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Abstract—In this paper, we show that both global as well
as local schedulability analysis of synchronization protocols
based on the stack resource policy (SRP) and overrun without
payback for hierarchical scheduling frameworks based on
fixed-priority preemptive scheduling (FPPS) are pessimistic.
We present tighter global and local schedulability analysis,
illustrate the improvements of the new analysis by means of
examples, and show that the improved global analysis is both
uniform and sustainable. We evaluate the new global and local
schedulability analysis based on an extensive simulation study
and compare the results with the existing analysis.

I. INTRODUCTION

Background: Over the years, there has been a growing
attention for hierarchical scheduling of real-time systems due
to its ability to provide temporal isolation between multiple
real-time subsystems executing upon a common processing
platform. The Hierarchical Scheduling Framework (HSF)
provides means for decomposing a complex system into
well-defined parts called subsystems, and a subsystem pro-
vides an introspective interface that specifies the timing
properties of the subsystem precisely. This implies that
subsystems can be independently developed, analyzed and
tested, and later assembled without introducing unwanted
temporal interference.

Supporting global resource sharing between subsystems is
a major challenge, since it increases the complexity of the
analysis of a system considerably. Due to this complexity,
most of the proposed techniques are based on some simpli-
fying assumptions which make the analysis easier, e.g., [1],
[2]. The consequence of these assumptions is that they add
pessimism in the analysis which increases the required CPU
resources of systems. For some systems, the pessimism in
the analysis is not significant and can be ignored, but for
others it may be significant.

As large extents of embedded systems are resource con-
strained, a tight analysis is instrumental in a successful
deployment of HSF techniques in real applications. We
therefore aim at reducing potential pessimism in existing
schedulability analysis for HSFs that support sharing of
global shared resources. Looking further at existing indus-
trial real-time systems, fixed priority preemptive scheduling

The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

(FPPS) is the de facto standard of task scheduling, hence we
focus on an HSF with support for FPPS for tasks within a
subsystem. Having such support will simplify migration to
and integration of existing legacy applications into the HSF,
avoiding a too big technology revolution for engineers.

Our current research efforts are directed towards the
conception and realization of a two-level HSF that is based
on (i) FPPS for both global scheduling of budgets (allocated
to subsystems) and local scheduling of tasks (within a
subsystem), (ii) the periodic resource model [3] for budgets,
and (iii) the Stack Resource Policy (SRP) [4] for both inter-
and intra-subsystem resource sharing. For such an HSF,
two mechanisms have been studied that prevent depletion
of a budget during global resource access, i.e. skipping [1]
and overrun [2]. Note that, budget depletion during global
resource access may cause tasks from other subsystems
missing their deadline. The overrun mechanism comes in
two flavors, i.e. with payback and without payback.

In this paper, we aim at tighter analysis for the overrun
mechanism without payback, assuming the same introspec-
tive interface for subsystems as the existing analysis.

Contributions: We show that existing global and local
schedulability analysis of synchronization protocols based
on SRP and overrun without payback for two-level hierar-
chical scheduling based on FPPS is pessimistic. We present
tighter global and local analysis assuming that the deadline
of a subsystem holds for the sum of its normal budget and its
overrun budget, and illustrate the improvements by means
of examples. We identify the system parameters that have a
great effect on the improvement of the proposed global and
local analysis. In addition we evaluate the improvements that
both global and local new analysis can achieve compared
with the traditional analysis, in terms of CPU resources, by
exploring the system load [2] in a simulation study.

Overview: This paper has the following structure. In
Section II we present related work. A real-time scheduling
model is the topic of Section III. The existing global and
local schedulability analysis is recapitulated in Section IV,
and tighter global and local analysis is presented in Sec-
tions V and VI, respectively. Section VII presents a simula-
tion study evaluating the improvement that both global and
local new analysis can achieve. The paper is concluded in
Section VIII.
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II. RELATED WORK

During the past decade, there has been considerable
interest on hierarchical scheduling of real-time systems [5],
[6], [7], [3]. Deng and Liu [5] proposed a two-level HSF
for open systems, where subsystems may be developed and
validated independently. Kuo and Li [6] and Lipari and
Baruah [7] presented schedulability analysis techniques for
such two-level frameworks with FPPS and Earliest Deadline
First (EDF) global schedulers, respectively. Shin and Lee [3]
proposed the periodic resource model Γ(Π, Θ) to specify
guaranteed periodic CPU allocations, where Π ∈ R

+ is a
period and Θ ∈ R

+ is a periodic allocation time (0 < Θ ≤
Π). Easwaran, and Lee [8] proposed the explicit deadline
periodic (EDP) resource model Ω(Π, Θ, Δ) that extends
the periodic resource model by explicitly distinguishing
a relative deadline Δ ∈ R

+ for the allocation time Θ
(0 < Θ ≤ Δ ≤ Π).

For synchronization protocols in HSFs, two mechanisms
have been studied to prevent depletion of a budget during
global resource access, i.e. skipping and overrun (with
payback and without payback). The idea of skipping in
the context of HSFs, was used by the SIRAP protocol
[1], and its associated analysis supports composability. It
works as follows: when a job tries to access a global shared
resource, it will be granted the access to the resource if the
remaining subsystem budget is enough to lock and release
the global resource before budget depletion. Otherwise, the
access to the shared resource will be delayed until the next
activation period. Overrun with payback was first introduced
in the context of aperiodic servers in [9]. The mechanism
was later (re-) used for a synchronization protocol in the
context of two-level hierarchical scheduling in [10] and
extended with overrun without payback. Overrun mechanism
works as follows: when the budget of a subsystem depletes
and an internal job has not released the lock of a global
shared resource, the subsystem overruns its budget and
the job continues its execution until it releases the locked
resource. This mechanism is called overrun with payback
if the subsystem budget is decreased by the amount of the
overrun in the next activation period followed by an overrun,
otherwise it is called overrun without payback. The analysis
presented in [10] does not support independent subsystems
development, i.e., the parameters of the other subsystems
should be available in order to perform the analysis of each
subsystem. However an analysis supporting composability
was described in [2], [11].

In this paper we present tighter global and local analysis
for overrun without payback and we evaluate, by means
of simulation study, the improvements that the new tighter
analysis can achieve compared with the traditional analysis,
in terms of CPU resources.

III. REAL-TIME SCHEDULING MODEL

We consider a two-level hierarchical FPPS model using
the periodic resource model to specify guaranteed CPU
allocations to tasks of subsystems and using a synchroniza-
tion protocol for mutual exclusive resource access to global
resources based on SRP1 and overrun without payback.

System model: A system Sys contains a set R of
M global logical resources R1, R2, . . ., RM , a set S of
N subsystems S1, S2, . . ., SN , a set B of N budgets
for which we assume a periodic resource model [3], and
a single processor. Each subsystem Ss has a dedicated
budget associated to it. In the remainder of this paper,
we leave budgets implicit, i.e. the timing characteristics of
budgets are taken care of in the description of subsystems.
Subsystems are scheduled by means of FPPS and have fixed,
unique priorities. For notational convenience, we assume that
subsystems are given in order of decreasing priorities, i.e.
S1 has the highest priority and SN has the lowest priority.

Subsystem model: Each subsystem Ss contains a set
Ts of ns periodic tasks τs,1, τs,2, . . ., τs,ns with fixed,
unique priorities, which are scheduled by means of FPPS.
For notational convenience, we assume that tasks are given
in order of decreasing priorities, i.e. τ1 has highest priority
and τns has lowest priority. The set Rs denotes the subset
of Ms global resources accessed by subsystem Ss. The
maximum time that a subsystem Ss executes while accessing
resource Rl ∈ R is denoted by Xsl, where Xsl ∈ R

+ ∪{0}
and Xsl > 0 ⇔ Rl ∈ Rs. The timing characteristics of Ss

are specified by means of a triple < Ps, Qs,Xs >, where
Ps ∈ R

+ denotes its (budget) period, Qs ∈ R
+ its (normal)

budget, and Xs the set of maximum execution access times
of Ss to global resources. The maximum value in Xs (or
zero when Xs is empty) is denoted by Xs.

Task model: The timing characteristics of a task τsi ∈
Ts are specified by means of a quartet < Tsi, Csi, Dsi, Csi >,
where Tsi ∈ R

+ denotes its minimum inter-arrival time,
Csi ∈ R

+ its worst-case computation time, Dsi ∈ R
+ its

(relative) deadline, Csi a set of maximum execution times
of τsi to global resources, where Csi ≤ Dsi ≤ Tsi and
Ps ≤ Tsi [2]. The set Rsi denotes the subset of Rs accessed
by task τsi. The maximum time that a task τsi executes
while accessing resource Rl ∈ R is denoted by csil, where
csil ∈ R

+ ∪ {0}, Csi ≥ csil, and csil > 0 ⇔ Rl ∈ Rsi.
Resource model: The CPU supply refers to the amount

of CPU allocation that a virtual processor can provide.
The supply bound function sbfΩ(t) of the EDP resource
model Ω(Π, Θ, Δ) that computes the minimum possible
CPU supply for every interval length t is given by [3]

sbfΩ(t) =
{

t − (k + 1)(Π − Θ) + (Π − Δ) if t ∈ V (k)

(k − 1)Θ otherwise,
(1)

1The focus of this paper is on synchronization protocols for global logical
resources. We do therefore not consider local logical resources.
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where k = max
(⌈(

t− (Δ−Θ)
)
/Π

⌉
, 1

)
and V (k) denotes

an interval [kΠ + Δ − 2Θ, kΠ + Δ − Θ].
The supply bound function sbfΓ(t) of the periodic re-

source model Γ(Π, Θ) is a special case of (1), i.e. with
Δ = Π.

Synchronization protocol: Overrun without payback
prevents depletion of a budget of a subsystem Ss during
access to a global resource Rl by temporarily increasing the
budget of Ss with Xsl, the maximum time that Ss executes
while accessing Rl. To be able to use SRP in an HSF for
synchronizing global resources, its associated ceiling terms
needs to be extended.

Resource ceiling: With every global resource Rl, two
types of resource ceilings are associated; an external re-
source ceiling RC l for global scheduling and an internal
resource ceiling rcsl for local scheduling. According to SRP,
these ceilings are defined as

RC l = min(N, min{s | Xsl > 0}), (2)

rcsl = min(ns, min{i | csil > 0}). (3)

Note that we use the outermost min in (2) and (3) to define
RC l and rcsl also in those situations where no subsystem
uses Rl and no task of Ts uses Rl, respectively.

System/subsystem ceiling: The system/subsystem ceil-
ings are dynamic parameters that change during the execu-
tion. The system/subsystem ceiling is equal to the lowest
external/internal resource ceiling of a currently locked re-
source in the system/subsystem.

Under SRP, a task τsi can only preempt the currently
executing task τsj (even when accessing a global resource)
if the priority of τsi is greater (i.e. the index i is lower) than
Ss its subsystem ceiling. A similar condition for preemption
holds for subsystems.

Concluding remarks: The maximum time Xsl that Ss

executes while accessing Rl can be reduced by assigning a
value to rcsl that is smaller than the value according to SRP.
For HSRP [10], the internal resource ceiling is therefore set
to the highest priority, i.e. rcHSRP

sl = 1. Decreasing rcsl may
cause a subsystem to become unfeasible for a given budget
[12], however, because the tasks with a priority higher than
the old ceiling and at most equal to the new ceiling may no
longer be feasible.

The results in this paper apply for any internal resource
ceiling rc′sl where rcsl ≥ rc′sl ≥ rcHSRP

sl = 1.2

IV. RECAP OF EXISTING SCHEDULABILITY ANALYSIS

In this section, we briefly recapitulate the global schedula-
bility analysis presented in [10] and the local schedulability
analysis described in [2], [11]. Although the global schedu-
lability analysis presented in [2], [11] looks different, it is
based on the analysis described in [10] and therefore yields
the same result.

2Because rcHSRP
sl = 1 for Rl ∈ Rs, Xsl = maxi csil. Hence, from

csil < Qs we derive Xs < Qs.

For illustration purposes, we will use an example system
SysI containing two subsystems S1 and S2 sharing a global
resource R1. The characteristics of the subsystems are given
in Table I.

subsystem Ps Qs + Xs

S1 5 2
S2 7 Q2 + X2

Table I
SUBSYSTEM CHARACTERISTICS OF SysI .

A. Global analysis

The worst-case response time WRs of subsystem Ss is
given by the smallest x ∈ R

+ satisfying3

x = Bs + (Qs + Xs) +
∑
t<s

⌈
x

Pt

⌉
(Qt + Xt), (4)

where Bs is the maximum blocking time of Ss by lower
priority subsystems, i.e.

Bs = max(0, max{Xtl | t > s∧Xtl > 0∧RC l ≤ s}). (5)

Note that we use the outermost max in (5) to define Bs also
in those situations where the set of values of the innermost
max is empty. To calculate WRs, we can use an iterative
procedure based on recurrence relationships, starting with a
lower bound, e.g. Bs +

∑
t≤s(Qt + Xt). The condition for

global schedulability is given by

∀
1≤s≤N

WRs ≤ Ps. (6)

We observe that the global analysis is similar to basic
analysis for FPPS with resource sharing, where the period
Ps of a subsystem Ss serves as deadline for the sum of the
normal budget Qs and the overrun budget Xs. Hence the
interference of higher priority subsystems St is based on
the sum Qt + Xt. We will therefore use a superscript P to
refer to this basic analysis for subsystems, e.g. WRP

s .
In the sequel, we are not only interested in the worst-case

response time of a subsystem Ss for particular values of
Bs, Qs, and Xs, but in the value as a function of the sum
of these three values. We will therefore use a functional
notation when needed, e.g. WRs(Bs + Qs + Xs).

The global feasibility area of the existing analysis is
illustrated for our example system SysI in Figure 1(a). Note
that the y-axis is excluded, because we assume the capacity
of subsystems to be positive, i.e. Q2 > 0.

3Strictly spoken, [10] uses (4) excluding Xs for WRs. The smallest
positive solution of (4) is required to be at most equal to Ps to prevent
additional interference of the next activation of (the budget of) Ss.
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Figure 1. Global feasibility area assuming (a) FPPS and (b) tighter global
analysis.

B. Local analysis

The existing condition for local schedulability of a sub-
system Ss [2] is given by

∀
1≤i≤ns

∃
0<x≤Dsi

bsi + Csi +
∑
j<i

⌈
x

Tsj

⌉
· Csj ≤ sbfΓs(x),

(7)
where bsi is the maximum blocking time of τsi by lower
priority tasks, i.e.

bsi = max(0, max{csjl | j > i∧ csjl > 0∧ rcsl ≤ i}), (8)

and sbfΓs(x) is the supply bound function of the periodic
resource model Γs(Ps, Qs) for the subsystem Ss under
consideration. Note that we use the outermost max in (8) to
define bsi also in those situations where the set of values of
the innermost max is empty.

The value for Xsl depends on the local scheduler and the
synchronization protocol. The maximum time that subsys-
tem Ss executes while task τsi accesses resource Rl ∈ R is
denoted by Xsil, where Xsil ∈ R

+ ∪ {0} and Xsil > 0 ⇔
csil > 0. For csil > 0, Xsil is given by [2]

Xsil = csil +
∑

j<rcsl

Csj . (9)

The value for Xsl is given by

Xsl = max
1≤i≤ns

Xsil. (10)

V. TIGHTER GLOBAL ANALYSIS

As described in Section IV-A, the existing global schedu-
lability analysis is based on FPPS, where the period Ps

serves as deadline for the sum of the normal budget Qs

and overrun budget Xs.

A. Illustrating the improvement

The improvement of the global analysis is based on two
observations:

1) Limited pre-emption of overrun budget Xs: while Ss

is accessing Rl using Xs, it can only be pre-empted
by subsystems with a priority higher than RC l.

2) Blocking starts before the execution based on the
overrun budget Xs starts: to use its overrun budget
Xs, Ss needs to first lock a global resource.

From the first observation, we conclude that subsystem S1

can not preempt S2 during those intervals of time when
S2 is accessing resource R1 in general, and when S2 is
executing based on its overrun budget X2 in particular.
This limited preempt-ability of subsystem S2 gives rise to
improved schedulability of S2.

From the second observation, we conclude that whenever
S2 uses its overrun budget X2, it must have locked R1

already during the consumption of its normal budget Q2, i.e.
before it starts consuming its overrun budget X2. Hence, the
system ceiling is already set to the priority of S1 before S2

starts consuming X2, preventing S1 to preempt.
The resulting improvements is illustrated in Figure 1(b),

which we briefly explain by means of an example.4 Figure 2
shows a timeline with Q2 = 3.0 and X2 = 1.0, where the
first job ι2,0 of S2 locks R1 just before the activation of
S1 at t = 5. Subsystem S2 is therefore allowed to execute
X2 at t = 5, effectively deferring the execution of S1. This
has a number of consequences. Firstly, S2 does not miss
its deadline at time t = 7, as we would conclude from the
existing analysis. Secondly, the worst-case response time of
of S2 is no longer assumed for ι2,0, activated at t = 0,
but instead for ι2,1 activated at t = 7, because the deferred
execution of S1 gives rise to additional interference for ι2,1.
Rather than having to consider only a single job to determine
schedulability, we therefore have to consider all jobs in a so-
called level-s active period, similar to the analysis for FPDS
[14] and FPPS with preemption thresholds [15]. The level-2
active period starts at time t = 0, when both S1 and S2

become active, ends at time t = 14, when all pending work
of S1 and S2 has been completed, and contains two jobs of
S2. Because both jobs meet their deadline, S2 is schedulable.

0 105 15

S1

S2

time

2.0 3.0 2.0

5.0 6.0 7.06.0

Figure 2. Timeline for Q2 = 3.0 and X2 = 1.0 assuming blocking starts
before overrun.

B. Improving the global analysis

In this section, we first recapitulate the notion of a level-
s active period. Next, we derive analysis for the worst-case
finalization time WFQ

sk of the normal budget Qs of job ιsk

of subsystem Ss relative to start of the constituting level-s
active period. Finally, we derive analysis for the worst-case
response time WRs of Ss.

4The interested reader is referred to [13] for a detailed explanation.
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1) Level-s active period: The worst-case length WLs of
a level-s active period with s ≤ N is given by the smallest
x ∈ R

+ that satisfies

x = Bs +
∑
t≤s

⌈
x

Pt

⌉
(Qt + Xt). (11)

To calculate WLs, we can use an iterative procedure based
on recurrence relationships, starting with a lower bound, e.g.
Bs +

∑
t≤s(Qt + Xt). The maximum number wls of jobs

of Ss in a level-s active period is given by

wls =
⌈
WLs

Ps

⌉
. (12)

2) Worst-case finalization time: For a job ιsk of Ss with
0 ≤ k < wls, we split the interval from the start of the
level-s active period to the finalization of job ιsk in two
sub-intervals: a first sub-interval including the execution of
the normal budget Qs by job ιsk and a second sub-interval
from the finalization of Qs by ιsk till the finalization of ιsk,
i.e. including the execution of the overrun budget Xs.

Let WFQ
sk denote the worst-case finalization time of the

normal budget Qs of job ιsk with 0 ≤ k < wls relative
to the start of the constituting level-s active period. To
determine WFQ

sk, we have to consider up to three suprema.
First, the sequence of jobs ιs0 till ιsk experience a blocking
Bs ≥ 0 by lower priority subsystems in the worst-case
situation. Similar to FPDS [14], the worst-case blocking is a
supremum for Bs > 0 rather than a maximum. Second, the
jobs ιs0 till ιs,k−1 need their overrun budget Xs to access
global resources. Because the access to a global resource
starts during the execution of the normal budget, the actual
amount X of overrun budget used is a supremum rather than
a maximum. Finally, the access to the global resource also
starts “as late as possible” during the execution of job ιsk

in a worst-case situation, to maximize the interference of
higher priority subsystems. This “as late as possible” also
gives rise to a supremum rather than a maximum. The worst-
case finalization time WFQ

sk can therefore be described as

WFQ
sk = lim

Q↑Qs

lim
X↑Xs

lim
B↑Bs

WRP
s (B + k(Qs + X) + Q),

where WRP
s is the worst-case response time of a fictive

subsystem S′
s with a period P ′

s = (k+1)Ts, a normal budget
Q′

s = k(Qs + X) + Q, and a maximum blocking time B.
Using the following equation from [14]

lim
x↑C

WRP
i (x) = WRP

i (C) (13)

we derive

WFQ
sk = WRP

s (Bs + (k + 1)Qs + kXs). (14)

3) Worst-case response time: Let job ιsk of Ss access
Rl ∈ R. When ιsk starts to consume its overrun budget, the
subsystems Ss−1 till SRCl

are already blocked, and only
subsystems with a priority higher than RC l can therefore
still pre-empt Xs. To determine the worst-case response
time WRskl of job ιsk of Ss, we now introduce a fictive
subsystem S′

RCl
, i.e. a subsystem that can only be preempted

by tasks with a higher priority than RC l. The preemptions
during WFQ

sk by subsystems Ss−1 till SRCl
are treated as

additional blocking of S′
RCl

. The worst-case interference
of the subsystems Ss−1 till SRCl

in the interval of length
WFQ

sk is denoted by WI s−1
RCl,k

and given by

WI s−1
RCl,k

=
∑

s−1≥t≥RCl

⌈
WFQ

sk

Pt

⌉
(Qt + Xt). (15)

The worst-case response time WRskl of job ιsk of subsys-
tem Ss when it accesses Rl is now given by

WRskl = lim
X↑Xsl

WRP
RCl

(B′
RCl

+ Q′
s + X)) − kPs

= WRP
RCl

(B′
RCl

+ Q′
s + Xsl)) − kPs, (16)

where WRP
RCl

represents the worst-case response time of a
fictive subsystem S′

RCl
with a (budget) period P ′

RCl
and a

deadline equal to (k + 1)Ps, a normal budget Q′
s equal to

(k + 1)Qs + kXs, an overrun budget X ′
s equal to Xsl, and

a maximum blocking time B′
RCl

given by

B′
RCl

= Bs + WI s−1
RCl,k

. (17)

When a subsystem uses multiple global resources, we have
to be very careful. In particular, when the resource ceiling
RC l of resource Rl ∈ Rs is larger than RC l′ of resource
Rl′ ∈ Rs, i.e. more subsystems can preempt Ss during
its access to Rl than to Rl′ , and the maximum execution
access time Xsl of Ss to Rl is smaller than Xsl′ , the system
may be schedulable for Rl′ but not for Rl. As an example
consider a system containing 2 global resources R1 and R2

and 3 subsystems S1, S2, and S3, where the subsystems
have timing characteristics as given in Table II.

subsystem Ps Qs Xs,1 Xs,2

S1 5 1 0.6 0
S2 5 0.2 0 0.2
S3 7 3 1 0.4

Table II
SUBSYSTEM CHARACTERISTICS OF SysII.

The schedulability of S3 for X3,1 follows immediately
from the similarity of systems SysI and SysII, and the
feasibility area shown in Figure 1(b). Subsystem S3 just
meets its deadline at t = 7 for its overrun budget X3,2 = 0.4
under worst-case conditions, i.e. a simultaneous release of
all three subsystems at time t = 0 and resources accessed by
both S1 and S2 requiring the usage of their overrun budgets
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at every activation; see Figure 3. Note that subsystem S3 will
miss its deadline at time t = 7 for an infinitesimal increase
ε > 0 of X3,2. The worst-case response time for job ιsk is

0 5

S2

S3

time

2.0 2.4

5.0

S1

1.6

7.0

Figure 3. Subsystem S3 just meets it deadline at t = 7 for X3,2 = 0.4.

therefore the maximum for all global resources accessed by
Ss, i.e.

WRsk = max
l

WRskl. (18)

Finally, the worst-case response time WRs of subsystem Ss

is given by 5

WRs = max
0≤k<wls

WRsk. (19)

C. Concluding remarks

In this section, we briefly discuss three aspects of the
global analysis, i.e. the global analysis is (i) uniform and
(ii) sustainable and (iii) will never give worse results than
the original analysis. We conclude this section with a remark
on the complexity of the analysis.

The analysis for FPDS [14] is not uniform for all tasks,
i.e. the analysis for the lowest priority task differs from the
analysis of the other tasks. This anomaly is caused by the
fact that the lowest priority task cannot be blocked, i.e. its
blocking time is zero, and the blocking time of all other tasks
is a supremum rather than a maximum. Unlike the analysis
for FPDS [14], the global analysis presented in this section
is uniform. This is an immediate consequence of the fact
that blocking of a global resource Rl by a subsystem Ss is
already done during the execution of the normal budget, i.e.
before the execution based on the overrun budget starts. As
a result, subsystems Ss−1 till SRCl

cannot preempt Ss at
the finalization time of Qs.

As described in [16], a schedulability test is sustain-
able if any task system deemed schedulable by the test
remains so if it behaves ‘better’ than mandated by its system
specifications, i.e. sustainability requires that schedulability
be preserved in situations in which it should be ‘easier’
to ensure schedulability. Given our scheduling model, we
use the following definition for sustainability of our tighter
global schedulability test.

Definition 1: A schedulability test for our real-time
scheduling model for subsystems is sustainable if any sys-
tem deemed schedulable by the schedulability test remains

5The interested reader is referred to [13], which explains the improve-
ment in detail by means of a variety of timelines.

schedulable when the parameters of one or more individual
job[s] are changed in any, some, or all of the following ways:
(i) decreased normal budgets; (ii) decreased overrun budgets,
(iii) later arrival times; and (iv) larger relative deadlines.

With this definition, sustainability of our global schedula-
bility test immediately follows from (6), i.e. WRs ≤ Ps =
Ds and the fact that

• the maximum number wls of jobs of subsystem Ss in
a level-s active period, and

• the worst-case finalization time WFQ
sk in (14), the

worst-case interference WI s−1
RCl,k

in (15), and the worst-
case response time WRskl in (16)

are strictly non-increasing for decreasing normal budgets,
decreasing overrun budgets, and increasing budget periods
of subsystems.

We will prove that the tighter global analysis will never
give worse results than the original analysis i.e., it will give
better results or in the worst case the same results as the
original analysis. Looking at (12), if wls > 1, then the
system will be unschedulable using the original analysis
because the first job will miss its deadline according to
the original analysis. While using the modified analysis, the
same systems can be schedulable. If wls = 1 then k = 0 and
Xs will not have any effect in (14) since k = 0. For modified
analysis, only the subsystems with a higher priority than the
resource ceiling of the resource being locked are able to
preempt. Taking this into account can reduce the amount
of interference considered due to higher priority subsystems
in general and for k = 0 in particular. Which in turn can
improve the results in terms of response time, schedulability
and the CPU-resource requirement.

Finally, comparing the new global analysis (11-19) with
the existing analysis (4) it is clear that the new analysis is
more complex. For static systems, for which the set S of
subsystems does not change during runtime, this additional
complexity will not be very important since the analysis will
be performed during the integration phase of the system, i.e.
off-line. For dynamic systems, for which subsystems can
be added or removed during runtime, the new analysis can
be used when the original analysis fails to find a feasible
solution.

VI. TIGHTER LOCAL ANALYSIS

Both the existing global schedulability analysis and the
new global schedulability analysis assume a deadline for
a subsystem Ss equal to its period Ps for the sum of the
normal budget Qs and the overrun budget Xs. The existing
local schedulability analysis for the tasks of Ss is exclusively
based on Qs, however. Hence, when a system is feasible
from a global scheduling perspective, the latest finalization
time of Qs is guaranteed to be at least Xs before the next
activation of Ss. Hence, we can use the supply bound func-
tion sbfΩ(t) of the EDP resource model Ωs(Ps, Qs, Δs) for
overrun without payback rather than sbfΓs(t) of Γs(Ps, Qs)
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in (7), where Δs = Ps − Xs. Because Xs ≥ 0 for all
subsystems (by definition), sbfΓs(t) ≤ sbfΩs(t) for all
subsystems. As a result, a subsystem may be schedulable
according to the local analysis based on sbfΩs(t), but not
be schedulable based on sbfΓs(t).

Figure 4 shows an example of the supply bound functions
sbfΩ(t) and sbfΓ(t) for subsystem S2 of system SysI with
Q2 = 1.8 and X2 = 2.4.

0 105
time

P2−Q2 P2−Q2

P2−Q2− X2 Q2

Q2

Q2

X2

Legend:

sbfΩ(t)

sbfΓ(t)

P2

Figure 4. Supply bound functions sbfΩ(t) and sbfΓ(t) for S2 with
Q2 = 1.8 and X2 = 2.4.

VII. EVALUATION

In this section, we evaluate the modified overrun without
payback analysis (MONP), including both local and global
new tighter analysis, with respect to CPU resource. We
compare MONP with the traditional overrun without pay-
back mechanism (ONP) using the notion of system load [2],
as system load provides an indication of the system CPU
requirement in the presence of shared resources. The com-
parison is carried out by means of simulation experiments.
To show the performance of MONP relative to alternative
approaches.

We start this section by briefly explaining the notion of
system load and how it should be adapted for MONP.

System load: System load is defined as a quantitative
measure to represent the minimum amount of CPU alloca-
tions necessary to guarantee the global schedulability of the
system S.

For ONP, system load loadsys is calculated as follows:

loadsys = max
∀Ss∈S

{αs} (20)

where

αs = min
0<x≤Ps

{RBFs(x)
x

| RBFs(x) ≤ x} (21)

and

RBFs(x) = Bs + (Qs + Xs) +
∑
t<s

⌈
x

Pt

⌉
(Qt + Xt). (22)

Note that x can be selected within a finite set of scheduling
points [17], and that αs is the smallest fraction of the CPU
resource required to schedule a subsystem Ss (satisfying
the schedulability condition presented in Section IV-A),
assuming that the global resource supply function is αsx.

One can think of system load as decreasing the speed
of the processor by the factor loadsys, which will increase

the subsystems’ normal budgets, the overrun budgets, and
blocking times by a factor 1/loadsys.

For MONP, evaluating system load is more complex than
e.g., for ONP, because it has more than one response time
equation for global schedulability analysis (see Section V),
unlike the case for ONP which has only one equation. To
perform the schedulability analysis for MONP, firstly, the
value of wls should be evaluated in order to evaluate the
range of k that is used by the other equations. However, we
can not evaluate the value of wls in (12) without having the
value of system load known. Without having the range of k,
we can not use the equations (14) - (19) that are required
in the calculation of system load. We solve this problem
by using a binary search algorithm, such that the system
load is selected by the search algorithm and corresponding
system schedulability is checked. To do this we mutiply
all subsystems normal budgets, maximum overrun budgets,
and blocking times in equations (12) - (19) by a factor
1/loadsys. If the system is schedulable, then the algorithm
will select a lower system load and try again. If the system
is unschedulable, then the algorithm will select a higher
system load. The algorithm terminates if the selected system
load loadsys > 1 and the system is unschedulable, or when
the difference between the previous and the current system
load is less than a given acceptance limit. Since we have
used a binary search algorithm for MONP, the complexity
of evaluating the system load is higher compared with ONP.
However, note that we use the system load for comparison
purposes only, hence it does not have any relationship with
the complexity of the schedulability analysis.

The efficiency of MONP is measured by the amount of
system load required for schedulability, relative to ONP.

Both the new tighter local and global analysis in MONP
can decrease the system load. For the tighter local analysis,
it has the potential to decrease the subsystem normal budget
for certain subsystems, which in turn, can decrease the
system load, since it decreases the effect of the interference
from higher priority subsystems and the required normal
budget of the subsystem itself, in equations (12) - (19).
However, there is no guarantee that the improved local
analysis can decrease the subsystem’s normal budget. Note
that sbfΓs(x) < sbfΩs(x) for APs − 2Qs − Xs < x <
APs −Qs where A ∈ N|A ≥ 2, and sbfΓs(x) = sbfΩs(x)
otherwise. So looking at (7), the new local analysis depends
on where the value of x (that makes the left hand side of
the equation, which represent the resource demand, equal
to the right hand side, which is the supply bound function)
is located in the above mentioned ranges. If that value of
x is in the range that makes sbfΓs(x) < sbfΩs(x) then
it will decrease the subsystem normal budget, otherwise, it
will not. The amount of improvement when using the new
tighter local analysis compared with the original analysis,
on the system load, depends on many factors such as the
size of Xs, the subsystem period and the difference between
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the subsystem period and tasks’ deadlines. The higher the
value of Xs, the more improvement can be achieved. Also,
if the difference between the subsystem’s period and its
tasks’ deadlines is low, then the improvement in system load
becomes higher. If the difference between the subsystem
period and its tasks’ deadlines is high, then the x that makes
the left and right hand side of (7) equal becomes very far
from the subsystem period. In this case a small increment
in the subsystem’s normal budget will be enough to cover
the difference between sbfΓs(x) and sbfΩs(x), which also
affects the improvement in the system load.

Now we will explain the impact of the new tighter global
analysis on the system load, and we will use Figure 5 for
illustration. When the Xs/loadsys part in Figure 5 is as
large as possible, the new global analysis contributes with a
larger improvement. The reason for this is that during this
part there will be no (or limited) preemptions from higher
priority subsystems. Hence, the difference between this part
and the other part (I +Qs)/loadsys should be low to achieve
a greater improvement, where I is the interference from
higher priority subsystems (including the sum of Qt +Xt of
the higher priority subsystems) and also the blocking from
lower priority subsystems. We can distinguish some cases
in which the new global analysis can not reduce the system
load. First, if the subsystem period of all subsystems are
equal, then there will be no preemptions from higher priority
subsystems during the overrun time. Since the tighter global
analysis is based on removing the interference from higher
priority subsystems during the overrun from the global
analysis, the new tighter global analysis can not decrease
the system load. Another case where the new global analysis
can not decrease the system load, is when the subsystem
that requires maximum CPU resources (i.e., the system
load was computed based on its CPU requirement), is the
highest priority subsystem or does not access a global shared
resource.

Finally, combining both the local improvement and the
global improvement can require lower system load. As
mentioned previously, the new tighter local analysis has
a potential to decrease the subsystem budget which will
decrease the interference from higher priority subsystems
and the budget of the subsystem itself (I + Qs).

P
s

Xs /loadsys

(I+Qs)/loadsys

Figure 5. Considering MONP analysis for Ss.

A. Simulation setting

The simulation is performed by applying the modified
overrun without payback analysis (MONP), including the

new tighter local and global analysis, on 1000 different
randomly generated systems. Initially, we assumed that
each system consists of 5 subsystems and each subsystem
contains 4 tasks. A task is assumed to access at most one
globally shared resource and 2 tasks in each subsystem
access globally shared resources and we assume that there
is only one global shared resource.

For simplicity, we assume that the internal resource ceil-
ings of the globally shared resources are equal to the highest
task priority in each subsystem (i.e., rcsl = 1), and Ti = Di

for all tasks. For each simulation study the following settings
are changed and a new 1000 systems is generated:

1) Critical section execution time CSs. It specifies the
maximum absolute time that a task may access a
global shared resource. Changing this parameter does
not require to generate new 1000 system, since chang-
ing only this parameter will not have effect on the
other task parameters as we will show later.

2) Subsystem period Ps and task period Tsi. The
subsystem/task period is specified as a range with
a lower and upper bound. The simulation program
generates a subsystem/task period randomly within
the specified range, following a uniform distribution.

3) Number of subsystems N .
4) System utilization US . The sum of the utilization of

all tasks in the system, is specified to a desired value.

The given system utilization is divided randomly among the
subsystems. The assigned utilization to each subsystem is
in turn divided randomly to the tasks that belong to that
subsystem. Since the task period is generated to a value
within the interval as specified, the execution time is derived
from the desired task utilization. The critical section execu-
tion time is given as an input parameter, however, its value
can not be greater than the execution time of its task. The
critical section is therefore set to the minimum value of the
task execution time and the given critical section execution
time, i.e., csil = min(CSs, Csi). All randomized system
parameters are generated following uniform distributions.

B. Simulation results

We have performed 4 different simulation studies and
selected some range of values in order to highlight some
properties of the new analysis as described below;

• Study 1 is specified having critical section execution
time CSs ∈ {2, 4, 6, 8}, task periods Tsi ∈ [140, 1000],
subsystem periods Ps ∈ [40, 70], US = 20% and N =
5.

• Study 2 increase the range of the subsystem periods
Ps and task periods Tsi (compared to Study 1) to
A.) Ps ∈ [50, 200] and Tsi ∈ [400, 1000],
B.) Ps ∈ [100, 200] and Tsi ∈ [400, 1000].

• Study 3 change the number of subsystems (compared
to Study 1) to N ∈ {4, 6, 8}.
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• Study 4 change the system utilization (compared to
Study 1) to US ∈ {10%, 30%} with CSs = 2.

CSs 2 4 6 8

Q1 loadsys ONP 0.505 0.664 0.763 0.836
Median loadsys ONP 0.532 0.717 0.849 0.940

Q3 loadsys ONP 0.560 0.771 0.929 > 1
schedulable ONP 100% 100% 89.1% 67%

Q1 loadsys MONP 0.475 0.613 0.702 0.760
Median loadsys MONP 0.495 0.655 0.770 0.845

Q3 loadsys MONP 0.516 0.696 0.837 0.940
schedulable MONP 100% 100% 98.3% 84.7%

MONP/ONP med. improv. 7.4% 9.4% 10.2% 11.1%
MONP/ONP max. improv. 13.2% 19.6% 25.7% 30.0%

Table III
RESULTS OF STUDY 1

Table III shows results of Study 1. The results of each
method (ONP and MONP) are shown using the median,
lower quartile (Q1) and the higher quartile (Q3) of the
system load values of the 1000 generated systems. It also
shows the percentage of schedulable systems out of the
1000 generated systems. In addition, it shows the percentage
of improvement in the system load based on the evaluated
median (explained above) and the maximum improvement
when using MONP compared with ONP. It is calculated as
100∗ (loadONP

sys − loadMONP
sys )/loadMONP

sys , where loadONP
sys is

the median or maximum system load, depending on what is
required to be evaluated.

For the case of CSs = 8, some of the systems are
unschedulable (i.e., having loadsys > 1) using both ONP
and MONP, because the systems that have loadsys > 100%.
It is not important to find the actual system load for
unschedulable systems.

Looking at the results in Table III, it is clear that MONP
can give better results compared to traditional ONP in terms
of a lower system load and more schedulable systems when
increasing CSs (same results are shown in Tables IV and
V). In this study, the ratio CSs/Ps is relatively high and this
is the reason why MONP performs significantly better than
ONP. This is the main characteristics that we are looking
for.

In Study 2, we decrease the ratio CSs/Ps by increasing
the range of subsystem period. In Table IV, the subsys-
tem period is selected as Ps = [50, 200]. In this case,
the improvement that MONP can achieve is less than in
Study 1 because Xs/loadsys becomes less significant within
the subsystem period Ps. In Table V, we change the range
of subsystem period to Ps = [100, 200].This causes MONP
to give better results compared to the results in Table IV.
The reason for this improvement is that when the difference
between the minimum and maximum subsystem period is
decreased, then also the maximum number of interferences
(preemptions) from higher priority subsystems is decreased.
This will decrease the contribution of the higher priority

subsystems in equations (12) - (19) which in turn decreases
the required subsystem load when using MONP.

Looking at the MONP/ONP med. improv. line in Table IV
and Table V, the rate of the improvement when increasing
CSs from 2 to 4 is lower when increasing CSs from 4
to 6 and when increasing CSs from 6 to 8 (for example
in Table IV, the difference between 4.9% − 3.1% is higher
than 5.6% − 4.9% ). The reason for this is that increasing
CSs of tasks will increase the required subsystems normal
budgets for their subsystems (see (7)) which, in turn, will
increase the interference from higher priority subsystems in
(12) - (19) and that limits the improvement that MONP can
achieve.

CSs 2 4 6 8
Q1 loadsys ONP 0.444 0.538 0.607 0.659

Median loadsys ONP 0.462 0.562 0.644 0.704
Q3 loadsys ONP 0.481 0.589 0.683 0.755
schedulable ONP 100% 100% 100% 99.8%

Q1 loadsys MONP 0.430 0.512 0.573 0.620
Median loadsys MONP 0.448 0.536 0.609 0.661

Q3 loadsys MONP 0.467 0.563 0.643 0.708
schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 3.1% 4.9% 5.6% 6.2%
MONP/ONP max. improv. 8.1% 12.3% 16.2% 16.8%

Table IV
RESULTS OF STUDY 2A, Ps ∈ [50, 200]

CSs 2 4 6 8
Q1 loadsys ONP 0.446 0.522 0.579 0.623

Median loadsys ONP 0.468 0.548 0.611 0.662
Q3 loadsys ONP 0.488 0.572 0.643 0.699
schedulable ONP 100% 100% 100% 100%

Q1 loadsys MONP 0.432 0.497 0.545 0.583
Median loadsys MONP 0.454 0.518 0.573 0.616

Q3 loadsys MONP 0.473 0.543 0.604 0.651
schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 3, 1% 5.8% 6, 6% 7.5%
MONP/ONP max. improv. 6.4% 11.9% 16.5% 17.2%

Table V
RESULTS OF STUDY 2B, Ps ∈ [100, 200]

In Study 3, we investigate the effect of changing the
number of subsystems. The results are shown in Table VI.
We can see that increasing N will decrease the improvement
that MONP can achieve over ONP. The reason for this is
that increasing the number of subsystems will increase the
interference I of the higher priority subsystems which, in
turn, will decrease the improvement as explained in the
previous section.

Finally, in Study 4 we investigate the effect of changing
the system utilization on the performance of MONP. The
results in Table VII show that increasing the value of US

will decrease the improvement that MONP can achieve
over ONP. The reason for this is that increasing the value
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N 4 5 6 8

Q1 loadsys ONP 0.459 0.505 0.560 0.674
Median loadsys ONP 0.483 0.531 0.590 0.708

Q3 loadsys ONP 0.506 0.560 0.617 0.743
schedulable ONP 100% 100% 100% 100%

Q1 loadsys MONP 0.430 0.475 0.526 0.637
Median loadsys MONP 0.448 0.495 0.549 0.669

Q3 loadsys MONP 0.467 0.516 0.575 0.702
schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 7.8% 7.4% 7.3% 5.9%

Table VI
RESULTS OF STUDY 3 FOR CSs = 2

of US will increase the subsystem normal budget for all
subsystems which increases the contribution of the higher
priority subsystems in (12) - (19) and will limit the potential
improvement of MONP as explained previously.

US 10% 20% 30%

Q1 loadsys ONP 0.348 0.505 0.661
Median loadsys ONP 0.376 0.531 0.690

Q3 loadsys ONP 0.402 0.560 0.718
schedulable ONP 100% 100% 100%

Q1 loadsys MONP 0.323 0.475 0.625
Median loadsys MONP 0.344 0.495 0.649

Q3 loadsys MONP 0.368 0.516 0.674
schedulable MONP 100% 100% 100%

MONP/ONP med. improv. 9.3% 7.4% 6.2%

Table VII
RESULTS OF STUDY 4 FOR CSs = 2

VIII. CONCLUSION

In this paper we have shown that existing global and
local schedulability analysis of synchronization protocols
based on SRP and overrun without payback for two-level
hierarchical scheduling based on FPPS is pessimistic. We
presented a new tighter global and local analysis assuming
that the deadline of a subsystem holds for the sum of
its normal budget and its overrun budget, and shown that
the global analysis is both uniform and sustainable. We
have illustrated the improvements by means of examples,
and have evaluated the improvement through an extensive
simulation study. The evaluation results show that our novel
analysis can improve the CPU requirement significantly for
certain cases especially when the ratio between Xs/Ps is
high, which makes the performance of the existing analysis
low.
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