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Samenvatting 

Sinds de ontwikkeling van de eerste circuit simulatie programma's, 
ongeveer twintig jaar geleden, zijn veel nieuwe ideeën en abstractie 
niveaux (denk bijvoorbeeld aan gedragssimulatie, logische simulatie, 
functionele simulatie, etc) geïntroduceerd. Voor diverse niveaux zijn 
commerciële simulatoren verkrijgbaar. Desondanks wordt circuit 
simulatie in de industrie nog erg vaak gebruikt. De computersystemen 
die nodig zijn om de simulatiebehoeften van de ontwerpers met 
betrekking tot circuit analyse te bevredigen worden echter steeds 
groter en sneller, aangezien de te simuleren schakelingen nog steeds in 
grootte toenemen. 

In dit proefschrift worden technieken behandeld die een aanzet vormen 
tot het elimineren van een aantal van de nadelen die aan de huidige 
circuit simulatoren zijn verbonden. Het gebrek aan flexibiliteit met 
betrekking tot het introduceren van nieuwe modellen en de toepassing 
van macromodellen wordt geëlimineerd door de introductie van 
stuksgewijs lineaire modellen voor alle componenten. Het gebruik van 
macromodellen voor gedeelten van de schakeling waarvan het gedrag 
reeds in detail bekend is, kan de simulatie aanzienlijk versnellen. 
Daarbij levert de uniforme modellering van alle componenten een 
elegante manier om mixed-level simulatie te implementeren. Diverse 
andere simulatoren ondersteunen mixed-level simulatie door voor ieder 
subcircuit dat op een ander niveau moet worden gesimuleerd een ander 
algoritme te kiezen. Een belangrijk voordeel van de nieuwe simulator 
is de sterk verbeterde convergentie in vergelijking met de klassieke 
iteratieve methoden. Deze eigenschap is karakteristiek voor de 
algoritmen die we gebruiken voor het oplossen van de stuksgewijs 
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8 Samenvatting 

lineaire vergelijkingen. 

Afgezien van stuksgewijs lineaire modellering steunt de simulator op 
twee belangrijke principes: multirate integratie en ijle incrementele 
technieken. Het idee achter multirate integratie is het exploiteren van 
subcircuits die (tijdelijk) in rust verkeren door ze te integreren met een 
grote integratie stap. Erg actieve subcircuits kunnen dan worden 
geïntegreerd met kleinere stapgrootten. In principe kan hierdoor veel 
rekentijd worden bespaard aangezien er voornamelijk wordt gerekend 
in de actieve circuit gedeelten. Het herhaald oplossen van grote ijle 
lineaire systemen zoals dat gebeurd in conventionele simulatoren 
wordt voorkomen door middel van de ijle incrementele methoden. Deze 
methoden zijn bijzonder geschikt voor operaties die samenhangen met 
het stuksgewijs lineaire karakter van de algoritmen. Ook passen ze 
perfect bij het event driven integratie schema waarin vaak selectieve 
veranderingen voorkomen. Merk op dat de simulator weliswaar zonder 
enig probleem op bijvoorbeeld het logische niveau kan simuleren, maar 
dat hij nooit de snelheid van een speciaal voor logische simulatie 
ontworpen programma kan evenaren. We willen hier nogmaals 
benadrukken dat de simulator op vele niveaux tegelijk kan simuleren. 
het is dan ook niet eerlijk om een van deze niveaux te selecteren en de 
resultaten te vergelijken met een speciaal op dat niveau toegesneden 
programma. 

Tot slot moeten we concluderen dat een evaluatie van de methoden 
zoals ze in dit proefschrift worden voorgesteld een positieve indruk 
achter laat. De balangrijkste principes blijken efficient te werken 
hoewel de numerieke integratie nog verder geoptimaliseerd moet 
worden om een echt snel simulatieprogramma te verkrijgen. Diverse 
(mixed-level) circuits zijn echter met succes gemodelleerd en 
gesimuleerd. 



Abstract 

Since the development of the first circuit simulation programs, about 
two decades ago, many new concepts and simulation levels (such as 
logic level, behavioral level, functional level, etc.) have been 
introduced. Simulators are commercially available for various 
simulation levels. Conventional circuit simulation, however, remains 
heavily used in industry. Large and fast computers are required to 
keep up with needs of the designer who wants to simulate circuits with 
a continuously increasing size. 

In this thesis techniques are discussed that potentially are able to 
eliminate a number of drawbacks of current circuit simulators. First of 
all the lack of flexibility with respect to the addition of new models and 
the application of macro models is eliminated by the introduction of 
piecewise linear models for all components. The introduction of macro 
models for circuit parts of which the detailed behavior is already 
known, can speed-up the simulation tremendously. Furthermore the 
uniform modeling of all components yields an elegant way to 
implement true mixed-level simulation. Several other simulation tools 
support mixed-level simulation by the implementation of a variety of 
algorithms, each of which is aimed at the simulation of a specific sub
circuit at a specific level. Another important issue is the improved 
convergence as compared to classica! iterative methods, which is 
characteristic for the algorithms that are used to solve the piecewise 
linear equations. 

Apart from the piecewise linear modeling, the simulator is built on two 
basic concepts: multirate integration and sparse update techniques. 
The idea bebind multirate integration is the exploitation of the latency 
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10 Abstract 

of sub-circuits by integrating them with large integration time steps. 
Very active sub-circuits can be integrated by small time steps. 
Principally, a large amount of cpu time can be saved since the 
computational effort is restricted to active circuit parts. The sparse 
updating schemes are an attempt to eliminate the repeated solution of 
large sparse linear systems as it occurs in conventional simulators. 
These techniques are especially suited for matrix operations related to 
the piecewise linear character of the algorithms. They also fit neatly 
into the event driven integration scheme with its inherently selective 
updates. Note that, although the piecewise linear simulator can easily 
simulate at e.g. the logic level, it will never be able to obtain the 
simulation speed of dedicated logic simulation programs. Again we 
should emphasize the ability of the simulator to simulate at several 
levels simultaneously. This is opposed to selecting a single level and 
comparing the results with those of tools designed specificly for that 
particular level. 

At the end of this thesis, an evaluation of the techniques as they are 
proposed and implemented yields a positive impression. The basic 
concepts appear quite efficient although numerical integration should 
further be optimized to obtàin a really fast simulator. Several (mixed
level) circuits have been successfully modeled and simulated. 



1. lntroduction 

1.1 Circuit simulation 

Starting out in the mid-sixties with the simulation of only a few 
transistors, simulation has evolved to one of the most intensively used 
design tools in the 1990's. Today the design of complex integrated 
circuits would be impossible without the use of advanced simulation 
programs, in some cases able to simulate thousands of transistors. 
Circuit designers can now choose from numerous simulation tools, 
ranging from low-level circuit simulation for very accurate analysis of 
small circuit parts to very coarse logic analysis of an entire integrated 
circuit. Without denying the importance of all other simulation 
methods and levels, the basic reference for this thesis will be 
conventional circuit simulation, which may be regarded as the first and 
most elementary form of simulation. The piecewise linear simulation 
techniques presented in this thesis however, are not restricted to any 
simulation level at all, hut, on the contrary, are capable of merging all 
of them into one mixed-level simulation tool. A short review of circuit 
simulation techniques seems appropriate. For a thorough treatment of 
simulation principles see e.g. [l), fora more recent hut less exhaustive 
text see [2]. 

The circuit simulation problem is commonly described as a set of 
nonlinear differential-algebraic equations F(x, x, t) = 0, with initial 
conditions x (0) = X o, in which x is the vector of circuit varia bles, x the 
vector of circuit variable derivatives and parameter t, of course, is time. 
The solution process basicly consists of three parts. At every time point 
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12 Introduction Chapterl 

tn+l we have to solve FCxn+1,Xn+1' tn+1) = 0. The unknown vector Xn+l 

is eliminated by substitution of a stiffly stable numerical integration 
formula. Next the resulting nonlinear system 
FCxn+1CXn+1), Xn+l, tn+1) = 0 is solved for Xn+l by Newton-Raphson 
iteration. The linear systems arising in this process are solved by LU 
decomposition. 

The above principle has been implemented in several simulation 
programs [3, 4] and survived nearly two decades of simulation research. 
Programs like SPICE are still heavily used, both in industry and in 
academie environments. However a number of drawbacks should be 
mentioned. First of all the process described above is computationally 
expensive, especially for large circuits. A large part of the computing 
resources is used for the repeated solution of the linear system 
resulting after linearization. A second problem is formed by the limited 
convergence capabilities of the Newton-Raphson iteration technique. 
Because of the local convergence, the simulator quite often has to 
reduce the integration time step to obtain a solution. In many difficult 
cases the program aborts because the time step becomes prohibitively 
small. Finally there is a lack of fiexibility regarding the introduction of 
new component models. Such an operation would imply altering the 
simulators source code, an option which is rather unattractive for the 
average user. 

Several attempts have been made to circumvent the limitations of 
SPICE-like simulation programs, mostly by rejecting one or more of the 
principal circuit simulation techniques. Practically all of the so-called 
third generation simulation tools are concerned with the limited hut 
important class of MOS circuits. The first program to be mentioned is 
MOTIS [5], a timing simulator for quasi-unidirectional MOS circuits. 
Based on physical reasoning, MOTIS achieved a tremendous speed up 
by applying regula falsi and a single relaxation sweep for every time 
point instead of sparse matrix techniques, numerical integration and 
Newton-Raphson iteration. Two other programs aimed at the same 
class of circuitry are SPLICE [6] which used even more the uni
directional nature of MOS digital circuits and DIANA [7], which again 
uses sparse matrix methods. Both SPLICE and DIANA are mixed 
mode simulators: they are capable of simulating different circuit parts 
in two or more modes. A mode can be e.g. register transfer level, logic 
level, timing simulation or circuit simulation. Mixed mode simulation 
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is gaining popularity in industry progressively. 

Another attempt to cope with some of the limitations (mainly for large 
MOS circuits) is the waveform relaxation method, introduced in 1982 
[8]. This iterative method repeatedly decomposes the circuit into a 
number of subsystems, which are analyzed separately for the required 
time interval. The idea is that latent subcircuits require less 
computation time than active subcircuits. Most of the gain is due to 
the limited activity of logic circuitry. Given a network decomposition 
the conventional solution methods are applied hut always on a 
relatively small circuit. The method works especially well for 
unidirectional circuits and can yield a speed-up of about 10-50 times 
compared to SPICE-like programs. The largest drawback is the linear 
convergence, resulting in much smaller or even no speed-ups for 
heavily coupled circuits. Derivation of a suitable decomposition can be 
the second problem. An excellent overview of state of the art waveform 
relaxation techniques can be found in [9]. 

1.2 The piecewise linear alternative 

The piecewise linear simulation program developed during the past 
four years started out with the ambitious intention to exploit all 
positive innovations of current simulation research hut avoiding most 
of the drawbacks. lts basic principles and implementation will be 
discussed in detail in the following chapters. The first objective is to 
exploit latent circuit parts hut without applying the slowly converging 
relaxation method. Instead a multirate integration scheme is used in a 
direct simulation method, i.e. no iterations are necessary. A second hut 
equally important item, is the elimination ofNewton's method from the 
simulation algorithm. This is achieved by: introducing piecewise linear 
modeling techniques. Instead of local convergence, algorithms to solve 
the piecewise linear equations exhibit global convergence properties. 
Moreover, the piecewise linear modeling enables us to model a large 
variety of components in a uniform way, implementing mixed-level 
simulation in a very natural and elegant manner. Finally, adding new 
component models becomes trivial, since piecewise linear descriptions 
can be represented in matrix form and easily fed into the simulator. 
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1.3 Piecewise linear modeling 

A general description of a continuous piecewise linear dynamica! 
system conceived by van Bokhoven [10] is shown in equation (1.1): 

(1.1) 

h . au d w ere u = - an 
at' 

(1.2) 

(1.3) 

The system's terminal variables are represented by vector x. 
Dynamica! behavior of a piecewise linear system can be modeled in a 
very general and powerful way by means of the state variables u. 
Conditions (1.3) state that vectors p and q contain nonnegative 
elements only and have zero inner product. Omitting vectors u and Ü 
and the corresponding submatrices from the general system description 
and furthermore assuming conditions (1.3) hold and q = 0, the resulting 
system is a simple linear mapping 0 =A11x +al. The region in which 
this mapping is valid is bounded by the set of inequalities 
p =A 31 x + a 3 2": 0. Clearly, a different mapping and corresponding 
region can be obtained by simply exchanging elements of p and q, i.e. 
pivoting on an element of matrix A 33 . It's quite obvious that the 
maximum number of mappings that can be defined by a single matrix 
is bounded to 2n if n is the order of matrix A 33 • Since we consider 
mappings that can be stored in a matrix form as shown in equation 
(1.1 ), the effect of a pivoting operation with element A~~ is a rank one 
update for the matrices involved [11]: 

0 =Aiix +ai, with (1.4) 

A *IAk* A*l k 
A ' A 13 31 13a3 - and ai =a1 ----

11 - 11 - A~~ A~~ 
(1.5) 

in which the * is used to indicate a row or column. Therefore only 
continuous mappings can be described by our formalism. The 
properties of continuous piecewise linear mapping were studied in 
detail by van Eijndhoven [12]. He discovered that the general matrix 
description can be cast into a special form by introducing two 
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additional restrictions: every segment in the mapping must be convex 
and empty segments are not allowed. For a mapping with two 
intersecting boundary hyperplanes this matrix looks like: 

(1.6) 

where vectors n and scalar c define the boundary planes and vectors w 
are update vectors. The constants À determine whether or not a plane 
continues in a different direction after the intersection with another 
plane. The matrix can be systematically extended in case more 
boundary hyperplanes are present. A reasonable collection of 
elementary piecewise linear models can be constructed by merging the 
ones available from [10, 13, 14]. 

The only viable alternative for the compact matrix notation introduced 
above, was documented exhaustively by Chua in a number of papers 
[15-19]. His canonical representation of a piecewise linear function is 
listed in equation (1. 7): 

p 
f(x)=a+Bx+ I;qla~·X-~il =0. (1.7) 

i=l 

in which ai is the normal vector to the ith hyperplane, ~i is a constant, 
a and ei are constant vectors and B is a constant nxn matrix. Despite 
thorough analytica! treatment, the methods devised by Chua are 
limited to the determination of driving point and transfer 
characteristics. The canonical formulation itself is less powerful than 
the one suggested by van Bokhoven [1 O]. 

1.4 Implementation aspects 

PLATO (almost an acronym for Piecewise Linear Analysis TOol) [20] 
was implemented in the C programming language [21] and runs on a 
number of different UNIX machines (e.g. Apollo and Hewlett-Packard 
work stations, Alliant FX/8 mini-supercomputer). Apart from PLATO 
itself, a number of utility programs were developed and implemented to 
offer what nowadays is referred to as a user interface. User interface 
technology is developing rather fast. Applications under development 
are liable to become outdated while still under construction. In this 
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context the schematic entry tool ESCHER+ may serve as an illustrative 
example. Initially using some Hewlett-Packard specific graphics 
package with no notion of workstations and windows at all, the next 
step was to port it to an Apollo workstation with numerous possibilities 
for the creation of windows and menus. In this respect an accepted 
standard like the Graphical Kemel System (GKS) should be considered 
old-fashioned even before its final definition was established, since it 
totally ignores the concept of a windowing system and has only limited 
menu resources. Next it appeared that a portable UNIX compatible 
windowing system called the X Window System [22] was becoming a de 
facto standard for user interfaces and computer graphics. Again 
developments are going fast. Toolkits based upon a set of high level 
object oriented graphics functions built on top of the lowest level X 
functions will probably be replaced soon by interactive tools for the 
design and implementation of user interfaces, generating toolkit source 
code only as an intermediate. Although the graphics systems become 
more and more complicated, user interface design time has decreased 
drastically. 

Let us shortly review the separate components that form PLATO's user 
interface as depicted in figure 1.1: 

escher+ an interactive schematic entry program used to construct 
circuits in a user friendly manner, providing runtime 
assistance and network checking [23, 24]. Only recently 
ESCHER+ was enhanced with a logic simulation 
mechanism and behavioral description capabilities [25]. 

ndml the ndml++ language compiler [26] taking an extension of 
the Network Description and Modeling Language [27] as 
input and generating a form of ndml with reduced 
complexity, i.e. all expressions evaluated, high level control 
constructs expanded, etc. Ndml can be generated by text
editing or by the extraction of network data from the 
escher+ database. 

superplog an interactive graphical simulation output postprocessor. 
It has the ability to manipulate, compare and plot 
simulation results. Again an example of user interface 
technology evolution: at the moment a new implementation 
based on OSF/Motif [28, 29] is being developed. 
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Many new simulation tools tend to use the old-fashioned SPICE input 
format, to remain compatible and to please stubborn users. For 
PLATO the network description and the simulation task description 
were separated and replaced by more advanced newly designed 
languages. Especially the powerful constructs that are available in 
ndml++ are incomparable to the low level error prone SPICE input 
specification language. 

The following chapters describe the techniques that were devised and 
implemented in the piecewise linear simulator. After an overview of 
the sparse matrix techniques (chapter 2) that were developed to exploit 
latency behavior, the solution of the pwl equations is treated in detail 
(chapter 3). Two more chapters cover the concept of multirate 
integration (chapter 4) and a rigorous treatment of the transient 
analysis (chapter 5). The thesis is concluded with some simulation 
examples and results (chapter 6). 
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escher+ text editor 

user library 
ndml 

ndml libra 

plato task 

superplog 

Figure 1.1. Simulation package overview. Arrows are used to indicate 
the data flow. 



2. Sparse matrix techniques 

A well known method for the computation of the inverse of matrices 
that have been updated by a rank k matrix is the Sherman-Morrison
Woodbury [30, 31] formula: 

(2.1) 

Using this formula the new inverse of an updated matrix can be 
obtained from the original one in order kn 2 operations, while full 
recomputation would require order n 3 for an nxn matrix. In many 
practical applications like e.g. solving large sets of linear equations, the 
matrix is not inverted hut decomposed into its triangular factors which 
requires only 1h ·n 3 operations. The advantages are even greater for 
matrices with special form or sparse matrices: while the inverse of a 
sparse matrix will generally be a full matrix, the triangular factors 
remain sparse. In the following sections Bennetts [32] algorithm for 
the update of the triangular factors will be introduced. Since the 
piecewise linear simulator performs only rank one updates we will 
restrict ourselves to the rank one version of Bennetts algorithm. Next 
we will review the sparse implementation and the advantages that can 
be gained from sparse source vectors during the forward-backward 
solution process. 

2.1 The rank one update 

Consider the triangular factorization of an (nxn) nonsingular matrix A: 

19 



20 Sparse matrix techniques Chapter 2 

A = LDU, with (2.2) 
Lii = Uii = 1 for 1 s i s n and 
Lij= Du= Dji = Uji = 0 for 1 si < j S n. 

The algorithm devised by Bennett efficiently determines the new 
triangular factors if matrix A is subject to a rank one update cdrt: 

A* =A +cdrt =L*D*u*, (2.3) 

where c and rare vectors c = <c1, c2, "., cnY, r = (ri, r2, "., rn)t and dis 
a scalar. By definition A k is the submatrix of A of order n - k + 1, 
resulting after k -1 elimination steps with elements (At), k Si, j S n. 
So the matrix to be decomposed in the first elimination step A 1 = A. 
The resulting triangular factors are: 

l Ah 1 1 1 AL fi ) L 11 = - 1-, Du =Au, U1j = - 1- or 1 Si, j s n. (2.4 
An An 

The problem faced after the first elimination step is given by: 

<) 1- l 1 1 l AhAL Al) =Aij -L1 1Dn U1j = Aij - A1 for 2 Si, j S n. 
n 

(2.5) 

The updated triangular factors after the first step are readily identified 
as: 

DhLh + cidr1 

Dh + c1dr1 

DhUL +c1drj 

Dh + c1dr1 

(2.6) 

(2.7) 
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(2.8) 

Our task is now to express the updated Ai* as a new rank one update 
problem in terms of the original matrices and update. Then we have 
obtained a similar problem hut with smaller dimension. The method 
can then be recursively applied until the updated triangular factors 
have been obtained. Our new problem is denoted by: 

<>* 1 * 1 *1*1* 2 "22 A .... -A+. -L+1 Di1 U1· -A"+c"d r· lj - lj l J - lj l J (2.9) 

where superscripts indicate modifications like the ones defines for A. 
Substituting equations (2.6), (2.7) and (2.8) leads to: 

or 

A&* =Aij-LhDhUb+qdrj-c1drjL{i

Cïdr1 -Lhc1dr1 1 1 
1 CDu U1j + c1drj) , 

Du + c1dr1 

finally resulting in: 

~* 2 dDÎi l 1 
Azj =Au+ Dl d (ei -L11c1Xrj - U1jr1) 

11+c1 ri 

(2.10) 

c1drj - Ubc1dr1] 

Dh + c1dr1 

(2.11) 

(2.12) 

Summarizing the new expressions for update vectors c and r, the new 
value ford and the updated entries in L and U are given: 

c'f = Ci -Lhc1 

rJ = rj - Uljr1 

2 dDÎi 
d =-----

Dh +c1dr1 

(2.13) 

(2.14) 

(2.15) 
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* l dr1 " L{i = L 1 1 + 
1 

et 
D 11 + c 1dr1 

(2.16) 

D}1 * = DÎ1 + c1dr1 (2.17) 

1 * 1 dei 2 
U lj = U lj + 1 r j 

D 11 +c1dr1 
(2.18) 

The results obtained above for the first Gaussian elimination step can 
simply be generalized to yield the final algorithm. Factors p and q are 
introduced for computational convenience. 

Algorithm 2.1. Bennetts algorithm for the update of the triangular 
factors after a rank one update on the original matrix. 

d = 1.0; 
for i = 1 to n do 

od; 

lt is obvious that the number of operations performed by Bennetts 
algorithm is far less than a recomputation of the triangular factors 
would require. Numerically however, some care must be taken. In the 
process offactorization we have the freedom to reject a pivot ifits value 
is too small. We then apply some pivoting strategy, like partial or 
complete pivoting, to obtain a better suited pivot involving row and/or 
column swaps. Using algorithm 2.1, however, we are committed to the 
pivot order that was used for the initial LU decomposition. This order 
may very well be unsuitable for any of the succeeding matrices. In fact 
it is even possible for pivots to become zero. Therefore the pivot values 
must be monitored carefully during the update process and the LU 
decomposition should be recomputed if any value becomes too small. 
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2.2 Sparse implementation 

A close examination of Bennetts algorithm immediately reveals its 
potential for a sparse implementation. The inner as well as the outer 
loop body can be completely skipped if ei = ri = 0. If ei = 0 and rrtO, 
only row vector rand column L.i are liable to change. In the opposite 
case, ci:;tO and ri = 0, only column vector c and row Ui• are affected. 
The often used wildcard notation in L.i and Ui• means that the 
asterisk can be replaced by any legal index value, i.e. indicating column 
i of matrix Land row i of matrix U respectively. 

The efficiency of the method described when applied to piecewise linear 
networks was already shown for the restricted case of piecewise linear 
resistive networks [11]. Update vectors originating from pivoting are 
generally sparse, very often containing only one or a few non zero 
elements. Since matrix Ais sparse also, the update process will be able 
to skip many entries compared to the full version of the algorithm. 
Inevitably some fill-in is generated during the update process, as is 
depicted in figure 2.1. 

k m 0 

0 
c LDU 

fill-in 

k ------mr----
______ 1 1-----

l 
fill-in 

1 1 

n 

Figure 2.1. Update of a sparse matrix with sparse update vectors. The 
triangular factors are stored in one matrix. Circles 
represent nonzeros. Arrows indicate fill-in. 
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For the sparse implementation we assume the following datastructure. 
The L, D and U matrices are stored in one sparse matrix: 

{ 

Lij if i > j 

AiJ = Dij if i = j 
UiJ if i <j 

(2.19) 

Only nonzero elements are stored connected by column and row links in 
a bi-threaded list [33]. Two pointer arrays are provided to access rows 
and columns. The diagonal elements can be accessed directly through a 
third array of pointers. An important advantage of this representation 
is the ease with which new elements (fill-in) can be inserted into the 
matrix. A drawback may be the extra memory requirements compared 
to more conventional methods. A visualization of the sparse matrix 
datastructure is shown in figure 2.2. The sparse update vectors are 
stored in linear linked lists again containing only the nonzero elements. 
In the sequel a sparse vector is sometimes treated as a set of its 
nonzero elements. The corresponding redefinition of some 
mathematica! operators for sparse vectors is documented in appendix 
1. 

A sparse implementation of Bennetts algorithm is given in algorithm 
2.2. To avoid the tedious pointer manipulations inevitably arising from 
linked list processing, most list operations are described on a higher 
level. In particular the fill-in operations fill_in_in_vector and 
fill_in_in_matrix are efficiently implemented using the C address 
operator [21]. The exact definition of the operations in algorithm 2.2 is: 

- fill_in_in_vector(v,i): create a fill-in in vector v at index i. 

- fill_in_in_matrix (M,r,c) : create a fill-in in matrix M at position 
(r, c). 

- index (v) : retrieve index of element pointed to by v, i.e. 

. .-\ { v~index E El, n] if v "::1:0 
mdex(v)= N>n ifu::0 

- min_index(v 1, v 2 ): retrieve smallest index, i.e. 

min_index (v 1, v 2) @ min(index (v 1 ), index (v 2)). 
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first_in_column 

-+--5 0 0 2 0 1 -+----+---~ 7 0 3 

---.i2 1 0 4 1 1 

-+------..i9 2 1 -+----+---~8 2 3 

--------------7 3 2 3 3 3 

first_in_row 

Figure 2.2. Sparse matrix datastructure. Matrix elements consist of 
two pointers, a value field and a row and column index. 
The pointer array D (not shown here) is initialized as soon 
as the optima! equation ordering is determined. It provides 
direct access to the diagonal elements. 
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Algorithm 2.2. A sparse version of Bennetts algorithm for the update 
of the triangular factors. 

d = 1; 
while c * 0 and r * 0 do 

od; 

k = min_index(c, r); 
if k = index (c) then ck = c-walue; c = c-mext else ck = 0 fi; 
if k = index (r) then rk = r~value; r = r~next else rk = 0 fi; 
D [k ]~value + = ck·d·rk; 
Dk = D [k ]~value; 
pk= ck·d ! Dk; 
qk = rk·d ! Dk; 
d -= pk·Dk·qk; 
/ * Update c vector and L-column * / 
vee= c; 
el = D [k ]~next_row; 
while vee * 0 or el * 0 do 

od; 

if index (vee) >index (el) and ck*O then 
vee= fill_in_in_vector (c, index (el)); 

elseif index (vee) < index (el) and rk*-0 then 
el = fill_in_in_matrix (L, index (vee), k ); 

fr 
' ifindex(vec) = index(el) then 

vec~value -= el~value·ck; 
el~value += qk·vec~value; 
vee = vec~next; 
el = el~next_row; 

elseifindex(vec) > index(el) then 
el = el~next_row; 

else 
vee = vec~next; 

fr 
' 

/ * Update r vector and U -row * / 
vee= r; 
el = D [k ]~next_col; 
while vee* 0 or el* 0 do 

od; 

/ * Process r vector and U -row in a way similar * / 
/ * to the c vector and L-column - omitted * / 
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2.3 Forward-backward substitution 

Let us assume the linear system to be solved is given by: 

Ax =LDUx = b 
Ly = b and DUx =y. 

Given the LDU factors the system is readily solved using forward
backward substitution. In algorithms 2.3 and 2.4 two variants are 
given. The first conventional one uses already computed values of y 
and x to obtain the current ones. The second version immediately 
processes every new value of y and x by updating the source vector. In 
the case of full matrices both algorithms are equally appropriate. For 
sparse matrices and, especially, sparse source vectors, we prefer to use 
the row based version. 

Algorithm 2.3. Column based forward-backward substitution. 

for i = 1 to n do 
i-1 

Yi = bi - J:.Lij"Yj; 

od; 
j=l 

for i = n downto 1 do 

od; 

1 n 
Xi = Dii ·Yi - r. Uu·xi; 

j=i+l 

The advantages for sparse source vectors can be tremendous. Assume 
for instance bi = 0 for 1 ::; i ::; k ::; n. It is obvious that the top k entries 
of y will be zero as well. If source vector b is sparse, in the case of our 
applications very often only a single element, we can expect the 
intermediate vector y to be sparse also. This can be exploited during 
the forward substitution by implementing a sparse version of algorithm 
2.4. The computational activity in such an algorithm would be guided 
by the occurrence of nonzero source vector elements instead of by 
scanning the entire diagonal. Unfortunately the solution vector x tends 
to develop many fill-ins during the backward substitution process 
depending on the type of circuit at hand. This phenomenon will be 
dealt with in more detail in the next section. In genera! the backward 
substitution can best be implemented as a full one choosing either 
algorithm 2.3 or 2.4. 
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Algorithm 2.4. Row based forward-backward substitution. 

for i = 1 to n do 
Yi =bi; 
for j = i + 1 to n do 

od; 
bj = bj - Lji"Yi 

od; 
for i = n downto 1 do 

Xi =Dil-Yi; 
for j = i - 1 downto 1 do 

od; 
Yj = Yj - Uij"Xi; 

od; 

2.4 Sparsity analysis 

In the previous section we considered forward-backward substitution. 
In algorithm 2.5 the sparsity of both the matrix A and the source vector 
b are exploited. We observe that the algorithm can be very efficient 
provided the y and x vectors remain sparse. However the number of 
operations can grow quadratically as soon as this assumption fails. In 
this section we will attempt to validate the approach in algorithm 2.5 
by investigating the density of the solution vector x. We first introduce 
the directed graph associated with a sparse matrix. 

Definition 2.1 
The digraph G(V,E) of the nxn matrix A has vertices 1,2, ... , n and an 
edge (i,j) from vertex i to vertex j for every off-diagonal matrix entry 
Ai;-. An entry is a structural nonzero element in a sparse matrix. 
Structural nonzero elements are either nonzero elements or nonzero 
elements that became zero by cancellation. 

Let us first consider the impact of irreducibility on the sparsity of 
solution vector x. 

Definition 2.2 
An nxn matrix Ais said to be reducible ifit can be perrnuted toa block 
triangular form: 
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Algorithm 2.5. Sparse row based forward-backward substitution. 

/* Solue Ly = b */ 
y =0; 
while b -::t- 0 do 

el = D [vec~index ]~next_row; 
while el -::t- 0 do 

od; 

new= fill_in_in_vector(b, el~row_index); 
new~value -= el~value·b~value; 
el= el~next_row; 

/ * Genera te y in reverse order * / 
y = prepend (head (b ), y ); 

od· 
/*,Solue Ux =y */ 
x =0; 
whiley -::t- 0 do 

od; 

Au 

y~value = y~value / D [y~index]~value; 
el = first_in_column [y~index ]; 
while el~row_index < y~index do 

od; 

/ * Create temporary vector in reverse order * / 
merge_vec = prepend (new_element(),merge_vec); 
merge_vec~value = --el~value·y~value; 
merge_vec~index = el~row_index; 
el= el~next_row; 

y = merge (merge_vec, y ); 
x = append (head (y ), x ); 

A21 A22 

29 

(2.20) 

where the diagonal matrices Aii are square and irreducible and N>l. 

It can be shown that a matrix A is irreducible if and only if, there is a 
path from i to j in graph G for any two nodes 1 ~ i, j ~ n [34]. 
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A well known theorem on the directed graph of the factorization 
A = LU is [35]: 

Theorem2.1 
Suppose an nxn matrix A is irreducible and nonsingular and has a 
triangular factorization LU. If there is a so-called legal path 
(i,k 1, k z, k 3, ... , km, j), k1 < i and k1 < j for all l = 1, 2, ... , m, between 
nodes i and j in the directed graph of A then there will be an edge from 
node i to node j in the directed graph of the triangular factors. A path 
is legal if it is elementary (i.e. each node in the path occurs exactly 
once) and satisfies the above condition k1 < i, j. 
Proof. Proof is rather straightforward. Consider the first elimination 
step concerning the legal path. Before the elimination there exist edges 
(i, k 1) and (k1, kzi· The elimination will at least introduce an edge 
(i, k 2 ) because of fill-in in the original matrix. So now there is a path 
(i,k 2, k 3, ... , km, j). Eventually this strategy yields edge (i, j). Q.e.d. 

Assuming the triangular factors have been determined, the following 
two theorems are useful. 

Theorem2.2 
Every column of L except the last one has at least one entry beneath 
the diagonal. 
Proof. Suppose there is a column l of L with no entry below the 
diagonal. According to definition 3.2, there must exist a path (k, ... , l), 
k < l. However this implies the existence of an entry Akt in the 
modified matrix which causes a contradiction. Q.e.d. 

Theorem2.3 
Every row of U except the last one has at least one entry to the right of 
the diagonal. 
Proof. Suppose there is a row u of U with no entry to the right of the 
diagonal. According to definition 3.2 there must exist a path (u, k) 
with k > u. This would imply an entry Auk to exist which contradicts 
the assumption. Q.e.d. 

We are now ready to inspect the sparsity of the intermediate solution 
vector y and the solution vector x. First we solve L·y = b assuming that 
b has at least one entry. In this case it is easy to see that Yn will be 
structurally nonzero. Suppose b has a single en try b k. If k = n then Yn 
is nonzero. If k < n there will be a fill-in b1, l > k in b due to theorem 
3.2. Continuing this procedure will yield the above statement. If both 
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L and b are sparse, the vector y may very well be sparse too. 

During the backward substitution we solve U·x = y. At step k we have: 
n 

ukk.xk =Yk - :E ukFxi c2.21) 
j=k+l 

Since Yn is structurally nonzero, Xn will be also. From theorem 3.3 we 
know that Un-l,n "/:- 0 so Xn-l must be structurally nonzero also. 
Repeating this process leads us to the conclusion that the entire 
solution vector is structurally nonzero. 

Our final conclusion for irreducible matrices is that in general no gain 
can be expected from a sparse implementation of the backward 
substitution process, since the solution vector x is structurally nonzero. 
On the sparsity of the intermediate solution y, however, no such 
negative conclusion can be drawn. Generally, if the source vector b is 
sparse we expect y to be sparse also because of the limited fill-in that 
can occur. In practice this assumption is confirmed. The average 
amount of fill-in during forward substitution is small. Contrary to the 
general conclusion for solution vector x, it usually remains quite sparse 
if source vector b originated from a pwl related operation (see the next 
chapter; pwl is a shorthand for piecewise linear). For these cases a 
sparse implementation of the backward substitution is applied. 

How can we determine whether a given matrix is irreducible? A simple 
method is to determine the strongly connected components, e.g. by 
using Tarjan's algorithm [36]. This algorithm not only constructs the 
components hut also imposes an ordering using the "lowlink" values. 
By renumbering the nodes using the given ordering, the associated 
matrix is transformed to a block triangular form. If the matrix is 
irreducible we will find only a single strong component containing all 
nodes. In fact the number of strong components can be seen as a 
measure for the connectivity in the graph and, subsequently, for the 
circuit the graph has been derived from. A circuit in which most 
signals have only limited propagation will tend to have lots of strong 
components resulting in a highly reducible matrix and minimal fill-in 
during forward-backward substitution. The average analog circuit 
however will typically have few components because of resistive and 
capacitive coupling between the components. A typical piecewise linear 
circuit featuring many high level components will show less coupling. 
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2.5 Recursive bordered block diagonal matrices 

In an attempt to minimize computational effort for matrix operations 
when dealing with large circuits, several authors have investigated 
specific matrix forms such as the bordered block diagonal (BBD) matrix 
in figure 2.3. The basic idea is that subcircuits are associated with 
submatrices which can be solved almost independently. This way 
latent circuit behavior might be exploited. A way to generate a single 
level BBD matrix is a method called node tearing pioneered by Kron 
[37, 38]. Here we try to create a number of block matrices of reasonable 
size. The objective is to keep the connecting border as thin as possible. 
Unfortunately this optimization problem is NP-complete so we have to 
resort to heuristic algorithms, e.g. [39]. 

D D 
D D 

D D 
D D 

DO 
CJCJCJCJCJO 

Figure 2.3. Single level bordered black diagonal matrix. 

The decomposition into subcircuits is known a priori if the simulator is 
provided with a hierarchical circuit description. Now we can construct 
a multi level decomposition known as a recursive (or nested) block 
bordered matrix as depicted in figure 2.4 Such a matrix structure 
allows among other advantages for selective recomputation of the LU 
decomposition in case a subsystem is changing. It is also claimed to be 
efficient and suitable for the application of parallel processing [ 40]. 
Only recently an overview of algorithms for recursive BBD matrices 
was given by Vlach [ 41] in which he elaborates on an earlier paper [ 42]. 

A previous version of the piecewise linear simulator fully maintained 
the circuit hierarchy as it was defined by the user throughout the entire 
program. For every level in the hierarchy, matrices relating the child 
modules to their parent module had to be assembled and kept up to 
date causing a lot of computational overhead [13]. The BBD matrix 
structure was introduced in the new simulation program in an attempt 
to eliminate this drawback [43]. Since the pwl simulator does not 
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Figure 2.4. Recursive bordered block diagonal matrix. 
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restrict its components to two-terminal devices, the application of nodal 
analysis is rather complicated compared to conventional simulators 
such as SPICE. Therefore the systell! matrix contains nearly all 
currents. A basic disadvantage in our implementation is the large 
number of superfluous current variables that were introduced while 
descending down the circuit hierarchy. Every time a net connects 
several child modules to the current father module, new current 
variables and the corresponding current equation have to be generated. 
This is very inefficient since all intermediate variables have to be 
solved for no other purpose than to retain the BBD matrix structure. 

When sparse matrix techniques applied in the simulator evolved 
towards sparsity directed computations as described in the previous 
sections, the BBD structure became obsolete. In fact the structure was 
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never used explicitly. Although in principle the BBD structure 
guarantees that large parts of the matrix can be skipped when 
performing updates due to subsystem activity, the same phenomenon is 
observed in practice. The dyadic update tends to produce little fill-in in 
the update vectors and the computation "dies" very fast. Eventually it 
appeared that circuit latency can be exploited efficiently without 
casting the system matrix into a special form. 

In our view the reason for this result is twofold. The reordering of a 
matrix to a BBD structure in fact results in a very specific pivot order 
which may very well be sub-optimal with respect to sparsity 
considerations. Secondly it can be observed that the processing of 
updates on a microscopie level is more efficient than the macroscopie 
treatment of block sub-matrices along a path upwards in the circuit 
hierarchy. The same statement holds if we consider the LU 
decomposition process when implemented on a parallel computer with 
e.g. a multifrontal scheme [44]. Summarizing we can conclude that 
the BBD matrix structure is appealing since the carefully constructed 
circuit hierarchy is maintained or retrieved. A significant gain in 
processing time, however, seems rather unlikely. 



3. Solving the pwl equations 

3.1 Equation building 

At start up time the first action of the piecewise linear simulator is to 
examine the circuit topology and assemble a set of equations. The 
circuit description accepted may be a hierarchy hut internally it is 
reduced immediately to a single level, built-up from leafcells and their 
mutual interconnections. Every leafcell is characterized by a matrix 
description as defined in equation (1.1). The system matrix is formed 
by the current linear mapping of every leafcell together with the 
interconnection equations. In this context input specifications are 
viewed upon as a special kind of leafcells. Consequently the pwl 
system is stored in a distributed form thus localizing leafcell data and 
minimizing memory requirements. A consequence of this approach is 
the more complicated form of some of the basic solution methods 
applied in the simulator as will be shown in this chapter. An 
alternative would be to actually construct the overall pwl system by 
eliminating internal variables at the cost oflarger and denser matrices. 

3.2 Initia! solution 

For the initial solution let us impose initial condition u = 0 for all 
leafcells. The general leafcell description (1.1) then reduces to 

(3.1) 

35 
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For the moment assume that the description is self contained, i.e. the 
pwl system consists of a single leafcell only with all inputs specified 
properly. By further assuming that q = 0 the terminal variables x can 
be rapidly solved from 0 = A 11 ·x + a 1 . With x known we can simply 
rewrite the system as 

p =M·q +m, (3.2) 
withp 2 0, q 2 0, pt·q = 0, 

known as the Linear Complementarity Problem (LCP). An extensive 
discussion of this problem can be found in e.g. [ 45], and will not be 
repeated here. Variables p and q are often referred to as the basic and 
nonbasic variables respectively. Our task is to find vectors p and q 
such that the conditions are satisfied. A number of algorithms are 
available to solve the LCP. Best suited for our application are the 
pivoting type algorithms like the ones devised by Katzenelson [46] and 
Lemke [45]. 

The LCP problem is fully classified by matrix M. Therefore let us 
consider a few relevant matrix classes [47]. It can be shown that a 
unique solution for the LCP exists, if and only if M belongs to matrix 
class P. If M belongs to class P, we can use Katzenelson's algorithm to 
obtain a solution. An odd number of solutions exists if matrix M 
belongs to class SSM. The Lemke algorithm can be shown to find a 
solution for matrices M belonging to matrix class L (SSM is a subset of 
class L). For this class, termination of the algorithm without finding a 
solution implies that no solution is feasible. Matrix class L is large 
enough to model a large variety of circuits, including hysteresis-like 
behavior, flip-flops, etc. 

In our piecewise linear simulator however the piecewise linear problem 
does not appear in the original form of the LCP. The circuit is 
composed with a number of components, each having its private pwl 
description, and their mutual interconnections. In particular the 
system description Ax + a = 0 is assembled using the leafcell jacobians 
A 11 , the leafcell source vectors a 11 and the interconnection equations. 
Consequently matrix M is not at our disposal. It would have to be 
computed by eliminating all internal variables. Therefore pivoting 
must be restricted to the matrices A 33 of the components. Other 
entries in matrix M are prohibited to act as pivot. This restriction 
rules out the algorithms mentioned before because they tend to choose 
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arbitrary off-diagonal pivots which generally are not available in our 
datastructure. 

An algorithm that meets our requirements was devised by van de 
Panne [ 48]. lts functionality is equivalent to that of Lemke hut it uses 
only diagonal or block pivots thus keeping the piecewise linear system 
complementary. A block pivot is the inversion of a principal submatrix 
of M. Whereas a regular pivot exchanges exactly one basic variable 
with one nonbasic variable, application of a block pivot will exchange 
several basic against nonbasic variables. In fact a diagonal pivot is a 
block pivot of dimension 1. Note that in our implementation block 
pivots are always performed as a sequence of single pivots. 

Let us give a short review of the algorithm. A solution to the LCP is 
found directly form ~ 0 in which case we have q = 0 and p = m ~ 0. If 
any component of vector m is negative, we add a non-negative vector e 
and a positive constant À. to system (3.2): 

p =M·q +m +À.·e, 

{

1 if Pk< 0 
ek = 0 if Pk~ 0 

(3.3) 

We initialize À.= MAX( - Pk ) such that p ~ 0 and let it decrease to 
k 

zero, while p is kept non-negative. A solution is found as soon as this is 
achieved. Assume the decrease of À. is stopped by blocking row k: row 
Pk becomes zero. To resolve the blocking we now try to pivot with 
matrix elementMkk. Two situations can occur: 

1. element Mkk is nonzero or 

2. element Mkk is zero. 

In the first case we perform a pivoting operation with matrix element 
Mkk· Again we must distinguish between two cases: 

la pivot Mkk > 0: aft.er pivoting the blocking is resolved and the 
decrease of À. can continue. 

1 b pivot Mkk < 0: aft.er pivoting the blocking is resolved hut now we 
must increase À.. The algorithm stops without finding a solution if 
no upper bound can be found for À.. 

In the second case the pivot is rejected. Instead we keep À. fixed and 
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start increasing Qk· A column currently being manipulated is referred 
to as the active column. The increase stops if some row pz is blocked. 
Now qz becomes the active variable while Qk remains fixed. Again we 
try to resolve the blocking by pivoting and matrix element Mu is our 
pivot candidate. If a single pivot is not feasible the algorithm tries to 
find a block pivot incorporating as many fixed variables as possible. If 
such a block pivot succeeds the corresponding fixed variables are 
released and the algorithm proceeds with some previous fixed variable. 
The direction in which the new current variable is moved can change 
depending on the sign of the last pivot. Apart from pivoting, a 
currently active variable is released also if it can be decreased to zero. 
The algorithm stops without finding a solution if either the increase or 
the decrease of the active variable is unbounded. 

Since the form of the LCP solved by van de Panne is not directly 
available in our simulator, the algorithm must slightly be adapted. 
The changes (mainly caused by the fact that our pwl system is 
available in a distributed form) have been listed by van Eijndhoven 
[13]: 

• the size of a step in the direction of the active variable (À. or a 
nonbasic variable) may be infiuenced by more than one piecewise 
linear component. 

• since matrix Mis not available we cannot determine the value of the 
selected pivots directly. 

In this implementation all leafcells with a negative component of p are 
marked improper. Leafcells for whichp;::: 0 are called proper. Next the 
van de Panne algorithm is applied sequentially to all improper 
leafcells, each receiving its private À. and e, meanwhile assuring that 
proper leafcells remain proper. In the current simulation program, all 
improper leafcells are solved simultaneously receiving only local e 
vectors and a single global À. for all improper leafcells. 

The problems listed above are solved by utilizing partial derivatives of 
the terminal variables x and basic variables p. After extension of 
equations (3.1) with parameter À and vector (ei, e 2, e 3), partial 
differentiation to À for all improper leafcells leads us to the following 
relations: 
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(3.4) 

- àx - àp 
x = à').,,'p = à')... 

Using the concatenation of all ei vectors as a source vector, x can 
rapidly be solved from the system matrix by forward-backward 
substitution. Now,p is readily determined: 

• p = A 31 ·i + e 3 for all improper leafcells and 

• p = A 31 ·i for all proper leafcells. 

The maximum step 0 that can be made in the current direction of').,, can 
easily be computed from the current values of p and p for all leafcells 
related to a nonzero component in x and the condition that p + 0·p ~ 0. 
In case a nonbasic variable qk of some leafcell is active instead of À, the 
above equations change to: 

(3.5) 

- àx- àp x=-- P =--. 
àqk' àqk 

After x has been computed we find for p: 
• p = A 31 ·i +Aai for the active leafcell and 

• p = A 31 ·x for all other leafcells. 

From the last equations we can easily solve our second problem: the 
determination of the sign of for instance pivot (pk> qk) = A~~- The 
requested sign can be derived directly from the sign of fü. 
At this point the initial solution algorithm can be presented in some 
more d~tail. Before doing so let us define some useful syrnbols: 

L set of all leafcells. 

I set ofimproper leafcells: I = { leL 1 ::Ik [pk < 0] }. 

p 1 vector of basic variables related to leafcell leL 
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x 1 set of terminal variables related to leafcell lEL. 

{x} set ofnonzero entries in.X. 

L;: set of leafcells related to nonzero entries in x: 
L;: = {lEL 1 x 1 n {.X} #:0}. 

The actual algorithm is split into two parts. The first part actually 
serves as an initialization for the van de Panne algorithm which forms 
the second part. The error vector e is added as an extra column to the 
leafcell matrix to simplify the implementation. Parameter À becomes 
part of the p vector hut in fact is a global variable, generally 
represented in several p vectors 

Before listing the implementation of the modified van de Panne 
algorithm we define some key variables: 

tos index indicating the top of the van de Panne stack. 

stack stack used by van de Panne to store blocked rows. A stack 
element is a 3-tuple (leafcell, active column, direction). The 
current active column is on top of the stack. All other 
columns (and À) on the stack are kept fixed. Columns can be 
deleted either by pivoting or because the corresponding 
column variable became 0. It is also possible for fixed 
columns to become active again. The blocked rows (or 
manipulated columns)are stored in stack[l..tos]. Position 0 
is reserved for À. Legal stackoperations arepush andpop. 

leaf the leafcell currently being manipulated; active leafcell 
(stack[tos].leaD. 

row the current blocking row. 

column the current active column (stack[tos].column). 

dir current direction of the active column (stack[tos].dir). Legal 
values are +1 (up) and -1 (down). 

8 feasible step in the direction of the active variable. 



Section 3.2 Initial solution 41 

Algorithm 3.1. Initia! solution: startup phase. 

Decompose matrix A into A = LDU; / * Note: L is a matrix here * / 
Solve Ax = b; 
/=0; 
for all l EL do 

initialize u l = q l = O· 
• l ' compute u ; 

compute pl; 
if any component Pk < 0 then I = I u l fi.; 

od· 
determil:ie leafcell i and row r such that: ViEI, lEI [p~ 5.p~ ]; 
À= -p~; . . 
for all iE/ dop 1 = p 1 + À·e od; 
push(i, "À.column", down); 
push (i, r, up); 
vdpanne (À); 

lmplementing the solution process as described in algorithm 3.2 two 
potential problems can be expected. First, assuming van de Panne's 
algorithm has selected a pivot A~~ for a specific leafcell because 
opk / Oqz :f. 0 while the actual value in the leafcell equals zero, the pivot 
operation appears to be infeasible. Fortunately this problem can 
always be solved as is shown in the next theorem. 

Theorem3.1 
Suppose a pivot selected by van de Panne's algorithm in our piecewise 
linear simulation program appears to be zero in the local leafcell 
matrix A 33 . If the pivot element is A~~ we can always select a row m 
from equations O=Aux +A13Q +ai with nonzero element A11[ and 
add it to row Pk· 
Proof. Assume a set of N pwl components each defined by a matrix 
(3.1 ). Further assume the existence of a set of interconnection 
equations and an adequate set of input specifications. Let the overall 
pwl system be defined by 

(3.6) 

where 
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Algorithm 3.2. Initia[ solution: van de Panne. 

vdpanne (À.): 
carry _on = true; 
while carry _on do 

od; 

/ * Compute derivatives_ of x * / 
generate source V,J!Ctor b; 
solve LDU · x = b; 
assemble L;; 

/ * Determine maximal number of pivots * ! 
Si= O; 
for i = tos downto 1 do 

s = sign (stack [i ].leaf, stack [i ].column); 
if sic- 0 then 

S =s; 
Si= i; 

fi• 
' od· 

if Si = 0 then / * Cannot pivot * / 
determine_theta (); 

else 

fr , 

if 0 = oo then abort; / * Cannot solve * / 
if0 > 0 then 

fr 
' 

x = x + dir·S·x; 
for all ZE L; do update û l and p l od; 
update À or q leaf[column ]; 

if column = '?. column" and À = 0 then 
carry _on = false / * Solution found * / 

elseif column ic- À and q [column] = 0 then 
/ * Current active column became 0 * / 
pop(); 
stack [tos ].dir = - stack [tos ].dir; 

else /*New blocking row * / 
push (leaf, row, up) 

fr 
' 

perform_pivots (); 
for i = tos downto Si do pop() od; 
dir = dir·S; 
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sign(l,r): 
determine Pr; 
now set the sign of A33[r,column] to: 

sign = 
-1 if Pr< o 
o if Pr= o 
1 if Pr> o 

determine_theta (): 
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for all l E L; do 
determine p; 
find et such that el= MAX( ek ) where Pk+ dir·ek·P ~ O; 

k 
od· 
no:V set e = MIN( el ); 

[EL; 

set leaf to the corresponding leafcell; 
set row to the corresponding row of leaf; 

perform_pivots (): 
pivot (stack [Si ].column, column); 
for i =Si to tos-1 do 

pivot (stack [i + 1 ].column, stack [i ].column); 
od; 

•P =(p1,p2, . .. ,pN), 

• q = (ql, q2, ... , qN), 

• a1 = CaL a~· ... 'af, ai) and 

• a3 =(at a~' ... 'a1·Jl 
in which superscripts are used to identify the "donating" leafcells. The 
extra variables xi denote the additional internal connection variables. 
Further assume that all input and interconnection relations are 
J'!lerged together with the lea(cell A 11 ipatrices to yield a squar~ matrix 
An. Notice t!iat since both Au and A33 are square, matrix A for:iped 
by matrices Aij, i, j E [1, 3] is square also. For N = 2, matrix A is 
depicted in figure 3.1 
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Figure 3.1. Matrix A for N = 2. The original leafcell matrices are 
indicated by the dashed areas. Non dashed areas are 
supposed to contain zeros only. The additional 
interconnection equations are represented by oi. 

Now define a bipartite graph G(V, E) as follows: 

•the set ofnodes formed by ei, i E [1,n] for every row inA numbered 
in ascending order. 

•the set of nodes formed by Cj, j E [1,n] for every column in A 
numbered in ascending order. 
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• the set of nodes V = {ei, Cj}, i,j e [1,n ]. 

• for every nonzero entry Ûij in matrix A there is an edge (ei, Cj) 

between node ei and node Cj in the graph. 

Elimination of the internal variable in column Ck with row ez will 
transform graph G to G: 

• nodes Ck and ez will be deleted from G as well as all edges connected 
to either of them. 

• add an edge between every equation node ei (i "* l) and column node 
Cj corresponding with a matrix fill-in aij for which there was a path 
(Cj, ez, Ck, ei) in graph G. 

Clearly, unless there is a path between ei and Cj, no fill-in can occur at 
position aij· Elimination of all internal variables will yield a sequence 
of graphs G, ê1, G2

, • • • • Although it isn't explicitly constructed, van 
de Panne operates on a system equivalent to the one represented by the 
final graph. 

Now consider the case in which a specific leafcell contributes a zero 
matrix element A% to A in say aij. Furthermore assume column A3~ of 
that leafcell is identical to zero. This implies that for all paths (e, cj), e 
corresponds to an equation resident in matrices A 3 •. We are certain 
that this equation will never be used to eliminate an internal variable. 
Eliminating all internal variables by linear matrix operations, the only 
way for entry aij to become nonzero is if there is a path from j to i 
containing at least one e node that can be used in an elimination, while 
we just concluded that such a path cannot exist. So if the entry is 
created, our assumption is falsified and a path from j to i does exist. 
This means that the row mentioned in. the theorem can always be 
found. Q.e.d. 

The second problem is also related to our hierarchical datastructure. 
As we can see from the implementation offunctionperform_pivots, van 
de Panne's advice about the (block) pivot to be performed is followed 
closely. No problems occur as long as a block pivot is located within a 
single leafcell. If ho wever a block pivot is scattered over more than one 
leafcell, the operation is infeasible. In this case we have to resort to 
diagonal pivots only. 



46 Solving the pwl equations Chapter3 

Theorem3.2 
A block pivot found by van de Panne's algorithm for the Linear 
Complementarity Problem as it arises in our piecewise linear 
simulation program can always be performed by a set of diagonal 
pivots. 
Proof. Suppose van de Panne finds a scattered block pivot consisting of 
A33 ent.zies ai'l.ii and aiih· These entries were equal to zero in the 
initial A matrix. As we concluded in the previous theorem, these 
entries . can only become nonzero if the A3~ columns of the 
corresponding leafcells contain at least one nonzero. In this case it is 
obvious that there always exists a diagonal block pivot that can replace 
the original one. Q.e.d. 

3.3 DC solution 

In conventional circuit simulation programs such as SPICE [ 4] the 
most elementary action is the determination of the quiescent state of 
the circuit. Capacitors and inductors are simply replaced by open 
circuits or short cuts. Nonlinear components are handled by applying 
the Newton-Raphson technique. It is this technique that often causes 
problems because of its limited local convergence properties. To cope 
with these problems the technique has been modified in a number of 
ways some of which are listed in [34, 49]. Recently an improvement 
was achieved by applying a new type of vector norm in which certain 
equations receive higher priority than others in an attempt to guide the 
damping of the Newton updates in a more appropriate way than is 
done by the regular L 2 norm [50]. 

An important advantage of the application of piecewise linear 
techniques is the improved convergence compared to Newton-Raphson 
based methods. Due to the piecewise linear approximation of all 
nonlinear functions a solution, if feasible, can always be determined 
thanks to powerful algorithms yielding global instead of local 
convergence. The pwl problem to solve is given by: 
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h . dU 
w ere u =at' 

in which we attempt to force ü to zero. The simplest solution we can 
think of is to add the state vector u to the unknown circuit variables 
and use the relations for ü to retain a well determined system: 

~] = ~t~ ~~:][~] + [~~] 
with 

Ai1 = ~~~ ~~! J A31 = ~31 A32], 

Ab= ~~:] and x' = [~],ai= [~~] 
Unfortunately this method often fails. For various models both the 
matrices A 21 and A 22 equal zero thus yielding a singular A 11 . 

Furthermore the addition of a number of unknowns and equations to 
the system matrix solely for the de analysis does not seem the most 
elegant solution. 

Another approach much more in the spirit of the simulator would be to 
exchange the position of u and ü by pivoting on the A 22 matrix before 
starting the initia! solution process. This way we would automatically 
obtain the desired de solution since the u (and in the new situation the 
Ü) vector is explicitly assumed zero. Afterwards we can retrieve the 
original set of equations by pivoting on the A 22 matrix one more time. 
Although this method works well for a number of components like 
capacitors, inductors, etc., a new problem arises if matrix A 22 does not 
have full rank. In that case the following strategy is followed: 

• assuming matrix row A~i is nonzero, try to find an element Aa -:t= 0 
and add the corresponding equation to ük. If no such en try exists or 
if A ~i equals zero 
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• try to find a block pivot ~~~ 1i:] or if required a more dimensional 

block pivot using van de Panne-like techniques (see figure 3.2). 

A21 

1 

1\3~ A33: 1 

1 1 0 - - - - - - - -:- - : -
- - - - - - - -1- - r -

1 1 

Figure 3.2. Block pivot for de analysis in case A21 = A22 = 0. In this 
example matrix A 22 has dimension 1. 

The latter action looks somewhat tricky: after the correct segment of 
the pwl mapping has been determined, the block pivot not only swaps u 
and û hut also puts the leafcell into another (incorrect) segment rather 
than in the one just found causing a rather undesired side effect. The 
restoring pivoting operation must be selected with care. Selection of 
the wrong block pivot might cause û to remain nonzero after the 
pivoting, due to nonzero values in the source vector. Another argument 
against this type of pivoting is that we may pivot to a segment of the 
mapping that is never entered during normal operation. 

A very robust method guaranteed to find a solution is the application of 
transient analysis. With all stimuli constant and no oscillations 
assumed to occur, a de solution can be found for t ~ oo. The method has 
been applied successfully in conventional simulation [51]. The major 
disadvantage of this approach is the computational effort that is 
required. All analog components have to be integrated numerically 
until variations of the circuit variables remain below some error 
criterion while application of one of the former methods yields a direct 
solution. 



4. Multirate integration techniques 

4.1 Numerical integration 

Unfortunately the general circuit simulation problem is too complicated 
to allow for a closed form analytica! solution. Instead we must resort to 
numerical methods such as the Newton-Raphson iteration mentioned 
in the introduction and numerical integration. Assuming we have 
determined a solution for the piecewise linear equations, the resulting 
problem is now reduced to a set of relatively simple linear differential 
equations: û =Au + a. 

Contrary to the conventional circuit simulation problem, a direct 
solution method should not be ruled out immediately. A related 
method called the approximate exponential function (AEF) [52] method 
has been proven quite successful for the simulation of MOS VLSI 
circuits. Generally a set of homogeneous differential equations û =Au 
can be solved be searching solutions of the form u(t) = eÀtu, in which À 

is an eigenvalue of matrix A and u the cörresponding eigenvector. For 
sufficient independent eigenvectors and eigenvalues we can construct a 
general solution. Disadvantage of this method, supposed we are able to 
find a solution, are the need to compute (at least once but probably for 
every segment) all the eigenvalues of the generally very large system 
and the corresponding eigenvectors. The determination of all the 
eigenvalues of a linear system is a comprehensive operation. 
Furthermore the direct determination of exponential curves may be 
very sensitive to error propagation. Our conclusion is that the direct 
method appears unattractive and the application of numerical 
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integration seems more appropriate. 

The integration scheme as it is implemented in PLATO is flexible and 
easily extendible. At the moment four integration formulas are 
available, see table 4.1. 

TABLE 4.1. Integration formulas for fixed stepsize. 

method formula lte 

BDFl Un+l - Un - hun+l = 0 - V'lh 2u <2l(Ç,) 
r 

- _l__h 3u (3)(Ç,) TR Un+l - un -Vm(un + Un+1) = 0 
12 

BDF2 Un+l - 113(4un - Un-l + 2hun+l) = 0 - ~h 3u (3)(Ç,) 
9 

ACT2 
1 
6(5Un+l - 4un - Un-1) 

- ~ (5un+l + 2un + 2un_1) = 0 - ~h 3u (3)(Ç,) 
9 

Since the problems to be solved are usually stiff, only A-stable methods 
are suited for use in a circuit simulation program. As a default PLATO 
uses the backward Euler (BDFl) formula. This is an easy to 
implement one-step integration formula. Two unpleasant features are 
its low order (one) and the very high damping properties (see the 
results for the Landman circuit in chapter 6). Note that damping is 
usually a desirable property, but unpractical when dealing with 
oscillatory problems. An overview of the damping and time error 
qualities of all methods discussed here can be found in [53]. Another 
simple hut robust one-step method is the trapezoidal rule (TR) which 
has order two. lts damping qualities are much better compared as to 
the backward Euler method (again see chapter 6). Unfortunately the 
decay of round off errors in the presence of large eigenvalues is slow 
[54]. In a variable stepsize method this oscillatory behavior prevents a 
further increase of the time step. 

Two more complicated families of formulas are the backward 
differentiation methods [55, 56] and a set of methods showing a local 
property called A-contractivity [53] which for convenience wi1l be 
referred to as ACT methods. PLATO only uses the two-step second 
order A-stable formulas (BDF2 and ACT2). In fact there are several 
ACT2 methods. The one chosen is regarded as an optimal trade-off 
with respect to damping properties and phase errors [57]. 
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Disadvantage of both fonnulas is the need to administer more than one 
previous value for u as well as û. Another disadvantage is related to 
the variable stepsize implementations of the two-step methods. In this 
case the coefficients depend on the current and previous time steps and 
have to be recomputed for every step change. As a last remark we have 
to note that the phase errors introduced by BDF2 can be large. The 
best method regarding damping properties as well as time errors is the 
ACT2 method. 

In most practical applications numerical integration is applied with 
automatically controlled variable time steps. This extension has no 
influence on the stability properties of the one-step integration 
methods. Two-step methods however can become less stable. In 
particular the two-step BDF method can become unstable for specific 
problems with increasing steps [58]. The problem does not occur with 
decreasing steps hut in that case the method often suffers from too 
much damping. A much better perspective is offered by the variable 
step ACT methods. Two-step second order ACT methods can be 
constructed that are stable for any step sequence [57]. Fonnulas for 
the variable step methods can be found in for instance [54, 57, 59]. 

4.2 Multirate integration methods 

An integration method for a set of ordinary differential equations is 
called multirate if different (subsets of) equations are integrated with 
different time steps. The potentials of such a method are obvious. The 
computation time required can be minimized by integrating slowly 
varying subsets of equations with a large time step and fast varying 
subsets with a smaller one. 

Only few applications of multirate fonnulas appear in the literature. 
Most important example is the wavefonn relaxation method [8] in 
which the sub-circuits are integrated independently with promising 
results for a specific class of circuits. Another entirely different 
application of multirate integration was implemented in a SPICE-like 
circuit simulator called SAMSON [60, 61]. Again the electronic circuit 
is decomposed into a number of sub-circuits, each receiving its private 
time step. Subcircuits are called alert or donnant depending on 
whether they are active or not. Computation time is saved by avoiding 
the discretization and linearization steps for donnant models. Instead 
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the dormant sub-circuits are approximated by extrapolation. This 
extrapolation can be clone very efficiently by using the prediction-based 
differentiation formulas as derived by van Bokhoven [62]. Apart from 
the previous two, only a few other applications have been reported, e.g. 
[63-65]. 

Even less authors have attempted to analyze the properties of 
multirate integration methods. A first rather optimistic paper was 
published by C.W. Gear in 1980 [66]. A more elaborated followup 
article appeared in 1984 [67]. Only recently topics like stiff stability of 
multirate methods were investigated and reported on by S. Skelboe 
[68-70]. The main conclusion from these papers is that in general 
stability cannot be guaranteed, even if implicit A-stable methods of 
first and second order are applied. In order to be successful, 
implementations must carefully monitor the integration and in case of 
instability take appropriate action. 

An analysis of multirate methods is generally restricted to a set of 
ordinary differential equations, separated in two subsystems a fast one 
(equation (4.1)) and a slow one (equation (4.2)): 

Y = f(t,y,z), y(ta) = Ya (4.1) 
Z=g(t,y,z), z(ta)=Za (4.2) 

with t E Ua, tb], f: IRxIRNxIRM~IRN,g: IRxIRNxIRM~IRM and (as well 
as g Lipschitz continuous in y and z. The idea is to integrate the fast 
subsystem with q time steps from tn-q to tn for every time step tn - tn-q 
of the slow subsystem. Such a step is referred to as a compound step. 
Several strategies for performing a compound step have been 
investigated: 

• fastest first algorithm: first integrate the fast system (4.1) from tn-q 
to tn using q steps. Next the slow system (4.2) is integrated using a 
single time step. 

• slowest first algorithm: first integrate the slow system using 
extrapolation to estimate the value of y at time tn. Then integrate 
the fast system. 

Another variation is related to the final step of a compound step. This 
can be semi-implicit (evaluate fast and slow systems separately) or 
implicit (evaluate together). The stability properties of multirate 
formulas based on the backward differentiation methods were 
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investigated by Skelboe using the 2x2 test problem: 

~] =A IY] where A = rau ai2]. lz Lz la 21 a 22 
(4.3) 

For this problem absolute stability is guaranteed for BDFl and BDF2, 
for h > 0 and q > 0 if: 

1. A is real and the eigenvalues of A are in the left-hand half-plane 
and 

2. au~ 0. 

In practice these conditions are often satisfied, e.g. when dealing with 
Resistor-and-Grounded-Capacitor (RGC) networks [9]. For au > 0 it 
was possible to construct examples showing instabilities. Note that 
these results were based on a fixed time step. The integration scheme 
implemented in PLATO is the fastest first algorithm based on variable 
time steps resulting in an event driven simulation scheme. A principal 
problem occurs if the stepsize chosen for a specific leafcell appears too 
large and has to be decreased. Leafcells with smaller stepsizes have 
already been integrated up to the current time point. To prevent 
rejection of numerous integration steps and the cost of large back-ups, 
time steps are continuously monitored and adjusted. Furthermore time 
step selection is rather conservative and based on a second order error 
criterion, even for second order integration formulas. 

As with many numerical methods, theoretica! analysis tends to be 
pessimistic hut in practice results are often quite satisfying. Very often 
physical properties will satisfy the conditions under which methods 
are reliable. In particular the integration results obtained by PLATO 
appear quite accurate. The same conclu_sion was made in [61] where 
results were compared with the eternal simulation reference SPICE. 
Finally we should realize that all numerical integration methods are 
limited with respect to their application area. In this context the 
results for several methods applied to the Landman circuit in chapter 6 
are quite illustrative. 
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5. Transient analysis 

5.1 lntroduction 

Transient analysis is probably the most frequently used simulation 
task in circuit simulation. Unfortunately, transient analysis is also the 
most cpu time consuming activity in the field. The most 
straightforward way to implement transient analysis in a piecewise 
linear simulator is to apply an integration formula with fixed uniform 
stepsize. In this context a uniform stepsize by definition implies that 
all leafcells obtain the same time step, whereas fixed implies that the 
time step for any leafcell remains constant during the integration 
process. (In literature uniform often means fixed hut here we 
distinguish between those two notions). After having determined an 
initial solution, replace all dynamica! elements by companion models 
using a stiffiy stable integration formula. Next, make a time step 
equivalent to the stepsize chosen and check whether the pwl equations 
remain valid. If the solution curve has crossed a segment boundary, 
the piecewise linear equations have to be re-solved, e.g. using 
Katzenelson's algorithm. Otherwise proceed with the next time step. 

A number of objections can be formulated against this approach: 

1. the user has to provide the simulator with an appropriate stepsize 
which is not always a trivial problem. 

2. applying a fixed stepsize can be extremely inefficient. We cannot 
take advantage of the fiuctuating activity in the circuit. The 
stepsize chosen has to be small enough to integrate the fastest 
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deviations accurately and is not allowed to grow if circuit activity 
diminishes. 

3. we cannot estimate the truncation error if a boundary hyperplane 
is crossed. After a segment boundary has been crossed, the pwl 
equations will have to be solved again. This will generally cause 
few problems since the available algorithms show excellent 
convergence properties. Afterwards however it is impossible to 
estimate the error introduced. This error may be severe in case of 
hysteresis-like behavior (as is introduced in almost any realistic 
logic circuit) or step functions. So the stepsize must be relatively 
small compared to the circuit dynamics. 

1 

x (t) correct x timing error 

0 - - - - .J 

0 2 4 6 
time 

Figure 5.1. Step function. 

4. discontinuous signals are prohibited. Applying a step function to 
a circuit in which e.g. all capacitors are replaced by companion 
models may cause capacitor voltages to change discontinuously. 

Of course, the latter two objections become less severe with smaller 
stepsizes at the cost of decreased efficiency. PLATO can be forced to 
use a fixed stepsize for benchmark purposes. 

The method can be improved by applying a uniform variable step 
integration rather than a fixed step. Decreasing circuit activity will 
then yield larger stepsizes. Although the repeated computation of 
suitable stepsizes causes some overhead, mainly in recomputing the LU 
decomposition of the system matrix, the efficiency gains will outnumber 
the cost in most practical cases. Furthermore the overhead can be 
reduced by applying a conservative strategy with respect to stepsize 
changes, e.g. only significant changes are effectuated. Secondly, we can 
improve upon the accuracy of the algorithm because the need to 
integrate across segment boundaries is eliminated. Stepsizes can be 
chosen such that the next time point coincides with the crossing of a 
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boundary. 

5.2 A uniform stepsize simulator 

The simulation program solves for the circuit variable derivatives x 
rather than the circuit variables themselves. The time derivatives are 
used to explicitly determine the moment when the solution reaches a 
segment boundary. Therefore we introduce the divided differences 

Xn+l • Ün+l • Pn+l • iin+l and Un+l: 
. . 

_ /J. Xn+l -Xn 
Xn+l = h 

n 

_ /J. Un+l - Un 
Un+l = hn 

.,.. /J. Un+l - Un 
Un+l = h 

n 

_ t,. Qn+l -qn 
Qn+l = hn 

_ t,. Pn+l -pn 
Pn+l = hn 

(5.1) 

Subtracting (1.1) for time points t = tn+l and t = tn where hn = tn+l - tn 

yields: 

l 0 !Au A12 A13] [.Xn+ll ~n+l = A21 A22 A23 ~n+l 
Pn+l A31 A32 A33 Qn+l 

(5.2) 

in which the constant source vector (a1, a2, a3)t has disappeared. In 
the sequel the subscripts n+l are often omitted. We now eliminate the 

unknown Un+l by substituting a linear multistep integration formula 
with constant stepsize: 

i=p i=p 
0 = L C1.illn-i + h L l3iûn-i (5.3) 

i=-1 i=-1 

This yields the following equation for Ün+l: 

- h 13-1 n-1A - h 13-1 n-1A - 13-1 n-1 · (5.4) Un+l = - -- 21Xn+l - -- 23Qn+l - -- Un (J.__1 (J.__1 (J.__1 

where 
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and 

D=l-M.22· 

Combining this result with 0 = Aux +A12ü +A13Q yields: 

O=Jffx+b1 

in which 

Ju =Au+ M12D-1A21 

and 

b
-

1 
__ Cl3-1+13o)A n-l. (a_1 + ao)A 1 

- a_l 12 Un - ha_l 12D- Un 

1 i=p 
- -h--A12D-1 I: (aiun-i + hl3iûn-i) 

a_1 i=l 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

from which x is rapidly solved. Here we assume that J 11 is a square 
matrix representing the entire system. In reality Ju corresponds to a 
single leafcell only. It has to be inserted in the system matrix from 

which x is solved. With x known, ü, u and p can be solved successively. 
Equation (5. 7) will be referred to as the leafcells companion model. 
Table 5.1 shows the specific values for ö and b 1 for all integration 
formulas applied in the simulator. Of course the above results are 
valid under the assumption that he inversion of D is feasible. 

TABLE 5.1. ö and b for several integration rules. 

ö b1 

BE h A12D-1ûn 
TR 1/'lh, A12D-1ûn 
BDF2 2/:Jh 2!:iA12D-1Ûn + 1l:iA12D-1ü"n 

ACT2 2/:Jh l4A n-1 · lA n-1- 4 A n-1 · 15 12 Un - 5 12 Un + 15 12 Un-1 

Let us for the moment restrict ourselves to one step integration 
methods like Backward Euler (BE) and the Trapezoidal rule (TR). The 
implications of multistep (in particular two-step) methods with 
variable stepsizes will be investigated later on. The general system 
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description (5.2) with the substitution of an integration formula now 
becomes: 

_ [Á.11 + M12D-1A21 
- [!l31 + M.32D-1A21 

(5.10) 

Observe that the update M 12D-1A 21 on matrix Au is a rank r update 
where ris the rank ofmatrixA22· In many cases matrix A22 will have 
dimension one in which case a change of stepsize requires only a simple 
rank one update on the system matrix. For simplicity, we will assume 
that r equals one since the operation principle of the algorithms is 
independent of r. 

At timet= 0 we have determined values for xo, Ûo and po with qo = 0 
and u 0 = 0 as initial values. The integration is then started with a 
Forward Euler integration step: the initial x is determined using the 
source vector b = A 12Û o after which we can derive a suitable stepsize 

from u 0 • From then on an implicit integration rule can be applied, 

using Ûn to estimate a time step. 

Let us now summarize the algorithm for a simple uniform variable 
stepsize piecewise linear simulator and identify the basic operations 
and updates. A very coarse version of the algorithm might resemble 
the one shown in algorithm 5.1 

The actions that occur very often are: 

• rank one updates on the system matrix due to pivoting operations. 

• full vector forward-backward substitutions. 

• a change of stepsize and the recomputation of leafcell data. 

• a full LU decomposition on the system matrix. 

The largest part of the computational effort is accounted for by the last 
two operations. Since a change of stepsize causes rigorous changes to 
the system matrix, updating the LU decomposition is rather 
unattractive and full LU decomposition is inevitable. In the following 
sections we will first discuss pivoting operations during transient 
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Algorithm 5.1. Simple uniform stepsize simulator. 

t = O; 
determine x (t ); 
while t < Tdo 

solue A·x = LU·x = b; 
determine new time step t:..t; 
t = t + t:..t; 

update circuit and leafcell uariables till current time t; 
if solution has reached a boundary then 
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solue pwl equations meanwhile keeping LU up to date; 
else / * time step bounded by integration accuracy * / 

determine new step size; 

fr 
' od; 

if step size has changed then 

fr 
' 

recompute leafcell jacobians and source uectors; 
reassemble the system matrix; 
compute new LU decomposition; 

analysis. Next we will try to eliminate the full LU decomposition as 
much as possible by the introduction of a multirate integration scheme. 

5.3 Pivoting 

As explained in the previous section, the time integration is 
interrupted if the solution hits a boundary hyperplane. At this time 
the pwl equations have to be re-solved which involves pivoting. Note 
that although a pivoting operation generally changes x, i.e. the 
direction in which the circuit variables propagate as a function of time, 
the applied stepsize may very well remain appropriate, since û will 
often change continuously in time. Since pivoting itself is no reason to 
restart the integration, it's more efficient to keep the current stepsize 
while solving the pwl equations and validate it afterwards. 

Unlike in the situation during the initial analysis, the submatrix Au 
bas been updated with a rank one update due to the substitution of an 
integration formula as indicated by equation (5.7). In fact every 
submatrix Aij, i, j E { 1, 3 } has been updated according to equation 
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(5.10). The pivot value and the update vectors are not immediately 
available since the simulator does not explicitly store matrices Jij· 
Only matrix J 11 is merged explicitly in to the system matrix. 
Nevertheless it is still possible to compute the update vectors when 
performing a pivoting operation and obtain the new jacobian matrix by 
performing a rank one update. 

Theorem5.1 
Let P(k ;l) denote a pivot operation on submatrix elementA% and let L 
denote the substitution of a multistep integration formula. Operator o 
is the well known "compose" operator in operator theory. Now 
P o L = L o P, i.e. the order in which operations P and L are applied is 
irrelevant. 

Proof. Let us define column and row vectors (see figure 5.2) 

A ~ AA~ A P AAP c1 =A13, c2 = 23, ri =A31, r2 = 32 (5.11) 

and pivot element 

P ~A~~. (5.12) 

Au C1 

A21 C2 

1 

A31 A33: 
1 

k •p ......•. 

Figure 5.2. Update vectors for pivoting operation. 

Now define the following matrices where A is a shorthand for matrices 
Au (see also figure 5.3): 

A' effect ofoperation P with pivotp on matrixA 
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A ,__P_iv_o_t_p---;~ A, 

substitute integration rule 

A 
pivotp 

Figure 5.3. Pivoting operations. 

A apply integration rule (5.3) to matrixA 

A" apply integration rule (5.3) to matrix A' 

A effect of operation P with pivot p on matrix A 

and show that.A equalsA" equalsA'. 

First we construct A": 

A lf A' !;:Af D'-'A' = 11 +un.12 21, 

D=l-M.22, D'=l-M.22. 

N ow substitute the expressions for A ': 

c1r2 
Ab =A12 - --, 

p 

c2r1 
A21 =A21 - --, 

p 

c2r2 
A22 =A22 - --, 

p 

' 1 p =-
p 

rî = 
rl 

p 

r2 = 
r2 

p 
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(5.13) 

(5.14) 

The result contains a complicated matrix inverse which can be 
eliminated by applying the Sherman-Morrison-Woodbury formula: 
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(A +XCY'r1 =A-1 -A-1xcc-1 + Y'A-1x)-1Y'A-1 

with 

C = ..Q., A ::D, X =c2, yt =r2 
p 

Using the fact that 
-1 

K = (~ + r2D-1c 2) and k = r 2D-1c 2 

are constants and some juggling with terms we finally obtain: 

A" =Au+ M12D-1A21 

The derivation of an expression for Ais a bit simpler. Combining 

with 

Au =Au+ M12D-1A21 

A13 =A13 + M12D-1A23 ~ c1 = c1 + M12D-1c2 

A31 =A31 + M.32D-1A21 ~ r1 = rl + 8r2n-1A21 

A33 =A33 + M.32D-1A23 ~ P = P + 8r2D-1c2 
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(2.1) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

we almost automatically find that A equals A" which completes the 
proof. 

5.4 A multirate simulator 

A way to eliminate the costly full LU decomposition every time the 
integration time step changes is to apply a multirate integration 
scheme as introduced in the previous chapter. Instead of integrating 
the entire circuit with a uniform variable stepsize, every leafcell is 
assigned its own optima! stepsize. This way fast varying leafcells 
obtain small stepsizes while slowly varying leafcells are integrated 
with large ones. Naturally it is possible and even desirable for a 
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number of leafcells to share the same stepsize and have simultaneous 
events. If a leafcell changes its activity, its stepsize has to be adapted 
resulting in a matrix update of small rank. 

The transient analysis proceeds in an event driven manner. We 
distinguish between two types of events: 

• dynamic events and 

• pwl events. 

Let us first examine the dynamic events. These occur every time the 
validity of a companion model expires. Suppose some leafcell l has a 
dynamic event at time tev = tn+l · First we update the x-, u-, û- and p
variables corresponding to leafcell l using the divided differences which 

are approximations of their time derivatives x, ü, u and p. Next a new 
stepsize hn+l is computed for the next integration step by estimating 

the local truncation error using u. The previous stepsize hn is 
maintained if there is no significant difference between the new 
stepsize hn+l and hn. In this case only the b vector changes due to the 
update of û (see equation (5.9)). Vector bis constructed by merging all 
leafcell contributions b 1 into one system source vector. The changes in 
b denoted by !:ib are now used to compute an update for x denoted by 
!:i'X. A more complicated situation arises if the stepsize requires 
adjustment. Now not only b but also J is subject toa change causing a 
full recomputation of x by forward-backward substitution. As we will 
see later on, this recomputation can be replaced by an update. Finally 
the new event ofleafcell l is determined at tev + hn+l • assuming no pwl 
event is expected to occur within time interval [tev• tev + hn+d· 

We already noticed that substitution of an integration formula causes a 
rank r update on the A 11 matrix if A 22 has dimension r. The jacobian 
matrix is updated with a matrix containing the chosen stepsize. Thus a 
change of stepsize will also change the jacobian J 11 . Suppose 

Jn(n) =Au+ ö<nlA12CD-1)<nlA21 (5.20) 

represents the jacobian based on hn in the time interval tn ~ t ~ tn+l 
and 

(5.21) 

is the new jacobian aft.er hn has changed to hn+l · An update M for the 



Section 5.4 A multirate simulator 65 

jacobian Ju (n) is easily computed: 

M =Ju (n+l) -Ju (n) (5.22) 

= A12 {oCn+ll(D-1 )Cn+ll - oCnJcn-1 )Cnl}A21 

Since the matrix n-1 is required quite often, it is stored explicitly by 
the simulator. Therefore the matrix w-1 can be determined very fast 
and the row and column update vectors required for the dyadic update 
can be provided. Generally only a small subset of leafcells will have to 
change stepsize at the same time point. So the system matrix will be 
subject to relatively small deviations and the LU decomposition can be 
updated very efficiently with algorithm 2.2. 

After the changes !iX, have been determined, the impact on the related 
leafcells must be investigated. Since the circuit variable derivatives 
have changed for those leafcells, it may very well be possible that the 
stepsizes substituted are no longer valid. Therefore we have to update 

the x-, ü-, p- and x-variables, recompute u and p, and check if the 
applied stepsizes are still appropriMe. If necessary, the event times 
must be adjusted. It appears that changing stepsizes is a costly 
operation which should be avoided whenever possible. 

A pwl event occurs if the solution vector reaches a boundary 
hyperplane of the current segment. This happens if for some leafcell a 
component of its p vector becomes zero. Pwl events can be determined 
explicitly using p and the time derivative estimates p at the current 
time tev. Suppose 

::3 k \fi #k [fü < o /\Pi< o /\((pk I fü)?. (pi I Pi)) L 

then the next pwl event for this leafcell is at time tev - (pk / fü). At 
that time point the integration must be stopped until the piecewise 
linear equations are solved and the solution curve can proceed in 
another segment. A complication arises if simple pivots are not 
sufficient to solve the pwl problem and the van de Panne algorithm has 
to take a step 0 in the direction of À or a q variable. Now ü may change 
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discontinuously in which case the integration has to be restarted for all 
leafcells involved. Such a restart is not necessary if only simple pivots 
are performed. More important however is that the step 8 cannot be 
taken as long as related leafcells are still represented in the system 
matrix by their companion models. For those leafcells the stepsize has 
to be reset to zero to prevent undesired side effects such as step 
functions in capacitor voltages instead of exponential characteristics. 
Obviously, since changing the system matrix can have implications on 
x, we have to recompute the step 8 in the direction of q if stepsizes were 
actually reset. 

Apart from discontinuities in û due to steps taken by van de Panne, 
note that pivoting causes an upperbound on the number of continuous 
state variable derivatives since these directly depend on on x. 
Unfortunately this restriction implies that nothing can be gained from 
the application of integration formulas with order larger than two [71]. 
After the piecewise linear equations have been solved, the leafcells 
affected by changes in x have to be examined. If necessary their events 
and stepsizes have to be corrected. 

Since it is very well possible that several events coincide at the same 
time point, we deal with the corresponding leafcells simultaneously. 
This is especially easy for dynamica! events by applying the 
superposition principle. E.g. all new contributions to b are merged 
together before determining !!.X. So at any event time we process a 
cluster of leafcells with similar events instead of single events. 

Definition 5.1 
A cluster is defined as a 4-tuple C = (E, tev• ET, IF) in which Eis the 
set ofleafcells with events of type ET, simultaneously occurring at time 
tev. The integration formula being applied for the current time step is 
defined by !F. Proper values for ET are { pl_event, dynamic_event}. 
For simplicity we will assume cardinality one for clusters of type 
pl_event. 

The transient analysis and the modifications to van de Panne's 
algorithm are listed in algorithms 5.2 and 5.3 

It appears that there are two situations in which leafcell events have to 
be rescheduled: 
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• while the pwl equations are solved, the algorithm may very well 
reach and change leafcells with events scheduled in the future. 

• changes in one particular leafcell may influence another one causing 
a new (dynamical or pwl) event prior to its present scheduling. 

Here we encounter a basic limitation of the piecewise linear simulator. 
At the moment of rescheduling, we find that the original stepsize is no 
longer valid and should be replaced by another, smaller, one. In 
practice, assuming the difference is not too large, we simply reschedule 
the event without changing the stepsize. In some cases events have to 
be forced to the current time. This implies that since the integration 
step was interrupted, the truncation error becomes larger than 
estimated. It can be shown that the order of a second order method 
such as the trapezoidal rule falls back to one [13]. This appears to be a 
major limitation since in order to preserve integration accuracy, 
stepsizes have to be estimated by a first order criterion even if second 
order integration methods are applied. Clearly this has a negative 
influence on simulation run times. 

The problem becomes even more disturbing if two-step backward 
differentiation or A-contractive methods are selected. These methods 
use two previous values for u and Ü which must be administered 
carefully. Step size truncation has a disastrous effect on these previous 
values: they become invalid. The integration must now switch back to 
a one-step formula such as the trapezoidal rule or backward Euler, 
after which the two-step scheme can continue. 

Let us introduce some additional variables before listing the transient 
analysis algorithm: 

B set ofleafcells that require a recomputation of b. 
!l.b sparse vector containing updates for b contributed by one or 

more leafcells. 

/:l;X sparse vector containing updates for x. 
L .1.X set ofleafcells related to nonzero entries in /:l;X: 
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Algorithm 5.2. Transient analysis. 

transient (): 
C = next_event_cluster (); 
while ( tev < T ) do 

process_event_cluster(C); 
C = next_event_cluster(); 

od; 

next_event _cluster(): 
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/ * Determine the set of leafcells E belonging to the same 
*class that require servicing at the nearest event time tev· 
*/ 

assemble cluster C; 
return C; 

process_event_cluster (C): 
up_date_module_variables (C); 
~b = 0; 
if ET = pl_event then . 

/*Set I contains only a single leafcell i andp~ = 0. 
* SetBcontainsleafcellsthatrequirearecomputationofbdot. 
*/ 

initialize sets !, B .= E, 0; 
initialize vectors ei, e~, e~ = 0.0, - u, - jj; 
À= 0.0; 
push (i, "À column", down); 
push (i, r, up); 
vdpanne (À); -z -
for all [EB do compute update ~b for b od; 
solve LDU·/J.X = ~b; 
;:; += ~b; 

elseif IF = forward_euler then / * Restart integration * / 
for all eEE do 

compute update ~;;e for b; 
~b +=~be; 

od· 
sol~e LDU·/J.X = ~b; 
;:; += ~b; 
for alle EE do "increment" integration method od; 

else / * Regular integration step * / 
recompute = false; 
for all eEE do 
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fi; 

od; 

A multirate simulator 

"increment" integration method; 
new _stepsize (e ); 
if e-Mtepsize -:t- e~previous_stepsize then 

recompute = true; 
update LU decomposition; 

fr 
c~mpute contribution tlbe for b; 
tlb + = tlbe; 

if recompute = true then 
solve LDU·x = b; 
generate tl'X; 

else 

fr 
' 

solve LDU·tlX = tlb; 
b += tlb; 

process_leafcells (C, tlX); 

update_module_variables (S ): 
for all seS do 

od; 

update xs with xs till the current time point t; 
update us with ïis till the current time point t; 
update ps with ps till the current time point t; 

process_leafcells (C, tl'X): 
eliminate non relevant entries from tlX; 
for all entries i in t1X do update x [i] and x[i] od; 
assemble L l!.X; / * No te : E r\L l!.X = 0 * / 
update_module_variables (L l!.X ); 
for all eeE do 

compute ïie; 
Te -e 

compute u and p ; 
schedule (e ); 

od; 
for all e EL l!.X do 

compute ïie; 
.e -e 

compute u and p ; 
reschedule (e ); 

od; 

69 
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Algorithm 5.3. Transient analysis: Van de Panne. 

vdpanne (À): 
carry _on = true; 
while carry _on do 

/ * Compute derivatives_ of x * / 
genera te source v~ctor b; 
solve LDU · x = b; 
assemble L;; 

/ * Determine maxima[ number of pivots * / 
Si= O; 
for i = tos downto 1 do 
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s = sign (stack [i ].leaf, stack [i ].column); 
ifs "!: 0 then 

S =s; 
Si= i; 

fi• 
' od; 

check_sign(); 
if Si = 0 then / * Cannot pivot * / 

determine_theta (); 

else 

if e = "" then abort; / * Cannot solve * / 
if8 > 0 then 

check_related_leafcells(); 
x = x + dir·B·x; 
for all l EL; do update û 1 and p 1 od; 
update À or q [column]; 

fi" 
if column = À and À = 0 then 

carry _on = false / * Solution found * / 
elseif column "!: À and q [column] = 0 then 

/ * Current active column became 0 * / 
pop(); 
stack [tos ].dir = - stack [tos ].dir; 

else / * New blocking row * / 
push (leaf, row, up) 

fi• 
' 

perform_pivots (); 
for i = tos downto Si do 

B = Bu /eaf; 
pop(); 

od; 



Section 5.4 A multirate simulator 

dir = dir·S; 
fi: 

' od; 

check_sign (): 
m = stack [Si ].column; 
n = stack [tos ].column; 
if sgn CA!f3n ) < 0 then 

fi: 
' 

for all leL; do 
reset stepsize hl of leafcell l to O; 

od· 
set' S = sgn (AThn ); 
recompute x; 
assemble new L;; 

check_related_leafcells (): 
for all Z eL; do 

od; 

reset stepsize to O; 
B =Bul; 
update LU decomposition; 
update x with x till the current time point; 

recompute x; 
assemble new L;; 
recompute e; 

5.5 Some .optimizations 

71 

Let us consider the consequences of small perturbations in jacobian J 11 
as well as the source vector b 1 . This situation arises quite often in the 
simulator: due to pivoting during transient analysis and secondly 
when changing the integration stepsize for a leafcell. Since these 
operations cause only minor changes to the system matrix as well as 
source vector, we suspect that x can be easily updated instead of 
performing a full recomputation. 

We first examine the general case in which the new situation is given 
by 

(5.23) 
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where 

Jnx+b1=0 

Transient analysis 

Substitution of the above relations and some rewriting yields: 

CJ11 + Mn)AX + M 11 ·x + t:.b 1 = o. 
Now reconsider the two special cases mentioned before. 
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(5.24) 

The application of equation (5.24) in the case of pivoting was already 
documented in [72]. Here the modification of the system matrix is 
simply a rank one update where the update vectors must be taken from 
submatrices J 12 and J 21 as presented in equation (5.10). So assuming 
matrix element J~~ is taken as a pivot, the updates M 11 and t:.b 1 are 
simply given by: 

J~~ -k 
t:.b 1 = c·a = - --,;z·b2 . 

J22 

The update for x is readily computed from 

(J 11 + c·r')·AX + c·(r'·x + a) = 0. 

The same optimization can be applied in case of stepsize changes. An 
expression for the update of the system matrix was already derived in 
section 5.4 equation (5.22). An update for vector b is computed easily 
by using the same temporary matrix as was used for the update of J 11: 

e.g. t:.b 1 = m-1 un for BE or TR. 

Another optimization is found by simply reducing the sets Lt>X and Lfli. 
During the forward-backward process we inevitably introduce small 
insignificant errors in the solution vectors Ai and t:.i. These almost 
zero entries in the sparse solution vectors may cause the unnecessary 
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evaluation of the related leafcells. This overhead can be reduced by 
carefully ignoring the leafcells related to very small sparse vector 
entries. The danger lies in the undesired introduction of errors in the 
leafcells û vectors. Since the circuit variables x are computed by 
updating with the x vector, errors in x are directly reflected in x. Next 
the errors in x are fed in the û vector, hut multiplied by matrix A21 

which may drastically increase the errors. Finally, b depends on û 
yielding an incorrect source vector and resulting in even larger errors 
in x. Therefore elimination is guided by a very conservative heuristic 
and can be turned off if desired. 

5.6 Event clustering 

As already pointed out by C.W. Gear [66] there is a disadvantage to the 
approach sketched in section 5.4. Since it is impossible to predict the 
circuit behavior while determining a new stepsize for a specific leafcell, 
we may be forced to change the stepsize before the leafcell reaches the 
time point at which its next event is scheduled due to activities in other 
parts of the circuit. This causes a lot of computational overhead, 
involving the update of circuit variables and the recomputation and 
effectuation of stepsizes. Gear also showed that no merit can be 
expected from the application of a multirate integration technique if 
the stepsizes of the subproblems lie close together. So the rigorous 
application of the multirate principle described above may not be very 
efficient. 

The transient analysis algorithm shown in algorithm 5.2 already 
implements the handling of multiple events at the same time point. 
Multiple events can be processed by simply merging their contributions 
in the b vector before computing the new x. Since it is often the case 
that related components have events at about the same time, it is clear 
that a lot of cpu time can be saved by clustering dynamica! events. As 
long as every component is assigned its own optimal stepsize however, 
it will rarely be possible to deal with more than one event at a time. 

A way to achieve improvements for both drawbacks is the 
discretization of event times. Forcing nearby events to a grid increases 
the average cluster size. A further reduction of the overhead can be 
achieved by forcing groups of related leafcells to use the same 
(minimum) stepsize. This way the recomputation of stepsizes is 
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minimized and the need for reducing them will diminish. Two heuristic 
approaches to event clustering have been tested. The first and most 
effective procedure determines, given the nearest event time, a set of 
leafcells which have almost reached that time (i.e. some fraction of its 
stepsize). Unfortunately this implies a systematic preemptive 
treatment of events. Since this has a negative effect on the integration 
order, the second, less effective approach was selected. Dynamic event 
times are discretized as follows. Assume the length of the integration 
interval is given by T, then events are forced to one of the following 
grids: 

T-2-k for k = 1,2, · · ·, N. (5.25) 

Every time a new event has to be determined, a value of k is chosen 
such that the desired stepsize can be mapped onto the discrete time 
axis without violating the time integration accuracy requirements 
reflected by the stepsize h. Aft.er the next event has been determined, 
the leafcells stepsize is set accordingly. 

The speed-up achieved by event clustering is circuit dependent. 
Generally, the required cpu time is reduced by 10-20%. Although the 
number of events can decrease with about 50%, the larger number of 
leafcells involved causes more fill-ins in source and solution vectors. 
Therefore the amount of time needed for the sparse matrix operations 
increases, limiting the final gain to "only" 20%. A comparison of 
clustering versus no clustering is shown in table 5.2 for a number of 
inverter chains (see chapter 6). In this example the effect of clustering 
is minimal due to the nature of the circuit: initially many leafcells 
already obtain about the same events. The increase in cpu time 
occurring at 20 stages is caused mainly by the ripple effect, which 
causes extra circuit activity and, consequently, extra simulation time. 
A more successful example is the counter (see chapter 6) where 
clustering reduces the cpu time from 405 to 270 seconds. Note that the 
applied heuristic may turn out expensive in a situation with a relative 
large number of pwl events. In this case we require lots of stepsize 
changes to force the leafcells involved to the discrete time grid. 

Some gain can be expected from a reduction of the number of clusters 
allowed. Assume all leafcells are forced into a suitable cluster. 
Switching from one cluster to another would be restricted to 
overlapping time points on the discrete time axis. Restriction of the 
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TABLE 5.2. lnverter chain clustering results. 

cpu time cpu time 
#stages no clustering clustering 

5 1.28 1.15 
10 6.27 4.78 
15 11.38 8.57 
20 17.90 15.37 
25 25.68 27.67 

number of clusters will then prevent leafcells from running "loose". 

Part of the problem in optimizing the event scheduling is the generic 
character of the simulator. A much more efficient clustering could be 
implemented if the simulator had some knowledge about components 
like e.g. MOS transistors. In that case the circuit could be partitioned 
into subcircuits each being operated with the same stepsize. Crossing a 
segment boundary would trigger a reevaluation of the partitioning. 
This way the simulation of logic circuitry at the transistor level could 
become more efficient. A similar approach hut combined with 
waveform relaxation was shown to be very effective [73]. Ironically, 
another problem is caused by the piecewise linear modeling itself. 
Hitting a boundary always interrupts the discretized event scheme, 
causing expensive matrix updates which sometimes cancel the gain 
obtained by clustering. We already pointed out in the beginning ofthis 
chapter that integrating across segment boundarys is not a viable 
option. 
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6. Simulation results 

6.1 Landman circuit 

The limitations of numerical integration methods can be illustrated 
using the nasty little circuit shown in figure 6.1 constructed by B. 
Landman. The circuit appears in [59] and is used to examine some 
properties of integration methods such as numerical dam ping and time 
errors. The plots in [59] p. 257, although created with a :fixed stepsize 
that is much too large to expect a reasonable result, compare nicely to 
the signals obtained by PLATO as shown in :figures 6.3, 6.4, 6.5 and 6.6, 
in which both the exact (dashed line) and computed (solid line) are 
plotted. The multirate methods show the same damping and time error 
tendencies as their :fixed time step counterparts. 

+ 

v(t) 

L 

î i(t) R 

R = 1 /102 Cl=l 
L = 102/20602 C2 = 20602/10100 

Figure 6.1. Landman circuit. 
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Figure 6.2. Excitation for the Landman circuit. 
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Figure 6.3. Transient analysis of the Landman circuit using PLATO 
withBE. 
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Figure 6.4. Transient analysis of the Landman circuit using PLATO 
with TR. 



Section 6.1 Landman circuit 79 

0.015 

0.01 

0.005 

0 

0 1 2 3 4 5 

Figure 6.5. Transient analysis of the Landman circuit using PLATO 
withBDF2. 
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Figure 6.6. Transient analysis of the Landman circuit using PLATO 
withACT2. 

The exact solution is given by: 
À1 t fvit vc2=c1e +c2e cos(ffit)+c3 

c1=1/(99·102) 
c2 = - 50·c1 
C3=1/102 

A.1 = -100 
A.2 = -1 
(1) = 10 
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6.2 Inverter chains 

A useful circuit for the illustration of latency behavior is a chain of 
nmos (cmos) inverters as plotted in figure 6.7. The circuit activity will 
be a reflection of the amount of change in the input signal. When a 
constant input is applied the chain will be in rest and computational 
effort will be at a minimum. If the input changes, the change will 
propagate through the chain hut will be restricted to a small amount of 
inverters. 

Figure 6.7. 7-Stage inverter chain. 

6.3 Ring inverters 

Another notorious test circuit for circuit simulators is the ring inverter 
in figure 6.8. An oscillation will occur if the number of inverters is 
large enough and the oscillation frequency will diminish if the number 
of stages increases. So large parts of the circuit will be in rest. Only 
those inverters that are currently involved in the propagation of the 
wave front are active and require treatment. 

6.4 AID converter 

A circuit typically suited for simulation by the piecewise linear 
simulator is the ND converter circuit depicted in figure 6.9. It contains 
control logic modeled at the gate level as well as an analog multiplexer 
composed out of MOS transistors. The actual conversion from analog to 
digital is implemented by a macromodel. An inhomogeneous collection 
of simulation results is presented below. 
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Figure 6.8. 7-Stage ring inverter. 

Figure 6.9. Al D converter circuit. 
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Figure 6.10. A / D converter signals. 
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6.5 Counter 

The counter circuit is a simple four bit counter built out of flip-flops as 
shown in figure 6.11 and some logic gates. All transistors applied are 
modeled using the simplest MOST model, comparable to SPICE level 1. 
Output signals are presented in figure 6.12. 
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Figure 6.11. Flip-flop. 
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Figure 6.12. Counter signals. 

6.6 Two complement accumulator 

A circuit containing logic components only is a counter as used in the 
proportional tracking ND converter described in [74]. In default mode 
the counter just counts in a normal up or down fashion. Every bit of 
the counter is equipped with a range enable input. If such an input 
becomes active, the corresponding bit effectively becomes the least 
significant bit. All less significant bits are blocked, the more significant 
bits count as ifthe enabled bit is the least significant one. 

6. 7 Simple phase locked loop 

A simple little circuit typically suited for the piecewise linear simulator 
is a phase locked loop composed out of some comparators, logic gates 
and integrators. It consists of a mixture of analog, digital and abstract 
components. 
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6.8 Neural networks 

summer gain nonlinearity 

output 

Figure 6.13. Circuit model for a Hopfield neuron. Inputs can be either 
inhibitory (circles) or excitatory. The result of the input 
summation x is multiplied by a constant gain factor G 
and compressed between 0 and 1 by a nonlinear function. 

A nice example of the fiexibility of the piecewise linear simulator is its 
ability to simulate rather abstract systems such as neural networks. 
Figure 6.13 shows a circuit model for a Hopfield neuron [75, 76]. A 
simple piecewise linear model using only a few segments to implement 
the nonlinear function already suffices to simulate the neural circuits 
in [77]. A typical characteristic of neural networks is the high 
connectivity of the circuit. This causes the system matrix to be rather 
full instead of sparse. Since the simulator is built for operation on 
sparse matrices, the simulation of large neural networks becomes 
rather inefficient. At this moment a special neural version of the 
simulator· is developed, using full matrix techniques and the parallel 
and vector capabilities of an Alliant FX/8 mini-supercomputer. 

6.9 Program statistics 

This section presents an overview of the program statictics that are 
gathered during simulation for the circuit examples mentioned before. 
They form a selection of the benchmark and test circuits I used to test 
and optimize the simulator. The statistics printed are supposed to give 
an impression of the nature of the circuits. Furthermore they intend to 
illustrate the algorithmic concepts explained in previous chapters. The 
simulations were done on a Hewlett-Packard workstation (hp9000s835) 
and are measured in seconds. Results are scattered over tables 6.1, 6.2 
and 6.3. 
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TABLE 6.1. Program statistics: inverter chains. The "#" character is a shortcut for "number". 

circuit chain5 chainlO chain15 chain20 chain25 
#components 11 21 31 41 51 
matrix size 25 50 75 100 125 
matrix density 15.0 7.8 5.2 3.9 3.2 
#pivots (initia!) 5 10 15 20 25 
#pivots (transient) 11 23 36 48 61 
#full LU decompositions 1 1 1 1 1 
#dyadic updates 165 357 546 721 920 
average #changed elements 17.2 34.1 50.2 65.5 81.5 
#forward/backward subst. 602 1303 2028 2634 3316 
#pwl events 11 23 36 48 61 
#dynamic events 558 1213 1889 2449 3082 
average size t.X 13.2 23.5 32.3 39.0 43.4 
average #leafs reached (pwl) 6.8 12.5 17.7 22.8 27.0 
average #leafs reached (dyn) 6.3 10.5 14.3 17.4 19.4 
cpu time 1.28 6.27 11.38 17.90 25.68 

TABLE 6.2. Program statistics: ring inverters. 

circuit ring7 ring15 ring31 ring61 ring121 
#components 21 45 93 183 363 
matrix size 42 90 186 366 726 
matrix density 10.4 4.9 2.4 1.2 0.6 
#pivots (initia!) 7 15 31 61 121 
#pivots (transient) 98 118 158 547 610 
#full LU decompositions 1 1 1 1 1 
#dyadic updates 2449 3491 5259 16083 19835 
average #changed elements 38.6 78.8 165.6 313.9 517.4 
#forward/backward subst. 13794 17084 23102 76482 82711 
#pwl events 98 118 158 547 610 
#dynamic events 13485 16699 22565 74718 80638 
average size t.X 33.5 35.9 40.9 38.4 43.1 
average #leafs reached (pwl) 20.0 24.4 27.9 29.2 40.3 
average #leafs reached (dyn) 18.1 20.9 23.8 22.7 25.2 
cpu time 68.82 108.15 198.25 875.42 1505.08 
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TABLE 6.3. Program statistics: several other circuits. 

circuit landman adc counter accumulator pil 
#components 4 74 60 146 10 
matrix size 4 98 174 134 10 
matrix density 68.8 2.3 3.4 0.7 23.0 
#pivots (initia!) 0 78 84 116 6 
#pivots (transient) 0 9532 1008 5584 238 
#full LU decompositions 1 2 12 1 1 
#dyadic updates 38 11010 34263 5714 298 
average #changed elements 6.2 2.5 88.9 0.5 6.4 
#forward/backward subst. 140 23478 30281 10661 925 
#pwl events 0 2430 1008 1710 138 
#dynamic events 139 6073 26948 46 256 
average size Ài: 3.9 7.8 23.4 1.1 1.0 
average #leafs reached (pwl) 0 1.3 10.8 2.8 2.5 
average #leafs reached (dyn) 3.0 7.5 12.4 3.1 2.1 
cpu time 0.1 37.3 269.55 12.12 0.53 
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Conclusion 

Let us conclude this thesis with some final remarks. The description in 
full detail of the techniques implemented in the piecewise linear 
simulation program was one of the purposes of this text. Nevertheless 
many details have been omitted in favor of the basic principles. 
Through the past years the program developed to quite a complicated 
piece of software. Paradoxically, the simplification of nonlinear 
mappings to piecewise linear mappings not necessarily yields a simpler 
solution method. 

The program was intended as a tool for "difficult" circuits, i.e. circuits 
causing convergence problems or consuming large amounts of cpu time 
when simulated with SPICE-derivates. Clearly the performance 
results are incomparable to e.g. the ones obtained by SPICE since the 
latter program is applicable to a more restricted class of circuitry. 
Nevertheless people are always interested in benchmarks in which 
PLATO is compared to SPICE. In such benchmarks, SPICE often wins. 
Several reasons to justify this result can be mentioned. First of all, a 
system as generic as PLATO can hardly beat a dedicated, carefully 
tuned program such as SPICE, in which many man-years of 
development work are accumulated. Every program segment of SPICE 
has been fully optimized based on years of experience. Secondly, a 
number of low-level functions in PLATO could be optimized. The 
sparse matrix datastructure for instance, although quite practical for 
operations like fill-in, probably increases the time required for matrix 
operations due to the dispersion of row and column elements over 
memory. Conventional storage mechanisms usually store row or 
column ele'.ments in contiguous memory parts, causing a less flexible 
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hut probably faster datastructure, especially for large matrices. 
Finally, the benchmark circuits used in a comparison with SPICE were 
rather small circuits, which is an advantage for SPICE which is 
particularly good at small circuits. 

As can be seen from the simulation examples and the corresponding 
statistics, the ideas behind the simulator work well. An analysis of the 
nature of the cpu time spent during transient analysis, clearly shows 
that the processing of dynamica! events accounts fora large part of the 
computational effort. In my view, future research should be aimed at a 
more efficient integration, perhaps combined with a more explicit 
partition of the circuit into sub-circuits in order to reduce overhead 
costs even further. Additional speed-ups of an order of magnitude 
should be feasible. Especially the application of exponential 
integration methods seems promising. It is quite clear that signals 
ansmg in typical electronic circuits often show exponential 
characteristics. In this respect, the common practice to use 
polynomials to approximate exponential functions seems rather 
awkward. 

Finally some concise conclusions can be formulated: 

• all components are modeled in a uniform way allowing for a natural 
implementation of mixed-level simulation. The introduction of the 
piecewise linear modeling technique does not cause any limitations. 
The simulator reads all component models from an external 
database, thus facilitating the introduction of new models and 
macro models. 

• circuits can be specified in a high level description language with 
many sophisticated language features and constructs. 

• matrix update techniques and carefully tuned forward-backward 
substitution are used to eliminate full sparse LU decomposition. 
The efficiency of these techniques is illustrated by the simulation 
results. 

• latent sub-circuits are exploited by the introduction of multirate 
integration techniques. Although theoretica! analysis is pessimistic 
about the application of these techniques in general, they show 
quite satisfying results when applied to the circuit simulation 
problem. 
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• the strategy of the simulation program to compute updates where 
possible instead of full recomputations effectively exploits large 
differences in sub-circuit activity. 

• the simulator can cope with a large class of circuitry that cause 
problems to conventional simulators. Typical circuits highlighting 
the piecewise linear simulator capabilities are mixed-level 
simulation problems with tight feedback loops like analog-to-digital 
converters, phase-locked loops, sigma-delta modulaters, etc. 
Although not optimized for analog and MOS circuits, the simulator 
shows reasonable performance in a number of comparable cases. 

I would like to mention a few people who have contributed to this work. 
First I would like to mention prof. J.A.G. Jess for the opportunity to 
write this thesis and for patiently proofreading the manuscript. 
Furthermore I am indebted to Jos van Eijndhoven for numerous 
discussions and ideas during the preparation of this thesis. Thanks to 
Pim Buurman for lots of additional optimizations. Finally I would like 
to thank my parents for continuous support. 
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Appendix 1: Algorithmic notations 

The algorithms in this thesis are expressed in a convenient C-like 
programming language. This means that most operators conform to 
the ones defined in C. The well known set operations have been added 
to allow a more abstract notation of some algorithms using sets. An 
overview of all operators is shown in table Al .1. Furthermore the 
language is, enriched with some Pascal-inspired loop statements and 
conditional constructs. The superfiuous begin - end constructs for block 
statements are deleted in favor of e.g. do - od. 

The simplest loops are borrowed from Pascal and slightly modified: 

for I to IE do S od; 

for I downto IE do S od; 

in which: 

I initialize control variable. 

S loop body consisting of one or more statements separated by 
semicolons. 

IE integer expression determining the highest (or lowest for the 
downto loop) value of the loop variable for which the loop body S 
is executed. 

The semantics remain unchanged. 

The same modification has been applied to the while loop. 

while B do S od; 

95 



96 Appendix 1 

with: 

B a boolean expression in the C sense, e.g. an expression is regarded 
true if non zero and false otherwise. The loop body S is executed 
as long as B evaluates to true. 

Conditional statements look like: 

if B then S fi; 

if B then S else S fi; 

Keyword elseif is equivalent to the sequence else if. As in C, the 
else-part always corresponds to the most recent if clause. The 
comment delimiters are also taken from C: / * and * /. 
The datastructure used to store sparse vectors is simply a linear linked 
list. In some algorithms however, this list is treated as a set of non 
zero entries. An empty list is denoted by the 0-symbol rather than nil 
or NULL (PASCAL or C respectively). In some cases a sparse vector is 
added to a full one. For this purpose the addition operator is redefined: 
"add all entries in the sparse vector to their full vector counterparts". 



Algorithmic notations 97 

TABLE Al.1. Operator overview. 

operator description example 
[] array index x [3] 

direct record tag selection ree.tag 
~ indirect record tag rec_ptr~tag is equivalent 

selection to (*rec_ptr).tag 
++ increment a++ 
-- decrement a--

* dereference *ptr 
& address &var 

* multiplication 
/ division 
+ addition 
- subtraction 
< less than 
> greater than 
~ less or equal 
~ greater or equal 
(] set intersection 
u set union 
c set inclusion 
E member 
e: no member 
- equality 

*- non equality 
! logical not 
/\ logical and 
v logical or 
= assignment 
+= assignment a + = b is equivalent to 

a =a + b 
- = assignment a - = b is equivalent to 

a = a -b 
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STELLINGEN 

1. Aan de kwaliteit van de random procedure waarmee voorbeeld 2 
in figuur 5 uit onderstaand artikel van Alturaigi en Bickart werd 
geconstrueerd dient ernstig te worden getwijfeld. 

Reordering a Sparse Matrix to a Sparse Blocked Form, M.A. Alturaigi en T.A. 
Bickart, Circuit Theory and Applications, vol 13, pp. 173-194, 1985. 

2. Het bewijs van l.S. Duff voor stelling 3.1 uit dit proefschrift is 
fout. 

Direct methods for sparse matrices, l.S. Duf{, A.M. Erisman and J.K. Reid, p. 
272, Oxford, Clarendon Press. 

3. In het hieronder vermelde artikel wordt aangetoond dat bij 
toepassing van een k-staps bdf integratieformule voor de 
numerieke integratie van een functie met q continue afgeleiden, 
k ~q, de locale afbreekfout van de orde q+l is. Voor pwl functies 
zou dit neerkomen op orde 2. Helaas is voor praktische pwl 
netwerken het aantal continue afgeleiden vaak 0 zodat 
bovenstaande conclusie geen praktische waarde heeft. 

l.N. Hajj en S. Skelboe, Time-domain analysis of nonlinear systems with finite 
number of continuous derivatives, IEEE Trans. on Circuits and Systems, Vol. 
CAS-26, No. 5, May 1979. 

4. Na moeizaam overleg over de definitieve standaard en langdurige 
onderhandelingen over de interface naar diverse 
programmeertalen (de zogenaamde language bindings) moet toch 
worden geconstateerd dat de recente grafische standaard GKS 
(The Graphical Kemel System) als ouderwets en absoluut 
ontoereikend voor de moderne user interface technologie dient te 
worden gekwalificeerd (dit proefschrift). 

5. Het X windows systeem voor window management is 
onoverzichtelijk, te groot, wem1g orthogonaal, gulzig in 
geheugengebruik en cpu tijd. Het is dan ook in hoge mate 
onzeker of het zich als de facto windowing standaard voor unix 
systemen kan handhaven. 

6. Het gebruik van lineaire lijsten in moderne programmeertalen is 
bijzonder onelegant en foutgevoelig. 



7. Het is zo goed als zeker dat Hofstadters intuïtie hem wat betreft 
artificial intelligence voor de tweede maal in de steek zal laten. 
Gödel, Escher, Bach: an eternal golden braid, D.R. Hofstadter. 

8. De in Nederland bestaande scheiding tussen "gewone" en 
technische universiteiten is onnodig en leidt tot een verarming 
van de keuzemogelijkheden van de student en een eenzijdige 
geestelijke ontwikkeling. 

9. Het zogenaamde "broodje gezond" dat in de meeste snackbars 
verkrijgbaar is geeft een indicatie omtrent de kwaliteit van het 
overige aldaar verkrijgbare voedsel. 

10. Geheel ten onrechte treffen wij in de bijlagen van dag- en 
weekbladen een overvloed aan literatuur besprekingen naast een 
volstrekte verwaarlozing van nieuwe muzikale uitingen en 
opnamen. 

11. In tijden waarin studenten worden geconfronteerd met 
rentedragende leningen getuigt het van een zeker gebrek aan 
compassie om maatregelen als die van de 267e faculteitsraad van 
de Faculteit der Electrotechniek d.d. 5-6-1989 besluit nr. 267.3 
onderdeel 2.e voor te stellen en goed te keuren. (Het besluit 
behelst dat in het bedrijf afstuderende studenten alleen een 
vergoeding voor extra onkosten mogen krijgen en geen geldelijke 
beloning). 


