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School of Industrial Engineering and Innovation Sciences, Eindhoven University of

Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract

This paper studies a vehicle routing problem with soft time windows and
stochastic travel times. A model is developed that considers both transporta-
tion costs (total distance traveled, number of vehicles used and drivers’ total
expected overtime) and service costs (early and late arrivals). We propose
a Tabu Search method to solve this model. An initialization algorithm is
developed to construct feasible routes by taking into account the travel time
stochasticity. Solutions provided by the Tabu Search algorithm are further
improved by a post-optimization method. We conduct our computational
experiments for well-known problem instances. Results show that our Tabu
Search method performs well by obtaining very good final solutions in a
reasonable amount of time.
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1. Introduction

Traditionally, the Vehicle Routing Problem with TimeWindows (VRPTW)
aims to route vehicles such that all customers are served within their respec-
tive time windows. Mathematically, this is translated into a deterministic
arrival time moment of being in the time window or not. The latter is usu-
ally penalized depending on whether the vehicle is early or late. However,
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solutions of the deterministic routing models deteriorate once applied in real-
life problems where (especially) the travel times are stochastic (see Gendreau
et al. [1] for a review). Using stochastic travel times allows for a much richer
set of (stochastic) measures to evaluate whether the vehicle arrives in the
time windows or not. The definition and incorporation of these stochastic
measures in the VRPTW is the subject of this paper.

In practice, carrier companies and their customers have different concerns.
From the perspective of the carrier companies, the goal is to deliver the goods
to different customers as efficiently as possible. From the customers’ point
of view, the main concern is to reliably receive the deliveries on-time. In
this paper, our routing problem has soft time windows and stochastic travel
times, leading to stochastic arrival times. The latter are used to calculate
the service costs, defined as the measure of delivery reliability.

The described problem extends the classical Vehicle Routing Problem
(VRP) by considering stochastic travel times and soft time windows. The
VRP belongs to the class of NP-hard combinatorial optimization problems
(see Laporte [2] for an explanation). Small-sized instances of such problems
are usually handled by exact algorithms. However, metaheuristic algorithms
are widely used to solve medium- to large-sized instances. In this paper, we
solve the Solomon’s problem instances [3] effectively by a solution procedure
based on Tabu Search.

The two main contributions of this paper are described below.

1. Our paper proposes the first model that distinguishes between the
transportation costs and the service costs. Stochasticity in the travel
times plays a role in the calculations of both cost components. The
transportation costs are the true costs that the carrier company pays.
On the other hand, the intangible service costs are included to provide
reliability to the customers by limiting early and late arrivals. The
service cost component can be thought of as a surrogate for customer
service. Applying the generated model enables us to obtain meaningful
combinations of the two cost components, leading to different solution
options to the carrier companies to meet their priorities. A comprehen-
sive analysis is performed to examine the behavior and the particular
features of the solutions found.

2. We propose a solution approach that comprises three phases. In the
first phase, an initial solution is constructed. A number of heuristic
methods have been presented by Solomon [3] to build the initial routes
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for the VRPTW. We extend insertion heuristic I1 by including a crite-
rion related to the penalties resulting from the time window violations.
This solution is then improved with respect to the total transportation
cost, leading to the initial feasible solution. In the second phase, the
given initial solution is improved by a Tabu Search metaheuristic. The
algorithm given by Cordeau et al. [4] constitutes the base structure
of our Tabu Search method. The soft time windows for the deliveries
enable us to handle the time window violations either by the objective
function or by the constraints. In our model, these violations are taken
care of directly in the objective function. Therefore, we have a differ-
ent cost function from that given in [4] to evaluate the solutions. As
another difference from [4], we include a medium-term memory applica-
tion in our Tabu Search method. This application improves the quality
of the solutions by providing intensification in the promising parts of
the neighborhood. In the third phase, a post-optimization method is
applied to improve the solution obtained by the Tabu Search algorithm.
The post-optimization method adjusts the departure time of each al-
located vehicle from the depot to reduce the total service cost of the
corresponding route.

The remainder of this paper is organized as follows. In Section 2, we present
a literature review which deals with the stochastic versions of the VRP and
the VRPTW. In Section 3, we describe our model and motivations for the
VRPTW with stochastic travel times and soft time windows, and we discuss
the issues connected with the model. In Section 4, we explain the methods
used in the three phases of our solution approach. In Section 5, we present
the results of the Solomon’s problem instances solved using the methods
developed. Finally, we end the paper with conclusions and with suggestions
for future research.

2. Literature Review

There is a wide range of literature on the VRP as it is a highly relevant,
yet complicated problem. We refer to Laporte ([2], [5]) for exact, heuristic
and metaheuristic algorithms, and to Baldacci et al. [6] for recent exact algo-
rithms applied to the VRP. A related problem also frequently seen in practice
and studied is the VRPTW. In his seminal paper, Solomon [3] extended a
number of VRP heuristic methods for the VRPTW. The interested reader
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is referred to Bräysy and Gendreau ([7], [8]) and Desrosiers et al. [9] for an
overview of various solution methods applied to the VRPTW. Most of the
models developed for the VRP and the VRPTW in the literature considered
deterministic parameters such as deterministic travel times, demands and
service times.

A comprehensive survey on the stochastic VRP can be found in Gen-
dreau et al. [1]. The authors argued that uncertainty can be seen in various
components of the VRP: stochastic travel times, stochastic demands and/or
stochastic customers. In Laporte et al. [10], the VRP with stochastic travel
and service times was considered. The authors introduced three distinct for-
mulations based on stochastic programming and developed a branch-and-cut
approach. Kenyon and Morton [11] developed a solution procedure by in-
serting a branch-and-cut algorithm into a Monte Carlo solution approach to
solve large-sized problems effectively. Van Woensel et al. [12] studied the
VRP with the travel times resulting from a stochastic process due to the
traffic congestion. The developed queueing models were solved by means of
a Tabu Search metaheuristic. Stewart and Golden [13] studied the stochastic
VRP where uncertain customer demands were considered.

Stochastic versions of the VRPTW are introduced more recently. Ando
and Taniguchi [14] considered the VRPTW with uncertain travel times. The
objective was to minimize the total cost which included the penalty costs
due to the early and late arrivals, the operation costs and the fixed cost of
vehicles used. A genetic algorithm was proposed to solve the described prob-
lem. Russell and Urban [15] also studied the VRPTW where the travel times
were random variables with a known probability distribution. The number
of vehicles used and the total distance traveled were minimized along with
the penalties due to arrivals outside the time windows. The authors devel-
oped a Tabu Search method. The VRPTW with stochastic travel and service
times was studied by Li et al. [16]. Two formulations based on stochastic
programming were proposed. A heuristic algorithm based on Tabu Search
was developed to obtain the results effectively. The models in these stud-
ies placed emphasis on the customers and considered all cost components
together regardless of their relations and differences. Since efficiency plays
an important role in operations, we separate out the cost components into
transportation costs and service costs. We develop a one-stage model which
enables different combinations of these two cost components with respect to
the company preferences. Additionally, in our model the time window viola-
tions and the overtime of the drivers are handled by the objective function.
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A technique similar to that applied in Stewart and Golden [13] is used in our
study to calculate the penalties incurred for early and late servicing. Our
model takes into account penalties proportional to the expected duration of
the earliness and lateness derived from the arrival time distributions.

The classical routing problems and their stochastic versions have been
widely solved by applying the Tabu Search metaheuristic to obtain good so-
lutions within a reasonable time. The interested reader is referred to Glover
([17], [18]) for the details about this metaheuristic. Gendreau et al. ([19],
[20]) implemented the Tabu Search method for the VRP. Rochat and Taillard
[21] proposed the adaptive memory, which turned out to be very effective for
Tabu Search applications in the VRP. For the VRPTW, some implementa-
tions of the Tabu Search method come from Cordeau et al. [4], Garcia et al.
[22], and Taillard et al. [23]. Our Tabu Search implementation is based on
the algorithm given in [4]. We however apply a different function in the local
search algorithm to evaluate the solutions since the violations of the time win-
dows are handled by the objective function. In the process of evaluating the
solutions, the stochasticity of the problem is taken into consideration. Fur-
thermore, the Tabu Search algorithm is improved by adding a medium-term
memory which focuses the search on the promising solutions in the neighbor-
hood. This intensification mechanism operates by restarting from the best
feasible solution, and searching its neighborhood effectively by means of a
list which includes the moves previously applied from that solution. This
structure makes our medium-term memory application different from the in-
tensification approaches in which solutions are generated by extracting good
routes from high-quality solutions on-hand (see Rochat and Taillard [21]).

The interested reader is referred to Cordeau et al. [4], Rochat and Taillard
[21], Russell and Urban [15], and Taillard et al. [23] for a post-optimization
heuristic applied in the VRPTW. In [4] and [23], the authors used a heuristic
method developed by Gendreau et al. [24] for the traveling salesman problem
with time windows by modifying the GENIUS procedure (see Gendreau et al.
[25]). In the post-optimization phase of their heuristic, each node of a route
was successively removed and re-inserted to improve the solution on-hand.
As a post-optimization method, Rochat and Taillard [21] solved a set parti-
tioning model at the end of the diversification and intensification techniques
to improve the solution by using the routes already generated. In Russell and
Urban [15], a post-optimization method was applied to optimize the waiting
times at each customer by using a generalized reduced gradient method. In
this paper, we improve the solution obtained by Tabu Search by applying a
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post-optimization method which is based on adjusting the departure time of
each route from the depot, and is thus different from the post-optimization
methods given in the literature. In our approach, we do not change the
nodes, but the departure time of a route from the depot is repeatedly shifted
until the method does not provide any improvement in the total service cost
of that route.

3. Problem Statement and Model Formulation

A connected digraph G = (N,A) denotes the network in which N =
{0, 1, ..., n} is the set of nodes and A = {(i, j)|i, j ∈ N, i 6= j} is the set of
arcs. The depot is represented by node 0 and each node inN\{0} corresponds
to a distinct customer. Each customer has a known demand (qi ≥ 0), a fixed
service duration (si ≥ 0) and a soft time window ([li, ui], li ≥ 0, ui ≥ 0). The
time window at the depot, [l0, u0], corresponds to the scheduling horizon. We
assume that the service at the customers can start before or after the time
windows. If a vehicle arrives early at a customer, waiting until the customer
time window opens is not considered as an option. If a customer is served
outside its time window, then the company incurs penalties for early or late
servicing. Each arc (i, j) ∈ A has a weight dij which is the distance of that
arc. In addition, we assume that the probability distribution function of the
travel time on each arc (i, j) is known. The base location of the vehicles is
the depot and each vehicle v ∈ V is assumed to have the same capacity (Q).
The aim is to construct a set of vehicle routes at the minimum total cost by
fulfilling the following requirements:

• Each route is operated by a single vehicle and each customer is served
by one vehicle exactly once.

• Each vehicle route starts from the depot and ends at the depot.

• The total demand of the customers assigned to a vehicle route cannot
exceed the vehicle’s capacity.

We first define the notations used in the mathematical formulation of
the described problem. The decision variable xijv takes the value 1 if arc
(i, j) is covered by vehicle v and 0, otherwise. The vector x, where x =
{xijv|i, j ∈ N, v ∈ V }, is used to denote the assignments of the vehicles and
the sequences of the customers in these assignments (vehicle routes). We have
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two functions in the service cost component described as Djv(x) and Ejv(x).
These are the expected delay and the expected earliness at node j in case
it is visited by vehicle v, respectively. Ov(x) is the expected overtime of the
driver working on the route of the vehicle v. The calculations of the expected
values are directly linked with the routing decisions. These calculations are
described in Section 3.2 for a specific probability distribution.

The coefficients cd and ce can be thought of as the costs that the company
is charged for one unit of delay and for one unit of earliness, respectively. Note
that these coefficients are needed to balance late and early servicing. The
parameters ct and co are the costs that the carrier company has to pay for
one unit of distance and for one unit of overtime, respectively. Furthermore,
a fixed cost cf has to be paid by the company for each vehicle used.

The mathematical formulation is as follows:

min ρ
1

C1

(
cd
∑

j∈N

∑

v∈V

Djv(x) + ce
∑

j∈N

∑

v∈V

Ejv(x)

)

+(1− ρ)
1

C2


ct

∑

i∈N

∑

j∈N

∑

v∈V

dijxijv + cf
∑

j∈{N\0}

∑

v∈V

x0jv + co
∑

v∈V

Ov(x)




(1)

subject to
∑

i∈N

xikv −
∑

j∈N

xkjv = 0, k ∈ N \ {0}, v ∈ V, (2)

∑

j∈N

∑

v∈V

xijv = 1, i ∈ N \ {0}, (3)

∑

j∈N

x0jv = 1, v ∈ V, (4)

∑

i∈N

xi0v = 1, v ∈ V, (5)

∑

i∈N\{0}

qi
∑

j∈N

xijv ≤ Q, v ∈ V, (6)

∑

i∈S

∑

j∈S

xijv ≤ |S| − 1, S ⊆ N \ {0}, v ∈ V, (7)

xijv ∈ {0, 1}, i ∈ N, j ∈ N, v ∈ V. (8)
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The objective (1) is to minimize the total weighted cost. The set of
the constraints (2) ensures the conservation of flow for each vehicle at each
customer. The set of the constraints (3) states that each customer is visited
exactly once. The sets of the constraints (4)-(5) ensure that each vehicle route
originates from the depot and ends at the depot. The set of the constraints
(6) states that the total demand of the customers served by a vehicle cannot
exceed the capacity of the vehicle. The set of constraints (7) eliminates
subtours and the set of the constraints (8) is needed as we cannot have
partial services at the customers.

In this model, the parameter ρ is used to obtain alternative combinations
of the cost of servicing and the cost of transportation. As these cost compo-
nents (potentially) have different scales, we include two parameters (C1 and
C2) in the objective function to scale their values. The solution generated
by the initialization algorithm is improved by the Tabu Search method with
respect to only the total transportation cost, leading to the initial feasible
solution. Then, the scaling parameters for the total service cost (C1) and the
total transportation cost (C2) are calculated as follows:

C1 = cd
∑

j∈N

∑

v∈V

Djv(x̃) + ce
∑

j∈N

∑

v∈V

Ejv(x̃) and, (9)

C2 = ct
∑

i∈N

∑

j∈N

∑

v∈V

dijx̃ijv + cf
∑

j∈{N\0}

∑

v∈V

x̃0jv + co
∑

v∈V

Ov(x̃), (10)

where x̃ represents the assignments of the vehicles and the sequences of the
customers in the initial feasible solution. The variable x̃ijv takes the value 1
if arc (i, j) is covered by vehicle v in this solution and 0, otherwise. By using
C1 and C2 parameters, we can solve all VRPTW instances with a fixed set
of ρ values.

3.1. Properties of the Arrival Times

We consider stochastic travel times with a known probability distribution.
Suppose that Tij represents the time needed for traveling from node i to node
j by traversing the arc (i, j). As we have no waiting, the arrival time of vehicle
v at node j, denoted by Yjv, is described as follows:

Yjv =
∑

(l,k)∈Ajv

Tlk, (11)
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where Ajv represents the set of arcs which are covered by vehicle v until
node j. This calculation does not include the service times. As we have
deterministic service times, the time window at node j is shifted to the left
on the time horizon by the amount of the cumulative service time. The latter
(sjv) is the total time spent by the vehicle v for servicing at the nodes before
visiting node j. The mean and the variance of the arrival time at node j

which is visited by vehicle v immediately after node i are calculated by:

E[Yjv] = E[Yiv] + E[Tij ] and, (12)

Var(Yjv) = Var(Yiv) + Var(Tij), (13)

respectively.

3.2. Calculations with Gamma Distribution

The distributions of the travel times most commonly applied so far are
normal, log-normal, shifted gamma and gamma distributions (see Fan et al.
[26], Kaparias et al. [27], Li et al. [16] and Russell and Urban [15]). Assume
that T is the random travel time spent for traversing one unit of distance and
that T is Gamma distributed with shape parameter α and scale parameter
λ. Then, the probability density function f and the cumulative distribution
function F are given as follows:

f(t) =
(e−t/λ)(t)α−1

Γ(α)λα
, (14)

F (δ) = Prob{t ≤ δ} = Γα,λ(δ) =

∫ δ

0

(e−z/λ)(z)α−1

Γ(α)λα
dz, (15)

where t ≥ 0, δ ≥ 0 and Γ(α) =
∫∞

0
e−rrα−1dr. For other distribution types,

similar expressions can be derived. Note that we obtain different Coefficient
of Variation (CV) values of the travel time per unit distance by using different
values of α and λ parameters. Since α and λ are the parameters associated
with T , Tij is Gamma distributed with parameters αdij and λ obtained by
scaling T with respect to the distance of the arc (i, j). The mean and the
variance of Tij are calculated accordingly as follows:

E[Tij ] = αλdij, (16)

Var(Tij) = αλ2dij. (17)
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By defining the arrival times as in Equation (11), we obtain Gamma dis-
tributed arrival times. The shape and the scale parameters of Yjv are then
given as follows:

αjv = α
∑

(l,k)∈Ajv

dlk, (18)

λjv = λ. (19)

The expected delay, Djv(x) is calculated as follows with a similar proce-
dure to that given in Dellaert et al. [28]:

Djv(x) =

∫ ∞

u′

j

(z − u′
j)
(e−z/λjv)(z)αjv−1

Γ(αjv)(λjv)αjv
dz,

=

∫ ∞

u′

j

(e−z/λjv)(z)αjv

Γ(αjv)(λjv)αjv
dz − u′

j

∫ ∞

u′

j

(e−z/λjv)(z)αjv−1

Γ(αjv)(λjv)αjv
dz,

=αjvλjv(1− Γαjv+1,λjv
(u′

j))− u′
j(1− Γαjv,λjv

(u′
j)), (20)

where u′
j is the upper bound of the shifted time window at node j. Similarly,

the expected earliness, Ejv(x) is calculated by

Ejv(x) = l′jΓαjv,λjv
(l′j)− αjvλjvΓαjv+1,λjv

(l′j), (21)

where l′j is the lower bound of the shifted time window at node j. The
expected overtime of the driver working on the route of vehicle v is calculated
with respect to the arrival time of that vehicle at the depot:

Ov(x) = α0vλ0v(1− Γα0v+1,λ0v
(w′))− w′(1− Γα0v ,λ0v

(w′)), (22)

where w′ is the agreed labor shift time (w) less the total service time spent
by the vehicle v for servicing at all nodes on its route (s0v). The adjustment
to the value of w is needed due to the arrival time calculation.

If w ≤ s0v, then Ov(x) is calculated by:

Ov(x) = E[Y0v] + s0v − w. (23)

We have similar conditions for the bounds of the time windows at customers.
If lj ≤ sjv at customer j, then Ejv(x) will be equal to 0 since it is impossible
to be early for that customer. However, if uj ≤ sjv at customer j, then
Djv(x) is calculated as follows:

Djv(x) = E[Yjv] + sjv − uj. (24)
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4. Solution Methods

We develop a solution method based on a Tabu Search metaheuristic.
Algorithm 1 gives the structured overview of our solution approach.

1. Obtain the Initial Feasible Solution (IFS):

(a) Construct a solution by using the initialization algorithm
(b) Improve this solution through the Tabu Search method with

respect to the total transportation cost

2. Calculate C1 and C2 according to IFS and use these values in
following steps

3. Improve IFS with respect to the total weighted cost by using the
Tabu Search method

4. Apply the post-optimization method to the generated solution

Algorithm 1: Structured overview of the solution approach

4.1. Initialization Algorithm

We extend the Solomon’s insertion heuristic I1 [3] to construct a feasible
solution by considering the expected violations of the time windows.

Let C denote the set of customers not yet covered by any route. Note
that the method starts from a set C = N \{0}. The criterion applied for the
route initialization is the furthermost customer c ∈ C from the depot. At
each iteration a new customer is inserted into the route. Let m1(i, k, j) and
m2(i, k, j) denote the measures used to evaluate the insertion of customer k
between adjacent customers i and j on the current route. The calculations
of these measures are as follows:

m1(i, k, j) = β1m11(i, k, j) + β2m12(i, k, j) + β3m13(i, k, j), (25)

m2(i, k, j) = ηE[T0k]−m1(i, k, j), (26)

where
m11(i, k, j) = dik + dkj − γdij, (27)

m12(i, k, j) = E[bjk ]− E[bj], (28)

m13(i, k, j) = cd

(
∑

h∈H

(Dhv(rk)−Dhv(r))

)
+ ce

(
∑

h∈H

(Ehv(rk)− Ehv(r))

)
,

(29)
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where β1 ≥ 0, β2 ≥ 0, β3 ≥ 0, η ≥ 0, γ ≥ 0 and β1 + β2 + β3 = 1. E[T0k]
is the expected travel time from depot to customer k. cd and ce are the
coefficients used by the service cost component in the proposed model (see
Section 3). E[bj] is the expected time to begin service at customer j which is
calculated with respect to the sequence of the customers in the current route.
E[bjk ] is the new expected time to begin service at customer j, given that
customer k is on the route. H is the set of customers which are visited after
customer i on the current route. r and rk are the vectors of the customer
sequence in the route before customer k is inserted and after customer k is
inserted, respectively. The vehicle that covers the current route is denoted
by v. Note that the expected time window violations due to the insertion
of customer k are taken into consideration in m13(i, k, j). Furthermore, the
criteria proposed in the heuristic I1 which include time aspects are modified
in our procedure in accordance with the stochastic nature of the problem.
These adjustments can be seen in the measures given by Equations (26) and
(28).

The best insertion place of customer k is the one that minimizes the value
of m1(i, j, k) over all feasible insertion places. This means that the weighted
combination of the extra distance, extra time and extra penalties (incurred
due to the insertion of customer k) is minimized. Different sets of weight
values (β1, β2 and β3) are used to construct different combinations. The best
feasible customer for the current route is the one that maximizes the value
of m2(i, k, j) over all feasible customers. In this way, the benefit gained by
serving a customer on the current route instead of serving this customer by
a single vehicle is maximized.

The available vehicle capacity is checked to indicate the customers feasible
to be inserted into the current route. The time feasibility conditions given
in Solomon [3] are checked to determine the feasible insertion places for each
indicated feasible customer. Although the latter feasibility check is no longer
necessary in our model formulation, we keep this part in the initialization
procedure as numerical results show that it contributes to a good solution
quality.

4.2. Tabu Search Algorithm

The structure of the Tabu Search method is based on the procedure given
by Cordeau et al. [4]. We modify this procedure with respect to the charac-
teristics of our problem and extend it in terms of intensification mechanisms.
In the following, we first introduce the generic features of the developed
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method. The differences of the method with the procedure given in [4] are
highlighted.

Our Tabu Search algorithm always starts with a feasible solution. There-
fore, it is guaranteed that the algorithm will end with a feasible solution.
These conditions make the algorithm different from the procedure given in
[4] in terms of the starting technique and thus the feasibility situation of
the solution obtained at the termination. At each iteration, a neighborhood
of the current solution is constructed. In this neighborhood, a solution is
selected as the new current solution in accordance with some criteria. Then,
the algorithm continues from this new solution. Note that both feasible so-
lutions and infeasible solutions with respect to the capacity constraint are
taken into consideration during the search in the neighborhood.

A solution y is a set of p routes which may be infeasible with respect to
the vehicle capacity constraint. The total load of its routes in excess of the
vehicle capacity is represented by q(y). Let z(y) denote the objective function
value of the solution y. This value corresponds to the total transportation
cost in Step (1b), and the total weighted cost in Step (3) of Algorithm 1.
Then, the cost function which is used to evaluate the solutions is defined as
follows:

c(y) = z(y) + νq(y), (30)

where ν is a positive parameter. This parameter is modified at each iteration.
The total violation of the time windows and the drivers’ work hours are
included in the cost function by means of z(y). Therefore, solutions are
evaluated by a cost function which has a different relaxation mechanism
from the technique given in [4].

The neighborhood g(y) of the solution y is constructed by employing two
types of relocation operators defined as follows:

• Relocate a customer by changing its location within the route.

• Relocate a customer by deleting it from a route and inserting it into
another route.

Suppose that in the current iteration a solution generated by relocating the
customer i is selected as the new current solution. The customer i is then
added to the tabu list to prevent its relocation for the next ϑ iterations.
However, the tabu status of a customer is overridden if the aspiration criterion
is satisfied: a solution which is generated by relocating a tabu customer can
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be selected by the algorithm if this solution has a better cost value than the
best cost value obtained up to the current iteration.

As a diversification mechanism, a supplementary cost component is used
during the search in the neighborhood. Suppose that y′ ∈ g(y) and c(y′) ≥
c(y). Under these conditions, the additional cost of the solution y′ is cal-
culated by a function with respect to the features of that solution. This
supplementary cost is then added to c(y′) to diversify the search. We use
a similar function to that given in [4] to calculate the supplementary costs.
In this function, the intensity of the diversification is adjusted by a constant
parameter (µ). Note that for the diversification mechanism, we take into
consideration the customers relocated during the search instead of the added
attributes to the solution since we have a different tabu list structure.

The process outlined in the following is repeated at most θ times. At each
iteration, our algorithm selects a non-tabu solution in the neighborhood of
the current solution which has a better cost function value than the cost
function value of the current solution. If such a solution cannot be found
by the algorithm, then the best non-tabu solution in this neighborhood is
chosen. Note that we apply the first selection criterion to have an effective
Tabu Search algorithm. The solution selected as the new current solution
is then checked for the best feasible solution criteria. In case these criteria
are satisfied, the algorithm updates the best feasible solution obtained so
far. In the algorithm, the parameter τ is used as a secondary terminating
criterion. If the best feasible solution is not updated for τ iterations where
τ < θ, the algorithm is terminated. In our Tabu Search procedure, a medium-
term memory is applied as an intensification mechanism. If the best feasible
solution is not updated for a specific number of iterations, it becomes the
new current solution. The previous moves applied from the best feasible
solution have been recorded by a list. By means of these recorded moves, the
search can now be directed from the non-promising regions to the promising
regions in the neighborhood. We conducted a number of preliminary tests to
measure the effect of our medium-term memory. Results indicate that this
mechanism improves the solution quality by 1-2% on average, over carrying
out Tabu Search without medium-term memory, with a modest increase in
the solution time. Our Tabu Search algorithm with the applications of the
secondary terminating criterion and the intensification mechanism extends
the procedure given in [4]. The steps of our Tabu Search procedure are
summarized in Algorithm 2.
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Set y as the given initial feasible solution
Set y∗ := y and z(y∗) := z(y)
Set κ := 1, stop := 0
while κ ≤ θ and stop = 0 do

Choose the first solution y′ ∈ g(y) that satisfies c(y′) < c(y) and is
not tabu or satisfies the aspiration criterion
if Such a solution cannot be found then

Choose a solution y′ ∈ g(y) that minimizes c(y′) value and is
not tabu

end

if y′ is feasible and z(y′) < z(y∗) then
Set y∗ := y′ and z(y∗) := z(y′)

end

if y∗ is not updated for
√
κ iterations then

Set y := y∗ and c(y) := c(y∗)
Update the tabu list accordingly

end

else
Set y := y′ and c(y) := c(y′)

end

if q(y) 6= 0 then
Set ν := ν*(1 + ϕ)

end

else if q(y) = 0 then
Set ν := ν/(1 + ϕ)

end

if y∗ is not updated for τ iterations then
Set stop := 1

end

Set κ := κ+ 1
end

Algorithm 2: Tabu Search algorithm
In this algorithm, the parameter ϕ is used to modify the value of the

parameter ν at each iteration. The current solution is represented by y; y∗

and z(y∗) are used to denote the best feasible solution found by the algorithm
and its corresponding objective function value, respectively.

15



4.3. Post-optimization Method

In the last step of Algorithm 1, a post-optimization method is applied.
Initially, all vehicle routes in the given solution start from the depot at time
0. In our post-optimization method, the departure time of each vehicle route
from the depot is shifted iteratively by the amount of M minutes until no
improvement in the total weighted cost of that route is seen. In this way,
the balance between early and late servicing is improved. In addition, a
reduction is provided in the total service cost component in the objective
function. According to results of preliminary tests, we observe that our post-
optimization method reduces the total service cost with a ρ value of 0.5 by
approximately 21% on average. This reduction leads to an improvement in
the objective function value by approximately 1.3% on average.

5. Computational Results

We experiment with sets from Solomon [3]. Each VRPTW instance con-
tains one depot and 100 customers. Capacity of all vehicles (Q) is 200. For
each instance, we apply different CV values of the travel time per unit dis-
tance to compare solutions with respect to the variability. In all experiments,
the expected travel times are equal to the corresponding Euclidean distances.

We set w = 480, ρ = 0.00, 0.25, 0.50, 0.75, 1.00, M = 15, and (cd, ce, ct,
cf , co) are equal to (1.00, 0.10, 1.00, 400, 5/6), respectively. The algorithms
are coded in JAVA and all experiments are run on an Intel Core Duo with
2.93 GHz and 4 GB of RAM.

5.1. Constructing Initial Feasible Solutions

In our initialization algorithm, we use the parameters given by Table 1,
which leads to 38 runs in total. For the CV value given in this table, the
corresponding parameters (α, λ) are set to (1.00, 1.00). In Step (1a) of Algo-
rithm 1, the initialization algorithm selects the solution with the minimum
total transportation cost among 38 solutions to construct IFS. In addition
to IFS, two more types of solutions are used as an alternative starting point
in the second phase. One type of these solutions (AIFS1) is generated by
our initialization algorithm by selecting the solution with the minimum to-
tal weighted cost among 38 solutions. The second type of the alternative
initial solutions (AIFS2) is based on the deterministic optimal/best-known
solutions. The latter solutions, which have been reported in the literature,
are the optimal/best-known solutions provided for the well-known VRPTW
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instances with deterministic parameters (see Desaulniers et al. [29] and Bal-
dacci et al. [30] for optimal solutions of nine previously open instances).
These solutions are evaluated under travel time stochasticity by having soft
time windows to calculate their cost components.

Table 1: Parameters used by initialization algorithm to construct starting solutions

β1 1.00 0.00 0.50 0.80 0.00 0.40 0.60 0.00 0.30 0.40 0.00
β2 0.00 1.00 0.50 0.00 0.80 0.40 0.00 0.60 0.30 0.00 0.40
β3 0.00 0.00 0.00 0.20 0.20 0.20 0.40 0.40 0.40 0.60 0.60

β1 0.20 0.20 0.00 0.10 0.10 0.00 0.05 0.00 γ 1.00 1.00
β2 0.20 0.00 0.20 0.10 0.00 0.10 0.05 0.00 η 1.00 2.00
β3 0.60 0.80 0.80 0.80 0.90 0.90 0.90 1.00 CV 1.00 1.00

5.2. Parameter Calibration in Tabu Search Method

We conduct a number of preliminary tests to determine the most appro-
priate values of the parameters used in Tabu Search method. To calibrate
our parameters, we follow an approach similar to Cordeau et al. [31]. Exper-
iments are carried out successively where different values of one parameter
are tested by leaving the values of other parameters unchanged. We obtain
three sets of results by testing µ, ϕ, and ϑ over the intervals [0.005,0.025],
[0.25,1.25], and [5log10|N |,15log10|N |], respectively. In each set, we observe
that using different values of the parameter tested does not lead to significant
variability in the results. Moreover, the most appropriate values found by
Cordeau et al. [4] provide very good final solutions in a reasonable amount
of time in our setting as well. Therefore, we set the values of µ, ϕ, and ϑ

to 0.015, 0.5, and the nearest integer to 7.5log10|N |, respectively (following
Cordeau et al. [4]).

Recall that the parameter ν is dynamically adjusted at each iteration.
We set its initial value to 1 which is a reasonable cost to charge one unit of
capacity violation.

In Step (1b) of Algorithm 1, (θ, τ) are (500, 100) and (α, λ) are (1.00,
1.00). In Step (3), (θ, τ) are (2000, 500) and (α, λ) are (16, 0.0625), (1.00,
1.00) and (0.0625, 16). Three different CV values are used in the latter step.
Accordingly, the objective function value of each initial solution is calculated
with respect to the applied CV value.

17



5.3. Results

Table 2 provides the details of the initial feasible solutions, solutions
generated by Tabu Search and final solutions obtained by post-optimization
method for all sets where ρ = 0.50 and CV = 1.00. Note that the values of
Transportation Cost (TC) and Service Cost (SC), Objective Function Values
(OFV), CPU times, and percentages of improvement in SC component pro-
vided by post-optimization method represent the average values calculated
over all instances in the set considered. CPU times are reported in seconds.
We do not report the computational time spent by post-optimization method
to improve the solution found by Tabu Search method since this value is next
to 0 for each instance.

These results indicate that our Tabu Search method performs well in dif-
ferent network structures and obtains very good solutions in a reasonable
amount of time. Moreover, post-optimization method provides very signifi-
cant improvements in SC component. With respect to the solutions generated
by Tabu Search method, all best results of RC1, RC2, R1 and R2 sets can be
found by starting with IFS. With respect to the final solutions obtained by
post-optimization method, all best results of RC1, R1 and R2 can be found
by starting with IFS. For C1 and C2 sets, all best results can be generated
by starting with AIFS2. The reason behind this situation is explained in
Section 5.3.4.

In what follows, we discuss different aspects in detail.
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Table 2: Details of solutions for all sets with ρ = 0.50 and CV = 1.00

Initial Solution Solution of Tabu Search Final Solution Imp.% in SC
Set Type TC SC OFV CPU TC SC OFV CPU SC OFV component
RC1 IFS 4934.35 1298.89 1.00 348.50 5144.95 219.63 0.61 1171.63 219.52 0.61 0.05
RC1 AIFS1 6350.16 145.99 0.70 30.63 6180.57 54.66 0.65 1076.13 53.36 0.65 2.38
RC1 AIFS2 6338.13 91.87 0.68 0.88 5982.91 49.00 0.62 1045.63 47.69 0.62 2.68
RC2 IFS 2291.92 1956.71 1.00 391.38 2690.60 547.69 0.71 884.50 483.81 0.69 11.66
RC2 AIFS1 3226.93 557.19 0.85 139.75 2813.39 344.71 0.69 1023.38 313.20 0.68 9.14
RC2 AIFS2 3522.90 1322.66 1.10 0.75 2927.68 657.99 0.79 969.38 512.83 0.75 22.06
R1 IFS 4559.86 1779.04 1.00 376.83 4735.04 362.93 0.61 1115.08 362.93 0.61 0.00
R1 AIFS1 6034.00 155.08 0.71 32.67 5817.22 78.83 0.66 1057.42 77.61 0.66 1.55
R1 AIFS2 6478.46 124.59 0.74 0.58 5891.12 62.66 0.66 1167.92 61.24 0.66 2.25
R2 IFS 2233.84 1897.48 1.00 362.00 2573.10 316.82 0.64 925.45 272.43 0.63 14.01
R2 AIFS1 2923.98 533.05 0.79 162.55 2583.00 279.72 0.64 1077.64 258.52 0.63 7.58
R2 AIFS2 3096.19 1167.87 0.99 0.55 2718.87 472.26 0.72 1102.18 381.35 0.69 19.25
C1 IFS 9322.88 4656.92 1.00 359.67 9721.57 137.79 0.53 934.56 94.80 0.53 31.20
C1 AIFS1 9832.69 322.10 0.56 46.11 9583.57 140.46 0.53 985.22 75.97 0.52 45.92
C1 AIFS2 9018.69 17.89 0.49 0.56 9031.96 7.69 0.49 695.78 6.88 0.49 10.55
C2 IFS 8787.75 11626.05 1.00 346.75 9044.28 219.01 0.52 894.50 123.18 0.52 43.75
C2 AIFS1 9285.86 1876.27 0.61 168.63 9082.55 324.11 0.53 963.75 230.87 0.53 28.77
C2 AIFS2 8581.41 12.66 0.49 0.63 8581.63 9.88 0.49 634.50 9.66 0.49 2.25
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5.3.1. Effects of Initial Feasible Solutions

Within each set, the final solutions obtained are assessed with respect to
the average values calculated for each of the 3 CV and 5 ρ values, leading
to 15 results for each set. Table 3 provides the number of best results found
by starting with IFS, and its superiority over AIFS1 and AIFS2 with respect
to the average objective function values (average weighted costs) of final
solutions.

Table 3: Superiority of IFS over AIFS1 and AIFS2

# of best sol. Sup. of IFS over AIFS1 Sup. of IFS over AIFS2

Set starting with IFS Best Worst Ave. Best Worst Ave.
RC1 5 0.10 0.04 0.07 0.07 0.01 0.04
RC2 13 0.02 0.01 0.01 0.33 0.03 0.14
R1 9 0.11 0.01 0.05 0.12 0.03 0.07
R2 14 0.02 0.01 0.01 0.25 0.01 0.10

According to the average objective function values, all best results out of
15 final solutions of the C1 set and all best results out of 15 final solutions of
the C2 set can be generated by starting with AIFS2. Comparing final solu-
tions according to the starting points, we observe that the average weighted
costs of the final solutions obtained by starting with IFS are higher than the
best results, 3% on average both in C1 problem instances and in C2 problem
instances. Additionally, we may not have the deterministic optimal solutions
of real-life problems. Therefore, we conclude that it is reasonable to start
with IFS in our Tabu Search.

5.3.2. Effects of CV and ρ Values

The following figures represent the average service and average trans-
portation costs of the final solutions of instances in RC, R, and C sets where
Tabu Search algorithm starts with IFS. Note that in all these figures, within
a CV value, ρ values are increasing along the axis of the average transporta-
tion costs. In other words, for all sets the average transportation costs are
increasing in all cases as the value of ρ increases within the same CV value.

In the RC1 set (Figure 1(a)), the average service costs are increasing in all
cases as the value of CV increases within the same ρ value. As the value of ρ
increases within the same CV value, the average service costs are decreasing
in 23 cases out of 30. In the RC2 set (Figure 1(b)), the average service costs
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Figure 1: Average cost values of the final solutions of RC sets obtained by starting with
IFS
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average service costs are decreasing in all cases.
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Figure 2: Average cost values of the final solutions of R sets obtained by starting with IFS

In the R1 set (Figure 2(a)), the average service costs are increasing in all
cases as the value of CV increases within the same ρ value. As the value of ρ
increases within the same CV value, the average service costs are decreasing
in 20 cases out of 30. In the R2 set (Figure 2(b)), the average service costs
are increasing in 13 cases out of 15 as the value of CV increases within the
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same ρ value. As the value of ρ increases within the same CV value, the
average service costs are decreasing in all cases.
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Figure 3: Average cost values of the final solutions of C sets obtained by starting with IFS

In the C1 set (Figure 3(a)), the average service costs are increasing in 14
cases out of 15 as the value of CV increases within the same ρ value. As the
value of ρ increases within the same CV value, the average service costs are
decreasing in 27 cases out of 30. In the C2 set (Figure 3(b)), the average
service costs are increasing in 9 cases out of 15 as the value of CV increases
within the same ρ value. As the value of ρ increases within the same CV
value, the average service costs are decreasing in 25 cases out of 30.

5.3.3. Effects of Considering Stochastic Travel Times

We compare our final solutions obtained by starting with IFS with the
deterministic optimal/best-known solutions that correspond to AIFS2 in our
solution approach. We focus on the cases where ρ = 0.50 and CV = 4.00.
Figures 4(a), 5(a) and 6(a) represent the comparison of the customers’ ex-
pected arrival times for the instances RC103, R201 and RC202, respectively.
Moreover, Figures 4(b), 5(b) and 6(b) provide the comparison of the cus-
tomers’ sequences for the instances RC103, R201 and RC202, respectively.

From these figures, we observe some extreme situations in which cus-
tomers are served much later (or earlier) in our final solutions than in AIFS2.
Some examples of the customers that are visited later in our solutions are
customers 61, 12 and 81 in Figures 4(a), 5(a) and 6(a), respectively. These
customers are served by AIFS2 too early which either leads to very high
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Figure 4: Comparison of the final solutions with AIFS2 for the instance RC103

expected earliness values or prevents serving other customers in their routes
reliably and efficiently. In our final solutions, these exemplified customers are
visited within their time windows. Thus, we have reasonable expected delay
and expected earliness values. In addition, shifting these customers in routes
allows us to construct the final solutions which have lower total weighted
costs than AIFS2. Some examples of the customers that are visited earlier in
our solutions are customers 90 and 94 in Figures 4(a) and 6(a), respectively.
These customers have only due dates for deliveries because of the fact that
the lower bound of their time windows is 0. Therefore, giving precedence to
such customers in routes leads to very low expected delay values.

Note that Figures 4(b), 5(b) and 6(b) include the segments which are
parallel to the 45-degree line. These segments correspond to parts of routes
(sub-routes) that are constructed both by our final solutions and by AIFS2.
These sub-routes are visited by our solutions earlier (or later) to have reliable
and efficient routes.

5.3.4. Effects of Network Structures

Recall that AIFS2 provides the best results for all instances in C1 and C2
sets with respect to the average weighted costs. This is due to the fact that
the time windows in these instances have been determined according to the
arrival times at the customers (see Solomon [3]). Therefore, the deterministic
optimal results have very low service costs, leading to very low service costs
in the final solutions (except the case with ρ = 0 where the service costs do
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Figure 5: Comparison of the final solutions with AIFS2 for the instance R201

not play a role in the objective function). The deterministic optimal solutions
have low total distances and low number of vehicles as well since their aim
is to minimize the total distance for the VRPTW and the customers appear
in clusters in C sets.

The service time of each customer is given as 90 time units in C sets
whereas it is equal to 10 time units both in R and in RC sets. Accordingly, the
total expected overtime values are very high in all initial feasible solutions and
in their final solutions of the instances in C sets. The effect of this situation
can be seen in Figure 3(a) and Figure 3(b) in the average transportation cost
values.

RC2, R2, and C2 sets have instances with wide time windows compared
to the time windows of instances in RC1, R1, and C1 sets. Due to this
structural property, the average service and transportation costs of RC2, R2,
and C2 sets are less sensitive to the variability in the travel times than those
of RC1, R1, and C1 sets, respectively (see Figures 1(a), 1(b), 2(a), 2(b), 3(a),
and 3(b) for effects of different network structures).

5.4. Managerial Insights

The VRP studied in this paper originates by the fact that the stochasticity
in the travel times should be taken into account to have reliable routing
decisions. Having a small increase in the total transportation cost, we observe
a significant decrease in the total service cost. For example, focusing on cases
where ρ takes the value 0.25 from 0.00 within CV = 0.25, we see that a 4.37%
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Figure 6: Comparison of the final solutions with AIFS2 for the instance RC202

increase in the total tranportation cost on average leads to a 77.08% decrease
in the total service cost on average over all problem instances. A manager
might take the advantage of a significant service cost reduction by having
a very small increase in the transportation cost with the same number of
vehicles.

6. Conclusions and Future Research

Considering reliability and efficiency in a stochastic way in the VRPTW
is important as it extends the current body of knowledge closer to the real-
life environment. Clearly, assuming a deterministic and static world leads to
suboptimal solutions which need to be further improved in the real-life appli-
cations. In this paper, we focus on a vehicle routing problem with soft time
windows and stochastic travel times. Our aim is to construct reliable and
efficient routes by means of the stochastic measures defined in this study. We
propose a model that obtains meaningful combinations of the transportation
costs and the service costs with respect to the carrier companies’ priorities.
Additionally, we propose a solution approach with three main phases to solve
our model. In the first phase, an initial feasible solution is constructed in two
stages (IFS). This solution is improved by applying a Tabu Search method
in the second phase. Finally, a further improvement is provided by a post-
optimization method.
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We apply our solution approach to the experiments conducted for well-
known problem instances which have different structures. We test our Tabu
Search algorithm by starting with distinct initial solutions. Results show that
the Tabu Search method performs well in each network structure and provides
very good final results in a reasonable amount of time. We find that most of
the best results are obtained by improving the IFS. The network structure has
a significant effect on the performance of the initial solutions with respect to
their corresponding final solutions. Finally, we analyze the effect of variability
on the service costs and the effect of the priority of reliability on two main
cost components. We observe that the variability in the travel time per unit
distance has a direct effect on the cost of servicing. In addition, our model is
very successful to create various solution options with respect to the company
preferences.

Future research includes the time-dependency of the travel times for the
same VRPTW setting. In real-life applications, it is important to consider
time-dependent travel times since speeds vary throughout the day due to the
events like accidents or congestion during the rush hours. By including this
property, we have both stochastic and dynamic travel times. This structure
requires adjustments in the algorithms with respect to the distributions of
the arrival times.
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[1] Gendreau M, Laporte G, Séguin R. Stochastic vehicle routing. Eur J
Oper Res 1996;88:3–12.

[2] Laporte G. What you should know about the vehicle routing problem.
Nav Res Log 2007;54:811–9.

[3] Solomon MM. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Oper Res 1987;35(2):254–65.

26



[4] Cordeau J, Laporte G, Mercier A. A unified tabu search heuristic for ve-
hicle routing problems with time windows. J Oper Res Soc 2001;52:928–
36.

[5] Laporte G. The vehicle routing problem: an overview of exact and
approximate algorithms. Eur J Oper Res 1992;59:345–58.

[6] Baldacci R, Toth P, Vigo D. Exact algorithms for routing problems
under vehicle capacity constraints. Ann Oper Res 2010;175(1):213–45.
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