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Abstract

Color over Angle (CoA) variation in the light output of white phosphor-converted LEDs is a common problem

in LED lighting technology. In this article we propose an inverse method to design an optical element that

eliminates the color variation for a point light source. The method in this article is an improved version of an

earlier method [1], and provides more design freedom. We derive a mathematical model for color mixing in a

collimator and present a numerical algorithm to solve it. We verify the results using Monte-Carlo ray tracing.

1 Introduction

LED is a rising technology in the field of lighting. In the past, LEDs were only suitable as indicator lights,

but the enormous improvements in energy efficiency, cost and light output now allow the use of LEDs for

lighting applications [2]. Additionally, LED lighting benefits from low maintenance cost and long lifetime.

Because LED is a rising technology, companies and researchers are constantly searching for methods to

reduce the production cost and increase the efficiency, light output and light quality of LED-based lamps.

An important issue for white LED lamps is color variation of the emitted light. This is caused by color

variation in the light output of the most common type of white LED, the phosphor-converted LED. This

type of LED consists of a blue LED with on top a so-called phosphor layer which converts part of the blue
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light into yellow and red. The resulting output is white light. The distance that a light ray travels through

the phosphor depends on the angle of emission. As a result, the light emitted normal to the LED surface

is more bluish, while the light emitted nearly parallel to the surface is more yellowish [3, p. 353-357]. This

phenomenon is called Color over Angle (CoA) variation.

A lot of research has been done to reduce this color variation. Introduction of bubbles in the phosphor

layer causes scattering of light, reducing the color variation [4]. Another common method is the application

of a dichroic coating on the LED [5]. However, these methods reduce the efficiency of the LED and increase

the production costs. Wang et al. [6] proposed a modification of the optics on the LED to improve the

color uniformity. In the case of a spot light, the LED is combined with a collimator. A collimator is an

optical component that reduces the angular width of the light emitted by the LED. A common technique is

to add a microstructure on top of the collimator. However, this microstructure introduces extra costs in the

production process of the collimator, makes the collimator look unattractive and broadens the light beam.

None of the methods mentioned above rigorously solves the problem of color variation, and all methods

reduce the efficiency of the optical system. In earlier work [1], we introduced an inverse method to design

a specific type of collimator, the so-called TIR (total internal reflection) collimator. The TIR collimator

designed with this method mixes light from a point source such that the color variation is completely

eliminated. The collimator requires no microstructures nor scattering techniques. However, the inverse

method left very little design freedom for optical designers. An optical designer wants to influence the height

and width of the collimator, for example, to fit it into the available space in a lamp design. Also, optical

designers want a color mixing collimator which resembles a standard collimator as closely as possible. The

inverse method introduced in this paper is an improvement of the method introduced in [1]. The collimator

has three free surfaces instead of two. As a result, the improved method offers more design freedom, and

it is nearly impossible to distinguish the resulting collimator with the naked eye from a collimator without

color correction.

The contents of this paper is the following. First we give a thorough introduction to inverse methods for

optical systems and the theory of color mixing in Section 2. In Section 3 we explain the improved inverse

method. Section 4 describes three examples where the new method is used. Finally, we end with concluding

remarks in Section 5.
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2 Design of a TIR collimator using inverse methods

A TIR collimator is a rotationally symmetric lens, usually made of a transparent plastic like polycarbonate

(PC) or polymethyl methacrylate (PMMA), that is used to collimate the light of an LED into a compact

beam. A profile of a TIR collimator can be seen in Figure 1. The design procedure using inverse methods

consists of two steps: first we choose a relation between the angles t of rays leaving the LED and the angles θ

of rays leaving the collimator, the so-called transfer functions. Subsequently we use these transfer functions

to calculate the free surfaces of the TIR collimator such that the light is redirected according to the relation

defined by the transfer functions. In Figure 1 these free surfaces are denoted by A, B and C.

2.1 Source and target intensities

The first requirement that determines the choice of the transfer functions is the intensity pattern of the light

emitted from the TIR collimator. Let I(t, u) [lm/sr] be the intensity distribution of the light source. The

unit lm stands for lumen, and is the unit to denote energy flux corrected for the sensitivity of the eye at

different wavelengths, and sr stands for steradian, the unit of solid angle. The angle t ∈ [0, π/2] is the angle

with respect to the z-axis (inclination), and u ∈ [0, 2π) is the angle that rotates around the z-axis (azimuth).

Because of the symmetry of the system, the intensity I(t, u) is independent of u and denoted by I(t). We

introduce an effective intensity I(t), which is the flux per rad through the circular strip [t, t + dt] on the

unit sphere divided by 2π. We calculate I(t) by integrating I(t) over the angle u:

I(t) =
1

2π

∫ 2π

0

I(t) sin(t) du = I(t) sin(t). (1)

The effective intensity has unit [lm/rad]. For an LED, the effective intensity is typically positive for

t ∈ (0, π/2).

The light emitted from the TIR collimator has a desired pattern in the far field, meaning that the TIR

collimator itself can be considered a point source. The desired intensity profile is denoted by G(θ, φ) [lm/sr],

where θ ∈ [0, θmax] is the inclination for some maximum inclination angle 0 < θmax ≤ π/2, and φ ∈ [0, 2π) is

the azimuth. We only consider intensity profiles that are rotationally symmetric and thus independent of φ.

Integration over the angle φ results in an effective intensity G(θ) = sin(θ)G(θ) [lm/rad]. A more in-depth

discussion of effective intensity distributions can be found in Maes [7]. The target intensity is multiplied by

a constant c > 0 such that we have conservation of luminous flux for the optical system:∫ π/2

0

I(t) dt = c

∫ θmax

0

G(θ) dθ. (2)
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The angular space [0, π/2] of the light emitted by the LED is partitioned into N ∈ N segments [τi−1, τi],

i = 1, 2, · · · , N . For each segment we define a transfer function ηi : [0, θmax] → [τi−1, τi] ⊂ [0, π/2]. For

a certain θ, ηi(θ) gives the emission angle t of the LED in [τi−1, τi]. We choose each transfer function to

be strictly monotonic and thus invertible. The luminous flux emitted from the collimator in the interval

[θ, θ + dθ] must be equal to the sum over i of the luminous fluxes emitted from the source in each interval

[ηi(θ), ηi(θ + dθ)]. This leads to the following relation:

N∑
i=1

σiI(ηi(θ)) η
′
i(θ) = cG(θ), (3)

where σi = −1 for monotonically decreasing transfer functions and σi = 1 for monotonically increasing

transfer functions.

2.2 Color mixing

The second requirement on transfer functions is related to the color of the resulting beam from the collimator.

First we give a short introduction to the theory of color perception, then we derive an ordinary differential

equation describing the color of the beam.

Color perception is described extensively in [8,9]. The human perception of a beam of light can be fully

described by its luminous flux (in lm) and the two so-called chromaticity coordinates 0 < x, y < 1. There is

a simple rule to calculate the chromaticity coordinates (x, y) of the beam resulting from mixing two beams

of light with luminous fluxes L1 and L2 and chromaticity coordinates (x1, y1) and (x2, y2), respectively:

x =
x1L1/y1 + x2L2/y2
L1/y1 + L2/y2

, (4a)

y =
L1 + L2

L1/y1 + L2/y2
. (4b)

The resulting chromaticity coordinates are weighted averages of the chromaticity coordinates of the original

beam with weights L1/y1 and L2/y2. Note that a point (x, y) is on the straight line segment between (x1, y1)

and (x2, y2).

The chromaticity coordinates of the light emitted from an LED are not constant, but depend on the

angle of emission t and are described by functions x(t) and y(t). From measured data we have observed

an approximate linear relationship between x(t) and y(t), see Figure 3. From the color mixing rule, we

conclude that if we mix light from different angles of the LED into a single beam with color coordinates

(xT , yT ), these coordinates must be on the straight line segment relating x(t) and y(t). Therefore, given

yT , the chromaticity coordinate xT is fully determined and we only need that the y-coordinate of the mixed
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light equals a certain constant target value yT . The light in the interval [θ, θ + dθ] emitted from the TIR

collimator is the sum of beams with intensity σiI(ηi(θ)) dηi(θ). The y-coordinate of this light is therefore

yT =

∑N
i=1 σiI(ηi(θ)) dηi(θ)∑N

i=1 σiI(ηi(θ))/y(ηi(θ)) dηi(θ)
. (5)

Using (3) we find the following differential equation:

N∑
i=1

σi
I(ηi(θ))

y(ηi(θ))
η′i(θ) = cG(θ)/yT . (6)

2.3 Free surface calculations

The light paths in the TIR collimator shown in Figure 1 correspond to three transfer functions, one transfer

function for each of the free surfaces A, B or C. These free surfaces can be calculated from the transfer

functions using the ’generalized functional method’ developed by Bortz and Shatz [10, 11]. They derived

a differential equation that describes the location of a free surface, given a surface S from which the rays

depart with a given angle t̃:

df

ds
=

dt̃

ds
tan(β)f + (tan(β) cos(δ) + sin(δ)) . (7)

Here f is the distance a light ray travels from the surface S to the free surface, s is the arc-length along

S, t̃ is the angle of the ray leaving S with respect to the z-axis, and δ is the ray-emission angle measured

counterclockwise with respect to the normal of S. The angle β is the angle of incidence on the free surface

with respect to the surface normal. For the reflective surfaces B and C, the variables are illustrated in Figure

2. We like to formulate this differential equation in terms of t instead of s. Multiplication by ds/dt gives

df

dt
=

dt̃

dt
tan(β)f +

ds

dt
(tan(β) cos(δ)− sin(δ)) . (8)

The parameters β and δ depend on t and are derived below.

Light propagates through the collimator by two type of routes. In the ’TIR route’, light is refracted by

surface S, reflected by surface B or C by total internal reflection and finally refracted by surface T . In the

’lens route’, light is refracted by surface A and subsequently refracted by surface T .

First consider the surfaces B and C. These surfaces are on the ’TIR route’, which is shown in Figure 2.

Surface B is bounded at one side by the rays that leave the source at angle t = τ1. The boundary between

surface B and C is marked by the rays that leave the collimator at angle θ = 0, and we define the angle of

this ray when leaving the light source to be t = τ2. The angles τ1 and τ2 are illustrated in Figure 1. First
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the light is refracted at surface S. Let d be the distance from the left of surface S to the LED and α the

clockwise angle of this surface with respect to the symmetry-axis. A ray that leaves the LED at angle t, will

hit surface S at (xS(t), yS(t)) and leave surface S with angle t̃(t) given by

xS(t) =
d

tan(t) + tan(α)
, (9a)

yS(t) =
d tan(t)

tan(t) + tan(α)
, (9b)

t̃(t) = arccos

(
cos(α+ t)

n

)
− α. (9c)

Relation (9c) was derived using Snell’s law of refraction. The refractive index of the material of the collimator

is denoted by n. From (9a) and (9b) we find s, which is defined to be 0 at t = π/2. Also we calculate δ:

s(t) =
d

cos(α) tan(t) + sin(α)
, (10a)

δ(t) = t̃(t) + α− π

2
. (10b)

Subsequently, the rays are reflected at surface B or C. For a reflective surface we have [10]

β(t) =
1

2

(
t̃(t)− θ̃(t)− π

)
. (11)

Here θ̃ is the angle of the rays with respect to the z-axis after reflection. Before the rays leave the TIR

collimator, they are once more refracted by surface T . Rays that leave the collimator at angle θ = η−1(t)

must enter surface T at angle

θ̃(t) = ± arcsin(sin(η−1(t))/n), (12)

where the sign is negative if the rays cross the z-axis, and positive otherwise. Equation (12) is derived

using Snell’s law. Now we can calculate f(t) by numerically integrating the ODE (8) backwards, starting

at t = π/2. The parameters in (8) are given by (9c),(10a), (10b), (11) and (12). For surface C, a plus sign

is chosen in (12) and for surface B a minus sign. The integration for surface C starts with f(π/2) = b ≥ 0,

which is usually chosen larger than 0 to prevent a sharp edge of the collimator for manufacturing purposes.

At t = τ2, the final value f(τ2) of the calculation of surface C is chosen as starting value for the calculation

of surface B. The coordinates of the surfaces B and C can be calculated as

xB/C(t) = xS(t) + f(t) cos(t̃(t)), (13a)

yB/C(t) = yS(t) + f(t) sin(t̃(t)). (13b)

Now consider surface A, the ’lens route’ of the collimator. The light incident on surface A comes from

a single point, therefore the arc-length along the source surface is 0, so we take s(t) = 0. Furthermore, we
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have t̃(t) = t. For a refractive surface we need the following expression for β [11]:

tan(β) =
sin(θ̃ − t̃)

1/n− cos(θ̃ − t̃)
. (14)

Using (12), the differential equation (8) is now

df

dt
=

(
sin(θ̃ − t)

1/n− cos(θ̃ − t)

)
f, (15)

which we solve by numerically integrating backwards subject to the end condition

f(τ1) =
√
xS(τ1)2 + yS(τ1)2. (16)

Surface A can be calculated according to

xA(t) = f(t) cos(t), (17a)

yA(t) = f(t) sin(t). (17b)

3 A TIR collimator with three transfer functions

Our goal is to design a TIR collimator that has a beam with a specified intensity output G(θ) and uniform

chromaticity coordinates (xT , yT ). To achieve this, the transfer functions must satisfy (3) and (6). The

layout of the TIR collimator as shown in Figure 1 corresponds to three transfer functions, so N = 3. For the

lens part and surface C, t increases with θ, so σ1 = σ3 = 1. For surface B, t decreases for increasing values

of θ, and thus σ2 = −1. We use the following convention: Ii(θ) = I(ηi(θ)) and yi(θ) = y(ηi(θ)). We now

have the following system of differential equations:

(
I1(θ) −I2(θ) I3(θ)

I1(θ)/y1(θ) −I2(θ)/y2(θ) I3(θ)/y3(θ)

)η
′
1(θ)

η′2(θ)

η′3(θ)

 = cG(θ)

(
1

1/yT

)
. (18)

The initial and end conditions for the transfer functions follow from the signs σi and the boundaries τ1 and

τ2 between the segments:

η1(0) = 0, η2(0) = τ2, η3(0) = τ2, (19a)

η1(θmax) = τ1, η2(θmax) = τ1, η3(θmax) = π/2. (19b)

The system (18) is underdetermined, therefore we add an extra equation. We choose an equation which is

as simple as possible, has an obvious physical interpretation and yields a regular coefficient matrix for the

ODE system. The equation we choose corresponds to the requirement that the intensity resulting from one
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of the transfer functions contributes a factor r ∈ (0, 1) to the total target intensity. Let j be the index of

this transfer function, then we impose

σjIj(θ)η′j(θ) = r cG(θ). (20)

For j = 1, the coefficient matrix of the system is singular for θ = 0, and for j = 3, the coefficient matrix is

singular for θ = θmax. Such a singular coefficient matrix does not occur for j = 2, so this will be our choice.

The ODE system is now I1(θ) −I2(θ) I3(θ)

I1(θ)/y1(θ) −I2(θ)/y2(θ) I3(θ)/y3(θ)

0 −I2(θ) 0


η
′
1(θ)

η′2(θ)

η′3(θ)

 = cG(θ)

 1

1/yT

r

 . (21)

The system can be inverted, yielding the following explicit system

η′1(θ) =
cG(θ)

I1(θ)

y1(θ)

y1(θ)− y3(θ)

(
1− r − y3(θ)

yT
+ r

y3(θ)

y2(θ)

)
, (22a)

η′2(θ) = −r cG(θ)

I2(θ)
, (22b)

η′3(θ) =
cG(θ)

I3(θ)

y3(θ)

y3(θ)− y1(θ)

(
1− r − y1(θ)

yT
+ r

y1(θ)

y2(θ)

)
. (22c)

The system (22) with boundary conditions (19) has three unknown functions η1(θ), η2(θ) and η3(θ). The

functions I(t) and y(t) are known from measurements on the LED. The function G(θ) can be chosen by the

optical designer as a finite function on [0, θmax]. The constants c, yT and r cannot be chosen freely, we will

show that their values follow from conservation of luminous flux, the law of color mixing and the choice of

τ1 and τ2, respectively. Also the values of τ1 and τ2 cannot be chosen freely, we will derive an inequality

that guarantees monotonicity of the transfer functions.

Equation (22a) has a removable singularity at θ = 0, because G(0) = 0 and the initial values of the

transfer functions imply η1(0) = 0 and thus I1(0) = I(0) = 0. We calculate η′1(0) using l’Hôpital’s rule:

η′1(0) =

√
cG′+(0)

I ′+(0)

y1(0)

y1(0)− y3(0)

(
1− y3(0)

yT

)
. (23)

We choose the positive sign in front of the square root since η′1(0) should be positive. Here G′+(0) and

I ′+(0) are the right derivatives of G(θ) at θ = 0 and of I(t) at t = 0, respectively. These right derivatives

are positive because I(t) and G(θ) are positive at t > 0 and θ > 0. We have y(t) > 0 by definition of

chromaticity coordinates, and we assume based on measurements that y(τ1) < y(τ2) and thus y1(0) < y3(0).

From this we see that we need to choose τ2 such that y(τ2) > yT , so the right hand side of (23) is positive

and real.
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3.1 The values of c, yT and r

The system (21) with boundary conditions (19) appears to be overdetermined. However, the system contains

three unknown parameters which still need to be chosen. We derive values for three constants c, yT and r

given the boundary conditions and assuming monotonicity of the transfer functions. Later we show that our

choice of the constants c, yT and r imply that three of the boundary conditions are superfluous.

The first unknown value is the constant c. Integration of the first row of (21), using the given boundary

conditions and Ii(θ) = I(ηi(θ)), yields

c

∫ θmax

0

G(θ) dθ =

∫ θmax

0

3∑
i=1

σiIi(θ)ηi(θ) dθ =

∫ π/2

0

I(t) dt. (24)

The function I(t) is known from measurements on the LED, the function G(θ) is chosen by the optical

designer, so from this relation we derive the value of the constant c. This relation corresponds to conservation

of luminous flux (Equation (2)).

The second unknown is the target chromaticity value yT. Integration of the second row of (21) using the

given boundary conditions and substitution of (24) yields

1/yT

∫ π/2

0

I(t) dt =

∫ π/2

0

I(t)/y(t) dt. (25)

This relation shows that yT is the weighted harmonic average of the y-chromaticity coordinate of the light

source. Like I(t), the function y(t) is known from measurements on the LED, thus we can derive the value

of yT.

The third unknown is r. Integration of the third row of (21) with the given boundary conditions and

substitution of (24) yields

r

∫ π/2

0

I(t) dt =

∫ τ2

τ1

I(t) dt. (26)

This relations corresponds to conservation of luminous flux for the second transfer function.

3.2 Monotonicity of the transfer functions.

The transfer functions calculated from (22) should be monotonic, otherwise they have no physical meaning.

From (22b) we can easily see that η′2(θ) ≤ 0 because r > 0, G(θ) ≥ 0 and I(t) ≥ 0, thus, η2(θ) is monotonically

decreasing. The monotonicity of η1 and η3 is more complicated to show and we need some additional

assumptions to derive a sufficient condition for monotonicity.

Theorem 1. Assume that the chromaticity coordinate function y(t) satisfies the inequalities

0 < y(t1) < y(τ1) < y(t2) < y(τ2) < y(t3) ∀t1, t2, t3 s.t. 0 < t1 < τ1 < t2 < τ2 < t3 < π/2., (27)
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and the transfer functions satisfy the bounds

0 ≤ η1(θ) ≤ τ1, τ1 ≤ η2(θ) ≤ τ2, τ2 ≤ η3(θ) ≤ π/2. (28)

If ∫ τ2
τ1
I(t) dt∫ π/2

0
I(t) dt

= r < min

(
y(τ1)

yT
,
y(τ2)/yT − 1

y(τ2)/y(τ1)− 1
,

1− y(τ1)/yT
1− y(τ1)/y(τ2)

)
, (29)

then η1(θ) and η3(θ) are monotonically increasing.

Proof. We need to prove that the derivatives of η1 and η3 are positive. From (22a), using assumptions (27)

and (28), we find that η1 is monotonically increasing if

1− r − y3(θ)

yT
+ r

y3(θ)

y2(θ)
≤ 0,

and likewise η3 is monotonically increasing if

1− r − y1(θ)

yT
+ r

y1(θ)

y2(θ)
≥ 0.

Subtracting the second inequality from the first we obtain

t− 1

yT
(y3(θ)− y1(θ)) +

r

y2(θ)
(y3(θ)− y1(θ)) ≤ 0.

Using (27) and (28) we find from the assumption r < y(τ1)/yT that

r

y2(θ)
≤ 1

yT
.

Define

M(θ) =
1− r

1/yT − r/y2(θ)
.

Using r
y2(θ)

≤ 1
yT

, the inequality for the monotonicity of the first transfer function can be rewritten as

M(θ) ≤ y3(θ) and the inequality for the third transfer function as y1(θ) ≤ M(θ). We combine these two

results to obtain

y1(θ) ≤M(θ) ≤ y3(θ).

The function M(θ) it is monotonically increasing because η2(θ) is monotonically decreasing. Therefore, if

y(τ1) ≤ M(0), we find using (27) and (28) that y1(θ) ≤ M(θ) for all θ. Similarly, if M(θmax) ≤ y(τ2), then

M(θ) ≤ y3(θ) for all θ. The inequalities y(τ1) ≤ M(0) and M(θmax) ≤ y(τ2) are equivalent to the second

and third inequality in (29).
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Figure 4 shows a scatter plot of values of τ1 and τ2 for which (29) is satisfied for an LED which was also

used in the numerical experiments. The acceptable values of τ1 and τ2 are bounded by the lines τ1 = tav

and τ2 = tav, where tav is the such that y(tav) = yT. In this case, the value of tav is unique. From (29) we

see that τ1 > tav results in y(τ1) > yT, and thus r < 0. Therefore we cannot guarantee the monotonicity of

the transfer functions. Using (22c) we can verify that indeed the third transfer function is not monotonic at

θ = θmax. Similarly, τ2 < tav results in r < 0, and we can verify using (23) that the first transfer function is

not monotonic at θ = 0.

3.3 The initial value problem

The ODE-system (21) with the boundary conditions (19) can be solved as an initial value problem. We

remark that solving the system as an end value problem has no advantages or disadvantages. We discard

the end conditions and solve the initial value problem using a Runge-Kutta method. The end conditions are

satisfied as a result of our choices of c, yT and r.

Theorem 2. Assume monotonicity of the transfer functions. The solution of the initial value problem

defined by the ODE system (21) and the initial conditions η1(0) = 0, η2(0) = η3(0) = τ2 satisfies the end

conditions η1(θmax) = η2(θmax) = τ1, η3(θmax) = π/2.

Proof. First we show that η2(θmax) = τ1 is satisfied. Integration of the last row of (21) from θ = 0 to

θ = θmax using (26) gives

−
∫ θmax

0

I2(θ)η′2(θ) dθ = −
∫ η2(θmax)

τ2

I(t) dt = rc

∫ θmax

0

G(θ) dθ =

∫ τ2

τ1

I(t) dt.

So we find ∫ η2(θmax)

τ2

I(t) dt+

∫ τ2

τ1

I(t) dt = 0.

Because I(t) > 0 for all t except for two points at the boundary, we can conclude η2(θ) = τ1. Note that this

implies τ1 ≤ η2(θ) ≤ τ2.

Using the monotonicity of the transfer functions, we can integrate the left hand side of the first row of

(21): ∫ θmax

0

(I1(θ)η′1(θ)− I2(θ)η′2(θ) + I3(θ)η′3(θ)) dθ =∫ η1(θmax)

0

I(t) dt−
∫ τ1

τ2

I(t) dt+

∫ η3(θmax)

τ2

I(t) dt.

11



For the right hand side we have due to (24)

c

∫ θmax

0

G(θ) dθ =

∫ π/2

0

I(t) dt.

By subtracting the last two relations we find∫ η1(θmax)

τ1

I(t) dt+

∫ η3(θmax)

π/2

I(t) dt = 0. (*)

Similarly, we can derive from the second row of (21) using Equation (25)∫ η1(θmax)

τ1

I(t)

y(t)
dt+

∫ η3(θmax)

π/2

I(t)

y(t)
dt = 0.

The functions I(t) and 1/y(t) are continuous, and I(t) does not change sign in the interval (0, π/2). Using

the expanded first mean-value theorem for integrals [12, p.487], we find that for some t1 ∈ (η1(θmax), τ1) and

some t3 ∈ (η2(θmax), π/2) we have

1

y(t1)

∫ η1(θmax)

τ1

I(t) dt+
1

y(t3)

∫ η3(θmax)

π/2

I(t) dt = 0. (**)

The equations (*) and (**) form a linear system for the integrals of I(t) over [τ1, η1(θmax)] and [π/2, η3(θmax)].

If t1 < τ2, we find from the assumption y(t1) < y(t3) that

det

(
1 1

1/y(t1) 1/y(t3)

)
6= 0,

and thus ∫ η1(θmax)

τ1

I(t) dt = 0,∫ η3(θmax)

π/2

I(t) dt = 0.

Because I(t) > 0 for all t except at the boundary points, we conclude

η1(θmax) = τ1,

η3(θmax) = π/2.

4 Numerical procedure and results

We solved the mathematical model described in the previous section to design three different TIR collimators.

The collimators were designed for two different LEDs, which we refer to as LED16 and LED02. Both of

12



LED i 0 2 3 4 5 6 7
16 Ci 0 -181.8279 76.0797 221.9411 -624.0461 499.8253 -127.0787

Dx
i 0.4013 0.0578 -0.0367 0.0271 -0.0564 0.0444 -0.0116

Dy
i 0.3546 0.0988 -0.0557 0.0255 -0.0371 0.0196 -0.0034

02 Ci 0 -148.8533 -60.3797 520.5934 -913.6760 636.8623 -153.5863

Dx
i 0.4591 0.0452 -0.0590 0.0916 -0.1399 0.1030 -0.0271

Dy
i 0.3792 0.0892 -0.1790 0.3596 -0.4585 0.2823 -0.0658

Table 1: Coefficients from the linear least squares fits.

them are Luxeon Rebel IES white LEDs without a dichroic coating, and have a larger than usual CoA

variation. The intensity and chromaticity-coordinates of the LEDs were measured, and the measured data

were interpolated. The interpolation polynomials have been used to approximate I(t) and y(t) in (22).

The first two collimators were designed for LED16 and have a Gaussian-shaped target intensity profile.

The two collimators differ in their values for τ1 and τ2. The third collimator was designed for LED02 and

has a block-shaped target intensity profile. The collimators were evaluated using the LightTools software

package [13].

4.1 Modelling of the LEDs

The LEDs were measured using a goniophotometer [14]. A goniophotometer is a device that measures

intensity, chromaticity coordinates and many other characteristics of light at different solid angles. Our

LEDs were measured at 46 different angles t and 4 different angles u. For each LED, the chromaticity values

were averaged and the intensities were summed over the angle u. These data have been interpolated with a

least squares fit using the following polynomials:

I(t) =

7∑
i=2

Ci
(
ti − (π/2)i

)
, (32a)

x(t) = Dx
0 +

7∑
i=2

Dx
i t
i, (32b)

y(t) = Dy
0 +

7∑
i=2

Dy
i t
i. (32c)

The polynomial for the intensity was chosen because it equals 0 at t = π/2 and has zero derivative at t = 0,

both properties are characteristic for the intensity distribution of an LED. The effective intensity equals

I(t) = sin(t)I(t). The polynomials for the chromaticity coordinates were chosen because their derivative

equals 0 at t = 0. The coefficients for the two LEDs can be found in Table 1.

In the LightTools software package, two three-dimensional models were built to simulate the LEDs. The

13



Collimator LED τ1 τ2 r yT c θmax

Gaussian, small 2nd segment LED16 0.20π 0.25π 0.1630 0.3862 5585.9 11.25π
Gaussian, large 2nd segment LED16 0.16π 0.30π 0.4417 0.3862 5585.9 11.25π
Block profile LED02 0.20π 0.25π 0.1612 0.3986 4843.3 9π

Table 2: Parameter values and characteristics for the three different collimators.

range
(
0, π2

)
of the angle t was discretized into 46 different subintervals, labeled k = 1, 2, . . . , 46. For k = 1

we have the interval
(
0, π

180

)
, for k = 2, . . . , 45 we have

(
(2k−3)π

180 , (2k−1)π180

)
and finally for k = 46 we have(

89π
180 ,

π
2

)
. The intensity and chromaticity coordinates of the LED models in these subintervals correspond to

the measured data of the real LEDs at the angles t = (2k−2)π
180 . The size of the LED model was reduced to

0.01mm by 0.01mm to simulate a point light source. A comparison of the measured data, the least squares

fit and the raytracing results of the LightTools model of LED16 without collimator can be seen in Figure 5

and 6. A scatter plot of the measured x and y chromaticity coordinates for this LED was shown earlier in

Figure 3. The plot shows the near-linear relationship between x and y, indeed.

4.2 Computation of the transfer functions

Three example collimators have been calculated. The first collimator was designed for a Gaussian target

intensity [15] with full width at half maximum (FWHM) [16] at π/9. This yields the following effective

target intensity:

G(θ) = sin(θ) exp

(
−4 ln(2)

(
θ

θFWHM

)2
)
, (33)

with 0 ≤ θ ≤ 1.25θFWHM = θmax, θFWHM = π/9. The collimator was designed for LED16. The choice of

τ1 and τ2 is restricted by (29). This relation is highly nonlinear. A scatter plot of values of τ1 and τ2 that

satisfy (29) for LED16 is shown in Figure 4.

We chose τ1 = 0.2π and τ2 = 0.25π. The second collimator was designed for the same LED and target

intensity, but this time we chose τ1 = 0.16π and τ2 = 0.3π, which gives a larger second segment. The third

collimator was designed for LED02. The target intensity was chosen to be a block function, yielding the

effective intensity G(θ) = sin(θ), with 0 ≤ θ ≤ θmax = π/9. We chose τ1 = 0.2π and τ2 = 0.25π, which

satisfies (29). An overview of the values chosen and calculated for the three collimator is shown in Table 2.

The ODE system (22) with initial conditions (19a) was solved using the ODE-solver ode45 in Matlab.

The calculation times were a few seconds on a laptop computer with a 2,4 GHz processor and 4 GB RAM. The

calculated transfer functions are shown in Figure 7, 8 and 9. The transfer functions are indeed monotonic,

as expected. Also, η1(θmax) = η2(θmax) = τ1 and η3(θmax) = π/2, as anticipated.
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Collimator LED Target x max(|∆x|) Target y max(|∆y|)
Gaussian, small 2nd segment LED16 0.4181 4 · 10−4 0.3862 7 · 10−4

Gaussian, large 2nd segment LED16 0.4181 4 · 10−4 0.3862 1 · 10−3

Block profile LED02 0.4691 4 · 10−4 0.3985 5 · 10−4

Table 3: Average chromaticity coordinates of the LEDs and the maximum difference with the chromaticity
coordinates in the simulations.

4.3 Performance of the TIR collimators

Subsequently, a TIR collimator was designed for each set of transfer functions, and evaluated using Light-

Tools. We chose for all the collimators d = 4mm, b = 0.4mm and α = 4π/180. For every collimator, each

free surface was discretized using 500 points and converted into a LightTools model. A screenshot of the

LightTools model of the first collimator can be seen in Figure 10. Results of the simulations can be seen in

Figure 11, 12 and 13. In these figures, we see the expected profiles of the effective intensity and chromaticity.

In Figure 11 and 12 an irregularity is visible in the chromaticity coordinates near θ = θmax. This can be

explained as follows. Every bar in the graph corresponds to a range of one degree (π/180 rad). We chose

θmax = 25π/180, and thus the flux at this angle should be zero. Due to small errors in the free surfaces,

a small number of rays exits the collimator at angles larger than θmax. This happens at surface C, and

therefore the chromaticity coordinates at θ > θmax are larger than the target values. Because the luminous

flux of this light is very small, the irregularity is not visible. A similar irregularity is visible for the collimator

with the block profile, only with a smaller chromaticity difference.

Apart from this small irregularity, the variation in chromaticity is very small. The maximum difference

between the average chromaticity of the LEDs and chromaticity coordinates in the simulations are shown

in Table 3. A color difference of 0.003 is considered very good by optical designers and is invisible for the

human eye [8, 17]. The measured color differences in the simulations are comfortably below this value, thus

the color variation in the beam is eliminated.

5 Conclusions

We introduced an inverse method to design a TIR collimator that eliminates CoA variation for a point light

source. This method improves the method introduced earlier in [1] by producing collimators that closely

resemble standard collimators and at the same time have more parameters for optical design. In Section

3 we discussed which choices for these design parameters give meaningful results. In Section 4 we tested

the method and verified the resulting collimators with Monte-Carlo raytracing using the software package

LightTools. The simulations show color variations that are not visible with the human eye.
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Unfortunately, LEDs are too large to be treated as a point light source. In future research, we would like

to extend this method to take the finite size of the light source into account using iterative methods such as

described in for example [18, 19]. This point source method will be an important building block in such an

iterative method.
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6 Figures

col3-ST

Figure 1: Profile of a TIR collimator. A full TIR collimator can be obtained by rotating the profile around
the z-axis. Surface B and C are separated by the ray with angle θ = 0.
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generalizedmethod-2

Figure 2: Geometry of the free surfaces B and C. The grey arrow shows the ’TIR route’ of the light.

xyscatter16

Figure 3: Scatter plot of the measured x and y chromaticity coordinates of the LED used in the numerical
experiments in this article. The size of the circles corresponds to the effective intensity. The measured data
in the lower left corner correspond small angles of t. The measured data for values of t close to π/2 around
(0.423, 0.4) are unreliable because of the low light intensities, causing the irregularity.

TIR3sufficientcondition

Figure 4: Scatter plot of the values of τ1 and τ2 for LED16 that guarantee monotonic transfer functions. tav
is such that y(tav) = yT

intensity-comp-16

Figure 5: Comparison of the measured effective intensity I, the least squares fit and the LightTools model
of LED16. The graph of the LightTools model is not visible because it is hidden behind the least squaress
fit.

xy-comp-16

Figure 6: Comparison of measured chromaticity coordinates x and y, the least squares fit and the LightTools
Model of LED16. The graph of the LightTools model is not visible because it is hidden behind the least
squaress fit.

eta3seg-1

Figure 7: Transfer functions for the collimator with Gaussian profile and a small second segment.

eta3seg-2

Figure 8: Transfer functions for the collimator with Gaussian profile and a large second segment.

eta3seg-3

Figure 9: Transfer functions for the collimator with block profile.

3segcollimatorscreenshot

Figure 10: LightTools model of the first collimator

3seg-col1LT

Figure 11: LightTools simulation results for the collimator with Gaussian profile and a small second segment.

3seg-col2LT

Figure 12: LightTools simulation results for the collimator with Gaussian profile and a large second segment.

3seg-col3LT

Figure 13: LightTools simulation results for the collimator with Block profile for LED02.
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