

PLATO : a piecewise linear analysis tool for mixed-level circuit
simulation
Citation for published version (APA):
Stiphout, van, M. T. (1990). PLATO : a piecewise linear analysis tool for mixed-level circuit simulation. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR330397

DOI:
10.6100/IR330397

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.6100/IR330397
https://doi.org/10.6100/IR330397
https://research.tue.nl/en/publications/0dffd656-6c9d-48b6-a803-1c6ffecff7ac

PLATO
A Piecewise Linear Analysis Tool

f or

Mixed-Level Circuit Simulation

M.T. van Stiphout

PLATO-

A Piecewise Linear Analysis Tool

for

Mixed-Level Circuit Simulation

PLATO -A Piecewise Linear Analysis Tool
for Mixed-Level Circuit Simulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de Rector Magnificus, prof. ir. M. Tels, voor
een commissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
vrijdag 18mei1990 om 16.00 uur.

door

Martinus Theodorus van Stiphout

geboren te Geldrop

Dit proefschrift is goedgekeurd
door de promotoren

prof. dr. ing. J.A.G. Jess

en

prof. dr. ir. W.M.G. van Bokhoven

©Copyright 1990 M.T. van Stiphout.
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from the copyright owner.

Druk: Dissertatiedrukkerij Wibro, Helmond.

CJP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Stiphout, Martinus Theodorus van

PLATO - a piecewise linear analysis tool for mixed-level circuit simulation/
Martinus Theodorus van Stiphout. - [S.l:s.n]. Fig.,tab.
Proefschrift Eindhoven. - Met lit. opg., reg.
ISBN 90-9003390-4
SISO 663.43 UDC 621.3.011.72:519.87 NUGI 832
Trefw.: elektronische schakelingen; simulatie.

Contents

Samenvatting

Abstract

1. lntroduction
1.1 Circuit simulation
1.2 The piecewise linear alternative
1.3 Piecewise linear modeling
1.4 lmplementation aspects

2. Sparse matrix techniques
2.1 The rank one update
2.2 Sparse implementation
2.3 Forward-backward substitution
2.4 Sparsity analysis •
2.5 Recursive bordered block diagonal matrices

3. Solving the pwl equations
3.1 Equation building
3.2 lnitial solution
3.3 DC solution

4. Multirate integration techniques
4.1 Numerical integration •
4.2 Multirate integration methods

5. Transient analysis . . •
5.1 Introduction . • • •
5.2 A uniform stepsize simulator

5

7

9

11
11
13
14
15

19
19
23
27
28
32

35
35
35
46

49
49
51

55
55
57

6

5.3 Pivoting • • • . •
5.4 A multirate simulator
5.5 Some optimizations
5.6 Event clustering

6. Simulation results
6.1 Landman circuit
6.2 Inverter chains
6.3 Ring inverters
6.4 ND converter .
6.5 Counter • . .

Contents

6.6 Two complement accumulator
6. 7 Simple phase locked loop
6.8 Neural networks •
6.9 Program statistics

Conclusion

Appendix 1: Algorithmic notations

References

60
63
71
73

77
77
80
80
80
85
86
86
87
87

91

95

99

Samenvatting

Sinds de ontwikkeling van de eerste circuit simulatie programma's,
ongeveer twintig jaar geleden, zijn veel nieuwe ideeën en abstractie
niveaux (denk bijvoorbeeld aan gedragssimulatie, logische simulatie,
functionele simulatie, etc) geïntroduceerd. Voor diverse niveaux zijn
commerciële simulatoren verkrijgbaar. Desondanks wordt circuit
simulatie in de industrie nog erg vaak gebruikt. De computersystemen
die nodig zijn om de simulatiebehoeften van de ontwerpers met
betrekking tot circuit analyse te bevredigen worden echter steeds
groter en sneller, aangezien de te simuleren schakelingen nog steeds in
grootte toenemen.

In dit proefschrift worden technieken behandeld die een aanzet vormen
tot het elimineren van een aantal van de nadelen die aan de huidige
circuit simulatoren zijn verbonden. Het gebrek aan flexibiliteit met
betrekking tot het introduceren van nieuwe modellen en de toepassing
van macromodellen wordt geëlimineerd door de introductie van
stuksgewijs lineaire modellen voor alle componenten. Het gebruik van
macromodellen voor gedeelten van de schakeling waarvan het gedrag
reeds in detail bekend is, kan de simulatie aanzienlijk versnellen.
Daarbij levert de uniforme modellering van alle componenten een
elegante manier om mixed-level simulatie te implementeren. Diverse
andere simulatoren ondersteunen mixed-level simulatie door voor ieder
subcircuit dat op een ander niveau moet worden gesimuleerd een ander
algoritme te kiezen. Een belangrijk voordeel van de nieuwe simulator
is de sterk verbeterde convergentie in vergelijking met de klassieke
iteratieve methoden. Deze eigenschap is karakteristiek voor de
algoritmen die we gebruiken voor het oplossen van de stuksgewijs

7

8 Samenvatting

lineaire vergelijkingen.

Afgezien van stuksgewijs lineaire modellering steunt de simulator op
twee belangrijke principes: multirate integratie en ijle incrementele
technieken. Het idee achter multirate integratie is het exploiteren van
subcircuits die (tijdelijk) in rust verkeren door ze te integreren met een
grote integratie stap. Erg actieve subcircuits kunnen dan worden
geïntegreerd met kleinere stapgrootten. In principe kan hierdoor veel
rekentijd worden bespaard aangezien er voornamelijk wordt gerekend
in de actieve circuit gedeelten. Het herhaald oplossen van grote ijle
lineaire systemen zoals dat gebeurd in conventionele simulatoren
wordt voorkomen door middel van de ijle incrementele methoden. Deze
methoden zijn bijzonder geschikt voor operaties die samenhangen met
het stuksgewijs lineaire karakter van de algoritmen. Ook passen ze
perfect bij het event driven integratie schema waarin vaak selectieve
veranderingen voorkomen. Merk op dat de simulator weliswaar zonder
enig probleem op bijvoorbeeld het logische niveau kan simuleren, maar
dat hij nooit de snelheid van een speciaal voor logische simulatie
ontworpen programma kan evenaren. We willen hier nogmaals
benadrukken dat de simulator op vele niveaux tegelijk kan simuleren.
het is dan ook niet eerlijk om een van deze niveaux te selecteren en de
resultaten te vergelijken met een speciaal op dat niveau toegesneden
programma.

Tot slot moeten we concluderen dat een evaluatie van de methoden
zoals ze in dit proefschrift worden voorgesteld een positieve indruk
achter laat. De balangrijkste principes blijken efficient te werken
hoewel de numerieke integratie nog verder geoptimaliseerd moet
worden om een echt snel simulatieprogramma te verkrijgen. Diverse
(mixed-level) circuits zijn echter met succes gemodelleerd en
gesimuleerd.

Abstract

Since the development of the first circuit simulation programs, about
two decades ago, many new concepts and simulation levels (such as
logic level, behavioral level, functional level, etc.) have been
introduced. Simulators are commercially available for various
simulation levels. Conventional circuit simulation, however, remains
heavily used in industry. Large and fast computers are required to
keep up with needs of the designer who wants to simulate circuits with
a continuously increasing size.

In this thesis techniques are discussed that potentially are able to
eliminate a number of drawbacks of current circuit simulators. First of
all the lack of flexibility with respect to the addition of new models and
the application of macro models is eliminated by the introduction of
piecewise linear models for all components. The introduction of macro
models for circuit parts of which the detailed behavior is already
known, can speed-up the simulation tremendously. Furthermore the
uniform modeling of all components yields an elegant way to
implement true mixed-level simulation. Several other simulation tools
support mixed-level simulation by the implementation of a variety of
algorithms, each of which is aimed at the simulation of a specific sub
circuit at a specific level. Another important issue is the improved
convergence as compared to classica! iterative methods, which is
characteristic for the algorithms that are used to solve the piecewise
linear equations.

Apart from the piecewise linear modeling, the simulator is built on two
basic concepts: multirate integration and sparse update techniques.
The idea bebind multirate integration is the exploitation of the latency

9

10 Abstract

of sub-circuits by integrating them with large integration time steps.
Very active sub-circuits can be integrated by small time steps.
Principally, a large amount of cpu time can be saved since the
computational effort is restricted to active circuit parts. The sparse
updating schemes are an attempt to eliminate the repeated solution of
large sparse linear systems as it occurs in conventional simulators.
These techniques are especially suited for matrix operations related to
the piecewise linear character of the algorithms. They also fit neatly
into the event driven integration scheme with its inherently selective
updates. Note that, although the piecewise linear simulator can easily
simulate at e.g. the logic level, it will never be able to obtain the
simulation speed of dedicated logic simulation programs. Again we
should emphasize the ability of the simulator to simulate at several
levels simultaneously. This is opposed to selecting a single level and
comparing the results with those of tools designed specificly for that
particular level.

At the end of this thesis, an evaluation of the techniques as they are
proposed and implemented yields a positive impression. The basic
concepts appear quite efficient although numerical integration should
further be optimized to obtàin a really fast simulator. Several (mixed
level) circuits have been successfully modeled and simulated.

1. lntroduction

1.1 Circuit simulation

Starting out in the mid-sixties with the simulation of only a few
transistors, simulation has evolved to one of the most intensively used
design tools in the 1990's. Today the design of complex integrated
circuits would be impossible without the use of advanced simulation
programs, in some cases able to simulate thousands of transistors.
Circuit designers can now choose from numerous simulation tools,
ranging from low-level circuit simulation for very accurate analysis of
small circuit parts to very coarse logic analysis of an entire integrated
circuit. Without denying the importance of all other simulation
methods and levels, the basic reference for this thesis will be
conventional circuit simulation, which may be regarded as the first and
most elementary form of simulation. The piecewise linear simulation
techniques presented in this thesis however, are not restricted to any
simulation level at all, hut, on the contrary, are capable of merging all
of them into one mixed-level simulation tool. A short review of circuit
simulation techniques seems appropriate. For a thorough treatment of
simulation principles see e.g. [l), fora more recent hut less exhaustive
text see [2].

The circuit simulation problem is commonly described as a set of
nonlinear differential-algebraic equations F(x, x, t) = 0, with initial
conditions x (0) = X o, in which x is the vector of circuit varia bles, x the
vector of circuit variable derivatives and parameter t, of course, is time.
The solution process basicly consists of three parts. At every time point

11

12 Introduction Chapterl

tn+l we have to solve FCxn+1,Xn+1' tn+1) = 0. The unknown vector Xn+l

is eliminated by substitution of a stiffly stable numerical integration
formula. Next the resulting nonlinear system
FCxn+1CXn+1), Xn+l, tn+1) = 0 is solved for Xn+l by Newton-Raphson
iteration. The linear systems arising in this process are solved by LU
decomposition.

The above principle has been implemented in several simulation
programs [3, 4] and survived nearly two decades of simulation research.
Programs like SPICE are still heavily used, both in industry and in
academie environments. However a number of drawbacks should be
mentioned. First of all the process described above is computationally
expensive, especially for large circuits. A large part of the computing
resources is used for the repeated solution of the linear system
resulting after linearization. A second problem is formed by the limited
convergence capabilities of the Newton-Raphson iteration technique.
Because of the local convergence, the simulator quite often has to
reduce the integration time step to obtain a solution. In many difficult
cases the program aborts because the time step becomes prohibitively
small. Finally there is a lack of fiexibility regarding the introduction of
new component models. Such an operation would imply altering the
simulators source code, an option which is rather unattractive for the
average user.

Several attempts have been made to circumvent the limitations of
SPICE-like simulation programs, mostly by rejecting one or more of the
principal circuit simulation techniques. Practically all of the so-called
third generation simulation tools are concerned with the limited hut
important class of MOS circuits. The first program to be mentioned is
MOTIS [5], a timing simulator for quasi-unidirectional MOS circuits.
Based on physical reasoning, MOTIS achieved a tremendous speed up
by applying regula falsi and a single relaxation sweep for every time
point instead of sparse matrix techniques, numerical integration and
Newton-Raphson iteration. Two other programs aimed at the same
class of circuitry are SPLICE [6] which used even more the uni
directional nature of MOS digital circuits and DIANA [7], which again
uses sparse matrix methods. Both SPLICE and DIANA are mixed
mode simulators: they are capable of simulating different circuit parts
in two or more modes. A mode can be e.g. register transfer level, logic
level, timing simulation or circuit simulation. Mixed mode simulation

Section 1.1 Circuit simulation 13

is gaining popularity in industry progressively.

Another attempt to cope with some of the limitations (mainly for large
MOS circuits) is the waveform relaxation method, introduced in 1982
[8]. This iterative method repeatedly decomposes the circuit into a
number of subsystems, which are analyzed separately for the required
time interval. The idea is that latent subcircuits require less
computation time than active subcircuits. Most of the gain is due to
the limited activity of logic circuitry. Given a network decomposition
the conventional solution methods are applied hut always on a
relatively small circuit. The method works especially well for
unidirectional circuits and can yield a speed-up of about 10-50 times
compared to SPICE-like programs. The largest drawback is the linear
convergence, resulting in much smaller or even no speed-ups for
heavily coupled circuits. Derivation of a suitable decomposition can be
the second problem. An excellent overview of state of the art waveform
relaxation techniques can be found in [9].

1.2 The piecewise linear alternative

The piecewise linear simulation program developed during the past
four years started out with the ambitious intention to exploit all
positive innovations of current simulation research hut avoiding most
of the drawbacks. lts basic principles and implementation will be
discussed in detail in the following chapters. The first objective is to
exploit latent circuit parts hut without applying the slowly converging
relaxation method. Instead a multirate integration scheme is used in a
direct simulation method, i.e. no iterations are necessary. A second hut
equally important item, is the elimination ofNewton's method from the
simulation algorithm. This is achieved by: introducing piecewise linear
modeling techniques. Instead of local convergence, algorithms to solve
the piecewise linear equations exhibit global convergence properties.
Moreover, the piecewise linear modeling enables us to model a large
variety of components in a uniform way, implementing mixed-level
simulation in a very natural and elegant manner. Finally, adding new
component models becomes trivial, since piecewise linear descriptions
can be represented in matrix form and easily fed into the simulator.

14 Introduction Chapter 1

1.3 Piecewise linear modeling

A general description of a continuous piecewise linear dynamica!
system conceived by van Bokhoven [10] is shown in equation (1.1):

(1.1)

h . au d w ere u = - an
at'

(1.2)

(1.3)

The system's terminal variables are represented by vector x.
Dynamica! behavior of a piecewise linear system can be modeled in a
very general and powerful way by means of the state variables u.
Conditions (1.3) state that vectors p and q contain nonnegative
elements only and have zero inner product. Omitting vectors u and Ü
and the corresponding submatrices from the general system description
and furthermore assuming conditions (1.3) hold and q = 0, the resulting
system is a simple linear mapping 0 =A11x +al. The region in which
this mapping is valid is bounded by the set of inequalities
p =A 31 x + a 3 2": 0. Clearly, a different mapping and corresponding
region can be obtained by simply exchanging elements of p and q, i.e.
pivoting on an element of matrix A 33 . It's quite obvious that the
maximum number of mappings that can be defined by a single matrix
is bounded to 2n if n is the order of matrix A 33 • Since we consider
mappings that can be stored in a matrix form as shown in equation
(1.1), the effect of a pivoting operation with element A~~ is a rank one
update for the matrices involved [11]:

0 =Aiix +ai, with (1.4)

A *IAk* A*l k
A ' A 13 31 13a3 - and ai =a1 ----

11 - 11 - A~~ A~~
(1.5)

in which the * is used to indicate a row or column. Therefore only
continuous mappings can be described by our formalism. The
properties of continuous piecewise linear mapping were studied in
detail by van Eijndhoven [12]. He discovered that the general matrix
description can be cast into a special form by introducing two

Section 1.3 Piecewise linear modeling 15

additional restrictions: every segment in the mapping must be convex
and empty segments are not allowed. For a mapping with two
intersecting boundary hyperplanes this matrix looks like:

(1.6)

where vectors n and scalar c define the boundary planes and vectors w
are update vectors. The constants À determine whether or not a plane
continues in a different direction after the intersection with another
plane. The matrix can be systematically extended in case more
boundary hyperplanes are present. A reasonable collection of
elementary piecewise linear models can be constructed by merging the
ones available from [10, 13, 14].

The only viable alternative for the compact matrix notation introduced
above, was documented exhaustively by Chua in a number of papers
[15-19]. His canonical representation of a piecewise linear function is
listed in equation (1. 7):

p
f(x)=a+Bx+ I;qla~·X-~il =0. (1.7)

i=l

in which ai is the normal vector to the ith hyperplane, ~i is a constant,
a and ei are constant vectors and B is a constant nxn matrix. Despite
thorough analytica! treatment, the methods devised by Chua are
limited to the determination of driving point and transfer
characteristics. The canonical formulation itself is less powerful than
the one suggested by van Bokhoven [1 O].

1.4 Implementation aspects

PLATO (almost an acronym for Piecewise Linear Analysis TOol) [20]
was implemented in the C programming language [21] and runs on a
number of different UNIX machines (e.g. Apollo and Hewlett-Packard
work stations, Alliant FX/8 mini-supercomputer). Apart from PLATO
itself, a number of utility programs were developed and implemented to
offer what nowadays is referred to as a user interface. User interface
technology is developing rather fast. Applications under development
are liable to become outdated while still under construction. In this

16 Introduction Chapterl

context the schematic entry tool ESCHER+ may serve as an illustrative
example. Initially using some Hewlett-Packard specific graphics
package with no notion of workstations and windows at all, the next
step was to port it to an Apollo workstation with numerous possibilities
for the creation of windows and menus. In this respect an accepted
standard like the Graphical Kemel System (GKS) should be considered
old-fashioned even before its final definition was established, since it
totally ignores the concept of a windowing system and has only limited
menu resources. Next it appeared that a portable UNIX compatible
windowing system called the X Window System [22] was becoming a de
facto standard for user interfaces and computer graphics. Again
developments are going fast. Toolkits based upon a set of high level
object oriented graphics functions built on top of the lowest level X
functions will probably be replaced soon by interactive tools for the
design and implementation of user interfaces, generating toolkit source
code only as an intermediate. Although the graphics systems become
more and more complicated, user interface design time has decreased
drastically.

Let us shortly review the separate components that form PLATO's user
interface as depicted in figure 1.1:

escher+ an interactive schematic entry program used to construct
circuits in a user friendly manner, providing runtime
assistance and network checking [23, 24]. Only recently
ESCHER+ was enhanced with a logic simulation
mechanism and behavioral description capabilities [25].

ndml the ndml++ language compiler [26] taking an extension of
the Network Description and Modeling Language [27] as
input and generating a form of ndml with reduced
complexity, i.e. all expressions evaluated, high level control
constructs expanded, etc. Ndml can be generated by text
editing or by the extraction of network data from the
escher+ database.

superplog an interactive graphical simulation output postprocessor.
It has the ability to manipulate, compare and plot
simulation results. Again an example of user interface
technology evolution: at the moment a new implementation
based on OSF/Motif [28, 29] is being developed.

Section 1.4 Implementation aspects 17

Many new simulation tools tend to use the old-fashioned SPICE input
format, to remain compatible and to please stubborn users. For
PLATO the network description and the simulation task description
were separated and replaced by more advanced newly designed
languages. Especially the powerful constructs that are available in
ndml++ are incomparable to the low level error prone SPICE input
specification language.

The following chapters describe the techniques that were devised and
implemented in the piecewise linear simulator. After an overview of
the sparse matrix techniques (chapter 2) that were developed to exploit
latency behavior, the solution of the pwl equations is treated in detail
(chapter 3). Two more chapters cover the concept of multirate
integration (chapter 4) and a rigorous treatment of the transient
analysis (chapter 5). The thesis is concluded with some simulation
examples and results (chapter 6).

18 Introduction Chapterl

escher+ text editor

user library
ndml

ndml libra

plato task

superplog

Figure 1.1. Simulation package overview. Arrows are used to indicate
the data flow.

2. Sparse matrix techniques

A well known method for the computation of the inverse of matrices
that have been updated by a rank k matrix is the Sherman-Morrison
Woodbury [30, 31] formula:

(2.1)

Using this formula the new inverse of an updated matrix can be
obtained from the original one in order kn 2 operations, while full
recomputation would require order n 3 for an nxn matrix. In many
practical applications like e.g. solving large sets of linear equations, the
matrix is not inverted hut decomposed into its triangular factors which
requires only 1h ·n 3 operations. The advantages are even greater for
matrices with special form or sparse matrices: while the inverse of a
sparse matrix will generally be a full matrix, the triangular factors
remain sparse. In the following sections Bennetts [32] algorithm for
the update of the triangular factors will be introduced. Since the
piecewise linear simulator performs only rank one updates we will
restrict ourselves to the rank one version of Bennetts algorithm. Next
we will review the sparse implementation and the advantages that can
be gained from sparse source vectors during the forward-backward
solution process.

2.1 The rank one update

Consider the triangular factorization of an (nxn) nonsingular matrix A:

19

20 Sparse matrix techniques Chapter 2

A = LDU, with (2.2)
Lii = Uii = 1 for 1 s i s n and
Lij= Du= Dji = Uji = 0 for 1 si < j S n.

The algorithm devised by Bennett efficiently determines the new
triangular factors if matrix A is subject to a rank one update cdrt:

A* =A +cdrt =L*D*u*, (2.3)

where c and rare vectors c = <c1, c2, "., cnY, r = (ri, r2, "., rn)t and dis
a scalar. By definition A k is the submatrix of A of order n - k + 1,
resulting after k -1 elimination steps with elements (At), k Si, j S n.
So the matrix to be decomposed in the first elimination step A 1 = A.
The resulting triangular factors are:

l Ah 1 1 1 AL fi) L 11 = - 1-, Du =Au, U1j = - 1- or 1 Si, j s n. (2.4
An An

The problem faced after the first elimination step is given by:

<) 1- l 1 1 l AhAL Al) =Aij -L1 1Dn U1j = Aij - A1 for 2 Si, j S n.
n

(2.5)

The updated triangular factors after the first step are readily identified
as:

DhLh + cidr1

Dh + c1dr1

DhUL +c1drj

Dh + c1dr1

(2.6)

(2.7)

Section 2.1 The rank one update 21

(2.8)

Our task is now to express the updated Ai* as a new rank one update
problem in terms of the original matrices and update. Then we have
obtained a similar problem hut with smaller dimension. The method
can then be recursively applied until the updated triangular factors
have been obtained. Our new problem is denoted by:

<>* 1 * 1 *1*1* 2 "22 A -A+. -L+1 Di1 U1· -A"+c"d r· lj - lj l J - lj l J (2.9)

where superscripts indicate modifications like the ones defines for A.
Substituting equations (2.6), (2.7) and (2.8) leads to:

or

A&* =Aij-LhDhUb+qdrj-c1drjL{i

Cïdr1 -Lhc1dr1 1 1
1 CDu U1j + c1drj) ,

Du + c1dr1

finally resulting in:

~* 2 dDÎi l 1
Azj =Au+ Dl d (ei -L11c1Xrj - U1jr1)

11+c1 ri

(2.10)

c1drj - Ubc1dr1]

Dh + c1dr1

(2.11)

(2.12)

Summarizing the new expressions for update vectors c and r, the new
value ford and the updated entries in L and U are given:

c'f = Ci -Lhc1

rJ = rj - Uljr1

2 dDÎi
d =-----

Dh +c1dr1

(2.13)

(2.14)

(2.15)

22 Sparse matrix techniques Chapter 2

* l dr1 " L{i = L 1 1 +
1

et
D 11 + c 1dr1

(2.16)

D}1 * = DÎ1 + c1dr1 (2.17)

1 * 1 dei 2
U lj = U lj + 1 r j

D 11 +c1dr1
(2.18)

The results obtained above for the first Gaussian elimination step can
simply be generalized to yield the final algorithm. Factors p and q are
introduced for computational convenience.

Algorithm 2.1. Bennetts algorithm for the update of the triangular
factors after a rank one update on the original matrix.

d = 1.0;
for i = 1 to n do

od;

lt is obvious that the number of operations performed by Bennetts
algorithm is far less than a recomputation of the triangular factors
would require. Numerically however, some care must be taken. In the
process offactorization we have the freedom to reject a pivot ifits value
is too small. We then apply some pivoting strategy, like partial or
complete pivoting, to obtain a better suited pivot involving row and/or
column swaps. Using algorithm 2.1, however, we are committed to the
pivot order that was used for the initial LU decomposition. This order
may very well be unsuitable for any of the succeeding matrices. In fact
it is even possible for pivots to become zero. Therefore the pivot values
must be monitored carefully during the update process and the LU
decomposition should be recomputed if any value becomes too small.

Section 2.1 The rank one update 23

2.2 Sparse implementation

A close examination of Bennetts algorithm immediately reveals its
potential for a sparse implementation. The inner as well as the outer
loop body can be completely skipped if ei = ri = 0. If ei = 0 and rrtO,
only row vector rand column L.i are liable to change. In the opposite
case, ci:;tO and ri = 0, only column vector c and row Ui• are affected.
The often used wildcard notation in L.i and Ui• means that the
asterisk can be replaced by any legal index value, i.e. indicating column
i of matrix Land row i of matrix U respectively.

The efficiency of the method described when applied to piecewise linear
networks was already shown for the restricted case of piecewise linear
resistive networks [11]. Update vectors originating from pivoting are
generally sparse, very often containing only one or a few non zero
elements. Since matrix Ais sparse also, the update process will be able
to skip many entries compared to the full version of the algorithm.
Inevitably some fill-in is generated during the update process, as is
depicted in figure 2.1.

k m 0

0
c LDU

fill-in

k ------mr----
______ 1 1-----

l
fill-in

1 1

n

Figure 2.1. Update of a sparse matrix with sparse update vectors. The
triangular factors are stored in one matrix. Circles
represent nonzeros. Arrows indicate fill-in.

24 Sparse matrix techniques Chapter 2

For the sparse implementation we assume the following datastructure.
The L, D and U matrices are stored in one sparse matrix:

{

Lij if i > j

AiJ = Dij if i = j
UiJ if i <j

(2.19)

Only nonzero elements are stored connected by column and row links in
a bi-threaded list [33]. Two pointer arrays are provided to access rows
and columns. The diagonal elements can be accessed directly through a
third array of pointers. An important advantage of this representation
is the ease with which new elements (fill-in) can be inserted into the
matrix. A drawback may be the extra memory requirements compared
to more conventional methods. A visualization of the sparse matrix
datastructure is shown in figure 2.2. The sparse update vectors are
stored in linear linked lists again containing only the nonzero elements.
In the sequel a sparse vector is sometimes treated as a set of its
nonzero elements. The corresponding redefinition of some
mathematica! operators for sparse vectors is documented in appendix
1.

A sparse implementation of Bennetts algorithm is given in algorithm
2.2. To avoid the tedious pointer manipulations inevitably arising from
linked list processing, most list operations are described on a higher
level. In particular the fill-in operations fill_in_in_vector and
fill_in_in_matrix are efficiently implemented using the C address
operator [21]. The exact definition of the operations in algorithm 2.2 is:

- fill_in_in_vector(v,i): create a fill-in in vector v at index i.

- fill_in_in_matrix (M,r,c) : create a fill-in in matrix M at position
(r, c).

- index (v) : retrieve index of element pointed to by v, i.e.

. .-\ { v~index E El, n] if v "::1:0
mdex(v)= N>n ifu::0

- min_index(v 1, v 2): retrieve smallest index, i.e.

min_index (v 1, v 2) @ min(index (v 1), index (v 2)).

Section 2.2 Sparse implementation 25

first_in_column

-+--5 0 0 2 0 1 -+----+---~ 7 0 3

---.i2 1 0 4 1 1

-+------..i9 2 1 -+----+---~8 2 3

--------------7 3 2 3 3 3

first_in_row

Figure 2.2. Sparse matrix datastructure. Matrix elements consist of
two pointers, a value field and a row and column index.
The pointer array D (not shown here) is initialized as soon
as the optima! equation ordering is determined. It provides
direct access to the diagonal elements.

26 Sparse matrix techniques Chapter 2

Algorithm 2.2. A sparse version of Bennetts algorithm for the update
of the triangular factors.

d = 1;
while c * 0 and r * 0 do

od;

k = min_index(c, r);
if k = index (c) then ck = c-walue; c = c-mext else ck = 0 fi;
if k = index (r) then rk = r~value; r = r~next else rk = 0 fi;
D [k]~value + = ck·d·rk;
Dk = D [k]~value;
pk= ck·d ! Dk;
qk = rk·d ! Dk;
d -= pk·Dk·qk;
/ * Update c vector and L-column * /
vee= c;
el = D [k]~next_row;
while vee * 0 or el * 0 do

od;

if index (vee) >index (el) and ck*O then
vee= fill_in_in_vector (c, index (el));

elseif index (vee) < index (el) and rk*-0 then
el = fill_in_in_matrix (L, index (vee), k);

fr
' ifindex(vec) = index(el) then

vec~value -= el~value·ck;
el~value += qk·vec~value;
vee = vec~next;
el = el~next_row;

elseifindex(vec) > index(el) then
el = el~next_row;

else
vee = vec~next;

fr
'

/ * Update r vector and U -row * /
vee= r;
el = D [k]~next_col;
while vee* 0 or el* 0 do

od;

/ * Process r vector and U -row in a way similar * /
/ * to the c vector and L-column - omitted * /

Section 2.2 Sparse implementation 27

2.3 Forward-backward substitution

Let us assume the linear system to be solved is given by:

Ax =LDUx = b
Ly = b and DUx =y.

Given the LDU factors the system is readily solved using forward
backward substitution. In algorithms 2.3 and 2.4 two variants are
given. The first conventional one uses already computed values of y
and x to obtain the current ones. The second version immediately
processes every new value of y and x by updating the source vector. In
the case of full matrices both algorithms are equally appropriate. For
sparse matrices and, especially, sparse source vectors, we prefer to use
the row based version.

Algorithm 2.3. Column based forward-backward substitution.

for i = 1 to n do
i-1

Yi = bi - J:.Lij"Yj;

od;
j=l

for i = n downto 1 do

od;

1 n
Xi = Dii ·Yi - r. Uu·xi;

j=i+l

The advantages for sparse source vectors can be tremendous. Assume
for instance bi = 0 for 1 ::; i ::; k ::; n. It is obvious that the top k entries
of y will be zero as well. If source vector b is sparse, in the case of our
applications very often only a single element, we can expect the
intermediate vector y to be sparse also. This can be exploited during
the forward substitution by implementing a sparse version of algorithm
2.4. The computational activity in such an algorithm would be guided
by the occurrence of nonzero source vector elements instead of by
scanning the entire diagonal. Unfortunately the solution vector x tends
to develop many fill-ins during the backward substitution process
depending on the type of circuit at hand. This phenomenon will be
dealt with in more detail in the next section. In genera! the backward
substitution can best be implemented as a full one choosing either
algorithm 2.3 or 2.4.

28 Sparse matrix techniques Chapter 2

Algorithm 2.4. Row based forward-backward substitution.

for i = 1 to n do
Yi =bi;
for j = i + 1 to n do

od;
bj = bj - Lji"Yi

od;
for i = n downto 1 do

Xi =Dil-Yi;
for j = i - 1 downto 1 do

od;
Yj = Yj - Uij"Xi;

od;

2.4 Sparsity analysis

In the previous section we considered forward-backward substitution.
In algorithm 2.5 the sparsity of both the matrix A and the source vector
b are exploited. We observe that the algorithm can be very efficient
provided the y and x vectors remain sparse. However the number of
operations can grow quadratically as soon as this assumption fails. In
this section we will attempt to validate the approach in algorithm 2.5
by investigating the density of the solution vector x. We first introduce
the directed graph associated with a sparse matrix.

Definition 2.1
The digraph G(V,E) of the nxn matrix A has vertices 1,2, ... , n and an
edge (i,j) from vertex i to vertex j for every off-diagonal matrix entry
Ai;-. An entry is a structural nonzero element in a sparse matrix.
Structural nonzero elements are either nonzero elements or nonzero
elements that became zero by cancellation.

Let us first consider the impact of irreducibility on the sparsity of
solution vector x.

Definition 2.2
An nxn matrix Ais said to be reducible ifit can be perrnuted toa block
triangular form:

Section 2.4 Sparsity analysis

Algorithm 2.5. Sparse row based forward-backward substitution.

/* Solue Ly = b */
y =0;
while b -::t- 0 do

el = D [vec~index]~next_row;
while el -::t- 0 do

od;

new= fill_in_in_vector(b, el~row_index);
new~value -= el~value·b~value;
el= el~next_row;

/ * Genera te y in reverse order * /
y = prepend (head (b), y);

od·
/*,Solue Ux =y */
x =0;
whiley -::t- 0 do

od;

Au

y~value = y~value / D [y~index]~value;
el = first_in_column [y~index];
while el~row_index < y~index do

od;

/ * Create temporary vector in reverse order * /
merge_vec = prepend (new_element(),merge_vec);
merge_vec~value = --el~value·y~value;
merge_vec~index = el~row_index;
el= el~next_row;

y = merge (merge_vec, y);
x = append (head (y), x);

A21 A22

29

(2.20)

where the diagonal matrices Aii are square and irreducible and N>l.

It can be shown that a matrix A is irreducible if and only if, there is a
path from i to j in graph G for any two nodes 1 ~ i, j ~ n [34].

30 Sparse matrix techniques Chapter 2

A well known theorem on the directed graph of the factorization
A = LU is [35]:

Theorem2.1
Suppose an nxn matrix A is irreducible and nonsingular and has a
triangular factorization LU. If there is a so-called legal path
(i,k 1, k z, k 3, ... , km, j), k1 < i and k1 < j for all l = 1, 2, ... , m, between
nodes i and j in the directed graph of A then there will be an edge from
node i to node j in the directed graph of the triangular factors. A path
is legal if it is elementary (i.e. each node in the path occurs exactly
once) and satisfies the above condition k1 < i, j.
Proof. Proof is rather straightforward. Consider the first elimination
step concerning the legal path. Before the elimination there exist edges
(i, k 1) and (k1, kzi· The elimination will at least introduce an edge
(i, k 2) because of fill-in in the original matrix. So now there is a path
(i,k 2, k 3, ... , km, j). Eventually this strategy yields edge (i, j). Q.e.d.

Assuming the triangular factors have been determined, the following
two theorems are useful.

Theorem2.2
Every column of L except the last one has at least one entry beneath
the diagonal.
Proof. Suppose there is a column l of L with no entry below the
diagonal. According to definition 3.2, there must exist a path (k, ... , l),
k < l. However this implies the existence of an entry Akt in the
modified matrix which causes a contradiction. Q.e.d.

Theorem2.3
Every row of U except the last one has at least one entry to the right of
the diagonal.
Proof. Suppose there is a row u of U with no entry to the right of the
diagonal. According to definition 3.2 there must exist a path (u, k)
with k > u. This would imply an entry Auk to exist which contradicts
the assumption. Q.e.d.

We are now ready to inspect the sparsity of the intermediate solution
vector y and the solution vector x. First we solve L·y = b assuming that
b has at least one entry. In this case it is easy to see that Yn will be
structurally nonzero. Suppose b has a single en try b k. If k = n then Yn
is nonzero. If k < n there will be a fill-in b1, l > k in b due to theorem
3.2. Continuing this procedure will yield the above statement. If both

Section 2.4 Sparsity analysis 31

L and b are sparse, the vector y may very well be sparse too.

During the backward substitution we solve U·x = y. At step k we have:
n

ukk.xk =Yk - :E ukFxi c2.21)
j=k+l

Since Yn is structurally nonzero, Xn will be also. From theorem 3.3 we
know that Un-l,n "/:- 0 so Xn-l must be structurally nonzero also.
Repeating this process leads us to the conclusion that the entire
solution vector is structurally nonzero.

Our final conclusion for irreducible matrices is that in general no gain
can be expected from a sparse implementation of the backward
substitution process, since the solution vector x is structurally nonzero.
On the sparsity of the intermediate solution y, however, no such
negative conclusion can be drawn. Generally, if the source vector b is
sparse we expect y to be sparse also because of the limited fill-in that
can occur. In practice this assumption is confirmed. The average
amount of fill-in during forward substitution is small. Contrary to the
general conclusion for solution vector x, it usually remains quite sparse
if source vector b originated from a pwl related operation (see the next
chapter; pwl is a shorthand for piecewise linear). For these cases a
sparse implementation of the backward substitution is applied.

How can we determine whether a given matrix is irreducible? A simple
method is to determine the strongly connected components, e.g. by
using Tarjan's algorithm [36]. This algorithm not only constructs the
components hut also imposes an ordering using the "lowlink" values.
By renumbering the nodes using the given ordering, the associated
matrix is transformed to a block triangular form. If the matrix is
irreducible we will find only a single strong component containing all
nodes. In fact the number of strong components can be seen as a
measure for the connectivity in the graph and, subsequently, for the
circuit the graph has been derived from. A circuit in which most
signals have only limited propagation will tend to have lots of strong
components resulting in a highly reducible matrix and minimal fill-in
during forward-backward substitution. The average analog circuit
however will typically have few components because of resistive and
capacitive coupling between the components. A typical piecewise linear
circuit featuring many high level components will show less coupling.

32 Sparse matrix techniques Chapter 2

2.5 Recursive bordered block diagonal matrices

In an attempt to minimize computational effort for matrix operations
when dealing with large circuits, several authors have investigated
specific matrix forms such as the bordered block diagonal (BBD) matrix
in figure 2.3. The basic idea is that subcircuits are associated with
submatrices which can be solved almost independently. This way
latent circuit behavior might be exploited. A way to generate a single
level BBD matrix is a method called node tearing pioneered by Kron
[37, 38]. Here we try to create a number of block matrices of reasonable
size. The objective is to keep the connecting border as thin as possible.
Unfortunately this optimization problem is NP-complete so we have to
resort to heuristic algorithms, e.g. [39].

D D
D D

D D
D D

DO
CJCJCJCJCJO

Figure 2.3. Single level bordered black diagonal matrix.

The decomposition into subcircuits is known a priori if the simulator is
provided with a hierarchical circuit description. Now we can construct
a multi level decomposition known as a recursive (or nested) block
bordered matrix as depicted in figure 2.4 Such a matrix structure
allows among other advantages for selective recomputation of the LU
decomposition in case a subsystem is changing. It is also claimed to be
efficient and suitable for the application of parallel processing [40].
Only recently an overview of algorithms for recursive BBD matrices
was given by Vlach [41] in which he elaborates on an earlier paper [42].

A previous version of the piecewise linear simulator fully maintained
the circuit hierarchy as it was defined by the user throughout the entire
program. For every level in the hierarchy, matrices relating the child
modules to their parent module had to be assembled and kept up to
date causing a lot of computational overhead [13]. The BBD matrix
structure was introduced in the new simulation program in an attempt
to eliminate this drawback [43]. Since the pwl simulator does not

Section 2.5 Recursive bordered block diagonal matrices

D D
D D

DO
DODO

D D D
Dgg g

D ITJ
D ITJ

orn
oooElElEH3

D
D

D
D
D
D
D
g
D
D

~
DO
DO

D DO
DDD

DDDDDD
DDDDDDDDDDITJDDDDDD

Figure 2.4. Recursive bordered block diagonal matrix.

33

restrict its components to two-terminal devices, the application of nodal
analysis is rather complicated compared to conventional simulators
such as SPICE. Therefore the systell! matrix contains nearly all
currents. A basic disadvantage in our implementation is the large
number of superfluous current variables that were introduced while
descending down the circuit hierarchy. Every time a net connects
several child modules to the current father module, new current
variables and the corresponding current equation have to be generated.
This is very inefficient since all intermediate variables have to be
solved for no other purpose than to retain the BBD matrix structure.

When sparse matrix techniques applied in the simulator evolved
towards sparsity directed computations as described in the previous
sections, the BBD structure became obsolete. In fact the structure was

34 Sparse matrix techniques Chapter 2

never used explicitly. Although in principle the BBD structure
guarantees that large parts of the matrix can be skipped when
performing updates due to subsystem activity, the same phenomenon is
observed in practice. The dyadic update tends to produce little fill-in in
the update vectors and the computation "dies" very fast. Eventually it
appeared that circuit latency can be exploited efficiently without
casting the system matrix into a special form.

In our view the reason for this result is twofold. The reordering of a
matrix to a BBD structure in fact results in a very specific pivot order
which may very well be sub-optimal with respect to sparsity
considerations. Secondly it can be observed that the processing of
updates on a microscopie level is more efficient than the macroscopie
treatment of block sub-matrices along a path upwards in the circuit
hierarchy. The same statement holds if we consider the LU
decomposition process when implemented on a parallel computer with
e.g. a multifrontal scheme [44]. Summarizing we can conclude that
the BBD matrix structure is appealing since the carefully constructed
circuit hierarchy is maintained or retrieved. A significant gain in
processing time, however, seems rather unlikely.

3. Solving the pwl equations

3.1 Equation building

At start up time the first action of the piecewise linear simulator is to
examine the circuit topology and assemble a set of equations. The
circuit description accepted may be a hierarchy hut internally it is
reduced immediately to a single level, built-up from leafcells and their
mutual interconnections. Every leafcell is characterized by a matrix
description as defined in equation (1.1). The system matrix is formed
by the current linear mapping of every leafcell together with the
interconnection equations. In this context input specifications are
viewed upon as a special kind of leafcells. Consequently the pwl
system is stored in a distributed form thus localizing leafcell data and
minimizing memory requirements. A consequence of this approach is
the more complicated form of some of the basic solution methods
applied in the simulator as will be shown in this chapter. An
alternative would be to actually construct the overall pwl system by
eliminating internal variables at the cost oflarger and denser matrices.

3.2 Initia! solution

For the initial solution let us impose initial condition u = 0 for all
leafcells. The general leafcell description (1.1) then reduces to

(3.1)

35

36 Solving the pwl equations Chapter3

For the moment assume that the description is self contained, i.e. the
pwl system consists of a single leafcell only with all inputs specified
properly. By further assuming that q = 0 the terminal variables x can
be rapidly solved from 0 = A 11 ·x + a 1 . With x known we can simply
rewrite the system as

p =M·q +m, (3.2)
withp 2 0, q 2 0, pt·q = 0,

known as the Linear Complementarity Problem (LCP). An extensive
discussion of this problem can be found in e.g. [45], and will not be
repeated here. Variables p and q are often referred to as the basic and
nonbasic variables respectively. Our task is to find vectors p and q
such that the conditions are satisfied. A number of algorithms are
available to solve the LCP. Best suited for our application are the
pivoting type algorithms like the ones devised by Katzenelson [46] and
Lemke [45].

The LCP problem is fully classified by matrix M. Therefore let us
consider a few relevant matrix classes [47]. It can be shown that a
unique solution for the LCP exists, if and only if M belongs to matrix
class P. If M belongs to class P, we can use Katzenelson's algorithm to
obtain a solution. An odd number of solutions exists if matrix M
belongs to class SSM. The Lemke algorithm can be shown to find a
solution for matrices M belonging to matrix class L (SSM is a subset of
class L). For this class, termination of the algorithm without finding a
solution implies that no solution is feasible. Matrix class L is large
enough to model a large variety of circuits, including hysteresis-like
behavior, flip-flops, etc.

In our piecewise linear simulator however the piecewise linear problem
does not appear in the original form of the LCP. The circuit is
composed with a number of components, each having its private pwl
description, and their mutual interconnections. In particular the
system description Ax + a = 0 is assembled using the leafcell jacobians
A 11 , the leafcell source vectors a 11 and the interconnection equations.
Consequently matrix M is not at our disposal. It would have to be
computed by eliminating all internal variables. Therefore pivoting
must be restricted to the matrices A 33 of the components. Other
entries in matrix M are prohibited to act as pivot. This restriction
rules out the algorithms mentioned before because they tend to choose

Section 3.2 Initial solution 37

arbitrary off-diagonal pivots which generally are not available in our
datastructure.

An algorithm that meets our requirements was devised by van de
Panne [48]. lts functionality is equivalent to that of Lemke hut it uses
only diagonal or block pivots thus keeping the piecewise linear system
complementary. A block pivot is the inversion of a principal submatrix
of M. Whereas a regular pivot exchanges exactly one basic variable
with one nonbasic variable, application of a block pivot will exchange
several basic against nonbasic variables. In fact a diagonal pivot is a
block pivot of dimension 1. Note that in our implementation block
pivots are always performed as a sequence of single pivots.

Let us give a short review of the algorithm. A solution to the LCP is
found directly form ~ 0 in which case we have q = 0 and p = m ~ 0. If
any component of vector m is negative, we add a non-negative vector e
and a positive constant À. to system (3.2):

p =M·q +m +À.·e,

{

1 if Pk< 0
ek = 0 if Pk~ 0

(3.3)

We initialize À.= MAX(- Pk) such that p ~ 0 and let it decrease to
k

zero, while p is kept non-negative. A solution is found as soon as this is
achieved. Assume the decrease of À. is stopped by blocking row k: row
Pk becomes zero. To resolve the blocking we now try to pivot with
matrix elementMkk. Two situations can occur:

1. element Mkk is nonzero or

2. element Mkk is zero.

In the first case we perform a pivoting operation with matrix element
Mkk· Again we must distinguish between two cases:

la pivot Mkk > 0: aft.er pivoting the blocking is resolved and the
decrease of À. can continue.

1 b pivot Mkk < 0: aft.er pivoting the blocking is resolved hut now we
must increase À.. The algorithm stops without finding a solution if
no upper bound can be found for À..

In the second case the pivot is rejected. Instead we keep À. fixed and

38 Solving the pwl equations Chapter3

start increasing Qk· A column currently being manipulated is referred
to as the active column. The increase stops if some row pz is blocked.
Now qz becomes the active variable while Qk remains fixed. Again we
try to resolve the blocking by pivoting and matrix element Mu is our
pivot candidate. If a single pivot is not feasible the algorithm tries to
find a block pivot incorporating as many fixed variables as possible. If
such a block pivot succeeds the corresponding fixed variables are
released and the algorithm proceeds with some previous fixed variable.
The direction in which the new current variable is moved can change
depending on the sign of the last pivot. Apart from pivoting, a
currently active variable is released also if it can be decreased to zero.
The algorithm stops without finding a solution if either the increase or
the decrease of the active variable is unbounded.

Since the form of the LCP solved by van de Panne is not directly
available in our simulator, the algorithm must slightly be adapted.
The changes (mainly caused by the fact that our pwl system is
available in a distributed form) have been listed by van Eijndhoven
[13]:

• the size of a step in the direction of the active variable (À. or a
nonbasic variable) may be infiuenced by more than one piecewise
linear component.

• since matrix Mis not available we cannot determine the value of the
selected pivots directly.

In this implementation all leafcells with a negative component of p are
marked improper. Leafcells for whichp;::: 0 are called proper. Next the
van de Panne algorithm is applied sequentially to all improper
leafcells, each receiving its private À. and e, meanwhile assuring that
proper leafcells remain proper. In the current simulation program, all
improper leafcells are solved simultaneously receiving only local e
vectors and a single global À. for all improper leafcells.

The problems listed above are solved by utilizing partial derivatives of
the terminal variables x and basic variables p. After extension of
equations (3.1) with parameter À and vector (ei, e 2, e 3), partial
differentiation to À for all improper leafcells leads us to the following
relations:

Section 3.2 Initia! solution 39

(3.4)

- àx - àp
x = à').,,'p = à')...

Using the concatenation of all ei vectors as a source vector, x can
rapidly be solved from the system matrix by forward-backward
substitution. Now,p is readily determined:

• p = A 31 ·i + e 3 for all improper leafcells and

• p = A 31 ·i for all proper leafcells.

The maximum step 0 that can be made in the current direction of').,, can
easily be computed from the current values of p and p for all leafcells
related to a nonzero component in x and the condition that p + 0·p ~ 0.
In case a nonbasic variable qk of some leafcell is active instead of À, the
above equations change to:

(3.5)

- àx- àp x=-- P =--.
àqk' àqk

After x has been computed we find for p:
• p = A 31 ·i +Aai for the active leafcell and

• p = A 31 ·x for all other leafcells.

From the last equations we can easily solve our second problem: the
determination of the sign of for instance pivot (pk> qk) = A~~- The
requested sign can be derived directly from the sign of fü.
At this point the initial solution algorithm can be presented in some
more d~tail. Before doing so let us define some useful syrnbols:

L set of all leafcells.

I set ofimproper leafcells: I = { leL 1 ::Ik [pk < 0] }.

p 1 vector of basic variables related to leafcell leL

40 Solving the pwl equations Chapter3

x 1 set of terminal variables related to leafcell lEL.

{x} set ofnonzero entries in.X.

L;: set of leafcells related to nonzero entries in x:
L;: = {lEL 1 x 1 n {.X} #:0}.

The actual algorithm is split into two parts. The first part actually
serves as an initialization for the van de Panne algorithm which forms
the second part. The error vector e is added as an extra column to the
leafcell matrix to simplify the implementation. Parameter À becomes
part of the p vector hut in fact is a global variable, generally
represented in several p vectors

Before listing the implementation of the modified van de Panne
algorithm we define some key variables:

tos index indicating the top of the van de Panne stack.

stack stack used by van de Panne to store blocked rows. A stack
element is a 3-tuple (leafcell, active column, direction). The
current active column is on top of the stack. All other
columns (and À) on the stack are kept fixed. Columns can be
deleted either by pivoting or because the corresponding
column variable became 0. It is also possible for fixed
columns to become active again. The blocked rows (or
manipulated columns)are stored in stack[l..tos]. Position 0
is reserved for À. Legal stackoperations arepush andpop.

leaf the leafcell currently being manipulated; active leafcell
(stack[tos].leaD.

row the current blocking row.

column the current active column (stack[tos].column).

dir current direction of the active column (stack[tos].dir). Legal
values are +1 (up) and -1 (down).

8 feasible step in the direction of the active variable.

Section 3.2 Initial solution 41

Algorithm 3.1. Initia! solution: startup phase.

Decompose matrix A into A = LDU; / * Note: L is a matrix here * /
Solve Ax = b;
/=0;
for all l EL do

initialize u l = q l = O·
• l ' compute u ;

compute pl;
if any component Pk < 0 then I = I u l fi.;

od·
determil:ie leafcell i and row r such that: ViEI, lEI [p~ 5.p~];
À= -p~; . .
for all iE/ dop 1 = p 1 + À·e od;
push(i, "À.column", down);
push (i, r, up);
vdpanne (À);

lmplementing the solution process as described in algorithm 3.2 two
potential problems can be expected. First, assuming van de Panne's
algorithm has selected a pivot A~~ for a specific leafcell because
opk / Oqz :f. 0 while the actual value in the leafcell equals zero, the pivot
operation appears to be infeasible. Fortunately this problem can
always be solved as is shown in the next theorem.

Theorem3.1
Suppose a pivot selected by van de Panne's algorithm in our piecewise
linear simulation program appears to be zero in the local leafcell
matrix A 33 . If the pivot element is A~~ we can always select a row m
from equations O=Aux +A13Q +ai with nonzero element A11[and
add it to row Pk·
Proof. Assume a set of N pwl components each defined by a matrix
(3.1). Further assume the existence of a set of interconnection
equations and an adequate set of input specifications. Let the overall
pwl system be defined by

(3.6)

where

42 Solving the pwl equations Chapter 3

Algorithm 3.2. Initia[solution: van de Panne.

vdpanne (À.):
carry _on = true;
while carry _on do

od;

/ * Compute derivatives_ of x * /
generate source V,J!Ctor b;
solve LDU · x = b;
assemble L;;

/ * Determine maximal number of pivots * !
Si= O;
for i = tos downto 1 do

s = sign (stack [i].leaf, stack [i].column);
if sic- 0 then

S =s;
Si= i;

fi•
' od·

if Si = 0 then / * Cannot pivot * /
determine_theta ();

else

fr ,

if 0 = oo then abort; / * Cannot solve * /
if0 > 0 then

fr
'

x = x + dir·S·x;
for all ZE L; do update û l and p l od;
update À or q leaf[column];

if column = '?. column" and À = 0 then
carry _on = false / * Solution found * /

elseif column ic- À and q [column] = 0 then
/ * Current active column became 0 * /
pop();
stack [tos].dir = - stack [tos].dir;

else /*New blocking row * /
push (leaf, row, up)

fr
'

perform_pivots ();
for i = tos downto Si do pop() od;
dir = dir·S;

Section 3.2 Initia! solution

sign(l,r):
determine Pr;
now set the sign of A33[r,column] to:

sign =
-1 if Pr< o
o if Pr= o
1 if Pr> o

determine_theta ():

43

for all l E L; do
determine p;
find et such that el= MAX(ek) where Pk+ dir·ek·P ~ O;

k
od·
no:V set e = MIN(el);

[EL;

set leaf to the corresponding leafcell;
set row to the corresponding row of leaf;

perform_pivots ():
pivot (stack [Si].column, column);
for i =Si to tos-1 do

pivot (stack [i + 1].column, stack [i].column);
od;

•P =(p1,p2, . .. ,pN),

• q = (ql, q2, ... , qN),

• a1 = CaL a~· ... 'af, ai) and

• a3 =(at a~' ... 'a1·Jl
in which superscripts are used to identify the "donating" leafcells. The
extra variables xi denote the additional internal connection variables.
Further assume that all input and interconnection relations are
J'!lerged together with the lea(cell A 11 ipatrices to yield a squar~ matrix
An. Notice t!iat since both Au and A33 are square, matrix A for:iped
by matrices Aij, i, j E [1, 3] is square also. For N = 2, matrix A is
depicted in figure 3.1

44 Solving the pwl equations

xl x2

Chapter3

q2 j

- - - - - - - •l
:::::: ~- Ai3

______ L._

------t-
------r-
------~-------"'-
-----:~::

-=-===-== ~'

Figure 3.1. Matrix A for N = 2. The original leafcell matrices are
indicated by the dashed areas. Non dashed areas are
supposed to contain zeros only. The additional
interconnection equations are represented by oi.

Now define a bipartite graph G(V, E) as follows:

•the set ofnodes formed by ei, i E [1,n] for every row inA numbered
in ascending order.

•the set of nodes formed by Cj, j E [1,n] for every column in A
numbered in ascending order.

Section 3.2 Initia! solution 45

• the set of nodes V = {ei, Cj}, i,j e [1,n].

• for every nonzero entry Ûij in matrix A there is an edge (ei, Cj)

between node ei and node Cj in the graph.

Elimination of the internal variable in column Ck with row ez will
transform graph G to G:

• nodes Ck and ez will be deleted from G as well as all edges connected
to either of them.

• add an edge between every equation node ei (i "* l) and column node
Cj corresponding with a matrix fill-in aij for which there was a path
(Cj, ez, Ck, ei) in graph G.

Clearly, unless there is a path between ei and Cj, no fill-in can occur at
position aij· Elimination of all internal variables will yield a sequence
of graphs G, ê1, G2

, • • • • Although it isn't explicitly constructed, van
de Panne operates on a system equivalent to the one represented by the
final graph.

Now consider the case in which a specific leafcell contributes a zero
matrix element A% to A in say aij. Furthermore assume column A3~ of
that leafcell is identical to zero. This implies that for all paths (e, cj), e
corresponds to an equation resident in matrices A 3 •. We are certain
that this equation will never be used to eliminate an internal variable.
Eliminating all internal variables by linear matrix operations, the only
way for entry aij to become nonzero is if there is a path from j to i
containing at least one e node that can be used in an elimination, while
we just concluded that such a path cannot exist. So if the entry is
created, our assumption is falsified and a path from j to i does exist.
This means that the row mentioned in. the theorem can always be
found. Q.e.d.

The second problem is also related to our hierarchical datastructure.
As we can see from the implementation offunctionperform_pivots, van
de Panne's advice about the (block) pivot to be performed is followed
closely. No problems occur as long as a block pivot is located within a
single leafcell. If ho wever a block pivot is scattered over more than one
leafcell, the operation is infeasible. In this case we have to resort to
diagonal pivots only.

46 Solving the pwl equations Chapter3

Theorem3.2
A block pivot found by van de Panne's algorithm for the Linear
Complementarity Problem as it arises in our piecewise linear
simulation program can always be performed by a set of diagonal
pivots.
Proof. Suppose van de Panne finds a scattered block pivot consisting of
A33 ent.zies ai'l.ii and aiih· These entries were equal to zero in the
initial A matrix. As we concluded in the previous theorem, these
entries . can only become nonzero if the A3~ columns of the
corresponding leafcells contain at least one nonzero. In this case it is
obvious that there always exists a diagonal block pivot that can replace
the original one. Q.e.d.

3.3 DC solution

In conventional circuit simulation programs such as SPICE [4] the
most elementary action is the determination of the quiescent state of
the circuit. Capacitors and inductors are simply replaced by open
circuits or short cuts. Nonlinear components are handled by applying
the Newton-Raphson technique. It is this technique that often causes
problems because of its limited local convergence properties. To cope
with these problems the technique has been modified in a number of
ways some of which are listed in [34, 49]. Recently an improvement
was achieved by applying a new type of vector norm in which certain
equations receive higher priority than others in an attempt to guide the
damping of the Newton updates in a more appropriate way than is
done by the regular L 2 norm [50].

An important advantage of the application of piecewise linear
techniques is the improved convergence compared to Newton-Raphson
based methods. Due to the piecewise linear approximation of all
nonlinear functions a solution, if feasible, can always be determined
thanks to powerful algorithms yielding global instead of local
convergence. The pwl problem to solve is given by:

Section 3.3 DC solution 47

h . dU
w ere u =at'

in which we attempt to force ü to zero. The simplest solution we can
think of is to add the state vector u to the unknown circuit variables
and use the relations for ü to retain a well determined system:

~] = ~t~ ~~:][~] + [~~]
with

Ai1 = ~~~ ~~! J A31 = ~31 A32],

Ab= ~~:] and x' = [~],ai= [~~]
Unfortunately this method often fails. For various models both the
matrices A 21 and A 22 equal zero thus yielding a singular A 11 .

Furthermore the addition of a number of unknowns and equations to
the system matrix solely for the de analysis does not seem the most
elegant solution.

Another approach much more in the spirit of the simulator would be to
exchange the position of u and ü by pivoting on the A 22 matrix before
starting the initia! solution process. This way we would automatically
obtain the desired de solution since the u (and in the new situation the
Ü) vector is explicitly assumed zero. Afterwards we can retrieve the
original set of equations by pivoting on the A 22 matrix one more time.
Although this method works well for a number of components like
capacitors, inductors, etc., a new problem arises if matrix A 22 does not
have full rank. In that case the following strategy is followed:

• assuming matrix row A~i is nonzero, try to find an element Aa -:t= 0
and add the corresponding equation to ük. If no such en try exists or
if A ~i equals zero

48 Solving the pwl equations Chapter3

• try to find a block pivot ~~~ 1i:] or if required a more dimensional

block pivot using van de Panne-like techniques (see figure 3.2).

A21

1

1\3~ A33: 1

1 1 0 - - - - - - - -:- - : -
- - - - - - - -1- - r -

1 1

Figure 3.2. Block pivot for de analysis in case A21 = A22 = 0. In this
example matrix A 22 has dimension 1.

The latter action looks somewhat tricky: after the correct segment of
the pwl mapping has been determined, the block pivot not only swaps u
and û hut also puts the leafcell into another (incorrect) segment rather
than in the one just found causing a rather undesired side effect. The
restoring pivoting operation must be selected with care. Selection of
the wrong block pivot might cause û to remain nonzero after the
pivoting, due to nonzero values in the source vector. Another argument
against this type of pivoting is that we may pivot to a segment of the
mapping that is never entered during normal operation.

A very robust method guaranteed to find a solution is the application of
transient analysis. With all stimuli constant and no oscillations
assumed to occur, a de solution can be found for t ~ oo. The method has
been applied successfully in conventional simulation [51]. The major
disadvantage of this approach is the computational effort that is
required. All analog components have to be integrated numerically
until variations of the circuit variables remain below some error
criterion while application of one of the former methods yields a direct
solution.

4. Multirate integration techniques

4.1 Numerical integration

Unfortunately the general circuit simulation problem is too complicated
to allow for a closed form analytica! solution. Instead we must resort to
numerical methods such as the Newton-Raphson iteration mentioned
in the introduction and numerical integration. Assuming we have
determined a solution for the piecewise linear equations, the resulting
problem is now reduced to a set of relatively simple linear differential
equations: û =Au + a.

Contrary to the conventional circuit simulation problem, a direct
solution method should not be ruled out immediately. A related
method called the approximate exponential function (AEF) [52] method
has been proven quite successful for the simulation of MOS VLSI
circuits. Generally a set of homogeneous differential equations û =Au
can be solved be searching solutions of the form u(t) = eÀtu, in which À

is an eigenvalue of matrix A and u the cörresponding eigenvector. For
sufficient independent eigenvectors and eigenvalues we can construct a
general solution. Disadvantage of this method, supposed we are able to
find a solution, are the need to compute (at least once but probably for
every segment) all the eigenvalues of the generally very large system
and the corresponding eigenvectors. The determination of all the
eigenvalues of a linear system is a comprehensive operation.
Furthermore the direct determination of exponential curves may be
very sensitive to error propagation. Our conclusion is that the direct
method appears unattractive and the application of numerical

49

50 Multirate integration techniques Chapter 4

integration seems more appropriate.

The integration scheme as it is implemented in PLATO is flexible and
easily extendible. At the moment four integration formulas are
available, see table 4.1.

TABLE 4.1. Integration formulas for fixed stepsize.

method formula lte

BDFl Un+l - Un - hun+l = 0 - V'lh 2u <2l(Ç,)
r

- _l__h 3u (3)(Ç,) TR Un+l - un -Vm(un + Un+1) = 0
12

BDF2 Un+l - 113(4un - Un-l + 2hun+l) = 0 - ~h 3u (3)(Ç,)
9

ACT2
1
6(5Un+l - 4un - Un-1)

- ~ (5un+l + 2un + 2un_1) = 0 - ~h 3u (3)(Ç,)
9

Since the problems to be solved are usually stiff, only A-stable methods
are suited for use in a circuit simulation program. As a default PLATO
uses the backward Euler (BDFl) formula. This is an easy to
implement one-step integration formula. Two unpleasant features are
its low order (one) and the very high damping properties (see the
results for the Landman circuit in chapter 6). Note that damping is
usually a desirable property, but unpractical when dealing with
oscillatory problems. An overview of the damping and time error
qualities of all methods discussed here can be found in [53]. Another
simple hut robust one-step method is the trapezoidal rule (TR) which
has order two. lts damping qualities are much better compared as to
the backward Euler method (again see chapter 6). Unfortunately the
decay of round off errors in the presence of large eigenvalues is slow
[54]. In a variable stepsize method this oscillatory behavior prevents a
further increase of the time step.

Two more complicated families of formulas are the backward
differentiation methods [55, 56] and a set of methods showing a local
property called A-contractivity [53] which for convenience wi1l be
referred to as ACT methods. PLATO only uses the two-step second
order A-stable formulas (BDF2 and ACT2). In fact there are several
ACT2 methods. The one chosen is regarded as an optimal trade-off
with respect to damping properties and phase errors [57].

Section 4.1 N umerical integration 51

Disadvantage of both fonnulas is the need to administer more than one
previous value for u as well as û. Another disadvantage is related to
the variable stepsize implementations of the two-step methods. In this
case the coefficients depend on the current and previous time steps and
have to be recomputed for every step change. As a last remark we have
to note that the phase errors introduced by BDF2 can be large. The
best method regarding damping properties as well as time errors is the
ACT2 method.

In most practical applications numerical integration is applied with
automatically controlled variable time steps. This extension has no
influence on the stability properties of the one-step integration
methods. Two-step methods however can become less stable. In
particular the two-step BDF method can become unstable for specific
problems with increasing steps [58]. The problem does not occur with
decreasing steps hut in that case the method often suffers from too
much damping. A much better perspective is offered by the variable
step ACT methods. Two-step second order ACT methods can be
constructed that are stable for any step sequence [57]. Fonnulas for
the variable step methods can be found in for instance [54, 57, 59].

4.2 Multirate integration methods

An integration method for a set of ordinary differential equations is
called multirate if different (subsets of) equations are integrated with
different time steps. The potentials of such a method are obvious. The
computation time required can be minimized by integrating slowly
varying subsets of equations with a large time step and fast varying
subsets with a smaller one.

Only few applications of multirate fonnulas appear in the literature.
Most important example is the wavefonn relaxation method [8] in
which the sub-circuits are integrated independently with promising
results for a specific class of circuits. Another entirely different
application of multirate integration was implemented in a SPICE-like
circuit simulator called SAMSON [60, 61]. Again the electronic circuit
is decomposed into a number of sub-circuits, each receiving its private
time step. Subcircuits are called alert or donnant depending on
whether they are active or not. Computation time is saved by avoiding
the discretization and linearization steps for donnant models. Instead

52 Multirate integration techniques Chapter 4

the dormant sub-circuits are approximated by extrapolation. This
extrapolation can be clone very efficiently by using the prediction-based
differentiation formulas as derived by van Bokhoven [62]. Apart from
the previous two, only a few other applications have been reported, e.g.
[63-65].

Even less authors have attempted to analyze the properties of
multirate integration methods. A first rather optimistic paper was
published by C.W. Gear in 1980 [66]. A more elaborated followup
article appeared in 1984 [67]. Only recently topics like stiff stability of
multirate methods were investigated and reported on by S. Skelboe
[68-70]. The main conclusion from these papers is that in general
stability cannot be guaranteed, even if implicit A-stable methods of
first and second order are applied. In order to be successful,
implementations must carefully monitor the integration and in case of
instability take appropriate action.

An analysis of multirate methods is generally restricted to a set of
ordinary differential equations, separated in two subsystems a fast one
(equation (4.1)) and a slow one (equation (4.2)):

Y = f(t,y,z), y(ta) = Ya (4.1)
Z=g(t,y,z), z(ta)=Za (4.2)

with t E Ua, tb], f: IRxIRNxIRM~IRN,g: IRxIRNxIRM~IRM and (as well
as g Lipschitz continuous in y and z. The idea is to integrate the fast
subsystem with q time steps from tn-q to tn for every time step tn - tn-q
of the slow subsystem. Such a step is referred to as a compound step.
Several strategies for performing a compound step have been
investigated:

• fastest first algorithm: first integrate the fast system (4.1) from tn-q
to tn using q steps. Next the slow system (4.2) is integrated using a
single time step.

• slowest first algorithm: first integrate the slow system using
extrapolation to estimate the value of y at time tn. Then integrate
the fast system.

Another variation is related to the final step of a compound step. This
can be semi-implicit (evaluate fast and slow systems separately) or
implicit (evaluate together). The stability properties of multirate
formulas based on the backward differentiation methods were

Section 4.2 Multirate integration methods 53

investigated by Skelboe using the 2x2 test problem:

~] =A IY] where A = rau ai2]. lz Lz la 21 a 22
(4.3)

For this problem absolute stability is guaranteed for BDFl and BDF2,
for h > 0 and q > 0 if:

1. A is real and the eigenvalues of A are in the left-hand half-plane
and

2. au~ 0.

In practice these conditions are often satisfied, e.g. when dealing with
Resistor-and-Grounded-Capacitor (RGC) networks [9]. For au > 0 it
was possible to construct examples showing instabilities. Note that
these results were based on a fixed time step. The integration scheme
implemented in PLATO is the fastest first algorithm based on variable
time steps resulting in an event driven simulation scheme. A principal
problem occurs if the stepsize chosen for a specific leafcell appears too
large and has to be decreased. Leafcells with smaller stepsizes have
already been integrated up to the current time point. To prevent
rejection of numerous integration steps and the cost of large back-ups,
time steps are continuously monitored and adjusted. Furthermore time
step selection is rather conservative and based on a second order error
criterion, even for second order integration formulas.

As with many numerical methods, theoretica! analysis tends to be
pessimistic hut in practice results are often quite satisfying. Very often
physical properties will satisfy the conditions under which methods
are reliable. In particular the integration results obtained by PLATO
appear quite accurate. The same conclu_sion was made in [61] where
results were compared with the eternal simulation reference SPICE.
Finally we should realize that all numerical integration methods are
limited with respect to their application area. In this context the
results for several methods applied to the Landman circuit in chapter 6
are quite illustrative.

54 Multirate integration techniques Chapter 4

5. Transient analysis

5.1 lntroduction

Transient analysis is probably the most frequently used simulation
task in circuit simulation. Unfortunately, transient analysis is also the
most cpu time consuming activity in the field. The most
straightforward way to implement transient analysis in a piecewise
linear simulator is to apply an integration formula with fixed uniform
stepsize. In this context a uniform stepsize by definition implies that
all leafcells obtain the same time step, whereas fixed implies that the
time step for any leafcell remains constant during the integration
process. (In literature uniform often means fixed hut here we
distinguish between those two notions). After having determined an
initial solution, replace all dynamica! elements by companion models
using a stiffiy stable integration formula. Next, make a time step
equivalent to the stepsize chosen and check whether the pwl equations
remain valid. If the solution curve has crossed a segment boundary,
the piecewise linear equations have to be re-solved, e.g. using
Katzenelson's algorithm. Otherwise proceed with the next time step.

A number of objections can be formulated against this approach:

1. the user has to provide the simulator with an appropriate stepsize
which is not always a trivial problem.

2. applying a fixed stepsize can be extremely inefficient. We cannot
take advantage of the fiuctuating activity in the circuit. The
stepsize chosen has to be small enough to integrate the fastest

55

56 Transient analysis Chapter 5

deviations accurately and is not allowed to grow if circuit activity
diminishes.

3. we cannot estimate the truncation error if a boundary hyperplane
is crossed. After a segment boundary has been crossed, the pwl
equations will have to be solved again. This will generally cause
few problems since the available algorithms show excellent
convergence properties. Afterwards however it is impossible to
estimate the error introduced. This error may be severe in case of
hysteresis-like behavior (as is introduced in almost any realistic
logic circuit) or step functions. So the stepsize must be relatively
small compared to the circuit dynamics.

1

x (t) correct x timing error

0 - - - - .J

0 2 4 6
time

Figure 5.1. Step function.

4. discontinuous signals are prohibited. Applying a step function to
a circuit in which e.g. all capacitors are replaced by companion
models may cause capacitor voltages to change discontinuously.

Of course, the latter two objections become less severe with smaller
stepsizes at the cost of decreased efficiency. PLATO can be forced to
use a fixed stepsize for benchmark purposes.

The method can be improved by applying a uniform variable step
integration rather than a fixed step. Decreasing circuit activity will
then yield larger stepsizes. Although the repeated computation of
suitable stepsizes causes some overhead, mainly in recomputing the LU
decomposition of the system matrix, the efficiency gains will outnumber
the cost in most practical cases. Furthermore the overhead can be
reduced by applying a conservative strategy with respect to stepsize
changes, e.g. only significant changes are effectuated. Secondly, we can
improve upon the accuracy of the algorithm because the need to
integrate across segment boundaries is eliminated. Stepsizes can be
chosen such that the next time point coincides with the crossing of a

Section 5.1 Introduction 57

boundary.

5.2 A uniform stepsize simulator

The simulation program solves for the circuit variable derivatives x
rather than the circuit variables themselves. The time derivatives are
used to explicitly determine the moment when the solution reaches a
segment boundary. Therefore we introduce the divided differences

Xn+l • Ün+l • Pn+l • iin+l and Un+l:
. .

_ /J. Xn+l -Xn
Xn+l = h

n

_ /J. Un+l - Un
Un+l = hn

.,.. /J. Un+l - Un
Un+l = h

n

_ t,. Qn+l -qn
Qn+l = hn

_ t,. Pn+l -pn
Pn+l = hn

(5.1)

Subtracting (1.1) for time points t = tn+l and t = tn where hn = tn+l - tn

yields:

l 0 !Au A12 A13] [.Xn+ll ~n+l = A21 A22 A23 ~n+l
Pn+l A31 A32 A33 Qn+l

(5.2)

in which the constant source vector (a1, a2, a3)t has disappeared. In
the sequel the subscripts n+l are often omitted. We now eliminate the

unknown Un+l by substituting a linear multistep integration formula
with constant stepsize:

i=p i=p
0 = L C1.illn-i + h L l3iûn-i (5.3)

i=-1 i=-1

This yields the following equation for Ün+l:

- h 13-1 n-1A - h 13-1 n-1A - 13-1 n-1 · (5.4) Un+l = - -- 21Xn+l - -- 23Qn+l - -- Un (J.__1 (J.__1 (J.__1

where

58 Transient analysis Chapter 5

and

D=l-M.22·

Combining this result with 0 = Aux +A12ü +A13Q yields:

O=Jffx+b1

in which

Ju =Au+ M12D-1A21

and

b
-

1
__ Cl3-1+13o)A n-l. (a_1 + ao)A 1

- a_l 12 Un - ha_l 12D- Un

1 i=p
- -h--A12D-1 I: (aiun-i + hl3iûn-i)

a_1 i=l

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

from which x is rapidly solved. Here we assume that J 11 is a square
matrix representing the entire system. In reality Ju corresponds to a
single leafcell only. It has to be inserted in the system matrix from

which x is solved. With x known, ü, u and p can be solved successively.
Equation (5. 7) will be referred to as the leafcells companion model.
Table 5.1 shows the specific values for ö and b 1 for all integration
formulas applied in the simulator. Of course the above results are
valid under the assumption that he inversion of D is feasible.

TABLE 5.1. ö and b for several integration rules.

ö b1

BE h A12D-1ûn
TR 1/'lh, A12D-1ûn
BDF2 2/:Jh 2!:iA12D-1Ûn + 1l:iA12D-1ü"n

ACT2 2/:Jh l4A n-1 · lA n-1- 4 A n-1 · 15 12 Un - 5 12 Un + 15 12 Un-1

Let us for the moment restrict ourselves to one step integration
methods like Backward Euler (BE) and the Trapezoidal rule (TR). The
implications of multistep (in particular two-step) methods with
variable stepsizes will be investigated later on. The general system

Section 5.2 A uniform stepsize simulator 59

description (5.2) with the substitution of an integration formula now
becomes:

_ [Á.11 + M12D-1A21
- [!l31 + M.32D-1A21

(5.10)

Observe that the update M 12D-1A 21 on matrix Au is a rank r update
where ris the rank ofmatrixA22· In many cases matrix A22 will have
dimension one in which case a change of stepsize requires only a simple
rank one update on the system matrix. For simplicity, we will assume
that r equals one since the operation principle of the algorithms is
independent of r.

At timet= 0 we have determined values for xo, Ûo and po with qo = 0
and u 0 = 0 as initial values. The integration is then started with a
Forward Euler integration step: the initial x is determined using the
source vector b = A 12Û o after which we can derive a suitable stepsize

from u 0 • From then on an implicit integration rule can be applied,

using Ûn to estimate a time step.

Let us now summarize the algorithm for a simple uniform variable
stepsize piecewise linear simulator and identify the basic operations
and updates. A very coarse version of the algorithm might resemble
the one shown in algorithm 5.1

The actions that occur very often are:

• rank one updates on the system matrix due to pivoting operations.

• full vector forward-backward substitutions.

• a change of stepsize and the recomputation of leafcell data.

• a full LU decomposition on the system matrix.

The largest part of the computational effort is accounted for by the last
two operations. Since a change of stepsize causes rigorous changes to
the system matrix, updating the LU decomposition is rather
unattractive and full LU decomposition is inevitable. In the following
sections we will first discuss pivoting operations during transient

60 Transient analysis

Algorithm 5.1. Simple uniform stepsize simulator.

t = O;
determine x (t);
while t < Tdo

solue A·x = LU·x = b;
determine new time step t:..t;
t = t + t:..t;

update circuit and leafcell uariables till current time t;
if solution has reached a boundary then

Chapter 5

solue pwl equations meanwhile keeping LU up to date;
else / * time step bounded by integration accuracy * /

determine new step size;

fr
' od;

if step size has changed then

fr
'

recompute leafcell jacobians and source uectors;
reassemble the system matrix;
compute new LU decomposition;

analysis. Next we will try to eliminate the full LU decomposition as
much as possible by the introduction of a multirate integration scheme.

5.3 Pivoting

As explained in the previous section, the time integration is
interrupted if the solution hits a boundary hyperplane. At this time
the pwl equations have to be re-solved which involves pivoting. Note
that although a pivoting operation generally changes x, i.e. the
direction in which the circuit variables propagate as a function of time,
the applied stepsize may very well remain appropriate, since û will
often change continuously in time. Since pivoting itself is no reason to
restart the integration, it's more efficient to keep the current stepsize
while solving the pwl equations and validate it afterwards.

Unlike in the situation during the initial analysis, the submatrix Au
bas been updated with a rank one update due to the substitution of an
integration formula as indicated by equation (5.7). In fact every
submatrix Aij, i, j E { 1, 3 } has been updated according to equation

Section 5.3 Pivoting 61

(5.10). The pivot value and the update vectors are not immediately
available since the simulator does not explicitly store matrices Jij·
Only matrix J 11 is merged explicitly in to the system matrix.
Nevertheless it is still possible to compute the update vectors when
performing a pivoting operation and obtain the new jacobian matrix by
performing a rank one update.

Theorem5.1
Let P(k ;l) denote a pivot operation on submatrix elementA% and let L
denote the substitution of a multistep integration formula. Operator o
is the well known "compose" operator in operator theory. Now
P o L = L o P, i.e. the order in which operations P and L are applied is
irrelevant.

Proof. Let us define column and row vectors (see figure 5.2)

A ~ AA~ A P AAP c1 =A13, c2 = 23, ri =A31, r2 = 32 (5.11)

and pivot element

P ~A~~. (5.12)

Au C1

A21 C2

1

A31 A33:
1

k •p•.

Figure 5.2. Update vectors for pivoting operation.

Now define the following matrices where A is a shorthand for matrices
Au (see also figure 5.3):

A' effect ofoperation P with pivotp on matrixA

62 Transient analysis

A ,__P_iv_o_t_p---;~ A,

substitute integration rule

A
pivotp

Figure 5.3. Pivoting operations.

A apply integration rule (5.3) to matrixA

A" apply integration rule (5.3) to matrix A'

A effect of operation P with pivot p on matrix A

and show that.A equalsA" equalsA'.

First we construct A":

A lf A' !;:Af D'-'A' = 11 +un.12 21,

D=l-M.22, D'=l-M.22.

N ow substitute the expressions for A ':

c1r2
Ab =A12 - --,

p

c2r1
A21 =A21 - --,

p

c2r2
A22 =A22 - --,

p

' 1 p =-
p

rî =
rl

p

r2 =
r2

p

Chapter5

(5.13)

(5.14)

The result contains a complicated matrix inverse which can be
eliminated by applying the Sherman-Morrison-Woodbury formula:

Section 5.3 Pivoting

(A +XCY'r1 =A-1 -A-1xcc-1 + Y'A-1x)-1Y'A-1

with

C = ..Q., A ::D, X =c2, yt =r2
p

Using the fact that
-1

K = (~ + r2D-1c 2) and k = r 2D-1c 2

are constants and some juggling with terms we finally obtain:

A" =Au+ M12D-1A21

The derivation of an expression for Ais a bit simpler. Combining

with

Au =Au+ M12D-1A21

A13 =A13 + M12D-1A23 ~ c1 = c1 + M12D-1c2

A31 =A31 + M.32D-1A21 ~ r1 = rl + 8r2n-1A21

A33 =A33 + M.32D-1A23 ~ P = P + 8r2D-1c2

63

(2.1)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

we almost automatically find that A equals A" which completes the
proof.

5.4 A multirate simulator

A way to eliminate the costly full LU decomposition every time the
integration time step changes is to apply a multirate integration
scheme as introduced in the previous chapter. Instead of integrating
the entire circuit with a uniform variable stepsize, every leafcell is
assigned its own optima! stepsize. This way fast varying leafcells
obtain small stepsizes while slowly varying leafcells are integrated
with large ones. Naturally it is possible and even desirable for a

64 Transient analysis Chapter 5

number of leafcells to share the same stepsize and have simultaneous
events. If a leafcell changes its activity, its stepsize has to be adapted
resulting in a matrix update of small rank.

The transient analysis proceeds in an event driven manner. We
distinguish between two types of events:

• dynamic events and

• pwl events.

Let us first examine the dynamic events. These occur every time the
validity of a companion model expires. Suppose some leafcell l has a
dynamic event at time tev = tn+l · First we update the x-, u-, û- and p
variables corresponding to leafcell l using the divided differences which

are approximations of their time derivatives x, ü, u and p. Next a new
stepsize hn+l is computed for the next integration step by estimating

the local truncation error using u. The previous stepsize hn is
maintained if there is no significant difference between the new
stepsize hn+l and hn. In this case only the b vector changes due to the
update of û (see equation (5.9)). Vector bis constructed by merging all
leafcell contributions b 1 into one system source vector. The changes in
b denoted by !:ib are now used to compute an update for x denoted by
!:i'X. A more complicated situation arises if the stepsize requires
adjustment. Now not only b but also J is subject toa change causing a
full recomputation of x by forward-backward substitution. As we will
see later on, this recomputation can be replaced by an update. Finally
the new event ofleafcell l is determined at tev + hn+l • assuming no pwl
event is expected to occur within time interval [tev• tev + hn+d·

We already noticed that substitution of an integration formula causes a
rank r update on the A 11 matrix if A 22 has dimension r. The jacobian
matrix is updated with a matrix containing the chosen stepsize. Thus a
change of stepsize will also change the jacobian J 11 . Suppose

Jn(n) =Au+ ö<nlA12CD-1)<nlA21 (5.20)

represents the jacobian based on hn in the time interval tn ~ t ~ tn+l
and

(5.21)

is the new jacobian aft.er hn has changed to hn+l · An update M for the

Section 5.4 A multirate simulator 65

jacobian Ju (n) is easily computed:

M =Ju (n+l) -Ju (n) (5.22)

= A12 {oCn+ll(D-1)Cn+ll - oCnJcn-1)Cnl}A21

Since the matrix n-1 is required quite often, it is stored explicitly by
the simulator. Therefore the matrix w-1 can be determined very fast
and the row and column update vectors required for the dyadic update
can be provided. Generally only a small subset of leafcells will have to
change stepsize at the same time point. So the system matrix will be
subject to relatively small deviations and the LU decomposition can be
updated very efficiently with algorithm 2.2.

After the changes !iX, have been determined, the impact on the related
leafcells must be investigated. Since the circuit variable derivatives
have changed for those leafcells, it may very well be possible that the
stepsizes substituted are no longer valid. Therefore we have to update

the x-, ü-, p- and x-variables, recompute u and p, and check if the
applied stepsizes are still appropriMe. If necessary, the event times
must be adjusted. It appears that changing stepsizes is a costly
operation which should be avoided whenever possible.

A pwl event occurs if the solution vector reaches a boundary
hyperplane of the current segment. This happens if for some leafcell a
component of its p vector becomes zero. Pwl events can be determined
explicitly using p and the time derivative estimates p at the current
time tev. Suppose

::3 k \fi #k [fü < o /\Pi< o /\((pk I fü)?. (pi I Pi)) L

then the next pwl event for this leafcell is at time tev - (pk / fü). At
that time point the integration must be stopped until the piecewise
linear equations are solved and the solution curve can proceed in
another segment. A complication arises if simple pivots are not
sufficient to solve the pwl problem and the van de Panne algorithm has
to take a step 0 in the direction of À or a q variable. Now ü may change

66 Transient analysis Chapter 5

discontinuously in which case the integration has to be restarted for all
leafcells involved. Such a restart is not necessary if only simple pivots
are performed. More important however is that the step 8 cannot be
taken as long as related leafcells are still represented in the system
matrix by their companion models. For those leafcells the stepsize has
to be reset to zero to prevent undesired side effects such as step
functions in capacitor voltages instead of exponential characteristics.
Obviously, since changing the system matrix can have implications on
x, we have to recompute the step 8 in the direction of q if stepsizes were
actually reset.

Apart from discontinuities in û due to steps taken by van de Panne,
note that pivoting causes an upperbound on the number of continuous
state variable derivatives since these directly depend on on x.
Unfortunately this restriction implies that nothing can be gained from
the application of integration formulas with order larger than two [71].
After the piecewise linear equations have been solved, the leafcells
affected by changes in x have to be examined. If necessary their events
and stepsizes have to be corrected.

Since it is very well possible that several events coincide at the same
time point, we deal with the corresponding leafcells simultaneously.
This is especially easy for dynamica! events by applying the
superposition principle. E.g. all new contributions to b are merged
together before determining !!.X. So at any event time we process a
cluster of leafcells with similar events instead of single events.

Definition 5.1
A cluster is defined as a 4-tuple C = (E, tev• ET, IF) in which Eis the
set ofleafcells with events of type ET, simultaneously occurring at time
tev. The integration formula being applied for the current time step is
defined by !F. Proper values for ET are { pl_event, dynamic_event}.
For simplicity we will assume cardinality one for clusters of type
pl_event.

The transient analysis and the modifications to van de Panne's
algorithm are listed in algorithms 5.2 and 5.3

It appears that there are two situations in which leafcell events have to
be rescheduled:

Section 5.4 A multirate simulator 67

• while the pwl equations are solved, the algorithm may very well
reach and change leafcells with events scheduled in the future.

• changes in one particular leafcell may influence another one causing
a new (dynamical or pwl) event prior to its present scheduling.

Here we encounter a basic limitation of the piecewise linear simulator.
At the moment of rescheduling, we find that the original stepsize is no
longer valid and should be replaced by another, smaller, one. In
practice, assuming the difference is not too large, we simply reschedule
the event without changing the stepsize. In some cases events have to
be forced to the current time. This implies that since the integration
step was interrupted, the truncation error becomes larger than
estimated. It can be shown that the order of a second order method
such as the trapezoidal rule falls back to one [13]. This appears to be a
major limitation since in order to preserve integration accuracy,
stepsizes have to be estimated by a first order criterion even if second
order integration methods are applied. Clearly this has a negative
influence on simulation run times.

The problem becomes even more disturbing if two-step backward
differentiation or A-contractive methods are selected. These methods
use two previous values for u and Ü which must be administered
carefully. Step size truncation has a disastrous effect on these previous
values: they become invalid. The integration must now switch back to
a one-step formula such as the trapezoidal rule or backward Euler,
after which the two-step scheme can continue.

Let us introduce some additional variables before listing the transient
analysis algorithm:

B set ofleafcells that require a recomputation of b.
!l.b sparse vector containing updates for b contributed by one or

more leafcells.

/:l;X sparse vector containing updates for x.
L .1.X set ofleafcells related to nonzero entries in /:l;X:

68 Transient analysis

Algorithm 5.2. Transient analysis.

transient ():
C = next_event_cluster ();
while (tev < T) do

process_event_cluster(C);
C = next_event_cluster();

od;

next_event _cluster():

Chapter5

/ * Determine the set of leafcells E belonging to the same
*class that require servicing at the nearest event time tev·
*/

assemble cluster C;
return C;

process_event_cluster (C):
up_date_module_variables (C);
~b = 0;
if ET = pl_event then .

/*Set I contains only a single leafcell i andp~ = 0.
* SetBcontainsleafcellsthatrequirearecomputationofbdot.
*/

initialize sets !, B .= E, 0;
initialize vectors ei, e~, e~ = 0.0, - u, - jj;
À= 0.0;
push (i, "À column", down);
push (i, r, up);
vdpanne (À); -z -
for all [EB do compute update ~b for b od;
solve LDU·/J.X = ~b;
;:; += ~b;

elseif IF = forward_euler then / * Restart integration * /
for all eEE do

compute update ~;;e for b;
~b +=~be;

od·
sol~e LDU·/J.X = ~b;
;:; += ~b;
for alle EE do "increment" integration method od;

else / * Regular integration step * /
recompute = false;
for all eEE do

Section 5.4

fi;

od;

A multirate simulator

"increment" integration method;
new _stepsize (e);
if e-Mtepsize -:t- e~previous_stepsize then

recompute = true;
update LU decomposition;

fr
c~mpute contribution tlbe for b;
tlb + = tlbe;

if recompute = true then
solve LDU·x = b;
generate tl'X;

else

fr
'

solve LDU·tlX = tlb;
b += tlb;

process_leafcells (C, tlX);

update_module_variables (S):
for all seS do

od;

update xs with xs till the current time point t;
update us with ïis till the current time point t;
update ps with ps till the current time point t;

process_leafcells (C, tl'X):
eliminate non relevant entries from tlX;
for all entries i in t1X do update x [i] and x[i] od;
assemble L l!.X; / * No te : E r\L l!.X = 0 * /
update_module_variables (L l!.X);
for all eeE do

compute ïie;
Te -e

compute u and p ;
schedule (e);

od;
for all e EL l!.X do

compute ïie;
.e -e

compute u and p ;
reschedule (e);

od;

69

70 Transient analysis

Algorithm 5.3. Transient analysis: Van de Panne.

vdpanne (À):
carry _on = true;
while carry _on do

/ * Compute derivatives_ of x * /
genera te source v~ctor b;
solve LDU · x = b;
assemble L;;

/ * Determine maxima[number of pivots * /
Si= O;
for i = tos downto 1 do

Chapter 5

s = sign (stack [i].leaf, stack [i].column);
ifs "!: 0 then

S =s;
Si= i;

fi•
' od;

check_sign();
if Si = 0 then / * Cannot pivot * /

determine_theta ();

else

if e = "" then abort; / * Cannot solve * /
if8 > 0 then

check_related_leafcells();
x = x + dir·B·x;
for all l EL; do update û 1 and p 1 od;
update À or q [column];

fi"
if column = À and À = 0 then

carry _on = false / * Solution found * /
elseif column "!: À and q [column] = 0 then

/ * Current active column became 0 * /
pop();
stack [tos].dir = - stack [tos].dir;

else / * New blocking row * /
push (leaf, row, up)

fi•
'

perform_pivots ();
for i = tos downto Si do

B = Bu /eaf;
pop();

od;

Section 5.4 A multirate simulator

dir = dir·S;
fi:

' od;

check_sign ():
m = stack [Si].column;
n = stack [tos].column;
if sgn CA!f3n) < 0 then

fi:
'

for all leL; do
reset stepsize hl of leafcell l to O;

od·
set' S = sgn (AThn);
recompute x;
assemble new L;;

check_related_leafcells ():
for all Z eL; do

od;

reset stepsize to O;
B =Bul;
update LU decomposition;
update x with x till the current time point;

recompute x;
assemble new L;;
recompute e;

5.5 Some .optimizations

71

Let us consider the consequences of small perturbations in jacobian J 11
as well as the source vector b 1 . This situation arises quite often in the
simulator: due to pivoting during transient analysis and secondly
when changing the integration stepsize for a leafcell. Since these
operations cause only minor changes to the system matrix as well as
source vector, we suspect that x can be easily updated instead of
performing a full recomputation.

We first examine the general case in which the new situation is given
by

(5.23)

72

where

Jnx+b1=0

Transient analysis

Substitution of the above relations and some rewriting yields:

CJ11 + Mn)AX + M 11 ·x + t:.b 1 = o.
Now reconsider the two special cases mentioned before.

Chapter5

(5.24)

The application of equation (5.24) in the case of pivoting was already
documented in [72]. Here the modification of the system matrix is
simply a rank one update where the update vectors must be taken from
submatrices J 12 and J 21 as presented in equation (5.10). So assuming
matrix element J~~ is taken as a pivot, the updates M 11 and t:.b 1 are
simply given by:

J~~ -k
t:.b 1 = c·a = - --,;z·b2 .

J22

The update for x is readily computed from

(J 11 + c·r')·AX + c·(r'·x + a) = 0.

The same optimization can be applied in case of stepsize changes. An
expression for the update of the system matrix was already derived in
section 5.4 equation (5.22). An update for vector b is computed easily
by using the same temporary matrix as was used for the update of J 11:

e.g. t:.b 1 = m-1 un for BE or TR.

Another optimization is found by simply reducing the sets Lt>X and Lfli.
During the forward-backward process we inevitably introduce small
insignificant errors in the solution vectors Ai and t:.i. These almost
zero entries in the sparse solution vectors may cause the unnecessary

Section 5.5 Some optimizations 73

evaluation of the related leafcells. This overhead can be reduced by
carefully ignoring the leafcells related to very small sparse vector
entries. The danger lies in the undesired introduction of errors in the
leafcells û vectors. Since the circuit variables x are computed by
updating with the x vector, errors in x are directly reflected in x. Next
the errors in x are fed in the û vector, hut multiplied by matrix A21

which may drastically increase the errors. Finally, b depends on û
yielding an incorrect source vector and resulting in even larger errors
in x. Therefore elimination is guided by a very conservative heuristic
and can be turned off if desired.

5.6 Event clustering

As already pointed out by C.W. Gear [66] there is a disadvantage to the
approach sketched in section 5.4. Since it is impossible to predict the
circuit behavior while determining a new stepsize for a specific leafcell,
we may be forced to change the stepsize before the leafcell reaches the
time point at which its next event is scheduled due to activities in other
parts of the circuit. This causes a lot of computational overhead,
involving the update of circuit variables and the recomputation and
effectuation of stepsizes. Gear also showed that no merit can be
expected from the application of a multirate integration technique if
the stepsizes of the subproblems lie close together. So the rigorous
application of the multirate principle described above may not be very
efficient.

The transient analysis algorithm shown in algorithm 5.2 already
implements the handling of multiple events at the same time point.
Multiple events can be processed by simply merging their contributions
in the b vector before computing the new x. Since it is often the case
that related components have events at about the same time, it is clear
that a lot of cpu time can be saved by clustering dynamica! events. As
long as every component is assigned its own optimal stepsize however,
it will rarely be possible to deal with more than one event at a time.

A way to achieve improvements for both drawbacks is the
discretization of event times. Forcing nearby events to a grid increases
the average cluster size. A further reduction of the overhead can be
achieved by forcing groups of related leafcells to use the same
(minimum) stepsize. This way the recomputation of stepsizes is

74 Transient analysis Chapter5

minimized and the need for reducing them will diminish. Two heuristic
approaches to event clustering have been tested. The first and most
effective procedure determines, given the nearest event time, a set of
leafcells which have almost reached that time (i.e. some fraction of its
stepsize). Unfortunately this implies a systematic preemptive
treatment of events. Since this has a negative effect on the integration
order, the second, less effective approach was selected. Dynamic event
times are discretized as follows. Assume the length of the integration
interval is given by T, then events are forced to one of the following
grids:

T-2-k for k = 1,2, · · ·, N. (5.25)

Every time a new event has to be determined, a value of k is chosen
such that the desired stepsize can be mapped onto the discrete time
axis without violating the time integration accuracy requirements
reflected by the stepsize h. Aft.er the next event has been determined,
the leafcells stepsize is set accordingly.

The speed-up achieved by event clustering is circuit dependent.
Generally, the required cpu time is reduced by 10-20%. Although the
number of events can decrease with about 50%, the larger number of
leafcells involved causes more fill-ins in source and solution vectors.
Therefore the amount of time needed for the sparse matrix operations
increases, limiting the final gain to "only" 20%. A comparison of
clustering versus no clustering is shown in table 5.2 for a number of
inverter chains (see chapter 6). In this example the effect of clustering
is minimal due to the nature of the circuit: initially many leafcells
already obtain about the same events. The increase in cpu time
occurring at 20 stages is caused mainly by the ripple effect, which
causes extra circuit activity and, consequently, extra simulation time.
A more successful example is the counter (see chapter 6) where
clustering reduces the cpu time from 405 to 270 seconds. Note that the
applied heuristic may turn out expensive in a situation with a relative
large number of pwl events. In this case we require lots of stepsize
changes to force the leafcells involved to the discrete time grid.

Some gain can be expected from a reduction of the number of clusters
allowed. Assume all leafcells are forced into a suitable cluster.
Switching from one cluster to another would be restricted to
overlapping time points on the discrete time axis. Restriction of the

Section 5.6 Event clustering 75

TABLE 5.2. lnverter chain clustering results.

cpu time cpu time
#stages no clustering clustering

5 1.28 1.15
10 6.27 4.78
15 11.38 8.57
20 17.90 15.37
25 25.68 27.67

number of clusters will then prevent leafcells from running "loose".

Part of the problem in optimizing the event scheduling is the generic
character of the simulator. A much more efficient clustering could be
implemented if the simulator had some knowledge about components
like e.g. MOS transistors. In that case the circuit could be partitioned
into subcircuits each being operated with the same stepsize. Crossing a
segment boundary would trigger a reevaluation of the partitioning.
This way the simulation of logic circuitry at the transistor level could
become more efficient. A similar approach hut combined with
waveform relaxation was shown to be very effective [73]. Ironically,
another problem is caused by the piecewise linear modeling itself.
Hitting a boundary always interrupts the discretized event scheme,
causing expensive matrix updates which sometimes cancel the gain
obtained by clustering. We already pointed out in the beginning ofthis
chapter that integrating across segment boundarys is not a viable
option.

76 Transient analysis Chapter 5

6. Simulation results

6.1 Landman circuit

The limitations of numerical integration methods can be illustrated
using the nasty little circuit shown in figure 6.1 constructed by B.
Landman. The circuit appears in [59] and is used to examine some
properties of integration methods such as numerical dam ping and time
errors. The plots in [59] p. 257, although created with a :fixed stepsize
that is much too large to expect a reasonable result, compare nicely to
the signals obtained by PLATO as shown in :figures 6.3, 6.4, 6.5 and 6.6,
in which both the exact (dashed line) and computed (solid line) are
plotted. The multirate methods show the same damping and time error
tendencies as their :fixed time step counterparts.

+

v(t)

L

î i(t) R

R = 1 /102 Cl=l
L = 102/20602 C2 = 20602/10100

Figure 6.1. Landman circuit.

77

C2

78 Simulation results

i(t]L-===:--------1

0
timet

Figure 6.2. Excitation for the Landman circuit.

0.015

0.01
(\
! \ " ' v

0.005

0

0 1 2 3 4 5

Chapter 6

Figure 6.3. Transient analysis of the Landman circuit using PLATO
withBE.

0.015

0.01

0.005

0

0 1 2 3 4 5

Figure 6.4. Transient analysis of the Landman circuit using PLATO
with TR.

Section 6.1 Landman circuit 79

0.015

0.01

0.005

0

0 1 2 3 4 5

Figure 6.5. Transient analysis of the Landman circuit using PLATO
withBDF2.

0.015

0.01

0.005

0

0 1 2 3 4 5

Figure 6.6. Transient analysis of the Landman circuit using PLATO
withACT2.

The exact solution is given by:
À1 t fvit vc2=c1e +c2e cos(ffit)+c3

c1=1/(99·102)
c2 = - 50·c1
C3=1/102

A.1 = -100
A.2 = -1
(1) = 10

80 Simulation results Chapter 6

6.2 Inverter chains

A useful circuit for the illustration of latency behavior is a chain of
nmos (cmos) inverters as plotted in figure 6.7. The circuit activity will
be a reflection of the amount of change in the input signal. When a
constant input is applied the chain will be in rest and computational
effort will be at a minimum. If the input changes, the change will
propagate through the chain hut will be restricted to a small amount of
inverters.

Figure 6.7. 7-Stage inverter chain.

6.3 Ring inverters

Another notorious test circuit for circuit simulators is the ring inverter
in figure 6.8. An oscillation will occur if the number of inverters is
large enough and the oscillation frequency will diminish if the number
of stages increases. So large parts of the circuit will be in rest. Only
those inverters that are currently involved in the propagation of the
wave front are active and require treatment.

6.4 AID converter

A circuit typically suited for simulation by the piecewise linear
simulator is the ND converter circuit depicted in figure 6.9. It contains
control logic modeled at the gate level as well as an analog multiplexer
composed out of MOS transistors. The actual conversion from analog to
digital is implemented by a macromodel. An inhomogeneous collection
of simulation results is presented below.

Section 6.4 ND converter 81

Figure 6.8. 7-Stage ring inverter.

Figure 6.9. Al D converter circuit.

82 Simulation results Chapter6

:1 selectO

1 1 1
0 20 40 60

time

:1 selectl

1 1 1

0 20 40 60
time

:i analog_out

1 1 1
0 20 40 60

time

:n ~ ~ ·~ ready

1 1

0 20 40 60
time

:-doek

0 20 40 60
time

:1 llf1fU ,UUUl 1 0 1 rui bit7

0 20 40 60
time

:~ carry6

0 20 40 60
time

Section 6.4 ND converter 83

:w ,I~ bit6

0 20 40 60
time

:~~ carry5

0 20 40 60
time

:oo lJUl 0 llil[bit5

1
0 20 40 60

time

:k:C~ ~ carry4

0 20 40 60
time

:wu l lfl illj lilC bit4

1
0 20 40 60

time

:~ ~ ~ carry3

0 20 40 60
time

:m m 1 1 ~ bit3

1 1 1

0 20 40 60
time

84 Simulation results Chapter 6

:~ ~ ~ ~ carry2

0 20 40 60
time

:+JJ n ~ bit2

1 1 1
0 20 40 60

time

:~ carryl

1 1 1
0 20 40 60

time

:~ bi tl

1 1
0 20 40 60

time

:~Î \ Î carryO
r-

1 1 1
0 20 40 60

time

:~ bitO

1 1 1
0 20 40 60

time

Figure 6.10. A / D converter signals.

Section 6.5 Counter 85

6.5 Counter

The counter circuit is a simple four bit counter built out of flip-flops as
shown in figure 6.11 and some logic gates. All transistors applied are
modeled using the simplest MOST model, comparable to SPICE level 1.
Output signals are presented in figure 6.12.

non-Q

-r
non-toggle

-r
toggle

Figure 6.11. Flip-flop.

5

0
1 n n .. n n n n n n n n n n n n n n
0 200 400 600 800

time (nsec)

phil

:LJlJ1Jl[lI1JlI1 pM2

0 200 400 600 800
time (nsec)

:fJ_fl_(l_ll-fl_Jl-flJl_I outl

0 200 400 600 800
time (nsec)

86 Simulation results Chapter 6

:D-D--0-D_f, out2

0 200 400 600 800
time (nsec)

:n (l f out3

1 1 1 1

0 200 400 600 800
time (nsec)

:n out4

1 1 1 1

0 200 400 600 800
time (nsec)

Figure 6.12. Counter signals.

6.6 Two complement accumulator

A circuit containing logic components only is a counter as used in the
proportional tracking ND converter described in [74]. In default mode
the counter just counts in a normal up or down fashion. Every bit of
the counter is equipped with a range enable input. If such an input
becomes active, the corresponding bit effectively becomes the least
significant bit. All less significant bits are blocked, the more significant
bits count as ifthe enabled bit is the least significant one.

6. 7 Simple phase locked loop

A simple little circuit typically suited for the piecewise linear simulator
is a phase locked loop composed out of some comparators, logic gates
and integrators. It consists of a mixture of analog, digital and abstract
components.

Section 6.8 Neural networks 87

6.8 Neural networks

summer gain nonlinearity

output

Figure 6.13. Circuit model for a Hopfield neuron. Inputs can be either
inhibitory (circles) or excitatory. The result of the input
summation x is multiplied by a constant gain factor G
and compressed between 0 and 1 by a nonlinear function.

A nice example of the fiexibility of the piecewise linear simulator is its
ability to simulate rather abstract systems such as neural networks.
Figure 6.13 shows a circuit model for a Hopfield neuron [75, 76]. A
simple piecewise linear model using only a few segments to implement
the nonlinear function already suffices to simulate the neural circuits
in [77]. A typical characteristic of neural networks is the high
connectivity of the circuit. This causes the system matrix to be rather
full instead of sparse. Since the simulator is built for operation on
sparse matrices, the simulation of large neural networks becomes
rather inefficient. At this moment a special neural version of the
simulator· is developed, using full matrix techniques and the parallel
and vector capabilities of an Alliant FX/8 mini-supercomputer.

6.9 Program statistics

This section presents an overview of the program statictics that are
gathered during simulation for the circuit examples mentioned before.
They form a selection of the benchmark and test circuits I used to test
and optimize the simulator. The statistics printed are supposed to give
an impression of the nature of the circuits. Furthermore they intend to
illustrate the algorithmic concepts explained in previous chapters. The
simulations were done on a Hewlett-Packard workstation (hp9000s835)
and are measured in seconds. Results are scattered over tables 6.1, 6.2
and 6.3.

88 SiIIlulation results Chapter 6

TABLE 6.1. Program statistics: inverter chains. The "#" character is a shortcut for "number".

circuit chain5 chainlO chain15 chain20 chain25
#components 11 21 31 41 51
matrix size 25 50 75 100 125
matrix density 15.0 7.8 5.2 3.9 3.2
#pivots (initia!) 5 10 15 20 25
#pivots (transient) 11 23 36 48 61
#full LU decompositions 1 1 1 1 1
#dyadic updates 165 357 546 721 920
average #changed elements 17.2 34.1 50.2 65.5 81.5
#forward/backward subst. 602 1303 2028 2634 3316
#pwl events 11 23 36 48 61
#dynamic events 558 1213 1889 2449 3082
average size t.X 13.2 23.5 32.3 39.0 43.4
average #leafs reached (pwl) 6.8 12.5 17.7 22.8 27.0
average #leafs reached (dyn) 6.3 10.5 14.3 17.4 19.4
cpu time 1.28 6.27 11.38 17.90 25.68

TABLE 6.2. Program statistics: ring inverters.

circuit ring7 ring15 ring31 ring61 ring121
#components 21 45 93 183 363
matrix size 42 90 186 366 726
matrix density 10.4 4.9 2.4 1.2 0.6
#pivots (initia!) 7 15 31 61 121
#pivots (transient) 98 118 158 547 610
#full LU decompositions 1 1 1 1 1
#dyadic updates 2449 3491 5259 16083 19835
average #changed elements 38.6 78.8 165.6 313.9 517.4
#forward/backward subst. 13794 17084 23102 76482 82711
#pwl events 98 118 158 547 610
#dynamic events 13485 16699 22565 74718 80638
average size t.X 33.5 35.9 40.9 38.4 43.1
average #leafs reached (pwl) 20.0 24.4 27.9 29.2 40.3
average #leafs reached (dyn) 18.1 20.9 23.8 22.7 25.2
cpu time 68.82 108.15 198.25 875.42 1505.08

Section 6.9 Program statistics 89

TABLE 6.3. Program statistics: several other circuits.

circuit landman adc counter accumulator pil
#components 4 74 60 146 10
matrix size 4 98 174 134 10
matrix density 68.8 2.3 3.4 0.7 23.0
#pivots (initia!) 0 78 84 116 6
#pivots (transient) 0 9532 1008 5584 238
#full LU decompositions 1 2 12 1 1
#dyadic updates 38 11010 34263 5714 298
average #changed elements 6.2 2.5 88.9 0.5 6.4
#forward/backward subst. 140 23478 30281 10661 925
#pwl events 0 2430 1008 1710 138
#dynamic events 139 6073 26948 46 256
average size Ài: 3.9 7.8 23.4 1.1 1.0
average #leafs reached (pwl) 0 1.3 10.8 2.8 2.5
average #leafs reached (dyn) 3.0 7.5 12.4 3.1 2.1
cpu time 0.1 37.3 269.55 12.12 0.53

90 Simulation results Chapter 6

Conclusion

Let us conclude this thesis with some final remarks. The description in
full detail of the techniques implemented in the piecewise linear
simulation program was one of the purposes of this text. Nevertheless
many details have been omitted in favor of the basic principles.
Through the past years the program developed to quite a complicated
piece of software. Paradoxically, the simplification of nonlinear
mappings to piecewise linear mappings not necessarily yields a simpler
solution method.

The program was intended as a tool for "difficult" circuits, i.e. circuits
causing convergence problems or consuming large amounts of cpu time
when simulated with SPICE-derivates. Clearly the performance
results are incomparable to e.g. the ones obtained by SPICE since the
latter program is applicable to a more restricted class of circuitry.
Nevertheless people are always interested in benchmarks in which
PLATO is compared to SPICE. In such benchmarks, SPICE often wins.
Several reasons to justify this result can be mentioned. First of all, a
system as generic as PLATO can hardly beat a dedicated, carefully
tuned program such as SPICE, in which many man-years of
development work are accumulated. Every program segment of SPICE
has been fully optimized based on years of experience. Secondly, a
number of low-level functions in PLATO could be optimized. The
sparse matrix datastructure for instance, although quite practical for
operations like fill-in, probably increases the time required for matrix
operations due to the dispersion of row and column elements over
memory. Conventional storage mechanisms usually store row or
column ele'.ments in contiguous memory parts, causing a less flexible

91

92 Conclusion

hut probably faster datastructure, especially for large matrices.
Finally, the benchmark circuits used in a comparison with SPICE were
rather small circuits, which is an advantage for SPICE which is
particularly good at small circuits.

As can be seen from the simulation examples and the corresponding
statistics, the ideas behind the simulator work well. An analysis of the
nature of the cpu time spent during transient analysis, clearly shows
that the processing of dynamica! events accounts fora large part of the
computational effort. In my view, future research should be aimed at a
more efficient integration, perhaps combined with a more explicit
partition of the circuit into sub-circuits in order to reduce overhead
costs even further. Additional speed-ups of an order of magnitude
should be feasible. Especially the application of exponential
integration methods seems promising. It is quite clear that signals
ansmg in typical electronic circuits often show exponential
characteristics. In this respect, the common practice to use
polynomials to approximate exponential functions seems rather
awkward.

Finally some concise conclusions can be formulated:

• all components are modeled in a uniform way allowing for a natural
implementation of mixed-level simulation. The introduction of the
piecewise linear modeling technique does not cause any limitations.
The simulator reads all component models from an external
database, thus facilitating the introduction of new models and
macro models.

• circuits can be specified in a high level description language with
many sophisticated language features and constructs.

• matrix update techniques and carefully tuned forward-backward
substitution are used to eliminate full sparse LU decomposition.
The efficiency of these techniques is illustrated by the simulation
results.

• latent sub-circuits are exploited by the introduction of multirate
integration techniques. Although theoretica! analysis is pessimistic
about the application of these techniques in general, they show
quite satisfying results when applied to the circuit simulation
problem.

Conclusion 93

• the strategy of the simulation program to compute updates where
possible instead of full recomputations effectively exploits large
differences in sub-circuit activity.

• the simulator can cope with a large class of circuitry that cause
problems to conventional simulators. Typical circuits highlighting
the piecewise linear simulator capabilities are mixed-level
simulation problems with tight feedback loops like analog-to-digital
converters, phase-locked loops, sigma-delta modulaters, etc.
Although not optimized for analog and MOS circuits, the simulator
shows reasonable performance in a number of comparable cases.

I would like to mention a few people who have contributed to this work.
First I would like to mention prof. J.A.G. Jess for the opportunity to
write this thesis and for patiently proofreading the manuscript.
Furthermore I am indebted to Jos van Eijndhoven for numerous
discussions and ideas during the preparation of this thesis. Thanks to
Pim Buurman for lots of additional optimizations. Finally I would like
to thank my parents for continuous support.

94 Conclusion

Appendix 1: Algorithmic notations

The algorithms in this thesis are expressed in a convenient C-like
programming language. This means that most operators conform to
the ones defined in C. The well known set operations have been added
to allow a more abstract notation of some algorithms using sets. An
overview of all operators is shown in table Al .1. Furthermore the
language is, enriched with some Pascal-inspired loop statements and
conditional constructs. The superfiuous begin - end constructs for block
statements are deleted in favor of e.g. do - od.

The simplest loops are borrowed from Pascal and slightly modified:

for I to IE do S od;

for I downto IE do S od;

in which:

I initialize control variable.

S loop body consisting of one or more statements separated by
semicolons.

IE integer expression determining the highest (or lowest for the
downto loop) value of the loop variable for which the loop body S
is executed.

The semantics remain unchanged.

The same modification has been applied to the while loop.

while B do S od;

95

96 Appendix 1

with:

B a boolean expression in the C sense, e.g. an expression is regarded
true if non zero and false otherwise. The loop body S is executed
as long as B evaluates to true.

Conditional statements look like:

if B then S fi;

if B then S else S fi;

Keyword elseif is equivalent to the sequence else if. As in C, the
else-part always corresponds to the most recent if clause. The
comment delimiters are also taken from C: / * and * /.
The datastructure used to store sparse vectors is simply a linear linked
list. In some algorithms however, this list is treated as a set of non
zero entries. An empty list is denoted by the 0-symbol rather than nil
or NULL (PASCAL or C respectively). In some cases a sparse vector is
added to a full one. For this purpose the addition operator is redefined:
"add all entries in the sparse vector to their full vector counterparts".

Algorithmic notations 97

TABLE Al.1. Operator overview.

operator description example
[] array index x [3]

direct record tag selection ree.tag
~ indirect record tag rec_ptr~tag is equivalent

selection to (*rec_ptr).tag
++ increment a++
-- decrement a--

* dereference *ptr
& address &var

* multiplication
/ division
+ addition
- subtraction
< less than
> greater than
~ less or equal
~ greater or equal
(] set intersection
u set union
c set inclusion
E member
e: no member
- equality

*- non equality
! logical not
/\ logical and
v logical or
= assignment
+= assignment a + = b is equivalent to

a =a + b
- = assignment a - = b is equivalent to

a = a -b

98 Appendix 1

References

[1] Leon 0. Chua and P.-M. Lin, Computer Aided Analysis of
Electronic Circuits: Algorithms & Computational Techniques,
Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

[2] W.J. McCalla, Fundamentals of Computer-Aided Circuit
Simulation, Kluwer Academie Publishers, Norwell, USA, 1988.

[3] W.T. Weeks, A.J. Jimenez, G.W. Mahoney, D. Mehta, H.
Qassemzadeh, and T.R. Scott, "Algorithms for ASTAP - A
Network Analysis Program," IEEE Trans. on Circuit Theory, vol.
CT-20, no. 6, pp. 628-634, Nov. 1973.

[4] L.W. Nagel, "SPICE2: a Computer Program to Simulate
Semiconductor Circuits," Memorandum No. ERL-M520,
Univ'ersity ofCalifornia, Berkeley, May 1975.

[5] B.R. Chawla, H.K. Gummel, and P. Kozak, "MOTIS - An MOS
Timing Simulator," IEEE Trans. on Circuits and Systems, vol.
CAS-22, no. 12, pp. 901-910, Dec. 1975.

[6] A.R. Newton, "Techniques for the Simulation of Large-Scale
Integrated Circuits," IEEE Trans. on Circuits and Systems, vol.
CAS-26, no. 9, pp. 741-749, Sept. 1979.

[7] H. de Man, G. Arnout, and P. Reynaert, "Mixed-Mode Circuit
Simulation Techniques and Their Implementation in DIANA," in
Computer Design Aids for VLSI Circuits, ed. H. de Man, pp. 113-
174, Sijthoff & Noordhoff, Groningen, the Netherlands, 1980.

99

100 References

[8] E. Lelarasmee, A.E. Ruehli, and AL. Sangiovanni-Vincentelli,
"The Waveform Relaxation Method for Time-Domain Analysis of
Large Scale Integrated Circuits," IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. CAD-1, no. 3, pp.
131-145, July 1982.

[9] J.K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques
for the Simulation ofVLSI Circuits, Kluwer Academie Publishers,
Norwell, USA, 1987.

[10] W.M.G. van Bokhoven, "Piecewise-Linear Modelling and
Analysis," Ph.D. Thesis, Eindhoven, The Netherlands, May 1981.

[11] Toshio Fujisawa, Ernest S. Kuh, and Tatsuo Ohtsuki, "A Sparse
Matrix Method for Analysis of Piecewise-Linear Resistive
Networks," IEEE Trans. on Circuit Theory, vol. 19, no. 6, pp. 571-
584, Nov. 1972.

[12] J.T.J. van Eijndhoven, "Piecewise Linear Analysis," in Analog
Circuits: Computer Aided Analysis and Diagnosis, ed. T. Ozawa,
pp. 65-92, Marcel Dekker inc., New York, March 1988.

[13] J.T.J. van Eijndhoven, "A Piecewise Linear Simulator for Large
Scale Integrated Circuits," Ph.D. Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands, Dec. 1984.

[14] J.A.G. Jess, "Piecewise Linear Models for Nonlinear Dynamic
Systems," Frequenz, vol. 42, no. 2/3, pp. 71-78.

[15] L.O. Chua and S.M. Kang, "Section-Wise Piecewise-Linear
Functions: Canonical Representation, Properties, and
Applications," Proceedings of the IEEE, vol. 65, no. 6, pp. 915-929,
June 1977.

[16] L.O. Chua and R.L.P. Ying, "Canonical Piecewise-Linear
Analysis," IEEE Trans. on Circuits and Systems, vol. CAS-30, no.
3, pp.125-140, March 1983.

[17] L.O. Chua and A. Deng, "Canonical Piecewise-Linear Analysis:
Part II - Tracing Driving-Point and Transfer Characteristics,"
IEEE Trans. on Circuits and Systems, vol. CAS-32, no. 5, pp. 417-
444, May 1985.

References 101

[18] L.O. Chua and A. Deng, "Canonical Piecewise-Linear Modeling,"
IEEE Trans. on Circuits and Systems, vol. CAS-33, no. 5, pp. 511-
525, May 1986.

[19] L.O. Chua and A. Deng, "Canonical Piecewise-Linear Analysis:
Generalized Breakpoint Hopping Algorithm," Circuit Theory and
Applications, vol. 14, pp. 35-52, 1986.

[20] M.T. van Stiphout, "PLATO Users Guide," Internal
communication, 1989.

[21] B.W. Kernighan and D.M. Richie, The C Programming Language,
Prentice Hall, 1978.

[22] R.W. Scheifler and J. Gettys, "The X Window System," ACM
Transactions on Graphics, vol. 5, no. 2, pp. 79-109, April 1986.

[23] A. Lodder, M.T. van Stiphout, and J.T.J. van Eijndhoven, "The
Eindhoven Schematic Editor," in The Integrated Circuit Design
Book, ed. P. Dewilde, pp. 1.61-1.68, Delft University Press, Delft,
The Netherlands, 1986.

[24] A. Lodder, M.T. van Stiphout, and J.T.J. van Eijndhoven,
"ESCHER: Eindhoven Schematic EditoR - Reference Manual,"
EUT Report 86-E-157, Feb. 1986.

[25] G.L.J.M. Janssen, "Circuit Modelling and Animated Interactive
Simulation in Escher+," in Proceedings SCS European Simulation
Multiconference, Simulation Applied to Manufactoring, Energy
and Environmental Studies and Electronics and Computer
Engineering, ed. S.Tucci, A. Mathis, W. Hahn, R.N. Zobel, pp.
265-270, Rome, Italy, 7-9 June, 1989.

[26] Q.J.A. van Gemert and J.T.J. van Eindhoven, "The NDML
Network Desrcription and Modeling Language - Reference
manual," Internal communication, 1989.

[27] G.L.J.M. Janssen, "Network Description and Modeling Language
- NDML," in The Integrated Circuit Design Book, ed. P. Dewilde,
pp. 4.60-4.108, Delft University Press, Delft, The Netherlands,
1986.

[28] OSF / Motif User's Guide, 1989. Open Software Foundation,
Eleven Cambridge Center, Cambridge MA 02142

102 References

[29] OSF/Motif Programmer's Guide, 1989. Open Software
Foundation, Eleven Cambridge Center, Cambridge MA 02142

[30] J. Sherman and W.J. Morrison, "Adjustment of an Inverse Matrix
Corresponding to Changes in the Elements of a Given Column or
a Given Row of the Original Matrix," Ann. Math. Stat" no. 20, p.
621, 1949.

[31] M. Woodbury, "Inverting Modified Matrices," Memorandum 42,
Statistics Research Group Princeton, New Jersey, 1950.

[32] J.M. Bennett, ''Triangular Factors of Modified Matrices,"
Numerische Mathematik, no. 7, pp. 217-221, 1965.

[33] A.L. Sangiovanni-Vincentelli, "Circuit Simulation," in Computer
Design Aids for VLSI Circuits: NATO Advanced Study Institute
programme, ed. P. Antognetty, D.O. Pederson and H. de Man,
Sijthoff and Noordhoff, 1981.

[34] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, Academie Press, 1970.

[35] I.S. Duff, A.M. Erisman, C.W. Gear, and J.K Reid, "Sparsity
Structure and Gaussian Elimination," ACM Signum newsletter,
no. 2, pp. 2-8, 1988.

[36] R. Tarjan, "Depth-First Search and Linear Graph Algorithms,"
SIAM J. Comput" vol.1, no. 2, pp. 146-160, June 1972.

[37] G. Kron, "A Set of Principles to Interconnect the Solutions of
Physical Systems," J. Appl. Phys" vol. 24, pp. 965-980, 1953.

[38] G. Kron, "A Method of Solving Very Large Physical Systems in
Easy Stages," Proc !RE, vol. 42, pp. 680-686, 1954.

[39] Alberto Sangiovanni-Vincentelli, Li-Kuan Chen, and Leon 0.
Chua, "An Efficient Heuristic Cluster Algorithm for Tearing
Large-Scale Networks," IEEE Trans. on Circuits and Systems, vol.
CAS-24, no. 12, pp. 709-717, December 1977.

[40] Chien-Chih Chen and Yu-Hen Hu, "Parallel LU Factorization for
Circuit Simulation on a MIMD Computer," in Proc. of the ICCD88,
pp. 129-132.

References 103

[41] M. Vlach, "LU Decompostion Algorithms for Parallel and Vector
Computation," in Analog Methods for Computer-Aided Circuit
Analysis and Diagnosis, ed. Takao Ozawa, pp. 37-64, Ch. 2,
Marcel Dekker, Ine" New York and Basel, 1988.

[42] M. Vlach, "LU Decomposition and Forward-Backward
Substitution of Recursive Bordered Block Diagonal Matrices," in
Proc. Int. Symp. on Circuits and Systems, pp. 427-430, Newport
Beach, California, May 1983.

[43] M.T. van Stiphout and J.T.J. van Eijndhoven, "Design of a New
Piecewise Linear Simulator," in Proc. of the European Conference
on Circuit Theory and Design, vol. 1, pp. 107-112, Paris, France,
Sept. 1-4, 1987.

[44] I.S. Duff, "Parallel Implementation of Multifrontal Schemes,"
Parallel Computing, no. 3, pp. 193-204, North-Holland, 1986.

[45] C.E. Lemke, "On Complementary Pivot Theory," in Mathematics
of the Decision Sciences - part 1, ed. AF. Veinott, Jr" Lectures in
Applied Mathematics, vol. 11, pp. 95-114, American Mathematical
Society, Providence, Rhode Island, 1968.

[46] J. Katzenelson, "An Algorithm for Solving Nonlinear Resistor
Networks," Bell Syst. Teek. J" vol. 44, pp. 1605-1620, 1965.

[47] S. Karamardian, ''The Complementarity Problem," Mathematical
Programming, vol. 2, pp.107-129, 1972.

[48] C. van de Panne, "A Complementary Variant of Lemke's Method
for the Linear Complementarity Problem," Mathematical
Programming, vol. 7, pp. 283-310, North-Holland Publishing
Company, 1974.

[49] D.A. Zein, "Solution of a Set of Nonlinear Algebraic Equations for
General Purpose CAD Programs," in Circuit Analysis, Simulation
and Design, ed. A.E. Ruehli, Advances in CAD for VLSI, vol. 3,
part 1, pp. 207-234, North-Holland, 1986.

[50] H.R. Yeager and R.W. Dutton, "Improvement in Norm-Reducing
Newton Methods for Circuit Simulation," IEEE Trans. on
Computer-Aided Design, vol. 8, no. 5, pp. 538-546, May 1989.

104 References

[51] W.T. Weeks, A.J. Jimenez, G.W. Mahoney, H. Qassemzadeh, and
T.R. Scott, "Network Analysis Using a Sparse Tableau with Tree
Selection to Increase Sparseness," in Proc. of the IEEE Int. Symp.
on Circuit Theory, pp. 165-168, Toronto, Canada, April 9-11, 1973.

[52] R.L. Bauer, J. Fang, A. P-C Ng, and R.K. Brayton, ''XPSim: A
MOS VLSI Simulator," in Proceedings of the IEEE International
Conference on Computer-Aided Design (ICCAD-88), pp. 66-69,
IEEE Computer Society Press, Washington, USA, Nov. 7-10,
1988.

[53] 0. Nevanlinna and W. Liniger, "Contractive Methods for Stiff
Differential Equations - Part I," BIT, vol. 18, pp. 457-474, 1978.

[54] H. Shichman, "Integration System of a Nonlinear Network
Analysis Program," IEEE Trans. on Circuit Theory, vol. CT-17, no.
3, pp. 378-386, Aug. 1970.

[55] C.W. Gear, "The Automatic lntegration of Ordinary Differential
Equations," Communications of the ACM, vol. 14, no. 3, pp. 176-
179, March 1971.

[56] R.K. Brayton, F.G. Gustavson, and G.D. Hachtel, "A New Efficient
Algorithm for Solving Differential-Algebraic Systems Using
lmplicit Backward Differentiation Formulas," Proceedings of the
IEEE, vol. 60, no. 1, pp. 98-108, Jan. 1972.

[57] G. Dahlquist, W. Liniger, and 0. Nevanlinna, "Stability of Two
Step Methods for Variable lntegration Steps," SIAM Journal on
Numerical Analysis, vol. 20, no. 5, pp. 1071-1085, Oct.1983.

[58] F. Odeh and W. Liniger, "On A-Stability of Second-Order Two
Step Methods for Uniform and Variable Steps," in Proc. of the
IEEE Int. Conf. on Circuits and Computers (ICCC80), ed. G.
Rabbat, vol. 1, pp. 123-126, Port Chester, New York, Oct. 1-3,
1980.

[59] W. Liniger, F. Odeh, and A. Ruehli, "Integration Methods for the
Solution of Circuit Equations," in Circuit Analysis, Simulation
and Design, ed. A.E. Ruehli, Advances in CAD for VLSI, vol. 2, pp.
235-279 (Ch.5), Elsevier Science Publishers B.V.(North-Holland),
1986.

References 105

[60] K.A. Sakallah and S.W. Director, "SAMSON: An Event Driven
VLSI Circuit Simulator," in Proc. of the IEEE 1984 Custom
Integrated Circuits Conference, pp. 226-231, Rochester, N.Y" May
21-23, 1984.

[61] K.A. Sakallah and S.W. Director, "SAMSON2: An Event Driven
VLSI Circuit Simulator," IEEE Trans. on Computer-Aided Design,
vol. CAD-4, no. 4, pp. 668-684, Oct. 1985.

[62] W.M.G. van Bokhoven, "Linear lmplicit Differentiation Formulas
of Variable Step and Order," IEEE Trans. on Circuits and
Systems, vol. CAS-22, no. 2, pp. 109-115, Feb. 1975.

[63] J.F. Andrus, "Numerical Solution of Systems of Ordinary
Differential Equations Separated into Subsystems," SIAM
Journal on NumericalAnalysis, vol. 16, no. 4, pp. 605-611, 1979.

[64] O.A. Palusinski, "Simulation of Dynamic Systems Using
Partitioning and Multirate Integration Techniques," in Proc. of
the 1983 Summer Computer Simulation Conference, pp. 54-59,
Vancouver, B.C., Canada, 1983.

[65] J.F. Andrus, "Automatic Integration of Systems of Second-Order
ODE's Separated into Subsystems," SIAM Journal on Numerical
Analysis, vol. 20, no. 4, pp. 815-827, 1983.

[66] C.W. Gear, "Automatic Multirate Methods for Ordinary
Differential Equations," in Information Processing 80, pp. 71 7-
722, North-Holland Publishing Company, 1980.

[67] C.W. Gear and D.R. Wells, "Multirate Linear Multistep Methods,"
BIT, vol. 24, pp. 484-502, 1984.

[68] S. Skelboe, "Stability Properties of Linear Multirate Formulas,"
DIKU Report 86/13, 1986. Institute of Datalogy, University of
Copenhagen

[69] S. Skelboe, "Stability Properties of lmplicit Linear Multirate
Formulas," in Proc. of the European Conference on Circuit Theory
and Design, vol. 2, pp. 795-800, Paris, France, Sept. 1-4, 1987.

[70] S. Skelboe, "Stability Properties of Backward Differentiation
Multirate Formulas," Applied Numerical Mathematics, no. 5, pp.
151-160, 1989.

106 References

[71] l.N. Haii and S. Skelboe, "Time-Domain Analysis of Nonlinear
Systems with Finite Number of Continuous Derivatives," IEEE
Trans. on Circuits and Systems, vol. CAS-26, no. 5, pp. 297-303,
May 1979.

[72] J.T.J. van Eijndhoven and M.T. van Stiphout, "Latency
Exploitation in Circuit Simulation by Sparse Matrix Techniques,"
in Proc. of the Int. Symp. on Circuits and Systems, pp. 623-626,
University of Helsinki, Espoo, Finland, June 7-9, 1988.

[73] 0. Tejayadi and l.N. Haij, "Dynamic Partitioning Method for
Piecewise-Linear VLSI Circuit Simulation," International Journal
of Circuit Theory andApplications, vol. 16, pp. 457-472, 1988.

[74] T.A. Last, "Proportional step size tracking analog-to-digital
converter," Reu. Sci. Instrum., vol. 51, no. 3, pp. 369-374, March
1980.

[75] J.J. Hopfield and D.W. Tank, "Neural Computation ofDecisions in
Optimization Problems," Biologica[Cybernetics, vol. 52, pp. 141-
152, 1985.

[76] J.J. Hopfield and D.W. Tank, "Computing with Neural Circuits: A
Model," Science, vol. 233, no. 4764, pp. 625-633, August 81986.

[77] J.B. Shackleford, "Neural Data Structures: Programming with
Neurons," Hewlett-Packard Journal, vol. 40, no. 3, pp. 69-78, June
1989.

STELLINGEN

1. Aan de kwaliteit van de random procedure waarmee voorbeeld 2
in figuur 5 uit onderstaand artikel van Alturaigi en Bickart werd
geconstrueerd dient ernstig te worden getwijfeld.

Reordering a Sparse Matrix to a Sparse Blocked Form, M.A. Alturaigi en T.A.
Bickart, Circuit Theory and Applications, vol 13, pp. 173-194, 1985.

2. Het bewijs van l.S. Duff voor stelling 3.1 uit dit proefschrift is
fout.

Direct methods for sparse matrices, l.S. Duf{, A.M. Erisman and J.K. Reid, p.
272, Oxford, Clarendon Press.

3. In het hieronder vermelde artikel wordt aangetoond dat bij
toepassing van een k-staps bdf integratieformule voor de
numerieke integratie van een functie met q continue afgeleiden,
k ~q, de locale afbreekfout van de orde q+l is. Voor pwl functies
zou dit neerkomen op orde 2. Helaas is voor praktische pwl
netwerken het aantal continue afgeleiden vaak 0 zodat
bovenstaande conclusie geen praktische waarde heeft.

l.N. Hajj en S. Skelboe, Time-domain analysis of nonlinear systems with finite
number of continuous derivatives, IEEE Trans. on Circuits and Systems, Vol.
CAS-26, No. 5, May 1979.

4. Na moeizaam overleg over de definitieve standaard en langdurige
onderhandelingen over de interface naar diverse
programmeertalen (de zogenaamde language bindings) moet toch
worden geconstateerd dat de recente grafische standaard GKS
(The Graphical Kemel System) als ouderwets en absoluut
ontoereikend voor de moderne user interface technologie dient te
worden gekwalificeerd (dit proefschrift).

5. Het X windows systeem voor window management is
onoverzichtelijk, te groot, wem1g orthogonaal, gulzig in
geheugengebruik en cpu tijd. Het is dan ook in hoge mate
onzeker of het zich als de facto windowing standaard voor unix
systemen kan handhaven.

6. Het gebruik van lineaire lijsten in moderne programmeertalen is
bijzonder onelegant en foutgevoelig.

7. Het is zo goed als zeker dat Hofstadters intuïtie hem wat betreft
artificial intelligence voor de tweede maal in de steek zal laten.
Gödel, Escher, Bach: an eternal golden braid, D.R. Hofstadter.

8. De in Nederland bestaande scheiding tussen "gewone" en
technische universiteiten is onnodig en leidt tot een verarming
van de keuzemogelijkheden van de student en een eenzijdige
geestelijke ontwikkeling.

9. Het zogenaamde "broodje gezond" dat in de meeste snackbars
verkrijgbaar is geeft een indicatie omtrent de kwaliteit van het
overige aldaar verkrijgbare voedsel.

10. Geheel ten onrechte treffen wij in de bijlagen van dag- en
weekbladen een overvloed aan literatuur besprekingen naast een
volstrekte verwaarlozing van nieuwe muzikale uitingen en
opnamen.

11. In tijden waarin studenten worden geconfronteerd met
rentedragende leningen getuigt het van een zeker gebrek aan
compassie om maatregelen als die van de 267e faculteitsraad van
de Faculteit der Electrotechniek d.d. 5-6-1989 besluit nr. 267.3
onderdeel 2.e voor te stellen en goed te keuren. (Het besluit
behelst dat in het bedrijf afstuderende studenten alleen een
vergoeding voor extra onkosten mogen krijgen en geen geldelijke
beloning).

