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VOORWOORD

Het werk beschreven in dit proefschrift is uitgevoerd aan de
Technische Universiteit Eindhoven in de vakgroep Systeem— en
Regeltechniek van de Faculteit der Technische Natuurkunde in de
pericde 1984-1989.

De basis van het huidige PRIMAL pakket is gelegd in 1984 en
sedertdien verder ontwikkeld door Walter Renes en Ruud van der
Linden. Belangrijke bijdragen aan het vragenpagina-systeem =zijn
geleverd door Pim Bollen. Bij de ontwikkéling van het PRIMAL pakket,
de implementatie en evaluatie van de diverse methoden en bij de
toepassingen in de procesindustrie is veel werk verzet door de
studenten die ik de afgelopen jaren heb begeleid: de afstudeerders
Peter Berben, Rob Driessen, Paul Janssen, Peter Gerlings, Onno van
het Groenewoud, Martin Hogendoorn, Tiny van Lanen, Pim van Meurs,
Walter Renes en Wim Tolboom, en de stagairs Walrick Dirkx, Gert-Jan
van Dijk, Rob Faessen, Ludy Hardy, Ad van Kessel, Hans Meerman,
Martin Schoenaker, Frits Staals en Mark Vester.

De koppeling van PRIMAL aan het glas-feeder proces is uitgevoerd in
samenverking met de PICOS groep van Philips Clas, met name met Ton
Backx en Anton Koenraads. De analyses van de data zijn onafhankelijk
van en parallel aan deze groep uitgevoerd.

De metingen aan het kristallisatieproces en de destillatietoren zijn
in samenwerking met Leo Steijvers en Frits van de Mortel van EXXON
Chemical Holland uitgevoerd.

De commercialisatie van het PRIMAL pakket wordt ondersteund door het
Instituut ITP/TUE~TNO.

Eindhoven, April 1880
Ruud van der Linden
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SUMMARY

In the control of continucus production processes, the dynamical
behaviour of the process often plays such an important role, that
detailed knowledge of the process behaviour, preferably in the form
of a sufficiently reliable model, is required. This knowledge may be
obtained by theoretical and experimental means.

In experimental modelling, mathematical process models are derived
from measurements of process input and output signals, which
subsequently may be used in, for instance, diagnosls, process
monitoring, prediction and automatic control.

This thesis describes a comprehensive strategy for experimental
modelling. the development of a software package to support this
strategy, and the application and evaluation of this strategy (and
its methods) in industrial practice.

The developed strategy is characterlsed by an interactive learning
scheme and recal-time analyses. The scheme comprises the definition
of project goals, Investigation of avalilable process knowledge,
installation of equipment, experiment control, data acquisition,
data conditioning, signal analysis, identification and model
validation, as well as the design, test and evaluation of control
systems.

In contrast to conventional "off~line” approaches to identification,
the Importance of real-time analyses stands central in  this
strategy., which therefore includes the planning and execution of the
experiments as essential steps.

The real-time approach lets the user {nspect and analyse the
measured data immediately, accumulating knowledge about the process
behaviour, and using it to improve the experiments and the analyses
accordingly.

Also, the constructed models may be used as "predictors”, running in
parallel to and synchronised with the process, comparing the
predicted with the actually observed process behaviour.

Lastly, the designed control systems may be applied in simulations,
that wmay (gradually) shift towards actual applications, while
constantly monitoring their performance.

Thus, in all project phases, the user learns effectively and may
profit immediately from the acquired knowledge.

To support the experimental modelling strategy in practice, the
package PRIMAL (Package for Real-time Interactive Modelling,
Analyses and Learning) has been designed and developed. This package
offers the facilities to couple to industrial processes, to carry
out experiments, to analyse the data, to estimate models, and to
design and test control systems, all in real-time.

- iy -



For each step in the experimental modelling scheme, methods have
been developed and implemented in PRIMAL. Special attention has been
given to the identification step, where a variety of methods has
been made available, including prediction error methods,
instrumental variable methods, and new variants of output error
methods described here. In the practical applications, the
performance of these identification methods and of the FPRIMAL
package as a whole have been evaluated.

PRIMAL has been applied to several iIndustrial processes, of which
the obtained results on a glass production process, a para-xylene
crystallization process and a toluene-xylene distillation process
are described in this thesis.

The results show that the developed experimental modelling strategy,
and its modern multivariable methods, may be applied successfully to

industrial processes and may lead to valuable physical insight and
improved control.
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CHAPTER 1 INTRODUCTION

1.1 Trends in process control

In the course of the past decades, industrial processes have been
automated at a high pace. Limiting the scope to continuous
production processes as mainly found in the process industries, we
see that computer—based automatic control systems are now
commonplace, [Astrdm, 1985; Van Cauwenberghe, 1985].

In parallel to the development of automatic control systems, much

research has been done on modelling and control, concentrating.
mainly on (multivariable) linear systems, [Eykhoff, 1974, 1881;

Rstrom & Wittenmark, 1984; Ljung, 1987, 1988; ..].

Despite the abundance of modelling and control design techniques,
the classical PID-controller is still widely used in single loops or
cascades in the process industry, and the controllers are often
still tuned using only a few characteristics of the process.
Recently, however, there is a new trend towards application of
Multi-Input Multi-Output (MIMO) process modelling and control design
techniques in industry.

A first reason for this trend is that sharper demands are made on
the production process in terms of quality and reproducibility,
energy and raw materials consumption, throughput, flexibility, and
pellution, which can. hopefully, be achieved by more sophisticated
control, based on mathematical models of the process.

Secondly, the theory of modelling and control system design of
linear systems has matured. In identification theory several
attempts to unify the "bag of tricks” [Eykhoff, 1974: Ljung, 1987]
have shown that numerocus different identification techniques may be
regarded as special cases of a few general techniques.

Based upon such techniques commercial tools become available for
industrial practice.

Thirdly, modern instrumentation systems provide sufficient
programmability, computing power and data storage to meet the
technical requirements for the implementation of advanced control.
Furthermore, the possibility to automatically collect and analyse
(large amounts of) process data is of fundamental importance to
techniques for experimental analysis.

This thesis concentrates on methods, techniques and tools that may
be used in modelling and control of continuous and batch-wise
continuous production processes. It introduces a strategy and
describes an environment and tools for carrying out real-time
experimental analyses of the (dynamical) process behaviour.



1.2 Some notes on modelling

If the dynamic behaviour of a process is not well understoed, for
instance due to complex Interactions between several process
variables or as a result of noise or external disturbances, it may
be difficult to predict and control future behaviour. In these
cases, developing a mathematical model reflecting the process
properties of interest, may contribute to understanding and
controlling process behaviour.

In the process design phase, models of its dynamics may be used to
ensure a requested dynamical behaviour.

For exlsting processes, models may be used for diagnosis, for
monitorinzg the process to detect deviations between the actual and
expected process behaviour in an early stage, and for prediction and
control of process behaviour in the case of set point changes and
disturbances. The performance of a process may critically depend on
the ability of the control system to reduce the effect of
disturbances and to keep the operation conditions within the desired
range.

A way to order the various approaches to mathematical modelling, is
by picturing them on a scale with at the ends the two extremes: at
one side "theoretical modelling” and on the other side "black box
system identification™.

In thecretical modelling, basic laws from physics (conservation
laws), thermodynamics, chemistry, together with empirical relations
are used to construct a model.

In black box system identification, a model class is posited, which
usually does not reflect the internal structure of the process. The
model parameters are estimated from the observed data, using scme
optimisation technique for minimising a criterion of the misfit
between the behaviour of the model and the behaviour of the real
process.

Since the models do not reflect the internal structure of the
process they are often called "black box" models. Only their
input~output behaviour is considered important.

Analogous to black box models, it has become common to define
"white box"” models as the models resulting from theoretical
modelling.

Theoretical Black box system
modelling identification
white box models grey box models black box models

In practice, the two extremes are never used, but a sensible
combination of the two approaches is chosen, resulting in more or
less "grey” models.



Some characteristics of these approaches:

Theoretical modelling:

~ Constructing a theoretical model of an industrial process

requires detailed knowledge about the physical and chemical
phenomena involved. As a result, model construction requires
expert knowledge that may be unavailable and is usually very
time—consuming.

In several stages during the construction of the model,
simplifications or assumptions are necessary in order to be able
to write down mathematical equations. Their influence on the
accuracy of the model is often difficult to predict and no
direct measures of the loss of accuracy are available.

As a result, experiments are still needed to verify the model.
If the verification reveals model errors, model-adjustment is
needed, for instance by adaptation of parameter values.

The model not only describes the input—output properties of the
process, but also its internal behaviour. The states and
parameters in the model customarily have a direct physical
interpretation.

Usually, the model has a wide validity region, depending on the
assumptions made when deriving the equations. The model may be
used in the process design phase and for different process
sizes. On the other hand, the modelling 1is very process
specific: another type of process may require a basically
different model.

Since the resulting model is often a complex set of (P)DV's and
algebraical equations, its use in simulations may be numerically
difficult and time-consuming, and the model may be inappropriate
for use in real-time.

If, as hinted at above, the model contains unknown or ill-known
parameters, experiments are still needed to fit the model to the
experimental data. This wusually results In complicated
constrained non-~linear optimisation problems.

Black box system identification:

Black box models only require knowledge about the Input-output
behaviour of the process, but no detailed knowledge about its
internal behaviour.

Since the model is not based on physical principles, it is
generally accepted that it yields little physical insight into
the process behaviour.

For constructing the model it 1s necessary to carry out
experiments. The process must therefore exist, be well
instrumented, and the relevant input and output variables must
be measurable and/or excitable.

The quality of the black box model depends critically on the
information contents of the process data wused for its
construction. Therefore, data acquisition and experiment design
are key factors for a successful approach.
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Usually. the resulting model has a limited validity range. It is
accurate only for a specific process, in a certaln operating
range. Within this range, however, the model may be very
accurate.

Since the model is estimated from experimental data, it is

usually feasible to derive direct estimates of its accuracy.

However, there is no guarantee that the model will remain viable

under different process conditions.

- The techniques used in the identification approach are not
process-specific and may be applied to widely different types of
arbitrarily complex processes,

~ Efficient numerical techniques are available for estimating the
parameters of linear black box models from the observed data.

- Black box models are usually sufficient for prediction and
control. Because of their simple structure they lend themselves
better to real-time application.

- The identification approach cannot be used in the process design

phase.

This thesis describes a methodology and techniques for experimental
modelling.

The process of finding a sultable model by experimental modelling
comprises the following steps:

Design of experiments.

- Data acquisition: the collection of data from the process.
Selection of a set of candidate models (the model set).

A choice of identification techniques for selecting the best
model from the model set.

Model validation: assessment of the quality of the estimated
model.

The actual methods that are considered are restricted to black box
techniques. The main motivation for this approach is a pragmatic
one. The most important advantage of black box techniques are the
applicability to widely different processes and the ability to
generate a model within a short timespan. If the purpose of a model
is prediction or control, black box models usually prove to be
effective.

Since physical knowledge about the process is extensively used in
experiment design and model structure selection, we prefer to call
this approach “dark-grey"” modelling.

In experimental modelling, a point of great concern is the
dependence on "good” data, that are representative of the process
behaviour. Usually, this means that experiments must be carried out
which involve superimposing test signals on the process inputs,

We assume that data, collected from the process, consists of a set
of signals, sampled equidistantly in the time.

The structure of the models under consideration is restricted to
discrete~time, linear, causal, time-independent, finite order,
multi-input, multi-output models, as described in Chapter 2.

The restriction to this class limits the type of processes to which



the techniques can be applied. Linear models, however, may be used
successfully for description of the process near an operating point.
The advantage of this approach is the availability of a rigorous
mathematical theory and a great variety of efficient numerical
procedures.

Some types of processes may, however, present insuperable problems,
for instance, processes subject to  hysteresis, pronounced

(dynamical) non—-linearity or abrupt changes in the dynamical
behaviour.

1.3 Scope of this thesis

In this thesis we will:

— Discuss a methodology for experimental analysis of production
processes in the process industry.

Describe a Package for Real-time Interactive Modelling, Analyses
and Learning (PRIMAL) to implement the methodology.

Discuss the application of the methodology and of PRIMAL in the
experimental analysis of several industrial processes.

Assess the usefulness of established fdentification techniques
and discuss effective variants.

§

The thesis is structured as follows:

Chapter 2 presents the theoretical framework and those concepts that
are needed in Chapters 3 and 5. Identification is considered in
terms of approximate modelling.

Chapter 3 discusses the experimental modelling strategy.

Chapter 4 considers the implementation of the strategy in PRIMAL,
which provides a platform for experimental modelling and control
design methods and which has been specifically designed for
application in industry.

Chapter 5 discusses the identification methods made available in
PRIMAL.

Chapter 6 discusses the application of the experimental modelling
strategy to three cases in the process industry.

In Chapter 7 the final conclusions are summarised.

In summary, the principal contributions  described in this thesis
are:

-~ The development of a comprehensive scheme for experimental

modelling, that is based on jinteractive learning strategy for
process analyses in real-time.
The scheme covers preliminary investigations, connecting to the
process, experiment design, data acquisition, data conditioning,
signal analyses, identification, model wvalidation, control
system design and testing.

-~ The PRIMAL package, vwhich implements the lnteractlve (real-time)
strategy.

- The application and testing of the experimental modelling
strategy in several cases in industrial practice.



CHAFTER 2 THEORETICAL FRAMEWORK

In Chapter 1, identification has been introduced as a way to obtain
a mathematical model of a process on the basis of experimental data.
Since usually the physical relations governing the process behaviour
are more complex than the proposed model and as the data obtained
from the process may describe only part of its behaviour,
identification should be considered as a way to generate an
approximate model.

This chapter summarises selected concepts and definitions to serve
as a background for the discussion of the experimental modelling
scheme in Chapter 3 and the identification methods in Chapter 5,
following the 1lines of “classical” identification theory, as
formalised by Ljung [1976, 1977, 1983, 1987] and Sdderstrdm & Stoica
[1983a; Stderstrdm, 1989]. The experienced reader may proceed
directly with Chapter 3.

Section 2.1 discusses the approximate modelling problem. Section 2.2
presents the different model representations used to describe linear
systems in PRIMAL. In Sections 2.3 and 2.4 the basic system
description and the resulting predictor models are introduced.
Section 2.5 concentrates on the approximate modelling aspects of the
predictor models. In Section 2.6 different parametrisations are
introduced that are used in the PRIMAL identification methods
discussed in Chapter 5.

2.1 Approximate modelling

.In order to stress the notion that identification is considered as
approximate modelling, it is useful to distinguish between the model
that is assumed to have generated the data, and the model derived
{estimated) from the observed data.

The term Data GCenerating Model {(DCM) may be introduced, cf.
[Janssen, 1988] to describe how the outputs y{t) are constructed
from the inputs u(t) and disturbances e(t). The DCM is a theoretical
construct with the main purpose to serve as a basis for discussing
identification methods and for analysing their properties.

Identification may be viewed as finding a model that describes
sufficiently well the dynamical relation between the observed
input and output data sequences. Thus, it requires a rule for
generating a model residual from the experimental data and for
minimising some scalar measure of the residuals (i.e. a Residual
Cenerating Model (RCM). cf. [Janssen, 1988]). We will use the
concept of a "predictor model” as formalised by Ljung [1987]. i.e.
a rule of predicting the output of a process on the basis of past
data of the measured Inputs and outputs.



2.2 Model representations

In this section we introduce different ways to represent models of
linear, discrete time, time~invariant, finite dimensional,
multivariable systems, briefly discussing their relatiecns.

This subject 1is treated extensively in the literature [Kailath,

19807. and consequently, we restrict ourselves to the definitions
and terminology needed later.

We will discuss causal systems with p inputs, u{t) e FP. and q

outpgts. y(t) e R, which are functions of the discrete time t:
te Z7. '

Vector difference equations

A common description of a linear dynamical system is given by a
backward vector difference model:

Aoy(t) + Aly(t-l) ... F Ana(t-na) =
BOu(t) + Blu(t—l) + ...+ Bnbu(t—nb) (z.2.1)

where Bi € quP. i = 0..nb, and Ai € quq' i = O..na, are

matrices with constant coefficients. Equation (2.2.1) expresses the

output y(t) in terms of the input u(t) and previous values of inputs
and outputs.

Introducing the backward shift operator g~ !, g 'u(t) = u(t-1), this
model may be written as:

Alg"*)y(t) = B(g"*)u(t) (2.2.2)
na
AGhy = ) Ag!
1=0
nb
Ba) = ) Bl
1=0

where A(g™'), B(q"!) are matrix functions in the shift operator g~ '.
Using the z-transformVa similar form is obtained:
A(z"Y)y(z) = B(z"*)u(z) (2.2.3)

where A(z" '), B(z™') are polynomial matrices in z™*.



Models with this structure are usually called ARMA ({Auto Regressive
Moving Average) models or Matrix Fraction Descriptions (MFD's).
depending on their formulation in either the forward or the backward
shift operator. We will not use this distinction, and only discuss
models in the backward shift operator. This form makes the models
suited for direct use in simulation and prediction.

The model (2.2.1) describes a causal (proper) system if A, is
non-singular (i.e. det{Ay;) # 0). If we further require that A is
monic, Ag = I, we obtain a straightforward expression for y(t):

na nb
y(t) = - z Ay(t-1)  + 2 B,u(t-1) (2.2.4)
i=1 i=0

Additionally we often require the system to be strictly proper, i.e.
By = 0, which is a natural assumption for most sampled data systems.

Transfer function models

An alternative way to represent the system is by its input-output
transfer operator (transfer function) G(g™'):

y(t) = C(g™"u(t) ' (2.2.5)
with CG(q™') a qxp rational matrix function in q~'.

Using the Laurent expansion G(g~') can also be written as:
. Eoe]
Ga)= ) G . G, e B¥P (2.2.6)
1=0

The system is strictly proper if G5 = 0.
This transfer function representation is related to the difference
equation. We may rewrite (2.2.1) to:

y(t) = A7 (q7")B(g " Ju(t) := G(g™"u(t) (2.2.7)

Matrix fraction descriptions

The term MFD was already mentioned in relation to the vector
difference equation. Put more formally, we define a MFD as follows,
cf. [Kailaith 1980]: Let G(z) be a rational matrix of dimension gxp
and A(z]) a gxq non-sin§ular polynomial matrix, B(z) a gxp polynomial
matrix, then G(z) = A" (z)B(z) is a left MFD of C(z).

The degree of the MFD is defined as the degree of the determinant of
A(z): deg det A(z).



A MFD is not a unique representation of the system's transfer
function. Multiplying A(z) and B(z) by any non-singular polynomial
matrix W(z) yields a MFD with exactly the same transfer function.

1f W(z) is not unimodular it will affect the degree of the MFD.

The MFD is said to be left coprime if A(z) and B(z) only have
unimodular left divisors.

Still, there are infinitely many left coprime MFD's describing the
same system, because transformation of {A(z),B(2)} with any
unimodular W(z) will produce another MFD with the same degree.

The matrix fraction description 1Is the extension to the
miltivariable case of the numerator and denominator polynomials in
the transfer function in the Single Input, Single OQutput (SIS0O)
case. Analogously the concept of zeros and poles may be extended to
the MIMO case on the basis of the Smith-McMillan form.

Markov parameter models

A linear system may be described completely by its impulse response.
For a MIMO system the value mji(k) of the impulse response of output

Jj at time iInstant k, as a result of an impulse 6(k) on input i may
be written into the matrix:

M(k) = [ my (k) 1, k=0,1,.. (2.2.8)

The matrix M(k) is called the k-th Markov parameter.

The Markov parameters are a unique description of the transfer
function. However. an infinite number of parameters is required to
exactly describe it. For a finite dimensional system the Markov
parameters are related, [Backx, 1987].

The response y(t) of the system to an arbitrary input u(t) may be
written as a convolution sum:

0

y(t) = ) M(u(t-k) (2.2.9)
k=0

For a strictly proper system M(0) = O.
Comparing (2.2.6) with {2.2.9) shows the immediate relation between
the transfer function and the Markov parameters.

State space models

The state space representation describes an n-th order system by n
first order equations:

Ax(t) + Bu(t) o (2.2.10)
Cx(t) + Du(t)

x(t+1)
y(t)

wm



with a state vector x(t)elRn and the matrices {AeRnxn,BeRnxP.Cequn.

DeRT*P } defining the model.
The state space equations describe a causal system. If D=0 the
system is strictly proper.

The state space representation and the transfer function are related
according to:

G(z) =C(zI - A)"*B+D (2.2.11)

So, an MFD may be transformed to a state space representation
(realisation) and vice versa, [Wolovich, 1974].

Any realisation of order n = deg det A(z) of an MFD A"'(z)B(z) is
a minimal realisation if and only if the MFD is left coprime,
[Kailath, 1980].

Relations between the models

In the discussion above it was briefly indicated how the different
model representations are related. For a more formal treatment of
the relations refer to [Hannan, 1988; Kailath, 1980; Janssen, 1988:
and the references therein].

The PRIMAL package extensively uses the state-space and (left) MFD's
for representing systems. The polynomial matrices occurring in the
MFD are stored as three-dimensional matrices. '

2.3 Data generating models for identification

For the purpose of identification the basic model types introduced
in Section 2.2 are parametrised and extended with a term
representing the part of the output that can not be explained by the
input, which is usually considered to be of a stochastic nature.

Let A be a model set parametrised by 6 € Imn. This may be written as:
= {M(6) | 6 € m }, cf. Appendix A.

We now introduce the general data generating model:

A(8): y(t) = G(q~*;8)u(t) + H(q ':08)e(t) (2.3.1)

G(g:8) = Go(8) + G,(8)g™! + C2(8)q™2 + .. (2.3.2)

H(q:8) = Ho(0) + H,(8)q™* + Hz(e)q°2 .. (2.3.3)
where:

: the discrete time, t € Z*
e{(t) : a sequence of independent and identically distributed
random variables with zero mean (a white noise)
2] : the n6 dimensional parameter vector’
G(.) : a linear (qxp) dimensional filter, depending on 6
) : a linear {qxq) dimensional filter, depending on 6
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Usually the set of admissible models is restricted to 6 € ﬁm.
9,={0 ] Go) =0
Ho(8) = I (monic),

H™*(z) and H(z) analytic for |z]| 2 1,

H™*(q:6)C(q:8) stable } (2.3.4)

L{ e(t)

H(g™*:0)

e |

=| C(qg"*:8) ———=3(®) = y(t)

The model consists of a deterministic part G{g *:6)Ju{t) and a
stochastic part H(g ':9)e(t). All disturbances inflicting the
process, like uncontrolled inputs and measurement noise, are lumped
together in this term and are thus assumed to be generated by a
noise colouring filter H(g™*:8) from a white noise e(t).

The model is therefore completely described by the filters C and H
and the probability density function of the noise. In the sequel

e(t) is usually characterised only by its first and second order
properties.

Ee(t) =0

I ;
Ee(t)e (s) = Aét.s ) (2.3.8)

The linear, finite order, time-invariant data generating model
(2.3.1) is the basis for most identification methods, mainly owing
to its nice mathematical properties. In practice, the model
restrictions limit their application.

As stated in Chapter 1, application is restricted to continuous
production processes, operating in a limited range around an
operating point. In this case the process may be approximated by a
linear, time—invariant model. However, the process needs not to be
in the model set to achieve a satisfactory result. For approximate
modelling the optimality of the techniques based on linear models is
lost, but yet the approximation may be adequate.
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Especially the modelling of the disturbances as filtered zero-mean
white noise seems artificial. This description of noise is supported
by the central limit theorem and the spectral factorisation theorem;
cf. [Anderson & Moore, 1979], which states that any nonsingular
rational spectral density function ¢{w) can be written as:

o) = = H(e 1) n" (1) (2.3.6)
2w

H(g™*) and H™*(g™') asymptotically stable
H(O) = I

As a consequence the signal with spectral density ¢(w) can be
written as y(t) = H(g *)e(t), Ee(t)eT{s) = Aét s

Yet, the disturbances encountered in practice will rarely fit this
format. One may expect deterministic disturbance components and
non-linear effects. The description of the noise should therefore be
considered as a vehicle to arrive at predictor models with nice
properties.

2.4 Predictor models

For linear, time-invariant systems a predictor model may be defined
as:

Definition 2.4.1 [Ljung, 1987]
A predictor model of a linear, time-invarlant system is a filter:

y(tlt-1) = W (qdu(t) + W (a)y(t) (2.4.1)
where Wu(q) and Wy(q) are stable linear filters . o

Note that this definition does not specify the behaviour of the
prediction error:

e(t) = y(t) - y(t|t-1) (2.4.2)

Definition 2.4.2

A h~step-chead predictor model 1s a predictor model for y(t) that
only depends on data Zt-k. k2 1.

AR {u{n).y(n) | n=1.2...,t-k} o

Straightforward analysis shows how a one-step-ahead prediction error
model may be derived for the general model (2.3.1).

We assume that u(t) 1s uncorrelated with e(s) for t<s. This is a
natural assumption for open loop and causal feedback situations.

- 12 -



First (2.3.1) is rewritten to:

y(t) = G(q:0)u(t) + H(g:0)e(t)

G(q:0)u(t) + [H(g:8)-I]e(t) + e(t)
G(g:8)u(t) + [H(g:0)-IJH *(q:6)[y(t)-G(a:8)u(t)] + e(t)
H"(q36)G(q:0)u(t) + [I-H"(q:0)]y(t) + e(t)  (2.4.3)

The first two terms are known at time t, since they contain only
past data. The last term e(t) is unpredictable.

An estimate for y(t) may be generated by taking the conditional
expectation of y(t). Using the properties of e{t) (2.3.5) this
conditional expectation may be written as:

o

y(t|t-1:6) = H™'(q:8)G(q:8)u(t) + [I-H *(q:08)Iy(t) (2.4.4)
This predictor fits the definition of a predictor model:

W, (q:8) = H™*(q:8)G(q:6)
Wy{q;ﬁ) I -H*g:8) (2.4.5)

]

The predictor (2.4.4) is also optimal in the mean square sense.
Taking an arbitrary linear predictor s(t) for y(t)., depending only
on past input and output data, and computing the prediction error
covariance matrix shows:

E(s(t)~y(t))(s(t)-y(t))
E(s(t)-y(t[t—1 9))(s(t)-y(t|t—l 9)) + Ee(t)e (1) 2 A (2.4.6)

Equality is achleved for s{t) = y(t|t-1;9)

Stability of the predictor requires that the filters H™'(g:8) and
H"'(g:;08)G(q:9) are stable. The admissible set of parameters is
therefore restricted to (2.3.4).

Prediction error methods

The term Prediction Error Method {PEM) is generally used for methods
that generate a parameter estimate by minimlsing a scalar function
of the prediction errors. Since the prediction errors are generated
by filtering the data (2.4.4) we may write:

8y = argmin V(6.2 (2.4.7)
6 e Im
where VN is some scalar function of the prediction errors.

A PEM {s thus defined by:
- a choice of model structure {a predictor model)
~ a criterion function V

- 13 -



Common criterion functions are:

V(8.7) = det [ Ry(6,2") ] (2.4.8)
and:
V(8.2 = tr aRy(6.7") (2.4.9)
with:
{1 a positive definite weighting matrix,
N :
Ry(0.2%) = Ee(t 8)el (t,6) | (2.4.10)
t=1 '

Remark: S&derstrom [1989] shows that a PEM with criterion function
(2.4.9) coincides with the Maximum Likelihood Estimation of 6 in
case of jointly Caussian noise e(t).

Remark: The criterion (2.4.8) asymptotically leads to the same
parameter estimates and parameter covariance estimates (2.4.8) only
if the weighting matrix Q= A"%. In iterative and recursive
jdentification methods, A can be approximated by the covariance
matrix of the innovations e(t,8).

Linear regression models and instrumental variable methods
If the prediction error is linear in the parameters a quadratic

criterion function can be minimised by the ordinary least squares
method. In this case the prediction error can be rewritten to:

e(t) = y(t) - 9 ()8 (2.4.11)

vhere ¢ 1s a vector contalning only past values of the inputs and

outputs. Minimising V with respect to € results in the Least Squares
(LS) solution:

N
By = sol { —; Y e(t)y(t)-T(t)8] = 0 } (2.4.12)
t=1
which leads to:
N N
=) erdend’ 17 —1—2 My 1 (24.13)
N e N i :

This equation can be solved ekplicitly and yields the global minimum
of the criterion function. However, it is well known that only under
rather unrealilstic assumptions the estimate is unbiased.
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Assuming that y(t) is generated by a DGM:
T
y(t) = ¢ ()80 + vo(t) (2.4.14)

and substituting y{t) in equation {2.4.13) leads to:

N N
aN = 0 + [ —-1—2 xp(t)(p(t)T ]—1 [‘”‘1‘—2 (t)vo(t) 1 (2.4.18)
N t=] N t=1

which is biased unless the first matrix is non-singular and ¢(t) is
uncorrelated with the disturbances va(t), The first condition is
generally satisfied If the input is persistently exciting of
sufficient order. The second condition is satisfied only if:

vo(t) is a white noise ‘
or,

the input {u(t)}} is independent of {v5(t)} and the model

includes only Moving Average (MA) parameters.

The bias problem may be overcome in several ways. One approach Is to -
model the disturbances as filtered white noise and to include the
parameters of the filter H{gq™') in the parameter vector 6. The
linearity of the regression model is generally lost, so that a
numerical optimisation method must be used to estimate 6.

Another approach is to find a vector of instruments 7(t) that is
correlated with ¢(t), but uncorrelated with vg(t}.

Methods to construct a vector of instruments n(t) satisfying the
above requirements and solving the equations:

N ;
By = sol {1 ) n(0)[y(t)-¢ (18] = 0} (2.4.16)
6ctn N 4

are called Instrumental Variable (IV) Methods.
A suitable vector of instruments can be constructed by filtering
input and output data:

M) =W (e + W () (2.4.17)

IV-methods and extended IV-methods implemented in PRIMAL are
discussed in Chapter 5.

2.5 Asymptotic properties and approximate modelling

The behaviour of parameter estimation methods may be investigated
within a stochastical framework, which implies that the properties
of the estimation methods are determined for ensembles of
measurements. In practice, however, we usually have just one record
of data from a given process.
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Under rather general assumptions, see Appendix A, the first and
second order moments of a stochastic process s{t) = m(t) + v(t),
~with m(t) a bounded deterministic signal and v(t) a filtered white
noise, may be computed from a single realisation {s{t)} w.p. 1 as
the number of samples N » «,

As a consequence, considering only first and second order moments,
the stochastic and deterministic approaches lead to the same result.
To eliminate the distinction between the two approaches the

generalised expectation operator E is introduced.

N
Es(t) := lim—— ) Es(t) ~ (2.5.1)
Mo N4

The operator E may be applied both to stochastic and deterministic
signals.

If u(t) is regarded as a deterministic signal, the output y(t)
{2.3.1) has a deterministic and a stochastic component. As a result
{y(t}} is not a stationary stochastic process, i.e. the moments are
time-dependent. We may treat {y(t)} as a generalised weakly
stationary process or as a quasi-stationary signal, see Appendix A,
i.e. a single realisation of the stochastic process.

The correlation function RS(T) is defined as:

R (7) := Es(t)s(t-r) TeZ (2.5.2)
In the case {s(t)} is a zero mean stationary stochastic process
RS(T) is called the covariance function of s.
Similarly the cross-correlation function is defined as:

,st(T) 1= Es(t)w(t-71) ' TeZ (2.5.3)

with {s{t},{w{t)} jointly quasi-stationary.
The spectrum of s(t) is defined as:
L

QS(Q) im E k Rs(r)e-irm (2.5.4)

Tt
and analogously the cross-spectrum st(w) is defined.

GCeneral results on asymptotic behaviour of PEM's
Consider the one-step-ahead predictor (2.4.2) and a quadratic

criterion function (2.4.9), then under rather weak assumptions

[Ljung, 1987] the criterion function converges uniformly in 6e%m as
N— o .

Vy(8) — ¥(8) := Ee(t.0)Te(t.0) (2.5.5)
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Furthermore,

EN — B :=arg min V(8) (2.5.6)
6ePm

This result shows that as N approaches infinity the parameter
estimates converge to minimizing arguments of the asymptotic
criterion function. If the "true" system is not represented in the
model set an element in the model set is found, that is closest to
the true system, in the sense of a minimal prediction error
variance. In this case the model found will depend on the data set,
which is illustrated by the examples 2.3 and 2.4 in Sodderstrom
[1989].

Under the assumption that the data can be described by (2.3.1), i.e.
the true system is in the model set, it can be shown that the PEM is

consistent and the parameter estimates GN are asymptotically
Caussian distributed.

W (8 - 8) —> AsN(O.P) (2.5.7)
P = [V"(é)l'ltllqm NE(V},(8)} (v ()17 " (8)17"
500

For Gaussian distributed disturbances the optimal PEM is

asymptotically efficient, i.e. the parameter covariance equals the
Cramér-Rao lower bound.

General results on the asymptotic behaviour of IV-methods
Defining:

N

£4(0) := ) m(t)e(t.0) (2.5.8)
t=1

(2.4.16) can be written as:
8, =sol { £,(8) =0}
N gegm N

Restricting m(t) to be an instrumental vector that is obtained by
linear filtering of past data:

n(t) = W (q.8)u(t) + Wy(q,e)y(t) (2.5.9)

with {Wu(q.G), Wy(q,e) | 8 € Im }, a family of uniformly stable
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filters, it can be shown that the parameter estimate converges
uniformly as Now.

£(8) — F(08) := En(t)e(t,0) (2.5.10)

Analogously the set of solutions GN of fN(6)=O converge to the set

of solutions of F(8)=0.

Under rather weak conditions it can be shown that the parameter
estimates are asymptotically Gaussian distributed, [Ljung, 1987].

2.6 Model parametrisations

Before presenting different ways of parametrising systems let us
introduce some terminology.

Definition 2.6.1 Model structure

A model structure P: Pm - M is a differentiable mapping from a
connected, open subset Zm(6) to M such that the gradient of P(8)
with respect to 6 is a stable transfer function. o

The differentiability is required to assure that the gradients of
the predicted output with respect to 6 exist and are stable, which
is necessary for the functioning of prediction error methods.

Definition 2.6.2 Global identifiability with respect to 6°.

Let A be a mcdel set and ~ be an equivalence relation on M. Let P:
9m - M be a parametrisation.

P is called globally identifiable with respect to ~ at 6° if

Veewm [ P(6) ~P(6°) >0 =86"°1] o

Definition 2.6.3 Global identifiability
P is called globally identifiable with respect to ~ if P is globally
identifiable with respect to ~ at almost all 6 & Zm. o

The nature of ~ has not yet been specified. If talking about
predictor models it is convenient to define equivalence as predictor
transfer function equivalence.

The definition of identifiability has the nice property, compared to
parameter identifiability as defined by Stdderstrom [1989] , that it
does not depend on assumptions concerning the DCM, but solely on the
parametrisation. The identifiability property is important for
numerical optimisation. It ensures the existence of isolated optima.
The dataset must be informative enough to distinguish between
different models in the model set.

We will now briefly discuss model structures used in identification
methods in PRIMAL.
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ARX models
Ag™*:8)y(t) = B(a *:8)u(t) + e(t) (2.6.1)

The corresponding predictor model is linear in the parameters (if A
and B are properly parametrised): _

y(t|t-1:8) = (I-A(q™*:6))y(t) + B(g™*;8)u(t)

The model structure is globally identifiable,

Recursive and direct methods for this model structure are discussed
in Chapter 5.

FIR models
y(t) = B(g *;0)u(t) + e(t) (2.6.2)

The output error e(t) = y(t) - ym(t) is the difference between the
observed output y(t) and the model output y, (t) = B(g ':8)u(t).

FIR models are globally identifiable and are a special case of
ARX-models (A=I). Recursive and direct methods for estimating the
impulse response are discussed in Chapter 5.

ARMAX models

A(@™*:8)y(t)
D(g™*:8)v(t)

This type of model, with fully parametrised matrix polynomials, is
estimated in the four-step IV-method, discussed in Chapter 5.

A form with a diagonal A-polynomial is the basis for a bootstrap
IV-method.

B(g~*:8)u(t) + v[t)
C(q™*:8)e(t) (2.6.3)

"o

General SISO and MISO models

A general model for SISO systems, cf. [Ljung, 1983]:

Alg 1 0)y(t) = B(g™':8) u(t) + C(g™*:0) e(t) (2.6.4)
: F(g™':8) D(g™*:8)

Recursive and iterative prediction error methods based on this model
structure comprise many well known methods, such as Generalised
Least Squares, Recursive Maximum Likelihood methods, the Extended
Matrix Method, etc., see Ljung [1983].
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The previous model can be extended to MISO systems by modelling the
subsystems independently:

- v Byah:0) c(g*:0) |
A@0y(t) = ) ——u (1) + Loy (2.6.5)
to1 Fi(a7%:8) D(g™*:8)

In Chapter 5 we will discuss the output error variant, with A = I.
The output error model is globally identifiable if the polynomials
Bi and Ft are coprime.

PEM's based on (2.6.4) and (2.6.5) have been implemented in several
recursive and iterative methods in PRIMAL.



CHAPTER 3 A SCHEME FOR EXPERIMENTAL MODELLING

3.1 Introduction

In this section, we will consider conventional approaches to
experimental modelling of process dynamics, before presenting, in
the next section, a new, comprehensive scheme based on interactive
learning in real-time, that is better suited to a systematic
approach to experimental modelling in industrial projects.

Section 3.2 discusses the properties of this scheme, and Section 3.3
its different steps. Chapter 4 describes PRIMAL, a software
environment that has been designed and built to effectively support
the application of this scheme.

As described in the literature, the following steps are basic to the
experimental modelling approach:

- Experiment design.

~ Data acquisition (performing the experiment).

Selection of a set of candidate models (the model set)

Choice of identification techniques to select the best model
from the model set.

-~ Model validation.

i

These steps are often presunted in a scheme like the one shown in
Figure 3.1.1, see also Ljung [1987], Soderstrom [1989], Isermann
[1988].

An experiment is defined as the activity of generating a set of
measurement data of process inputs and outputs during a certain time
span. This definition includes measurements of the process during
normal operation without using test sigmals.

Test signals are defined as signals that are superimposed upon the
process inputs for the purpose of gaining information about the
process dynamics. Test signals are usually carefully designed, so as
to have a specific amplitude and frequency distribution.
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Figure 3.1.1:
The conventional identification scheme.

3.2 A new scheme for experimental modelling

Although the basic scheme presented in Section 3.1 is attractive
because of its simplicity, In actual practice no project will start
right away with the design of experiments for identification.
Instead, the first step is the definition of the project goals and
the purpose of the required model(s). Different model purposes are,
for instance, diagnosis, process monitoring, predicting future
behaviour., and automatic control. Since the process may consist of
several stages and show dynamical behaviour on widely different time
scales, 1t 1s often necessary to break down the problem in several
subproblems that have to be examined separately.

Once the need of having a model for solving a particular
{sub)problem 1is established, one usually finds that there is
insufficlent information about the dynamical behaviour of the
process to carry out identification experiments right away. In
identification experiments, several decisions must be made, such as:

- which inputs and outputs are to be considered,

-~ the duration of the sampling interval,

- the length of experiments,

- the nature (e.g. type, amplitude and bandwidth) of the test
signals.



To make a good choice and to perform an experiment that yields
relevant information, the user must have first estimates of the
process dynamics. This means that in a second step, before starting
experiments, it is necessary to investigate the available knowledge
about the process® behaviour. If this knowledge proves to be
insufficient, exploratory experiments must be carried out first to
acquire the missing information.

Further, it is usually necessary to connect additional egquipment to
the process, e.g. additional sensors and actuators or computer
equipment for analysis of the measured data. After installation of
such equipment, initial experiments and analyses may be carried out

and these may gradually develop into the experiments needed for the
estimation of adequate models.

The absence of sufficlent a priori process knowledge to carry out
informative identification experiments, leads to an interactive
approach to experimental modelling. As the user gets results from
the experiments and learns about the process, he may adapt the
experimental conditions in order to improve the information content
of the data. This leads to learning loops ("feedback loops™) in the
experimental modelling scheme.

We take the point of view that it is important, and often essential,
that the analyses of the experiment data can be carried out on-line
and in real-time.

The time available for experiments may be limited, In which case it
is necessary to spend it carefully. No time should be lost due to
wrong experiment design or process set-ups that yield unusable data.
In off-line analysis this would be discovered only afterwards,
vhereas in on-line analysis the experiment may be monitored, and
(recursive) analysis techniques may be used to verify whether the
measured data show the required and expected properties. If these
analyses show bad results, the experiment may be adapted. In this
way the information content of the data can be improved as more
knowledge of the process behaviour is built up. Generally, this
leads to more accurate models {the model cannot be better than
allowed by the data used to construct it) and/or shortens the
duration of the experiments.

The collected data usually contain disturbance components, such as
drift, measurement errors, and noise. As the experimental freedom of
imposing test signals on the process inputs is usually restricted to
low powers, these disturbances may have severe effects on the
performance of the identification methods. Therefore, it s
necessary to provide for a data conditioning step in the
experimental modelling scheme, In which the "raw" experiment data
are corrected for the undesired components as well as possible.

The design choices in the data conditioning, identification and
model validation steps offer a large degree of freedom in finding a
model. As yet there are no methods that are guaranteed to lead
directly to a satisfactory model. Instead, the construction of a
model is a learning process in which the user interactively tries
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out different model sets and identification techniques. using the
acquired knowledge to adapt one or more of the previous steps.
Learning is an essential part of each step (see Figure 3.2.1) as

well as of the experimental modelling scheme as a whole (see Figure
3.2.2).

The basic form of a step is composed of three parts.
The first part represents the design choices. The second part
represents the operations to generate results and the third part the

interpretation of the results, which contributes to the knowledge of
the process dynamics.

Learning loop T
i
Data Knowledge
l——i| Design Operation Interpretation
choices
Data

Figure 3.2.1:
The basic structure of a step.

Now we may distinguish the following collection of steps:

Definition of the goal and purpose of the model.
Investigation of available process knowledge.
Installation of equipment.

Experiment control and data acquisition.

Data conditioning and signal analyses.
Identification.

Model validation.

NOUs N

and if modelling is to serve control purposes:

8. Control requirements specification and control system design.
9. Control system testing.

10. Control system implementation.

The total scheme, shown in Figure 3.2.2, emphasizes that interactive
learning and its associated loops are essential to the approach of
experimental modelling.
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Figure 3.2.2:

The Experimental Modelling scheme (EM-scheme],
R knowledge

—

-
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In the case of control system design the scheme is extended.

Model
8
- Control Control system
system design
specification
Control system
: Properties
analysis
9
|| Experiment Control system
design test
Data
Control system
performance
analygis
10
| Practical fea i Control system
issuas implementation
Future Data
(re)destigns
| Long-tarm
performance
analysis
Figure 3.2.3:

Extension of the EM-scheme in the case of control system design.

Including control system design in the EM~scheme has some important
advantages. Firstly, after simulation tests with the control scheme,
the controller output can be superimposed on the process inputs as a
special type of test signal.

Secondly, the approach used to estimate and verify models may be
used equally well to test a designed control system’'s performance in
actual plant operation. By using identification techniques the user
can examine the nature of the deviations from the expected and
required behaviour.
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Comparing the EM-scheme presented here to the conventional scheme
described in Section 3.1, we make the following remarks concerning
our scheme:

a) It covers more completely and realistically the practice of
experimental modelling and provides a better framework for
applying the best theoretical methods.

b) From the start, the desirability of working in real-time is
taken into account.

c) As a consequence, experiment design, experiment control, and
data acquisition are essential parts of the scheme.

d) In order to improve the information content of the measured
data, it is possible to carry out the analyses in real-time and
to use their results for changing or adjusting the experiment
instantaneously.

e) The scheme comprises a variety of learning loops.
Typically, the user works his way through the scheme in an
interactive fashion, adapting the design choices in each step
(and, if needed, in the previous steps) several times, before
moving to a next step.

f) In practice, data conditioning proves to be an important step.
As such, it does not get enough attention in literature.

g) The real-time approach allows the integration of process
modelling with the design and validation of control systems.

To summarise, in practice experimental modelling of a dynamical
process is best carried out as an interactive process in real-time,
in which the user accumulates knowledge gained by each action, and
uses it to adapt the experiment and the analyses in real-time.

The PRIMAL package has been conceived, designed and constructed to
support this interactive approach, which has already proved
particularly useful in the process industry (see Chapter 6).

3.3 Discussion of thé experimental modelling scheme

Each step in the experimental modelling scheme consists of design
choices, operations, results and their interpretation. In this
section we consider aspects of each step and comment on the
implementation of the scheme in PRIMAL.
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3.3.1 Definition of the goal and investigation of the available
knowledge

To apply the experimental modelling approach, the process problems
must be translated into project goals: i.e. in terms of process
behaviour requirements.

To design experiments for finding a suitable model and for designing
a contrel strategy, it may be necessary to carry out a preliminary
investigation of the available knowledge about the process
~ behaviour. Its purpose is, among other things. to set up a list of
process inputs and outputs, if possible, to draw a chart of
interactions between the process variables, and to get impressions
~of the process dynamics.

The investigation must be carried out before installation of
equipment and before the design of the first experiments. The
choices to be made in those steps are to be based on the knowledge
obtained in this preliminary investigation. The time required for
installing equipment, initial experiment design and the initial
experiments may easily exceed the time required for the
identification with PRIMAL. The correction of wrong choices in the
step discussed here may therefore cost much of the available time.

Because in practice every problem has its own unique aspects, it is
difficult to set up a uniform approach, although this is exactly
what we want. In the following an (inherently incomplete) list of
points is presented that ought to be considered in the preliminary
investigation of process behaviour. The 1list is presented here
because, in my opinion, it is seldomly discussed in connection to
experimental modelling in the process industries,

The ordering of the items does not imply any priority.

a} Inventory of the problems. ,

The investigation of the area of concern often leads to the
conclusion that there are actually several problems that may. or
may not, be completely unrelated. Their nature may be different
(e.g. sensor/actuator errors, unsatisfactory control dynamics,
process instability, start-up difficulties), they may relate to
different parts of the plant, or, if arising in the same part,
allow seperate treatment if they occur in other frequency bands.
For the purpose of this thesis, it is presumed in what follows,
that one such problem, that lends itself to a model-based
solution, has been selected. All experiments carried out to
solve that problem will be considered as one single “macro
experiment”, see Section 3.3.3.

b} Determination of the‘physical variables relevant to the process

behaviour and, if possible, the construction of an interaction
diagram.

¢) Inventory of normal operating conditions and the restrictions
concerning operation and safety.
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d)

e)

£)

g)

h)

i)

i)

k)

1)

n)

o)

Description of the instrumentation system: e.g. which quantities
are measured, the location of the sensors and actuators, their
range, speed, sampling rate, and accuracy.

Selection of the set of process inputs that may be used in
control. These Inputs should preferably have the properties
(range, bandwidth) enabling them to compensate for the
disturbances affecting the process.

Selection of process inputs that are measured, but can or may
not be used as control inputs. Deviations caused by disturbances
in these Iinputs may, conceivably, be compensated by feed-forward
control.

Selection of the process cutputs, These cutputs must be direct
or indirect measures of the process variables to be controlled.

-Often, indirect measurements have to be used instead of direct

measurements, such as a temperature at a certain tray in a
distillation column instead of a product composition.

Description of the existing control strategy. This addresses the
autematic control loops as well as the character and frequency
of the operator interventions.

Investigation whether there are relevant inputs and outputs that
are not yet used by the control system.

Description of any known signal properties of the process inputs
and outputs during normal operation, including, if possible, the
unmeasured disturbances.

Important are the types of disturbances, their (statistical)
properties, thelr possible origins and transmission paths.

Description of any known dynamical effects of each input on each
output: initial estimates of the gain, number and range of time
constant values, delays, signal to noise ratio, typical
behavioural characteristics such as  inverse response,
instability, and oscillatory behaviour.

Investigation whether the problem may be solved with a better
control system. From a controllability study it may follow that
a better control strategy brings no significant improvement and
that adaptation of the plant (in combination with an improved
control strategy) is mandatory.

Investigation whether the types of tools, required to tackle the
problems, are available.

Investigation of the ({(special) opportunities to carry out
experiments.

Estimation of the time required for the experiments, or vice
versa, whether enocugh reliable data may be acquired within the
given time span.



The process knowledge to be acquired may be drawn from different
sources, such as:

- Interviews with chemical engineers, control  engineers,
instrumentation engineers, the maintenance c¢rew, and the
operators.

|

Literature on relevant physical and chemical knowledge.
Available models, (theoretical, empirical, ..).
~ Analysis of recorded data {e.g. off-line with PRIMAL).

After the preliminary investigation, it should be possible to decide
upon the practicability of experimental modelling.

3.3.2 eriment set-up and installation of equipment

To apply experimental modelling. a set of tools must be available to
do experiment control, to generate datasets of sampled process
inputs and outputs, and to perform real-time analyses. The way in
vhich this may be realised depends on the available process
instrumentation.

To avoid problems with redefining common terms. we introduce the
term “Process Control System (PCS)" for any system that includes:
analog data filtering, sampling, ADC and DAC, (low-~level) control
and computation facilities, and an operator interface.

We may distinguish three basic situations:

1. A plant without a PCS.

2. A plant equipped with a PCS, which may be a {usually heavily
loaded) central control computer or a Distributed Control System
(bcs).

3. A plant where powerful computing facilities are offered by the
PCS, or are coupled real-time to the PCS.

Since a PCS performs time-critical tasks. (sampling and control),

is generally not suited to the intensive computations involved in
real-time analysis. Furthermore, the operating system, programming
language, and human interface are usually designed for their
specific tasks and do not provide the facilities required for
interactive experimental analysis. Therefore, the analyses must
usually be carried out on a separate computer that is directly
coupled to the PCS. In the sequel this is called the "Analysis
Computer”.

Implementing the tools for experimental modelling on the Analysis
Computer has the advantage that all steps in the EM-scheme can be
performed largely independent of the PCS. A single software package
may thus be developed for a wide range of different process control
systems. Since the analysis computer does not have to perform PCS
actions, it may be selected for its numerical processing, software
development and interactive graphical input/output capabilities.
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The installation requirements for the three cases mentioned above
are:

ad 1. A PCS and an Analysis Computer must be coupled to the plant.

ad 2. An Analysis Computer must be coupled to the PCS.

ad 3. The tool-set may, conceivably, be implemented on the
available computer facilities.

For a specific PCS, a program must be developed, that communicates
with a program on the Analysis Computer, that is specifically
designed for connecting to the BCS. The PCS program should provide
the facilities to transmit measurement data to the Analysis
Computer, and (optionally) to carry out experiment control actions,
see Section 4.6. This set-up should offer sufficient flexibility for
implementing links with widely different instrumentation systems.

Another important point is safety. The communication protocecl is to
be designed so that the operator remains in charge of the PCS and

that possible failures of the Analysis Computer do not affect the
PCS.

. data
actuators Process link Analysis
Process and Control |- Computer
sensors System
i i
l |
operator experimenter

Figure 3.3.1:
The proposed computer configuration for cases 1 and 2.

Principal design choices are:

a) The selection from among the available sensors and actuators.

b) The installation of additional sensors (and actuators).

¢) The choice of the computer configuration and data link.
The computer’s performance, data link bandwidth, and speed of
the data storage influence the attainable sample frequency and
number of signals that can be handled simultaneocusly.

3.3.3 Experiment design and experiment control

In parallel to the installation of equipment we may start to design
experiments. Here we have the following design choices:

- Selection of inputs and outputs from among those available for

analysis.
-~ Choice of sampling interval(s).
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- Choice of experiment duration. )
— Choice between SIMO or MIMO experiments.
— Choice of test signals.

The selection of inputs and outputs has been discussed in Section
3.3.1 and is usually done on the basis of a priori knowledge.

The selection of inputs is critical. Missing an important measurable
input may result in a model of low quality.

Therefore, its is generally advisable to take in as many signals as
is technically feasible. This offers the opportunity to examine the
correlation between inputs and -outputs at a later time. A
significant advantage of the on-line approach is the opportunity to
perform experiments with test signals in these inputs.

Experiments

We find it useful to make a distinction between "explorative
experiments”, "identification  experiments” and "application
experiments”. ~

Explorative experiments

The explorative experiments are design-oriented, i.e. they are used

to make the best possible design choices for the identification
experiments.

Preliminary experiments of this type are used to characterise the
normal process behaviour, exploring the amplitudes and spectra of
inputs and outputs under normal operating conditions and the nature
and spectra of the disturbances. Correlation analysis may be used to
verify and investigate process interrelations.

Test signals may be used to test assumptions to be made in the
identification experiments about linearity, stationarity and

causality, and to get initial estimates of the values of the gains,
delays, and time constants.

Backx [1987, 1988] describes experiments for this phase. One of
these experiments involves a stair-case signal to investigate
linearity, hysteresis, gains, and time constants. Although such
signals may appear to be well-suited for exploring the process, this
experiment is not very appropriate if it changes the operating
conditions for a long time interval; also it is time-consuming. and
the results are poor when a significant trend is present.
A better experiment is to use a three-level signal (or a PRBES)
starting with small amplitudes and increasing/decreasing the
amplitude in a number of stages. :
The advantage is that:
- The change in the operating conditlons may be kept smaller.
- The static gain is estimated correctly if sufficlent energy is
put at frequencies in the pass band of the process.
-~ The procedure is less sensitive to drift.
- More accurate information about the time constants may be
obtained.
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The experiment is, however, less suited to explore hysteresis,
Identification experiments

Identification experiments are intended to find dynamlcal models of
the process.

Generally the data generated by a process in normal operation is not
well suited for identification, because the Inputs may not contain
sufficient Information at all frequencies of interest. Therefore, it
is desirable to superimpose carefully-designed test signals upon the
process inputs. If little knowledge about the dynamics is available,
these signals should excite the process in a broad frequency band.
Depending on the frequency band of interest, the test signals may be
applied to an actuator, a controller set point, a controlled signal
or ad-hoc "actuators" (e.g. an injection of tracer material).

Test signal types that are widely used in practice include periodic
signals, such as block signals and sums of sinuscids, and aperiodic
sighals such as pulses, steps, and noise signals. In several of the
identification experiments carried out with PRIMAL, the PRBS has
been exploited because of its nice properties:

'1) The spectrum of a FRES with a clock period of AT {with AT some
positive integer multiple of the sampling Interval T), amplitude
a and periodicity M may be approximated if M is large by:

242
P{w) = = (1 = cos{wrT)) (3.3.1)
2T

This spectrum has zero s at all integer multiples of angular
frequency wg = 2r(AT)"*. Thus, the PRBS excites the process at
all discrete frequencies up 1o wy. {persistently exciting).
The design variable A may be used to shift the energy content of
the PRBS to match (slightly exceed) the bandwidth of the
process. The choice of a 18 a trade-off between the maximum
allowable Input and cutput varlations and the length of the
experiment.

2) The fixed amplitude and zeroc average value facilitate its
acceptance Iin practice,

3) A PRBS csn be easily generated using shift registers, cf.
[Codfrey, 1969; Davies, 1970]

4) Mutually independent PRBS may be generated by selecting proper
initial seeds in a maximum length PRBS with a period M >> N (the
sxperiment duration).

Remark:

A PRBS with a clock frequency below the sampling frequency can also
be generated from a two-level white nolse by decreasing the
probability of change-over The advantage of this approach Is that
no energy is put in slde-lobes. cf. [Tulleken, 1988].

Remark:

The design of optimal experiments, based on detailed process
knowledge, and taking into account the intended use of the model,
[Gevers., 1986: Goodwin & Payne, 1977; Mehra, 1874] has not yet been
fully expleoited in this thesis.



Application experiments

When models have been formed and/or control systems have been
designed, it is desirable to use and verify their performance in
actual practice. Therefore, experiments may be carried out, like:

- "Running” a model in parallel to and synchronised with the
process, predicting future process behaviour and comparing it to
the actual behaviour.

-~ Implementing a control system on the Analysis Computer or PCS
and assessing its performance, using the methods of the
EM~scheme suitable for closed loop systems.

Like the explorative and identification experiments, these
experiments are part of the learning process.

A macro experiment

During the available time, the experiments described above may be
carried out repeatedly. Preferably, they should be part of one
single macro experiment. In this way, data conditioning can be
improved and the start-up effects in each analysis may be avoided.
Moreover, the often difficult choice of selecting the total number
of samples N can be relaxed to specifying an upper limit only. The
length of the individual experiments may be taken on the basis of
intermediate results.

In what follows the macro experiment is often referred to as
the experiment.

It is advisable to take the sampling frequency a factor § to 10

higher than needed on the basis of the time constant values of
interest. This will improve data conditioning, see Section 3.3.4.

3.3.4 Data conditioning

Generally, the raw measurement data 1is not well suited to
identification. It may suffer from outliers and trends, and the
dynamical relations may be altered by sensing delays and
non-linearities.

Practical experience showed that proper conditioning of the data may
have a decisive influence on the attainable quality of the model in
the identification step. Therefore, it is better to examine the raw
data and prefilter 1it, applying one or more of the following
filtering steps., instead of accommodating the identification methods
to more or less remedy some of the problems.



Data conditioning comprises:

Correction for known fixed delays.

Correction for known (static) non-linearities.
OQutlier correction and other signal repair.
Trend correction.

Roise reduction.

Data reduction.

Offset correction and scaling.

N W

The techniques for examining the data include visual inspection,
signal analyses, and identification. The importance of off-line data
conditioning has been emphasized by Backx [1987].

Correction for known fixed delays

If one or more inputs to the model are measured with a significant
delay, correction 1is desirable to prevent apparent non-causal
response of the outputs to the inputs.

Furthermore, delay correction is useful if the dynamic response of
the output to an input is delayed by a large, fixed time interval,
for instance due to transportation time or {chemical) analysis. Most
identification techniques offer no means of simultaneously
estimating the delays and the other process dynamics. Small delays
can be Incorporated by increasing the model order.

In a MIMO system not all delays can be compensated for if pxq is
larger than p+q-~l.

Estimates of the delays may be obtained by correlation analysis, by
direct Iimpulse response estimation, and from physical process
knowledge. Better techniques, which also work for short datasets and
noisy data, will be introduced in Section 5.5.

Correction for (static) non-linearities

Correction for non~linearities 1s possible when there is a known
non~linear behaviour, such as non-linear actuator and/or sensor
characteristics.

Signal repair

Measurement data may be affected by sensor failures and outllers,
vhose energy content may have a substantial influence on the
identification.

Failures in the data sequence that are easy to detect, may be
eliminated before further processing the data.

Automatic correction of outliers is implemented in the data
conditioning step by simple detection techniques.
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As described by Backx [1987]. the simplest technique is to compute

the signal mean X and standard deviation o(x) and to detect outliers
with:

Ix(t) - x | > $5.0(x) (3.3.2)

where § is the "shaving strength”.

For signals showing drift, this technique may not be expected to
work well, since the detection boundary does not change as a
function of the time t.

An approach to this problem is to filter x(t) with a high-pass
filter L(g) and to use the test: :

| L(g)x(t) | > S.o(L(g)x(t)) (3.3.3)

Alternatives to these tests may be employed., that use the median
and/or use information about the amplitude distribution of x(t).
Unlike the mean, the median Is not sensitive to the amplitude of the
outliers. -

Detected outliers may be replaced with interpolated or mean signal
values. Note that direct filtering of the data with a low-pass
filter also reduces the outliers, but does not affect their
low-frequency contributions. As a consequence, the influence of the
outliers spreads to neighbouring samples.

Outliers that are not detected in this stage may be found later in
the identification step, showing up as large residuals. In such a
case the repair of the data should be reconsidered.

In case 1 of Chapter 6 the use of outlier correction is
demonstrated.

Remarks:

a) By estimating the mean, median and varlance recursively, the
outlier detection methods are suited to operation in real-time.

b) Ljung [1987] suggests to “robustify” the prediction error
methods for the occurrence of outliers by reducing the weight of
large prediction errors 1in the criterion function. The
robustification requires the setting of some ad-hoc boundary on
the prediction error. However, since outliers also disturb other
data conditioning steps and subsequent signal analysis, we
prefer to remove them beforehand.

¢) Although the automatic techniques for outlier detection may work
quite well, practice shows that the human inspection of
graphically presented data 1is of great value. The human eye

proves to be a superb "filter” for detecting strange signal
behaviour.

Trend correction

If low-frequency disturbances (trend), like drift and periodic
variations, are present in the data and have a high energy content
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compared to the frequency band of interest, they may severely
influence the parameter estimates.

Trend and the frequency band of interest should therefore be
separated. A suitable approach is to separate the trend by a
high-pass filter, before estimating the process dynamics.

The selection of a cut-point frequency between trend and signal is
usually guided by the intended use of the model. Removing the trend
discards all information on the low-frequency behaviour and thereby
reduces the accuracy of the static gain estimate.

Alternative approaches to deal with the trend have been suggested by
e.g. [Isermann, 1974: Baur, 1976], involving the estimation of the
parameters of a trend model in parallel to the parameters of the
process model.

Trend filtering should be done with a sharp filter. Low-order
filters may reduce the information content in the frequency band of
interest and/or not sufficiently eliminate the trend in the data.
The Impulse response of an 1deal high-pass filter may be
approximated by a FIR-filter, [Jackson, 1986; Stanley., 1975].

The desired frequency response H{w} is expanded into a Fourier
series. The impulse response h(t) of a FIR-filter Is constructed by
truncating the Fourler series and applying the inverse z-transform.
This will result in a filter showing some pass band and stop band
ripple. The ripple may be reduced by multiplying h(t) with a
suitable windowing function -~ eg. a Hanning, Hamming or Blackman
window ~ at the cost of a wider transition band.

Filtering the data by convolution with h{t) introduces a linear
phase shift, which may be eliminated centering h(t) around zero,
i.e. applying a non-causal filter.

M

x, () = 2 h(L)x(t+1) (3.3.4)
{=M

Remarks:

a) The FIR-filter introduces transient effects at both ends of the
data sequence. The initial values for the filter must therefore
be chosen carefully. .
In the on-line version the linear phase shift of the filter
introduces a delay of M/2 samples in the filtered signals.

b) To avoid umnecessary complications, the measured process inputs
and outputs should preferably be filtered with identical
filters.

¢) In the SISO case, filtering the data is equivalent to
introducing a frequency weighting in the criterion function of a
_ prediction error method.
Filtering input and output with F(gq) is equivalent toc a FPEM
applied to the unfiltered data with a prediction error weight:

| F(e™) |2 2 (w:0). (3.3.5)

- 37 -



Data reduction

If technically feasible, it is advisable to sample the sensor
signals at a higher sampling rate than required for the estimation
of the dynamics. A pragmatic reason for this approach is that the
bandwidth of the process may have been estimated incorrectly from
the a priori knowledge. While it is possible to reduce the sampling
rate for identification by data reduction, the opposite is
impossible,

Furthermore, the excess data may be used in signal repair, trend
correction, and noise reduction, before reducing the data.

Data reduction should take place by filtering out all frequencies
higher than the new sampling rate (to prevent aliasing effects) and
subsequently decimating the data.

If data reduction is not performed, we may expect problems in the
estimation of the low-frequency behaviour of the process, especially
vwhen employing equation error techniques.

Moreover, since the signal values change little from one sample to
the next, we may expect numerical problems with the inversion of the
data matrices in the identification and the use of the model, as all
poles will cluster near z=l.

Offset correction and scaling

Offset correction is desirable to avoid that it must be explicitly
accounted for, e.g. by including the offset as an additional
parameter in the parameter vector, or by estimating a model on
differenced data (ARIMA-models).

If the values of different signals differ by several orders of.
magnitude, it is necessary to scale the data to a matching numerical
" range in order to avoid numerical problems due to ill-conditioned
matrices.

© 3.3.5 Identification

In the context of this thesis, the estimation of the dynamical
behaviour between inputs and outputs is done using black box
techniques. :

The design choices in black box identification include:
-~ Model representations, (state space, MFD, etc.).
-~ Model orders and parametrisation (of the transfer function and
the noise model).
~ A criterion (PEM's) or correlation vectors (IV-methods)
- A numerical procedure.

Based upon physical insight, the intended use of the models and the

analysis of correlation functions and spectra, it is possible to get
an impression of suitable model orders and model parametrisations.
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If this impression is not very clear, it is desirable to apply
specific methods for model order and model structure selection.
Although much work concerning this subject is reported in
literature, [Bohlin 1987, Stoica 1986, Janssen 1989, S&derstrom
1989, ..] there seem to be no established general methods for the
approximate modelling case. The decision requires subjective
Judgement, [Ljung, 1987, Ch. 16, Sé&derstrém, 1989, Ch. 14], taking
into account the intended use of the model.

A practical approach is therefore to apply several identification
methods, testing different model orders and parametrisations, and
compare their performance using model validation and model
utilization techniques.

In accordance with our strategy of interactive learning, the user
should be provided with appropriate facilities for making choices
from among a variety of methods, based on different model
parametrisations and estimation techniques, instead of relying on a
single technique. The user should further be enabled to activate
several identification methods in parallel and, if possible, apply
them to the real-time data.

Identification methods may be divided into several classes,
depending on the model parametrisation and on the numerical
techniques used. The methods implemented thus far in PRIMAL comprise
recursive and iterative prediction error methods for equation error
and output error type models, and bootstrap and four-step
instrumental variable methods, see Chapter 5.

The goal has been to first implement the most promising black box
techniques discussed in the literature. Based on practical
experience with these methods, those that appeared to perform best
have been selected and effective new variants have been developed.

3.3.6 Model validation

In the model validation step we investigate whether the model is in
sufficiently good agreement with the data and whether it is suited
for its intended use. Another question is whether better models may
be found, showing a better or comparable fit while using fewer
parameters.

We shall briefly discuss two classes of tests. The first class
confronts the model with the a priori knowledge and the data,
preferably a set of data that has not been wused 1in the
identification. The second class compares properties of the models
obtained with different identification methods, model orders or
model parametrisations; these tests may also be used in model
structure selection.

In the first class of tests, a model may be matched with a priori
knowledge by inspecting its input-output behaviour, e.g. its impulse
response and frequency response.

A test that stresses the low-frequency predictive quality of the
model, is the simulation performance. The model response to the
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process inputs is computed and the output errors, i.e. the
differences between the observed process outputs and the model
outputs are determined.

The behaviour of the output error can be examined by e.g. visual
inspection, correlation analysis and spectral analysis.

The output error test has the advantage that it validates the
-estimated process model and does not rely on assumptions concerning
the noise model. It may alsoc be used for validation of the model on
another dataset (cross-validation].

By computing the cross-correlation functions between the inputs and
the output errors, applying confidence limits for independency, it
can be checked whether all contributions of the inputs to the
outputs have been captured by the model. The computation of these
confidence limits relies on a variant of the central limit theorem,
cf. [Ljung, 1977]. If e(t) and u(t) are independent, then:

&

W R (1) € AsN(O,P) P =) R_(KIR (k) (3.3.6)

k=0

Correlation for 10 indicates that the mcdelling has not completely
succeeded and may be further improved.

A comparable type of test, applicable to prediction error methods,
is a "whiteness test" of the residual e{t).

In the second class of tests, the validity of a model is assessed by
comparing it to other estimated models.

Since the various identification methods use different model
structures, the comparison of parameter values is impractical.
Moreover, the parameters were considered to be just vehicles in the
estimation procedure.

A class of techniques that depends on penalising model complexity,
(e.g. Akaike's AlC-criterion, the Final Prediction Error (FFPE)
criterion, and  hypothesis testing techniques) apply to
hierarchically ordered model sets and are therefore usually
restricted to a certain identification method. Several such criteria
have been compared by Freeman [1985] and are used in the
identification methods in PRIMAL.

In order to compare different identification methods, it is
necessary to use tests that are independent of the particular
parametrisation and take the intended use of the model into account.
Such tests should invelve only the input-output behaviour of the
process model. Along the lines of the interactive learning strategy.
this may be done by (graphically) comparing the impulse responses,

Bode or HNyquist plots, and output error behaviour of different
models.



A useful quantity to compare simulation performance is the mean
square relative output error:

N
mre = ) (Il y(t)-ym(v) Il 7 Iy(e)lla} (3.3.7)
t=1

ym(t) = G(q™*:0)u(t) (3.3.8)

The relative output error of individual outputs is defined as:

N N
re, t= ) [y, (t)-ym ()1 7 J y2(t)
t=1 t=1

P
i
—

..q (3.3.9)

3.4 Conclusions

In this chapter we have developed a comprehensive strategy for
experimental modelling that is, in contrast to conventional
approaches, based on interactive leawrning, real~time analyses and
adapting the (cholce of) experiments on the basis of the acquired
knowledge.

This strategy has led to an experimental modelling scheme comprising
various steps and learning loops, and permitting user interaction,
especially in the often time-consuming early phases of a project
when knowledge about the process behaviour is limited.

Important advantages of on-line (real-time) experimental modelling
over off-line analyses are the opportunities to:

~ Improve the experiments on the basis of intermediate results of
the analyses, leading to better results and/or a shorter project
duration.

- Include the testing and validation of control systems in the
EM-gcheme.

Experience with the experimental modelling scheme in industry, has
led to a consideration of issues like, how to:

a} deal with a priori information.

b) connect to the process.

c) plan experiments and deal with the intermediate results.

d) condition the raw measurement data properly.

To follow the strategy depicted in this chapter, an environment that

support it 1is needed. The package we have constructed for this
purpose: PRIMAL, is presented in the next chapter. :
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CHAPTER 4 THE PRIMAL PACKAGE

To enable a user to follow the strategy described in the preceding
chapters, it is necessary to provide a coherent collection of tools
that assist him in each step of the scheme.

Since most steps involve numerical computations based on
experimental data, it is natural to provide the tools as part of a
computer package implementing the scheme.

The development of such a package, suitable for application in
industrial practice, has been one of the principal aims of the work
described in this thesis.

The package, with the name PRIMAL: “Package for Real~time
Interactive Modelling, Analyses and Learning™ has been developed as
a result of this work. Its main objective is to support users in
developing mathematical models of the behaviour of industrial
processes and in exploiting such models, for example in the design
of improved control strategies.

How the experimental modelling scheme and the demands and wishes of
the intended users are translated into requirements with respect to
the package, is discussed in Section 4.1. Section 4.2 treats the
user requirements and Section 4.3 the software requirements. In some
cases the same requirements result from different motives.

Section 4.4 discusses the structure of the package and how it meets
the requirements. Section 4.5 deals with the software organisation
and the implementation of the basic mechanisms. Section 4.6 treats
the implementation of experiment control in more detail. Section 4.7
lists a sample session and discusses some important user aspects,

The PRIMAL project started in 1979 and entered a new phase in 1984,
By then, no software tools were commercially available for
(professional) use in industrial practice that covered experiment
design, data acquisition, real-time signal analyses, real-time
identification, control design and control system implementation.
For this reason, an environment has been designed and constructed
with the capability to serve both as a professional tool for use in
industry, as well as a development environment for methods of data
analyses.

Since then, other packages addressing the experimental modelling
problem have emerged. A comparison with PRIMAL will be made in
Section 4.8. '

- 42 -



4.1 Package requirements

The Experimental Modelling scheme, as depicted in Figure 3.2.2, has

a number of important characteristics to be +translated into
requirements:

- Experiment design, experiment control, data acquisition, and
model wutilization, e.g. for .testing control systems, are
essential parts of the scheme.

— Each step in the scheme represents a set of design choices and
(computational} methods., To obtain a model it is necessary that
appropriate methods are provided for all steps in the scheme.

- Experimental modelling is not carried out in a single sequence
of steps, but instead the user works his way through the scheme
several times interactively, each time adding knowledge
(learning) about the dynamics.

- It is essential that analyses on the experiment data can be
carried out while the experiment is running. On the basis of the

results, the ongoling experiment may be adjusted in order to
improve its information content.

From these characteristics. requirements are derived, as discussed
below.

4.1.1 Experiments and data acquisition

The package must fully support experiment design, experiment control
and data acquisition. Consequently, it must have tools to establish
a physical link with the Process Control System (PCS), as defined in
Chapter 3. Measured data, test sigpals, experiment control messages
and controller parameters nmust be passed through this 1link in
real-time. .
The user must have facilities to interact with the running
experiment and at any time the package must be ready to promptly
respond to his commands.

To make on—-line changes feasible, the user must have facilities to
" inspect and process the Incoming data.
The package must be equally suited to off-line processing of data
gathered previously. or measured by a {remote) facility that does
not allow on~line coupling.

4.1.2 Full functionality

For each step in the EM-scheme, appropriate methods must be provided
by the package. This means that methods must be available for
experiment design, experiment control, data acquisition, data
conditioning, signal analysis, identification, model validation, as
well as for control system designing, testing and validation.
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Therefore, the package must provide a suitable environment for
embedding the methods, in a framework that provides:
-~ Fast and easy initiation, modification and termination of a
method.

- Access to the output data of a method by any other method.
~ Full database support.

4.1.3 Interactive learning

A quintessence of the EM-scheme is that, at any moment, the user
must be able to make a free choice among all facilities the package
provides, not being hindered by any preconceived path set out by the
designer. This requires, first of all, a flexible user interface.

The results of the methods must be presented in a format that
directly adds to the understanding of the process. In addition to
presenting models as sets of matrices, which may be difficult to
interpret, particularly by plant people, the methods must present
user-readable results, like time responses, Bode plots, polar plots,
ete.

The package does not yet include an expert system, because it is
difficult and maybe up till now impossible to formulate a
satisfactory set of rules for experiment design, data conditioning,
and modelling of (complicated) multivariable systems. Instead, the
package supplies interactive methods and powerful presentation
tools, and is providéed with an on-line help system and a complete
set of comprehensive manuals [Van der Linden & Renes, 1989a-e].

4.1.4 Real-time aspects

To improve the information content of the measured data and, as a
result, the quality of the estimated models, it should be possible
to analyse the measured data while the experiment is running. This
implies that analyses may operate on the already present
" intermediate (updating} set of data and may suynchronise with the
data still coming in from the process.
This requirement may not be restricted to a single analysis method.
Several analyses should be able to operate on the same data in
parallel to each other. Extending this concept, It should further be
possible to apply any method to the intermediate results of any
other method provided, of course, this makes sense.

This has several important consequences.

Since each method may operate upon the 1ntermediate results of other
methods, methods may be chained. For instance, the intermediate
results of analyses may be chained to the graphical module,
presenting them together with the updating experiment data. User
inspection of intermediate results is especially wuseful for
recursive or 1iterative methods and may lead to interactive
modification of the experiment or the analyses.



By chaining methods, the complete EM-scheme may be realised out
while the experiment is being performed.

Since the user does not have to wait with next commands until a
method is finished, he may start-up several analyses in parallel,
which is important in both on-line and off-line applications.

In on~line application, several analyses may be started up on a
(slow) process and the updating measurement data and intermediate
results of several analyses may be presented simultaneously.

In off-line application, the user may try out several methods in
parallel without the need to wait until a method has finished. He
may start at once to investigate intermediate results.

Because methods that work on-line may be active for the duration of
the complete experiment, it is necessary that the parameters
affecting their activity and computations may be changed
interactively at any time by the user. The package should therefore
provide appropriate facilities to this purpose.

Finally, it must be possible to start-up a method so that it first
processes already collected data and then, as it catches up with the
incoming measurement data, synchronises with the experiment.

4.2 User reguirements

4.2.1 Application in Lnddstrial practiee

For use in industrial practice the package must meet additional
requirements. Most iImportantly, a package coupled to an industrial
process must be absolutely safe to use. Factory upsets caused by
errors in the package or erroneous user inputs are unpermissible.
This requirement has important implications for the design of the
experiment control and for the software design, which will be
treated in Section 4.4,

All actions by the package must always remain within preset limits,
defined during experiment design. User input not conforming with
these limits or erroneous input must be refused. The package may not
interfere with essential PCS supervisory tasks or the alarm system.
The PCS maintains full control of the process. User interaction with
the process through the package must be checked automatically.

For the analysis of the measured data and the evaluation of model
quality, the experiment conditions should be reconstructable. This
implies that the experiment must be completely defined and an
automatic log book must be kept that stores and time-stamps all user
actions, experiment control messages and, where possible, operator
actions. This requirement is extended to the analyses. Thus, all
output data and user-adaptable parameters of the methods must be
stored in the database, so as to make it easy to reconstruct the
experimental situation and to reproduce results at any later time.
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Should the PRIMAL system fail, due to software errors or hardware
failure, the process may not be disturbed and the database contents
may not be lost and must remain consistent.

The way the requirements are met will be discussed in Section 4.6.

4.2.2 The user interface

The package is intended for wusers, either experienced or
inexperienced in the field of systems and control theory and matrix
algebra. Utilisation of the methods must be possible with marginal
knowledge of the underlying theory and the output must allow direct
interpretation by the wuser. Also, a wuser may be famillar or
unfamiliar with the user interface or certain uses of it.

For the interaction with the user, various user interface models may
be employed, which differ in the degree and manner of guldance given
to the user. Experienced users demand high interaction speed and
flexibility. Inexperienced users are, above all. interested in clear
guidance. Both categories must be served by the package.

The following requirements have been identified:

a) The user interface must be easy to learn for users unfamiliar
with the package. Inexperienced users wmust be provided with
effective guidance.

b) Experienced users must be able to use the interface with maximum
flexibility.

c) All methods must present themselves to the user in a standard
manner, i.e. a standard ’look-and-feel’,

d) The user interface must be consistent.

This means that the interaction between user and package always
follows the same predictable and easy to understand patterns,
and that exceptions to the apparent logic, which are confusing,
are avoided.

e) The user interface must be robust, i.e. wrong input may never
lead to package failure.

f) The check for erroneous and incompatible parameters must be
carried out at parameter input. Error reporting, error recovery
and user assistance must be provided on~line.

g) Output of a method must be presented in an understandable form,
enabling direct interpretation.

h) Since the package deals with analyses on generally large amounts
of data, powerful presentation facilities must be provided, that
are capable of presenting intermediate data of the methods.

i) The package must provide reasonable default values for all
user-adaptable parameters of a method.

4.3 Software design requirements
In this section additional requirements are defined, that have no

direct relation with the EM-scheme, but pertain to the software and
to the manageability of an extensive software development project.



Package safety

For the package to be accepted in an industrial environment, several
important requirements must be met.

Most 1mportantly, a package coupled to an industrial process must be
absolutely safe. The experiment control aspects of this requirement
have already been discussed in Section 4.2.1.

The development of bug-~free software poses a problem that is
difficult, if not impossible, to solve, especially regarding
software with real-time and {pseudo~)concurrency aspects.

However, the problem may be alleviated by the following set of
requirements concerning software structure and software development
methods:

a) The software must be partitioned into small, independent modules
in such a way, that a bug in a module will only affect that
single module. Error propagation between modules must be
avoided. If we follow this strategy. the demand for absolute
safety may be restricted to the Experiment Conirol Module, which
takes care of all interactions between the package and the PCS.

b) Every module must be carefully divided into functional layers,
to prevent or reduce error propagation inside a module. As a
result, testing will be simplified, because individual layers
can be tested independently.

c) Rigorous programming, testing, and documentation standards must
be enforced upon each individual software designer involved in
the project.

Multi-user support

The package must support several users simultaneously and each
should be able to generate and manage his own data, without being
confronted with the other users. However, a user should also be able
to access data generated by others.

PRIMAL packages implémented on different computers must be able to
communicate, so that the users may access the databases of users on
other computers.

Portability

The package must be able to run on different computer systems, with
different hardware environments and different operating systems.
This results in the following requirements:

a) A widespread (high-level) programming language., available on
many computer systems (in industry).

b) Operating-system dependent ‘procedures. that cannot be avoided,
must be concentrated in a single layer. This layer will be
called the "Virtual Operating System”.

- 47 -



¢) Device~dependent procedures must be concentrated in a single
"Device Driver” layer. Constructing and changing device drivers
must be straightforward.

Extensibility

The package must provide an environment in which new methods may be
implemented easlly. This thesis restricts itself to experimental
modelling and contrel, with an emphasis on black box methods. The
package design must also allow for other (user-added) methods.

" A suitable software design environment should support rapid
prototyping of new modules and easy incorporation into the package.

Interfacing with other software packages

For modelling and control, various software products are available,
with specific capabilities like simulation, identification and/or
control design. PRIMAL must be designed as an "open” system which
allows for transfer of data and commands to and from other software
products.

PRIMAL must be able to communicate with a diversity of Process
Control Systems. This requires a flexible process interface, since
the available hardware capabilities, programming tools and
performances of these systems vary widely. The structure of the
process interface is discussed in Section 4.6.

Software management and maintenance

For a software design project that stretches over several years and
combines the contributions of several software designers, including
relatively inexperienced students, it is necessary to:

a) Start-out with a clearly-defined set of requirements and a
rigorous, but flexible, design concept.

b) Divide the project in several design phases, according to a
sof tware development scheme, including software maintenance and

testing.

c) Define different functional layers and use a modular design
strategy.

d) Set strict rules for structure, documentation and lay-out of the
sof tware.

4.4 Description of the aesigg

This section describes the design of the PRIMAL package. The first
part introduces the basic concepts and the structure of the package.
The second part discusses the package's properties and the
realisation of the requirements listed in the previous sections.
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4.4.1 Terminology

Data object

A data object is a set of one, two or three dimensional matrices
with numerical or text elements. Data objects are identified by
their name.

In principle, each data object is structured, i.e. it contains
several matrices that belong together in some sense, for instance a
set of matrices constituting a state-space model, or a set of
simultaneously measured signals.

Structured data objects may contain other structured data objects.

Dataset

A dataset is a structured data object that is stored and registered
in the PRIMAL Database.

The PRIMAL Database

The PRIMAL Database is a hierarchically structured collection of
datasets.

Dynamical datasets

A dataset is dynamical if its contents are subject to change. In
other words: new data objects may be added to the dataset and data
objects already present may be altered. After closing the dataset to
changes, it is called static.

Modules

A module is a component of the PRIMAL package that performs an
operation on a set of data objects and produces a set of new data
objects as output.

To stress the difference between data source and destination, we
will use the term input data object for data used as input to a
module and output data object for data produced by a module.

The input data objects are read, and the output data objects are
created, filled (written), and updated by the module.

The Monitor

The Monitor is the component of the PRIMAL package that implements
the central user interface, module management and Database
management.
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Messages

A message is a collection of data objects that is sent from the
Monitor to a module or vice versa.

Parameters

Parameters are data objects that are transferred from the Monitor to
a module, or vice versa, as part of messages.

4.4.2 Package design

The PRIMAL package consists of the following principal components,
cf. Figure 4.4.1:

- The Monitor

— Modules

- The PRIMAL Database

user

Monitor

T
I 1 ” 1 |

Module Module Module een Module

PRIMAL
Database

Figure 4.4.1:
The three principal components of the PRIMAL package.
The arrows represent the transport of data objects.
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Modules

Each method, be it for experiment design, experiment control, data
acquisition, signal analyses, identification, control system design,
etc., is implemented as a module, that takes data objects as input,
performs an appropriate operation and stores the results in output
data objects. For instance, correlation analysis takes a set of
signals as Input data object and, after computation, produces a set
of correlation functions as an output data object.

A module can get data from various sources and direct its output to
several destinations, see Figure 4.4.2.

Input data objects Output data objects
Module

(input datasets) (output datasets)

(input parameters) (output parameters}

(direct user input) (direct output)

(import of external data) (export of data)

Figure 4.4.2:
Module input and ocutput.

Parameter itnput and direct user input are the normal mechanisms for
initialising and adjusting the variables that determine the module's
actions, while as a rule datasets are used as the main source of
data objects. Exceptions to this rule are modules for generating
datasets that take their input from the user and do not require
input datasets.

Most modules store the results of their computations in output
datasets. In contrast to this rule, the presentation modules produce
no datasets, but use direct output to plot or list data objects on a
screen or on hard-copy devices.

Parameter output is used to send status. error and warning messages
to the Monitor.

A module may import data from external sources or export data to
external destinations, such as files of other packages. This type of
i/o is local to the module and is not visible to the Monitor and
other modules. The products of the data export are not stored in the
database.

PRIMAL modules possess the following properties:

a) A module may execute in parallel to and concurrently to other
modules. Thus, several modules may be active at the same time.

b) The input to a module may come from input datasets, Iinput
parameters, external sources, and directly from the user.
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c) Module output is transferred to output datasets, output
parameters, external destinations and can be directed to output
devices for presentation, cf. Figure 4.4.2.

d) Any module is independent of all other modules, except for the

synchronisation of the data transport through dynamical
datasets. ‘ :

e) A module may take its input from dynamical ihpu; datasets and is
able to synchronise with the updates of those input datasets.

f) An active module may be interrupted by the user. Then it will
process the specified user input and optionally wait for
additional user input.

Subsequently we will use special symbols in the figures to
distinguish the different types of input and output, as shown in

Figure 4.4.3.
7

]

O———— Module —)

| ]

F—L"'l l']"'l
Figure 4.4.3:

Different types of module input and output.
E::}* .'*[::] parameter input and output

}—* , —4[ import and export of data
O, -0 dataset input and output
)* . *( direct input and output
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The Monitor

The Monitor is the central PRIMAL component that implements the
central user interface and the module management.

All user input is directed to the Monitor, unless the latter has
explicitly transferred input control to a module. In the first case,
the user input is Interpreted by the Monitor and the task specified
by the user is either carried out by the Monitor directly, or by one
of the modules, in which case the Monitor activates the module,
vhich starts executing in parallel to the Monitor. The Monitor then
transfers control of the keyboard and the screen to the module, so
that the module may employ direct user input and direct output.
After transferring control back to the Monitor, the module continues
its tasks, while the Monitor prompts the user for new input. The
user may now exploit the property that modules may execute
concurrently, by starting additional modules.

The Monitor tasks are summarised below:

a) It controls the communication with the user.

b) It activates modules at user request and manages the active
modules.

c) It passes parameters to a module and may grant it temporary
access to the keyboard and the screen.

d) It handles parameter output by the modules.

e) It manages the Database.

The Database

The PRIMAL Database contains the datasets that are produced by
modules {and the Monitor) and has a hierarchical structure, see
Figure 4.4.4. At the root is the root felder, containing a list of
all users of the PRIMAL system. Each user has his own user folder,
containing a list of different sesslon folders, that contain the
datasets produced by the modules {and the Monitor).

The Monitor maintains the Database folders. The modules produce
datasets and provide the Monitor with the information necessary for
maintaining the Database.

There are different types of datasets, called Vector, Matrix, Text,
and Monitor datasets. Each type has a fixed organisation and
interpretation.

Monitor datasets are only produced and used by the Monitor. They are
used for database management, logging, etc.

The other dataset types are only used by the modules. Vector and
Matrix datasets store numerical output data objects of a module.
Text datasets are mainly used for logging and presentation of
results to the user.

Important 1s that datasets are self-documenting. A module using an
input dataset requires no additional information from the module
that produced the dataset.

- 53 -



root folder
| . !
user folder user folder user folder
T T
| |
session session session
folder folder 1 folder
T T
1 |
dataset dataset dataset
T T
1 |
data data data
object object object
Figure 4.4.4:

Structure of the PRIMAL Database.

Dynamic datasets

When a new dataset is created, it automatically becomes a dynamic
dataset, which turns into a static dataset when 1t 1s closed for
updates by the module that produces it.

There are two types of dynamic datasets:

1. a dataset where new data is always appended at the end of the
dataset.

2. a dataset where new data replaces existing data.

For dealing with dynamical datasets, speclal synchronisation
mechanisms apply. See Section 4.5 for details.

4.4.3 Discussion of the design

In this section we will discuss the design and the realisation of
the requirements.

The Monitor activates modules and acts as the package manager,
managing the Database and granting resources to the modules. It is



not actively involved in the module‘s computations, or the data
sharing and synchronisation between modules. It is not even “aware"
of the function of the modules, but just implements a framework for
the execution of modules (for whatever purpose). The Monitor thus
acts as a speclal-purpose operating system. The field of
applications of PRIMAL is determined by the set of modules.

4.4.3.1 Chalning of modules

Since all methods in the EM-scheme and most PRIMAL utilities, (e.g.
graphical presentation, data import and export) are implemented as
modules, carrying out the steps in the EM-scheme is, from a software
point of view, equivalent to applying modules to the results of
other modules.

Modules are independent and “unaware” of each other's existence;
they only interact by sharing datasets. By taking an output dataset
of one module as input to other modules, it is possible to connect
modules through datasets in series and in parallel.

The ability to chain modules is a key property of PRIMAL.
Since the data flow is unidirectional, this results in tree-like
structures, as shown in Figure 4.4.5.

O N

"y

)
O

Figure 4.4.5:
Example of chained modules.
The structure is called a tree although its branches may merge.
Observe the serial connection of Modules 1,2 and 3, with merging
branches as input to Module 3. Modules 2 and 4 are connected in
parallel to the same input dataset.

dataset

module

[}

I1f the datasets are static, the tree simply represents the order of
the operations (as indicated by the arrows) .

If a certain dataset is dynamical, all subsequent wmodules run
concurrently, synchronised by the dataflow.



The term "real-time” is avoided in this context. Since measured data
is completely buffered in datasets, the only requirement is that the
Experiment Control Module keeps in pace with the experiment. All
other modules may lag behind. Since the number of active modules may
change freely, the workload may also vary drastically. If the
workload is too high to keep up with the experiment, modules lag
behind and thus process "historical” data. If the workload drops,
these modules catch up again and synchronise with the updating
measurement data.

To make use of the ability of modules to synchronise with datasets
and process “intermediate"” results of other modules, the modules
should be designed in such a way that intermediate results are
meaningful and suitable for presentation or further processing.

As pointed out before, the Monitor may activate new modules at any
time upon user request, by attaching them to an already existing
tree. Thus, the tree is itself a dynamic structure. If a module has
finished its work, it stops and its output datasets are closed for
updating. This is noticed by the modules using these datasets as
input, They will also stop execution after finishing their work. The
tree thus "diesg out” automatically from left to right.

The discussion above has concentrated on a single tree, but several
independent trees of modules may be set-up in parallel.
For an illustrative example, seze below.

Example 4.4-1 : On~line analysis of measurement data.

An Experiment Control Module (ECM) (see Figure 4.4.6) generates
a dataset to which new data is appended at each sample moment. A
recursive data conditioning module (M1) picks up this data and
generates a new dataset with the corrected data, which in its
turn is picked up by a recursive identification method (M2). The
current model parameter values and the measured process inputs
may, likewise, be input to a recursive simulation (M3) producing
a dataset with the updating model outputs and process outputs,
so that the user may view the process outputs and model outputs
simultaneously in real-time.

As the experiment stops, the ECM stops and its output datasets
become static datasets. After processing the final measurement
data, the data conditioning module will stop, to be followed by
the other modules. The tree "dies out"” as described above. The
presentation module remains - active, presenting static
{(non-updating) pictures of the data.

The wuser may, for instance, at any time apply a second
identification method to the corrected data. This module would
then start to process the already available data and the moment
it catches up with the experiment, it synchronises automatically
with the incoming data. '



MONITOR oy GRAPHICS

PCS ECH

Figure 4.4.6: .
Inspection of intermediate results.

The ability to access and synchronise with dynamic datasets is also
important in processing data off-line.

For instance, the intermediate results of an iterative method may be
written to a dataset and be Inspected by the user.

4.4.3.2 The reguirements

In the following, we briefly describe how the requirements listed in
Sections 4.1 and 4.2 are satisfied and mention some additional
properties of the design.
Requirements concerning the wuser interface will be treated
seperately in Section 4.4.3.3. The software design requirements are
discussed in Section 4.5.

a) Experiment design, experiment control and data acquisition are
incorporated in the package straightforwardly as special
modules. The Experiment Control Module directly interacts with
the PCS to start. stop, and change experiments, and to collect
and pass the measured data to an output dataset. This dataset
updates at the sample moments and then makes the new data
available to other modules.

Section 4.6 further describes the design of the Experiment
Control Module.
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b) The chaining of modules through dynamic datasets provides the
facilities for real-time analyses. Parallel execution of modules
allows simultaneous application of different analyses.

¢) Active modules can be interrupted by the user, offering the
opportunity to modify the running experiment, the presentation
of data and the parameters of active analysis methods.

d) Full functionality is achieved by implementing modules for each
method in the EM-scheme. The set of modules may be enlarged
simply by just adding modules, without a need to change any
already existing modules.

e¢) Since modules are mutually independent, and PRIMAL employs
dataset types which have a standard structure and are
self~documenting, modules are capable to read a dataset
regardless of its origin. This provides the required flexibility
for the user in determining his own path through the analyses.

f) The mutual independence of modules guarantees that a failing
module primarily affects its own execution. Of courss other
modules using its output datasets are affected, but they will
terminate execution normally as their data source dries up. More
importantly, "upstream” error propagation is not possible. This
is of vital importance to package safety. The Experiment Control
Module can never be affected by errors in any analysis method
using the experiment data.

Also, since the Monitor {s independent of the modules, the user
interface remains present and is unaffected by a failing module,
see Section 4.5.

4.4.3.3 The user interface

When PRIMAL is started, the Monitor is activated and prompts the
user for input. To provide flexibility, the Monitor supports a
command language.

Question-and-answer or menu-driven interfaces are usually easier to
learn than a command language. However, these interfaces often prove
to be too rigid and too input/output intensive for experienced
users. A command language shifts the inititiative to the user,
requires less input/output, and is better suited to cope with
incorrect user choices.

The concentration of user input and command language parsing in the
Monitor ensures consistency and unifermity. The modules are not
bothered with command language parsing and error recovery, which
simplifies their design.

Since the Monitor is independent of the modules and is not involved
in numerical computations, 1t ensures direct response to user input
no matter the package workload. This property is important in
experiment control, see Section 4.6.



To reduce the learning effort of the user, a command language has
been designed with the following properties:

a) It is concise.

b} Its commands are phrased in a natural language style.

c) It obeys strict syntax rules.

d) It provides on-line help concerning commands and syntax.

e) It provides error checking and error-correction assistance.

f) It has facilities to recall and re-edit commands.

g) It is extensible by the user with new commands.

The strict syntax rules are realised by using an LL1 grammar for the
language, [Wirth, 1978]. Such a language may be parsed using a left
to right scanner with one-~symbol loock-ahead, and allows for rigorous
error checking and error correction support facilities.

Each command begins with a command verb and is followed by a set of
specifiers, e.g. :

# APPLY CORRELATOR TO FILTER.DATA
# STOP PROCESS
# CHANGE RPE (SAMPLES=400)

The exact syntax of the language may be formulated in Backus-Naur
diagrams, cf. [Van der Linden & Renes, 1988b].

The language consists of a limited number of commands, that may be
arranged in different categories:

Module management
Activating, stopping and aborting modules.
Changing the parameters of active modules.
Database management
Creating and switching folders.
Copying, moving, deleting, purging, renaming, restoring,
labelling, importing and exporting datasets.
Editing datasets.
Listing folders.
Entering user messages in the log book.
Presentation of datasets
Listing datasets on screen.
Printing datasets on hard-copy devices.
Graphical presentation of datasets on screen or hard-copy
devices. ‘
Command datasets .
Executing, editing, interrupting and continuing command
datasets.
Informational
On-line assistance, news, debugging options.
Package control
Leaving the package.. -
Passing commands directly to the operating system.

The user has facilities to define new commands, composed of standard
commands. These commands may include a new list of speciflers.
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Parameter input to a module

The Monitor parses and executes user commands. If a command relates
to a module, the Monitor passes the command to the module and
suspends keyboard input and screen output:; the module then gets
access to the screen and keyboard until it explicitly returns the
access to the Monitor.

Modules support two alternative mechanisms for parameter input.

1. Parameter list input.
Each module has a defined set of user-adjustable parameters. The
user may specify these parameters in a command directed to that

module in a parameter list, which consists of parameter names
and value lists:

(parameter name = value list, parameter name = value list, ... )

Examples:

# APPLY RPEM TO PROCESS (SAMPLES=20C0, INPUT=FLOW1,OUTPUT=TEMP4)
# PLOT P1=RPEM.DATA (XZOOM=0:100,LINETYPE=STAIRS)

The Monitor parses the parameter list and passes its contents in
a message to the module. A parameter name and its associated
value list define a data object. The parameter list may thus be
viewed as the argument list of a procedure call, but with
indifference to the order of the arguments.

2. A cursor controlled menu with default values, questions and
answers. In PRIMAL such menus are called question pages.
A question page consists of (question) texts and answer fields.
The user may jump in arbitrary order from field to field and
adjust any parameter values.

These parameter input mechanisms may be combined.

In the case a user does not employ a parameter list or provides
erroneous input, the module will present the question pages to guide
him and request correct answers. The default answers to the
questions represent reasonable standard choices of the adjustable
parameters.

Experienced users may fully exploit the features of the command
language and parameter lists. In this case question pages will not

be presented, resulting in minimal screen output and fast module
response.

The question page system has four other important features:

a) Answers are checked at input for correctness and consistency
with the answers to all other questions.

b) Answers to different questions may be interdependent.
An answer may therefore influence the correctness of the answer
to another question. In the case of inconsistency the question
giving rise to the conflict must be answered anew.

c) To guide the user, the "legal” answers may be displayed upon
request.

d) The question pages may contain dynamical questions, i.e.

questions may appear or disappear depending on answers to other
questions.
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The user interface of a module is activated at module start-up and
vhen the user invokes a command for intermediate parameter changes.
In this case the module will suspend its computations, process the
user input and then resume execution.

Package output

The PRIMAL package prepares permanent ocutput in the form of
datasets.

The Monitor maintains the Database folders and keeps a log book for
each user-session.

The log book stores and timestamps all user commands and package
messages generated by the Monitor and by modules to signal errors,
warnings or specific events. For example, the Experiment Control
Module sends messages to the Monitor to indicate changes in the
experiment, such as a change of test signal. The user himself may
alsc enter text into the log book. With the log book and the Text
datasets produced by the modules, the user can completely
reconstruct the analyses and reproduce the obtained results at any
later moment.

A module produces a Text dataset (in addition to the datasets with
its numerical results) for the following purposes:

a) For storing the names of the input datasets and the
user-adjustable parameters, usually in the same format as in the
question pages. The Text dataset thus serves as the module’'s log
book. Each time the user adjusted the parameters, the changes
and the moment of change are also stored.

b) For presenting module results contributing directly to the
user's learning process. If, for instance, an identification
module produces a Matrix dataset containing full information
about the estimated model, the Text dataset may be used to
present results, e.g. in the form of the gains, time constants
and relative output error(s) of the model.

¢) For storing intermediate results in text format. The dataset may
be used to reflect the current status of the module.

Presentation of results

The different steps in the EM-scheme generally require extensive
computations involving large amounts of data, and resulting in large
amounts of new data. Therefore, the package must provide powerful
and flexible tools for presenting data.

PRIMAL concentrates these tools in special modules for graphical
presentation, listing on the screen and printing on hard~copy
devices, that allow for a high degree of user interaction to
manipulate the presentations. This relieves the module programmers
from this task and ensures uniformity.

The module programmer may define default presentations to show the
most interesting results.
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The presentation modules are capable of dealing with dynamic
datasets: the picture on the screen will be automatically updated at
each update of the dataset. -

4.4.3.4 learning

The PRIMAL package supports the learning process by providing:

a) Access to a variety of modules implementing different approaches
to the experimental modelling problems, whose results are
presented in a format allowing direct comparison.

b) The opportunity to apply several modules simultaneously to the
data and inspect the intermediate results (in real-time).

c) The facilities to chain modules (in real-time).

d) An effective user interface, providing guidance and rigorous
error checking/recovery.

e) Powerful interactive facilities for presenting and manipulating
(real-time) data.

f) Text datasets and default graphical presentations that enhance
the interpretation of the results.

g) Access to the Database, allowing retrieval of previously
obtained results.

4.5 Software design strategy and implementation aspects

Top~down strategies for software projects typically consist of the
following consecutive phases:

- requirements analysis

- development of design concepts

-~ full specification

- coding

- testing of the final product

In research projects this approach is generally not completely
adequate, since the package requirements are incomplete at the
project initiation. In this case an incremental software development
strategy, including prototyping, is more appropriate. PRIMAL has
been designed using the latter.

Making use of the experience with a first prototype PRIMAL package
on a PDP-11/34 for real-time experimenting [Betlem & Rademaker,
19797, a new set of requirements was formulated, on the basis of
which a specification and a radically new PRIMAL prototype have been
developed in 1984. The experience with this prototype, implemented
on a PDOP~-11/23+ under the operating system RSX-11/M, in experimental
modelling of laboratory processes, led to an extended set of
requirements. New functionality was added to the package without
changes in its internal structure.

A next generation implementation of PRIMAL and a major design
overhaul, resulting in a new ordering of functional layers, was
carried out mainly in 1986, using a VAX-T30 under the operating
system VMS. Since then, attention has focussed on the development of
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new modules for the different steps in the EM-scheme and extended
graphical facilities. The core of the package has undergone wminor
modifications only.

In 1988 a workstation version of the package has been released for
VAX-stations. The package has been applied to a variety of projects
in several industries and is commercially available since 1988.

4.5.1 Software design considerations

Two important software issues in the design of the PRIMAL package
were: how to meet the safety requirements owing to application in
industrial practice, and how to ensure a high software quality in a
large software project stretching over several years and including
many relatively inexperienced programmers.

Software quality is determined by several factors that may be
grouped into external factors and internal factors [Meyer, 1987].

The external factors relate to qualities whose presence or absence
may be detected by the user. They include correctness (the ability
to perform according to specification}), robustness (the ability to
deal with unspecified situations), extensibility (the abllity to
adapt to specification changes), compatibility with other packages,
portabllity to other hardware, efficiency, verifiability, integrity
and ease of use.

The internal factors are only perceptible to the software designers.
They include adaptability of the code, readability, and
comprehensibility.

In PRIMAL, two principles have been used that have large influence
on the Internal and external quality factors. These principles are a
clear design concept and a modular software architecture.

The clear design concept is realised by the definition of only three
components (the Monitor, the modules and the Database) and the
rigorous use of modules. All operations on the data are implemented
in the modules.

The modules are separate entities, which may be developed, tested,
and used independently of each other, in fact, even outside the
PRIMAL enviromment. To the Monitor all modules are equivalent and
may be chained in any conceivable way.

The software architecture of the package is characterised by
functional decomposition. In PRIMAL we distinguish clusters of basic
tasks, i.e. handling command language input, direct user
input/output, database management, dataset access, synchronisation
with dynamical datasets, and graphical presentation. The mechanisms
for carrying out these tasks are designed as separate pleces of
software, which are called “"software subsystems™ to avoid the word
"modules”.

The purpese of this decomposition is to split up the design problem
into smaller subproblems, whose sclution may be pursued separately.
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A subsystem is designed to perform a single task, with a small and
well~defined user interface.

To the programmer a subsystem appears as just a set of procedures
and programming conventions, called the subsystem interface. The
subsystems provide encapsulation (information hiding), shielding off
the implemented mechanisms and their internal data structure.

Such functional decomposition may be repeated at each level and the
subsystems themselves may thus be decomposed into smaller units,
using concepts like cohesion and coupling as guidelines.

The subsystems are grouped into two layers, cf. Figure 4.5.1. The
first layer contains the interfaces to the standard subsystems. .In
PRIMAL, separate subsystems {tools), are developed for all
interactions between a module and its environment. The module must
use these tools for all input/output.

The second layer contains the basic mechanisms, such as for
synchronisation, communication primitives and device input/output
primitives. They match PRIMAL to the specific operating system and
hardware devices. This layer contains the Virtual Operating System.

Layer 1 contains the following functions (tools):

— Scanning and parsing command language input

- Parameter list decoding and question page input

- Dataset access

- Message interchange between the Monitor and the modules
- Synchronisation with dynamical datasets

- Database management

- Module management

- Direct user input/output

-~ Model manipulation and matrix operations

Layer 2 contains the following functions:

- Synchronisation primitives

~ Device input/output

— Baslc dataset operations

— Message interchange

- Basic module management

- Time functions

- Symbolic name manipulation

- Data conversion and bit functions
- Excepticn handling

Just to give an impression of the size of the PRIMAL system, 1t
presently consists of about 40 modules, and contains about 150000
lines of FORTRAN, of which approximately 20 % serves
self-documentation. The subsystem interfaces contain about 300
procedures.



Module 1 vee Module n Monitor

|
Layer 1

standard tools

Layer 2
Virtual Operating System
and Device Drivers

The computer's operating system
and devices

Figure 4.5.1:

The software structure of the Monitor and the PRIMAL modules. -

Remarks:

a)

b)

d)

The standard tools reduce the complexity of designing a module,
and its designer needs not have a detailed understanding of the
subsystem's implementation.

The concentration of the command language interface and Database
management in the Monitor, and the dataset presentation in
special presentation modules, further reduces module complexity.
Not having to design user 1/o relleves the designer from a major
programming effort, enabling him to focus on the module’'s
primary tasks, thus promoting fast prototyping.

The software structure enables incremental development of the
subsystems, which may be designed and updated independently of
each other.

The use of the standard subsystems in all modules -ensures a
uniform interface to the user.

Changes and enhancements of the tools apply to all modules
directly, with no adverse effects on the code that defines the
modules.



4.5.2 Discussion of the software requirements

Safety
Several measures contribute to the safety of the package:

a) Most importantly, PRIMAL is split up into modules, which are
implemented as independent programs, cf. Section 4.5.1. The
operating system prevents, often by means of special memory
protection hardware, that a failing module affects other
modules. Thus, if an analysis module fails during an experiment,
the data acquisition is not disturbed.

b) The package includes special measures to secure the consistency
of the central user interface. If a module fails, the Monitor is
not affected and the user maintains control over the remaining
active modules.

¢) The standard subsystems limit the propagation of errors by
employing an error-insensitive message protocol, rigorous error
checking of all input, and internal consistency checks.

d) The Database is disk-based and secures consistency even if the
Monitor (or computer)} falls. Modules have no direct access to
the Database organisation and therefore cannot disrupt 1t.

- e) The execution of experiments is guarded by special safety
measures, see Section 4.6.

Because modules only exchange data through datasets and the dataflow
is unidirectional, a failing module can only affect its output
datasets and therefore indirectly the modules connected to them. If
a module fails, its output datasets are usually no longer updated.
In this case the downstream modules stay waiting for new data to
arrive. By issuing stop commands to the waiting modules the tree of

modules stops In a regular way. Upstream error propagation is not
possible,

Remarks:

-~ If a module has claimed an input dataset for exclusive access,
see Section 4.5.1, it may fail to release the dataset,
effectively blocking other modules from accessing the dataset.
Vital modules therefore time-out on a claim operation.

~ If a module detects an error, it reports the error to the user

~  and to the Monitor and stops in an orderly manner. The Monitor

will mark the datasets produced by the erroneous module and
enter the message in the log book.



Real—time aspects

The modules of PRIMAL are all designed to deal with dynamic
datasets. Static datasets may be treated just as dynamic datasets,
the difference being hidden at a low level in the standard tools. To
the modules the real-time (on-line) or off-line use makes no
difference. .

The implementation of the synchronisation facilities is discussed in
Section 4.5.3., The real-time aspects of performing experiments are
discussed In Section 4.6.

Software management

The modular software design makes it possible to divide the design
project into three phases:

1. The design of the core system, consisting of the standard tools.
2. Design of the Monitor and the special presentation modules.
3. The design of the individual modules.

The construction of PRIMAL started with phases 1 and 2, and was
realised by a small group of programmers. Phase 3 is open ended and
involves many programmers, usually each responsible for one or a few
specific modules.

The programmer must use the standard tools and he must conform to a
software documentation and lay-out standard.

Each module and basic mechanism is labelled with a release number
that uniquely identifies its implementation. This number is tested
at start-up of each module to check compatibility with the current
PRIMAL release.

Special management modules and Monitor datasets define the "site”
{the hardware on which the package is implemented) and the set of
modules belonging to the package. The Monitor reads in the datasets
at start-up. Changes can be made without affecting the source code.

Prototyping

The most important requirements for rapid prototyping have already
been discussed. Modules are stand-alone programs, that wmay be
developed, tested, and executed outside PRIMAL, independently of the
Monitor or other modules.

Extensibility

The number of modules constituting the package may be freely
extended at any time and does not require adaptation of the source
code.
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An important feature is the ability to install multiple modules for
different implementations of the same task, such as experiment
control for different PCS systems, instead of designing one complex
module for all PCS systems.

Open system

- PRIMAL may be extended with modules that use external input and
output to communicate with other software packages. Special
import/export modules may be added to PRIMAL, which translate the
files used by other software packages to PRIMAL datasets and vice
versa. :

A more powerful way to couple with another package is to treat it as
a PRIMAL module, activating it by the Monitor and providing it with
the facilities to read/write PRIMAL datasets. In this way the
coupling can be made fully transparent.

Portability

To enable the package to be ported to other computer systems, a
wide-spread and standard programming language (FORTRAN-77) was
selected. All system and device dependencies were concentrated in a
single software layer, consisting of sets of basic functions, which
must be modified for implementation under a new operating system.

Multi-user support

Several users may run PRIMAL simultaneously. In the Database each
user has his own set of folders. He may. however, also access the
datasets of other users, even though the Database may be spread over
different (remote) computers.

4.5.3 Implementation’

Implementation of modules

A module is implemented as an independent program, that Is activated
by the Monitor and is executed concurrently with the other modules
and the Monitor.

A normal (non-resident) module, [Van der Linden & Renes, 1989%],
stops execution automatically after finishing its computations.

As a PRIMAL module is activated 1t generally goes through a series
of standard steps. Figure 4.5.2 lists the general structure.



Figure 4.5.2

START

Initialise the module
Set up communication
channels to the Monitor

Read the initial message
from the Monitor

Open the input datasets
and read their contents
specification

Decode the parameter list
and present the question
pages (if necessary)

Create the output
datasets for storing the
results

Notify the Monitor that
the module has started
successfully

Perform the computations
and write results to the
output datasets

Message detected

b—— Carry out action

Continue execution

Write final results
Close datasets
Notify the Monitor

STOP

General structure of a PRIMAL module.
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After starting, setting-up the communication channels to the
Monitor, and processing the initial message sent by the Monitor, the
module gains access to the keyboard and the screen, and the Monitor
suspends execution. The user now interacts directly with the module.
This phase is mainly used for question page input. After this phase
the output datasets are created by the module for the storage of its
results. The module then sends a message to the Monitor that it has
started successfully and returns access to the keyboard and the
screen to the Monitor. It continues its execution in parallel to the
Monitor. As it has finished its computations, it closes the ocutput
datasets for write access and notifies the Monitor that it stops.

Communication between Monitor and modules

The Monitor and a module communicate by exchanging messages.

Since they are Implemented as independent programs, this form of
‘communication must take place between concurrently executing
programs and 1t has been realised by a mallbox mechanism Iin
combination with events and Interrupts.

The Monitor uses mallboxes to receive messages from the modules.
When a module 1ls activated by the Monitor, it sets up a mailbox to
recelve messages from the Monitor.

Synchronisation

The package uses the following synchronisation primitives:

Events

In PRIMAL, an "event” indicates a certain occurrence. Modules

may walt for a specific event, to be released from their wait
state when the event is set.

If a module writes to a dynamical dataset, a synchronisation
mechanism is needed to signal the reading modules that new data
has been written to the dataset. Therefore, each dynamical
dataset is associated with an event.

When the reading modules try to access new data that is not yet
avallable in the dataset, they enter a wait state. When the
writing module has written a set of new data to the dataset, it
sets the event. The reading modules waiting for the event are
released from their wait state and may then attempt to access
the data. The event is reset by the writing module, which
therefore needs not be aware of the existence of reading
modules.

Semaphores

Semaphores manage the access to common resources. They are used
to protect datasets from simultaneous read/write access.
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When a module requests exclusive access to a common resource it
initiates a wait operation on a semaphore. If it gets access it
“claims" the semaphore and other modules requesting access are
put in a wait state. If the module no longer needs access to the
resource it releases "unclaims” the semaphore and sets an event.
Waiting modules may now gain access.

Signals

Signals are used for interrupting a module. They are set by the
Monitor to indicate the presence of a message or by the module
itself (in an interrupt handler) to indicate user input. If a
signal is raised, the module will cancel waiting for semaphores
or events. The module acknowledges the signal by resetting it.
Important is that a signal cancels wait states. The user may
therefore interrupt an active module and get its immediate
response.

All three synchronisation primitives are implemented with the help
of global event flags in VAX/VMS.

Datasats

A dataset where new data ls always appended to the end of the
dataset is called an access mode 2 dataset. Modules reading the
dataset may freely read all data that is already avallable.

The writing module indicates the availability of new data by setting
an event. Access mode 2 datasets are used, for instance, for storing
experiment data.

Since handshake mechanisms are avoided, a fatal error or freeze of a
reading module does not affect the writing module, preventing
upstream effects and possible deadlocks. Furthermore, writing
modules are not blocked or delayed by reading modules. which is
important to experiment control.

The mechanism described above allows a reading module to miss
updates of a dynamical dataset, since it may not yet be waiting for
the event. This has no influence on the correctness, since all data
is stored.

A dataset where new data replaces existing data is called an access
mode 3 dataset. Here the writing and reading modules must claim the
dataset for exclusive access (using semaphores). When a dataset is
claimed, the other modules requesting access enter a wait-state
until the dataset is released. An update of the dataset is indicated
by an event set by the writing module.

Access mode 3 datasets are used for storing Intermediate results of
modules, such as correlation functions and intermediate models. If a
module gets access to the dataset, it will automatically get the
latest update.
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The wait states mentioned above are interrupted (by signals) if the
Monitor issues a message to the module. The actions specified in the
message must be carried out before returning to the walt-state. This

procedure ensures the immediate response of the wmodule to user
~ commands. . :

Datasets are implemented as shared datafiles residing on a disk.
They are self-documented and consist of three sections (with some
exceptions for Monitor datasets). The first section is called the
base section and contains information about the dataset size and
type. The second section is type-dependent. It contains the names
and characteristics of the data objects stored in the dataset and
default ways of presentation. The third section is the data section,
containing the stored data objects.

The Database

The Database consists of sets of files. Its folder directories are

implemented as Monitor datasets, created and maintained by the
Monitor. ‘ '

The CGraphics

Because the user’s learning process depends to a large degree on the
graphical presentation facilities, special attention has been
devoted ito their development.

A module does not present its results {itself, but the Vector
datasets it produces may be presented by the PRIMAL Craphics. The
datasets may contain default presentation settings. The Graphics

reside in a special~purpose module, which provides the facilities
to:

- Present up to four independently dynamically updating
presentations (pictures) simultaneously. Thus, during an
experiment, the user may view the updating measurement data and
the wupdating results of the analyses simultanecusly, in
real-time.

- Create several different updating presentations of one dataset.

Make a selection from among the default presentation settings

associated with each dataset.

— Manipulate the pictures using the command language and/or
graphical input, supporting a large set of operations, e.g. for
selecting presented curves, zooming, line types. accuracy bands,
scaling, etc.

~ Present the plctures on a variety of graphical devices.

The graphical subsystem consists of three layers, implementing a
effective set of high-level plot operations, a device selection

layer, and a collection of graphical device drivers, [Van Lanen,
1988].
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4.6 eriment desi and data acquisition

Starting-point for the design of the process interface is the
computer configuration introduced in Section 3.3.2, (Figure 3.3.1).
The different tasks that may be discerned in experiment design and
experiment control are divided over the Analysis Computer (PRIMAL
computer) and the PCS.

The PRIMAL role is based on a standard set of messages that must be
exchanged with the PCS and is therefore to a large degree
PCS-independent. This concept makes it possible to couple PRIMAL to
a large diversity of process control systems, at the cost of
developing an application-specific PCS part of the interface for
each new type of PCS to which a coupling must be realised.

In PRIMAL, all activities concerning experiment design and
experiment control are handled by a set of modules:

1. The Interface Definition Module {(IDM)
2. The Experiment Definition Module {EDM)
3. The Experiment Control Module (ECM)
4. The Process Interface Module (PIM)
command
. dataset
user )>——oy Monitor [——{)
(=] =1 =1
R I
experiment
log book
M —O—— M —O ECM O
experiment
data
PCS
Sensors 4
Process — and -“PIM data link
Actuators
[ .
operator
local storage
Figure 4.6.1:

Overview of modules involved in experiment control.

The ECM loads the experiment definition and passes it to the
PIM. The experiment data are stored locally in the PCS and/or in
a dataset by the ECM.
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The Process Interface Module runs Iin the PCS. The other modules run
in the Analysis Computer as parts of PRIMAL.

The Process Interface Module

The Process Interface Module in the PCS has no direct link to the
Monitor. It communicates only with the Experiment Control Module
{ECM) and it is not implemented as a PRIMAL module.

The main task of the PIM is to start/stop the data collection (of
the sampled process inputs/outputs) and transfer the data to the
ECM, which makes 1t available to all other PRIMAL modules.

The activities of the PIM depend on the selected options. The module
should be capable to operate in combination with PRIMAL as well as
independently, supporting design and control of experiments by
PRIMAL, as well as local operator control. At any time the operator
may interrupt an experiment and override FRIMAL’s actions.

In short, the FIM performs the following tasks:

a) It communicates with the ECM on the Analysis Computer.

b) It initjialises its actions by loading the ‘“experiment
definition”, which is passed to the PCS by the ECM, unless it
has already been stored locally.

¢) It schedules experiment contrel commands to start, stop and
change experiments, sent by the ECM, or entered locally (e.g. by
the operator). Local commands override remote commands.

d} It collects the values of the process Inputs and outputs at each
sample moment and passes these to the ECM and/or stores them
locally.

e) Optionally, it generates and introduces test signals into the
process Inputs.

f) During the experiments, it checks whether all process inputs and
outputs stay within their legal ranges, refusing to introduce
input signals in the case of conflicts.

g) It logs all actions and relevant experimental conditions in a
local log book and/or sends messages to the Analysls computer
for remote logging.

h) Optionally, it implements controllers, the controller parameters
being passed to it by PRIMAL or entered locally.

A prototype PIM has been developed, and specific implementations
were carried out on the laboratory PCS of the Systems and Control
Group at Eindhoven University of Technology, on a Foxboro Microspec
[Renes & Van der Linden, 1987]., and, in cooperation with Philips, on
a speclal-purpose PCS for process identification.
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The Interface Definition Module and the Experiment Definition Module

The parameters defining the experimental set-up and the experiments
are stored In an interface definition dataset and an experiment
definition dataset. The interface definition for a specific
PCS-process combination is usually made once, whereas the experiment
definition may change in each experiment. Therefore, a separation of
tasks is made for reasons of safety and convenience.

The IDM produces the interface definition that is used by the EDM in
producing the experiment definition. The interface definition
contains information such as: the available PIM options, the maximum
number of process inputs and outputs, the type and range of the
ADC's and DAC's and the range of addresses that identify the process
inputs and process outputs.

The experiment definition contains information such as: the sampling
interval, default experiment length, the selected PIM options, the
selected inputs and outputs, their default, minimum, maximum and
varning levels, prefiltering options, etc,

The Experiment Control Module

The Experiment Control Module has two parts. The kernel |is
constructed as a PCS-independent PRIMAL module, using the standard
tools for communicating with the user and accessing the datasets.
The other part 1is PCS-dependent and implements the specific
requirements of the communication protocol with the PIM.

Any new PCS may be coupled to PRIMAL simply by adding an appropriate
ECM to the package. Each ECM is assigned a unique name, by which it
is known to PRIMAL.

In short, the ECM performs the following tasks:

a) It loads an experiment definition dataset.

b] It sets up the communication channel to the PIM.

¢] It sends the experiment definition parameters to the PIM.

d) It waits for commands from the Monitor and from the PIM.

e} When a request arrives to start an experiment, it asks the PIM
to send process data and stores these data in its output
dataset(s]), automatically making it available to other modules
for analyses and/or presentation in real-time plots.

f) It instantly responds to user commands to adapt or stop the
experiment. .

g) It stores all status information, messages from the PIM and all
user commands in the experiment log book {a Text dataset). ready
to be accessed by the user at any time.

h) It remains resident after the experiment is stopped, ready to be
re-activated and to repeat steps a) - h).
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Safety

Concerning safety, the set-up described above has the following
properties:

-~ Only a relatively simple program (PIM) must be implemented on
the PCS to couple PRIMAL to the process. .

-~ All PRIMAL interactions with the process pass through this
module, which rigorously checks whether all actions remain
within the limits of the experiment definition.

-~ The operator may overrule remote commands.

~ Failing modules in the Analysis Computer do not affect the PCS,

- The two—computer concept and the built-in flexibility of the PIM and
the ECM to enable/disable certain parts of experiment control are

usually sufficient to comply with the safety requirements
encountered in practice.

Real-time aspects

The PRIMAL package is designed to operate correctly, no matter the
_number of active modules and the computational workload. As long as
the ECM, running at high priority, can keep up with the PIM, the
analyses may lag behind, but will not conflict with the real-time
demand.
By providing sufficient buffering of data sent over the data link,
the real-time demands for the ECM may be relaxed; it must keep up
with the average data transfer rate, but may lag behind at peak
activities of the Analysis Computer. Of course, this does not hold
if the ECM is used to generate test signals or to implement a
controller,
To prevent the user from blocking ECM execution. the module does not
allow direct user input. User interaction is only possible through
commands handled by the Monitor.

Experiment control

The experiment definition dataset does not Iinclude experiment
control actions, such as starting, stopping and introducing test
signals. These actions are carried out interactively by the user by
commands such as:

# LOAD PROCESS WITH EXPERIMENT
# START PROCESS
# PUT STEP ON PROCESS.FLOW1 (AMPLITUDE=40)

See Section 4.7 for further examples.

Experiment control commands may be programmed in command datasets
and may include time specifications. In this way, experiments can be
programmed beforehand, to be executed automatically later.

The Monitor parses the commands and passes them to the ECM, which in
turn orders the PIM to start, stop, or adjust the experiment. If the
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commands indicate that an adjustment must be made at some future
time, it is entered in the scheduling table of the PIM.

For experiments with high sampling rates, the experiment duration is
usually short and interactive analysis and experiment adjustment may
not be feasible. But then, PRIMAL may be used to switch back and
forth rapidly between experimenting and analysing the data.

The experiment definition dataset, and the session and experiment
log books allow the user to reconstruct the experimental conditions
at any later time. The log books store all commands issued by the
user and all messages sent by the PIM. Adjustments to the experiment
are confirmed by the PIM.

Control system implementation

The design of PRIMAL allows a gradual implementation of new control
systems. In a first step, the control system may be simulated in
PRIMAL using the best process model found. In a second step, the
control system outputs are computed by the Analysis Computer and
passed to the PIM to be imposed on the process inputs. In a third
step, the control system may be implemented in the PCS.

4.7 A sample session with PRIMAL

To demonstrate the PRIMAL package, this section discusses a sample
session in the style of the user manual, [Van der Linden & Renes,
198%a].

PRIMAL sessions

As the user enters PRIMAL, he is asked for a user name and a session
name. The package uses this information to create a session folder
in the database of the user. All datasets produced in this session
are by default stored in the session folder.

The full and unique specification of a dataset is:

[Cuser name>.<{session name>]<dataset nume>.<{extension’;<{version>

o.g. [JACK.ETHENE]PROCESS.DATA;2
[JACK.TEST1)FFT.DATA;3
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At a given moment the directory of the session folder may look like:

Directory of Folder [JACK.HYDRO]

30MARS0 10:17 CORRELAT DATA
30MARS0 10:17 CORRELAT TEXT
30MARS0 10:11 EXPEDIT IFD
30MARS0Q 10:14 HYDRO EXP
30MARS0 10:10 HYDRO LOG
30MARSO 10:3% MARKOV  DATA
30MARS90 10:3% MARKOV  MODEL
30MARS0 10:3% MARKOV  RESPONSE
30MARS0 10:35 MARKOV  TEXT
30MARS(Q 10:39 MTEST CORR
30MARSC 10:3% MTEST DATA
30MARS0 10:39 MTEST TEXT
30MARS0 10:17 PREFILTE DATA
30MARS0 10:17 PREFILTE TEXT
30MARS0 10:16 PROCESS DATA
JOMARS0 10:16 PROCESS TEXT

Cross correlations for inputs Q and QS
Cross correlations for inputs Q and QS
Thermoe Hydraulic process interface def
Definition PRBNS experiment 1

(L] Log-book of session[JACK.RYDRO]
Impulse responses Q,Q8 ~> T3,T4
Impulse responses ¢,Q8 -> T3,74
Impulse responses Q,Q5 -> T3,T4
Impulse responses ,Q8 ~> 73,74
Model validation of the RPEM;1
Model validation of the RPEM;1
Model validation of the RPEM;1
Trend corrected process data
Trend corrected process data
PRBNS experiment 1
PHENS experiment 1

B B Bk Bk b b B ek et b bbb B B S b B B R

30MARS0 10:17 RPE DATA $180 estimate ¢ =-> T2 order 2
30MARS0 10:17 RPE MODEL SIS0 estimate Q ~> T2 order 2
30MARY0 10:17 RPE TEXT SISO estimate Q -> T2 order 2
30MARSD 10:37 RPEM DATA OQutput error Q,QS ~> T3,T4 order 3
30MARS0 10:37 RPEM MODEL Qutput error Q,¢S ~> 13,74 order 3
30MARS0 10:37 RPEM TEXT Output error Q,Q8 =-> T3,7T4 order 3

Figure 4.7.1:
Example of a session folder directory.
The datasets in this folder are characterised by their name, a
user—-added label and their time and date of creation.
Furthermore, the session folder includes a log book..

The user may manipulate {e.g. copy. move, rename, delete) the
datasets with appropriate Monitor commands.

Examples:
# COPY [ JACK.HYDRO]PROCESS.DATA TO [ JOHN.TEST1]HYDRO1.DATA
# DELETE FFT.DATA:1

Performing experiments

Suppose the Experiment Control Module has been named PROCESS. )
After the Interface definition has been made, the user generates an
experiment definition with:

# EDIT HYDROC.EXP

The Monitor will start up the Experiment Definition Module which
presents a set of question pages to the user, for defining the
experiment parameters, process Iinputs and outputs and their
_properties, [Van der Linden & Renes, 1989d].

The ECM 1s loaded with the command:

# LOAD PROCESS WITH HYDRO.EXP
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The ECM sets up the communication channels to the PIM, loads the
experiment definition from the EDM and passes the appropriate
information to the PIM, Furthermore, the module creates a dataset
for storing the data generated in the experiment, and a log bock to
store the experimental conditions.

The package responds with:

Created {unit 1): [JACK.HYDROJPROCESS.TEXT:1
Created (unit 2): [JACK.HYDROJPROCESS.DATA:1
Module PROCESS:1 loaded

The user may now start an experiment with:
# START PROCESS

Sampling will now start and the measured data will be stored in the
dataset PROCESS.DATA by the ECM.

The data from the process can be accessed immediately. For example,
to monitor the experiment, the data may be displayed In a real-time
plot with the command:

# PLOT P1 = PROCESS.DATA IN WINDOW C1

The user may modify the experiment interactively, for Iinstance by
specifying test signals:

# PUT BNOISE ON PROCESS.PS:10 {AMPL=0,2,LAMBDA=5}
vhich informs the Experiment Control Module PROCESS to initiate a
binary signal with amplitude 0.2 and a minimal clock period of 5
samples in the input signal with name PS, beginning at sample 10.

On-1ine analyses

While the experiment is active, the user may,difectly apply analysis
methods to the data. For instance:

# APPLY PREFILTER TO PROCESS.DATA
starts up the recursive data conditioning module PREFILTER to
geparate the trend from the raw measurement data.
With:

# APPLY CORRELATOR TO PREFILTER.DATA

correlation analysis~is applied to the output data of PREFILTER, and
with: : : o

# PLOT P2=CORRELATOR.DATA IN WINDOW D2
the updating correlation functions are displayed next to the
updating measurement data. The user may proceed immediately, for

instance, by applying a recursive prediction error method to the
data: '
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# APPLY RPE TO PREFILTER.DATA

A default presentation of the corrected process output, the ocutput
predicted by the model, and the prediction error may be shown on the
graphical screen with:

# PLOT P3=RPE.DATA (SET=OUTPUT) IN WINDCW D4

The modules PROCESS, PREFILTER, CORRELATOR, RPE and the Graphical
module are now simultaneously active, synchronised by the data flow.
The graphical screen presents plots as shown in Figure 4.7.2.

. TUD PE LINCH SR ITIMATLAL BTN E
Pt LIOC NORGRSH DATA, I COMGAT

s

W wn o boind
4
[~ ]

-] b} L. »tget

o0
v.00 | ;{?.

Lad

-
-

8.2 “a.0¢

4.4

Figure 4.7.2:
Copy of the graphical screen at some moment during on-line
analysis of the experiment data.
Updating pictures are present of the process data (a). estimated
correlation functions (b)., the process output. the model output
and prediction error of a recursive identification method {c¢).
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4.8 Comparison to existing software packages

After this outline of the design and functionality of FPRIMAL, we
summarise its most important features here and compare it to other
software packages.

PRIMAL provides:

- Support for all steps in our Experimental Modelling scheme.

- A variety of modules for the different steps in the EM-scheme.

- Analyses in real-time.

- The ability to perform several analyses in parallel and/or in
synchronised structures.

- Real~time graphical presentation of multiple datasets.

- Inspection of intermediate results.

— Command input, question page input and graphical input.

-~ Interaction with and adaptation of active methods.

- Full database support.

- Self-documented datasets.

~ Automated log book support.

- Results presented in a form suited to less experienced users.

-~ Support for multiple users.

- An environment that can be extended freely with new modules.

The combination of real-—time capabllities and an extensive set of
modules for data conditioning, identification and control system
design, makes the PRIMAL package unique in providing the facilities
for bridging the gap between control theory and industrial practice.
Among other software packages, it fllls a gap between, on the one
hand, real-time packages for experimenting and on the other hand,
packages for off-line data analysis and CACSD (Computer Assisted
Control Systems Design).

To the first category belong PCS-type packages, ({e.g. The Fix,
Cenesis, ..} and analysis packages (e.g. ASYST). They provide
facilities for experiment control and signal analyses, but usually
very limited support for identification and control design.

To the second category belong packages such as CIRL-C, MATRIX-X,
PRO-MATLAB (belonging to the MATLAB family), KEDDC and LUND. See
Cellier & Rimvall [1986] for an overview.

These packages are mainly intended for off-line use, but a few, such
as KEDDC and MATRIX-X, offer some real-time capabilities., which,
however, are not fully integrated into the package.

Of the popular MATLAB family, CTRL-C and MATRIX-X aim mainly at
simulation and control, and offer only limited support for
identification. Closest to PRIMAL is PRO-MATLAB, because its
identification and control toolboxes provide an extensive set of
tools for modelling and control.
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The main differences between FPRO-MATLAB and FPRIMAL concerning
experimental modelling, are summarised below.

The MATLAB user interface is essentially a language for matrix

manipulation, including variables and flow control, that is more

powerful and offers more flexibility than the PRIMAL command
language. It is, however, less suited to inexperienced users.

- By supporting the development of programs written in MATLAB
language, MATLAB provides a suitable environment for fast
prototyping of programs for numerical analyses.

~ MATLAB supports a large set of tools for signal analysis,
identification and control system design.

Its facilities for multivariable MFD's are as yet not well
developed.

- The package has an open architecture (MEX-files).

— It has no real-time capabilities.

— Experiment design/control facilities are not available.

— Analyses cannot be carried out in parallel.

— Intermediate results cannot be inspected.

— The workspace consists of a loose collection of matrices. Data
can be structured to some extent within a matrix only.

- No structured database is available, so that a convenient
storage of results and reconstruction of the analyses is not
supported.

- Ne facilities are avallable for (automatically) generating
reports of the results of the different methods,

-~ Data structures are insufficiently standardised, especially
among the different toolboxes. :

Concluding, I think that, in their current form, PRO-MATLAB is an
excellent tool for exploring and developing methods, whereas PRIMAL,
owing to its interface to the process, real-time analysis support;

database and reporting facilities, is much stronger in practical
applications. .
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CHAFTER 5 IDENTIFICATION METHODS IN PRIMAL

5.1 Introduction

Following the Experimental Modelling strategy presented in
Chapter 3, the approach to identification is to provide the user
with a variety of methods, based on different types of models and
estimation methods, and let the user choose from among these
methods, probably applying several of them in parallel and comparing
their results.

In this chapter, we discuss the identification methods presently
available in PRIMAL. We consider the following classes of methods:

a) {One-step ahead) prediction error methods, in their recursive,
direct, and iterative variants.

b) As a special case of a), the estimation of a (high order) FIR
model, followed by a realisation step.

¢} Instrumental variable methods.

d) Effective new variants, based on a Monte-Carlo approach.

5.2 Prediction Error Methods

The Prediction Error Methods (PEM's) form an important class of
identification methods, that is popular for several reasons:

a} PEM's are well established from a statistical point of view. In
the case of a quadratic prediction error criterion they can be
derived directly from the Maximum Likelihood method, assuming
Gaussian distributed noise.

b) Using special choices of the general model parametrisation
{2.6.4) and discerning gradient type and Causs-Newton type
optimisation techniques, Ljung [1983] has shown that many
"classical” identification schemes, such as Generalised Least
Squares, Approximate Maximum Likelihood, etc., are special cases
of a general PEM.

c¢) They may be implemented in an iterative or recursive fashion,
and perform reportedly well.

d) Without modification they may be used in closed loop
experiments.

e} The PEM can be extended to include data prefiltering and/or
other norms of the prediction error.

fFor the above reasons several PRIMAL modules were based on the PEM
approach. In the sequel we will briefly summarise the basic
iterative and recursive implementations. The general predictor model
for the SISO case [Ljung, 1983] is extended here to suit the MISO
case.



The parameter estimate is defined as the minimising érgument of the
criterion function:

N

¥ (8.2) = 5~ ) €l (£.0)A7 e(t.6) (5.2.1)
t=1

3N = arg mén VN(B.ZN) - (5.2.2)

For notational convenience, the subscript N and the argument Z'N are
dropped In the sequel. Censrally, V(8) is a non-linear function of
the parameters and its minimum cannot be computed analytically.
Several numerical optimisation techniques have been developed for
this non-linear least squares problem, see [Cill & Murray, 1981;

Dennis & Schnabel, 1986]. We will briefly discuss the gradient and
Causs-Newton techniques.

At 8 we approximate V(8+A8) by its second order Taylor expansion,
neglecting higher order terms.

V(6+40) = V(0) + g1 (6)46 + 5467G(8)A0 (5.2.3)

with g(8) the gradient, and G(0) the Hessian of V(8) with respect
to 8. A strong local minimum 8, of the criterion function satisfies:

g(6g) =0 {5.2.4)
C(B,) positive definite.

Defining ¥(t,0) as the gradient of the prediction error with respect
to 6: .

T
9(t.8) := - -25(t.0) , (5.2.5)
a9
we get:
N
£(8) = V'(6) = T~ ) y(t.0)A7 e(t,0) (5.2.6)
=1
N
ce) = v''(8) = ) wr.oia"yI(t.0) - s (5.2.7)
N
t=1

[y I

. q q
where [s] =-13) ) ) —9-{\pm(t,e))z\;3aj(t.a)
N =1 121 y=1 99,



Iterative optimisation techniques

The parameter estimate Gi in the i'th iteration may be updated in
the steepest descent direction, with step-size at)O using:

i+l

gt*l - gt

- a,g(6") (5.2.8)
or, using second order derivatives, with a Newton technique:

o*1 = ol - [ceh)1 g0 (5.2.9)

The Newton technique requires knowledge of the Hessian (5.2.7).
which consists of a positive semi-definite first term and a
remainder S, Neglecting the remainder results in a GCauss-Newton
scheme.

N N
+1 i t,,-1,T i,.- Ty~ i

= 0"+ o [ ) w(t.8047 T (1.09)17 ) w(r.6h)ate(r 0"
t=1 t=1

et

(5.2.10)

A step size a is included in this scheme and may be computed using

a line minimisation method.

The advantage of a Causs-Newton scheme over a Newton scheme is that
it only requires the first derivatives and that the positive
definite approximation of the Hessian guarantees a descent
direction. However, the Gauss-Newton scheme is less suited for large
tesidual problems and problems with a near to singular approximate
Hessian. In the <case of singular approximate Hessian the
Levenberg-Marquardt technique may be employed to ensure a regular
Hessian. For large residual problems, a modified Newton technique
may be employed.

Recursive optimisation techmiques

fFor the derivation of the recursive Gauss-Newton technique the
criterion function is extended to include a forgetting factor A.

A5 (5. 0)A e (s.8) (5.2.11)

1

v,(0) =

[ % X

.
2
s
Assume that et—l minimises Vt_l(B). vt(e) is approximated locally at
Bt—l by a second order Taylor series, neglecting higher order terms:



V (0) =V, (8, ) +g,(8, ,)(6-8, ;) +

%{s—et_l)Tct(et_l)(e—et_l) (5.2.12)

The minimising argument 9t of this quadratic expression is:

- - -1 T
8, =8, - G;*(6,_1)g, (6, ;) - (5.2.13)

To obtain recursive relationships gt(e) and Ct(e) are expressed in

terms of gt_l(e) and Gt—l(s)' Straightforward differentiation of
(5.2.11) results in: ‘

g,(8) = Ag,_(8) - el (1,0)A 4 (t,0) (5.2.14)
C,(8) = 7G,_;(8) + ¥I(t,8)Ay(.6) -
) ei(t.B)AE}w3T(t.6) (5.2.15)
t J

Near the optimimum the last term of (5.2.15) will be approximately
zero if e(t,B8) converges to a white noise. This part of the Hessian
may therefore be neglected, leading to the Gauss-Newton algorithm:

8, =6, , *+ [C.(6, )1 "w(t.6,_)a""e(t.0, ;)

-1,T
C,(8,_y) = AG,_;(8,_;) + w(t.8,_)A"*¥' (t.6, ) (5.2.186)

To arrive at an algorithm suitable for on~line use:
-~ the signals e(t,8), (t.8) are replaced by on-line
approximatlions e{t), ¥(t),

- Ct-ltet-l) is approximated by ct_l(et-z).
~ the matrix A is replaced by an on-line approximation At'
— and the matrix inversion lemma is applied.

This leads to the recursive algorithm:

P(t) = N*[P(t-1) - L(t)¥] (£)P(t-1)]

L(t) = P(t-1)9()[M, + ¥1(P(t-1)9(1)]"

A, = (1-1t)At_l + 1te(t)eT(t) Y = 1/¢

6, =8, +L(te(t) (5.2.17)



The predictor model

We will use the following predictor model, based on the MISO data
generating model (2.6.5):

y(t[t-1:0) = [ 1 - A(a™*:€)D(a™:0)C™* (g7 :0) Iy (¢) +

p
D(g™*:0)C™*(a7*:6) ) B,(a™*:8)F;*(a"*:0)u, (1)
i=1
(5.2.18)
e(t:6) = y(t) - y(t]t-1;6) (5.2.19)

The MISO, rather than the MIMO version, is selected to reduce the
computational workload In on-~line operation. Then, in order to model
a MIMO system q independent estimations must be carried out.
Defining:

w(t) := B(aH:10)F, " (a70)u (1)  t=1l.p  (5.2.20)
P

v(t) := A(g™%:0)y(t) - 2 W, (1) (5.2.21)
i=1 :

the prediction error can be written as:
e(t) = D(g™*:8)C " (g7 :8)v (1) (5.2.22)

Equation (5.2.22) can Be rewritten to:

YCelt-1:8) = y(t)-e(t)
P
= [1-AGa™:0)Ty(t) + )  { By(a"*:0)u (t) +
i=1
[1-F, (7€) Tw,(t) } + [1-D(q™*:8)v(t) +
[Clq™*:8)-1]e(t)
1= 91 (1.0)0 : ~ (5.2.23)
where:
8:i=(ab..b f .0 c a7t (5.2.24)

Each component of 0 represents the row-vector of coefficients of the
corresponding polynomial.
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Consequently, the vector ¢[t,8) consists of past signal values:

An

9T(t.8) = ( ~y(t-1) .. ~y(t-na) u (t) .. u(t-nb) ..
up(t) - up(t-nbp) —wl(t—l:s) .. -wl(t-nfl;e) -
-wp(t~1;9) - -wp(t-nfp;a) e(t-1:8) .. e{t-nc;6)
-v(t-1:8) .. -v{t-nd;B)) : (6.2.25)

expression for ‘the gradient is obtained by differencing (5.2.23)

with respect to 8.

T T T T T T T
b= (4 Ygy - Vpp Vg () ¥go(8) WL ¥Y)
Clq™*:0)¥, . (t:8) = D(g"*:8)y(t-k) k=l..na

Clq™*:0)F, (@ *:8)¥y; ,(t:8) = D(q™*:8)u, (t-k)
kzO..nbt. i=l..p

-1. .
C(q '9)*c,h(t'9)

]

e(t~k;0) k=1l..nc

C(q-1:9)¢d'k(t:8)

-v{t-k;8) k=1..nd

Cla™*38)F (a7* 100y (. (¢:8) = ~D(q™*:8)w, (t-k:6)
kzl..nfi. i=1..p

(5.2.26)

Iterative methods

The equations (5.2.10), (5.2.23) and (5.2.28) form an iterative
Gauss-Newton algoritm. This scheme has been implemented in the
second step of the PRIMAL module MCRPEM, [Van der Linden & Renes,
198%9e] taking into account the following implementation points:

{(5.2.10) is not used directly, but instead the QR-decomposition
of the associated least-squares problem is used, which also
serves to check the rank of the Jacobian for the purpose of
regularisation. .

The step size (damping factor) a is determined with a line
minimisation algorithm, based on safeguarded quadratic
interpolation.

The Gauss-Newton method has been developed for unconstrained
optimisation problems. However, 8 is restricted to the subset
2m, (2.3.4), which implies that all roots of the polynomials
C(z) and Fi(z). i=1..p must lie inside the unit-circle. This

projection into the unit circle is implemented in the line
minimisation algorithm.
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Recursive methods

Recursive algorithms based on the model (5.2.18) have been
implemented in the module RPEM (for the MISO case) and RPE (for the
SISC case), [Van der lLinden & Renes, 1989¢]. The following points
wvere taken into consideration:

- The P—matrix in (5.2.17), wvhich may be interpreted as the

parameter covarlance matrix, is computed using a UDUT
decomposition, guaranteeing a strict monotonic decrease.

- e(t,8) and Y(t,0) are approximated by e(t) and ¥(t), using the
shift properties, c¢f. [Ljung 1983].

- The stability of the predictor is guaranteed by a projection of
unstable zero's of C(z) and F(z) into the unit circle.

- In updating ¢{(t), the residual Is used instead of the prediction
error. ‘

~ Switching from a Pseudo Linear Regression (PLR) to a
Gauss-Newton scheme has been built in to circumvent possible
convergence problems when the initial estimate is far from the
optimum,

~ To achieve accuracles comparable to the iterative version of the
PEM algorithm, re-iteration of the data has been built-in. This,
of course, 1s not suitable for real~time application.

Some notes on equation error and output error methods

Depending on the selected parametrisation in (5.2.18) we may speak
of equation error type methods (F{g"';8) =I) or output error type
methods (A(g™';0) =I).

Comparing these types, we may note the following:

~ Simple ARX~-type equation error models may be estimated using
: ordinary least squares, see Section 5.3. Therefore, they are
computationally more attractive than output error models, which
usually require non-linear optimisation techniques and which

may suffer from local optima.

- Qutput error methods explicitly minimise a direct measure for
the model performance in simulation.

- An important property of equation error methods is, that for
low-pass processes more weight is put at high frequencies. This
is demonstrated by Wahlberg & Ljung [19861, using an expression
for the limiting criterion function in the frequency domain. It
has been shown by Van den Hof & Janssen [1985] that in the time
domain (under certain assumptions) equation error methods fit
the initial set of Markov parameters. For output error methods
the weight is averaged over the frequencies.

- For output error models of type (5.2.18), where the process and
noise transfer function are independently parametrised, and the
system operates in open loop, it can be shown that the process
transfer function converges to the "true” transfer function
(assuming an exact fit is possible) even if the noise filter is
not parametrised appropriately.



5.3 lLeast Squares Methods

For the quadratic criterion function (5.2.1) and the special case
that the prediction error is linear in the parameters, the (unique)
minimum of V(8) can be computed directly, using a Least Squares
method. We will briefly discuss two cases.

ARX-model

In the case of an ARX-model (2.6.1), the prediction error can be
written as:

e(t)

-A(g™*:8)y(t) + B(q™*:0)u(t) (5.3.1)
BT

which is of the equation error type.

The parameter 0 may be computed directly from the normal equations
(2.4.13). A direct Least Squares method for ARX-models, using the
QR~decomposition instead of directly solving the normal equations,
is implemented in the PRIMAL module DLS.

The Least Squares problem may also be solved in a recursive way,
using the algorithm {5.2.17). and substituting ¥(t) = ¢(t). The
recursive algorithm is utilised in Guidorzi's method, [Cuidorzi,

1875] and is implemented in the FRIMAL module CGUIDORZI, [Renes,
1984].

The estimation of the parameters in equation error models has the
advantage of moderate computational cost and, more important. no
numerical optimisation algorithms are needed, but instead the global
minimum is found directly. However, iIn general the results will be
biased, see (2.4.15).

Another cause of problems may be the emphasis put on fitting the
high frequency part of the transfer function, which may result in a
bad simulation model if only the initial Markov parameters are
estimated correctly (see the previous section).

I1f., for instance, the process responses are slow compared to the
sampling interval, an equation error method may find a good one step
ahead prediction by extrapolating the values of past outputs.
However, the output error will generally be large.

To prevent biasedness, the model may be extended with a noise filter

H(g™*:8). In this case the regression vector ¢(t) s no longer
independent of © and one has to resort to the general PEM.

FIR-model
For the FIR-model (2.6.2). the prediction error can be written as:

Ce(t) = y(t) - B(g"*;0)u(t) (5.3.2)



In this case e(t) represents the output error. The parameters of
B(g"*;8) have a direct physical interpretation, being the finite
impulse response parameters (i.e. Markov parameters) of the model.
As with the ARX-model, the least Squares method is implemented in an
direct way {module DLS) and in a recursive way (module MARKOV), see
[Van der Linden & Renes, 198%e].

The estimation of the Markov parameters has several Iimportant
properties.

- Provided the inputs are independent of the output noise, the
parameters are asymptotically correctly estimated, irrespective
of the noise properties.

- In the case of a persistently exciting input signal of

' sufficient order, the solution is unique.

~ To get a good fit of the impulse responses of the process, the
degree of B(g™!:8) must generally be chosen high.

- The advantage of the high order is that the user {s not
confronted with difficult choices concerning order or structural
indices. Furthermore, delays may be estimated within the model
set as zero coefficients of B(q ':6).

The method is therefore especially useful if little knowledge of
the process behaviour is yet available.

- The large number of parameters makes the method unsuited for
short datasets and for low-informative inputs.

If successful, the Markov parameter estimation produces a wmodel
showing good simulation behaviour. However, due to its high order
the model is usually not immediately suited for its Intended use.
Therefore, it should be reduced to a low order model by using
realisation techniques, or, alternatively, it may be used as an
initial estimate in the estimation of a lower order model, [Backx,
1987]. .

In PRIMAL, realisation methods based on the singular value
decomposition of the Hankel matrix have been implemented, [Zeiger &
McEwen, 1974; Damen & Hajdasinski, 1982; Kung, 1879; Cerlings,
1987].

The basic algorithm is given below:

Civen a finite dimensional block Hankel matrix H. composed of Markov
parameters. The singular value decomposition of this matrix is
computed:

(RS o
H= | MM - = vy = s/ ElA (5.3.3)
Moo

e M2k

In order to approximate the high-order model with an n-dimensional
state~space model, only the first n singular values are taken inte

account. Substituting M, = cA'™!B, the Hankel matrix can be written
as the product of the observability and the controllability matrix.
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The matrices of the state-space model can then be constructed with:

-1/2 T -1/2
A=(3) U HV (3) (5.3.4)
B = (3, 3172 T nE;
c-E U0, )1/2
D =M
T
where Ep | 01, E = | o ].

\/ U ara the flrst n columns of V, resp. U.

:5

b is the upper left nxn matrix in Z.

=]

Hs is ‘a éhifted Hankel matrix, found by shifting all columns p

places to the left. Its construction may be used to create several
variants, see Damen & Hajdasinski [1982].

The realisation method leaves the user with the question which
singular values are to be considered negligible. This problem may be
tackled by inspecting the singular values and their ratio’s, [Backx,
1987], and has been implemented in the PRIMAL module HANKDIM. It is
experienced that in the case of "noisy"” Markov parameters the
decision may not be clear.

If the model is intended to show a good simulation performance, we
may take a more suitable approach, by simulating with realisations
of different dimensions, using the process data. The relative output
error criterion, in combination with a penalty on the number of
parameters (such as the AIC criterion), is used to select the
appropriate dimension. The computational cost of this approach is
moderate, since the singular value decomposition of the Hankel
matrix just has to be computed once.

5.4 Instrumental variable methods

The Bootstrap IV, including a grid search for the delays, is
implemented in PRIMAL as an iterative method in the module GIV, [Van
der Linden & Renes, 198%], using an instrument vector of delayed
inputs and undisturbed outputs, computed by filtering the inputs by
the process model obtained in the previous iteration step, cf.
[Young, 1984].

The four-step (approximately optimal) IV will be ‘briefly discussed
below.

A four-step IV
Based on the model:

A(q"’ﬁ)y(t)

B(q_}: S)u(t) + v(t)
D(q™":B)v(t)

Clg™*:p)e(t)

A -~
oy
N
[
L -
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taking the full polynomfial form of (2.6.1), we obtain the
corresponding regressions:
y(t)
e(t)

Consider the IV-method, with a matrix of instruments Z(t) and a
stable data prefilter F(g™%):

¢T(t)9 +VV(t) : (5.4.3)
()8 + v(t) (5.4.4)

N N
a iy T - -
6= [ ) 2(F(a)e ()17 [) Z(t)F(a )y (¥)] (5.4.5)
=1 t=1
Under certain assumptions, including that the “true” system belongs

to the model set, it can be proved that for any IV of this type, it
holds that the asymptotic parameter covariance matrix:
sopt
PIV 2 PIV .
meaning that the difference matrix is non-negative definite,
[Stderstrdm & Stoica, 1983a, 1883b].

t - -1 ~T T,- PP P -
PRV = E{[H*(g™*)% (1)1 AT [H* (¢™)e (£)1} (5.4.6)
Equality is achieved for the following cholces of F(g™*) and Z(t):

2(t) = [AH (¢ )T (01T (5.4.7)
F(a™*) = H*(a™")

vhere ;(t) represents the noise-free counterpart of ¢(t), i.e.
replacing the delayed outputs by the their corresponding undisturbed
equivalents.

The optimal IV estimation cannot be applied directly. since

knowledge of the ¢(t) and H™!'(g™!) is required to filter the data
and generate the instruments. To overcome this problem a multi~step
algorithm has been proposed by Stderstrém & Stoica [1983a].

Step 1:
Apply an arbitrary IV-method to (5.4.3).

The resulting estimate will be denoted 8,.
Step 2:
Apply a prediction error method to estimate 8 in

¥(t) = ¢T()8: + H(q™*:81.B)e(t::.5). X
Denote the result B,. In the MIM0-case estimate A,
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Step 3:
Compute the optlmal IV—estimate, as given by (5 4.7), using 91

to form ¢(t). and 9, ﬂz to form H(q"’) and Az to replace A.

The resulting estimate will be denoted 63
Step 4:

Repeat step 2 with 6,.

This multi-step algorithm offers a certain amount of freedom in its
construction. For the implementation in PRIMAL [Berben, 1987] the
following <choices were made. A full polynomial model was
parametrised as, [Jakeman & Young, 1979]:

T T T

T .
@=col [ A, ... A B, .. .B, ] (5.4.8)

For the first step, a bootstrap IV technique which starts-up with a
Least Squares method, has been implemented. For Step 2 a Pseudo
Linear Regression (PLR) is used, [Stoica, 1984].

Remarks:

- The optimal accuracy of the IV-method is proven by S&derstrom &
Stoica [1983a, b] under the restriction that the true system
belongs to the model set. If this is not the case, no general
statements can be made about the accuracy.

- In general it may be expected that an IV-method will perform
less well than a corresponding PEM, [SGderstrdm, 19897]. However,
the IV-method is computationally more efficient, because the
process and noise transfer function are estimated separately.

5.5 Effective new variants

As has been experienced, the identification methods discussed in the
previous sections may perform badly if we are dealing with short
datasets and a relatively high noise level, such that:

- The estimation of high-order models (such as the FIR model) will

fail to deliver a satisfactory meodel.

- It is difficult to estimate possible delays.

-~ Equation error methods may not be appropriate.

~ Estimation of low-order models may show bad convergence.

To find a suitable linear model, requiring a good simulation
performance, we turn to output error methoeds. In practical
implementations of output error methods, usually an equation error
method is employed as a start-up method, optionally followed by an
IV-method. However, the parameter vector at which the minimal
equation error is found, may be far from the parameter vector
minimising the output error criterion. As a result the output error
method may have problems, showing bad convergence and/or convergence
to a local minimum.



In these cases a more suitable start-up method, which also minimises
the output error criterion, is more appropriate.

In this section we will discuss a start-up method based on the
output error, which is robust, in the sense that it cannot diverge,
and which is also well-suited to estimate the delays.

The principal idea is to combine a Monte-Carlo approach with Least
Squares, optionally followed by a zero-order optimisation method.

A Monte—Carlo approach

Consider the MISO model:

o B,(a7*:6) '

v(t) = 2 a4 u (t) + v(t) (5.5.1)
i=1

F,(q7%:6)

where dt denotes the delay.

We can separate this model into two components:

w (t) := Fi'(a™%:0)a %t u (1) (5.5.2)

p
y(t) = ) B (q 0w (£) + v(t) (5.5.3)
1=1

Equation (5.5.3) is linear in the parameters and can be solved using
a Least Squares method. We now introduce the following Monte-Carlo
algorithm, cf. [Renes & Van der Linden, 1987]:

Step 1:
Randomly select the required number of time constant values and
delays from the space of feasible values.

Step 2:
Compute the signal w(t) = [wl(t). w2(t). cees wp(t)].
using (5.5.1).

Step 3:

Minimise the prediction error criterion (5.2.1), using an
ordinary Least Squares method.

Step 4:
Compute the output error variance and accept the model if its
value is smaller than the current value.
Repeat from step 1, until a certain number of iterations is
made.

This algorithm is strikingly simple, and it can be implemented very
efficiently. Note that it has the desired property that it:

- cannot diverge,

— is capable of "escaping" from local optima,

- uses the same modelstructure as the output error PEM,

- and makes no assumptions concerning the noise properties.
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The major drawback is, of courgse, that it may take a very large
number of simulations to cover the parameter space sufficiently
well. This is especially true if the number of parameters is large.
Therefore the algorithm is suited only for estimating low-order
models. It should be noted that under the conditions stated above,
that is precisely what we want.

Simulation experiments show that in almost all cases, a few hundred
iterations are sufficient to attain a solution near the optimum.

The Monte-Carlo approach performs well, owing to the Least Squares
step: :

- The LS method scales the impulse responses to each input to the
appropriate ranges. If an input has a small effect on the output
the LS step will reduce its influence, and consequently badly
selected poles for this input have little effect on the
performance. ‘

- If the degree of the B-polynomial is sufficiently high, the LS
step compensates badly selected poles by zeros.

The performance of the Monte-Carlo method can be further optimised
by switching to a zero-order search method (e.g. the simplicial
method, cf. [Box., Davies and Swan, 1969]). The method of Box finds
the optimum of a function by moving and deforming a simplex in
multi-dimensional parameter space, according to rules based on the
function values in the vertices.

Zero~order methods have the advantage that mixed integer/real
problems may be handled, so that the delays and parameters of the
F-polynomials in (5.5.1) may be simultanecusly optimised.

The procedure described above has been implemented in PRIMAL as a
stand-alone method in module MCR, and as the start-up method of an

output error PFEM in module MCRPEM. See Chapter 6 for their
performance in practice.

Remark:

Monte—Carlo and zero—-order methods are not very popular in the field
of identification. Typically, the literature on this subject dates
back to the 1960°'s. However, as the results prove, the method
produces results comparable to the other investigated identification
methods in a computation time that is comparable to the high-order
methods. Therefore we think that, taking into account the simplicity
and robustness of the method, the method is especially useful in
practical applications to get estimates for the delays and to give a
first estimate of the achievable model performance.



CHAPTER 6  CASE STUDIES

6.1 Introduction

The Experimental Modelling strategy described in Chapter 3, and
implemented in the PRIMAL package, has been applied to a variety of
industrial processes,

In this chapter we discuss the application of PRIMAL in three cases:

case 1 : an industrial glass feeder process.
case II : a para-xylene crystallization process.
case III : a toluene-xylene distillation process.

For each case we will discuss the identification experiments, the
results obtained in the identification and (in cases Il and III) the
performance of the control system.

Since (part of) the meodels were to serve feed-forward control, the
output error was chosen to be the primary criterion of assessment in
identification.

The results of the identification methods will be presented in
tabular form. Each entry consists of:

a) The (PRIMAL) name of the method, see Chapter 5 and Appendix B.
{real. : realisation with the HANKEL method, see Section 5.3).

b) The selected polynomials: A,B,C,D.F (see Section 2.6).

¢) The type of method and model:

ece : equation error type PEM

oe : output error iype PEM

ree : recursive equation error type PEM
roe : recursive output error type PEM
iv : instrumental variable method

d) The selected polynomial degrees: na, nb, nf )
e) the relative output error (defined in Section 3.6) in the
validation interval and cross validation interval.
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6.2 Case I An industrial Glass Production Process

This section describes the application of PRIMAL to a Glass
Production Process at Philips.

Process description

The process consists of a glass furnace followed by a feeder, cf.
Figure 6.2.1. In a furnace, quartz sand is melted to produce liquid
glass. A continuous stream of glass flows out of the furnace through
a feeder. The main function of the feeder is to cool the glass down
to a temperature suited for a shaping process. To satisfy the
requirements for the shaping process the glass at the outlet of the
feeder, called the spout, must be kept at a constant and homogeneous
temperature profile. A detailed description of the process is given
in [Van VYucht, 1987].

The control inputs of the feeder for this purpose are:

- The gas flow rate to the burners in the first section.
— The gas flow rate to the burners in the second section.
-~ The cooling air flow rate.

l—COOL AIR (CA)  G1 AIR OUTLET t

v 7 a
;
477
LT 7. T 5
0000 000000 ©O0O0O0O0OO0 i 00000 oo
Tl S R e — - ik iebdabsbaink | il
7 7 i
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EAl Fa2 FAJ [ — H; 311
] FLA FRA
! u el T
Fl2 F22 P32 FLI wiaz TR sPoUT
FL2 Frll FRZ
FHL
temp !

FM3

Figure 6.2.1:

Qutline of the glass feeder. The glass enters the feeder at the
left and leaves the feeder at the spout on the right.
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The main process inputs and outputs are indicated by the following
names:

Gl: measured gas input flow rate to section 1

G2: measured gas input flow rate to section 2

CA: measured cool air input flow rate to section 1
F51: spout temperature (outlet temperature)

The purpose of experimental modelling is to model the dynamical
behaviour of the temperature profile near the spout in response to
the inputs listed above, in order to Improve its control, see
[Backsx, 1987].

The most important dynamical relations are:

- The relation between the three control inputs and the glass
temperature at the spout.

~ The relation between the three control inputs and the
homogeneity of the temperature distribution in the glass, as
measured by thermocouples in a cross-section of the feeder
(FL1, FL2, FM1, FM2, FM3, FM4, FM5, FR1, FRZ).

The experimental modelling project was carried out in cooperation
with and under supervision of the local systems and control group
PICOS, at Philips. PRIMAL was used to supervise the design and to

control the experiments, to monitor the experiment and to carry out
the on~line analyses.

In the sequel, the results obtained with the various identification
methods in FRIMAL are discussed. The analyses with PRIMAL were
carried out in 1987, independently from and in parallel to the work
of Backx [1987]., who used an identification technique based on
Finite Impulse Response (FIR) estimation and the subsequent
estimation of a so-called MPSSM-model.

Instrumentation

The process serves as a pilot plant for testing new operating
procedures and 1s therefore well-equipped with sensors. A
transportable computer system taking care of analog data
pretreatment, analog to digital conversion, and a front-end computer
for real-time data acquisition, were coupled to the conventional
instrumentation system of the process, cf. Figure 6.2.2.

A VAX/VMS computer was coupled to the front-end to perform the
analyses of the measured data. In this second system the PRIMAL
package was installed. A communication protocol was developed to
exchange commands and experiment data between PRIMAL and the
front-end in real-time.



Process -—————————-———1

Analog
instrumentation
system

r______J

Programmable
ADC’s and DAC's

Front-end
data acquisition
computer {(PCS)

Analysis Computer
with PRIMAL

User

Figure 6.2.2:
Schematlc overview of the experiment set-up

Identification Experiments

On the basis of a priorl knowledge and preliminary experiments,
identification experiments were carried out involving small,
independent PRBS, simultaneously imposed on the three inputs. About
45 output signals were measured with a sampling interval Ty, = BO s.
The PRBS had a clock period of 500 s.

12472 samples were collected during about 7 days of experiment time.
In Figure 6.2.4, some of the collected signals are shown. Figure

6.2.3 lists a part of the experiment log book, kept automatically by
PRIMAL.
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20MAYB7
20MAYS7
20MAYE7
20MAYS7

20MAY87
20MAYB7

20MAY87
20MAYB7
20MAYE87
20MAYS§7
20MAY87
20MAYB?7
21MAY87

21MAYET

21MAY87
21MAY87
21MAYS87
21MAYS7
21MAY87
21MAY87
21MAYS87
21MAY87
21MAY87

21MAYB7

21MAY87
21MAY87
21MAY87
21MAYS?
21MAY87
21MAY87
21MAYB7
21MAY87
22MAYE7
22MAY87

22MAY87
22MAY87T

11:25:03
11:26:25
11:31:03

11:32:23

11:32:24
11:32:25

11:32:48
12:22:39
12:27:01
12:28:31
13:57:11
13:57:11
11:12:06

11:19:27

11:22:07

11:23:09
11:23:09
11:54:27
11:56:43
12:01:59
12:02:17
12:12:00
12:48:35

14:36:48

14:40:03
14:40:30
14:40:30

15:24:40
15:40:23
15:43:22
15:44:54

15:54:27
09:03:56

05:25:28
09:57:06
10:11:58

Figure 6.2.3:
Part of the original log book kept by PRIMAL.
{The remarks have been translated into English).

The on-line

SESSION BEGIN
#EDIT PRENS130.EXP
$LOAD PICOS WITH PRBNS13O
#PUT PRENS (WIDTHw10, AMPL~40, SEED=4234)
ON PICOS.GAS_1_IN:10
#PUT PRENS (WIDTH»10, AMPL=40, SEED=7645)
ON PICOS.GAS 2 IN:10
#PUT PRENS (w1DTHe10,AMPL=40, SEED=26911)
ON PICOS.AIR”IN:IO
#START PICOS
Something goes wrong.
There is a measurement problem with the gasflows,
Also with cool air sample range 10-30
Remark of 12:27 irrelevant
Cool air corrected by Roel
All Eignals inspected, cool air shows some oscillation
near sample 1000. Also oscillation in Fa6, F1_AIR and
F31. . .
* I'm going to look if the oscillations are visible after
filtering the data.
#APPLY FFT TO PICOS.DATA
* FFT was applied to raw data of F31, AIR _IN, COOL AIR, F51
>>Application FFT; 001 stopped
#APPLY PREFILTER TO PICOS.DATA
>>application PREFILTE; 001 stopped
$APPLY FFT TO PREFILTER
>>Application FFT; 002 stopped
* F2_GAS and F2_AIR get stuck at the low side
* On sample 1817 the fysical offset of F2_AIR, F2_GAS
raised from 20% to 70%,
* On sample 1936 F2_AIR, F2_GAS reset by PUNIC~-card
adjustment .
$APPLY CORRELATOR TOPREFILTER
>>application Correlat;001 stopped
* First attempt to see correlation with the spout F51

L A N

4APPLY PREFILTER TO PICOS.DATA
$APPLY CORRELATOR TO PREFILTER.
#APPLY MARKOV TO PREFILTER
#STOP PREFILTER

* Not much to be seen yet
* Operator remarks: 7.30u (sample 3100) low spout
temperature caused high spread in tube diameter.
#APFLY PREFILTER TO PICOS.DATA
4APPLY CORRELATOR TO FREFILTER
* First correlation results,
F1_GAS*FA3 acceptable, COOL AIR*FA3 absent??, ...

signal analyses were mainly used to monitor the

experiment and check the existence of correlation between the inputs
and the important output signals.
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Figure 6.2.4{a):
Glass temperature In the furnace preceding the feeder.
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Figure 6.2.4(b):
Part of the PRBS on Cl, CA and G2.
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Figure 6.2.4{c):
Class temperature F12 in the beginning of the first section.
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Figure 6.2.4(d):
Glass temperature F22 in the middle of the first section.
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Figure 6.2.4(f):
Spout temperature F51.
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Data conditioning

The data conditioning consisted of two steps..In the first step the
data were corrected for measurement errors, such as outliers,
Several output signals were disturbed severely by outliers. Figure
6.2.5 illustrates the effect of automatic outlier correction using
the method described in Chapter 3.

The inputs to the model were measured signals (Gl1. CA, G2), which
were corrected for the sensing delays.

After the outlier and delay correction, the power spectra of the
inputs and outputs were computed to determine the bandwidths of the
measured signals.

The results are shown in Figure 6.2.6 for three representative
signals. As s clear from this picture, the sampling rate is high
enough for all dynamical Interactions, and the clock frequency of
the PRBS is sufficiently high for all glass temperatures.

The results of the first data conditioning step indicate that the
data may be reduced by a factor of 10 (in the time). To achieve
this, the data is filtered with a sharp (high-order) low-pass
FIR-filter to eliminate all frequencies higher than 1/(5%T;) Hz.
After application of this digital anti-aliasing filter, the excess
data is reduced by selecting 1 sample out of every 10 samples.

Before removing trends in the data that were not caused by the PRBS,
but by slow changes in the furnace and the environmental
temperature, the cross correlation functions of the control inputs
and the temperatures were computed.

These functlons were used to get a first impression of the delays
and time constants Involved, and further to check the causality of
the input-output relations.

The results of the correlation analyses for some signals, are shown
in Figure 6.2.7:

- (a) gives an impression of the Impulse responses, since the
inputs are nearly white. As expected, the effect of G2 is much
faster than C1 and CA.

- (b) the correlation functions of the inputs and the output
temperatures in the cross-section of the second sectlon are all
similar.

- (e}, (d) the correlation functions of Cl, CA and the temperatures
at the end 'of the first section are nearly identical, with
opposite sign, which implies that their effect 1s probably due
to the same physical principle. This result indicates that it
may be difficult to control the vertical temperature gradient in
the glass.

..104_



¢

smee
h-1 4]
LY-7Y-
ALk 4]
1080

100

b 2]

ose 4

taea

LR -F Lt

TORD

A-2 2]

”.QD
RECORD

) FITT)

L1

“BO0

F31

nEDD ‘;OOD 00

i 22-1 2]

Figure 6.2.5:
{a) A part of signal F31 corrupted by outliers.
(b) F31 after automatic outlier correction with the median

filter, see Section 3.3.4.
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Figure 6.2.7(d): Cross-correlations between CA and FA3, F31 and F32.
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Identification results

After conditioning the data, various Iidentification methods in
PRIMAL have been applied, all using samples 1..750 of the (reduced)
dataset. To evaluate the performance of the methods, the output
error was computed, under equal conditions, over the identification
interval (1..750) and over a cross-validation interval (750..1247).
The results are shown in Table 6.2.8.

relative ocutput error (mre)

nf Cross—
method type na nb validation validation
1 | RPEM BF |roe 5 5 3.1 % 4.8 %
2 | GUIGORZI | BA |[ree 8 8 2.7 % 3.7 %
3 | real, n=3 3.2 % 3.2 %
4 | MARKOV B jroe 0 50 2.3 % 54 %
5 | real. n=3 2.5 % L.1%
6 | DLS - 1B oe 0 50 2.2 % 58%
7 | real. n=3 2.5 % 4.2 %
8 | DLS BA | ee 8 8 2.7 % 3.7 %
9 | GIV BA | iv 6 6 2.7 % 3.2%
10 | MCR BF | oe 3 3 2.1 % 3.8 %
11 IVM BACD| iv 5 4 1.9 % 3.4 %
12 | MCRPEM BF | oe 3 2 1.6 % 3.6 %
13 | MCRPEM BF | oe 4 4 1.4 % h.1%

Table 6.2,8:
Representative results of different identification methods in
modelling F51 on a validation and cross-validation interval.

Table 6.2.8 reveals that all identification methods achieve a small
output error, wvwhich indicates that the process can be described
accurately by a linear model and that the signal-to-noise ratio is
excellent.

The lowest output errors on the identification interval are obtained
by the output error method MCRPEM (Method 12, 13) and the four-step
1V-method IVM (Method 11}, using the delays estimated by MCRPEM. The
impulse responses estimated by these methods are presented in Figure
6.2.9. As is the case here with all methods, the differences between
the impulse responses are small. The output error methods arrive at
a lower output error by modelling a longer tail of the Iimpulse
responses of Gl and CA. This low-frequency component of the impulse
responses proves to be artificial, causing a slightly higher output
error in the cross-validation.
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Remarks about the methods:

Impulse response estimation works well and may be used to
provide first estimates of the delays and the model orders.

In the realisation step a third-order model proves to be
sufficiently accurate.

The Monte-Carlo method (MCR) . provides good estimates of the
delays and obtains a good model -usually within 100 trials. Its
performance and efficiency i1s comparable to the other methods.
Because the errors are small, the best models found with the
equation error techniques show practically the same impulse
responses as the models found by the IV- and output error
techniques.

Figure 6.2.10 presents the fit of Model 11, see Table 6.2.8, on the
validation and the cross-validation interval. The output error has
mainly low-frequency components and is uncorrelated with the inputs.

In the identification of the transfer functions to the temperatures
in a cross section of the glass bed (see Figure 6.2.1), similar
impulse responses and accuracies were obtained. The results will
therefore not be presented here. Backx reports similar results,
obtained with the MPSSM-approach, see [Backx 1987, 1589].
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Figure 6.2.9:

{(a) Impulse responses of Model 11 (estimated by IVM)
(b) Impulse responses of Model 12 (estimated by MCRPEM)
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Figure 6.2.10:

Fit of Model 11 on the (a) cross-validation interval, (b)
validation interval. F51IM: model output, OE: output error

Conclusions

The dynamical behaviour of the output temperature F51 of the feeder
process, vwhich - on the basis of the physical principles ~ should be
regarded as a highly non-linear, distributed parameter system, could
be approximated well with a third-order linear black box model. In
the identification dataset about 96 ¥ of the energy in the output
signal Is explained by the model.

Owing to the excellent signal-to-noise ratie, and the conditioning
of the data, all methods attain a similar output error level.
Comparison of the impulse responses shows that the small differences
between the results of the methods are mainly found in the
low-frequency part (tail) of the impulse responses.

Looking back upon the modelling exercise as a whole, we may further
conclude, that:

- The impulse responses provide information about the delays in
the responses of the spout temperature to the inputs,

~ More surprisingly, the time constant values are very large
compared to residence time of the glass, leading to the
conclusion that the storage of energy in the wall of the feeder
was a much more important factor than was expected.

- Remarkably and unexpectedly, the cool air flow rate and the
energy input by the gas burners in the first section show
comparable dynamics, indicating that the cool air input
decreases the radiation temperature of the wall of the feeder.

Here we see but a few examples of how black box methods may provide
valuable physical (“white box™) insight.
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6.3 Case II A Para-Xylene Crystallization Plant

This section describes the application of PRIMAL to an industrial
crystallization plant.

The para-xylene preduction plant of EXXON Chemical Holland in
Rotterdam isclates para-xylene from a mixture of para-, ortho-
and meta-xylene, toluene and benzene., The process makes use of
the high melting point of pure para-xylene (13 °C) with respect
to the melting points of the other components (-95 to -25 °C}.

Process description

The process consists of several stages of drums and centrifuges,
see Figure 6.3.1. In each stage a slurry flow enters a set of
centrifuges, where it is separated in a cake flow (consisting

mainly of para-xylene crystals) and a liquid flow, called the
filtrate.

f‘esdlflov

STACE 1

Lﬂ?l ' STACE I1
o

taput
"

control

inputs Slurry

FF3.FI3 drum 2

'63’ outputs A3, T3
STAGE III
——_'I FD3 } " centrifuges “
! I 1
s so—
1

product
drum
product

Figure 6.3.1: .

Schematic overview of part of the Para-Xylene Crystallization
Plant. FD = filtrate drum, SD = slurry drum.
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The investigation of the process dynamics has concentrated on the
second stage. A better control strategy had to be developed for
the purity and solid content of the flow leaving the second-stage
slurry drum (SD2). The temperature of the flow is taken as a
measure of its purity and the goal is to keep this temperature
{T3) near its set point, while maximising the solid content (A3)
of the flow.

The solid content and temperature of drum SD2 are controlled by a
filtrate flow of liquid para-xylene, that is recycled from the
third stage centrifuges and that is heated in a heat exchanger.
The control inputs are:

- the filtrate recycle-flow rate (FF3),

~ the temperature of the filtrate flow (FI3).

A serious complication was that the flow rate, temperature and
solid content of the cake flow entering the second stage slurry
drum could not be measured. To cover this problem, the power
required by the centrifuges (PE2) was taken as an indirect
measure of the flow. The temperature (T2) and sclid content (A2)
of the slurry flow just after the first-stage slurry drum were
taken as measures of the temperature and solid content.

On the basis of an investigation of the available process
knowledge and a physical model based on first principles, cf.
[Hogendoorn, 19887, experiments were planned to find the
dynamical responses of A3 and T3 to:

- the 2 control inputs FF3 and FT3.

~ the 3 inputs A2, PE2, and T2.

Identification Experiments

During the experiments the process had to stay within the
specified range, so only small test signals were allowed. On the
basis of a priori knowledge and preliminary experiments, PRBS
were superimposed upon the set points of the slave controllers of
FF3 and FT3. To get information about the dynamical influence of
variations in the cake flow, a PRBS was also superimposed on a
valve controlling the slurry flow to the second-stage
centrifuges. The effect of the flow variations is measured by
PE2.

inputs outputs

FF3 (PRBS 1) ———

FT3 (PRBS 2) —

ey A3
PE2 (PRBS 3) i model
S pe—s T3
A2 i
T2 e
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The purpose of the identification experiment was to generate data
for modelling the output A3. The test signals were designed to
cause approximately equivalent variations in this output. To get
accurate information about the dynamics., wminimal PRBS clock
periods of 5 minutes and 10 minutes were taken. 14 signals were
measured with a sampling interval of 60 seconds.

During the experiment, signal analyses and identification methods
were used to get preliminary models and to check the Information
contents of the data. It was decided to reduce the amplitude of
the test signal in FI3 and to eliminate the test signals after 48
hours. Subsequently, 17 hours of normal plant operation were
measured. Figure 6.3.2 gives an overview of the experiment data.
Figure 6.3.3 presents their spectra. In order not to reveal
proprietary information no physical ranges of the inputs and
outputs are presented.

PE2

TIME {HOURS]

Figure 6.3.2 (a):
The inputs with the test signals: FF3, FI3 and PE2.

- 112 -



a E 1~ -t .t
R ta 4 LMOune 3

Figure 6.3.2(b): The solid contents A2 in the first stage.
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"Figure 6.3.2(c): The temperature T2 in the first stage.
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Figure 6.3.2(d): The solid contents A3 after slurry drum 2.
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Figure 6.3.2(e): The temperature T3 after slurry drum 2,
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Figure 6.3.3 (a)-{d): .
Spectra of (a) FF3, (b) FT3, (c) PE2, (d) A2.
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Figure 6.3.3 (e~f):
Spectra of (e) A3, (f) T3.

Data conditioning

The data were corrected for measurement errors, measurement
delays and trends. Analyses of the resulting data and of a
dataset that was reduced to a sampling interval of 5 minutes,
showed comparable results.

Identification results

A variety of identification methods in PRIMAL have been applied
to the data. All methods have used 35 hours (samples 1..450 of
the reduced dataset) for identification. To evaluate the
performance of the methods, the output error was computed, under
equal conditions, over the identification interval and a
cross-valldation interval of 28 hours (samples 450,.786), of
which 17 hours without test signals.

Results for the solid content A3

Initially, the identification was carried out for the three
inputs with the PRBS test signals. This resulted in an output

- error of about 45 # . Correlating the output error with the other

inputs showed that the solid content A2 had a significant
influence on the behaviour of A3, reducing the output error to
about 15 % , which immediately indicated the importance of taking
the disturbances in the first stage into account.

Representative results for various identification methods in

modelling A3, using FF3, FT3, PE2 and A2 as inputs, are shown in
Table 6.3.4. :
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nf relative output error (mre)

method type na nb validation <cross validation
1 | RPEM BF |roe | 2 2 1 % 16 %
2 | CUIDORZI | BA iree | 5 B 13 % 18 %
3 | MARKOV B |roe | O 15 12 % 19 %
4 | real. n=2 16 % 17 %
5 | MCR BF Joe |1 1 15 % 18 %
6 | DLS BA |ee | 4 4 i % 17 %
7 Clv BA iv |5 & 1 % i %
8 | MCRPEM BF loe | 1 1 % % 17 %
o | IM BACD| iv | 4 4 13 % BRI 4
10 | MCRPEM BF [oe | 2 1 13 % 16 %
11 | DLS B oe | O 15 12 % 18 %
12 | real. n=2 15 17 %
13 | MCR BF |[oe | 2 2 i1 % 21 %
14 | MCRPEM BF |oce | 2 2 10 % 19 %
15 | DLS B oe | 020 i0 % 19 %

Table 6.3.4:
Representative results of various identification methods in

modelling the solid content A3, using inputs FF3, FT3, A2 and
PE2. :

Table 6.3.4 indicates that various identification methods show a
comparable performance. As expected, the output error methods,
estimating a high order impulse reponse model (DLS) or a low
order model (MCR, MCRPEM), realise the lowest output errors.
However, in the cross validation the best results were obtained
by the models estimated with the IV-methods.

Figure 6.3.5 shows the simulated output and observed output of
the model found by the four-step IV-method (IVM] on the
identification and the cross validation interval.

Closer inspection of the models reveals that all methods find
approximately the same impulse responses, see Figure 6.3.6.

Civen sufficient freedom, the output error methods find a better
fit to the data by adding low-frequency components tc the impulse
responses, as can be observed in the tail of the responses (see
Figure 6.3.6 (c)-(d)). However, in the cross validation these
low-frequency components prove to be artificial.

Observations:

a) Inspection of the results of the equation error methods show
that the equation error 1is nearly white. A close
correspondence of the estimates of equation error methods and
output error methods may thus be expected.
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b)

<)

d)

Figure 6.3.7 shows the contribution of each input to the
model output. Obviously, A2 causes the large drops in A3.
(a) ,
. Al
; : iy l,
Y . RN BWL s
b 39 ' i \
ce ] ' Vam
e [-] 100 £ i-1-] £l E2-1]
NECOND
. (b)
% 4
LE1-3 *Qs L 2-1-] oo
Figure 6.3.5:
Observed output A3 and simulated output A3M of Model 9: (a)

The impulse responses show the expected behaviour, an
increase of the ‘hot’ filtrate flow FF3 or an increase of its
temperature FI3 results in a decrease of the solid content. A
larger cake flow (PE2, A2) results in an increased solid
content. The time constant values lie in the range of 10-20.
minutes, corresponding to the mean residence time of the
liquid in the drum.

Correlating the output error with the inputs reveals that no
significant correlation remains. Thus, first or second order
models are sufficient to describe the process' dynamics.

In the identification interval, the relative contribution of
the inputs to the power of the output signal was FF3: 30%,
FT3: 234, A2: 29% and PE2: 18% .

During the period without test signals the model "explains"
85 % of the output signal and shows a relative contribution
of the inputs to the output of 19 %, 4%, 39 % 38%
respectively.

These results show the importance of taking A2 and PE2Z into
account when developing a new control strategy.

validation interval, (b) cross-validation interval.
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Figure 6.3.6:

(a) Impulse responses of Model 9 (estimated by IVM).

{b) Impulse responses of Model 10 (estimated by MCRPEM).
{c) Tail of the impulse responses of Model S.
{d) Tail of the impulse responses of Model 10,
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Figure 6.3.7(a): Contribution of FF3 to A3 ( total dataset).
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Figure 6.3.7(b): Contribution of FI3 to A3 (on the total data).
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Figure 6.3.7(c): Contribution of PE2 to A3 (on the total data).
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Figure 6.3.7(d): Contribution of A2 to A3 (on the total data).
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Results for the temperature T3

Although the identification experiment was intended to model the
solid content (A3), the intermediate analyses of the data
indicated that a satisfactory model could also be found for the
temperature T3. .

The results showed a negligible {nfluence of A2, but a large
contribution of T2 to T3. Therefore, models were estimated using
FF3, FT3, PE2 and T2 as inputs.

Representative results for T3 are presented in Table 6.3.8.

nf relative output error (mre)
method type na nb validation cross-valldation
1 | GUIDORZI | BA |ree | 6 6 24 % 32 %
2 | RPEM BF |roe | 2 2 21 26 %
3 | MARKOV B {roe | 0 20 20 % 33 %
4 | real. n=3 33 % 33 %
S | IVM BACD| iv | 3 3 27 % 33 %
6 | DLS BA lee | & 6 25 % 3z
7 | CIV BAjiv |4 4 26 % 29 %
8 | MCRPEM BF | ce | 2 2 S22 0% 29 %
9 | MCRPEM BF | oe | 2 3 21 % 26 %
10 | MCRPEM BF | ce | 2 4 19 % 31 %
11 | DLS B oe | 020 17 % 32 %
12 | MCR BF | oe | 3 3 16 % 38 %
Table 6.3.8:

Representative results of various identification methods in
modelling T3, using inputs FF3, FI3, PE2 and T2.

The output error methods obtain the best results in the
validation and cross validation interval.

Comparing the impulse responses reveals that the response to T2
is nearly identical for all methods. The responses to FI3 and PE2
differ slightly and the response to FF3 varies considerably.

This behaviour can be explained by looking at the relative power
contribution of the inputs to the output: FF3: 3 %, FI3: 23%,
PE2: 18%, T2: 56 % . Due to its small contribution, the response
to FF3 1s not estimated reliably. See Figure 6.3.9, for the
impulse responses of Model 9, estimated by MCRPEM.

The output error methods estimate a longer tall in the impulse
responses of PE2 and FT3, compared to the IV~ and equation error
methods. This results in an improved fit of the low frequency
disturbances in both the validation and the cross validation
interval.

The simulated output of model 9 in Table 6.3.8 is presented in
Figure 6.3.10. For this model the contribution of each input to
the model output is presented in Figure 6.3.11.
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Figure 6.3.9: Impulse responses of Model 9.
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Figure 6.3.10: Observed output T3 and simulated output T3M, by
model 8 in the (a) validation interval, (b) cross validation
interval.
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Figure 6.3.11 (d): Contribution of T2 to T3 (total dataset).
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Observations:

a) The responses show that an increase of the temperature of the
filtrate flow (FTZ) or the cake flow temperature (T2) leads
to a delayed increase of T3. An increase of the (cold) cake
flow rate (PE2) has the expected negative influence on T3.
Increasing the hot filtrate flow rate (FF2) leads to an
increase of T3, although this effect is small compared to the
effect of the other inputs. The time constants lie in the

range of 20 minutes to 1 hour, which was larger than
expected.

b) The impulse response estimation results in "noisy" Markov
parameters due to the short identification interval compared -
to the length of the response.

¢) The four-step IV-method has problems with instability of the
estimate in the third step in several cases.

Control system design

The parameters of the estimated first-order models were used in
the implementation of a "dynamically reconciled” control system,
cf. [Bartman, 1981], where disturbances in T2, A2 and PE2 are
compensated for by feed-forward. The remaining disturbances are
taken care of by the feed-back loop.

A2 —— controller FF2 plant | A3

T2 —
FT2 T3 l

PEZ—T—
-

The performance of the controller was monitored during eight days

and compared to the performance during conventional operation,
see Figure 6.3.12.

The new control system reduced the standard deviation of A3 and
T3 by 40 % and 30%,respectively.

Conclusions

The identification results show that the process dynamics of the
second stage of the para-xylene production process can be
modelled sufficiently well,  using only first-order and
second~order models of the SISO subsystems.
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The analyses have shown that the indirect measurements of the
slurry flow (PE2) and the temperature and solid content (T2, AZ)
in the first stage show a strong correlation with the behaviour
of the output temperature and solid content (T3, A3) in the
second stage. Moreover, the large disturbances in A2 and T2,
(caused by "wash" operations to prevent plugging in the first
stage), were a major cause of control problems in the second and
third stage.

By estimating the dynamical influence of disturbances in A2, T2
and PE2, these measurements could be used in feed-forward
control. The controller developed for the second stage takes A2,
T2 and PE2 into account, which results in a significantly
improved control performance.

The results clearly indicated that an even better performance
might be achieved by reducing the number of wash operations, for
instance by changes in the plant for reducing plugging, e.g. by
heating the walls of the pipes and drums.
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Figure 6.3.12: -
Behaviour of T3 and A3 during two eight day periods:
{a) with conventional control.
(b) with the new control system.
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6.4 Case II1 A Toluene-Xylene Distillation Plant

This section describes the application of PRIMAL to a distillation
unit for separating toluene from xylenes at EXXON Chemical Holland
in Rotterdam. The unit is part of a fractionation section comprising
three distillation towers. The bottom product of two parallel
benzene distillation towers, consisting of a mixture of bhenzene,
toluene and xylenes, constitutes the feed flow to the Toluene Tower:
its top product (toluene) is delivered to tankage and its bottom
product (xylene) is further treated in the Xylene Plant.

Process description

A schematic description of the toluene-xylene tower is presented in
Figure 6.4.1,

L. £f

Figure 6.4.1:
Schematic overview of (part of) the Toluene-Xylene Distillation
Plant.
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The tower has 65 trays. The feed enters at tray 21. The toluene
product leaves the tower as a "side-stream” at tray 55 or 57. A
small flow consisting of benzene and toluene Is extracted at the top
and 1is recycled (through tankage] to the beginning of the
fractionation section.

The heat input to the tower is delivered by a steam-heated flooded
reboiler. The top vapour flow is condensed and cooled by an
air-cooled condensor in parallel to a flooded condensor, which
serves heat-integration with other distillation units.

The main goal is to utilise the maximum capacity of the tower, while
keeping the xylenes content of the side~stream product on
specification ({maximally e.g. 800 ppm xylenes). The quality
requirement for the bottom product is less critical: the flow may
contain maximally e.g. 1.5 X toluene,

The compositions of the side-stream and bottom products are measured
by analysers (Al and A2), delivering new values every 15 minutes.

If the tower operates at a fairly constant pressure, the faster
responding temperatures in the lower part of the rectifying section
(T29) and in the stripping section, near the bottom (T9), may be
taken as indicative measures of the product compositions.

As control inputs we consider:

- the reboiler steam flow rate {SF).
~ the side-stream flow rate (SS).

— the reflux flow rate (R}.

Disturbance sources are:
-~ the weather, which influences the rate of heat transfer in the
condensors.
- variations in the feed flow rate (FF) and feed composition (AF).

The maximum capacity at cool weather is determined by the steam flow
rate.

The experiments were planned to find the dynamical responses of T29
and T9 to variations in:

- the feed flow rate: FF.

- the control inputs: SF, SS and R.

During the experiments the tower was under top pressure control by
the reflux flow rate. see Figure 6.4.1. To get an impression of the
dynamical influence of the reflux, small zero-average reflux

variations were induced by variations in the top-stream flow rate:
TS.

During the investigation of the process, early estimates of the
process dynamics were made, making use of a simulation program of
the plant, historical data and practical experience, cf. [Tolboom,
1989]. Only a few initial experiments could be carried out before
planning the identification experiments. During all experiments, the
top product composition had to stay within its specified range, so
only small test signals were allowed.
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Identification experiments

In the main identification experiment, PRBS were imposed
simultaneocusly on the feed flow rate (FF), the side-stream flow rate
{SS8), the steam flow rate (SF) and the top~stream flow rate (TS),
cf. Figure 6.4.2.

inputs outputs
FF (PRBS 1) =il > Al
SF  (PRBS 2) e by T29
model
SS (PRBS 3) = — 19
TS (PRBS 4) ——— — A2
Figure 6.4.2:

Inputs and ocutputs of the model.

Since control of the top product composition is considered to be the
most Important, the identification experiment concentrated on
modelling T29.

On the basis of the initial experiments and a priori knowledge, a
minimal PRBS clock period of 10 minutes was selected. The

input/output data was collected with a sampling interval of 30
seconds.

The experiment was carried out under what turned out to be rather

unfavourable conditions, because the feed composition changed

considerably, i.e. from 65 ¥ to 87 % toluene, see Figure 6.4.4(f).

To accommodate this change, the set points of the feed and the

side~stream flow controllers had to be adjusted by the operators,

see Figure 6.4.4{(a). The top preduct has been off-spec twice during
the experiment, see Figure 6.4.4(b}.

Inspection of the experiment data revealed that the variations in
the steam flow rate dominated in the responses of T29. Therefore,
the amplitudes and periods of the PRBS in FF and SS were increased
somevwhat, whereas the amplitude of the PRBS in SF was reduced by a
factor of three for the last 7 hours of the experiment.

For technical reasons the analyses had to be carried out off-line.
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Figure 6.4.4 (a): .
Reflux (R) [m®/h]. feed flow rate (FF} [m®/h], side-stream flow

rate (58) [m°/h]. and steam flow rate (SF) {ton/h] as a function
of the sample number (sampling interval: 30 s).

i

cue i
AL ' €29

& : : J i I
WL T B 4 UL i T A iR AAAAY

Ar 1

o mDODG “«TO '.OQQ 909 'QQGOQ
RECORD

Figure 6.4.4 (b):
Temperature [°C] at tray 29 (7129).
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Figure 6.4.4 (c):
Temperature [°C] at tray 9 (79).
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Figure 6.4.4 (d):
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Flgure 6.4.4 (e):
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Figure 6.4.4 (f):
Toluene content [%] of the feed (AF).
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Data conditioning

The data were corrected for outliers, measurement delays and trends.
After applying a digital anti-aliasing filter, the data were reduced
to sampling intervals of 2.5 minutes and 10 minutes.

Identification results

All identification methods have used 17 hours of the dataset,
{samples 7000..9000)}. In this interval the feed composition was
fairly constant. To evaluate the performance of the methods, the
output error was computed over the ldentification interval as well
as over a cross-validation interval of 21 hours, (samples
2500..5000). By selecting these intervals, the off-spec peaks in the
side—-stream composition were not taken into consideration.

Results for T29

The initial analyses showed that the top stream PRBS did not
contribute significantly to the variations in T29., and therefore the
model interrelating these two variables could not be estimated with
sufficient accuracy. However, its dynamical influence could be
determined from a separate reflux test, involving a test signal in
the top stream only.

Subsequently, the remaining three inputs were used in the
identification. Representative results of the various identification
methods are listed in Table 6.4.3.

na relative output error (mre)
method nf nb validation cross validation
1 | GUIDORZI | BA |ree | 4 4 16 % 25 %
2 | RPEM BF |roe | 2 2 16 % 26 %
3 | MARKOV B |roe | 015 14 % 2 %
4 | real. n=3 17 % 25 2
5 | DLS BA |ee | 4 4 18 % 26 %
6 | DLS BA | ee | 6 6 17 % 25 %
7 | GIV BA [ iv | 4 4 17 % 26 %
8 | IVM BACD| iv | 4 4 16 % 25 %
9 | MCR BF | oe | 2 2 16 % 23 %
10 | MCRPEM BF | o8 |1 3 14 % 22 %
11 | DLS B ce | 015 14 % 26 %
12 | MCRPEM BF [ oe | 2 3 13 % 26 %

Table 6.4.3:
Representative results of various Iidentification methods in
modelling the temperature T29, using inputs FF, SF and SS.
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As can be seen in Table 6.4.3, the differences in performance
between the methods are small, both in the identification and in the
cross validation interval.

In the validation and cross validation, the estimated models show a
similar output error behaviour, the output error methods finding the

best fit at the low frequencies, resulting in a smaller error
variance.

The impulse responses of Model 10 to SF and FF are presented in
Figure 6.4.5 (a). Due to the small contribution of the PRBS in SS to
the variations in T29, the response of T29 to SS could not be
estimated rellably.

Figure 6.4.7 presents the observed output (T28) and the predicted
output on the validation interval and a data interval of 33 hours
(samples 1000..5000), including the cross validation interval. As
expected, a bad fit 1is found for the initial phase (samples
1000..2200), due to the shifting operating conditions.

The estimated model of the process dynamics incorporates the
pressure control. As follows from Figure 6.4.4 (d) and the estimated
impulse response of P to the steam flow SF, see Figure 6.4.5 (b),
the pressure is not at all kept constant by the pressure controller.
Therefore, the column temperatures not only respond to composition
changes, but also to the changes in the pressure. The fast positive
initial response of T29 to SF is caused by this effect.

Figure 6.4.6(a) shows the step responses of T29 to the inputs.

After the initjal pressure effects, the temperatures show the
expected slow response due to the composition changes. Remarkably,
T29 did not respond to changes in SS in this experiment, while the
side~-stream composition, measured by the analyser Al, clearly did.
We did not yet have the opportunity to investigate this effect,
which may be due to the position of tray 29 with respect to the
composition profile in the tower.

Results for Al

For modelling the slow composition changes of the side-stream
product, models have been estimated for the analyser output {Al),
using SF, 55 and FF as inputs. The step responses of Al to the
inputs, see Figure 6.4.6 (b) clearly demonstrate the expected very
slow responses of the side-stream composition to step changes in the
inputs, cf. [Rademaker, Rijnsdorp en Maarleveld, 1975]. As expected,
a larger feed or steam flow rate Increases the purity of the
side-stream, while a larger side-stream flow rate decreases it.

Results for T9

The identification experiment  focused on modelling T29, causing
relatively large variations in T9, see Figure 6.4.4(c). During two
periods, of 19 hours (samples 2460..4700) and 17 hours (samples
7000..9000), the temperature was in its normal range. Therefore,
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these intervals have been used to estimate models of the bottom
temperature, although influences of the preceding upsets might still
be present.

Figure 6.4.8(b) shows that the faster variations in T9 can be
largely explained by SF., and the slower variations by FF.

(a) ®)

e See, i3 .

Flgure 6.4.5:
(a) Impulse responses of T29 to FF [°C. h/m 1 and SF [°C.h/ton],
(b) Impulse responses of P to FF [bar.h/m°] and SF [bar. h/ton]
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Figure 6.4.6:
(a) Step responses of T29 to FF, 88 [°C. h/m° ] and SF [*C.h/ton],
(b) Step responses of Al to FF, SS [ppm.h/m®] and SF [ppm.h/ton]
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Control

The estimated models were used to adjust the parameters of the
feed-forward and feed-back in the plant’s existing control scheme,
vhich required first-order-plus-delay models of the dynamics.
The control scheme consists of:
1) feed-forward compensation for changes in feed flow rate and feed
composition (ratio control),
2} feed-back of the temperatures T29 and T9, corrected for pressure
changes, and:
3) feed-back of the top and bottom composition measured by the
analysers,
all being combined to act upon the setpoints of the slave flow
controllers of SF and SS.
The performance of the improved control scheme was monitored during
6 weeks, in which the energy demand decreased by 3 %, enabling a
higher throughput during cool weather, when the heat input is the
limiting factor.
Unfortunately, a better evaluation of the control performance could
not be carried out, due to problems with a leaking valve in the
steam circuit, which hampered the control by the heat input.

Obviously, the existing circumstances have not yet allowed a better
exploitation of the potential possibilities for improving the
control performance. For instance, a better performance may be
achieved by implementing a better model of the dynamical influence
of the side-stream, by improving pressure contrel and the correction
for pressure changes in T29 and T9, and by adapting the control
system, so as to make more effective use of the models than is
possible with first~order-plus-delay transfer functions in the
feed-forward, feed-back, and decoupling paths.

Conclusions

In this case, the experiment data were analysed off-line using
PRIMAL. Satisfactory wmodels have been found for the dynamical
response of Al to FF, 8S and SF and for T29 to FF and SF. Pressure
control turned out to be far less satisfactory than was thought
before and during the experiments, and, unexpectedly, the influence
of S5 on T29 was much smaller than anticipated.

Loocking back upon the modelling exercise, more complete information
about the process behaviour would have been obtained if we had been
able to carry out the analyses in real-time. This would have enabled
us to detect the unexpected effects in an early stage and to modify
the experiment accordingly.
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Figure 6.4.7:
Performance of Model 11 in validation and cross validation.

T20 [°C] " and model output T29M [°C] "~ — -~ on:
(a) an interval (samples 1000..5000) including the cross validation
interval,

(b) the validation interval.
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{a) Model fit for temperature T9 ™ * and model output TSM
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{b) individual contributions of the inputs FF and SF to the
output TSOM.
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CHAPTER 7  CONCLUSIONS

In this thesis, I have focused attention on experimental modelling
of continuous production processes in the process industry.

For this purpose, a new and comprehensive scheme for experimental
modelling in industrial practice is described.

In contrast to conventional identification approaches, this scheme
is based on an interactive learning strategy for process analyses
and control syntheses in real-time.

A key property of the scheme is that the user may carry out a
variety of analyses during the experiment, accumulating knowledge
about the process and improving the experimentation accordingly.

The real-time approach lets the user:

s monitor the experiment;

s analyse the data in real-time, using signal analyses and
identification, and inspect the intermediate results to check
whether they contain the necessary information:

¢ use these results to instantly adapt the experiment, improving
the information content of the data and/or switching experiments
if insufficient (or unexpected) information is obtained;

¢ run a model in parallel to and synchronised with the process,
predicting its future outputs and comparing them to the actually
observed outputs.

¢ immediately test the actual performance of a designed control
system. Many of the techniques used in modelling the process may
also be used for testing and validating the control system.

The developed strategy comprises the following steps:

1. Definition of the goal and the purpose of the models
2. Investigation of the available process knowledge

3. Installation of equipment (to connect to the process)
4. Experiment control and data acquisition

5. Data conditioning and signal analyses

6. Identification

7. Model validation

8. Control system specification and design

9. Control system testing (and performance analysis)
10. Control system implementation and evaluation

PRIMAL (Package for Real-Time Interactive Modelling., Analyses and
Learning), which is the main product of the work presented here, has
been designed and constructed to implement this experimental
modelling strategy. It was set up as a professional tool for
real-time experimenting, analyses and control system design in
industrial environments, particularly in the process industry.
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Experience with PRIMAL has been bullt up in a variety of practical
applications. Its most important properties proved to be:

o the facilities for coupling to industrial processes, and for
desligning and controlling experiments;

o the ability to carry out real-time analyses:

¢ the facilities for inspecting and processing Iintermediate
results;

e the ability to adjust the experiment and the parameters of the
active analyses:

e the availability of a complete set of compatible tools for all
steps in the experimental modelling scheme;

o the ability to carry out analyses to real-time data, as well as
to historical data, or even to both simultaneously;

® the automatic reporting:

e the storage of all results in a structured database and the easy
retrieval and reconstruction of results; :

s the powerful tools for manipulating real-time graphical
presentations of the data;

¢ the open environment, readily extensible with new modules and
conveniently interfaceable with other software packages.

Rather than adopting one single identification or control system
design method, a variety of methods are made available. The user may
select any appropriate method or, following the learning strategy,
he may apply several methods in parallel and/or in series, and
-select the best results.

In this thesis, three cases are presented where PRIMAL has been
applied in industry. The results proved that the experimental
modelling strategy (and its methods), could indeed be applied
successfully during normal process operation and did lead to
improved insight and control of the process.

The results in applications not presented here, support this
conclusion. ‘ '

From practical experience with the experimental modelling scheme it
follows that:

¢ Real-time analysls, interpretation of the Intermediate results,
and modifying the experiment accordingly, is often essential to
arrive at good models.

¢ The data-conditioning step may be of decisive importance to
identification.

s Preference should be given to identification methods which are
robust and which give reliable results in the initial phases of
the experiments, when little and possibly poor data is
available.

For this purpose, new low-order output error methods have been
developed, using Monte~Carlo search combined with Least Squares
estimation and zero-order search, providing initial estimates
for an output error method. These methods prove to be valuable
tools for estimating the delays and getting initial estimates of
the process dynamics.
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e Of the investigated identification methods:
a) one-step ahead prediction error methods (PEM's), using an
equation error or output error type of criterion,
b) instrumental variable techniques,
c) Monte-Carlo / Least-Squares (MCLS) techniques and zero-order
search, optionally followed by an output error PEM,
d) 1impulse response estimation and subsequent realisation,

the output error PEM, using a MCLS start-up procedure, generally
performed best, achieving the lowest output error in validation
and cross validation.

e Equation error methods generally performed less than output
error methods. However, in the cases presented in Chapter 6, the
results were close to those of the output error methods.

o The four-step instrumental variable method often showed only
minor improvements or even instability in the third step.

o Impulse response estimation failed in the case of short datasets
and/or bad signal-to-noise ratio’s. However, when successfull,
it provided valuable information about the delays and the
required model orders.

e Although the MCLS method was developed for problematic data,
because of its robustness and ability to cope with unknown
delays, high noise levels, and short datasets, its performance
proved to be comparable to the other methods in the
identification experiments also.

A striking finding is that experimental modelling, even with black
box techniques, may yield valuable physical process insight.

Prospects

Up till now, the PRIMAL project has focused mainly on experimental
modelling, and to a lesser extent on control system design. An
important step in the future will be to fully exploit the
PRIMAL-facilities to immediately test and analyse the actual
in-plant performance of an improved control system.

Another domain of interest is the extension of the set of tools to
gray/white models, i.e. incorporating physical process knowledge.

The advent of powerful computer facilities coupled to the plants in
the process industry has provided new opportunities for improving
plant performance. Given the availability of satisfactory sensors,
no longer the problem is how to get data from the process, but what
to do with it. The practical experience with PRIMAL and its methods
have shown that experimental modelling may be exploited successfully
to improve process control, thus bridging the gap between control
theory and industrial practice.
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PRIMAL, and the experience built up by its practical use, further
serve us as a prototype for the design of the next generation of
real—-time tools for industrial processes. Extrapolating the PRIMAL
strategy, the tools could be used in a flexible interactive
environment, permanently coupled to a plant, for (expert assisted)
model-based process monitoring, control and real-time optimisation,
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AFPENDIX A

Definition A.1 Quasi stationary signals

A signal {s(t)} is quasi-stationary if

1) Viez* Es(t) = m(t) I m(t) I < CieR
2) VY, rez+ Es(t)s(r) = R(t.r) | R(t.7) || € €2 C, & R
N
lim —— 2 Es(t)s(t-r) exists for all r ¢ Z o
Nox N t=1 :

The expectation operator is defined with respect to the
stochastic components of s(t].

Notation: Es(t) := l

'zl»—'

N
Z Es(t) , (A.1)
t=

The operator E may be applied to stochastic and deterministic
signals. If applied to a stationary stochastic process:

Es(t) = Es(t) since the stochastic properties do not
depend on t.
and if applied to a deterministic signal:

N
Es(t) = lim -1—-2 s(t)
Now N T=l

Definition A.2 Ceneralized weakly stationary processes

Let {x(t)} teZ be a n~dimensional discrete time stochastic

process for which Ex(t) and Ex(t)xT(s) exist for all t.,s e Z.
{x(t)} teZ is called generalized weakly stationary if:

N
R (t) := lim —— Y Ex(t+r)x' (1) exists for all veZ o
t=1
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Theorem A.3 Single realisation behaviour

Let {G4(q) | 8 & 9m} be a uniformly stable family of filters, and
assume that the family of deterministic signals {we(t]}, 6 & 9,
is subject to VO Vt |we(t)| <C, c, eR.

Define se(t) 1= Ce(q]v(t) + we(t) for all 6 & Zm.

Let {v(t)} be subject to v(t) = Ht(q)e(t) where Ht(q) is a
uniformly stable family of filters and {e(t)} is a sequence of
independent zero-mean random variables with Ee(t)eT(t) = A, and

t
bounded fourth moments.

Then:
N
1 T T
sup | =) [sg(t)spt) = Esg(t)sg(t)] [l — © (A.2)
felm N
t=1
w.p. 1 asN-—w s ]

Proof: [Ljung, 1987], Theorem 2B.1.

Definition A.4 Model set
A model set is defined as a collection of models:

A= {hfa) |aen)
where the index a covers an index set 9. a

Remark:

In the context of Ljung [1987] the models constituting the model
set are predictor models (i.e. residual generating models).

Definition A.5 Model parametrisation

A model parametrisation of the elements In the model set A is a
mapping P: @m » A for some parameter set Im. ul

Let A be a model set parametrised by 8 ¢ Pm. This may be written
as: M= {H(B) | 8 e Im}
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APPENDIX B

The following list gives an overview of currently available
PRIMAL modules. A full description of each module may be found in
the PRIMAL manuals [Van der Linden & Renes, 1989 a-e]

IDM Interface definition module

EDM Experiment definition module

ECM Experiment control module

IMPORT Modules for importing files from other packages
EXPORT Modules for exporting files to other packages
MATLAB Interface to MATLAB

PLOT Graphical presentation module

LIST Presentation of dataset contents on screen
PRINT Presentation of dataset contents on a printer

PREFILTER Recursive data conditioning

FILTER Data conditioning
FFT Discrete Fourier transform
RFT Reverse discrete Fourier transform

CORRELATOR Recursive correlation analysis
SPECTRUM = Spectral analysis

RPE Recursive prediction error method (S1S0)
RPEM Recursive prediction error method (M1S0)
EMM Recursive extended matrix method (S180)
MARKOV Recursive impulse response estimation (MIMO)
TRANSFER Direct transfer function estimation (8180)
DLS Least squares method (MIMO)
GUIDORZI Guidorzi's method (MIMO)
CIV Bootstrap~IV + delay grid search (MIS0)
MCR Monte-Carlo search + zero order opt. (MINMO)
MCRPEM Monte-Carlo search + ocutput error PEM (MIS0)
IVM Four-step Instrumental variables (MIMO)
MFDSS Matrix fractlon model to state space conversion
SSMFD State-space to Matrix Fraction model conversion
SIMSYS System simulation

MODELTST Recursive model simulation + process monitoring
MTEST Model validation module + residual analysis

RESPONSE Analysis of subsystem contribution
MATEDIT Model editor ’
RSM Dummy process simulator
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ORDERTEST Equation error dimension test
HANKDIM Order test based on the Hankel matrix

HANKEL. Realisation method based on the Hankel matrix
KALMAN Kalman filter

LQG LQG control design

PPLCR Robust pole placement
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NOTATIORS, SYMBOLS AND ABBREVIATIONS

Mathematical notations:

arg min
AsN{m,P)

col{A)
deg
det

- min
sol
tr

-
~
o
Nomet? T

Symbols:

e(t)

G(g *:8)

6, (8)

h{t)

H(g *:0)

M{k)
na,nb,nc,.nd, nf
né

: vector containing the columns of matrix A

. e

minimising argument

asymptotically normal distribution with mean m

and covarlance matrix P

degree
determinant

: mininise
: solution of the equation
: trace

: transpose of A

o owe

inverse of A
equivalence relation

: infinity
: norm of a vector or matrix

derivative of V w.r.t. 6

disturbance at time t

: process transfer operator

: the coefficlent matrix of g © in G(q™*:0)

impulse response

noise transfer operator

k’th Markov parameter

degrees of A{g”:0)....F{(g"':0)

: dimension of 8
: number of samples

TR

T

we

number of inputs
parameter covariance matrix
number of outputs
correlation function of u(t)

cross~correlation function between uf{t)

y(t)

discrete time
sampling interval
input signal at time t

criterion function

: state vector at time t
: output signal at time t

: one step ahead prediction of the output

: model output
: instrument matrix
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Z : vector of delayed inputs and outputs at time t
a : step length, amplitude
C : the complex numbers
A : noise covariance matrix
5i i : Kronecker delta
6(t) : unit pulse
Pm : domain of 8
e(t) : prediction error
: expectation operator
E : generalised expectation operator
o(t) : regression vector
@y(m) : spectrum of y(t)
uy(t) : cross spectrum of u(t) and y(t)
I : identity matrix
Ip : pxp identity matrix
A : forgetting factor, minimal PRBS clock period
F] : model set
n(t) : vector of instruments at time t
¥(t.8) : gradient of -e(t) w.r.t. 6
0 : weighting matrix
g : backward shift operator
R : the real numbers -
4 : standard deviation
T : time lag
] : parameter vector
Ba : true parameter vector
8 : parameter estimate
@ : angular frequency i
Z : the integers { .. -2, -1, 0, 1, 2, ...}
z* : the nonnegative integers {0, 1, ...}
Abbreviations:
ADC : Analog to Digital Conversion
AlC : Akaike’s Information theoretic Criterion
AR : Auto Regressive
ARIMA : Auto Regressive Integrating Moving Average
ARMA : Auto Regressive Moving Average
ARMAX : Auto Regressive Moving Average eXogeneous
ARX : Auto Regressive with eXogeneous inputs
DAC : Digital to Analog Conversion
DCs : Distributed Control System
DCM : Data Cenerating Model
DLS : PRIMAL Module (See Appendix B)
ECHM : Experiment Control Module
ee : equation error method
EM-scheme : Experimental Modelling scheme
FIR : Finite Impulse Response
FPE : : Final Prediction Error criterion
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Cclv : PRIMAL Module (see Appendix B)

GUIDORZ1 : PRIMAL Module (see Appendix B)
HANKEL : PRIMAL Module (see Appendix B)
IDM : Interface Definition Module

Iv : Instrumental Variables

1VM : Instrumental Variable Method (see Appendix B)
LS : Least Squares

MA : Moving Average

MARKOV : PRIMAL Module (see Appendix B)
MCR ¢ PRIMAL Module {see Appendix B)
MCRPEM : PRIMAL Module (see Appendix B)
MFD : Matrix Fraction Description
MIMO : Multi Input Multi Output

MISO : Multi Input Single Qutput

mre : mean relative output error

oe : output error method

PCS : Process Control System

PEM ¢ Prediction Error Method

pdf : probability density function

PIM : Process Interface Module

PEM : Prediction Error Method

PLR : Pseudo~Linear Regression

PRBS ¢ Pseudo Random Binary Signal

re : relative output error

ree : recursive equation error method
roe : recursive output error method
RCM : Resldual Generating Model
RPEM : PRIMAL Module (see Appendix B)
SIMO ¢ Single Input Multi Output
SIS0 : Single Input Single Output
SVD : Singular Value Decomposition
wpl : with probability one
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SAMERVATTING

In de ©beheersing van continue produktieprocessen speelt het
dynamische procesgedrag vaak een belangrijke rol, zodat inzicht in
en kennis van de dynamica, bij voorkeur in de vorm van een voldoende
betrouwbaar model, is vereist. Deze kennis kan langs theoretische en
experimentele weg worden opgebouwd. k
In de experimentele modelvorming wordt aan de hand van metingen van
ingangs— en uitgangssignalen een mathematisch model van het proces
gevormd, dat vervolgens gebruikt kan worden voor ondsr andere
diagnose, procesbewaking, voorspelling van procesgedrag en
automatische regeling.

Dit proefschrift beschrijft een strategle voor experimentele model~
vorming, de ontwikkeling van een pakket voor het ondersteunen van
deze strategie, en de toepassing en evaluatie van de strategie (en
zijn methoden) op industri&le produktieprocessen.

De ontwikkelde strategie wordt gekenmerkt door interactief leren en
real-time analyse. Het omvat de definitie wvan projectdoelen,
onderzoek van proceskennis, installatie van apparatuur, experiment-
ontwerp, ultvoering van metingen, dataconditionering, signaal-
analyse, 1dentificatie en modelvalidatie, als ook ontwerp,
beproeving en evaluatie van regelaars.

In tegenstelling tot de gangbare "off-line” aanpak van modelvorming,
staat het belang van real-time analyse centraal in deze strategie.
Het plannen en uitvoeren van de metingen zijn hierin essentiéle
onderdelen.

De analyse van de gemeten data kan interactief, in real-time, uit-
gevoerd worden, waarbi] de gebruiker kennis van het procesgedrag
opbouwt en vervolgens deze kennis gebruikt om het experiment en de
analyses te verbeteren.

Ook kunnen de gevormde modellen synchroon aan het proces meelopen
als “"voorspellers”, waarvan de uitkomsten direct vergeleken kunnen
worden met het werkelijke procesgedrag. Tenslotte kunnen de ont-
worpen regelsystemen gebruikt worden voor simulaties, die
(geleidelijk) in toepassing worden gebracht onder voortdurende
controle van hun prestaties, waarbij de daarbij verzamelde kennis
gebruikt kan worden om hun werking verder te verbeteren. Aldus kan
in alle projectfasen effectief geleerd worden én snel en doel-
treffend van het geleerde geprofiteerd worden.

Om de strategie voor experimentele modelvorming in de praktijk te
ondersteunen is het pakket PRIMAL (Package for Real-time Modelling,
Analyses and Learning)} ontworpen en ontwikkeld. Het biedt de
mogelijkheden om aan industri#le processen te koppelen, metingen te
verrichten, in real-time de gemeten data te analyseren, modellen te
schatten en het ontwerp en de beproeving van regelsystemen direct
uit te voeren.
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Voor alle stappen in het experimentele modelvormingsschema zijn in
PRIMAL diverse methoden ontwikkeld en geimplementeerd. Speciale
aandacht is hierbij geschonken aan de identificatie stap, waaronder
prediction-error methoden, instrumentele variabelen methoden en hier
beschreven nieuw ontwikkelde varianten op ocutput-error methoden. Aan
de hand van de praktijktoepassingen is een evaluatie van zowel
PRIMAL, als van de prestaties van deze methoden uitgevoerd.
Daarnaast is aandacht geschonken aan de bewerking (conditionering)
van de ruwe procesdata, die in de praktijk vaak van meer belang
blijkt te zijn dan de keuze van de identificatiemethode.

PRIMAL is reeds op een aantal industri&le processen toegepast,
waarvan de resultaten op een glasproductieproces, een para-xyleen
kristallisatie-proces en een tolueen-xyleen destillatietoren in dit
proefschrift worden beschreven. .

De resultaten tonen aan, dat experimentele modelvorming van
industrigle processen, met behulp van moderne wmultivariabele
methoden, succesvol toegepast kan worden en tot waardevolle fysische
inzichten in het proces en de regeling ervan kan leiden.
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Experimentele modelvorming van produktieprocessen in de procesindustrle dient bij
voorkeur gekoppeld aan het proces en in reaktime plaats te vinden (dit proefschrift;
Ljung (1983) Theory and Practice of Recursive Identffication; Isermann (1988)
Identifikation Dynamischer Systeme).

Voor een brede toepassing van experimentele modelvorming in de praktik is een
“software environment® vereist, die niet alleen geschikte analysemethoden bevat, maar
tevens het leerproces van de gebruiker ondersteunt door krachtige real-time
interactleve fachiteiten, rapportage en gestructureerde gegevensopslag (Sderstrom &
Stoica (1989): System Identification, en dit proefschrift).

Identificatie op basls van black-box technieken kan belangrijk fysisch Inzicht in een
proces opleveren, waarmee door aanpassingen in het proces soms meer bereikt kan worden
dan door op basls van het model ontworpen regelingen (dit proefschrift).

-

De praktische aspecten van Identificatie worden In de literatuur onvolledig belicht:

niet vanwege het geringe belang, maar wegens het ontbreken van een sluitende aanpak
(dit proefschrift, zie bijvoorbeeld voor wat data conditionering betreft: Ljung (1987)
System Identification - Theory for the user; Baclx (1987) Identification of an

Industrial Process - A Markov Parameter Approach ).

Over de toepassing van kieine testsignalen op industridie processen tijdens normaal
bedrijf wordt vaak te moeflijk gedaan, terwijl dit in praktijk zeiden of nooit tot
problemen leidt.



vl

Zolang In het veld van de experimentele modelvorming de wijze waarop een experimentator
kwalitatief grafische presentaties interpreteert niet goed te expliciteren Is, mag van
expert-systomen niot veel verwacht worden en bilift de experimentator een onmisbare
schakel.

- it -

De procesindustrie heeft belang blj procesomtwerpers die rekening kunnen en durven
houden met de dynamica.

- it -

Aangezien In steeds meer wetenschappellik onderzoek de ontwikkeling van programmatuur
een belangrike plaats inneemt, dient deze professionesl en voor hergebrutk ontworpen

te worden. De universitelt 2ou hleraan In de opleiding en in de ultvoering van het
onderzoek veel meer aandacht moeten schenken.

- I -
In een omvangrijk universitalr softwars project als PRIMAL, Is de standaardisatieregel

dat alles wat nist aan de standaard voidoet wordt weggegooid, de beste manier om
studenten te bewsgen om daadwerkelllk volgens de standaard tewerk te gaan.

De colleges een half uur eerder laten beginnen heeft op korte termijn waarschijnlijk
nauwelllks gevolgen voor de tijden waarop studenten met sen OV-jaarkaart relzen.

o -
Een belangrifke oorzaak voor de matige telefonische berelkbearhekd van wetenschappers

aan deze universitelt Is, dat zij nlet goed weten om te gaan met de mogelljkheden die
het telefoonsysteem bledt {de TUE telefoongids biz. 28-38).





