calcu­

late this derivative along the line between two valid parameter sets A.1 

and A.2• 
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Appendix A 

Frrst, let us compare two parameter sets '),} and 1..2, with the only dif­

ference that '),} contains a~j and 'A.2 contains a~j for state S. Let 1..3 be 

a linear convex combination, containing a~; = 9a~j+(l-6)a~; { 0 < e < 1 }: 

k k T 3 
K :I: P'A. (R ,Y ,s) ·I I I log(a1;) _t... \ s t= 1 a1;es1 

a62 f:
1 

P;.,(Rt,Yt) 

N K T :I: I P'A.(Rk,Yt,s) 

L ( 2 ) L L s a1jes log 9a1
1
J.+(l-6)a

1
,. _ ___;=----.,...-...,.--

k=t t=1 P'A.(Rt,Yt) j =1 

Following the same steps for a.. and a.F' we find: 
IJ I 

. (1 2 2 1 2 2 
2 N t .. · a..-a . .) t.P·(a.P-a.F) a 3 L 'J 'J •J , , , 1 

- Q('A.,'A. ) = -
62 ( 8 3;J· J z ( 3 J z a ;=t 8

iF 

We can see that the second derivative in respect to 9 is always 

negative for ar, a... aiP r# 0, regardless of its direction. Except 
1 2 J IJ • 1 2 • 1 2 

when a
1
. = a

1
. for all J, or a .. = a .. for all J and a.F = a.F but then 

J J IJ IJ I I 

no line exists between 1..1 and 'A.2• If there is a critical point on the 

line between 1..1 and ; .. _2, this must be a maximum. Because the second 

derivative is strictly negative, this maximum is unique. 

Also, note that this result is independent of the function P B(S,ii) used 

in any elementary state. The derivative of P B(S,ii) for any state S in 

respect to any parameter a.. of another state is zero. Hence, different 
IJ 

training algorithms could be used for different states. When elementary 

states are trained using another criterion than ML, still a.. can be 
IJ 

trained using the ML criterion. Still, for a... convergence to a local 
IJ . 

maximum of the likelihood function is guaranteed, if the training algo-

rithms for the other states also converge. 
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The mean vector i1 and the covarlance matrix I: for elementary states 

with Ganssian distribution can be trained by detennining the values 

that maximize Q(A,~). We do not need the Lagrange multiplier method 

now, because i1 has no restriction and I: will turn out to be positive 

definite automatically. At least, for new estimates is required that 

the ·derivative of the auxiliary function in respect to all parameters 

is zero. For these calculations the derivative of log P 
8
(S,ii) to all 

its parameters is needed. For the definition of P B(S,ii) see (5.22). 

log PE(S,ii) =}(log ll:!"1
- N·log(21t)- ru-m"'·I:"1·(ii-ii)) 

:) ~og P (S,ii) = !. ( ;(:t·'·(ii-j.I) + (ii-j.I) *.x:·'·e. ) 
CJI.I.i E 2 I I 

-* x:·l r.; ;;"\ h - th ·lh . = e i · ·\u-J.L, w ere ei = e 1 umt vector. 

This is the ith element of x:·'·(ii-ii). If fJ/fJj1 denotes the vector with 

elements 8/fJJ.L., we can write this as: 
l 

~ log p B(S,ii) = x:·t·(ii-j.I) 
fJj.l 

Defining C = I:'1, we must recall that: 

. ICI = l: C.:B .. 
i 

lJ IJ 

for any column j, where B.. is the cofactor associated with C ... 
u u 

Therefore, we can write: 

2_ log ICI = ICr1·2-tC1 = 1Cf1·B .. 
ac.. ac.. •J 

IJ IJ 
Because 1Cr1·B .. is the (i,j)th element of C'1 = I:, we can combine 

IJ 
this into one equation: 

~log ICI =I: 
ac 

where ataC denotes the N x N matrix which (iJ)111 element is 8/aCif 
Now we can calculate the derivative of log P E(S,ii) to C: 

~ log P (S,ii) = ~.1 ( I: - (ii-ii)·(ii-ii) *) ac B 2 
New estimates of i1 can be detennined by solving: 

~ k k ~ A.t 1\ 
K ~PA.(R,Y,s)·~ 2.; ·<Y'-J.L) 

a 1:<. 1 L s tes 
1 

0 = 1\ Q(A,A.) = -· 
::~~ 1 2 p (Rk yk) w,.. k=t A. · • 
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Appendix A 

A A 
By 8/BJl is meant the vector that has a/8Jl. as its elements. The summa· 

I 

tion over t is taken for all times that state S is visited. Multiplying 

both sides with 2· ~ and interchanging the summations yields: 

L PA. (R1\ yk ,s) 
s :.S A 

l • <Y ·Jl) 
P4(R\Yt) 1 

K T 

O= I I 
k=l t=l 

In this fraction we recognize the weight factor 

chapter 5, so we can write: 
K T 

K T A K T 
l: l: 

w as defined in 
I 

o = :E l: w ·y - Jl· l: l: w 
k=l t=l I I k=l 1=1 I 

" k=ll=l => Jl = -:K:::---:T:::----

L l: w 
I 

k=l t=l 
Again, this is identical to equation (5.25), except that for multiple 

training sequences the individual contributions have to be added. 

A At 
If we defme C = r; , then we can write: 

K 
l: P'I(Rt,yt,s) · l: !( ~- (y-~)(y-~>*) 

8 
s 11. 1e s 2 1 1 

0 = f\ Q(A.,~) = \ 
C L t t a k=l PA. (R ,y ) 

A A 
Where a/aC stands for the matrix with elements ataC ... 

IJ 
Interchanging the summation and multiplying by 2, we find: 

K T l: P4(Rk,Yk,s) 

0 = \ \ s,:.s . (~- <Y-~)(Y-~)*) = 
L L PA. (Rk,Yk) t I 
k=l t=l 

A K T K T A A* 
l: · :E l: w - :E l: w ·<Y -JJ.)(Y ·Jl) => 

I t I I 
k= 1 t=l k=l t=l 

K T " A* K T * 
l: l: w,·(Y

1
·Jl><Ytll) l: l: w

1
·Y

1
·Y

1 
~ = k = 1 I= 1 k = 1 I= 1 • ~·~* 

K T = -K::----:-T----

LLW LLW 
k=l t=l I k=l t=l t 

This is, again, the same as in (5.26). Note that automatically ~ is 

positive defmite, because for any vector x: 
f f w. ( x*·<y-~) )

2 

* ~ t I -- k=lt=l '0 X • ·X= K T .:;;. 

l: l: w 
l 

k=l 1=1 
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A • A 
For the elements of the mean vector 1..1. and the matnx :E we can calculate 

the seoond derivative to each parameter. For this we also need the 

second derivative of log P E(S,ii): 

ri 8 -* ·1 -* ·1 - ·I - log P (S,ii) = - e. ·:E ·(li-p) = - e. ·:E ·e. = - (:E ) .. 
lJIJ.~ E 8jJ.j I I 1 11 

I 

where e. = the ith unit vector. 
I 

is strictly negative. At the 

critical point the derivative is zero, so this must be an absolute 

maximum of Q(A..~). The same can be done for C = :E'1: 

8
2 

8 ( A ) 8 Br 8 Bi. - log ICI = - :E.. = - -~ = = - J ac. ac.. IJ ac .. ICI ac.. :r. Ck:B._. 
IJ IJ IJ IJ k: J •J 

( 
B.. ]

2 

= - :r. c~~-Bk. = -
k J J 

2 

c:~ J =-

8
2 1 -log P (S,ii) = - - · 

8C2 E 2 
ij 

Again, we see that this is always negative or zero. 

The conclusion of all this is that the given re-estimated parameters ~ 
are a maximum of the auxiliary function, and this maximum is unique. 

After sufficient iterations ~ will converge to a solution where the 

likelihood does not increase any more. In this way a local maximum of 

the likelihood function can be reached. 
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APPENDIX B: RMM·DEFINITIONS 

I* 
I* 
I* 

RMM.H 

#include <Stdio.h> 
#include <math.h> 

common definitions 

#define T_ELEM 0 
#defme T_FULL 1 
#defme T _PARA 2 
#define T_FORW 3 
#define T _TYPE 7 

#define T_UNIT 8 
#define T _TRAIN 16 

#define VEC_LEN 5 
#defme MAX_CillLDS 50 

typedef struct m_model { int type; 
int nchild; 
char *name; 
struct m_prob *empty; 
struct v _prob *vprob; 
struct m_model **child; 
float *parm; 
float *parmupd; 
float entropy; 
float duration; 

} M_MODEL; 

typedef struct m_prob { float ip; 
float sp; 
float fp; 
struct m_prob *eh; 

} M_PROB; 

typedef struct v _prob { float ip; 
float sp; 
float fp; 
struct v _prob *eh; 
struct v _tree *vtree, *vprev; 

} V_PROB; 

typedef struct v _tree { int nref; 
struct v _tree *prev; 
struct m_model *model; 

} V_TREE; 
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!* FUNCfiONS IN BUILDMM.C */ 
M_MODEL*find_model(char *name); 
int read_model(char *filename); 
int write_model(char *filename); 
void write_name(FILE *f, M_MODEL *model); 
double read_num(FILE *f); 
double set_dsymbol(int sym); 
double set_csymbol(float *vector); 
int num_vecs(void); 

I* 
void 
int 
void 
void 

FUNCfiONS IN CRTEST.C *I 
read_dseq(FILE *file, char *sequence); 
read_cseq(FILE *file, char *sequence,float *csequence); 
outp_dmm( M_MODEL *model,FILE *output); 
outp_cmm( M_MODEL *model,FILE *output); 

FUNCfiONS IN FORBACK.C *I 
update_model(void); 
mprob_diagn(void); 

Appendix B 

I* 
void 
void 
double 
double 
double 
double 

d_forward(M_MODEL *mm,M_PROB *mpr,char *sentence); 
c_forward(M_MODEL *mm,M_PROB *mpr,float *f,int n); 
d_backward(M_MODEL *mm,M_PROB *mpr,char *sentence); 
c_backward(M_MODEL *mm,M_PROB *mpr,float *f,int n); 

I* FUNCfiONS IN VITERBI.C *I 
void fprf_vprob(FILE *file.int t,M_MODEL *mm, V _PROB *mp); 
void fprf_maxvprob(FILE *file,int- t,M_MODEL *mm, V _PROB *mp); 
V _PROB *new_vprob(V _PROB *mp,M_MODEL *mm); 
int free_vprob(V _PROB *mp,M_MODEL *mm); 
void vprob_diagn(void); 
double d_ viterbi(M_MODEL *mm, V _PROB *mpv ,char *sentence, FILE *f); 
double c_viterbi(M_MODEL *mm,V_PROB *mpv,float *csequence,int n,FILE *f); 
double build_viterbi(M_MODEL *mm,V_PROB *mpv,V_TREE *vtree); 
double calc_viterbi(M_MODEL *mm, V _PROB *mpv,V _TREE *vtree); 

I* 
void 

FUNCfiONS IN ENTROPY.C 
calc_entropy(M_MODEL *mm); 
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APPENDIX C: GRAMMARS 

Content of "word.rmm" (partly): 

a train 
1 0 0 0 
0.2 0.2 0.2 0.2 

b train 
2 0 0 0 
0.2 0.2 0.2 0.2 

c train 
3 0 0 0 
0.2 0.2 0.2 0.2 

d train 
4 0 0 0 
0.2 0.2 0.2 0.2 

< tbe same for other ASCII-characters > 

a-e para 
a liS 
b 1/5 
c 115 
d liS 
e 1/S 

f-j para 
f liS 
g us 
h liS 
i liS 
j 115 

k-o para 
k liS 
1 1/S 
m liS 
n liS 
0 115 

p-u para 
p ll6 
q 1/6 
r 1/6 
s 1/6 
t 1/6 
u 1/6 
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v-# para 
V 1/6 
w 1/6 
X 1/6 
y 1/6 
z 1/6 
' ' 1/6 

anychar para 
a-e 5/27 
f-j 5/27 
k-o 5/27 
p-u 6/27 
v-# 6/27 

A para 
a 0.98 
anychar 0.02 

B para 
b 0.98 
anychar 0.02 

c para 
c 0.98 
anychar 0.02 

D para 
d 0.98 
anychar 0.02 

< the same for other ASCll-characters > 

0 forw unit train 
0.98 0.02 

z 0.02 0.96 0.02 
E 0.02 0.96 0.02 
R 0.02 0.96 0.02 
0 0.02 0.98 

1 forw unit train 
0.98 0.02 

0 0.02 0.96 0.02 
N 0.02 0.96 0.02 
E 0.02 0.98 

2 forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
w 0.02 0.96 0.02 
0 0.02 0.98 
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3 forw unit train 
0.98 0.02 . 

T 0.02 0.96 0.02 
H 0.02 0.96 0.02 
R 0.02 0.96 0.02 
E 0.02 0.96 0.02 
E 0.02 0.98 

4 forw unit train 
0.98 0.02 

F 0.02 0.96 0.02 
0 0.02 0.96 0.02 
u 0.02 0.96 ·0.02 
R 0.02 0.98 

5 forw unit train 
0.98 0.02 

F 0.02 0.96 0.02 
I 0.02 0.96 0.02 
V 0.02 0.96 0.02 
E 0.02 0.98 

6 forw unit train 
0.98 0.02 

s 0.02 0.96 0.02 
I 0.02 0.96 0.02 
X 0.02 0.98 

7 forw unit train 
0.98 0.02 

s 0.02 0.96 0.02 
E 0.02 0.96 0.02 
V 0.02 0.96 0.02 
E 0.02 0.96 0.02 
N 0.02 0.98 

8 forw unit train 
1 

eigh 0 0.98 0.02 
T o.p2 0.98 

9 forw unit train 
0.98 0.02 

N 0.02 0.96 0.02 
I 0.02 0.96 0.02 
N 0.02 0.96 0.02 
E 0.02 0.98 

10 forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
E 0.02 0.96 0.02 
N 0.02 0.98 
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11 forw unit train 
0.98 0.02 

E 0.02 0.96 0.02 
L 0.02 0.96 0.02 
E 0.02 0.96 0.02 
V 0.02 0.96 0.02 
E 0.02 0.96 0.02 
N 0.02 0.98 

12 forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
w 0.02 0.96 0.02 
E 0.02 0.96 0.02 
L 0.02 0.96 0.02 
V 0.02 0.96 0.02 
E 0.02 0.98 

thir forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
H 0.02 0.96 0.02 
I 0.02 0.96 0.02 
R 0.02 0.98 

fif forw unit train 
0.98 0.02 

F 0.02 0.96 0.02 
I 0.02 0.96 0.02 
F 0.02 0.98 

eigh forw unit train 
0.98 0.02 

E 0.02 0.96 0.02 
I 0.02 0.96 0.02 
G 0.02 0.96 0.02 
H 0.02 0.98 

teen forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
E 0.02 0.96 0.02 
E 0.02 0.96 0.02 
N 0.02 0.98 

twen forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
w 0.02 0.96 0.02 
E 0.02 0.96 0.02 
N 0.02 0.98 
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ty forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
y 0.02 0.98 

100 forw unit train 
0.98 0.02 

H 0.02 0.96 0.02 
u 0.02 0.96 0.02 
N 0.02 0.96 0.02 
D 0.02 0.96 0.02 
R 0.02 0.96 0.02 
E 0.02 0.96 0.02 
D 0.02 0.98 

1000 forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
H 0.02 0.96 0.02 
0 0.02 0.96 0.02 
u 0.02 0.96 0.02 
s 0.02 0.96 0.02 
A 0.02 0.96 0.02 
N 0.02 0.96 0.02 
D 0.02 0.98 

& forw unit train 
0.98 0.02 

A 0.02 0.96 0.02 
N 0.02 0.96 0.02 
D 0.02 0.98 

that forw unit train 
0.98 0.02 

T 0.02 0.96 0.02 
H 0.02 0.96 0.02 
A 0.02 0.96 0.02 
T 0.02 0.98 

what forw unit train 
0.98 0.02 

w 0.02 0.96 0.02 
H 0.02 0.96 0.02 
A 0.02 0.96 0.02 
T 0.02 0.98 

< and in the same way a lot of other words are contained > 
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Content of "grammar.rmm" (complete): 

4,6,7,9 para train 
4 1/4 
6 1/4 
7 1/4 
9 1/4 

thir-9 para train 
thir 1n 
fif 1n 
eigh 1n 
4,6,7,9 4n 
1-9 para train 
1 1/9 
2 1/9 
3 1/9 
5 1/9 
8 1/9 
4,6,7,9 4/9 

10-12 para train 
10 1/3 
11 1/3 
12 1/3 

10-19 forw train 
0.7 0.3 

thir-9 0 0 1 
10-12 0 0 1 
teen 0 1 

20-90 forw train 
1/8 7/8 

twen 0 0 1 
thir-9 0 1 
ty 0 1 

1-99 full train 
20-90 10-19 1-9 
0.4 0.1 0.5 

20-90 0 0 0.9 0.1 
10-19 0 0 0 1 
1-9 0 0 0 1 

1-999 full train 
1-9 100 1-99 
0.3 0.1 0.6 

1-9 0 1 
100 0 0 0.9 0.1 
1-99 0 0 0 1 
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1-999999 full train 
1-999 1000 & 1-999 
1 

1-999 0 0.5 0 0 0.5 
1000 0 0 0.98 0 0.02 
& 0 0 0 1 
1-999 0 0 0 0 1 

Root para 
1-999999 1 

Content of "grammar.rmm" as a directed graph: 

Root 

f 
1-999999 

,/(}~& 
1-999~ 

t 100 
1-99 

I 2 3 5 8 It\/ - 10-12 

Men cy ilirr- It\ At\ 10 11 12 

11~ mu ru a~ 

4 6 7 9 
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Content of "scr.rmm" (complete): 

integer para train 
1 1/9 
2 1/9 
3 1/9 
4 1/9 
5 1/9 
6 1/9 
7 1/9 
8 1/9 
9 1/9 

2_int forw train 
1 

integer 0 1/2 1/2 
integer 0 1 

3_int forw train 
1 

2_int 0 113 2/3 
integer 0 1 

1_digit para train 
0 0.1 
integer 0.9 . 

2_digits para train 
0 0.03 
2_int 0.97 

3_digits para train 
0 0.01 
3_int 0.99 

obj_descr para train 
SIZE 1/6 
HEIGHT 1/6 
TEXTURE 1/6 
LUSTER 1/6 
WEIGHT 1/6 
COLOR 1/6 

obj_description full train 
& obj_descr 
0 1 

& 0 1 
obj_descr 0.3 0.3 0.4 

that_is_obj forw 
1 

that 0 1 
is 0 1 
obj_description 0 1 
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OBJECI' forw train 
0.5 0.5 

obLdescription 0 1 
SHAPE 0 0.5 0.5 
that_is_obj 0 1 

tha~_are_obj forw 
1 

that 0 1 
are 0 1 
obj_description 0 1 

OBJECI'S forw train 
0.5 0.5 

obj_description 0 1 
SHAPES 0 0.5 0.5 
that_are_obj 0 1 

left_right para train 
left 0.5 
right 0.5 

front_ back para train 
front 0.5 
back 0.5 

rosmoN para train 
to_the_lrfb 0.5 
in_fb 0.5 

to_the_lrfb forw train 
1 

to 0 1 
the 0 0.5 0.5 
left_right 0 0 1 
front_ back 0 1 

in_fb forw train 
1 

in 0 1 
front_ back 0 1 

SIZE para train 
large 1/3 
medium 1/3 
small 1/3 

HEIGHT para train 
tall 1/2 
shon 1/2 
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COLOR para train 
white 114 
black 114 
light_dark_col 1/2 

light_ dark_ col forw train 
0.5 0.5 

light_ dark 0 1 
other_col 0 1 

light_ dark para train 
light 1/2 
dark 1/2 

other_col para train 
gray 116 
red 1/6 
blue 1/6 
green 1/6 
yellow 1/6 
brown 1/6 

SHAPE para train 
can 1/13 
glass 1113 
bottle 1/13 
insulator 1/13 
beaker 1/13 
flask 1/13 
cone 1113 
pyramid 1113 
prism 1/13 
cup 1/13 
block 1/13 
cylinder 1/13 
object 1/13 

SHAPES para train 
cans 1/13 
glasses 1/13 
bottles 1/13 
insulators l/13 
beakers 1/13 
flasks 1/13 
cones 1/13 
pyramids 1/13 
prisms 1/13 
cups 1/13 
blocks 1/13 
cylinders 1/13 
objects 1/13 
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NAME para train 
fred 1/4 
alice 1/4 
mary 1/4 
joe 114 

TEX1UREpara train 
smooth 1/2 
rough 1/2 

LUSTER.para train 
shiny 113 
matte 1/3 
dull 113 

WEIGHI' para train 
heavy 1/2 
light 1/2 

ATIRIBUTE para train 
size 1/8 
height 1/8 
col or 1/8 
shape 118 
name 1/8 
texture 1/8 
luster 1/8 
weight 1/8 

find_obj forw train 
1 

find 0 0.5 0.5 
all_of_obj 0 0 1 
a_an_anotber_obj 0 1 

all_of_obj forw 
1 

all 0 1 
of 0 1 
the 0 1 
OBJECI'S 0 1 

a_an_another_obj forw 
1 

a_an_another 0 1 
OBJECf 0 1 

a_an_another para train 
a 115 
an 115 
another 1/5 
the_next 1/5 
a _new 115 
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the_next forw 
1 

the 0 1 
next 0 1 

a_ new forw 
1 

a 0 1 
new 0 1 

move_obj forw train 
0.5 0.5 

can_you 0 1 
move 0 1 
it_this_object_robot 0 1 
move_dest 0 1 

can _you forw 
1 

can 0 1 
you 0 1 

it_this_object_robot para train 
it 115 
this 115 
NAME 1/5 
the_a_an_obj . 115 
the_robot 115 

the_a_an_obj forw 
1 

the_a_an 0 1 
OBJECf 0 1 

the_a_an para train 
the 1/3 
a l/3 
an l/3 

the_robot forw 
1 

the 0 1 
robot 0 1 

move_dest para train 
position_ of 1/3 
to_the_origin 1/3 
dist_along_axis 1/3 

position_of forw 
1 

POSmON 0 1 
of 0 1 
it_this_object_robot 0 1 
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to_the_origin forw 
1 

to 0 1 
the 0 1 
origin 0 1 

dist_along_axis forw train 
1 

2_digits 0 1 
centimeter_s 0 1 
along 0 1 
the , 0 0.5 0.5 
posi_negative 0 1 
X_:J_Z 0 1 
axis 0 1 

centimeter_s para train 
centimeter 1/2 
centimeters 1/2 

posi_negative para train 
positive 1/2 
negative 1/2 

X_:J_Z para train 
X 1/3 
y 1/3 
z 1/3 

rotate_obj forw 
1 

rotate 0 1 
it_this_object_robot 0 1 
3_digits 0 1 
degree_s 0 1 
counter_clockwise 0 1 

degree_s para train 
degree 1/2 
degrees 1/2 

counter_clockwise para train 
clockwise 1/2 
counterclockwise 1/2 

what_attr_is forw train 
1 

what 0 0.5 0.5 
ATIRIBUTE 0 1 
is 0 1 
it_this_object_robot 0 1 
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is_it_? forw 
1 

is 0 1 
it_thls_object_robot 0 1 
obj_pos_descr 0 1 

obj_pos_descr para train 
a_an_obj 1/3 
position_ of 1/3 
obj_description 1/3 

a_an_obj forw train 
0.5 0.5 

a 0 0 1 
an 0 1 
OBJECT 0 1 

this_ where_is forw 
1 

this_ where 0 1 
is 0 1 
it_thls_objectJobot 0 1 

this_ where para train 
this 1/2 
where 1/2 

what_howmany _objforw 
1 

what_how _many 0 1 
there_descr 0 1 

what_how _many para train 
what_obj_is 1/2 
what_obj_are 1/2 

what_obj_is forw 
1 

what 0 1 
OBJECT 0 1 
is 0 1 

what_obj_are forw 
1 

what_howmany 0 1 
OBJECTS 0 1 
are 0 1 

what_howmany para train 
what 1/2 
how_many 1/2 
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how_manyforw 
1 

how 0 1 
many 0 1 

there_descr para train 
there ll4 
obj_description 1/4 
position_of 1/4 
m_Iocation 114 

in_location forw 
1 

in 0 1 
location 0 1 
2_digits 0 1 

store_obj forw train 
1 

store_showme 0 1 
it_this_object_s 0 0.5 0.5 
that_is_;pos_of 0 1 

store_showme para train 
store liS 
remove liS 
delete liS 
describe liS 
show_me 115 

show_me forw 
1 

show 0 1 ' 

me 0 1 

it_this_object_s para train 
it 1/4 
this 1/4 
NAME 1/4 
the_objects_s 1/4 

the_objects_s forw train 
1 

the 0 o.s 0.5 
object 0 0 1 
objects 0 1 

that_is_;pos_of forw 
1 

that 0 1 
is 0 1 
POSmON 0 1 
of {) 1 
it_this_object_robot 0 1 
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noun_adj para train 
noun 1/2 
adjective 1/2 

reset_the_robot forw 
1 

reset 0 1 
the 0 1 
robot 0 1 

yes_no para train 
yes 1/2 
no 1/2 

ignore_it forw train 
1 

ignore 0 0.5 0.5 
it_this_sentence 0 1 

it_this_sentence para train 
it 0.5 
this_sentence 0.5 

this_sentence forw train 
1 

.this 0 0.5 0.5 
sentence 0 

Root para train 
find_obj 1/14 
move_obj 1/14 
rotate_obj 1/14 
what_attr_is 1/14 
is_it_? 1/14 
this_ where_is 1/14 
what_howmany _obj 1/14 
store_obj 1/14 
the_a_an_obj 1/14 
noun_adj 1/14 
ATTRIBUTE 1/14 
reset_the_robot 1/14 
yes_no 1/14 
ignore_it 1/14 
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STELLINGEN 

Behorende bij het proejschift 

Speech Recognition by Recursive Stocbastic Modellin'g 
door J J. Nijtmans 

1 Bij segmentatie van natuurlijke spraak dient nadrukkelijk 

kennis over de syntax gebruikt te worden, om met voldoende 

zekerheid de aan- of afwezigheid van segmentgrenzen vast te 

.kunnen stellen. 

(Dit proefschrift, hoofdstuk 3) 

2 Ben toestandsmachine waarbij een toestand meerdere symbolen kan 

produceren is op geen enkele wijze in conflict met de Markov­

keten theorie, daar altijd een nieuwe set van (samengestelde) 

symbolen gedefinieerd kan worden die direct samenhangt met de 

toestanden. 

(Dit proefsehrift, hoofdstuk 5) 

3 De term "Hidden Markov Model" moet slechts gezien worden als 

een defmitie, daar het woord "Hidden" triviaal is. 

(L.E. Baum, 'An Inequality and Associated Maximization 

Technique in Statistical Estimation for Probabilistic Functions 

of Markov Processes', Inequalities III, 1972, pp.l-8) 

4 Oebruik van digram of trigram taalmodellen is slechts correct 

bij talen met een zeer beperkt geheugen, en daarom ongeschikt 

voor algemene spraakherkenningssystemen (zoals SPHINX, Tangora). 

(K.F. Lee, Automatic Speech Recognition: The· Development of the 

SPHINX System, Boston, MA: Kluwer Academic, 1988. 

F. Jelinek, 'The Development of an Experimental Discrete Dicta­

tion Recognizer', Proc. IEEE, vol.73, no.ll, 1985, pp.1616-1624.) 



5 Gebruik van de entropy van een taal voor evaluatie van de 

complexiteit van een herkenningsprobleem is alleen correct voor 

constante woordlengte. Daarom is eigenlijk de entropy per 

eenheid van lengte (bijv. seconde of meter) een beter criterium. 

(M.M. Sondhi and S.E. Levinson, 'Computing Relative Redundancy 

to Measure Grammatical Constraint in Speech Recognition Tasks', 

Proc. IEEE ICASSP '78, pp.12-36) 

6 Zolang analoge simulatoren zoals SPICE niet in staat zijn 

ideale schak:elaars en ideale op-amps (Nullors) te modelleren, 

zijn betrouwbare simulaties van niet-ideale componenten zeker 

niet te verwachten. 

(A. Vladimirescu et al, SPICE Version 2G user's guide, Dept. of 

Electrical Engeneering and Computer Sciences, University of 

California, Berkeley, Ca., 94720.) 

7 Computers produceren uit zichzelf geen nieuwe fouten, maar 

vergroten slechts de gevolgen van menselijke fouten en onvol­

komenheden. 

8 Afschaffing van de militaire dienstplicht is politiek nood­

zak:elijk, maar economisch onverantwoord. 

9 De gelijkzwevende toonschaal is optimaal voor mathematici maar 

niet voor musici, daar de verschillende toonsoorten niet in 

gelijke mate in de muziek voorkomen. 

10 Zoals een computer in het algemeen geschikt is voor meer dan 

alleen spelletjes, is een accordeon geschikt voor meer dan al­

leen volksmuziek. 

(Kaoma: Lambada, James Last: Biskaya) 


