
 

Efficient dense blur map estimation for automatic 2D-to-3D
conversion
Citation for published version (APA):
Vosters, L. P. J., & Haan, de, G. (2012). Efficient dense blur map estimation for automatic 2D-to-3D conversion.
In Proceedings of Stereoscopic Displays and Applications XXIII, 21-25 March 2012, Burlingame, California (pp.
82882H-1/14). (Proceedings of SPIE; Vol. 8288). SPIE. https://doi.org/10.1117/12.907840

DOI:
10.1117/12.907840

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1117/12.907840
https://doi.org/10.1117/12.907840
https://research.tue.nl/en/publications/ef725a2a-2c09-4a4d-b0a9-e8edcc3bed63


Efficient Dense Blur Map Estimation for Automatic 2D-to-3D

Conversion

L.P.J. Vostersa,b and G. de Haana

aEindhoven University of Technology, Den Dolech 2, Eindhoven, the Netherlands
bAxon Digital Design, Lange Wagenstraat 55, Gilze, the Netherlands

ABSTRACT

Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus
can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach
to propagate focus to non-edge image portions, for single image focus editing. While their approach produces
accurate dense blur maps, the computational complexity and memory requirements for solving the resulting
sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within
the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast,
efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid
or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for
false shading edges that cause incorrect blur estimates in people’s faces. In general shading leads to incorrect
focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to
faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set
of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as
optimization based approaches, and that facial blur compensation results in a significant improvement.

Keywords: 2D-to-3D conversion, focus/defocus, sparse-to-dense, propagation, depth map, optimization

1. INTRODUCTION

Following the successful introduction of color 4 decades ago (CTV), and high definition (HDTV) in the last
decade, many researchers are currently exploring opportunities for 3-dimensional television (3DTV). As was
the case for the earlier revolutions, rapid introduction of 3DTV is hindered by the chicken-and-egg problem
of the industry [1]; lacking content prevents customers from buying sets, while absence of receivers prevents
broadcasters from investment. In this paper, we look at the common solution [1] to break this chicken-and-egg
problem, i.e. real-time 2D-to-3D conversion.

The main challenge in 2D-to-3D conversion lies in estimating depth in a monoscopic video. In state-of-the-art
2D-to-3D conversion both motion based and pictorial cue based methods can be distinguished. In motion based
algorithms camera and object motion are used to estimate depth. Pictorial-cue based methods use depth cues,
like focal-blur, perspective, texture-density, occlusion, etc. An excellent overview on state-of-the-art 2D-to-3D
conversion techniques can be found in [2].

In photography and cinematography and live broadcast many images and image sequences are recorded with
a low depth-of-field (DOF) camera. A low DOF draws the viewer’s attention in the image to objects which
appear sharp, while distracting cluttered backgrounds appear blurred. Since the amount of camera out-of-focus
blur is directly related to the distance of an object to the camera, it is an important depth cue in monoscopic
low depth-of-field video and images.

Since out-of-focus blur can only be reliably estimated on edges, most methods estimate focus on edges and
propagate the blur by solving a quadratic optimization problem [3, 4, 5], which corresponds to solving a sparse
system of linear equations. The idea for blur propagation originated from Levin et al. [6] who posed the
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colorization of a gray scale image as a similar optimization problem. In their method scribbles, i.e. sparse color
indicators, are propagated to non-scribbled image areas based on the luminance channel.

Numerical optimization techniques for solving a large sparse systems of linear equations include geometric
multigrid (GMG) [7, 8], algebraic multigrid (AMG) [8, 9] and (multilevel) preconditioning [10]. While these
techniques have O(N) complexity they remain computationally expensive. GMG requires several pre and post
smoothing iterations of a relaxation method (i.e. Jacobi, Gauss-Seidel or Conjugate Gradient) on each grid.
Preconditioning techniques require calculating an approximation to the inverse of the coefficient matrix, to speed
up the convergence of an iterated relaxation method, prior to relaxation. For fast convergence the preconditioner
(approximate inverse) should be as close as possible to the true inverse of the coefficient matrix. However,
calculating a more accurate inverse comes with increased computational cost. Furthermore the application
of the preconditioner, which might not be sparse, in each relaxation iteration significantly contributes to the
computational cost. Due to their high computational complexity, optimization based solvers often solve the
sparse system on a low resolution grid followed by (joint) upsampling.

To mitigate the need for complex multigrid or (multilevel preconditioning) we propose in this paper an
efficient recursive low cost, line scanning based focus propagation method, which estimates the dense blur map
on a low resolution grid, followed by joint bilateral upsampling (JBU). In contrast with traditional upsampling
methods like bilinear, bicubic and Lanczos interpolation, JBU uses the available high resolution input image to
output a high quality dense blur map that features sharp edges. Furthermore, we show that JBU suppresses
inaccurate blur estimates in the low resolution sparse blur map, from appearing in the high resolution dense blur
map. Additionally we show how JBU can be implemented into the real-time O(1) bilateral filtering framework
of Yang et al. [11].

The quality of the propagated blur map strongly depends on the accuracy of the estimated edge blur. However,
state-of-the-art (sparse) blur estimators cannot distinguish between camera out-of-focus blur on the one hand
and motion, shading or penumbral blur on the other [12], since they do not accurately model intrinsic scene
geometry and illumination which underlie the blur formation process in an image. Hence, when the blur in a
foreground object is caused by one of the latter cases, the dense blur map will contain areas in which the blur and
thus the depth estimate is too high. Shading and penumbral blur particularly occur in people’s faces (Fig. 1),
and can cause a person’s body to appear closer than the face, cause significant depth changes between hair
and face, or cause the eyes, mouth and face contours to have a different depth value. In addition inconsistent
facial blur leads to inconsistent depth which causes annoying facial deformations in the rendered stereoscopic
image pair. Since the visual attention of people mostly tends towards faces this leads to unnatural 3D effect and
significantly degraded image quality, in the rendered 3D image pair. To solve this problem, we propose a facial
blur compensation scheme. This scheme applies face detection and skin tone detection to remove erroneous blur
estimates from the facial region in the sparse blur map. Our subjective evaluation in Section 4 shows this facial
blur compensation solves the most distracting errors.

In the remainder of the paper we briefly introduce blur estimation and blur propagation by optimization in
Section 2. Section 3 introduces the proposed blur propagation, efficient O(1) JBU, and facial blur compensation
method. Finally, in Section 4 we present the results of a subjective evaluation by paired comparison in which
we compare the proposed blur propagation method with an optimization based propagation method, and we
demonstrate the effectiveness of the facial blur compensation.

2. OPTIMIZATION BASED DENSE BLUR MAP ESTIMATION

2.1 Blur Estimation

The amount of defocus is related to the distance of an imaged point to the camera by

Dcam = Fv0/(v0 − F − uf), (1)

where Dcam is the distance of an imaged point to the camera, F is the focal length of the camera, v0 the distance
between the lens and the image plane, f the f-number of the lens system and u the blur induced by the point
spread function [13]. The out-of-focus image can be modeled as a convolution between the in focus image and a
Gaussian point spread function. Moreover, by estimating blur, the relative depth in the scene can be obtained.



Most parametric blur estimators assume a step edge model consisting of a contrast, edge offset and edge
center parameter. Edge blur is modeled by convolving the edge with a Gaussian filter of standard deviation u.
Therefore, parametric blur estimators can only retrieve blur on edges.

The multipoint method in [14, 15] first detects edges with a Canny edge detector [16], that convolves the
image with the first derivative of a Gaussian function. Then for each edge point the response is sampled on
3 equidistant points in the direction of the edge gradient, and the blur parameter is calculated in closed form.
Mislocalization of edges can lead to inaccurate blur estimates. The multipoint method neither relies on the
maximum of a ratio at an edge position [17, 18], nor on the location of the extrema of the second derivative [12],
which estimation is affected by noise. Instead, the blur is calculated in closed form from three equidistant sample
points, resulting in more accurate blur estimates, also for edges at off grid positions. The multipoint method
has low computational complexity compared to [12, 17], because only two separable derivative of Gaussian filter
kernels with small kernel sizes∗ need to be applied to the image. Therefore we select the multipoint method as
blur estimator.

2.2 Optimization based blur propagation to non-edge image portions

From the previous section it is clear that blur can only be reliably estimated on edges. Therefore, blur estimation
should be followed by a blur propagation step, to propagate the estimated blur into the interior of objects.
Inspired by the colorization paper of Levin et al. [6] blur propagation is posed as the following optimization
problem [3, 4]:

min
~u

J(~u) = min
~u

∑

i,j∈I

wij(ui − uj)
2 + 2λ

∑

i

(ui − uc
i )

2bi, (2)

where ui is the blur to be estimated at pixel i, ~u is a vector containing the lexicographical ordering of ui, u
c
i the

estimated blur at pixel i, bi a binary indicator that is 0 when no blur is estimated at pixel i and 1 otherwise, I
the set of all pixels in the image, wij the weight between pixel i and j, and λ a constant. The first term on the
right hand side of Eq.2 enforces that neighboring pixels with similar color have similar blur. The second term
is a soft constraint that enforces ui to have a blur close to uc

i depending on the value of λ. This optimization
problem is solved by setting the gradient of Eq.2 with respect to ~u, to ~0. This results in solving the following
sparse system of linear equations

B = diag(b1, ..., bN ),
(D −W + λB)~u = λB ~uC ,

D = diag(
∑

j∈Ω1
w1j , ...,

∑

j∈ΩN
wNj),

W = {wij}, ∀(i, j) ∈ I,

B = diag(b1, ..., bN ),

(3)

where uC is a vector containing uc
i , Ωi is the 2D square neighborhood centered around pixel i and N is the

number of pixels in the image. Additionally, the weighting function can be calculated by [3, 4]

wij = exp(−
||~Ii − ~Ij ||

2
2

2σ2
r

)/
∑

j∈Ωi

exp(−
||~Ii − ~Ij ||

2
2

2σ2
r

), (4)

where, ~Ii is a vector containing the rgb color components at pixel i. The weights in Eq.4 correspond exactly to
the weights of the edge preserving bilateral filter in [19]. Another edge preserving weighting function is

wij =
1

|Ωi|2

∑

k:(i,j)∈Ωi

(1 + (~Ii − ~µk)
T (Σk + εU3)

−1(~Ii − ~µk)), (5)

where µk and Σk correspond to the mean and variance in the neighborhood of k, U3 is the 3 by 3 identity matrix,
ε is a smoothing parameter similar to σr in Eq. 4. Applying this weighting function corresponds to substituting

∗The filter kernel is approximated by truncating the Gaussian kernel at 3 times it standard deviation. The length of
a typical filter kernel in the multipoint method ranges from 7 to 13 pixels, for a derivative of Gaussian function with a
standard deviation of 1.0 to 2.0 pixels respectively.



the matrix D − W in Eq. 3 by the matting Laplacian matrix L of [20], which assumes a local linear model
between blur and input image. For blur propagation this approach has been used in [18]. Direct calculation
of the matting Laplacian’s weights is computationally expensive. Instead efficient linear time algorithms exist,
which efficiently calculate the matrix vector product Lu† with box filters [23] when solving the sparse system
L~u = λ ~uC . In addition Lu can be regarded as the output of the guided filter applied to ~u [24].

Two efficient classes of iterative techniques exist for solving large sparse systems of linear equations like Eq. 3.
The first are multigrid techniques, which recursively alternate between solving the sparse system on low and high
resolution grids, to reduce the low frequency and high frequency error in the solution respectively [7, 10]. An
example of a popular geometric multigrid (GMG) approach to solve optimization problems arising in computer
vision problems is [7, 8]. An algebraic multigrid (AMG) approach, in which the interpolation and restriction
functions are adapted to local structure of the sparse coefficient matrix, can be found in [8, 9]. The second class
of techniques use (multilevel) preconditioning on the sparse coefficient matrix, to effectively reduce its condition
number. The preconditioner accelerates the convergence of a relaxation method like Jacobi, Gauss-Seidel (GS)
or CG descent, by making the descent direction more independent and better scaled [10].

The difference between GMG and AMG lies in the definition of the grids and the interpolation and restriction
operators. In geometric multigrid the unknown variables of ~u are defined at known spatial locations. Restriction
and interpolation operators are comparable to image upscaling and downscaling with fixed weights that are
constant among grids, respectively. However in AMG the weights for interpolation and restriction adapt to the
local structure of the matrix A and vary among grids. AMG computes the coarse grid as a subset of ~u, by
coarsening in the direction of geometrically smooth error [8, 9]. Thus the computational complexity and memory
storage capacity are predictable for GMG. This is not the case for AMG, since the number of grid points in
the coarse grid is not known in advance, and depends on the problem under consideration. This unpredictable
nature of AMG is undesirable for real-time systems.

Instead of solving the original linear equation A~v = ~f multilevel preconditioning techniques solve P−1(A~v −
~f) = 0, which has the same solution as long as P is nonsingular. If P−1A has a smaller condition number than A,
the preconditioned system will converge faster in an iterative solver. Since P−1 has to be applied to a vector at
each iteration, P−1 should be sparse. However, for fast convergence P−1 should be close to the inverse of A, which
might not be sparse. These are two conflicting demands. Computing the preconditioner can be computationally
expensive [21]. Also the addition of an extra matrix vector product in each iteration, significantly contributes to
the computational complexity. A multilevel preconditioner that achieves rapid convergence on the colorization
problem (1 to 2 iterations of CG), is given in [10]. However, the computation of the preconditioner requires
slightly longer than 1 iteration of CG in the solver. In addition an iteration in this preconditioned CG is twice
as slow as one in basic CG.

For multigrid the coefficient matrix A (i.e. 9 weights per pixel for an 8-connected neighborhood) and vector
f need to be stored into memory. In addition to A for multilevel preconditioning also the preconditioner P needs
to be stored. Furthermore these techniques have a latency that is larger than one frame, since the (multigrid)
relaxation iterations can start only when the last pixel of the image is fetched. This last pixel is required for the
solution on the coarsest grid in multigrid, and for calculating the preconditioner in (multilevel) preconditioning.

GMG has constant O(1) runtime. Multilevel preconditioners have near constant runtime since they converge
within very few iterations [10]. However, calculating the preconditioner, or alternating between resolution grids
requires considerable computational effort. Furthermore these techniques require at least one frame latency
as setup time to compute the coarse grids (e.g. multigrid) or the preconditioner (e.g. preconditioned CG).
They also require a significant amount of memory since the coefficient matrix A and f need to be stored in
memory and be accessible at all times during processing. In addition the number of grids or preconditioning
levels are often determined heuristically and are problem dependent. Consequently, multigrid and multilevel
solvers are particularly attractive for user interactive applications like colorization [6, 25] or semi-automatic
depth assignment [26] where they are solved at low resolution.

Multigrid and multilevel preconditioning solvers require very few iterations to converge. However, calculating

†In most of the iterative techniques used (e.g. conjugate gradient (CG) [21, 22]), these matrix vector products are the
main computational bottleneck for solving large sparse systems of linear equations.



Figure 1. Dense blur estimates for low-depth-of-field images obtained by sweeper and CG on a single image. Input image
(1st column), sweeper (2nd column), CG 300 iterations (3th column). The color bar encodes blur ranging from 0 to 5.

the preconditioner, or alternating between resolution grids requires an infeasible amount of computational effort
and memory for real-time video processing. Furthermore the number of grids or preconditioning levels are
often determined heuristically and are problem dependent. In the next section we present an efficient low cost,
low latency, low memory, line scanning based focus propagation approach, that achieves equal visual quality
compared to propagation by optimization. In contrast to multigrid or preconditioning techniques, it requires
only a single iteration of Gauss-Seidel on the finest grid, and a very small amount of memory since it operates
on only 3 scan lines at the same time. In addition no coarse grid selection, coarse grid correction, restriction,
interpolation, post relaxation or preconditioning is required.

3. PROPOSED BLUR PROPAGATION

In this section we present the proposed blur propagation method and its efficient implementation. In addition
we introduce facial blur compensation to remove shading and penumbral blur from people’s faces. We obtain
the sparse blur map by detecting edges and consequently calculating the amount of blur for each edge point with
the method of van Beek [14].

3.1 Sweeper

Sweeper is inspired by GS relaxation [21]. For the sparse linear system in Eq. 3, the GS forward relaxation can
be formulated as [21]

uk+1
i =

1
∑

j∈Ωi,j 6=i

wij + λbi



−
∑

j∈Ωi,j<i

wiju
(k+1)
j −

∑

j∈Ωi,j>i

wiju
(k)
j + λuc

i



 , (6)

which updates blur values in the order of i = 1, ..., N . Here k denotes the iteration number and i and j denote
pixel position. Similarly the backward GS relaxation is given by

uk+1
i =

1
∑

j∈Ωi,j 6=i

wij + λbi



−
∑

j∈Ωi,j<i

wiju
(k)
j −

∑

j∈Ωi,j>i

wiju
(k+1)
j + λuc

i



 (7)

which updates the blur values in the order of i = N, ..., 1. In symmetric Gauss-Seidel these recursions are
alternately applied. Note that when the weights are chosen as in Eq. 4 and λ = 0, we obtain a spatially recursive
bilateral filter. Note that λ determines the tradeoff between smoothing and the boundary condition.

The advantage of using the above relaxation method is that it can be implemented as a local filter on a scan
line. Furthermore a single picture memory suffices, since the old blur values are overwritten by the updated ones.
This makes Gauss-Seidel relaxation particularly well-suited to process videos from live cameras in an FPGA.
Multigrid or multilevel relaxation methods have to delay processing until the whole frame is retrieved and loaded
into memory.

Unfortunately GS, like any other relaxation method, converges slowly. This is because each iteration strongly
smooths high frequency components in the error while it reduces low frequency components only slightly in



amplitude [7]. This problem is typically solved by applying multigrid or multilevel preconditioning techniques,
however these techniques are not well suited for live video (See Section 2). We solve this problem by adapting
Eq. 6 as follows

uk+1
i =

1
∑

j∈Ωi,j 6=i

wijbj + λbi



−
∑

j∈Ωi,j<i

wiju
(k+1)
j bj −

∑

j∈Ωi,j>i

wiju
(k)
j bj + λuc

i



 , (8)

We selected the weights according to Eq. 4. Then only pixels for which a blur value has been estimated or has
already been calculated previously, are averaged with bilateral weights. Due to its recursive update strategy,
which is closely related to 3D recursive search motion estimation techniques [27], the filter aggressively fills in
homogeneous and textured regions while edges are preserved (see Fig. 1). In order not to favor blur estimates on
either the left or right side of the image, we apply meander scanning similar to what was proposed by de Haan
et al. [27], in which the even lines are processed from left to right, and the odd lines in opposite direction.

3.2 Efficient implementation of Sweeper

To reduce computational complexity we apply sparse blur propagation on a low resolution grid that is downscaled
by Dfac = 8. To get a smoothed high resolution dense blur map in which edges are well aligned with object
borders we apply JBU [28]. Since JBU already takes care of smoothing the propagated sparse feature map, we
can choose a small window size (s = 3) for the propagation filter in Eq. 8.

We obtain a low resolution sparse blur map, by performing edge detection and blur estimation on the high
resolution input image. Then we downscale the sparse blur map by Dfac = 8 in 3 step with a box filter that only
averages the sparse blur values. Performing edge detection and blur estimation on the low resolution grid requires
proper downscaling of the input image with a strong prefilter. Such filters are computationally expensive, and in
addition they can cause ringing artifacts on edges which leads to inaccurate blur estimates. Furthermore, since
the prefilter is not a brick wall filter, additional non-Gaussian blur is introduced on edges.

We propose an efficient low cost technique for JBU, that is based on a fast O(1) bilateral filtering framework.
Recently developed, fast approximations of the (joint) bilateral filter include [11, 29, 30, 31, 32]. All these methods
have O(1) runtime (except [29] which runtime is O(log(2R + 1))), meaning that the number of computations
per output pixel is constant and independent of the kernel radius. Yang et al. [11] approximate the bilateral
filter with a set of filtered image components, from which the output is linearly interpolated. We choose this
approximation because it has a lower computational complexity than the other approximations, and it is suitable
for parallel implementation. Furthermore Yang et al.’s approximation is more accurate than the approximation
of Porikli et al. [30] and Paris et al. [29], since it only quantizes the range function, while [30] also quantizes
the range function and image intensities, and in addition [29] also reduces the spatial resolution of the input
image. Although the approximation with trigonometric range kernels of Chaudhury et al. [32], is very accurate,
computational complexity significantly increases for narrow Gaussian range kernels (i.e. σt < 50). Igarashi et
al.’s O(1) approach [31], features low memory usage. However, when it is applied to JBU, it becomes O(2R+1)
and thus computationally very demanding. To reduce the computational complexity of JBU, Riemens et al.
upsample a low resolution depth map by a factor 8 in 3 intermediate steps. In each step the result of the
previous step is upsampled by a factor 2 with a JBU filter which kernel size decreases after each step.

JBU can be mathematically expressed as

ũH(x, y) =

R
∑

i↓,j↓=−R

fS

(

~0, [i↓, j↓]
T
)

fR

(

~IH(x, y), ~I(x↓ + i↓, y↓ + j↓)
)

ũ(x↓ + i↓, y↓ + j↓)

R
∑

i↓,j↓=−R

fS

(

~0, [i↓, j↓]
T
)

fR

(

~IH(x, y), ~I(x↓ + i↓, y↓ + j↓)
)

, (9)

where, ũH and ũ denote the upsampled and low resolution dense blur map respectively, R is the kernel radius
for joint upsampling, ~IH(x, y) and ~I(x, y) denote pixels of the high and low resolution input guidance images



respectively, x, y, i and j denote integer high resolution pixel coordinates, x↓, y↓, i↓ and j↓ denote their
corresponding low resolution, possibly fractional counterparts, and fR and fS denote the range and domain
filter kernel’s respectively. ~IH(x, y) and ~I(x, y) are a vector for color and scalar for luminance images and

fR(~a,~b) = fS(~a,~b) = exp(−||~a−~b||22 · (2σ
2
JBUf)

−1). Because we cannot index ũ with fractional coordinates, we
round them to the nearest integer pixel value. This filter samples from a high and a low resolution grid at the
same time. In contrast with Kopf et al., who sparsely sample the high resolution guidance image in the range
kernel fR(·) without proper prefiltering, we, like in multistep joint bilateral upsampling (MJBU) of Riemens et

al. [33], use a prefiltered downscaled guidance image ~I(x, y) in the range kernel fR(·) (Eq. 9), to avoid alias in
the upsampled result. Note that the guidance image is already available because it is also used in spatial sparse
feature propagation (Eq. 8).

We obtain the low resolution input guidance image, by downscaling the input image by Dfac = 8 in 3 steps.
Similar to Riemens et al. [33], we first apply the filter kernel [1 3 3 1] on the rows and downsample the rows
with a factor of 2. Then we filter the columns with the same filter and downsample them with a factor of 2.
This procedure is repeated 3 times for each color channel.

We now show how Eq. 9 can be approximated by the fast bilateral filtering framework of Yang et al. [11].

Assuming a single channel luminance input image I for ~I, we can express Eq. 9 by

ũH(x, y) =







(Lk+1 − IH(x, y))P k(x↓, y↓) + (IH(x, y)− Lk)P
k+1(x↓, y↓),

if (IH(x, y) > Lk) ∧ (IH(x, y) < Lk+1)
(10)

Lk = Imax−Imin

L−1 k, k ∈ {0, 1, ...,K − 1}, (11)

where, Imax = 255 and Imin = 0 are the maximum and minimum intensity values for 8 bits pixel depth.
Furthermore P k(x, y) is the kth out of K principle bilateral filtered image components (PBFIC), which can be
computed by

P k(x, y) =





R
∑

i=−R

R
∑

j=−R

fR

(

k, I(t)(x+ i, y + j)
)

u(t)(x+ i, y + j)









R
∑

i=−R

R
∑

j=−R

fR

(

k, I(t)(x+ i, y + j)
)





−1

.

(12)
Here we selected a box filter kernel for fS(·). However, instead of a spatial box filter kernel, we can also
approximate the the Gaussian spatial filter kernel of Eq. 9 in constant time, by filtering the PBFIC’s with an
infinite impulse response (IIR) approximation of the Gaussian filter similar to what Yang et al. [11] did.

Experimental results in [11] demonstrate that with only K = 8 PBFIC’s, an accurate approximation of
the bilateral filter is obtained. Practically for joint upsampling this corresponds to filtering the numerator and
denominator of Eq.12 with a box filter for k ∈ 0, 1..K − 1. Such box filter can be calculated efficiently in constant
time, with just 4 additions per pixel [34]. Instead of a 3 channel (e.g. RGB) vector we use only the luminance
channel in the range filter kernel in JBU. This is justified by the fact that most natural scenes do not contain
very saturated colors. The use of a 3 channel color vector in Yang et al.’s approximation is prohibitive, because
the number of PBFIC’s will explode when more channels are added. E.g. a 3 channel color image with K = 8
PBFIC’s per channel requires 8 ·8 ·8 = 512 PBFIC’s. We argue that this is a reasonable assumption since natural
video often does not contain much (saturated) color. On the webpage [35], we provide a qualitative comparison
between defocus sequences upsampled by Riemens et al. and the proposed JBU. This comparison shows that
the proposed JBU unlike MJBU exhibits no edge serrations, while blur in objects is slightly less uniform.

Increasing the kernel size in Eq. 8, leads to smoother dense blur maps, because more noisy sparse estimates
are averaged. Unfortunately, the computational cost of Sweeper increases quadratically with the window size.
Instead of increasing the neighborhood Ω in Eq. 4, Bae et al. [3] and Zhang et al. [4] refine inaccurate sparse
blur estimates, with a joint bilateral filter which has a kernel size of more than 10% of the image width. This
filter significantly improves the dense blur estimates (Fig. 2), and like JBU it can also be implemented in the
bilateral filtering framework of Yang et al. However JBU, which is applied directly after Sweeper, will in addition
to upsampling also strongly suppress noisy sparse blur estimates. Hence the additional bilateral filter applied by
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Figure 2. Input image (column a), propagation result on half the original resolution without post processing of the sparse
blur map (column b), propagation result on the original resolution where the sparse blur map was post-processed with
a joint bilateral filter as in [3, 4, 18] (column c), propagation result on a low resolution followed by JBU without any
post-processing on the sparse blur map (column d). For all images the blur was propagated with CG. The color bar
encodes blur ranging from 0 to 5.

Bae et al. and Zhang et al. is redundant. Moreover the JBU filter allows a small neighborhood Ω for both CG
and Sweeper, hence we select an 8-connected neighborhood, i.e. square 3x3 kernel, in our implementation. Fig. 2
shows that this approach gives equal results with significantly lower computational cost, since blur propagation
and PBFIC calculation are restricted to the low resolution grid.

3.3 Face compensation

The underlying blur formation process in an image is very complex. This process is not taken into account in
state-of-the-art blur estimators, that model camera-out-of-focus blur, as the convolution of a step edge with a
Gaussian blur kernel [12], [17], [5], [18], [14]. This approximation only holds for edges in a constant depth plane.
However, the blur formation process at depth contrast defining contours, and edges in an object’s interior surface
depend on scene and object geometry, illumination and motion. Consequently motion, shading and penumbral‡

blur are not accounted for and can cause (false) edges with a blur value that is too high. Liu et al. [36] propose
a blur classification method that can distinguish camera-out-of-focus blur from motion blur, however, in general
state-of-the-art blur estimators cannot distinguish among camera-out-of-focus, shading, penumbral and motion
blur.

In low-depth-of-field photo or video material, shading, penumbral and motion blur can cause false edges in
people’s faces that lead to blur discontinuities within the face and between the face, hair and body of a person
in the propagated sparse blur map. Consequently when the estimated (8 bit) blur value is directly used as (8
bit) depth value, shading, penumbral and motion blur cause a person’s body to appear closer than the face,
cause significant depth changes between hair and face, or cause the eyes, mouth and face contours to have a
different blur value. In addition inconsistent facial blur leads to inconsistent depth that causes unnatural facial
deformations in the rendered stereoscopic image pair (Fig. 3). Since the visual attention of people mostly tends
towards faces this leads to an unnatural 3D effects, eyestrain and a significantly degraded 3D image quality. To
solve this problem, we propose a facial blur compensation scheme. This scheme applies face detection and skin
tone detection to remove erroneous blur estimates from the facial region in the sparse blur map.

First we detect faces in a low resolution input image§ with the Viola Jones face detector [37]. While this
detector accurately detects faces, its detection window does not enclose all skin pixels and thus not all false
edges of the facial region (Fig. 4). To detect all skin pixels in a facial region we build a skin tone color model.
Therefore, we convert the RGB input image into the HSV colorspace and compute a 1D, 30 bin, histogram of
the hue, sampled only from pixels in the detection windows designated as facial region. Hue is used because it is
more insensitive to changes in lighting than RGB [38]. Then by calculating the backprojection of the histogram
onto the Hue of each pixel, we obtain a skin probability image. This skin probability image is then used by
CAMSHIFT [38] to further refine the size and location of the detection window of each face. We use the location

‡penumbras are caused by shadows of light sources with non-zero radius
§The input image has already been downscaled with Dfac in the blur propagation step. For face detection we use this

downscaled input image.



Figure 3. Result of facial blur compensation on stereoscopic images. (Left) no facial blur compensation. (Right) proposed
facial blur compensation. See Fig. 5 for the blur maps of these test images. We recommend to view this figure in the
paper’s electronic version.

and size of each detection window containing a face, as initial search window location and size in CAMSHIFT
[38] respectively. For each face CAMSHIFT outputs the local skin distribution’s length, width, centroid and
rotation angle, which define an ellipse, that tightly encloses (most part of) that face (Fig. 4). Finally for each

ellipse Ej we discard all sparse blur estimates uc
i , which have a value higher than U

Ej

T , where

U
Ej

T = SEj (b
∣

∣SEj
∣

∣ · T c),
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i |∀i ∈ Ej}) ,
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where i indexes all sparse blur estimates uc
i in ellipse Ej , j indexes all ellipses in the image, u denotes the value

of the sparse blur estimate, the function sort(·) sorts all elements in the set {uc
i |∀i ∈ Ej}, in ascending order by

blur value, | · | returns the number of elements in a set, and T ∈ [0, 1] is a constant. If for example T = 0.3 than
Eq. 13 removes all sparse blur estimates that are higher than the 30% lowest sparse blur estimates. Hence Eq. 13
removes most sparse blur estimates that are caused by shading and penumbral blur within each ellipse (Fig. 4).

Face detection is cheap through the use of integral images and the cascade classifier [37]. The calculation of
the 30-bin Hue histogram and its backprojection to the rest of the image in CAMSHIFT are low cost operations.
In addition the first and second moment calculation in meanshift’s iterations is independent of the window size
when using integral images. Furthermore, like blur propagation, face detection and CAMSHIFT are applied to
the input image that is downscaled by Dfac. As a result the proposed facial compensation approach features
very low additional computational complexity, and can be performed even on a modern CPU in the order of a
few milliseconds.

3.4 Performance

A prototype of Sweeper was implemented in unoptimized C++ code on a CPU. We took a GPU implementation
of Jacobi preconditioned CG from [39], and ran the CG solver on the GPU. Both Sweeper and CG were run on
a laptop with an Nvidia Quadro NVS 160M and an Intel Core 2 Duo 2.80GHz. We used only a single core of
the CPU. We obtain frame rates of 1.3 frames per second (fps) for Sweeper and 0.2 fps for CG on a progressive
1920x800 image sequence.

4. RESULTS

In this section we qualitatively compare Sweeper with optimization based blur propagation and the proposed
facial blur compensation on a set of 10 low depth-of-field test images, that were extracted from the movies
”Inception” (1920x800) and ”The ruins”(1280x544) and from the TV-series ”Breaking Bad” (1280x720).



(a) (b) (c) (d) (e)
Figure 4. Facial blur compensation. (column a) Low resolution input image. (column b) downscaled sparse blur map.
(column c) Propagation result for column b. (column d) downscaled sparse blur map with facial compensation, (column
e) propagation result for column d. The dense blur map is obtained from Sweeper (Section 3.1). The bounding box from
face detection and the ellipse from CAMSHIFT are shown in white and cyan respectively. The color bar encodes blur
ranging from 0 to 5. We recommend to view the blur maps electronically.

We did not have the implementation of a multigrid solver at our disposal, instead we apply jacobi precon-
ditioned CG [23], until the 2-norm of the residue λB ~uC − (D − W + λB)~u of Eq. 3, is below a pre-defined
threshold of 10−6. We refer to this approach by CG. Convergence of CG typically occurs within 300 iterations.
This approach should give similar results as multilevel preconditioning, due to the large number of iterations,
and possibly better results than the geometric multigrid approach of [7], because we do not downscale ~uC , which
can lead to inaccuracies in fine details [23].

We estimate blur in the range u ∈ [0, 5]. For both CG and Sweeper we set Dfac = 8, σC = 2.0, Thu = 2 and
Thl = 2 (the scale of the derivative of Gaussian filter, and the hysteresis thresholds on the gradient magnitude
in the Canny edge detector respectively). The sparse blur map is calculated at the original image resolution.
For JBU and joint propagation we use a box and Gaussian kernel for fS(·) and fR(·) in Eq. 9 respectively. Also
we select RJBU = 8, σJBU = 18 and L = 8, which are the window radius, standard deviation of the Gaussian
in fR(·) and the number of PBFIC’s respectively. Furthermore we set σr = 30 in Sweeper and CG. The window
radius for both Sweeper and CG is set to 3x3. For CG we set λ = 0.5. Finally for facial blur compensation we
set T = 0.35.

Similar to Zhang et al. [40], we apply a 2D asymmetric Gaussian smoothing filter on the depth maps prior
to rendering the stereoscopic 3D images with depth image based rendering (DIBR). This filter reduce the size of
disocclusion areas, removes geometric distortion, and prevents that video quality is influenced by DIBR-artefacts
in the subjective assessment of Section 4.3. We adopt a mild filter setting with a horizontal and vertical scale of
σh = 4 and σv = 4, respectively. In addition we only allow zero and positive parallax.
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Figure 5. Comparison of propagation methods. From left to right: Input image, downscaled sparse blur map with face
compensation, blur propagated by CG, and blur propagated by Sweeper. The bounding box from face detection and the
ellipse from CAMSHIFT are shown in white and cyan respectively. The color bar encodes blur ranging from 0 to 5.

4.1 Face Compensation

Fig. 4 column b shows that false edges in people’s faces, that are caused by shading or penumbras, constitute
a significant problem for blur propagation. In the propagated blur of Fig. 4 column c, it can be clearly seen
that the face is assigned a significantly higher blur than the hair and body. However, with the proposed facial
compensation (Section 3.3) most false edges and their corresponding blur estimates are removed from the sparse
blur map, resulting in a correct more uniform blur estimate in the facial region (Fig. 4 column e). Fig. 3 shows
this leads to a more comfortable and natural 3D effect.

4.2 Qualitative comparison

Fig. 5 shows a qualitative comparison of CG and Sweeper with facial blur compensation, and CG without facial
blur compensation. The figure shows that the proposed approach features sharper edges at object boundaries



Figure 6. (Left) Perceptual scores per image in the paired comparison. CG denotes CG without face compensation, CG
(face) and Sweeper (face) denote CG and Sweeper with face compensation, respectively. This figure shows that for all test
images, face compensation improves the 3D image quality. In addition the difference in performance between Sweeper
and CG is statistically insignificant, except for inception1 and breaking6 for which Sweeper achieves a higher perceptual
score. (Right) Overall perceptual scores of the paired comparison. Overall face compensation significantly improves 3D
image quality. Furthermore the overall difference in performance between Sweeper and CG is statistically insignificant.

compared to CG, while the interior of objects is slightly less homogenous. When an object is surrounded by a
uniform image area for which no sparse blur estimates are available, the object blur is propagated into this area
for both CG and Sweeper (Fig. 5 image breaking3 ). This also commonly happens in recursive search motion
estimators which operate on the same principle as Sweeper. This will not cause any problems for the viewers
depth perception, since an erroneous disparity in a uniform region can be hardly noticed.

4.3 Paired comparison

We compare the performance of CG, CG with facial blur compensation, and Sweeper with facial blur compen-
sation in a paired comparison [41] on the 10 low-depth-of-field test images of Fig. 5. Seventeen participants
(no experts in video quality assessment), were requested to rank 30 paired comparisons. For each comparison
participants were asked: which image provides a more comfortable and natural 3D experience? In each session
the images of a pair were presented sequentially in full screen on a stereoscopic display. The participants could
alternate between images of a pair by pressing ’Ctrl’ on the keyboard. Each image had to be viewed at least
once before voting. To avoid any bias in the perceptual scores, participants could select ’equal’ when they did
not prefer one image over the other. Each time ’equal’ was encountered in the data analysis for e.g. pair AB
or BA, we select A and B alternately in the construction of the frequency matrix. In this way any bias from
random voting is avoided. The paired comparison experiment was carried out on a 50inch Panasonic VT20 3D
plasma television with active shutter glasses, in a room with low illumination.

Fig. 6 shows the results of the paired comparison per image, and for all sequences together, respectively.
Since these results should be evaluated on the differences in perceptual score, we set the perceptual score for CG
to 0. The 95% confidence intervals were calculated by the empirical formula of [41]. Both figures show that face
compensation leads to a significant improvement in the overall perceptual score, and the perceptual score for each
test image independently. Furthermore Sweeper and CG have equal performance. Face compensation reduces
the 3D effect in faces, however, it also removes strong and unnatural facial depth discontinuities. Therefore, facial
deformations, facial depth conflicts, and 3D image blur due to DIBR, are avoided. Hence, a sharper more natural
and comfortable 3D image is obtained, and eyestrain is reduced. To prevent tedious and time consuming ranking
of images, we did not include Sweeper without face compensation in the paired comparison. Nevertheless, we
observed that Sweeper and CG both with face compensation perform significantly better than Sweeper without
face compensation. In addition, we did not observe any significant differences between Sweeper and CG both
without face compensation.

We made no effort to distinguish between near out-of-focus objects and objects behind the focus plane.



This would require higher level semantic analysis of the image, and we consider that to be outside the scope
of this paper. However, in our experiments we perceived objects, standing in front of the plane of focus with
high blur, closer than objects standing on or behind the plane of focus. We reckon this is caused by the HVS,
which automatically places objects at the correct depth, which it perceives from other monocular image depth
cues. Huynh-Thu et al. [42] made a similar observation for other depth ambiguities. The dense defocus map
merely indicates depth contrasts among objects. Hence sharp image parts have small disparity and are effectively
placed on the screen while blurred image parts are placed behind the screen. This is favorable for reducing the
accommodation vergence conflict, since the limits of binocular fusion for high disparity values become less strict
with decreased spatial frequency [42].

5. CONCLUSION

In this paper we proposed an efficient, low latency, line scanning based propagation method for estimating dense
defocus maps for 2D-to-3D conversion, that is computationally less complex and requires less memory than
optimization based approaches. The proposed method, Sweeper, is composed of two efficient bilateral filters,
namely a spatially recursive, and joint upsampling filter. Furthermore we have demonstrated that incorrect
and inconsistent depth estimates in faces leads to deformations, visual discomfort and significantly degraded 3D
image quality, and that the proposed face compensation solves this problem.

The subjective evaluation in Section 4 shows that for low-depth-of-field images the proposed approach achieves
equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant
improvement in 3D image quality.

Like defocus various other important 3D depth cues such as, motion, occlusion and disparity, can only be
estimated reliably at distinct sparse image locations like edges and corners. Therefore, for future work we plan
to extend the proposed approach to the more general sparse-to-dense conversion of 3D depth cues for automatic
2D-to-3D conversion of video.
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