EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

By no means : a study on aggregating software metrics

Citation for published version (APA):

Vasilescu, B. N., Serebrenik, A., & Brand, van den, M. G. J. (2011). By no means : a study on aggregating
software metrics. In Proceedings of the 2nd International Workshop on Emerging Trends in Software Metrics
(WETSoM'11, Honolulu HI, USA, May 24, 2011) (pp. 23-26). Association for Computing Machinery, Inc.
https://doi.org/10.1145/1985374.1985381

DOI:
10.1145/1985374.1985381

Document status and date:
Published: 01/01/2011

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://doi.org/10.1145/1985374.1985381
https://doi.org/10.1145/1985374.1985381
https://research.tue.nl/en/publications/944581c3-9563-463f-bc85-7b13af81b496

By No Means: A Study on Aggregating Software Metrics

Bogdan Vasilescu
Technische Universiteit
Eindhoven
Den Dolech 2, PO. Box 513,
5600 MB Eindhoven
The Netherlands

ABSTRACT

Fault prediction models usually employ software metrics which

were previously shown to be a strong predictor for defects,
e.g., SLOC. However, metrics are usually defined on a micro-
level (method, class, package), and should therefore be ag-
gregated in order to provide insights in the evolution at the
macro-level (system). In addition to traditional aggrega-
tion techniques such as the mean, median, or sum, recently
econometric aggregation techniques, such as the Gini, Theil,
and Hoover indices have been proposed. In this paper we
wish to understand whether the aggregation technique in-
fluences the presence and strength of the relation between
SLOC and defects. Our results indicate that correlation is
not strong, and is influenced by the aggregation technique.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—corrections; D.2.8 [Software Engineer-
ing]: Metrics—complezity measures

General Terms

Measurement, Economics, Experimentation

Keywords

Software metrics, maintainability, aggregation techniques

1. INTRODUCTION

Software maintenance is an area of software engineering
with deep financial implications. Indeed, it was reported
that up to 90% of the software budgets represent mainte-
nance and evolution costs [10, 3]. Thus, in order to control
software maintenance costs, it is desirable, e.g., to predict
faulty components early in the development phase.

Fault prediction models usually employ software metrics
which were previously shown to be a strong predictor for de-
fects [9, 4, 21, 22, 20, 12]. Such a metric is size, measured in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WETSoM’ 11, May 24, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0593-8/11/05 ...$10.00

Alexander Serebrenik
Technische Universiteit
Eindhoven
Den Dolech 2, PO. Box 513,
5600 MB Eindhoven

. The Netherlands
b.n.vasilescu@student.tue.nl a.serebrenik@tue.nl

23

Mark van den Brand
Technische Universiteit
Eindhoven
Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven
The Netherlands
m.g.j.v.d.brand@tue.nl

(source) lines of code, (S)LOC. Size (SLOC) not only corre-
sponds to the intuitive belief that large systems have more
faults in them than small systems, but was shown to act
as an early indicator of problems better than, e.g., object-
oriented metrics such as the Chidamber and Kemerer suite
or the Lorenz and Kidd suite [9].

However, software metrics are commonly defined at micro-
level (method, class, package), and should therefore be ag-
gregated at macro-level (system), in order to provide insights
in the study of maintainability and evolution.

Popular aggregation techniques include such standard sum-
mary statistical measures as mean, median, or sum [19].
Their main advantage is universality (metrics-independence):
whatever metrics are considered, the measures should be
calculated in the same way. However, as the distribution of
many interesting software metrics is skewed [29], the inter-
pretation of such measures becomes unreliable.

Alternatively, distribution fitting [6, 26, 29] consists of se-
lecting a known family of distributions (e.g., log-normal or
exponential) and fitting its parameters to approximate the
metric values observed. The fitted parameters can be then
considered as aggregating these values. However, the fitting
process should be repeated whenever a new metric is be-
ing considered. Moreover, it is still a matter of controversy
whether, e.g., software size is distributed log-normally [6] or
double Pareto [14].

Recently, there is an emerging trend in using more ad-
vanced aggregation techniques, that are both reliable, as well
as general. Examples of such approaches are the Gini coeffi-
cient [11], the Theil indez [28], and the Hoover index [15], all
well-known in econometrics for their applicability to study-
ing income inequality [7], and recently applied to software
metrics [27, 30, 13, 31].

In this preliminary study, based on the assumption that
size is a good predictor for defects, hence size and defects
should be statistically related, we wish to understand whether
the aggregation technique influences the presence and strength
of this relation. Briefly, our results indicate that correlation
between SLOC and defects is not strong, and is influenced
by the aggregation technique.

2. METHODOLOGY

We apply correlation analysis to SLOC data of Java classes
aggregated at package level using different aggregation tech-
niques, and defects (bug count per package). As a by-
product of our evaluation, we also study the correlation be-
tween the different aggregation techniques themselves. The
choice for aggregating data from class to package level rather

Table 1: Summary of the analyzed systems

ArgoUML | Adempiere | Mogwai
Version 0.13.4 3.5.1a 2.6.0
#Java classes 1230 4047 2310
#Packages 94 152 365
#Bugs reported 89 303 143
#Bugs in SVN log 42 269 55
#Bugs mapped 39 163 38

than, e.g., from method to class level is motivated by the ad-
ditional noise the latter would have introduced (while modi-
fying a method in order to fix a bug, developers may touch a
number of other methods, which are related to the method
in question but not to the bug per se).

As case studies we have chosen three Java systems: Ar-
goUML, a popular UML modeling tool, Adempiere, an open-
source ERP application, and Mogwai Java Tools, a Java En-
tity Relationship design and modeling (ERD) application.
As aggregation techniques we have chosen the traditional
sum, mean, and median, as well as the econometric inequal-
ity indices IGini, ITheil, Hoovers TKolm, and Iatkinson (See
Section 3 for definitions and mathematical properties).

To study correlation between the aggregated metrics val-
ues and the number of bugs we started by choosing for each
system the version with the highest number of bug fixes.
The choice for bug fizes rather than reports, dismissals etc.
follows [8] and is motivated by the fact that commit messages
contain (at best) information only about the fixed bugs.
This information is needed to map bugs to Java classes.
Since we only analyze a snapshot of the case, the choice
for the faultiest version ensures that the defect population
is sufficiently large for the analysis to be accurate. Table 1
summarizes the three datasets of the study.

Next, the source code for each system was automatically
processed and the list of classes contained in each package
was built. We have considered packages containing at least 2
classes because the aggregation indices for packages contain-
ing one class only are equal to 0, hence should be excluded.

At the following step we mapped the defects to Java pack-
ages by analyzing the commit messages of the version control
system log. Since the same class could have been affected
multiple times during the fix of a known bug (e.g. because of
a wrongly-implemented fix the first time), we only recorded
it once in order to further minimize noise. Note the dif-
ference between the number of bugs reported in the bug
tracker and the number of bugs mapped according to the
version control system log. Apart from undocumented bug
fixes, it is also due to some of the issues requiring changes
to non-Java source files. The cardinality of the defect sets
per package generated a list containing an element for each
of the packages, and served as our validation metric.

Next, we calculated SLOC for each Java class and ag-
gregated these values using the mean, median, sum, Igini,
Ipeils THoovers {Kolm @nd Iatkinson-

Finally, we studied correlation between the aggregated
values and defects, as well as between the aggregated values
themselves. All computations were performed using R [25].

3. THEORETICAL COMPARISON

In this section we study a number of mathematical prop-
erties of the aggregation techniques to be empirically evalu-

24

ated, relevant for their application to software metrics. We
start by briefly presenting their mathematical definitions.

Let {z1,...,2n} be the collection of values to be aggre-
gated. Then, the sum, denoted as otar, is defined as Y7 ;.
The mean, T, is defined as % The median, is defined as
T(n41)/2 if n is odd, and %(l’n/g + 2, 241) if n is even. We
further study the following econometric indices:

IGini (T1, -+, Tn) = gz Doy Dojey [T — a5 [18]
Itneil(T1, -+ xn) = 5 D00, (5 log %) (28]
TIoover (T1, - -+, @Tn) = % A zziaz — % [15]
Ixoim (21, ..., zn) = log [% A 5”7””] [16]

Lz =1-1 (1 @)),

where |z; — ;| is the absolute value of z; — ;. In addition to
Iyeq above, also known as the first Theil index, Theil [28]
has also introduced the second Theil index, known as the
mean logarithmic deviation. In this paper we do not consider
the mean logarithmic deviation and whenever “the Theil in-
dex” is mentioned, ITpei is meant. [kolm and Iatkinson are
standard instantiations of the Kolm and Atkinson families
of indices, for parameters 1 and 0.5, respectively.

IAtkinson (LE1 g

Domain.

Domain of the aggregation technique determines applica-
bility of this technique to classes of software metrics. Econo-
metric indices are usually applied to income or welfare dis-
tributions, i.e., to sets of positive values. Some software
metrics, however, may have negative values, e.g., the main-
tainability index [23]. Since log z and /z are undefined for
z < 0, Itheit and Iptkinson are undefined as well. Unlike
these indices, mean, median, sum, Icini, IHoover, and IKolm
can be used to aggregate negative values. Moreover, as log 0
is undefined, direct application of the Theil index formula is
not possible. However, as shown in [27], ITpe; can be de-
fined in presence of a zero value depending on whether zero
denotes emptiness (e.g., SLOC) or not. Finally, formulas for
the Gini index, the Theil index and the Atkinson index in-
volve division by Z, while for Hoover index by ... Hence,
they are undefined if £ = 0 and xsptar = 0, respectively.

Since SLOC has non-negative values, all techniques here
are appropriate for aggregating SLOC.

Interpretation.

Interpretation of the aggregated value depends on the
range of the aggregation technique: e.g., 0.99 indicates a
very high degree of inequality if Igini or Igoover 1S consid-
ered, while in case of Ippey and Iatkinson the interpreta-
tion would depend on the number of values being aggre-
gated. The values obtained by applying the mean, me-
dian, or sum are unbounded. The Gini and the Hoover
indices range over [0,1] if all the values being aggregated
are positive. In general, this is not necessarily the case, e.g.
Igini(1,—1.5) = —2.5 and Ioover(1, —1.5) = 2.5. Range of
Imheil and Iatkinson depends on the number of values be-

ing aggregated: one can show that 0 < Ipep(x1,...,2n) <
logn and 0 < Iatkinson(Z1,--.2n) < 1 — % The Kolm
index ranges over non-negative reals.
Invariance.

We call the aggregation technique invariant w.r.t. addi-
tion if I(x1,...,2n) = I[(z1+c,...,xn+c) for any z1,..., 2,

and ¢, provided I(z1+c,...,xn+c) exists. Similarly, we call
the aggregation technique invariant w.r.t. multiplication if
I(z1,...,2n) =I(z1-¢,...,2n - ¢) for any z1,...,z, and ¢,
provided I(z1-c,. ..,z c) exists. Aggregating lines of code
measured per file, aggregation-technique-invariant with re-
spect to addition allows to ignore, e.g., headers containing
the licensing information and included in all source files. Re-
sults obtained by applying an aggregation technique that is
invariant with respect to multiplication are not affected if
percentages of the total number of lines of code are con-
sidered rather than the number of lines of code themselves.
The mean is neither invariant w.r.t. addition, nor to mul-
tiplication. It can be shown that Iqini, ITheil; {Hoover and
I Atkinson are invariant with respect to multiplication. Unlike
them, Ikoim is invariant w.r.t. addition.

Decomposability.

Decomposability is the key property necessary for expla-
nation of inequality by partitioning the values to be aggre-
gated into disjoint groups. In econometrics such groups cor-
respond, e.g., to education level, gender or ethnicity, while in
software evolution research, e.g., to package, programming
language and maintainer’s name[27]. Formally, I is decom-

posable if for a partition {z1,1,..., %101,y TJ1s-- -, TIn, }
of {z1,...,&n}, x; # 0, it holds that
](xl,...,xn) = [(531,...,.f])—FZ;-]:l(wj-I(x]”l,...,$‘j7nj))

for some coefficients wi,...,ws satisfying Z;]:l w; = 1,
where Z; is the mean of z;1,...,2;n,;. If I is decompos-
able, then the ratio of the inequality between the groups
and the total amount of inequality can be seen as the per-
centage of inequality that can be explained by partitioning
the population into groups. Both Ipe [7] and Ikeim [17]
are decomposable, while Iqini, IHoovers and Iatkinson are
not [1]. While some authors propose decompositions of IGin;
or Iatkinsons they use a different notion of decomposabil-
ity [18].

4. RESULTS

To study correlation we have a choice between Kendall’s
Tand the Pearson correlation coefficient r: while the lat-
ter requires normality of both distributions being compared,
the former is applicable when the normality hypothesis can
be rejected for at least one of the distributions. Thus, we
conduct the Shapiro-Wilk normality test to determine the
appropriate correlation statistics: for the defects vector the
Shapiro-Wilk normality test allows to reject the normality
hypothesis in all three cases (ArgoUML: W = 0.80, p-value
< 8.4 x107°; Adempiere: W = 0.24, p-value < 2.2 x 107'%;
Mogwai: W = 0.36, p-value = 2.2 X 10716). Therefore,
Kendall’s 7 should be used. Similar precautions were taken
when studying the correlation between the different aggre-
gation techniques themselves.

For correlation between SLOC and defects, the results are
summarized in Table 2, where boldface corresponds to two-
sided p-values not exceeding 0.01, and italics corresponds to
those between 0.01 and 0.05. The following conclusions can
be derived:

e Correlation with the number of defects always ranges
from very low (7 ~ 0.02 for mean in ArgoUML) to
medium (7 ~ 0.51 for sum in Adempiere). None of
the techniques indicates strong and also statistically
significant correlation with the number of defects.

25

Table 2: Correlation between results of different ag-
gregation techniques and defects

ArgoUML | Adempiere | Mogwai
mean 0.023 0.392 0.197
median -0.142 0.311 0.129
sum 0.313 0.510 0.151
IGini 0.267 0.225 0.134
Irpeil 0.269 0.185 0.135
TAtkincon 0.245 0.168 | 0.138
THoover 0.240 0.113 | 0.122
Tolm 0.144 0.412 | 0.204

e Values aggregated using the mean indicate very in-
consistent results. In ArgoUML mean shows very low
correlation with defects, while in Mogwai mean to-
gether with Ik, indicate the strongest (among the
techniques considered) and also statistically significant
correlation with the number of defects.

e Values aggregated using the sum indicate the strongest
(for ArgoUML and Adempiere) and second strongest
(for Mogwai) correlation with the number of defects,
which is also statistically significant. Although the cor-
relation is not high, this confirms the intuition that
large systems have more faults than small systems.

e Values aggregated using Iqini, ITheils {Hoovers and
I Atkinson indicate consistently similar correlation with
the number of defects, although none of them ever in-
dicates the strongest correlation. In fact, it turns out
there is high and statistically significant correlation be-
tween aggregation techniques of this group, i.e., aggre-
gation values obtained using these techniques convey
the same information.

Threats to validity.

The results above should be considered preliminary and
a number of threats to validity should be addressed in the
future. With respect to construction validity we need to
consider a more representative set of benchmarks and their
versions. Furthermore, our information about the defects
might be incomplete as not all defects might be recorded in
the bug tracker, and our mapping of defects to classes might
be imperfect due to limited recording of this information in
the commit messages. Finally, we have considered only one
metric, namely SLOC, and it is not clear whether the results
obtained can be generalized to additional metrics.

5. CONCLUSIONS

In this paper we have presented the preliminary results
of a study of the relation between size and defects, and the
influence of the aggregation technique on this relation. We
have discussed theoretical aspects of different aggregation
techniques and applied them to aggregate lines of code val-
ues in ArgoUML, Adempiere, and Mogwai.

Our results suggest that correlation between SLOC and
number of defects is not strong, which implies that size
may not be a good predictor for defects as initially believed.
However, the choice of aggregation technique does influence
correlation of the aggregated values with the number of de-
fects. We observed that values aggregated using the mean
indicate very inconsistent correlation results, while values

aggregated using the sum indicate the strongest (for Ar-
goUML and Adempiere) and second strongest (for Mogwai)
correlation with the number of defects, which is also statis-
tically significant. IGini, {Theil; [Hoovers and IAtkinson COD-
sistently indicate very high correlation among themselves.
Although correlation between ITpei and Iaikinson can be
explained by the close relation between the Atkinson family
of inequality measures and Generalized Entropy measures
(of which ITpej is part), we have yet to understand their
high correlation with Igin; and Itoover-

A popular approach in the econometric literature consists
of studying multiple econometric indices rather than focus-
ing on one. For instance, [24] employs six different indices,
including the Gini, Theil, and Atkinson indices studied here.
Champernowne [5] has also observed that different indices
exhibit different sensitivity to different “dimensions of in-
equality”: while 1 — n'Theil was most sensitive to inequality
associated with the exceptionally rich, Iqin; is second-most
sensitive to inequality reflecting a wide spread of the less
extreme incomes, without much tendency for the majority
of them to be bunched within quite a narrow range.

Hence, as future work we consider identification of the di-
mensions of inequality most relevant for software metrics,
and study of the most appropriate aggregation techniques.
Furthermore, this theoretical investigation will be comple-
mented by a more profound empirical research, similar to
the preliminary study of Section 4, and including additional
benchmark systems, and software and validation metrics.
This study will also investigate the close relation between
IGinis ITheil; THoovers and Iatkinson. Finally, while in the
current work only a single snapshot of each system has been
considered, future work includes the study of differences be-
tween the econometric indices in the evolutionary settings.

6. REFERENCES

[1] S. Anand and S.M.R. Kanbur. The Kuznets process
and the inequality—development relationship. Journal
of Development Economics, 40(1):25-52, Feb. 1993.
A.B. Atkinson. On the measurement of inequality.
Journal of Economic Theory, 2(3):244-263, 1970.
B.W. Boehm. Software engineering economics.
Prentice Hall, 1981.

L.C. Briand, J. .Wiist, J.W. Daly, and D.V. Porter.
Exploring the relationship between design measures
and software quality in object-oriented systems. J.
Syst. Softw., 51(3):245-273, 2000.

D. G. Champernowne. A comparison of measures of
inequality of income distribution. The Economic
Journal, 84(336):787-816, 1974.

G. Concas, M. Marchesi, S. Pinna, and N. Serra.
Power-laws in a large object-oriented software system.
IEEE Trans. Software Eng., 33(10):687-708, 2007.

F. A. Cowell. Measurement of inequality. Handbook of
Income Distribution, 87-166. Elsevier, 2000.

M. Eaddy, T. Zimmermann, K. D. Sherwood,

V. Garg, G. C. Murphy, N. Nagappan, and A. V. Aho.
Do crosscutting concerns cause defects? IEEE Trans.
Softw. Eng., 34:497-515, July 2008.

K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Trans. Softw. Eng.,
27:630-650, 2001.

L. Erlikh. Leveraging legacy system dollars for
e-business. IT Professional, 2(3):17-23, 2000.

[9]

[10]

26

[11] C. Gini. Variabilite e mutabilite. Studi
Econornico-Giuridici della R. Univ. de Cagliari, 1912.
B. Goel, and Y. Singh. Empirical Investigation of
Metrics for Fault Prediction on Object-Oriented
Software. Comp. Inf. Sci., 131:255-265, 2008.

M. Goeminne, and T. Mens. Evidence for the Pareto
principle in Open Source Software Activity. In SQM.
CEUR-WS workshop proceedings, 2011.

I. Herraiz. A statistical examination of the evolution
and properties of libre software. In ICSM, pages
439-442. TEEE Computer Society, 2009.

E.M. Hoover Jr. The measurement of industrial
localization. Rev. Eco. Stat., 18(4):162-171, 1936.
S.-C. Kolm. Unequal inequalities 1. Journal of
Economic Theory, 12(3):416-442, 1976.

F. A. Cowell and M.-P. Victoria-Feser. Robustness
properties of inequality measures. Fconometrica,
64(1):77-101, January 1996.

P. J. Lambert and J. R. Aronson. Inequality
decomposition analysis and the Gini coefficient
revisited. Economic Journal, 103(420):1221-27, 1993.
M. Lanza and R. Marinescu. Object-Oriented Metrics
in Practice. Springer Verlag, 2006.

R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In ICSE, pages
181-190. IEEE, 2008.

N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In ICSE, pages
452-461. IEEE, 2006.

H.M. Olague, L.H. Etzkorn, S. Gholston, and

S. Quattlebaum. Empirical validation of three
software metrics suites to predict fault-proneness of
object-oriented classes developed using highly iterative
or agile software development processes. IEEE Trans.
Software Engineering, 33(6):402-419, 2007.

P. Oman and J. Hagemeister. Construction and testing
of polynomials predicting software maintainability.
Journal of Systems and Software, 24(3):251-266, 1994.
C. Papatheodorou and M. Petmesidou. Poverty
profiles and trends: How do southern European
countries compare to each other? In CROP int’l
studies in poverty, 47-94. Zed Books, 2006.

R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2010.

A. Serebrenik, S. Roubtsov, and M.G.J. van den
Brand. D,,-based architecture assessment of Java open
source software systems. In ICPC, pages 198-207,
IEEE Computer Society, 2009.

A. Serebrenik and M.G.J. van den Brand. Theil index
for aggregation of software metrics values. In ICSM,
pages 1-9, IEEE Computer Society, 2010

H. Theil. Economics and Information Theory.
North-Holland, 1967.

I. Turnu, G. Concas, M. Marchesi, S. Pinna, and

R. Tonelli. A modified Yule process to model the
evolution of some object-oriented system properties.
Inf. Sci., 181(4):883-902, 2011.

R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz.
Comparative analysis of evolving software systems
using the Gini coefficient. In ICSM, pages 179-188,
IEEE Computer Society, 2009.

B. Vasilescu, and A. Serebrenik, and M.G.J. van den
Brand. Comparative Study of Software Metrics’
Aggregation Techniques. In BeNeVol 2010, Lille,
France, pages 80-84, 2010.

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

