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On the selectivity of order acceptance procedures

in batch process industries

V.C. Ivanescu∗, J.C. Fransoo, J.W.M. Bertrand

Department of Technology Management,
Technische Universiteit Eindhoven, The Netherlands

Abstract

Job and resource structures in batch process industries are generally
very complex, which renders the assessment of what workload can be
completed during a specific period very difficult. Order acceptance pro-
cedures have a considerable impact on the mix of jobs that need to be
scheduled, by refusing specific jobs from the total demand. In this paper,
we investigate whether jobs with specific characteristics are systematically
rejected by an aggregate acceptance procedure and a detailed acceptance
procedure. We find out that, while both procedures are selective in the
kind of jobs they accept when job mix variety is high, the detailed accept-
ance procedure underestimates the consequences on the total makespan
of significantly changing the job mix.

Keywords: order acceptance, batch process industries, regression analysis

1 Introduction

Batch process industries produce a variety of products that follow different rout-
ings through a production department. Intermediate products may be unstable,
thus, they need to be processed further without delay. This causes no-wait re-
strictions which, in combination with the large variety of products with different
routings, results in complex scheduling problems. For an extensive description
of the planning situation and planning problem we refer to Raaymakers et al.
(2000a).

Order acceptance is concerned with the decision to either accept or reject a
customer order based on the availability of sufficient capacity to complete the
order before its due date. The due dates are considered given by the customers
and non-negotiable.

∗Correspondence address: Department of Technology Management, Technische Uni-
versiteit Eindhoven, P.O. Box 513, Pav. F10, 5600 MB Eindhoven, The Netherlands. E-mail
address: c.v.ivanescu@tm.tue.nl
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Most order acceptance literature concentrates on policies that are based on
either using the overall workload or on constructing a detailed schedule (see
e.g. Ten Kate, 1994; Wester et al., 1994). Raaymakers et al. (2000b) introduce
a third policy, in which they estimate the makespan using a regression model
of aggregate job set characteristics. The research in these studies is mainly
concentrated on settings with deterministic processing times.

In more recent research, Ivanescu et al. (2002) compare three similar order
acceptance policies (i.e. a scheduling policy, a regression policy and a work-
load policy) in a setting with Erlang distributed processing times. Their results
showed that the scheduling policy yields a better performance than the oth-
ers, especially in situations with low and moderate processing time uncertainty.
However, the performance of the scheduling policy and the regression policy are
close in the situation with high processing times uncertainty and high variability
in job structure.

In this study, a similar modelling approach of the order acceptance problem is
deployed and following Ivanescu et al. (2002) we compare a detailed acceptance
procedure (the scheduling policy) and an aggregate acceptance procedure (the
regression policy). While in previous research point estimates were used to
estimate the ex post makespan of a job set, here we develop models that use
an α-reliable ex post makespan estimate to support customer order acceptance
decisions.

The implicit assumption underlying the acceptance process is that the data
on which the makespan estimation models are constructed and the data that
result from the acceptance procedure are samples from the same population.
This means, it is assumed that the orders are accepted in a non-selective way.
Ivanescu et al. (2002) suggest that the scheduling policy shows a particular
selectiveness by not accepting one or two ”difficult” jobs that the regression
policy does accept. The main contribution of this paper is to build a detailed and
comprehensive insight into this selectivity issue. Furthermore, we are interested
to investigate the impact of the selectivity, if present, on the performance of
the two policies. Apart from the particular setting studied in this paper, the
insights have a wider relevance for the use of regression models for production
planning and control.

The remainder of this paper is organized as follows. Section 2 presents the
basic assumptions underlying the model. Section 3 is devoted to the descrip-
tion of the order acceptance policies. In Section 4 the experimental design is
discussed and the data generation process is described. Section 5 discusses the
results of the simulation study. The final section gives the conclusions and
directions for further research.

2 Problem setting

We consider a hierarchical production control structure consisting of two levels:
(i) a planner who accepts or rejects orders that are requested by the market
for delivery at the end of a specified planning period; and (ii) a scheduler who
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determines the exact sequence and timing of the (planned) execution of the
jobs (the accepted orders) on the resources. This type of hierarchical structure
is quite common, both in industrial and theoretical settings (see e.g. Bertrand
et al., 1990; Schneeweiß, 1995; Raaymakers et al., 2000a).

Time is divided into equal periods, the planning periods. In each period
t, orders arrive at the planner according to a Poisson arrival process. The
requested due date is non-negotiable and is equal to the end of the next period
t+1. Each order consists of exactly one job (j) with a specified structure of no-
wait processing steps. At the start of each period t+ 1, the planner releases to
the scheduler a job set consisting of all orders accepted in the previous planning
period t. The following assumptions regarding the job set and resources are
made:

• We consider a chemical batch production department with N × M re-
sources consisting ofM different resource types, with N identical resources
per type.

• No precedence relations exist between the jobs in the accepted job set. At
the start of a period, all jobs are known, i.e. the processing steps, timing
and sequencing constraints on the processing steps, and the probability
distribution of the expected processing times.

• Each processing step has to be performed without preemption on exactly
one resource of a specific resource type.

• More than one processing step of a job may require a resource of the same
resource type. These processing steps have to be performed on different
resources of that type if they overlap.

The scheduler constructs a schedule (S) using the expected processing times
(E[pij ]). For constructing this deterministic schedule, a simulated annealing al-
gorithm is used which was developed for no-wait job shops by Raaymakers and
Hoogeveen (2000). They have investigated the performance of this algorithm
and conclude that it performs reasonably well. In the remainder of this pa-
per, Cex ante

max (S) denotes the makespan of the schedule S, under deterministic
processing times. The jobs are further released to production in order of this
schedule.

The processing times are uncertain at the shop floor level. We define the
actual processing time (pij) of the i-th processing step of a particular job j as
the elapsed time between the start and the completion of the processing step.
This elapsed time includes any interruptions such as resource or operator un-
availability, machine failure, and maintenance. Actual production data obtained
from a batch chemical processing department showed that the distribution of
processing times is close to being Erlang-distributed. The actual processing
times are therefore determined by drawing a random variable from an Erlang
distribution with mean E[pij ] and Erlang shape parameter k. The Erlang shape
parameter k is the same for each processing step i of every job j.

3



Since the actual processing times are not known until the processing step’s
completion, non-feasibility problems may occur during execution and therefore,
rescheduling may be needed. The rescheduling procedure used in this paper is a
”right-shift” control policy (Leon et al. 1994) that entails a right-shifting of the
schedule in order to restore the feasibility on the resources while always main-
taining the original sequence, and can be used for locally revising the schedule
in real time. For a description of the rescheduling procedure we refer to Ivan-
escu et al. (2002). In the remainder of this paper, Cmax(S) denotes the ex post
makespan of S after rescheduling.

3 Modelling the order acceptance problem

Our modelling approach is in line with the research of Raaymakers et al. (2000b)
and Ivanescu et al. (2002). In period t, orders arrive randomly and are evaluated
immediately upon their arrival. An order is accepted only if, according to
the policy used, sufficient capacity is expected to be available to complete the
resulting job set before the end of the next period. Orders that fail this test are
rejected and leave the system; ut denotes the set of orders that are accepted in
period t.

When accepting orders, the planner has to be able to estimate if a specific job
set can be completed in time. In a situation with discrete planning periods, this
means being able to predict the ex post makespan of a job set. The remainder
of this section gives a detailed description of two order acceptance policies.

3.1 Scheduling policy

The scheduling policy is based on constructing a new detailed schedule after
every order arrival. In a deterministic situation, the ex ante makespan of a con-
structed detailed schedule is identical to the ex post makespan, and is therefore
the best estimate possible. This is not the case in a stochastic situation. Thus,
in addition to the ex ante makespan, a proportional slack is added to estimate
the ex post makespan:

Ĉα
max(Sut

) = (1 + γα
k ) · Cex ante

max (Sut
) (1)

where γα
k denotes the slack factor that is empirically determined for each Erlang

shape parameter k such that an α-reliable ex post makespan estimate result. A
brief description of the procedure and the values of the slack factor for different
Erlang shape parameters are given in Appendix A.

An order is accepted only if a schedule of the resulting job set ut can be
constructed such that:

(1 + γα
k ) · Cex ante

max (Sut
) ≤ T (2)

where T denotes the period length.
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3.2 Regression policy

The regression policy is based on a regression model of a limited number of
aggregate job set characteristics. This model estimates the difference between
the job set ex post makespan and a single resource lower bound on the makespan
(LB) obtained according to Carlier (1987). This difference is caused by the job
interactions (timing and no-wait sequencing constraints) on the resources and
is not included in the Carlier lower bound. We denote this difference as the
”interaction margin” (Raaymakers and Fransoo 2000):

Iut
=
Cmax(Sut

)− LB(ut)
LB(ut)

(3)

We develop a multiple linear regression model to estimate the interaction
margin, based on five job set characteristics, similar to the work in Ivanescu
et al. (2002). Since we are interested to obtain an α-reliable estimate of the
ex post makespan, we propose to use an upper prediction bound instead of
point estimates for the interaction margin estimate. Details of the model are
presented in Appendix B.

The upper prediction bound for the interaction margin (Îα
ut
) is further used,

in addition to the Carlier lower bound, to predict the ex post makespan:

Ĉα
max(Sut

) = (1 + Îα
ut
) · LB(ut) (4)

The makespan estimation model given by (4) is used dynamically, i.e. it is
used each time an order arrives to investigate the makespan consequences of
accepting this order in addition to the orders that have already been accepted.
Under the regression policy, orders may be accepted as long as:

(1 + Îα
ut
) · LB(ut) ≤ T (5)

4 Experimental design

The evaluation of the proposed order acceptance policies and the investigation of
their selectivity requires a three-phase investigation. First, the model building
phase where preliminary simulation runs are performed and data are generated
that are used to build the makespan estimation models. In the remainder of this
paper these data will be called the construction data set. Second, the model
evaluation phase where the model is checked for adequacy and its predictive
performance is tested. For this, the cross validation method is employed (or
data splitting according to Montgomery and Peck 1992). This set of data will
be called the testing data set in the remainder of this paper. Finally, a full
factorial design is used to investigate the selectivity of the proposed policies and
the impact of this selectivity on their performance.
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4.1 Experimental data

For both the construction and the testing data sets, the jobs are generated
randomly and scheduled on a given resource configuration, i.e. ten resources
consisting of five resource types, with two identical resources of each type.

The following factors are considered for generating the job sets: the number
of jobs in the job set njobs, the number of processing steps per job sj (j =
1, 2, ...njobs), the allocation probability of the processing steps for each resource
type pm (m = 1, 2...5), and the distribution function of the expected processing
time FE[p]. The number of jobs in the job set is obtained by drawing a number
from the uniform distribution on the interval [25, 65] and rounded up to an
integer value. The rest of the experimental factors are varied at two levels and
are presented in Table 1.

Table 1: Factor levels for the experiments

Factors - +
sj U(4, 7) U(1, 10)
pm 0.3, 0.25, 0.20, 0.15, 0.10 0.2 for m = 1, ..., 5
FE[p] U(15, 35) U(1, 49)

A full factorial design is used to generate the core of the problem set. In total,
eight combinations of different factor levels are possible. For each combination,
50 job sets are generated. This results in a total of 400 job sets which form the
core of the problem set.

For constructing the makespan estimation models, both the ex ante makespan
and the ex post makespan need to be determined. This is done as follows. First,
for each job set u (u = 1, 2, ..., 400), a schedule Su is constructed and the corres-
ponding ex ante makespan Cex ante

max (Su) is computed. Next, we model different
levels of uncertainty in the actual processing times by considering nine levels for
the Erlang shape parameter, from 2 to 10. A job set with a specific level of un-
certainty in the processing times is referred to as a problem instance. For each
Erlang factor, 250 replications proved to be necessary in order to control the
variability in the results. This would result in a 400×9×250 = 900 000 problem
instances. In order to keep the size of the data set at a manageable level, we
consider only one uncertainty level for each job set. Moreover, it is realistic to
assume that different job sets may experience different levels of uncertainty at
the shop floor. Consequently, we randomly allocate an Erlang shape parameter
to each job set. This resulted in a problem set with a total of 400×250 = 100 000
problem instances.

We randomly split the core of the problem set into two parts: 80% of the
data form the construction data set and the remaining 20% form the testing data
set. We chose to split the core of the problem set and not the whole problem
set because the latter contains replicates of the same job set characteristics.
Unless these replicates are eliminated, the construction and testing data sets
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may be quite similar and this would not necessarily test the models severely
enough. Therefore, the construction data set contains 319 × 250 = 79 750
problem instances, whereas the testing data set contains 81 × 250 = 20 250
problem instances.

4.2 Model evaluation

One of the approaches described in Section 3 is based on regression analysis. To
evaluate a regression model we distinguish between model adequacy checking
and model validation. Model adequacy checking is directed toward investigat-
ing the fit of the regression model to the construction data set and to validate
the normality assumptions in the regression, by residual analysis. Furthermore,
there is no assurance that the equation which provides the best fit to these ex-
isting data will be a successful predictor. Therefore, the predictive performance
of the model has to be tested. Details regarding the model adequacy checking
and model validation are given in Appendix B. The results confirm the previous
findings of Raaymakers et al. (2001) and Ivanescu et al. (2002) that accurate ex
post makespan estimates may be obtained by using point estimates determined
with a linear regression model.

In Section 3, we introduced an upper prediction bound, instead of a point
estimate, for the interaction margin, in order to obtain an α-reliable estimate of
the ex post makespan. We investigated the predictive performance of the models
by calculating the percentage of job sets that are completed before the α-reliable
completion time estimate, for α-values of 50%, 75% and 95%. Summary results
are shown in Table 2.

Table 2: Quality of the makespan estimation models

Data sets Model Target % on-time
50 75 95

Construction Scheduling 51.99 75.25 94.99
Regression 51.97 75.36 95.02

Testing Scheduling 53.54 76.12 94.92
Regression 49.17 72.05 92.77

The results show that the control over the percentage of on-time job sets is
reasonably good. The best performance is obtained for high α-values, on both
the construction and testing data sets. The performance results related to a
high percentage of on-time job sets are likely to be of most practical interest.

4.3 Experimental procedure

A four-factor full factorial design is used to evaluate the proposed policies and
investigate their selectivity. This experimental design is similar to the one used
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in Ivanescu et al. (2002). The two levels considered for each experimental factor
are outlined in Table 3 and we refer to Ivanescu et al. (2002) for details.

Table 3: Levels of the experimental factors

L H
Demand/capacity ratio 0.7 1.0
Job mix variety sj ∼ U(4, 7) sj ∼ U(1, 10)

E[pij ] ∼ U(15, 35) E[pij ] ∼ U(1, 49)
Workload balance 30, 25, 20, 15 and 10% 20% of demand

of demand requirements requirements for
for resource type 1 to 5 each resource type

Uncertainty level pij ∼ Erlang-10 pij ∼ Erlang-2

The same random number seeds are used for each factor combination in
order to obtain identical order arrivals for the different policies. Table 4 gives
the combinations of the experimental factors. The combinations will be referred
to as scenarios in the remainder of this paper.

Table 4: Combinations of experimental factors

Scenario demand job mix workload uncertainty
ratio variety balance level

I H H H H
II H H H L
III H H L H
IV H H L L
V H L H H
VI H L H L
VII H L L H
VIII H L L L
IX L H H H
X L H H L
XI L H L H
XII L H L L
XIII L L H H
XIV L L H L
XV L L L H
XVI L L L L

The length of the planning period is chosen such that the job set consists of
a realistic number of jobs. The empirical study of Raaymakers et al. (2000b)
showed that a job set of 40 to 50 jobs is realistic for this type of industrial
process. In line with that study, the length of the planning period has been
fixed at 1300 time units. We conducted 15 replications of one planning period.
Furthermore, when uncertainty is introduced, 250 replications for each of the
uncertainty levels are performed to minimize the variability in the results.
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4.4 Performance measures

To investigate whether the policies accept orders selectively, data were collec-
ted on the following performance measures: the average workload per job, the
average number of processing steps per job, the average overlap per job and
the acceptance rate. In the remainder of this paper, the first three performance
measures are referred to as the characteristics of the arriving jobs (accepted
jobs). The acceptance rate is defined as the percentage of arrived orders that
are accepted during one planning period.

To evaluate the impact of selectivity on the performance of the policies, data
was collected on four performance measures: the actual percentage of accepted
job sets completed on time (% on-time), the job set tardiness (JST ), the realized
capacity utilization (RCU) and the feasibility performance. A job set is on time
if its ex post makespan does not exceed the period length T .

Job set tardiness occurs when the job set completion time (Cmax(Sut
)) is

greater than the due-date (T ):

JST = (Cmax(Sut
)− T )+ (6)

The realized capacity utilization is measured as follows:

RCU =

∑njobs
j=1

∑sj

i=1 θpij

N ·M · T (7)

where

θpij
=




pij , if bij ≤ T and cij ≤ T
pij − (cij − T ) , if bij ≤ T and cij > T
0 , if bij > T

(8)

where we denoted by bij the start time and by cij the completion time of the
processing step i of the job j.

We define the last performance measure, the feasibility performance, as 1 −
the fraction of processing steps that violate the no-wait restrictions through the
entire planning period.

5 Results

In this section we discuss the results of the experiments we conducted. The
primary objective of this research is to investigate the selectivity of the proposed
order acceptance policies. This was motivated by previous research (Ivanescu
et al. 2002) which suggests that both the scheduling policy and the regression
policy accept jobs selectively. The second objective is to investigate the impact
of the selectivity on the performance of the two policies.

Both issues are addressed in this section. For clarity of exposition, we restrict
ourselves to the discussion of the 95% target on-time job sets, for all scenarios.
Appendix C contains the results for the other two target levels.
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5.1 Selective acceptance

Our first point of interest is to investigate if the policies accept orders selectively.
This is done by comparing the characteristics of the job sets accepted by each
policy with the characteristics of the arriving jobs set. If the policies do not
accept jobs selectively, the accepted job sets will have similar characteristics
as the arriving jobs. We investigate three job set characteristics, namely the
average workload per job, the average overlap per job, and the average number
of operations per job.

For each of these characteristics we compute the difference between the val-
ues obtained for the arriving jobs and the values of the accepted job sets, for each
order acceptance policy. Figure 1 gives these differences across all scenarios.

Figure 1: Difference between the characteristics of the arriving jobs and the
characteristics of the accepted job sets
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(a) average workload per job
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(c) average number of processing steps per job

Figure 1 reveals that the job mix variety strongly influences the acceptance
procedure. In the case of low job mix variety (scenarios V - VIII and XIII
- XVI), small differences may be observed between the characteristics of the
arriving jobs and the characteristics of the job sets released to production. To
detect if the differences observed in Figure 1 are statistically significant we used
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paired t-tests. The test level was set at 0.01. For the case of low job mix
variety, the paired t-tests results showed no significant difference between the
characteristics of the arriving jobs and the characteristics of the jobs accepted
by both the regression policy and the scheduling policy. This indicates that
both policies do accept orders non-selectively.

A different picture emerges for the high job mix variety scenarios (I - IV and
IX - XII). Large differences can be observed between the characteristics of the
accepted jobs and the characteristics of the arriving jobs, for both of the policies.
This make sense since in the case of high job mix variety the arriving jobs are less
homogeneous, therefore, the policies have more opportunities to be selective. We
used again paired t-tests to detect if these differences are statistically significant.
The two-tailed p-value was equal to 0.00 for all the scenarios from the case of
high job mix variety, indicating significant differences. We may conclude that
both policies are highly selective under high job mix variety.

Furthermore, we observe in Figure 1 that both policies seem to show a
particular selectiveness by accepting, on average, jobs with a smaller number
of processing steps and higher overlap as compared to the average number of
processing steps and the average overlap of the arriving jobs.

Given this observed selectivity, we focus further only on the case of high job
mix variety and we investigate whether one policy is more selective than the
other. In this context, we define the concept of ”degree of selectivity”:

Given two policies P1 and P2, P1 is more selective than P2 if the distance
between the characteristics of the arriving jobs and the characteristics of the jobs
accepted by P1 is significantly larger than the distance between the characteristics
of the arriving jobs and the characteristics of the jobs accepted by P2.

As mentioned earlier, by characteristics of the arriving jobs (accepted jobs)
we refer to the following three measures: the average workload per job, the
average number of processing steps per job and the average overlap per job. We
denote by xarr (xPl

, l=1,2) the three-dimensional vector of these characteristics.
The distance we consider is the standard Euclidean distance:

d(xarr − xPl
) =

√√√√ 3∑
r=1

[
xr

arr − xr
Pl

xr
arr

]2

(9)

where

xr
arr = the value of the r-th characteristic of the arriving jobs, r=1,2,3;
xr

Pl
= the value of the r-th characteristic of the job sets accepted under Pl;

It is clear that, during a period, there are jobs (the first arriving jobs) that
will always be accepted by both of the policies. Furthermore, given the fact that
the demand effectively exceeds the available capacity, there are jobs (the last
arriving jobs) that will be always rejected by both of the policies. Therefore, to
single out the selectivity, we remove these jobs when computing the Euclidean
distance. Thus, we consider only the jobs that arrived between the moment the
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first job is rejected and the moment the last job is accepted. Table 5 gives the
Euclidean distance for both the scheduling and the regression policy, in the case
of high job mix variety.

Table 5: Euclidean distance

Scenario capacity workload uncertainty Scheduling Regression
ratio balance level

I H H H 0.784 1.006
II H H L 0.627 0.920
III H L H 0.774 0.977
IV H L L 0.641 0.905
IX L H H 0.640 0.902
X L H L 0.427 0.900
XI L L H 0.714 0.925
XII L L L 0.494 0.902

A close examination of the results in Table 5 shows that both policies are
less selective in the case of a low arrival rate (scenarios IX to XII). These res-
ults confirm the expectation that the selectivity of the policies is most clear in
situations with high arrival rate and high job mix variety.

Paired t-tests were used again to detect significant statistical differences
between the two distances. We obtained that, for all the considered scenarios,
d(xarr − xscheduling) is significantly smaller than d(xarr − xregression). Thus,
we may conclude that in the case of high job mix variety, the regression policy
is more selective in accepting jobs that have, on average, a smaller number of
processing steps and a higher overlap than the average number of processing
steps and average overlap of the arriving jobs.

Figure 2: Acceptance rate
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Examining the acceptance rate,
note that in the case of high job
mix variety, both policies reach a
higher acceptance rate than in the
case of low job mix variety. This is
due to the selective way in which
the policies accept jobs.

Figure 2 show that a higher ac-
ceptance rate is obtained in the
case of low uncertainty in the pro-
cessing times (scenarios II, IV, VI,
etc.). This makes sense, since in
the case of high uncertainty in the
processing times a relatively large
amount of slack is needed in order
to cope with this uncertainty, and
therefore a smaller number of orders is accepted.
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The scheduling policy has the highest acceptance rate. Apparently, by res-
cheduling at every order arrival and making use of the detailed information, the
scheduling policy can better identify the jobs that fit in.

5.2 Impact of selectivity on performance

In the previous section we saw that both policies are selective with respect to
the type of orders that are accepted or rejected, especially in the case of high
job mix variety. In this section we investigate the impact of this selectivity on
the performance of the two order acceptance policies.

The first performance measure that we discuss is the actual percentage of
on-time job sets. Table 6 summarizes the results averaged over all scenarios.
We observe that both policies cannot realize the target performance and that
the regression policy performs better than the scheduling policy.

Table 6: Actual percentage of on-time job sets

Policy Target % on-time
50 75 95

Scheduling 32.63 57.08 84.11
Regression 48.99 70.95 91.17

Referring to Table 2, it is evident that the control over the percentage of
on-time job sets, in the case of dynamic order arrivals, is not as good as in the
case of the construction and testing data sets. Note that the job generation
process is the same both under dynamic order arrival and in the construction
data set. The only difference is that under dynamic order arrival, the orders
are accepted only if, according to the policy used, sufficient capacity is expected
to be available to complete the resulting job set, whereas in the case of the
construction and testing data sets, the job sets are generated randomly. Thus,
we may conclude that this performance loss is due to the selective way each
policy accepts the orders.

Table 6 shows that the selectivity has a big impact on the % on-time per-
formance for the scheduling policy. This may be explained as follows. Under
the scheduling policy, an order is accepted only if a schedule can be constructed
such that the resulting makespan plus an amount of slack is less than the period
length. The amount of slack is necessary to cope with the uncertainty in the
processing times and represents a fraction from the ex ante makespan. This
fraction, the slack factor, has been determined empirically on the construction
data set. By identifying jobs that, assuming deterministic processing times, ”fit
in” to the already accepted jobs in the set, the scheduling policy selects a higher
number of smaller jobs, as compared to the job sets in the construction data
set. As a result, the empirical distribution of the slack in the construction data
set is different from the empirical distribution of the slack in the job sets that
result from the acceptance procedure (see Figure 3).
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Figure 3: Density trace for the slack factor for the scheduling policy

We performed the Kolmogorov-Smirnov test (Hollander and Wolfe 1999)
to compare the distributions of the slack for the two samples. This test is
performed by computing the maximum difference between the distributions of
the two samples. The maximum distance is 0.22, in the case of Erlang shape
parameter 2 and 0.36 for the Erlang shape parameter 10. The results showed
that there is a statistically significant difference between the two distributions
at the 95% confidence level, for both Erlang shape parameters.

Figure 4: Realized capacity utilization and job set tardiness
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We focus further on the impact of selectivity on the job set tardiness and the
realized capacity performance measures. Figure 4 summarize these performance
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measures averaged over 15× 250 replications.
The scheduling policy obtains the highest realized capacity utilization but a

much higher job set tardiness as compared to the regression policy. Apparently,
the scheduling policy underestimates the effect that accepting a larger number
of jobs with a tighter fit has on the ex post makespan. A larger number of jobs
will result in a higher job interaction which results in a higher ex post makespan.
Apparently, the slack that is added to deal with the uncertainty in the processing
times is too small to compensate for the selectivity in acceptance. Note that the
difference between the two policies in capacity utilization is small for high levels
of uncertainty, while it is much larger for low levels of uncertainty, whereas for
job set tardiness the difference is largest for high levels of uncertainty. This
suggests that especially under high levels of uncertainty, it would make sense to
use a more aggregate policy for order acceptance.

Figure 5: Feasibility performance
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The last performance measure
we discuss is the feasibility per-
formance. It ranges between 0.76
and 0.82 and these results are
presented in Figure 5.

We can observe that the
scheduling policy is clearly outper-
formed by the regression policy, in
all the considered scenarios. This
is the result of that fact that the
scheduling policy accepts in gen-
eral a larger number of jobs and
therefore a tighter schedule is ob-
tained. In a tight schedule, a
high number of jobs will result is
a higher number of no-wait restric-
tion violations, especially in the case of high uncertainty in the processing times.

6 Conclusions

Two order acceptance approaches, which differ in complexity and with respect
to the level of detail of information used, are discussed in this paper:

• scheduling policy (rescheduling at every order arrival and order accept-
ance based on detailed schedule information);
• regression policy (order acceptance based on a regression model of five
aggregate job set characteristics and construction of the schedule only
after all orders have been accepted);

We performed simulation experiments to compare the characteristics of the
accepted job sets with the characteristics of the set of arriving jobs. The ex-
periments clearly indicate that both policies are highly selective in the case of
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high job mix variety. Both policies show a particular selectiveness by accepting
jobs that have, on average, a smaller number of processing steps and a higher
overlap.

The impact of this selectivity on the performance of the order acceptance
policies has been further investigated. The results show that the control over
the percentage of on-time job sets under dynamic order arrival is worse than in
the construction and testing data sets. This holds for both policies. This is the
result of the selectivity of the policies. However, in the dynamic order arrival
case this control is much poorer for the scheduling policy. By constructing a
tighter schedule in the acceptance, as compared to the construction data set,
the scheduling policy underestimates the consequences of the resulting tighter ex
ante schedule on the total ex post makespan. As a consequence, a high capacity
utilization is obtained but also a high job set tardiness and a low feasibility
performance.

The regression policy is also selective but correctly estimates the amount
of slack needed for coping with the uncertainty in the processing times. Thus,
the strong point of the regression policy is in a more accurate control over
the percentage of job sets on time. Furthermore, under high uncertainty the
difference in realized capacity utilization between the two policies is small.

From these results it is apparent that both policies succeed in capturing
important aspects of the makespan estimation problem, but each policy cap-
tures different aspects. Therefore, future work should involve order acceptance
policies that, at the same time, construct tight schedules but also correctly
estimate the slack needed for achieving a preset delivery reliability.

A lot of past data is needed for both policies to tune the slack factor or
to determine the regression coefficients. The best estimation quality may be
obtained when the coefficients of the estimation models are obtained based on
historical production data of a specific production department. Nevertheless, in
real life, there is a limited amount of historical data available and this may not
always be sufficient to produce stable estimates. The sample size on which the
regression model is constructed is important.

Apart from the specific environment of batch process industries considered
here, to our knowledge this has been the first study to actually study selectivity
in any production control context. Previous work on order acceptance has not
addressed this issue that we have demonstrated to be very relevant. Separating
the good performance of scheduling rules in selection and their apparent poor
performance in assessing the consequences of selection may be an insight with
much broader relevance that deserves extensive research attention.
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Appendix A: Scheduling-based makespan estimation models

The slack factor is added in order to compensate for the effect of uncertainty in
the processing times. The following procedure is used to determine this factor.
First, the relative increase of the makespan, which is a random variable, is
determined for the construction data set.

δ =
Cmax(S)− Cex ante

max (S)
Cex ante

max (S)
(10)

Next, its empirical distribution is obtained for each Erlang shape parameter
since we assume that the relative increase in the makespan is influenced only by
the level of uncertainty in the processing times. Furthermore, we are interested
to obtain α- reliable estimates for the makespan, therefore the α- percentile of
the empirical distribution of the relative increase variable, γα

k , is determined.
Table 7 gives these values for each Erlang shape parameter.

Table 7: The α percentile values
k γ50

k γ75
k γ95

k

2 0.44 0.50 0.61
3 0.34 0.38 0.46
4 0.28 0.32 0.38
5 0.24 0.27 0.33
6 0.22 0.25 0.30
7 0.19 0.22 0.27
8 0.18 0.21 0.25
9 0.17 0.19 0.23
10 0.16 0.18 0.21

Appendix B: Statistics-based makespan estimation models

Previous research (Raaymakers et al., 2001; Ivanescu et al., 2002) showed that
accurate estimates for the ex post makespan of a job set are obtained using:

Ĉmax = (1 + Î) · LB (11)

where LB is the Carlier lower bound and Î is a point estimate for the interaction
margin obtained by means of multiple linear regression analysis and by using
the following aggregate job set characteristics: the average number of processing
steps µs, the squared coefficient of variation of the expected processing times
cv2

E[p], the workload balance ρmax, the number of jobs in the job set, njobs and
the squared coefficient of variation of the effective processing time cv2

p. For
detailed definitions of these characteristics we refer to Raaymakers and Fransoo
(2000).

In this paper we employ a similar modelling approach and a multiple linear
regression model is determined to obtain an estimate for the interaction margin.
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A residual analysis is performed to test the adequacy of the model. Because
heteroscedasticity was proved to be present, a natural logarithm transformation
of the response variable has been applied. Diagnostic checks on the subsequent
model confirmed the appropriateness of this transformation. Equation (12) gives
the regression equation for the subsequent model.

ˆln(I) = −1.130 + 0.172 · µs · ρmax + 1.085 · cv2
p · ρmax

− 0.009 · cv2
E[p] · njobs − 0.083 · µs · cv2

E[p]

(12)

75% of the variability in the new response variable, the transformed interac-
tion margin, is explained by this model and the standard error of the estimate
(σ̂) is equal to 0.11.

The predictive performance of this model is further evaluated on the test-
ing data set. The mean estimation error is 0.01 and the standard deviation of
the estimation error is 0.12. Thus, we may conclude that the model produces
approximately unbiased estimates. We evaluate further the predictive perform-
ance of the makespan estimation model (11). The mean estimation error is
0.68, thus accurate estimates for the ex post makespan of a set of jobs may be
obtained by using a linear regression model to estimate the interaction margin.
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Appendix C: Experimental results for the target of 50% and 75% re-
liable job set makespan estimate

Figure 6: 50% target on-time job sets
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(a) acceptance rate
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(b) average load per job
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(c) average overlap per job
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Figure 7: 75% target on-time job sets
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(a) acceptance rate
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(b) average load per job
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(c) average overlap per job
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