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VOORWOORD 

Het werk beschreven in dit proefschrift is uitgevoerd aan de 
Technische Universiteit Eindhoven in de vakgroep Systeem- en 
Regel techniek van de Facul tei t der Technische Natuurkunde in de 
periode 1984-1989. 

De basis van het huidige PRIMAL pakket is gelegd in 1984 en 
sedertdien verder ontwikkeld door Walter Renes en Ruud van der 
Linden. Belangrijke bijdragen aan het vragenpagina-systeem zijn 
geleverd door Pim Bollen. Bij de ontwikkeling van het PRIMAL pakket, 
de implementatie en evaluatie van de diverse methoden en bij de 
toepassingen in de procesindustrie is vee! werk verzet door de 
studenten die ik de afgelopen jaren heb begeleid: de afstudeerders 
Peter Berben, Rob Driessen, Paul Janssen, Peter Cerlings, Onno van 
het Groenewoud, Martin Hogendoorn, Tiny van Lanen, Pim van Meurs, 
Walter Renes en Wim Tolboom, en de stagairs Walrick Dirkx, Gert-Jan 
van Dijk, Rob Faessen, Ludy Hardy, Ad van Kessel, Hans Meerman. 
Martin Schoenaker, Frits Staals en Mark Vester. 

De koppeling van PRIMAL aan het glas-feeder proces is uitgevoerd in 
samenwerking met de PICOS groep van Philips Glas,. met name met Ton 
Backx en Anton Koenraads. De analyses van de data zijn onafhankelijk 
van en parallel aan deze groep uitgevoerd. 

De metingen aan het kristallisatieproces en de destillatietoren ZlJn 
in samenwerking met Leo Steijvers en Frits van de Mortel van EXXON 
Chemical Holland uitgevoerd. 

De commercialisatie van het PRIMAL pakket wordt ondersteund door bet 
Instituut ITPITUE-TNO. 
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SUMMARY 

In the control of c;ontinuous production processes, the dynamical 
behaviour of the process often plays such an important role, that 
detailed knowledge of the process behaviour, preferably in the form 
of a sufficiently reliable model, is required. This knowledge may be 
obtained by theoretical and experimental means. 
In experimental modelling, mathematical process models are derived 
from measurements of process input and output signals, which 
subsequently may be used in, for instance, diagnosis, process 
monitoring, prediction and automatic control. 

This thesis describes a comprehensive strategy for experimental 
modelling, the development of a software package to support this 
strategy, and the application and evaluation of this strategy (and 
its methods) in industrial practice. 

The developed strategy is characterised by an interact tve teaming 
scheme and rea.t-ttme a.na.tyses. The scheme comprises the definition 
of project goals, investigation of available process knowledge, 
installation of equipment, experiment control. data acquisition, 
data conditioning, signal analysis, identification and model 
validation, as well as the design, test and evaluation of control 
systems. 

In contrast to conventional "off-line" approaches to identification. 
the importance of real-time analyses stands central in this 
strategy, which therefore includes the planning and execution of the 
experiments as essential steps. 
The real-time approach lets the user inspect and analyse the 
measured data immediately, accumulating knowledge about the process 
behaviour, and using it to improve the experiments and the analyses 
accordingly. 
Also, the constructed models may be used as "predictors", running in 
parallel to and synchronised with the process, comparing the 
predicted with the actually observed process behaviour. 
Lastly, the designed control systems may be applied in simulations, 
that may (gradually) shift towards actual applications, while 
constantly monitoring their performance. 
Thus, in all project phases, the user learns effectively and may 
profit immediately from the acquired knowledge. 

To support the experimental modelling strategy in practice, the 
package PRIMAL (Package for Real-time Interactive Modelling, 
Analyses and Learning) has been designed and developed. This package 
offers the facilities to couple to industrial processes, to carry 
out experiments, to analyse the data, to estimate models, and to 
design and test control systems, all in real-time. 
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For each step in the experimental modelling scheme, methods have 
been developed and implemented in PRIMAL. Special attention has been 
given to the identification step, where a variety of methods has 
been made available, including prediction error methods, 
instrumental variable methods, and new variants of output error 
methods described here. In the practical applications, the 
performance of these identification methods and of the PRIMAL 
package as a whole have been evaluated. 

PRIMAL has been applied to several industrial processes, of which 
the obtained results on a glass production process, a para-xylene 
crystallization process and a toluene-xylene distillation process 
are described in this thesis. 
The results show that the developed experimental modelling strategy, 
and its modern multivariable methods, may be applied successfully to 
industrial processes and may lead to valuable physical insight and 
improved control. 
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CHAPTER 1 INTRODUCTION 

1.1 Trends in process control 

In the course of the past decades, industrial processes have been 
automated at a high pace. Limiting the scope to continuous 
production processes as mainly found in the process industries, we 
see that computer-based automatic control systems are now 
commonplace, [Astrom, 1985: Van Cauwenberghe, 1985]. 

In parallel to the development of automatic control systems, much 
research has been done on modelling and control, concentrating 
mainly on (mul tivariable) linear systems, [Eykhoff. 1974. 1991: 
Astrom & Wittenmark, 1984: Ljung, 1997, 1998; .. ]. 

Despite the abundance of modelling and control design techniques, 
the classical PID-controller is still widely used in single loops or 
cascades in the process industry. and the controllers are often 
still tuned using only a few characteristics of the process. 
Recently, however, there is a new trend towards application of 
Multi-Input Multi-Qutput (MIMO) process modelling and control design 
techniques in industry. 

A first reason for this trend is that sharper demands are made on 
the production process in terms of quality and r1:0producibi li ty, 
energy and raw materials consumption, throughput, flexibility, and 
pollution, which can, hopefully, be achieved by more sophisticated 
control, based on mathematical models of the process. 

Secondly, the theory of modelling and control system design of 
linear systems has matured. In identification theory several 
attempts to unify the "bag of tricks" [Eykhoff, 1974: Ljung, 1997] 
have shown that numerous different identification techniques may be 
regarded as special cases of a few general techniques. 
Based upon such techniques commercial tools become available for 
industrial practice. 

Thirdly, modern instrumentation systems provide sufficient 
programmability, computing power and data storage to meet the 
technical requirements for the implementation of advanced control. 
Furthermore. the possibility to automatically collect and analyse 
(large amounts of) process data is of fundamental importance to 
techniques for experimental analysis. 

This thesis concentrates on methods, techniques and tools that may 
be used in modelling and control of continuous and batch-wise 
continuous production processes. It introduces a strategy and 
describes an environment and tools for carrying out real-time 
experimental analyses of the (dynamical) process behaviour. 
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1.2 Some notes on modelling 

If the dynamic behaviour of a process is not well understood, for 
instance due to complex interactions between several process 
variables or as a result of noise or external disturbances, it may 
be difficult to predict and control future behaviour. In these 
cases, developing a mathematical model reflecting the process 
properties of interest, may contribute to understanding and 
controlling process behaviour. 

In the process design phase, models of its dynamics may be used to 
ensure a requested dynamical behaviour. 
For existing processes, models may be used for diagnosis, for 
monitoring the process to detect deviations between the actual and 
eXPected process behaviour in an early stage, and for prediction and 
control of process behaviour in the case of set point changes and 
disturbances. The performance of a process may critically depend on 
the ability of the control system to reduce the effect of 
disturbances and to keep the operation conditions within the desired 
range. 

A way to order the various approaches to mathematical modelling, is 
by picturing them on a scale with at the ends the two extremes: at 
one side "theoretical modelling" and on the other side "black box 
system identification". 

In theoretical modelling, basic laws from physics (conservation 
laws), thermodynamics. chemistry, together with empirical relations 
are used to construct a model. 

In black box system identification, a model class is posited, which 
usually does not reflect the internal structure of the process. The 
model parameters are estimated from the observed data, using some 
optimisation technique for minimising a criterion of the misfit 
between the behaviour of the model and the behaviour of the real 
process. 
Since the models do not reflect the internal structure of the 
process they are often called "black box" models. Only their 
input-output behaviour is considered important. 

Analogous to black box models, it has become common to define 
"white box" models as the models resulting from theoretical 
modelling. 

Theoretical 
modelling 

white box models grey box models 

Black box system 
identlfica tion 

black box models 

In practice, the two extremes are never used, but a sensible 
combination of the two approaches is chosen, resulting in more or 
less "grey" models. 
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Some characteristics of these approaches: 

Theoretical modelling: 

- Constructing a theoretical model of an industrial process 
requires detailed knowledge about the physical and chemical 
phenomena involved. As a result. model construction requires 
expert knowledge that may be unavailable and is usually very 
time-consuming. 

- In several stages during the construction of the model, 
simplifications or assumptions are necessary in order to be able 
to write down mathematical equations. Their influence on the 
accuracy of the model is often difficult to predict and no 
direct measures of the loss of accuracy are available. 
As a result, experiments are still needed to verify the model. 
If the verification reveals model errors, model-adjustment is 
needed. for instance by adaptation of parameter values. 

- The model not only describes the input-output properties of the 
process, but also its internal behaviour. The states and 
parameters in the model customarily have a direct physical 
interpretation. 

- Usually, the model has a wide validity region, depending on the 
assumptions made when deriving the equations. The model may be 
used in the process design phase and for different process 
sizes. On the other hand, the modelling is very process 
specific: another type of process may require a basically 
different model. 

-Since the resulting model is often a complex set of (P)OV's and 
algebraical equations, its use in simulations may be numerically 
difficult and time-consuming, and the model may be inappropriate 
for use in real-time. 

- If, as hinted at above, the model contains unknown or ill-known 
parameters, experiments are still needed to fit the model to the 
experimental data. This usually results in complicated 
constrained non-linear optimisation problems. 

Black box system identification: 

- Black box models only require knowledge about the input-output 
behaviour of the process, but no detailed knowledge about its 
internal behaviour. 

- Since the model is not based on physical principles, it is 
generally accepted that it yields little physical insight into 
the process behaviour. 

- For constructing the model it is necessary to carry out 
experiments. The process must therefore exist, be well 
instrumented, and the relevant input and output variables must 
be measurable and/or excitable. 

- The quality of the black box model depends critically on the 
information contents of the process data used for its 
construction. Therefore, data acquisition and experiment design 
are key factors for a successful approach. 
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- Usually, the resulting model has a limited validity range. It is 
accurate only for a specific process, in a certain operating 
range. Within this range, however, the model may be very 
accurate. 
Since the model is estimated from experimental data, it is 
usually feasible to derive direct estimates of its accuracy. 
However. there is no guarantee that the model will remain viable 
under different process conditions. 

- The techniques used in the identification approach are not 
process-specific and may be applied to widely different types of 
arbitrarily complex processes. 

- Efficient numerical techniques are available for estimating the 
parameters of linear black box models from the observed data. 

- Black box models are usually sufficient for prediction and 
control. Because of their simple structure they lend themselves 
better to real-time application. 

- The identification approach cannot be used in the process design 
phase. 

This thesis describes a methodology and techniques for experimental 
modelling. 
The process of finding a suitable model by experimental modelling 
comprises the following steps: 

- Design of experiments. 
- Data acquisition: the collection of data from the process. 
-Selection of a set of candidate models (the model set). 
- A choice of identification techniques for selecting the best 

model from the model set. 
- Model validation: assessment of the quality of the estimated 

model. 

The actual methods that are considered are restricted to black box 
techniques. The main motivation for this approach is a pragmatic 
one. The most important advantage of black box techniques are the 
applicability to widely different processes and the ability to 
generate a model within a short timespan. If the purpose of a model 
is prediction or control. black box models usually prove to be 
effective. 
Since physical knowledge about the process is extensively used in 
experiment design and model structure selection, we prefer to call 
this approach "dark-grey" modelling. 

In experimental modelling, a point of great concern is the 
dependence on "good" data, that are representative of the process 
behaviour. Usually, this means that experiments must be carried out 
which involve superimposing test signals on the process inputs. 

We assume that data, collected from the process, consists of a set 
of signals, sampled equidistantly in the time. 
The structure of the models under consideration is restricted to 
discrete-time, linear, causal, time-independent, finite order, 
multi-input, multi-output models, as described in Chapter 2. 
The restriction to this class limits the type of processes to which 
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the techniques can be applied. Linear models, however, may be used 
successfully for description of the process near an operating point. 
The advantage of this approach is the availability of a rigorous 
mathematical theory and a great variety of efficient numerical 
procedures. 
Some types of processes may, however, present insuperable problems, 
for instance, processes subject to hysteresis, pronounced 
(dynamical) non-linearity or abrupt changes in the dynamical 
behaviour. 

1.3 Scope of this thesis 

In this thesis we will: 

- Discuss a methodology for experimental analysis of production 
processes in the process industry. 

- Describe a ~ackage for Real-time Interactive Modelling. Analyses 
and Learning (PRIMAL) to implement the methodology. 

- Discuss the application of the methodology and of PRIMAL in the 
experimental analysis of several industrial processes. 

- Assess the usefulness of established identification techniques 
and discuss effective variants. 

The thesis is structured as follows: 

Chapter 2 presents the theoretical framework and those concepts that 
are needed in Chapters 3 and 5. Identification is considered in 
terms of approximate modelling. 
Chapter 3 discusses the experimental modelling strategy. 
Chapter 4 considers the implementation of the strategy in PRIMAL, 
which provides a platform for experimental modelling and control 
design methods and which has been specifically designed for 
application in industry. 
Chapter 5 discusses the identification ·methods made available in 
PRIMAL. 
Chapter 6 discusses the application of the experimental modelling 
strategy to three cases in the process industry. 
In Chapter 7 the final conclusions are summarised. 

In summary, the principal contributions described in this thesis 
are: 

- The development of a comprehensive scheme for experimental 
modelling, that is based on interactive learning strategy for 
process analyses in real-time. 
The scheme covers preliminary investigations, connecting to the 
process, experiment design, data acquisition, data conditioning, 
signal analyses, identification, model validation, control 
system design and testing. 

- The PRIMAL package, which implements the interactive (real-time) 
strategy. 

- The application and testing of the experimental modelling 
strategy in several cases in industrial practice. 
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CHAPTER 2 THEORETICAL FRAMEWORK 

In Chapter 1, identification has been introduced as a way to obtain 
a mathematical model of a process on the basis of experimental data. 
Since usually the physical relations governing the process behaviour 
are more complex than the proposed model and as the data obtained 
from the process may describe only part of its behaviour. 
identification should be considered as a way to generate an 
approximate model. 

This chapter summarises selected concepts and definitions to serve 
as a background for the discussion of the experimental modelling 
scheme in Chapter 3 and the identification methods in Chapter 5, 
following the lines of "classical" ldentlflcation theory, as 
formalised by Ljung [1976, 1977, 1983, 1987] and Soderstrom & Stoica 
[1983a: SOderstrom, 1989]. The experienced reader may proceed 
directly with Chapter 3. 

Section 2.1 discusses the approximate modelling problem. Section 2.2 
presents the different model representations used to describe linear 
systems in PRIMAL. In Sections 2.3 and 2.4 the basic system 
description and the resulting predictor models are Introduced. 
Section 2.5 concentrates on the approximate modelling aspects of the 
predictor models. In Section 2.6 different parametrisations are 
introduced that are used in the PRIMAL identification methods 
discussed in Chapter 5. 

2.1 Approximate modelling 

. In order to stress the notion that identification is considered as 
approximate modelling, it is useful to distinguish between the model 
that is assumed to have generated the data, and the model derived 
(estimated) from the observed data. 
The term Data Generating Model (DCM) may be introduced, cf. 
[Janssen, 1988] to describe how the outputs y(t) are constructed 
from the inputs u(t) and disturbances e(t). The DCM is a theoretical 
construct with the main purpose to serve as a basis for discussing 
identification methods and for analysing their properties. 

Identification may be viewed as finding a model that describes 
sufficiently well the dynamical relation between the observed 
input and output data sequences. Thus, it requires a rule for 
generating a model residual from the experimental data and for 
minimising some scalar measure of the residuals (i.e. a Residual 
Generating Model (RCM), cf. [Janssen, 1988]). We will use the 
concept of a "predictor model" as formalised by Ljung [ 1987], 1. e. 
a rule of predicting the output of a process on the basis of past 
data of the measured Inputs and outputs. 
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2.2 Model representations 

In this section we introduce different ways to represent models of 
linear, discrete time, time-invariant, finite dimensional, 
multivariable systems, briefly discussing their relations. 
This subject is treated extensively in the literature [Kailath, 
1980]. and consequently, we restrict ourselves to the definitions 
and terminology needed later. 

We will discuss causal systems with p inputs, u( t) e nf, and q 

outputs, y(t) e IRq, which are functions of the discrete time t: 
te 71!. 

Vector difference equations 

A common description of a linear dynamical system is given by a 
backward vector difference model: 

A0y(t) + A1y(t-1) + ... + Ana(t-na) = 
s0u(t) + B1u(t-1) + ••• + Bnbu(t-nb) (2.2.1) 

where Bf. e IRqxp. f. = 0 •. nb, and At e IRqxq, f. = 0 .. na, are 

matrices with constant coefficients. Equation (2.2.1) expresses the 
output y(t) in terms of the input u(t) and previous values of inputs 
and outputs. 

Introducing the backward shift operator q- 1, q- 1u(t) = u(t-1), this 
model may be written as: 

na 

A(q-1) = l Aiq-i 

i=O 

nb 

B(q-1) = l Biq-i 

i=O 

(2.2.2) 

where A(q- 1
), B(q- 1

) are matrix functions in the shift operator q- 1. 

Using the z-transform a similar form is obtained: 

(2.2.3) 
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Models with this structure are usually called ARMA (Auto Regressive 
Moving Average) models or Matrix Fraction Descriptions (MFD' s), 
depending on their formulation in either the forward or the backward 
shift operator. We will not use this distinction, and only discuss 
models in the backward shift operator. This form makes the models 
suited for direct use in simulation and prediction. 

The model (2.2.1) describes a causal (proper) system if A0 is 
non-singular (i.e. det(A0 ) T- 0). If we further require that A is 
monte, A0 =I, we obtain a straightforward expression for y(t): 

na nb 

y(t) = - 2 Aiy(t-i) + 2 Biu(t-i) (2.2.4) 

i=1 i:O 

Additionally we often require the system to be strictly proper, i.e. 
B0 = 0, which is a natural assumption for most sampled data systems. 

Transfer function models 

An alternative way to represent the system is by its input-output 
transfer operator (transfer function) C(q- 1

): 

y(t) = C(q- 1 )u(t) (2.2.5) 

with C(q- 1
) a qxp rational matrix function in q- 1

• 

Using the Laurent expansion C(q- 1
) can also be written as: 

C(q-1) = 2 Ciq-1 

i=O 

The system is strictly proper if C0 = 0. 

(2.2.6) 

This transfer function representation is related to the difference 
equation. We may rewrite (2.2.1) to: 

(2.2.7) 

Matrix fraction descriptions 

The term MFD was already mentioned in relation to the vector 
difference equation. Put more formally, we define a MFD as follows, 
cf. [Kailaith 1980]: Let C(z) be a rational matrix of dimension qxp 
and A(z) a qxq non-si~lar polynomial matrix, B(z) a qxp polynomial 
matrix, then C(z) =A- (z)B(z) is a left MFD of C(z). 
The degree of the MFD is defined as the degree of the determinant of 
A(z): deg det A(z). 
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A MFD is not a unique representation of the system's transfer 
function. Multiplying A(z) and B(z) by any non-singular polynomial 
matrix W(z) yields a MFD with exactly the same transfer function. 
If W(z) is not unimodular it will affect the degree of the MFD. 
The MFD is said to be left coprime if A(z) and B(z) only have 
unimodular left divisors. 
Still, there are infinitely many left coprime MFD's describing the 
same system, because transformation of {A(z), B(z)} with any 
unimodular W(z) will produce another MFD with the same degree. 

The matrix fraction description is the extension to the 
multivariable case of the numerator and denominator polynomials in 
the transfer function in the Single Input, Single Output (SISO) 
case. Analogously the concept of zeros and poles may be extended to 
the MIMO case on the basis of the Smith-McMillan form. 

Markov parameter models 

A linear system may be described completely by its impulse response. 
For a MIMO system the value mji(k) of the impulse response of output 

j at time instant k, as a result of an impulse o(k) on input i may 
be written into the matrix: 

k:: 0,1, .. (2.2.9) 

The matrix M(k) is called the k-th Markov parameter. 
The Markov parameters are a unique description of the transfer 
function. However. an infinite number of parameters is required to 
exactly describe it. For a finite dimensional system the Markov 
parameters are related, (Backx, 1987]. 
The response y(t) of the system to an arbitrary input u(t) may be 
written as a convolution sum: 

y(t) = l M(k)u(t-k) 

k:O 

For a strictly proper system M(O) = 0. 

(2.2.9) 

Comparing (2.2.6) with (2.2.9) shows the immediate relation between 
the transfer function and the Markov parameters. 

State space models 

The state space representation describes an n-th order system by n 
first order equations: 

x(t+l) = Ax(t) + Bu(t) 
y(t) = CX(t) + Du(t) 
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with a state vector x(t)cffin and the matrices {Acffinxn.Bcffinxp,Ccffiqxn. 

Dcffiqxp } defining the model. 
The state space equations describe a causal system. If 0=0 the 
system is strictly proper. 
The state space representation and the transfer function are related 
according to: 

C(z) = C(zi- A)- 1 8 + D (2.2.11) 

So, an MFD may be transformed to a state space representation 
(realisation) and vice versa, [Wolovich, 1974]. 
Any realisation of order n = deg det A(z) of an MFD A- 1 (z)B(z) is 
a minimal realisation if and only if the MFD is left coprime, 
[Kailath, 1980]. 

Relations between the models 

In the discussion above it was briefly indicated how the different 
model representations are related. For a more formal treatment of 
the relations refer to [Hannan, 1988: Kailath, 1980: Janssen, 1988: 
and the references therein]. 
The PRIMAL package extensively uses the state-space and (left) MFD's 
for representing systems. The polynomial matrices occurring in the 
MFD are stored as three-dimensional matrices. 

2.3 Data generating models for identification 

For the purpose of identification the basic model types introduced 
in Section 2. 2 are parametrised and extended with a term 
representing the part of the output that can not be explained by the 
input, which is usually considered to be of a stochastic nature. 

Let~ be a model set parametrised by 9 c ~- This may be written as: 
~ = {~(9) I 9 c ~ }. cf. Appendix A. 

We now introduce the general data generating model: 

~(9): y(t) = C(q- 1 :9)u(t) + H(q- 1 :9)e(t) 

C(q:9) = Ca(9) + C1 (9)q- 1 + C2 (9)q- 2 + 
H(q:9) = Ha(9) + H1 (9)q- 1 + H2 (9)q- 2 + 

where: 

t the discrete time, t c z+ 

(2.3.1) 

(2.3.2) 
(2.3.3) 

e(t) a sequence of independent and identically distributed 
random variables with zero mean (a white noise) 

9 the n9 dimensional parameter vector 
C(.) a linear (qxp) dimensional filter, depending on 9 
H(.) a linear (qxq) dimensional filter, depending on 9 
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Usually the set of admissible models is restricted to a E !ll • m 
!IJ = { 9 I C0 (9) = 0, m 

H0 (9) = I (monic), 

H- 1 (z) and H(z) analytic for lz I ~ 1. 

H- 1 (q:9)C(q:9) stable } (2.3.4) 

e(t) 

H(q- 1 ;9) 

~I C(q- 1 ;9) :G) y(t) 

The model consists of a deterministic part C(q- 1 :9)u(t) and a 
stochastic part H(q- 1 ;9)e(t). All disturbances inflicting the 
process, like uncontrolled inputs and measurement noise, are lumped 
together in this term and are thus assumed to be generated by a 
noise colouring filter H(q- 1 ;9) from a white noise e(t). 
The model is therefore completely described by the filters C and H 
and the probability density function of the noise. In the sequel 
e(t) is usually characterised only by its first and second order 
properties. 

Ee(t) = 0 
T 

Ee(t)e (s) = Aot ,s (2.3.5) 

The linear, finite order, time-invariant data generating model 
(2.3.1) is the basis for most identification methods, mainly owing 
to its nice mathematical properties. In practice, the model 
restrictions limit their application. 
As stated in Chapter 1, application is restricted to continuous 
production processes, operating in a limited range around an 
operating point. In this case the process may be approximated by a 
linear, time-invariant model. However, the process needs not to be 
in the model set to achieve a satisfactory result. For approximate 
modelling the optimality of the techniques based on linear models is 
lost, but yet the approximation may be adequate. 
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Especially the modelling of the disturbances as filtered zero-mean 
white noise seems artificial. This description of noise is supported 
by the central limit theorem and the spectral factorisation theorem; 
cf. [Anderson & Moore, 1979], which states that any nonsingular 
rational spectral density function '(w) can be written as: 

'(w) = __ 1--H(e-iw)AHT(eiw) 
21T 

H(q- 1
) and H- 1 (q- 1

) asymptotically stable 
H(O) = I 

(2.3.6) 

As a consequence the signal with spectral density '(w) can be 

written as y(t) = H(q- 1 )e(t), Ee(t)eT(s) = Aot ,s 

Yet, the disturbances encountered in practice will rarely fit this 
format. One may expect deterministic disturbance components and 
non-linear effects. The description of the noise should therefore be 
considered as a vehicle to arrive at predictor models with nice 
properties. 

2.4 Predictor models 

For linear, time-invariant systems a predictor model may be defined 
as: 

Definition 2.4.1 [Ljung, 1987] 
A predictor mode! of a linear, time-invariant system is a filter: 

;(tlt-1) = W (q)u(t) + W (q)y(t) 
u y . 

(2.4.1) 

where W (q) and W (q) are stable linear filters • u y D 

Note that this definition does not specify the behaviour of the 
prediction error: 

~(t) = y(t) - ;(tlt-1) 

Definition 2.4.2 
A k-step-ahead predictor mode! is a 

t-k only depends on data Z , k ~ 1. 
t-k I Z := {u(n),y(n) n = 1,2, .. ,t-k} 

(2.4.2) 

predictor model for y(t) that 

D 

Straightforward analysis shows how a one-step-ahead prediction error 
model may be derived for the general model (2.3.1). 
We assume that u(t) is uncorrelated with e(s) for t<s. This is a 
natural assumption for open loop and causal feedback situations. 
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First (2.3.1) is rewritten to: 

y(t) = G(q;9)u(t) + H(q;9)e(t) 
= G(q:9)u(t) + [H(q;9)-I]e(t) + e(t) 
= G(?:9)u(t) + [H(q;9)-I]H- 1 ~q:9)[y(t)-G(q;9)u(t)] + e(t) 
: H- (q;9)G(q;9)u(t) + (I-H- (q:9)]y(t) + e(t) (2.4.3) 

The first two terms are known at time t, since they contain only 
past data. The last term e(t) is unpredictable. 
An estimate for y(t) may be generated by taking the conditional 
expectation of y(t). Using the properties of e(t) (2.3.5) this 
conditional expectation may be written as: 

;(tlt-1:9) = H- 1 (q;9)G(q:9)u(t) + [I-H- 1 (q:9)]y(t) (2.4.4) 

This predictor fits the definition of a predictor model: 

W (q:9) = H- 1 (q:9)G(q:9) u 
W (q;9) = I - H- 1 (q;9) 

y 
(2.4.5) 

The predictor (2.4.4) is also optimal in the mean square sense. 
Taking an arbitrary linear predictor s(t) for y(t), depending only 
on past input and output data, and computing the prediction error 
covariance matrix shows: 

E(s(t)-y(t))(s(t)-y(t))T = 
" " T T E(s(t)-y(tlt-1;9))(s(t)-y(tlt-1;9)) + Ee(t)e (t) ~A (2.4.6) 

Equality is achieved for s(t) = ;(tlt-1;9) 

Stability of the predictor requires that the filters H- 1 (q:9) and 
H- 1 (q;9)G(q;9) are stable. The admissible set of parameters is 
therefore restricted to (2.3.4). 

Prediction error methods 

The term Prediction Error Method (PEM) is generally used for methods 
that generate a parameter estimate by minimising a scalar function 
of the prediction errors. Since the prediction errors are generated 
by filtering the data (2.4.4) we may write: 

where VN is some scalar function of the prediction errors. 

A PEM is thus defined by: 
- a choice of model structure (a predictor model) 
- a criterion function V 
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Common criterion functions are: 

VN(B,ZN) = det [ RN(e,zN) ] 

and: 

VN(e.zN) = tr ~(e.zN) 

with: 
n a positive definite weighting matrix. 

N 

~(e.zN) = --1--2 e(t.B)eT(t,B) 
N t=1 

(2.4.8) 

(2.4.9) 

(2.4.10) 

Remark: Soderstrom [1989) shows that a PEM with criterion function 
(2.4.9) coincides with the Maximum Likelihood Estimation of 9 in 
case of jointly Caussian noise e(t). 

Remark: The criterion (2.4.9) asymptotically leads to the same 
parameter estimates and parameter covariance estimates (2.4.8) only 
if the weighting matrix n • A- 1

• In iterative and recursive 
identification methods, A can be approximated by the covariance 
matrix of the innovations e(t,B). 

Linear regression models and instrumental variable methods 

If the prediction error is linear in the parameters a quadratic 
criterion function can be minimised by the ordinary least squares 
method. In this case the prediction error can be rewritten to: 

e(t) = y(t) - ~T(t)B (2.4.11) 

where ~ is a vector containing only past values of the inputs and 
outputs. Minimising V with respect to a results in the Least Squares 
(LS) solution: 

N 

eN= sol { _l 2 ~(t)(y(t)~T(t)B) = 0} 
N t=l 

which leads to: 

N N 

eN= [ __ 1 __ 2 ~(t)~(t)T )-1 [--1--2 ~(t)y(t)) 
N t=1 N t=1 

(2.4.12) 

(2.4.13) 

This equation can be solved explicitly and yields the global minimum 
of the criterion function. However, it is well known that only under 
rather unrealistic assumptions the estimate is unbiased. 
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Assuming that y(t) is generated by a DGM: 
T y(t) = ~ (t)90 + v0 (t) (2.4.14) 

and substituting y(t) in equation (2.4.13) leads to: 

N N 
" f1; = So + [ 

\ T -1 1 \ L ~(t)~(t) ] [- L ~(t)v0 (t) ] 
N t=l N t=l 

(2.4.15) 

which is biased unless the first matrix is non-singular and ~(t) is 
uncorrelated with the disturbances v0 (t). The first condition is 
generally satisfied if the input is persistently exciting of 
sufficient order. The second condition is satisfied only if: 

v0 (t) is a white noise · 
or, 

the input {u(t)} is independent of {v0 (t)} and the model 
includes only Moving Average (MA) parameters. 

The bias problem may be overcome in several ways. One approach is to 
model the disturbances as f 11 tered white noise and to include the 
parameters of the filter H(q- 1

) in the parameter vector e. The 
linearity of the regression model is generally lost, so that a 
numerical optimisation method must be used to estimate e. 
Another approach is to find a vector of instruments n(t) that is 
correlated with ~(t), but uncorrelated with v0 (t). 

Methods to construct a vect::.r of instruments n(t) satisfying the 
above requirements and solving the equations: 

N 

" 1 l T e = sol { -- n(t)[y(t)-~ (t)e] = o } 
N e~ N 

t=l 

(2.4. 16) 

are called Instrumental Variable (IV) Methods. 
A suitable vector of instruments can be constructed by filtering 
input and output data: 

(2.4.17) 

IV-methods and extended IV-methods implemented in PRIMAL are 
discussed in Chapter 5. 

2.5 Asymptotic properties and approximate modelling 

The behaviour of parameter estimation methods may be investigated 
within a stochastical framework, which implies that the properties 
of the estimation methods are determined for ensembles of 
measurements. In practice, however, we usually have just one record 
of data from a given process. 
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Under rather general assumptions, see Appendix A, the first and 
second order moments of a stochastic process s(t) = m(t) + v(t), 
with m(t) a bounded deterministic signal and v(t) a filtered white 
noise, may bn computed from a single realisation {s(t)} w.p. 1 as 
the number of samples N ~ m. 
As a consequence, considering only first and second order moments, 
the stochastic and deterministic approaches lead to the same result. 
To eliminate the distinction between the two approaches the 

generalised expectation operator E 
N 

Es(t) := 11m --1-- l Es(t) 
N""" N t=1 

is introduced. 

(2.5.1) 

The operator E may be applied both to stochastic and deterministic 
signals. 

If u(t) is regarded as a deterministic signal, the output y(t) 
(2.3.1) has a deterministic and a stochastic component. As a result 
{y(t)} is not a stationary stochastic process, i.e. the moments are 
time-dependent. We may treat {y(t)} as a generalised weakly 
stationary process or as a quasi-stationary signal, see Appendix A. 
i.e. a single realisation of the stochastic process. 

The correlation function Rs(T) is defined as: 

R (T) := Es(t)s(t-T) s 
(2.5.2) 

In the case {s(t)} is a zero mean stationary stochastic process 
Rs(T) is called the covariance function of s. 

Similarly the cross-correlation function is defined as: 

R (T) := Es(t)w(t-T) T~Z (2.5.3) sw 

with {s(t},{w(t)} jointly quasi-stationary. 
The spectrum of s(t) is defined as: 

T=-
and analogously the cross-spectrum ~ c~> is defined. sw 

Ceneral results on asymptotic behaviour of PEM's 

(2.5.4) 

Consider the one-step-ahead predictor (2.4.2) and a quadratic 
criterion function (2.4.9), then under rather weak assumptions 
[Ljung, 1987] the criterion function converges uniformly in e~~ as 
N-m: 

- - T vN(e) - v(e) := ~(t.e) o~(t.e) (2.5.5) 
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Furthermore, 

A 

eN ~ a :=arg min V(e) 
e~ 

(2.5.6) 

This result shows that as N approaches infinity the parameter 
estimates converge to minimizing arguments of the asymptotic 
criterion function. If the "true" system is not represented in the 
model set an element in the model set is found, that is closest to 
the true system, in the sense of a minimal prediction error 
variance. In this case the model found will depend on the data set, 
which is illustrated by the examples 2.3 and 2.4 in Soderstrom 
[1989]. 

Under the assumption that the data can be described by (2.3.1), i.e. 
the true system is in the model set, it can be shown that the PEM is 

A 

consistent and the parameter estimates eN are asymptotically 

Gaussian distributed. 

(2.5.7) 

P = [V''(B)]-1[lim NE{VN(e)}T{vN(e)}J[V''(e)]-1 

N-ta~ 

For Gaussian distributed disturbances the optimal PEM is 
asymptotically efficient, i.e. the parameter covariance equals the 
Cra~er-Rao lower bound. 

General results on the asymptotic behaviour of IV-methods 

Defining: 

N 

fN(e) .- l ~(t)~(t,e) 
t=1 

(2.4.16) can be written as: 

A 

eN = sol { fN(e) = o } 
e~ 

(2.5.8) 

Restricting ~(t) to be an instrumental vector that is obtained by 
linear filtering of past data: 

~(t) = w (q,e)u(t) + w (q,9)y(t) (2.5.9) u y 

with {W (q,9), W (q,9) I e ~ ~ }, a family of uniformly stable 
u y 
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filters, it can be shown that the parameter estimate converges 
uniformly as N~ . 

(2.5.10) 

Analogously the set of solutions eN of fN(e)=O converge to the set 

of solutions of f(e)=O. 

Under rather . weak conditions it can be shown that the parameter 
estimates are asymptotically Gaussian distributed, [Ljung, 1987]. 

2.6 Model parametrisations 

Before presenting different ways of parametrising systems let us 
introduce some terminology. 

Definition 2.6.1 Model structure 
A model structure P: !IJm -+ .M is a differentiable mapping from a 
connected, open subset !llm(e) to .M such that the gradient of P(e) 
with respect to e is a stable transfer function. o 

The differentiability is required to assure that the gradients of 
the predicted output with respect to e exist and are stable, which 
is necessary for the functioning of prediction error methods. 

Definition 2.6.2 Global identifiability with respect toe·. 
Let .M be a model set and - be an equivalence relation on .At . Let P: 
~ -+ .M be a parametrisation. 
P is called globally identifiable with respect to- at e· if 
vee.~ [ P(e) - P(e') ~ e = e· ] o 

Definition 2.6.3 Global identifiability 
P is called globally identifiable with respect to - if P is globally 
identifiable with respect to - at almost all e c. ~. 0 

The nature of - has not yet been specified . If talking about 
predictor models it is convenient to define equivalence as predictor 
transfer function equivalence. 

The definition of identifiability has the nice property, compared to 
parameter identifiability as defined by Soderstrom [1989] , that it 
does not depend on assumptions concerning the DGM. but solely on the 
parametrisation. The identifiability property is important for 
numerical optimisation. It ensures the existence of isolated optima. 
The dataset must be informative enough to distinguish between 
different models in the model set. 

We will now briefly discuss model structures used in identification 
methods in PRIMAL. 
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ARX models 

(2.6.1) 

The corresponding predictor model is linear in the parameters (if A 
and Bare properly parametrised): 

y(tlt-1:9) = (I-A(q- 1 ;9))y(t) + B(q- 1 ;9)u(t) 

The model structure is globally identifiable. 
Recursive and direct methods for this model structure are discussed 
in Chapter 5. 

FIR models 

y(t) = B(q- 1 ;9)u(t) + e(t) (2.6.2) 

The output error e(t) = y(t) - y (t) is the difference between the 
m 

observed output y(t) and the model output y (t) = B(q- 1 :9)u(t). 
m 

FIR models are globally identifiable and are a special case of 
ARX-models (A=I). Recursive and direct methods for estimating the 
impulse response are discussed in Chapter 5. 

ARMAX models 

(2.6.3) 

This type of model, with fully parametrised matrix polynomials, is 
estimated in the four-step IV-method, discussed in Chapter 5. 
A fonn with a diagonal A-polynomial is the basis for a bootstrap 
IV-method. 

General SISO and MISO models 

A general model for SISO systems, cf. [Ljung, 1983]: 

A(q-1;9)y(t) = B(q-1:9) u(t) + C(q-1:9) e(t) 
F(q- 1 ;9) D(q- 1 ;9) 

(2.6.4) 

Recursive and iterative prediction error methods based on this model 
structure comprise many well known methods, such as Generalised 
Least Squares, Recursive Maximum Likelihood methods, the Extended 
Matrix Method, etc., see Ljung [1983]. 
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The previous model can be extended to·MISO systems by modelling the 
subsystems independently: 

(2.6.5) 

In Chapter 5 we will discuss the output error variant, with A= I. 
The output error model is globally identifiable if the polynomials 
B1 and F1 are coprime. 

PEM's based on (2.6.4) and (2.6.5) have been implemented in several 
recursive and iterative methods in PRIMAL. 
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CHAPTER 3 A SCHEME FOR EXPERIMENTAL MODELLING 

3.1 Introduction 

In this section, we will consider conventional approaches to 
experimental modelling of process dynamics, before presenting, in 
the next section. a new, comprehensive scheme based on interactive 
Learning in reaL-time. that is better suited to a systematic 
approach to experimental modelling in industrial projects. 
Section 3.2 discusses the properties of this scheme. and Section 3.3 
its different steps. Chapter 4 describes PRIMAL, a software 
environment that has been designed and built to effectively support 
the application of this scheme. 

As described in the literature, the following steps are basic to the 
experimental modelling approach: 

- Experiment design. 
-Data acquisition (performing the experiment). 
-Selection of a set of candidate models (the model set). 
- Choice of identification techniques to select the best model 

from the model set. 
- Model validation. 

These steps are often presented in a scheme like the one shown in 
Figure 3. 1. 1, see also Ljung [ 1987], Soderstrom [ 1989]. Isermann 
[1988]. 

An experiment is defined as the activity of generating a set of 
measurement data of process inputs and outputs during a certain time 
span. This definition includes measurements of the process during 
normal operation without using test signals. 

Test signals are defined as signals that are superimposed upon the 
process inputs for the purpose of gaining information about the 
process dynamics. Test signals are usually carefully designed, so as 
to have a specific amplitude and frequency distribution. 
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no 

Figure 3.1.1: 

Start 

I 
Design experiment 

Perform the experiment 

Select model set 
Select identification method 
Estimate the parameters 

Model validation 

·:::·r --~ 
End 

The conventional identification scheme. 

3.2 A new scheme for experimental modelling 

Although the basic scheme presented in Section 3. 1 is attractive 
because of its simplicity, in actual practice no project will start 
right away with the design of experiments for identification. 
Instead, the first step is the definition of the project goals and 
the purpose of the required model(s). Different model purposes are, 
for instance, diagnosis, process monitoring. predicting future 
behaviour, and automatic control. Since the process may consist of 
several stages and show dynamical behaviour on widely different time 
scales, it is often necessary to break down the problem in several 
subproblems that have to be examined separately. 

Once the need of having a model for solving a particular 
(sub)problem is established, one usually finds that there is 
insufficient information about the dynamical behaviour of the 
process to carry out identification experiments right away. In 
identification experiments, several decisions must be made, such as: 

- which inputs and outputs are to be considered, 
the duration of the sampling interval, 

- the length of experiments, 
- the nature (e.g. type, amplitude and bandwidth) of the test 

signals. 
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To make a good choice and to perform an experiment that yields 
relevant information, the user must have first estimates of the 
process dynamics. This means that in a second step, before starting 
experiments, it is necessary to investigate the available knowledge 
about the process' behaviour. If this knowledge proves to be 
insufficient, exploratory experiments must be carried out first to 
acquire the missing information. 

Further, it is usually necessary to connect additional equipment to 
the process, e.g. additional sensors and actuators or computer 
equipment for analysis of the measured data. After installation of 
such equipment, initial experiments and analyses may be carried out 
and these may gradually develop into the experiments needed for the 
estimation of adequate models. 

The absence of sufficient a priori process knowledge to carry out 
informative identification experiments, leads to an interactive 
approach to experimental modelling. As the user gets results from 
the experiments and learns about the process, he may adapt the 
experimental conditions in order to improve the information content 
of the data. This leads to learning loops ("feedback loops") in the 
experimental modelling scheme. 

We take the point of view that it is important, and often essential, 
that the analyses of the experiment data can be carried out on-line 
and in real-time. 
The time available for experiments may be limited. in which case it 
is necessary to spend it carefully. No time should be lost due to 
wrong experiment design or process set-ups that yield unusable data. 
In off-line analysis this would be discovered only afterwards, 
whereas in on-line analysis the experiment may be monitored, and 
(recursive) analysis techniques may be used to verify whether the 
measured data show the required and expected properties. If these 
analyses show bad results, the experiment may be adapted. In this 
way the information content of the data can be improved as more 
knowledge of the process behaviour is built up. Generally, this 
leads to more accurate models (the model cannot be better than 
allowed by the data used to construct it) and/or shortens the 
duration of the experiments. 

The collected data usually contain disturbance components. such as 
drift, measurement errors, and noise. As the experimental freedom of 
imposing test signals on the process inputs is usually restricted to 
low powers. these disturbances may have severe effects on the 
performance of the identification methods. Therefore, it is 
necessary to provide for a data conditioning step in the 
experimental modelling scheme, in which the "raw" experiment data 
are corrected for the undesired components as well as possible. 

The design choices in the data conditioning, identification and 
model validation steps offer a large degree of freedom in finding a 
model. As yet there are no methods that are guaranteed to lead 
directly to a satisfactory model. Instead, the construction of a 
model is a learning process in which the user interactively tries 
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out different model sets and identification techniques, using the 
acquired knowledge to adapt one or· more of the previous steps. 
Learning is an essential part of each step (see Figure 3.2.1) as 
well as of the experimental modelling scheme as a whole (see Figure 
3.2.2). 

The basic form of a step is composed of three parts. 
The first part represents the design choices. The second part 
represents the operations to generate results and the third part the 
interpretation of the results, which contributes to the knowledge of 
the process dynamics. 

Learning loop 

Data 

* Interpretation 

Data =======:::::!J 
Jj. 

Figure 3.2.1: 
The basic structure of a step. 

Now we may distinguish the following collection of steps: 

1. Definition of the goal and purpose of the model. 
2. Investigation of available process knowledge. 
3. Installation of equipment. 
4. Experiment control and data acquisition. 
5. Data conditioning and signal analyses. 
6. Identification. 
7. Model validation. 

and if modelling is to serve control purposes: 

8. Control requirements specification and control system design. 
9. Control system testing. 
10. Control system implementation. 

The total scheme, shown in Figure 3.2.2, emphasizes that tnteracttve 
learntng and its associated loops are essential to the approach of 
experimental modelling. 
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Figure 3. 2. 2: 
The E>cperlmental Modelling scheme (EM-scheme), 
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In the case of control system design the scheme is eKtended. 

8 

10 

Future 
(re)deslgns 

Figure 3.2.3: 

Model 
4 

Da~ta Control system 
performance 

: analysis 

Extension of the EM-scheme in the case of control system design. 

Including control system design in the EM-scheme has some important 
advantages. Firstly, after simulation tests with the control scheme, 
the controller output can be superimposed on the process inputs as a 
special type of test signal. 
Secondly, the approach used to estimate and verify models may be 
used equally well to test a designed control system's performance in 
actual plant operation. By using identification techniques the user 
can eKamine the nature of the deviations from the eKpected and 
required behaviour. 
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Comparing the EM-scheme presented here to the conventional scheme 
described in Section 3.1, we make the following remarks concerning 
our scheme: 

a) It covers more completely and realistically the practice of 
experimental modelling and provides a better framework for 
applying the best theoretical methods. 

b) From the start, the desirability of working in real-time is 
taken into account. 

c) As a consequence, experiment design, experiment control, and 
data acquisition are essential parts of the scheme. 

d) In order to improve the information content of the measured 
data, it is possible to carry out the analyses in real-time and 
to use their results for changing or adjusting the experiment 
instantaneously. 

e) The scheme comprises a variety of learning loops. 
Typically, the user works his way through the scheme in an 
interactive fashion, adapting the design choices in each step 
(and, if needed, in the previous steps) several times, before 
moving to a next step. 

f) In practice, data conditioning proves to be an important step. 
As such, it does not get enough attention in literature. 

g) The real-time approach allows the integration of process 
modelling with the design and validation of control systems. 

To summarise, in practice experimental modelling of a dynamical 
process is best carried out as an interactive process in real-time, 
in which the user accumulates knowledge gained by each action, and 
uses it to adapt the experiment and the analyses in real-time. 
The PRIMAL package has been conceived, designed and constructed to 
support this interactive approach, which has already proved 
particularly useful in the process industry (see Chapter 6). 

3.3 Discussion of the experimental modelling scheme 

Each step in the experimental modelling scheme consists of design 
choices, operations, results and their interpretation. In this 
section we consider aspects of each step and comment on the 
implementation of the scheme in PRIMAL. 
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3.3.1 Definition of the goal and investigation of the available 
knowledge 

To apply the experimental modelling approach, the process problems 
must be translated into project goals: i.e. in terms of process 
behaviour requirements. 

To design experiments for finding a suitable model and for designing 
a control strategy, it may be necessary to carry out a preliminary 
investigation of the available knowledge about the process 
behaviour. Its purpose is, among other things, to set up a list of 
process inputs and outputs, if possible, to draw a chart of 
interactions between the process variables, and to get impressions 
of the process dynamics. 
The investigation must be carried out before installation of 
equipment and before the design of the first experiments. The 
choices to be made in those steps are to be based on the knowledge 
obtained in this preliminary investigation. The time required for 
installing equipment, initial experiment design and the initial 
experiments may easily exceed the time required for the 
identification with PRIMAL. The correction of wrong choices in the 
step discussed here may therefore cost much of the available time. 

Because in practice every problem has its own unique aspects, it is 
difficult to set up a uniform approach. although this is exactly 
what we want. In the following an (inherently incomplete) list of 
points is presented that ought to be considered in the preliminary 
investigation of process behaviour. The list is presented here 
because, in my opinion, it is seldomly discussed in connection to 
experimental modelling in the process industries. 
The ordering of the items does not imply any priority. 

a) Inventory of the problems. 
The investigation of the area of concern often leads to the 
conclusion that there are actually several problems that may, or 
may not, be completely unrelated. Their nature may be different 
(e.g. sensor/actuator errors, unsatisfactory control dynamics. 
process instability, start-up difficulties). they may relate to 
different parts of the plant, or, if arising in the same part, 
allow seperate treatment if they occur in other frequency bands. 
For the purpose of this thesis, it is presumed in what follows, 
that one such problem, that lends itself to a model-based 
solution, has been selected. All experiments carried out to 
solve that problem will be considered as one single "macro 
experiment", see Section 3.3.3. 

b) Determination of the physical variables relevant to the process 
behaviour and, if possible, the construction of an interaction 
diagram. 

c) Inventory of normal operating conditions and the restrictions 
concerning operation and safety. 
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d) Description of the instrumentation system: e.g. which quantities 
are measured, the location of the sensors and actuators. their 
range, speed, sampling rate, and accuracy. 

e) Selection of the set of process inputs 
control. These inputs should preferably 
(range, bandwidth) enabling them to 
disturbances affecting the process. 

that may be used in 
have the properties 
compensate for the 

f) Selection of process inputs that are measured, but can or may 
not be used as control inputs. Deviations caused by disturbances 
in these inputs may, conceivably, be compensated by feed-forward 
control. 

g) Selection of the process outputs. These outputs must be direct 
or indirect measures of the process variables to be controlled. 
Often, indirect measurements have to be used instead of direct 
measurements, such as a temperature at a certain tray in a 
distillation column instead of a product composition. 

h) Description of the existing control strategy. This addresses the 
automatic control loops as well as the character and frequency 
of the operator interventions. 

i) Investigation whether there are relevant inputs and outputs that 
are not yet used by the control system. 

j) Description of any known signal properties of the process inputs 
and outputs during normal operation, including, if possible, the 
unmeasured disturbances. 
Important are the types of disturbances, their (statistical) 
properties, their possible origins and transmission paths. 

k) Description of any known dynamical effects of each input on each 
output: initial estimates of the gain, number and range of time 
constant values, delays, signal to noise ratio, typical 
behavioural characteristics such as inverse response, 
instability, and oscillatory behaviour. 

1) Investigation whether the problem may be solved with a better 
control system. From a controllability study it may follow that 
a better control strategy brings no significant improvement and 
that adaptation of the plant (in combination with an improved 
control strategy) is mandatory. 

m) Investigation whether the types of tools, required to tackle the 
problems, are available. 

n) Investigation of the (special) opportunities to carry out 
experiments. 

o) Estimation of the time required for the experiments, or vice 
versa, whether enough reliable data may be acquired within the 
given time span. 
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The process knowledge to be acquired may be drawn from different 
sources, such as: 

- Interviews with 
instrumentation 
operators. 

chemical 
engineers, 

engineers, control 
the maintenance crew, 

engineers, 
and the 

- Literature on relevant physical and chemical knowledge. 
-Available models, (theoretical, empirical, .. ). 
-Analysis of recorded data (e.g. off-line with PRIMAL). 

After the preliminary investigation, it should be possible to decide 
upon the practicability of experimental modelling. 

3.3.2 Experiment set-up and installation of equipment 

To apply experimental modelling, a set of tools must be available to 
do experiment control, to generate datasets of sampled process 
inputs and outputs, and to perform real-time analyses. The way in 
which this may be realised depends on the available process 
instrumentation. 
To avoid problems with redefining common terms, we introduce the 
term "Process Control System (PCS)" for any system that includes: 
analog data filtering, sampling, ADC and DAC, (low-level) control 
and computation facilities, and an operator interface. 

We may distinguish three basic situations: 

1. A plant without a PCS. 
2. A plant equipped with a PCS, which may be a (usually heavily 

loaded) central control computer or a Distributed Control System 
(DCS). 

3. A plant where powerful computing facilities are offered by the 
PCS, or are·coupled real-time to the PCS. 

Since a PCS performs time-critical tasks (sampling and control), it 
is generally not suited to the intensive computations involved in 
real-time analysis. Furthermore, the operating system, programming 
language, and human interface are usually designed for their 
specific tasks and do not provide the facilities required for 
interactive experimental analysis. Therefore, the analyses must 
usually be carried out on a separate computer that is directly 
coupled to the PCS. In the sequel this is called the "Analysis 
Computer". 

Implementing the tools for experimental modelling on the Analysis 
Computer has the advantage that all steps in the EM-scheme can be 
performed largely independent of the PCS. A single software package 
may thus be developed for a wide range of different process control 
systems. Since the analysis computer does not have to perform PCS 
actions, it may be selected for its numerical processing, software 
development and interactive graphical input/output capabilities. 
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The installation requirements for the three cases mentioned above 
are: 

ad 1. A PCS and an Analysis Computer must be coupled to the plant. 
ad 2. An Analysis Computer must be coupled to the PCS. 
ad 3. The tool-set may, conceivably. be implemented on the 

available computer facilities. 

For a specific PCS, a program must be developed, that communicates 
with a program on the Analysis Computer, that is specifically 
designed for connecting to the BCS. The PCS program should provide 
the facilities to transmit measurement data to the Analysis 
Computer, and (optionally) to carry out experiment control actions, 
see Section 4.6. This set-up should offer sufficient flexibility for 
implementing links with widely different instrumentation systems. 

Another important point is safety. The communication protocol is to 
be designed so that the operator remains in charge of the PCS and 
that possible failures of the Analysis Computer do not affect the 
PCS. 

d at a 
actuators Process link Analysis 

Process and Control Computer 
sensors System 

I I 

I I 
I I 

operator experimenter 

Figure 3.3.1: 
The proposed computer configuration for cases 1 and 2. 

Principal design choices are: 

a) The selection from among the available sensors and actuators. 
b) The installation of additional sensors (and actuators). 
c) The choice of the computer configuration and data link. 

The computer's performance, data link bandwidth. and speed of 
the data storage influence the attainable sample frequency and 
number of signals that can be handled simultaneously. 

3.3.3 Experiment design and experiment control 

In parallel to the installation of equipment we may start to design 
experiments. Here we have the following design choices: 

- Selection of inputs and outputs from among those available for 
analysis. 

- Choice of sampling interval(s). 
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- Choice of experiment duration. 
- Choice between SIMO or MIMO experiments. 
- Choice of test signals. 

The selection of inputs and outputs has been discussed in Section 
3.3.1 and is usually done on the basis of a priori knowledge. 

The selection of inputs is critical. Missing an important measurable 
input may result in a model of low quality. 
Therefore, its is generally advisable to take in as many signals as 
is technically feasible. This offers the opportunity to examine the 
correlation between inputs and outputs at a later time. A 
significant advantage of the on-line approach is the opportunity to 
perform experiments with test signals in these inputs. 

Experiments 

We find it useful to make a distinction between 
experiments", ''identification experiments" and 
experiments". 

Explorative experiments 

"explorative 
"application 

The explorative experiments are design-oriented, i.e. they are used 
to make the best possible design choices for the identification 
experiments. 

Preliminary experiments of this type are used to characterise the 
normal process behaviour, exploring the amplitudes and spectra of 
inputs and outputs under normal operating conditions and the nature 
and spectra of the disturbances. Correlation analysis may be used to 
verify and investigate process interrelations. 

Test signals may be used to test assumptions to be made in the 
identification experiments about linearity, stationarity and 
causality, and to get initial estimates of the values of the gains, 
delays, and time constants. 

Backx [1987, 1989] describes experiments for this phase. One of 
these experiments involves a stair-case signal to investigate 
linearity, hysteresis, gains, and time constants. Although such 
signals may appear to be well-suited for exploring the process, this 
experiment is not very appropriate if it changes the operating 
conditions for a long time interval; also it is time-consuming, and 
the results are poor when a significant trend is present. 
A better experiment is to use a three-level signal (or a PRBS) 
starting with small amplitudes and increasing/decreasing the 
amplitude in a number of stages. 
The advantage is that: 

- The change in the operating conditions may be kept smaller. 
- The static gain is estimated correctly if sufficient energy is 

put at frequencies in the pass band of the process. 
- The procedure is less sensitive to drift. 
- More accurate information about the time constants may be 

obtained. 
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The experiment is, however, less suited to explore hysteresis. 

Identification experiments 

Identification experiments are intended to find dynamical models of 
the process. 

Generally the data generated by a process in normal operation is not 
well sui ted for identification, because .the inputs may not contain 
sufficient information at all frequencies of interest. Therefore, it 
is desirable to superimpose carefully-designed test signals upon the 
process inputs. If little knowledge about the dynamics is available, 
these signals should excite the process in a broad frequency band. 
Depending on the frequency band of interest, the test signals may be 
applied to an actuator, a controller set point, a controlled signal 
or ad-hoc "actuators" (e.g. an injection of tracer material). 

Test signal types that are widely used in practice include periodic 
signals, such as block signals and sums of sinusoids, and aperiodic 
signals such as pulses, steps, and noise signals. In several of the 
identification experiments carried out with PRIMAL, the PRBS has 
been exploited because of its nice properties: 

Remark: 

1) The spectrum of a PRBS with a clock period of 1-T (with 1-T some 
pod Uve integer mul Uple of the "'""Pling interval T), amplitude 
a and per iodi<:i ty M may be appro>Cima ted if M is large bp 

2aa 
t(..,) = -- (1 - cos(<MT)) 

N.>•T 
(3.3.1) 

This spectrum bas zero's at all integer mul Uples of angular 
frequency "'o x 2-r(XT)"'. Thus. the PRBS excites the process at 
all discrete frequencies up to "'o· (persistently exciting). 
The design variable X lllllY be used to shift the energy content of 
the PRBS to INltch (slightly exceed) the bandwidth of the 
process. The choice of a is a trad.....,ff batween the """'!IIIUID 
allowable input and output variaUoruo and the length of the 
experiment. 

2) The fixed amplitude and zero average value facilitate its 
acceptance in practice. 

3) A PRBS Clln ba easily r;enerated using shift registers, cf. 
[Godfrey, 1969; Davies, 1970] 

i) Mutually independent PI!BS may be generated by selecting proper 
initial seeds in a maxiiiiUID 1-th PRBS with a period M » II (the 
experi...,nt duration). 

Remark: 
A PRBS with a clock frequency below the sampling frequency can also 
be generated from a two-level white noise by decreasing the 
probability of cbang......vers. The advantage of this approach is tba t 
no energy 1s put in aide-lobes, cf. [Tulleken, 1988]. 

The design of optimal experiments, based on detailed process 
knowledge, and taking into account the intended use of the model, 
[Gevers, 1986: Goodwin & Payne, 1977: Mehra, 1974] has not yet been 
fully exploited in this thesis. 
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Application experiments 

When models have been formed and/or control systems have been 
designed, it is desirable to use and verify their performance in 
actual practice. Therefore, experiments may be carried out, like: 

- "Running" a model in parallel to and synchronised with the 
process, predicting future process behaviour and comparing it to 
the actual behaviour. 

- Implementing a control system on the Analysis Computer or PCS 
and assessing its performance, using the methods of the 
EM-scheme suitable for closed loop systems. 

Like the explorative and identification experiments, these 
experiments are part of the learning process. 

A macro experiment 

During the available time, the experiments described above may be 
carried out repeatedly. Preferably, they should be part of one 
single macro experiment. In this way, data conditioning can be 
improved and the start-up effects in each analysis may be avoided. 
Moreover, the often difficult choice of selecting the total number 
of samples N can be relaxed to specifying an upper limit only. The 
length of the individual experiments may be taken on the basis of 
intermediate results. 
In what follows the macro experiment is often referred to as 
the experiment. 

It is advisable to take the sampling frequency a factor 5 to 10 
higher than needed on the basis of the time constant values of 
interest. This will improve data conditioning, see Section 3.3.4. 

3.3.4 Data conditioning 

Generally. the raw measurement data is not well suited to 
identification. It may suffer from outliers and trends, and the 
dynamical relations may be altered by sensing delays and 
non-linearities. 
Practical experience showed that proper conditioning of the data may 
have a decisive influence on the attainable quality of the model in 
the identification step. Therefore, it is better to examine the raw 
data and prefilter it, applying one or more of the following 
filtering steps, instead of accommodating the identification methods 
to more or less remedy some of the problems. 
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Data conditioning comprises: 

1. Correction for known fixed delays. 
2. Correction for known (static) non-linearities. 
3. Outlier correction and other signal repair. 
4. Trend correction. 
5. Noise reduction. 
6. Data reduction. 
7. Offset correction and scaling. 

The techniques for examining the data include visual inspection. 
signal analyses, and identification. The importance of off-line data 
conditioning has been emphasized by Backx [1987]. 

Correction for known fixed delays 

If one or more inputs to the model are measured with a significant 
delay, correction is desirable to prevent apparent non-causal 
response of the outputs to the inputs. 

Furthermore, delay correction is useful if the dynamic response of 
the output to an input is delayed by a large, fixed time interval, 
for instance due to transportation time or (chemical) analysis. Most 
identification techniques offer no means of simultaneously 
estimating the delays and the other process dynamics. Small delays 
can be incorporated by increasing the model order. 
In a MIMO system not all delays can be compensated for if p*q is 
larger than p+q-1. 

Estimates of the delays may be obtained by correlation analysis, by 
direct impulse response estimation, and from physical process 
knowledge. Better techniques, which also work for short datasets and 
noisy data, will be introduced in Section 5.5. 

Correction for (static) non-linearities 

Correction for non-linearities is possible when there is a known 
non-linear behaviour, such as non-linear actuator and/or sensor 
characteristics. 

Signal repair 

Measurement data may be affected by sensor failures and outliers, 
whose energy content may have a substantial influence on the 
identification. 
Failures in the data sequence that are easy to detect, may be 
eliminated before further processing the data. 

Automatic correction of outliers is implemented in the data 
conditioning step by simple detection techniques. 
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As described by Backx [1987]. the simplest technique is to compute 

the signal mean x and standard deviation a(x) and to detect outliers 
with: 

lx(t) - x I > S.a(x) (3.3.2) 

where S is the "shaving strength". 
For signals showing drift, this technique may not be expected to 
work well, since the detection boundary does not change as a 
function of the time t. 
An approach to this problem is to filter x( t) with a high-pass 
filter L(q) and to use the test: 

I L(q)x(t) I > S.a(L(q)x(t)) (3.3.3) 

Alternatives to these tests may be employed, that use the median 
and/or use information about the amplitude distribution of x(t). 
Unlike the mean, the median is not sensitive to the amplitude of the 
outliers. 

Detected outliers may be replaced with interpolated or mean signal 
values. Note that direct filtering of the data with a low-pass 
filter also reduces the outliers. but does not affect their 
low-frequency contributions. As a consequence, the influence of the 
outliers spreads to neighbouring samples. 
Outliers that are not detected in this stage may be found later in 
the identification step, showing up as large residuals. In such a 
case the repair of the data should be reconsidered. 
In case I of Chapter 6 the use of outlier correction is 
demonstrated. 

Remarks: 

a) By estimating the mean, median and variance recursively, the 
outlier detection,methods are suited to operation in real-time. 

b) Ljung [1987] suggests to "robustify" the prediction error 
methods for the occurrence of outliers by reducing the weight of 
large prediction errors in the criterion function. The 
robustification requires the setting of some ad-hoc boundary on 
the prediction error. However, since outliers also disturb other 
data conditioning steps and subsequent signal analysis. we 
prefer to remove them beforehand. 

c) Although the automatic techniques for outlier detection may work 
quite well, practice shows that the human inspection of 
graphically presented data is of great value. The human eye 
proves to be a superb "filter" for detecting strange signal 
behaviour. 

Trend correction 

If low-frequency disturbances (trend). like drift and periodic 
variations, are present in the data and have a high energy content 
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compared to the frequency band of interest, they may severely 
influence the parameter estimates. 
Trend and the frequency band of interest should therefore be 
separated. A suitable approach is to separate the trend by a 
high-pass filter, before estimating the process dynamics. 
The selection of a cut-point frequency between trend and signal is 
usually guided by the intended use of the model. Removing the trend 
discards all information on the low-frequency behaviour and thereby 
reduces the accuracy of the static gain estimate. 
Alternative approaches to deal with the trend have been suggested by 
e.g. [Isermann, 1974: Baur, 1976], involving the estimation of the 
parameters of a trend model in parallel to the parameters of the 
process model. 

Trend filtering should be done with a sharp filter. Low-order 
filters may reduce the information content in the frequency band of 
interest and/or not sufficiently eliminate the trend in the data. 
The impulse response of an ideal high-pass filter may be 
approximated by a FIR-filter, [Jackson, 1986; Stanley, 1975]. 
The desired frequency response H(w) is expanded into a Fourier 
series. The impulse response h(t) of a FIR-filter is constructed by 
truncating the Fourier series and applying the inverse z-transform. 
This will result in a filter showing some pass band and stop band 
ripple. The ripple may be reduced by multiplying h(t) with a 
suitable windowing function - eg. a Hanning, Hamming or Blackman 
window - at the cost of a wider transition band. 

Filtering the data by convolution with h(t) introduces a linear 
phase shift, which may be eliminated centering h(t) around zero, 
i.e. applying a non-causal filter. 

M 

xtr(t) = l h(t)x(t+t) 

t=-M 

Remarks: 

(3.3.4) 

a) The FIR-filter introduces transient effects at both ends of the 
data sequence. The initial values for the filter must therefore 
be chosen carefully. 
In the on-line version the linear phase shift of the filter 
introduces a delay of M/2 samples in the filtered signals. 

b) To avoid unnecessary complications, the measured process inputs 
and outputs should preferably be filtered with identical 
filters. 

c) In the SISO case, filtering the data is equivalent to 
introducing a frequency weighting in the criterion function of a 
prediction error method. 
Filtering input and output with F(q) is equivalent to a PEM 
applied to the unfiltered data with a prediction error weight: 

I F(eiw) 12 ~~(w;9). (3.3.5) 
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Data reduction 

If technically feasible, it is advisable to sample the sensor 
signals at a higher sampling rate than required for the estimation 
of the dynamics. A pragmatic reason for this approach is that the 
bandwidth of the process may have been estimated incorrectly from 
the a priori knowledge. While it is possible to reduce the sampling 
rate for identification by data reduction. the opposite is 
impossible. 
Furthermore, the excess data may be used in signal repair, trend 
correction, and noise reduction, before reducing the data. 

Data reduction should take place by filtering out all frequencies 
higher than the new sampling rate (to prevent aliasing effects) and 
subsequently decimating the data. 
If data reduction is not performed. we may expect problems in the 
estimation of the low-frequency behaviour of the process, especially 
when employing equation error techniques. 
Moreover, since the signal values change little from one sample to 
the next, we may expect numerical problems with the inversion of the 
data matrices in the identification and the use of the model, as all 
poles will cluster near z=l. 

Offset correction and scaling 

Offset correction is desirable to avoid that it must be explicitly 
accounted for, e.g. by including the offset as an additional 
parameter in the parameter vector, or by estimating a model on 
differenced data (ARIMA-models). 

If the values of different signals differ by several orders . of 
magnitude, it is necessary to scale the data to a matching numerical 
range in order to avoid numerical problems due to ill-condi tion'ed 
matrices. 

3.3.5 Identification 

In the context of this thesis, the estimation of the dynamical 
behaviour between inputs and outputs is done using black box 
techniques. 

The design choices in black box identification include: 
- Model representations, (state space, MFD, etc.). 
- Model orders and parametrisation (of the transfer function and 

the noise model). 
- A criterion (PEM's) or correlation vectors (IV-methods) 

A numerical procedure. 

Based upon physical insight, the intended use of the models and the 
analysis of correlation functions and spectra, it is possible to get 
an impression of suitable model orders and model parametrisations. 
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If this impression is not very clear, it is desirable to apply 
specific methods for model order and model structure selection. 
Although much work concerning this subject is reported in 
literature, [Bohlin 1987, Stoica 1986, Janssen 1989, Soderstrom 
1989, .. ] there seem to be no established general methods for the 
approximate modelling case. The decision requires subjective 
judgement, [Ljung, 1987, Ch. 16, Soderstrom, 1989, Ch. 14], taking 
into account the intended use of the model. 

A practical approach is therefore to apply several identification 
methods, testing different model orders and parametr is a tions, and 
compare their performance using model validation and model 
utilization techniques. 
In accordance with our strategy of interactive learning, the user 
should be provided with appropriate facilities for making choices 
from among a variety of methods, based on different model 
parametrisations and estimation techniques, instead of relying on a 
single technique. The user should further be enabled to activate 
several identification methods in parallel and, if possible, apply 
them to the real-time data. 

Identification methods may be divided into several classes, 
depending on the model parametrisation and on the numerical 
techniques used. The methods implemented thus far in PRIMAL comprise 
recursive and iterative prediction error methods for equation error 
and output error type models, and bootstrap and four-step 
instrumental variable methods, see Chapter 5. 

The goal has been to first implement the most promising black box 
techniques discussed in the literature. Based on practical 
experience with these methods, those that appeared to perform best 
have been selected and effective new variants have been developed. 

3.3.6 Model validation 

In the model validation step we investigate whether the model is in 
sufficiently good agreement with the data and whether it is suited 
for its intended use. Another question is whether better models may 
be found, showing a better or comparable fit while using fewer 
parameters. 

We shall briefly discuss two classes of tests. The first class 
confronts the model with the a priori knowledge and the data, 
preferably a set of data that has not been used in the 
identification. The second class compares properties of the models 
obtained with different identification methods, model orders or 
model parametrisations: these tests may also be used in model 
structure selection. 

In the first class of tests, a model may be matched with a priori 
knowledge by inspecting its input-output behaviour, e.g. its impulse 
response and frequency response. 
A test that stresses the low-frequency predictive quality of the 
model, is the simulation performance. The model response to the 
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process inputs is computed and the output errors, i.e. the 
differences between the observed process outputs and the model 
outputs are determined. 
The behaviour of the output error can be examined by e.g. visual 
inspection, correlation analysis and spectral analysis. 

The output error test has the advantage that it validates the 
estimated process model and does not rely on assumptions concerning 
the noise model. It may also be used for validation of the model on 
another dataset (cross-validation). 

By computing the cross-correlation functions between the inputs and 
the output errors, applying confidence limits for independency, it 
can be checked. whether all contributions of the inputs to the 
outputs have been captured by the model. The computation of these 
confidence limits relies on a variant of the central limit theorem, 
cf. [Ljung, 1977]. If e(t) and u(t) are independent, then: 

vN R (T) £ AsN(O,P) eu P = l Re(k)Ru(k) 

k=-"" 

(3.3.6) 

Correlation for T}O indicates that the modelling has not completely 
succeeded and may be further improved. 
A comparable type of test, applicable to prediction error methods, 
is a "whiteness test" of the residual e(t). 

In the second class of tests, the validity of a model is assessed by 
comparing it to other estimated models. 
Since the various identification methods use different model 
structures, the comparison of parameter values is impractical. 
Moreover. the parameters were considered to be just vehicles in the 
estimation procedure. 
A class of techniques that depends on penalising model complexity, 
(e.g. Akaike's AIC-criterion, the Final Prediction Error (FPE) 
criterion, and hypothesis testing techniques) apply to 
hierarchically ordered model sets and are therefore usually 
restricted to a certain identification method. Several such criteria 
have been compared by Freeman [1985] and are used in the 
identification methods in PRIMAL. 

In order to compare different identification methods, it is 
necessary to use tests that are independent of the particular 
parametrisation and take the intended use of the model into account. 
Such tests should involve only the input-output behaviour of the 
process model. Along the lines of the interactive learning strategy, 
this may be done by (graphically) comparing the impulse responses, 
Bode or Nyquist plots, and output error behaviour of different 
models. 
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A useful quantity to compare simulation performance is the mean 
square relative output error: 

N 

mre = l {II y(t)-ym(t) 1!2 / lly(t)ll2} 

t=l 

(3.3.7) 

(3.3.8) 

The relative output error of individual outputs is defined as: 

N N 

rei := l [yi(t)-ymi(t)]2 / l y~(t) i = l .. q 

t:::l t=l 

3.4 Conclusions 

In this chapter we have developed a comprehensive 
experimental modelling that is, in contrast to 
approaches, based on interru::tf.ue Learning, real-time 
adapting the (choice of) experiments on the basis of 
knowledge. 

(3.3.9) 

strategy for 
conventional 

ana.tyses and 
the acquired 

This strategy has led to an experimental modelling scheme comprising 
various steps and learning loops, and permitting user interaction, 
especially in the often time-consuming early phases of a project 
when knowledge about the process behaviour is limited. 
Important advantages of on-line (real-time) experimental modelling 
over off-line analyses are the opportunities to: 

Improve the experiments on the basis of intermediate results of 
the analyses, leading to better results and/or a shorter project 
duration. 
Include the testing and validation of control systems in the 
EM-scheme. 

Experience with the experimental modelling scheme in industry, has 
led to a consideration of issues like, how to: 
a) deal with a priori information. 
b) connect to the process. 
c) plan experiments and deal with the intermediate results. 
d) condition the raw measurement data properly. 

To follow the strategy depicted in this chapter, an environment that 
support it is needed. The package we have constructed for this 
purpose: PRIMAL, is presented in the next chapter. 
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CHAPTER 4 TIIE PRIMAL PACKAGE 

To enable a user to follow the strategy described in the preceding 
chapters, it is necessary to provide a coherent collection of tools 
that assist him in each step of the scheme. 
Since most steps involve numerical computations based on 
experimental data, it is natural to provide the tools as part of a 
computer package implementing the scheme. 
The development of such a package, suitable for application in 
industrial practice, has been one of the principal aims of the work 
described in this thesis. 
The package, with the name PRIMAL: "f.ackage for Real-time 
Interactive Modelling, Analyses and Learning" has been developed as 
a result of this work. Its main objective is to support users in 
developing mathematical models of the behaviour of industrial 
processes and in exploiting such models, for example in the design 
of improved control strategies. 

How the experimental modelling scheme and the demands and wishes of 
the intended users are translated into requirements with respect to 
the package, is discussed in Section 4.1. Section 4.2 treats the 
user requirements and Section 4.3 the software requirements. In some 
cases the same requirements result from different motives. 
Section 4.4 discusses the structure of the package and how it meets 
the requirements. Section 4.5 deals with the software organisation 
and the implementation of the basic mechanisms. Section 4.6 treats 
the implementation of experiment control in more detail. Section 4.7 
lists a sample session and discusses some important user aspects. 

The PRIMAL project started in 1979 and entered a new phase in 1984. 
By then, no software tools were commercially available for 
(professional) use in industrial practice that covered experiment 
design, data acquisition, real-time signal analyses, real-time 
identification, control design and control system implementation. 
For this reason, an environment has been designed and constructed 
with the capability to serve both as a professional tool for use in 
industry, as well as a development environment for methods of data 
analyses. 
Since then, other packages addressing the experimental modelling 
problem have emerged. A comparison with PRIMAL will be made in 
Section 4.8. 
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4.1 Package requirements 

The Experimental Modelling scheme, as depicted in Figure 3.2.2, has 
a number of important characteristics to be translated into 
requirements: 

- Experiment design, experiment control, data acquisition, and 
model utilization, e.g. for .testing control systems, are 
essential parts of the scheme. 

- Each step in the scheme represents a set of design choices and 
(computational) methods. To obtain a model it is necessary that 
appropriate methods are provided for all steps in the scheme. 

- Experimental modelling is not carried out in a single sequence 
of steps, but instead the user works his way through the scheme 
several times interactively, each time adding knowledge 
(learning) about the dynamics. 

- It is essential that analyses on the experiment data can be 
carried out while the experiment is running. On the basis of the 
results, the ongoing experiment may be adjusted in order to 
improve its information content. 

From these characteristics, requirements are derived, as discussed 
below. 

4.1.1 Experiments and data acquisition 

The package must fully support experiment design. experiment control 
and data acquisition. Consequently, it must have tools to establish 
a physical link with the Process Control System (PCS), as defined in 
Chapter 3. Measured data, test signals, experiment control messages 
and controller parameters must be passed through this link in 
real-time. 
The user must have facilities to interact with the running 
experiment and at any time the package must be ready to promptly 
respond to his commands. 

To make on-line changes feasible, the user must have facilities to 
inspect and process the incoming data. 
The package must be equally suited to off-line processing of data 
gathered previously. or measured by a (remote) facility that does 
not allow on-line coupling. 

4.1.2 Full functionalitv 

For each step in the EM-scheme, appropriate methods must be provided 
by the package. This means that methods must be available for 
experiment design, experiment control, data acquisition, data 
cOnditioning. signal analysis, identification, model validation, as 
well as for control system designing. testing and validation. 
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Therefore, the package must provide a suitable environment for 
embedding the methods, in a framework that provides: 

Fast and easy initiation, modification and termination of a 
method. 

- Access to the output data of a method by any other method. 
Full database support. 

4.1.3 Interactive learning 

A quintessence of the EM-scheme is that. at any moment, the user 
must be able to make a free choice among all facilities the package 
provides, not being hindered by any preconceived path set out by the 
designer. This requires, first of all, a flexible user interface. 

The results of the methods must be presented in a format that 
directly adds to the understanding of the. process. In addition to 
presenting models as sets of matrices, which may be difficult to 
interpret, particularly by plant people, the methods must present 
user-readable results, like time responses, Bode plots, polar plots, 
etc. 

The package does not yet include an expert system, because it is 
difficult and maybe up till now impossible to formulate a 
satisfactory set of rules for experiment design, data conditioning, 
and modelling of (complicated) multivariable systems. Instead, the 
package supplies interactive methods and powerful presentation 
tools, and is provided with an on-line help system and a complete 
set of comprehensive manuals [Vander Linden & Renes, 1989a-e]. 

4.1.4 Real-time aspects 

To improve the information content of the measured data and, as a 
result. the quality of the estimated models. it should be possible 
to analyse the measured data while the experiment is running. This 
implies that analyses may operate on the already present 
intermediate (updating) set of data and may synchronise with the 
data still coming in from the process. 
This requirement may not be restricted to a single analysis method. 
Several analyses should be able to operate on the same data in 
parallel to each other. Extending this concept, it should further be 
possible to apply E!!:Y method to the intermediate results of E!!:Y 
other method provided, of course, this makes sense. 

This has several important consequences. 
Since each method may operate upon the intermediate results of other 
methods, methods may be chained. For instance, the intermediate 
results of analyses may be chained to the graphical module, 
presenting them together with the updating experiment data. User 
inspection of intermediate results is especially useful for 
recursive or iterative methods and may lead to interactive 
modification of the experiment or the analyses. 
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By chaining methods, the complete EM-scheme may be realised out 
while the experiment is being performed. 

Since the user does not have to wait with next commands until a 
method is finished, he may start-up several analyses in parallel, 
which is important in both on-line and off-line applications. 

In on-line application, several analyses may be started up on a 
(slow) process and the updating measurement data and intermediate 
results of several analyses may be presented simultaneously. 

In off-line application, the user may try out several methods in 
parallel without the need to wait until a method has finished. He 
may start at once to investigate intermediate results. 

Because methods that work on-line may be active for the duration of 
the complete experiment, it is necessary that the parameters 
affecting their activity and computations may be changed 
interactively at any time by the user. The package should therefore 
provide appropriate facilities to this purpose. 

Finally, it must be possible to start-up a method so that it first 
processes already collected data and then, as it catches up with the 
incoming measurement data, synchronises with the experiment. 

4.2 User requirements 

4.2.1 Application in industrial practice 

For use in industrial practice the package must meet additional 
requirements. Most importantly, a package coupled to an industrial 
process must be absolutely safe to use. Factory upsets caused by 
errors in the package or erroneous user inputs are unpermissible. 
This requirement has important implications for the design of the 
experiment control and for the software design, which will be 
treated in Section 4.4. 
All actions by the package must always remain within preset limits, 
defined during experiment design. User input not conforming with 
these limits or erroneous input must be refused. The package may not 
interfere with essential PCS supervisory tasks or the alarm system. 
The PCS maintains full control of the process. User interaction with 
the process through the package must be checked automatically. 

For the analysis of the measured data and the evaluation of model 
quality, the experiment conditions should be reconstructable. This 
implies that the experiment must be completely defined and an 
automatic log book must be kept that stores and time-stamps all user 
actions, experiment control messages and, where possible, operator 
actions. This requirement is extended to the analyses. Thus, all 
output data and user:-adaptable parameters of the methods must be 
stored in the database, so as to make it easy to reconstruct the 
experimental situation and to reproduce results at any later time. 
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Should the PRIMAL system fail, due to software errors or hardware 
failure, the process may not be disturbed and the database contents 
may not be lost and must remain consistent. 

The way the requirements are met will be discussed in Section 4.6. 

4.2.2 The user interface 

The package is intended for users, either experienced or 
inexperienced in the field of systems and control theory and matrix 
algebra. Utilisation of the methods must be possible with marginal 
knowledge of the underlying theory and the output must allow direct 
interpretation by the user. Also, a user may be familiar or 
unfamiliar with the user interface or certain uses of it. 

For the interaction with the user, various user interface models may 
be employed, which differ in the degree and manner of guidance given 
to the user. Experienced users demand high interaction speed and 
flexibility. Inexperienced users are, above all. interested in clear 
guidance. Both categories must be served by the package. 
The following requirements have been identified: 

a) The user interface must be easy to learn for users unfamiliar 
with the package. Inexperienced users must be provided with 
effective guidance. 

b) Experienced users must be able to use the interface with maximum 
flexibility. 

c) All methods must present themselves to the user in a standard 
manner, i.e. a standard 'look-and-feel'. 

d) The user interface must be consistent. 
This me~~s that the interaction between user and package always 
follows the same predictable and easy to understand patterns, 
and that exceptions to the apparent logic, which are confusing, 
are avoided. 

e) The user interface must be robust, i.e. wrong input may never 
lead to package failure. 

f) The check for erroneous and incompatible parameters must be 
carried out at parameter input. Error reporting, error recovery 
and user assistance must be provided on-line. 

g) Output of a method must be presented in an understandable form, 
enabling direct interpretation. 

h) Since the package deals with analyses on generally large amounts 
of data, powerful presentation facilities must be provided, that 
are capable of presenting intermediate data of the methods. 

i) The package must provide reasonable default values for all 
user-adaptable parameters of a method. 

4.3 Software design requirements 

In this section additional requirements are defined, that have no 
direct relation with the EM-scheme, but pertain to the software and 
to the manageability of an extensive software development project. 
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Package safety 

For the package to be accepted in an industrial environment, several 
important requirements must be met. 

Most importantly, a package coupled to an industrial process must be 
absolutely safe. The experiment control aspects of this requirement 
have already been discussed in Section 4.2.1. 
The development of bug-free software poses a problem that is 
difficult, if not impossible, to solve, especially regarding 
software with real-time and (pseudo-)concurrency aspects. 
However, the problem may be alleviated by the following set of 
requirements concerning software structure and software development 
methods: 

a) The software must be partitioned into small, independent modules 
in such a way, that a bug in a module will only affect that 
single module. Error propagation between modules must be 
avoided. If we follow this strategy, the demand for absolute 
safety may be restricted to the Experiment Control Module, which 
takes care of all interactions between the package and the PCS. 

b) Every module must be carefully divided into functional layers, 
to prevent or reduce error propagation inside a module. As a 
result, testing will be simplified, because individual layers 
can be tested independently. 

c) Rigorous programming, testing, and documentation standards must 
be enforced upon each individual software designer involved in 
the project. 

Multi-user support 

The package must support several users simultaneously and each 
should be able to generate and manage his own data, without being 
confronted with the other users. However, a user should also be able 
to access data generated by others. 

PRIMAL packages implemented on different computers must be able to 
communicate, so that the users may access the databases of users on 
other computers. 

Portability 

The package must be able to run on different computer systems, with 
different hardware environments and different operating systems. 
This results in the following requirements: 

a) A widespread (high-level) programming language, available on 
many computer systems (in industry). 

b) Operating-system dependent procedures, that cannot be avoided. 
must be concentrated in a single layer. This layer will be 
called the "Virtual Operating System". 
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c) Device-dependent procedures must be concentrated in a single 
"Device Driver" layer. Constructing and changing device drivers 
must be straightforward. 

Extensibility 

The package must provide an environment in which new methods may be 
implemented easily. This thesis restricts itself to experimental 
modelling and control, with an emphasis on black box methods. The 
package design must also allow for other (user-added) methods. 

A suitable software design environment should support rapid 
prototyping of new modules and easy incorporation into the package. 

Interfacing with other software packages 

For modelling and control, various software products are available, 
with specific capabilities like simulation, identification and/or 
control design. PRIMAL must be designed as an "open" system which 
allows for transfer of data and commands to and from other software 
products. 

PRIMAL must be able to communicate with a diversity of Process 
Control Systems. This requires a flexible process interface, since 
the available hardware capablli ties, programming tools and 
performances of these systems vary widely. The structure of the 
process interface is discussed in Section 4.6. 

Software management and maintenance 

For a software design project that stretches over several years and 
combines the contributions of several software designers, including 
relatively Inexperienced students, it is necessary to: 

a) Start-out with a clearly-defined set of requirements and a 
rigorous, but flexible, design concept. 

b) Divide the project in several design phases, according to a 
software development scheme, including software maintenance and 
testing. 

c) Define different functional layers and use a modular design 
strategy. 

d) Set strict rules for structure, documentation and lay-out of the 
software. 

4.4 Description of the design 

This section describes the design of the PRIMAL package. The first 
part introduces the basic concepts and the structure of the package. 
The second part discusses the package's properties and the 
realisation of the requirements listed in the previous sections. 
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4.4.1 Terminology 

Data object 

A data object is a set of one, two or three dimensional matrices 
with numerical or text elements. Data objects are identified by 
their name. 

In principle, each data object is structured, i.e. it contains 
several matrices that belong together in some sense, for instance a 
set of matrices constituting a state-space model, or a set of 
simultaneously measured signals. 
Structured data objects may contain other structured data objects. 

Dataset 

A dataset is a structured data object that is stored and registered 
in the PRIMAL Database. 

The PRIMAL Database 

The PRIMAL Database is a hierarchically structured collection of 
datasets. 

Dynamical datasets 

A dataset is dynamical if its contents are subject to change. In 
other words: new data objects may be added to the dataset and data 
objects already present may be altered. After closing the dataset to 
changes, it is called static. 

Modules 

A module is a component of the PRIMAL package that performs an 
operation on a set of data objects and produces a set of new data 
objects as output. 
To stress the difference between data source and destination, we 
will use the term inwt da.to. object for data used as input to a 
module and output da.to. obtect for data produced by a module. 
The input data objects are read, and the output data objects are 
created, filled (written), and updated by the module. 

The Monitor 

The Monitor is the component of the PRIMAL package that implements 
the central user interface, module management and Database 
management. 
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Messages 

A message is a collection of data objects that is sent from the 
f.loni tor to a module or vice versa. 

Parameters 

Parameters are data objects that are transferred from the Monitor to 
a module, or vice versa, as part of messages. 

4.4.2 Package design 

The PRIMAL package consists of the following principal components, 
cf. Figure 4.4.1: 

- The Monitor 
- Modules 
- The PRIMAL Database 

user 
~ 

B 
~~~ ~n= 
~J~ 1 

I ~ula I I MOOule I I Module I · · · I Module I 
L rr rr ~ 

Figure 4.4.1: 

PRIMAL 
Database 

The three principal components of the PRIMAL package. 
The arrows represent the transport of data objects. 

- 50 -



Modules 

Each method, be it for experiment design, experiment control, data 
acquisition, signal analyses, identification, control system design, 
etc., is implemented as a module, that takes data objects as input, 
performs an appropriate operation and stores the results in output 
data objects. For instance, correlation analysis takes a set of 
signals as input data object and, after computation, produces a set 
of correlation functions as an output data object. 

A module can get data from various sources and direct its output to 
several destinations, see Figure 4.4.2. 

Input data objects 
Module 

(input datasets) 
(input parameters) 
(direct user input) 
(import of external data) 

Figure 4.4.2: 
Module input and output. 

Output data objects 

(output datasets) 
(output parameters) 
(direct output) 
(export of data) 

Parameter lnput and dtrect user tnput are the normal mechanisms for 
initialising and adjusting the variables that determine the module's 
actions, while as a rule datasets are used as the main source of 
data objects. Exceptions to this rule are modules for generating 
datasets that take their input from the user and do not require 
input datasets. 
Most modules store the results of their computations in output 
datasets. In contrast to this rule, the presentation modules produce 
no datasets, but use dlrect output to plot or list data objects on a 
screen or on hard-copy devices. 
Parameter output is used to send status, error and warning messages 
to the Monitor. 

A module may import data from external sources or export data to 
external destinations, such as files of other packages. This type of 
i/o is local to the module and is not visible to the Monitor and 
other modules. The products of the data export are not stored in the 
database. 

PRIMAL modules possess the following properties: 

a) A module may execute in parallel to and concurrently to other 
modules. Thus, several modules may be active at the same time. 

b) The input to a module may come from input datasets, input 
parameters, external sources, and directly from the user. 
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c) Module output is transferred to output datasets, output 
parameters, external destinations and can be directed to output 
devices for presentation, cf. Figure 4.4.2. 

d) Any module is independent of all other modules, except for the 
synchronisation of the data transport through dynamical 
datasets. 

e) A module may take its input from dynamical input datasets and is 
able to synchronise with the updates of those input datasets. 

f) An active module may be interrupted by the user. Then it will 
process the specified user input and optionally wait for 
additional user input. 

Subsequently we will use special symbols in the figures to 
distinguish the different types of input and output, as shown in 
Figure 4.4.3. 

Figure 4.4.3: 

~ 
I 

Module 

Different types of module input and output. 
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J-. -{ 

Q-t.-{) 
}t.-( 

parameter input and output 

import and export of data 

dataset input and output 

direct input and output 
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The Monitor 

The Monitor is the central PRIMAL component that implements the 
central user interface and the module management. 

All user input· is directed to the Monitor, unless the latter has 
explicitly transferred input control to a module. In the first case. 
the user input is interpreted by the Monitor and the task specified 
by the user is either carried out by the Monitor directly, or by one 
of the modules, in which case the Monitor activates the module, 
which starts executing in parallel to the Monitor. The Monitor then 
transfers control of the keyboard and the screen to the module, so 
that the module may employ direct user input and direct output. 
After transferring control back to the Monitor, the module continues 
its tasks, while the Monitor prompts the user for new input. The 
user may now exploit the property that modules may execute 
concurrently, by starting additional modules. 

The Monitor tasks are summarised below: 

a) It controls the communication with the user. 
b) It activates modules at user request and manages the active 

modules. 
c) It passes parameters to a module and may grant it temporary 

access to the keyboard and the screen. 
d) It handles parameter output by the modules. 
e) It manages the Database. 

The Database 

The PRIMAL Database contains the datasets that are produced by 
modules (and the Monitor) and has a hierarchical structure, see 
Figure 4.4.4. At the root is the root folder, containing a list of 
all users of the PRIMAL system. Each user has his own user folder, 
containing a list of different session folders, that contain the 
datasets produced by the modules (and the Monitor). 

The Monitor maintains the Database folders. The modules produce 
datasets and provide the Monitor with the information necessary for 
maintaining the Database. 
There are different types of datasets, called Vector, Matrix, Text, 
and Monitor datasets. Each type has a fixed organisation and 
interpretation. 
Monitor datasets are only produced and used by the Monitor. They are 
used for database management, logging, etc. 
The other dataset types are only used by the modules. Vector and 
Matrix datasets store numerical output data objects of a module. 
Text datasets are mainly used for logging and presentation of 
results to the user. 
Important is that datasets are self-documenting. A module using an 
input dataset requires no additional information from the module 
that produced the dataset. 
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Figure 4.4.4: 

session 
folder 

dataset 

data 
object 

Structure of the PRIMAL Database. 

Dynamic datasets 

session 
folder 

data 
object 

When a new dataset is created, it automatically becomes a dynamic 
dataset, which turns into a static dataset :when it is closed for 
updates by the module that produces it. 
There are two types of dynamic datasets: 

1. a dataset where new data is always appended at the end of the 
dataset. 

2. a dataset where new data replaces existing data. 

For dealing with dynamical datasets, special synchronisation 
mechanisms apply. See Section 4.5 for details. 

4.4.3 Discussion of the design 

In this section we will discuss the design and the realisation of 
the requirements. 

The Monitor activates modules and acts as the package manager, 
managing the Database and granting resources to the modules. It is 
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not actively involved in the module's computations, or the data 
sharing and synchronisation between modules. It is not even "aware" 
of the function of the modules, but just implements a framework for 
the execution of modules (for whatever purpose). The Monitor thus 
acts as a special-purpose operating system. The field of 
applications of PRIMAL is determined by the set of modules. 

4.4.3.1 Chaining of modules 

Since all methods in the EM-scheme and most PRIMAL utilities, (e.g. 
graphical presentation, data import and export) are implemented as 
modules. carrying out the steps in the EM-scheme is, from a software 
point of view, equivalent to applying modules to the results of 
other modules. 
Modules are independent and "unaware" of each other • s existence; 
they only interact by sharing datasets. By taking an output dataset 
of one module as input to other modules, it is possible to connect 
modules through datasets in series and in parallel. 

The ability to cha.tn modules is a key property of PRIMAL. 
Since the data flow is unidirectional, this results in tree-like 
structures, as shown in Figure 4.4.5. 

0 =dataset 

0 =module 

Figure 4.4.5: 
Example of chained modules. 
The structure is called a tree although its branches may merge. 
Observe the serial connection of Modules 1,2 and 3, with merging 
branches as input to Module 3. Modules 2 and 4 are connected in 
parallel to the same input dataset. 

If the datasets are static, the tree simply represents the order of 
the operations (as indicated by the arrows) 
If a certain dataset is dynamical, all subsequent modules run 
concurrently, synchrontsed by the dataflow. 
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The term "real-time" is avoided in this context. Since measured data 
is completely buffered in datasets. the only requirement is that the 
Experiment Control Module keeps in pace with the experiment. All 
other modules may lag behind. Since the number of active modules may 
change freely, the workload may also vary drastically. If the 
workload is too high to keep up with the experiment, modules lag 
behind and thus process "historical" data. If the workload drops, 
these modules catch up again and synchronise with the updating 
measurement data. 

To make use of the ability of modules to synchronise with datasets 
and process "intermediate" results of other modules, the modules 
should be designed in such a way that intermediate results are 
meaningful and suitable for presentation or further processing. 

As pointed out before, the Monitor may activate new modules at any 
time upon user request, by attaching them to an already existing 
tree. Thus, the tr.ee is itself a dynamic structure. If a module has 
finished its work, it stops and its output datasets are closed for 
updating. This is noticed by the modules using these datasets as 
input. They will also stop execution after finishing their work. The 
tree thus "dies out'' automatically from left to right. 

The discussion above has concentrated on a single tree, but several 
independent trees of modules may be set-up in parallel. 
For an illustrative example, see below. 

Example 4.4-1 : On-line analysis of measurement data. 

An Experiment Control Module (ECM) (se~ Figure 4.4.6) generates 
a dataset to which new data is appended at each sample moment. A 
recursive data conditioning module (Ml) picks up this data and 
generates a new dataset with the corrected data. which in its 
turn is picked up by a recursive identification method (M2). The 
current model parameter values and the measured process inputs 
may, likewise, be input to a recursive simulation (M3) producing 
a dataset with the updating model outputs and process outputs, 
so that the user may view the process outputs and model outputs 
simultaneously in real-time. 

As the experiment stops. the ECM stops and its output datasets 
become static datasets. After processing the final measurement 
data, the data conditioning module will stop, to be followed by 
the other modules. The tree "dies out" as described above. The 
presentation module remains active, presenting static 
(non-updating) pictures of the data. 

The user may, for instance, at any time apply a second 
identification method to the corrected data. This module would 
then start to process the already available data and the moment 
it catches up with the experiment, it synchronises automatically 
with the incoming data. 
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Figure 4.4.6: 
Inspection of intermediate results. 

---------, 
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The ability to access and synchronise with dynamic datasets is also 
important in processing data off-line. 
For instance, the intermediate results of an iterative method may be 
written to a dataset and be inspected by the user. 

4.4.3.2 The requirements 

In the following, we briefly describe how the requirements listed in 
Sections 4.1 and 4.2 are satisfied and mention some additional 
properties of the design. 
RE!quirements concerning the user interface will be treated 
separately in Section 4.4.3.3. The software design requirements are 
discussed in Section 4.5. 

a) Experiment design, experiment control and data acquisition are 
incorporated in the package straightforwardly as special 
modules. The Experiment Control Module directly interacts with 
the PCS to start, stop, and change experiments, and to collect 
and pass the measured data to an output dataset. This dataset 
updates at the sample moments and then makes the new data 
available to other modules. 
Section 4.6 further describes the design of the Experiment 
Control Module. 
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b) The chaining of modules through dynamic datasets provides the 
facilities for real-time analyses. Parallel execution of modules 
allows simultaneous application of different analyses. 

c) Active modules can be interrupted by the user, offering the 
opportunity to modify the running experiment, the presentation 
of data and the parameters of active analysis methods. 

d) Full functionality is achieved by implementing modules for each 
method in the EM-scheme. The set of modules may be enlarged 
simply by just adding modules, without a need to change any 
already existing modules. 

e) Since modules are mutually independent, and PRIMAL employs 
dataset types which have a standard structure and are 
self-documenting, modules are capable to read a dataset 
regardless of its origin. This provides the required flexibility 
for the user in determining his own path through the analyses. 

f) The mutual independence of modules guarantees that a failing 
module primarily affects its own execution. Of course other 
modules using its output datasets are affected, but they will 
terminate execution normally as their data source dries up. More 
importantly. "upstream" error propagation is not possible. This 
is of vital importance to package safety. The Experiment Control 
Module can never be affected by errors in any analysis method 
using the experiment data. 
Also, since the Monitor is independent of the modules, the user 
interface remains present and is unaffected by a failing module, 
see Section 4.5. 

4.4.3.3 The user interface 

When PRIMAL is started, the Monitor is activated and prompts the 
user for input. To provide flexibility, the Monitor supports a 
command language. 

Question-and-answer or menu-driven interfaces are usually easier to 
learn than a command language. However, these interfaces often prove 
to be too rigid and too input/output intensive for experienced 
users. A command language shifts the inititiative to the user, 
requires less input/output, and is better suited to cope with 
incorrect user r.hoices. 

The concentration of user input and command language parsing in the 
Monitor ensures consistency and uniform! ty. The modules are not 
bothered with command language parsing and error recovery, which 
simplifies their design. 

Since the Monitor is independent of the modules and is not involved 
in numerical computations, it ensures direct response to user input 
no matter the package workload. This property is important in 
experiment control, see Section 4.6. 
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To reduce the learning effort of the user, a command language has 
been designed with the following properties: 
a) It is concise. 
b) Its commands are phrased in a natural language style. 
c) It obeys strict syntax rules. 
d) It provides on-line help concerning commands and syntax. 
e) It provides error checking and error-correction assistance. 
f) It has facilities to recall and re-edit commands. 
g) It is extensible by the user with new commands. 

The strict syntax rules are realised by using an LLl grammar for the 
language, [Wirth, 1976]. Such a language may be parsed using a left 
to right scanner with one-symbol look-ahead, and allows for rigorous 
error checking and error correction support facilities. 
Each command begins with a command verb and is followed by a set of 
specifiers, e.g. : 

# APPLY ODRRELATOR TO FILTER.DATA 
# STOP PROCESS 
# CHANGE RPE (SAMPLES=400) 

The exact syntax of the language may be formulated in Backus-Naur 
diagrams, cf. [Vander Linden & Renes, 1989b]. 

The language consists of a limited number of commands, that may be 
arranged in different categories: 

Module management 
Activating, stopping and aborting modules. 
Changing the parameters of active modules. 

Database management 
Creating and switching folders. 
Copying, moving, deleting, purging, renaming, restoring, 
labelling, importing and exporting datasets. 
Editing datasets. 
Listing folders. 
Entering user messages in the log book. 

Presentation of datasets 
Listing datasets on screen. 
Printing datasets on hard-copy devices. 
Graphical presentation of datasets on screen or hard-copy 
devices. 

Command datasets 
Executing, editing. interrupting and continuing command 
datasets. 

Informational 
On-line assistance, news, debugging options. 

Package control 
Leaving the package. 
Passing commands directly to the operating system. 

The user has facilities to define new commands, composed of standard 
commands. These commands may include a new list of specifiers. 
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Parameter input to a module 

The Monitor parses and executes user commands. If a command relates 
to a module, the Monitor passes the command to the module and 
suspends keyboard input and screen output: the module then gets 
access to the screen and keyboard until it explicitly returns the 
access to the Monitor. 
Modules support two alternative mechanisms for parameter input. 

1. Parameter list input. 
Each module has a defined set of user-adjustable parameters. The 
user may specify these parameters in a command directed to that 
module in a parameter list, which consists of parameter names 
and value lists: 

(parameter name= value list, parameter name= value list, ... ) 

Examples: 
#APPLY RPEM TO PROCESS (SAMPLES=200,INPUT=FL0Wl,OUTPUT=TEMP4) 
# PLOT Pl=RPEM.DATA (XZOOM=O:lOO,LINETYPE=STAIRS) 

The Monitor parses the parameter list and passes its contents in 
a message to the module. A parameter name and its associated 
value list define a data object. The parameter list may thus be 
viewed as the argument list of a procedure call, but with 
indifference to the order of the arguments. 

2. A cursor controlled menu with default values, questions and 
answers. In PRIMAL such menus are called question pages. 
A question page consists of (question) texts and answer fields. 
The user may jump in arbitrary order from field to field and 
adjust any parameter values. 

These parameter input mechanisms may be combined. 
In the case a user does not employ a parameter list or provides 
erroneous input, the module will present the question pages to guide 
him and request correct answers. The default answers to the 
questions represent reasonable standard choices of the adjustable 
parameters. 
Experienced users may fully exploit the features of the command 
language and parameter lists. In this case question pages will not 
be presented, resulting in minimal screen output and fast modul~ 
response. 

The question page system has four other important features: 

a) Answers are checked at input for correctness and consistency 
with the answers to all other questions. 

b) Answers to different questions may be interdependent. 
An answer may therefore influence the correctness of the answer 
to another question. In the case of inconsistency the question 
giving rise to the conflict must be answered anew. 

c) To guide the user, the "legal" answers may be displayed upon 
request. 

d) The question pages may contain dynamical questions, i.e. 
questions may appear or disappear depending on answers to other 
questions. 
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The user interface of a module is activated at module start-up and 
when the user invokes a command for intermediate parameter changes. 
In this case the module will suspend its computations, process the 
user input and then resume execution. 

Package output 

The PRIMAL package prepares permanent output in the form of 
datasets. 

The Monitor maintains the Database folders and keeps a log book for 
each user-session. 
The log book stores and timestamps all user commands and package 
messages generated by the Monitor and by modules to signal errors, 
warnings or specific events. For example, the Experiment Control 
Module sends messages to the Monitor to indicate changes in the 
experiment. such as a change of test signal. The user himself may 
also enter text into the log book. With the log book and the Text 
datasets produced by the modules. the user can completely 
reconstruct the analyses and reproduce the obtained results at any 
later moment. 

A module produces a Text dataset (in addition to the datasets with 
its numerical results) for the following purposes: 

a) For storing the names of the input datasets and the 
user-adjustable parameters, usually in the same format as in the 
question pages. The Text dataset thus serves as the module's log 
book. Each time the user adjusted the parameters, the changes 
and the moment of change are also stored. 

b) For presenting module results contributing directly to the 
user's learning process. If, for instance, an identification 
module produces a Matrix dataset containing full information 
about the estimated model, the Text dataset may be used to 
present results, e.g. in the form of the gains. time constants 
and relative output error(s) of the model. 

c) For storing intermediate results in text format. The dataset may 
be used to reflect the current status of the module. 

Presentation of results 

The different steps in the EM-scheme generally require extensive 
computations involving large amounts of data, and resulting in large 
amounts of new data. Therefore, the package must provide powerful 
and flexible tools for presenting data. 
PRIMAL concentrates these tools in special modules for graphical 
presentation. listing on the screen and printing on hard-copy 
devices. that allow for a high degree of user interaction to 
manipulate the presentations. This relieves the module programmers 
from this task and ensures uniformity. 
The module programmer may define default presentations to show the 
most interesting results. 
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The presentation modules are capable of dealing with dynamic 
datasets: the picture on the screen will be automatically updated at 
each update of the dataset. 

4.4.3.4 Learning 

The PRIMAL package supports the learning process by providing: 

a) Access to a variety of modules implementing different approaches 
to the experimental modelling problems, whose results are 
presented in a format allowing direct comparison. 

b) The opportunity to apply several modules simultaneously to the 
data and inspect the intermediate results (in real-time). 

c) The facilities to chain modules (in real-time). 
d) An effective user interface, providing guidance and rigorous 

error checking/recovery. 
e) Powerful interactive facilities for presenting and manipulating 

(real-time) data. 
f) Text datasets and default graphical presentations that enhance 

the interpretation of the results. 
g) Access to the Database. allowing retrieval of previously 

obtained results. 

4.5 Software design strategy and implementation aspects 

Top-down strategies for software projects typically consist of the 
following consecutive phases: 

requirements analysis 
- development of design concepts 

full specification 
coding 
testing of the final product 

In research projects this approach is generally not completely 
adequate, since the package requirements are incomplete at the 
project initiation. In this case an incremental software development 
strategy, including prototyping, is more appropriate. PRIMAL has 
been designed using the latter. 
Making use of the experience with a first prototype PRIMAL package 
on a PDP-11/34 for real-time experimenting [Betlem & Rademaker, 
1979], a new set of requirements was formulated, on the basis of 
which a specification and a radically new PRIMAL prototype have been 
developed in 1984. The experience with this prototype, implemented 
on a PDP-11/23+ under the operating system RSX-11/M, in experimental 
modelling of laboratory processes. led to an extended set of 
requirements. New functionality was added to the package without 
changes in its internal structure. 
A next generation implementation of PRIMAL and a major design 
overhaul, resulting in a new ordering of functional layers. was 
carried out mainly in 1986. using a VAX-730 under the operating 
system VMS. Since then, attention has focussed on the development of 
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new modules for the different steps in the EM-scheme and extended 
graphical facilities. The core of the package has undergone minor 
modifications only. 
In 1988 a workstation version of the package has been released for 
VAX-stations. The package has been applied to a variety of projects 
in several industries and is commercially available since 1988. 

4.5.1 Software design considerations 

Two important software issues in the design of the PRIMAL package 
were: how to meet the sa.fety requtremen.ts owing to application in 
industrial practice, and how to ensure a high software qua.Ltty in a 
large software project stretching over several years and including 
many relatively inexperienced programmers. 

Software quality is determined by several factors that may be 
grouped into external factors and internal factors [Meyer, 1987]. 

The external factors relate to qualities whose presence or absence 
may be detected by the user. They include correctness (the ability 
to perform according to specification), robustness (the ability to 
deal with unspecif led situations), extensibility (the ability to 
adapt to specification changes), compatibility with other packages, 
portability to other hardware, efficiency, verifiability, integrity 
and ease of use. 

The internal factors are only perceptible to the software designers. 
They include adaptability of the code. readability, and 
comprehensibility. 

In PRIMAL, two principles have been used that have large influence 
on the internal and external quality factors. These principles are a 
ciea.r destqn concept and a moduia.r software a.rchttecture. 

The clear design concept is realised by the definition of only three 
components (the Monitor, the modules and the Database) and the 
rigorous use of modules. All operations on the data are implemented 
in the modules. 
The modules are separate entities, which may be developed, tested, 
and used independently of each other, in fact, even outside the 
PRIMAL environment. To the Monitor all modules are equivalent and 
may be chained in any conceivable way. 

The software architecture of the package is characterised by 
functional decomposition. In PRIMAL we distinguish clusters of basic 
tasks, i.e. handling command language input, direct user 
input/output, database management, dataset access. synchronisation 
with dynamical datasets, and graphical presentation. The mechanisms 
for carrying out these tasks are designed as separate pieces of 
software, which are called "software subsystems" to avoid the word 
"modules". 

The purpose of this decomposition is to split up the design problem 
into smaller subproblems, whose solution may be pursued separately. 
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A subsystem is designed to perform a single task. with a small and 
well-defined user interface. 
To the programmer a subsystem appears as just a set of procedures 
and programming conventions. called the subsystem interface. The 
subsystems provide encapsulation (information hiding), shielding off 
the implemented mechanisms and their internal data structure. 
Such functional decomposition may be repeated at each level and the 
subsystems themselves may thus be decomposed into smaller units. 
using concepts like cohesion and coupling as guidelines. 

The subsystems are grouped into two layers, cf. Figure 4.5.1. The 
first layer contains the interfaces to the standard subsystems. In 
PRIMAL, separate subsystems (tools), are developed for all 
interactions between a module and its environment. The module must 
use these tools for all input/output. 
The second layer contains the basic mechanisms. such as for 
synchronisation, communication primitives and device input/output 
primitives. They match PRIMAL to the specific operating system and 
hardware devices. This layer contains the Virtual Operating System. 

Layer 1 contains the following functions (tools): 

- Scanning and parsing command language input 
- Parameter list decoding and question page input 
- Dataset access 
- Message interchange between the Monitor and the modules 
- Synchronisation with dynamical datasets 
- Database management 
- Module management 
- Direct user input/output 
- Model manipulation and matrix operations 

Layer 2 contains the following functions: 

- Synchronisation primitives 
- Device input/output 
- Basic dataset operations 
- Message interchange 
- Basic module management 
- Time functions 
- Symbolic name manipulation 
- Data conversion and bit functions 
- Exception handling 

Just to give an impression of the size of the PRIMAL system, it 
presently consists of about 40 modules, and contains about 150000 
lines of FORTRAN. of which approximately 20 % serves 
self-documentation. The subsystem interfaces contain about 300 
procedures. 
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Module 1 ... Module n Monitor 

l I I 
I 

Layer 1 

standard tools 

I 
Layer 2 

Virtual Operating System 
and Device Drivers 

I 
The computer's operating system 

and devices 

Figure 4.5.1: 
The software structure of the Monitor and the PRIMAL modules. 

Remarks: 

a) The standard tools reduce the complexity of designing a module, 
and its designer needs not have a detailed understanding of the 
subsystem's implementation. 

The concentra.tion of the command language interface and Database 
management in the Monitor. and the dataset presentation in 
special presentation modules, further reduces module complexity. 
Not having to design user i/o relieves the designer from a major 
programming effort, enabling him to focus on the module's 
primary tasks, thus promoting fast prototyping. 

b) The software structure enables incremental development of the 
subsystems, which may be designed and updated independently of 
each other. 

c) The use of the standard subsystems in all modules ·ensures a 
uniform interface to the user. 

d) Changes and enhancements of the tools apply to all modules 
directly, with no adverse effects on the code that defines the 
modules. 
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4.5.2 Discussion of the software requirements 

Safety 

Several measures contribute to the safety of the package: 

a) Most importantly, PRIMAL is split up into modules, which are 
implemented as independent programs, cf. Section 4 .5. 1. The 
operating system prevents, often by means of special memory 
protection hardware, that a failing module affects other 
modules. Thus, if an analysis module fails during an experiment, 
the data acquisition is not disturbed. 

b) The package includes special measures to secure the consistency 
of the central user interface. If a module fails, the Monitor is 
not affected and the user maintains control over the remaining 
active modules. · 

c) The standard subsystems limit the propagation of errors by 
employing an error-insensitive message protocol, rigorous error 
checking of all input, and internal consistency checks. 

d) The Database is disk-based and secures consistency even if the 
Monitor (or computer) fails. Modules have no direct access to 
the Database organisation and therefore cannot disrupt it. 

e) The execution of experiments is guarded by special safety 
measures, see Section 4.6. 

Because modules only exchange data through datasets and the dataflow 
is unidirectional. a falling module can only affect its output 
datasets and therefore indirectly the modules connected to them. If 
a module fails, its output datasets are usually no longer updated. 
In this case the downstream modules stay waiting for new data to 
arrive. By issuing stop commands to the waiting modules the tree of 
modules stops in a regular way. Upstream error propagation is not 
possible. 

Remarks: 

- If a module has claimed an input dataset for exclusive access, 
see Section 4.5.1, it may fail to release the dataset, 
effectively blocking other modules from accessing the dataset. 
Vital modules therefore time-out on a claim operation. 

- If a module detects an error, it reports the error to the user 
and to the Monitor and stops in an orderly manner. The Monitor 
will mark the datasets produced by the erroneous module and 
enter the message in the log book. 
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Real-time aspects 

The modules of PRIMAL are all designed to deal with dynamic 
datasets. Static datasets may be treated just as dynamic datasets, 
the difference being hidden at a low level in the standard tools. To 
the modules the real-time (on-line) or off-line use makes no 
difference. 
The implementation of the synchronisation facilities is discussed in 
Section 4.5.3. The real-time aspects of performing experiments are 
discussed in Section 4.6. 

Software management 

The modular software design makes it possible to divide the design 
project into three phases: 

1. The design of the core system, consisting of the standard tools. 
2. Design of the Monitor and the special presentation modules. 
3. The design of the individual modules. 

The construction of PRIMAL started with phases 1 and 2, and was 
realised by a small group of programmers. Phase 3 is open ended and 
involves many programmers, usually each responsible for one or a few 
specific modules. 
The programmer must use the standard tools and he must conform to a 
software documentation and lay-out standard. 

Each module and basic mechanism is labelled with a release number 
that uniquely identifies its implementation. This number is tested 
at start-up of each module to check compatibility with the current 
PRIMAL release. 

Special management modules and Monitor datasets define the "site" 
(the hardware on which the package is implemented) and the set of 
modules belonging to the package. The Monitor reads in the datasets 
at start-up. Changes can be made without affecting the source code. 

Proto typing 

The most important requirements for rapid prototyping have already 
been discussed. Modules are stand-alone programs, that may be 
developed, tested, and executed outside PRIMAL, independently of the 
Monitor or other modules. 

Extensibility 

The number of modules constituting the package may be freely 
extended at any time and does not require adaptation of the source 
code. 
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An important feature is the ability to install multiple modules for 
different implementations of the same task. such as experiment 
control for different PCS systems, instead of designing one complex 
module for all PCS systems. 

Open system 

PRIMAL may be extended with modules that use external input and 
output to communicate with other software packages. Special 
import/export modules may be added to PRIMAL, which translate the 
files used by other software packages to PRIMAL datasets and vice 
versa. 
A more powerful way to couple with another package is to treat it as 
a PRIMAL module, activating it by the Monitor and providing it with 
the facilities to read/write PRIMAL datasets. In this way the 
coupling can be made fully transparent. 

Portabil! ty 

To enable the package to be ported to other computer systems, a 
wide-spread and standard programming language (FORTRAN-77) was 
selected. All system and device dependencies were concentrated in a 
single software layer, consisting of sets of basic functions, which 
must be modified for implementation under a new operating system. 

Multi-user support 

Several users may run PRIMAL simultaneously. In the Database each 
user has his own set of folders. He may, however, also access the 
datasets of other users, even though the Database may be spread over 
different (remote) computers. 

4.5.3 Implementation 

Implementation of modules 

A module is implemented as an independent program, that is activated 
by the Monitor and is executed concurrently with the other modules 
and the Monitor. 
A normal (non-resident) module, [Van der Linden & Renes, 19S9e], 
stops execution automatically after finishing its computations. 

As a PRIMAL module is activated it generally goes through a series 
of standard steps. Figure 4.5.2 lists the general structure. 
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START 

I 
Initialise the module 
Set up communication 
channels to the Monitor 

Read the Initial message 
from the Monitor 

Open the Input datasets 
and read their contents 
specification 

I 
Decode the parameter list 
and present the question 
pages (if necessary) 

I 
Create the output 
datasets for storing the 
results 

I 
Notify the Monitor that 
the module has started 
successfully 

I 
Perform the computations 
and write results to the 

I output datasets 

I Message detected 
Carry out action 
Continue execution 

Write final results 
Close datasets 
Notify the Monitor 

I 
STOP 

Figure 4.5.2 
General structure of a PRIMAL module. 
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After starting, setting-up the communication channels to the 
Monitor, and processing the initial message sent by the Monitor, the 
module gains access to the keyboard and the screen, and the Monitor 
suspends execution. The user now interacts directly with the module. 
This phase is mainly used for question page input. After this phase 
the output datasets are created by the module for the storage of its 
results. The module then sends a message to the Monitor that it has 
started successfully and returns access to the keyboard and the 
screen to the Monitor. It continues its execution in parallel to the 
Monitor. As it has finished its computations, it closes the output 
datasets for write access and notifies the Monitor that it stops. 

Communication between Monitor and modules 

The Monitor and a module communicate by exchanging messages. 
Since they are implemented as independent programs, this form of 
communication must take place between concurrently executing 
programs and it has been realised by a mailbox mechanism in 
combination with events and interrupts. 
The Monitor uses mailboxes to receive messages from the modules. 
When a module is activated by the Monitor, it sets up a mailbox to 
receive messages from the Monitor. 

Synchronisation 

The package uses the following synchronisation primitives: 

Events 

In PRIMAL. an "event" indicates a certain occurrence. Modules 
may walt for a specific event, to be released from their walt 
state when the event is set. 

If a module writes to a dynamical dataset, a synchronisation 
mechanism is needed to signal the reading modules that new data 
has been written to the dataset. Therefore. each dynamical 
dataset is associated with an event. 
When the reading modules try to access new data that is not yet 
available in the dataset, they enter a wait state. When the 
writing module has written a set of new data to the dataset, it 
sets the event. The reading modules waiting for the event are 
released from their wait state and may then attempt to access 
the data. The event is reset by the wrf.Hng module, which 
therefore needs not be aware of the existence of reading 
modules. 

Semaphores 

Semaphores manage the access to common resources. They are used 
to protect datasets from simultaneous read/write access. 
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When a module requests exclusive access to a common resource it 
initiates a wait operation on a semaphore. If it gets access it 
"claims" the semaphore and other modules requesting access are 
put in a wait state. If the module no longer needs access to the 
resource it releases "unclaims" the semaphore and sets an event. 
Waiting modules may now gain access. 

Signals 

Signals are used for interrupting a module. They are set by the 
Monitor to indicate the presence of a message or by the module 
itself (in an interrupt handler) to indicate user input. If a 
signal is raised, the module will cancel waiting for semaphores 
or events. The module acknowledges the signal by resetting it. 
Important is that a signal cancels wait states. The user may 
therefore interrupt an active module and get its immediate 
response. 

All three synchronisation primitives are implemented with the help 
of global event flags in VAX/VMS. 

Datasets 

A dataset where new data is always appended to the end of the 
dataset is called an access m.ode 2 dataset. Modules reading the 
dataset may freely read all data that is already available. 
The writing module indicates the availability of new data by setting 
an event. Access mode 2 datasets are used, for instance, for storing 
experiment.data. 
Since handshake mechanisms are avoided, a fatal error or freeze of a 
reading module does not affect the writing module, preventing 
upstream effects and possible deadlocks. Furthermore, writing 
modules are not blocked or delayed by reading modules, which is 
important to experiment control. 
The mechanism described above allows a reading module to miss 
updates of a dynamical dataset, since it may not yet be waiting for 
the event. This has no influence on the correctness, since all data 
is stored. 

A dataset where new data replaces existing data is called an access 
mode 3 dataset. Here the writing and reading modules must claim the 
dataset for exclusive access (using semaphores). When a dataset is 
claimed, the other modules requesting access enter a wait-state 
until the dataset is released. An update of the dataset is indicated 
by an event set by the writing module. 
Access mode 3 datasets are used for storing intermediate results of 
modules, such as correlation functions and intermediate models. If a 
module gets access to the dataset, it will automatically get the 
latest update. 
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The wait states mentioned above are interrupted (by signals) if the 
Monitor issues a message to the module. The actions specified in the 
message must be carried out before returning to the wait-state. This 
procedure ensures the immediate response of the module to user 
commands. 

Datasets are implemented as shared datafiles residing on a disk. 
They are self-documented and consist of three sections (with some 
exceptions for Monitor datasets). The first section is called the 
base section and contains information about the dataset size and 
type. The second section is type-dependent. It contains the names 
and characteristics of the data objects stored in the dataset and 
default ways of presentation. The third section is the data section, 
containing the stored data objects. 

The Database 

The Database consists of sets of files. Its folder directories are 
implemented as Monitor datasets, created and maintained by the 
Monitor. 

The Graphics 

Because the user's learning process depends to a large degree on the 
graphical presentation facilities, special attention has been 
devoted to their development. 

A module does not present its results itself, but the Vector 
datasets it produces may be presented by the PRIMAL Graphics. The 
datasets may contain default presentation settings. The Graphics 
reside in a special-purpose module, which provides the facilities 
to: 

- Present up to four independently dynamically updating 
presentations (pictures) simultaneously. Thus, during an 
experiment, the user may view the updating measurement data and 
the updating results of the analyses simultaneously, in 
real-time. 

- Create several different updating presentations of one dataset. 
- Make a selection from among the default presentation settings 

associated with each dataset. 
- Manipulate the pictures using the command language and/or 

graphical input, supporting a large set of operations, e.g. for 
selecting presented curves, zooming, line types, accuracy bands, 
scaling, etc. 

- Present the pictures on a variety of graphical devices. 

The graphical subsystem consists of three layers. implementing a 
effective set of high-level plot operations, a device selection 
layer, and a collection of graphical device drivers, [Van Lanen, 
1988]. 
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4.6 Experiment design and data acquisition 

Starting-point for the design of the process interface is the 
computer configuration introduced in Section 3.3.2, (Figure 3.3.1). 
The different tasks that may be discerned in experiment design and 
experiment control are divided over the Analysis Computer (PRIMAL 
computer) and the PCS. 
The PRIMAL role is based on a standard set of messages that must be 
exchanged with the PCS and is therefore to a large degree 
PCS-independent. This concept makes it possible to couple PRIMAL to 
a large diversity of process control systems, at the cost of 
developing an application-specific PCS part of the interface for 
each new type of PCS to which a coupling must be realised. 

In PRIMAL, all activities concerning experiment design and 
experiment control are handled by a set of modules: 

1. The Interface Definition Module (IDM) 
2. The Experiment Definition Module (EDM) 
3. The Experiment Control Module (ECM) 
4. The Process Interface Module (PIM) 

Process 

Sensors 

and 

Actuators 

local 

Figure 4.6.1: 

PCS 

command 
dataset 

experiment 
data 

data link 

Overview of modules involved in experiment control. 
The ECM loads the experiment definition and passes it to the 
PIM. The experiment data are stored locally in the PCS and/or in 
a dataset by the ECM. 
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The Process Interface Module runs in the PCS. The other modules run 
in the Analysis Computer as parts of PRIMAL. 

The Process Interface Module 

' The Process Interface Module in the PCS has no direct link to the 
Monitor. It communicates only with the Experiment Control Module 
(ECM) and it is not implemented as a PRIMAL module. 
The main task of the PIM is to start/stop the data collection (of 
the sampled process inputs/outputs) and transfer the data to the 
ECM. which makes it available to all other PRIMAL modules. 

The activities of the PIM depend on the selected options. The module 
should be capable to operate in combination with PRIMAL as well as 
independently, supporting design and eontrol of experiments by 
PRIMAL. as well as local operator control. At any time the operator 
may interrupt an experiment and override PRIMAL's actions. 

In short, the PIM performs the following tasks: 

a) It communicates with the ECM on the Analysis Computer. 
b) It initialises its actions by loading the "experiment 

deflni tion", which is passed to the PCS by the ECM, unless it 
has already been stored locally. 

c) It schedules experiment control commands to start, stop and 
change experiments, sent by the ECM. or entered locally (e.g. by 
the operator). Local commands override remote commands. 

d) It collects the values of the process inputs and outputs at each 
sample moment and passes these to the ECM and/or stores them 
locally. 

e) Optionally, it generates and introduces test signals into the 
process inputs. 

f) During the experiments, it checks whether all process inputs and 
outputs stay within their legal ranges, refusing to introduce 
input signals in the case of conflicts. 

g) It logs all actions and relevant experimental conditions in a 
local log book and/or sends messages to the Analysis computer 
for remote logging. 

h) Optionally. it implements controllers, the controller parameters 
being passed to it by PRIMAL or entered locally. 

A prototype PIM has been developed, and specific implementations 
were carried out on the laboratory PCS of the Systems and Control 
Croup at Eindhoven University of Technology, on a Foxboro Microspec 
[Renes & Vander Linden, 1987], and, in cooperation with Philips, on 
a special-purpose PCS for process identification. 
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The Interface Definition Module and the Experiment Definition Module 

The parameters defining the experimental set-up and the experiments 
are stored in an interface definition dataset and an experiment 
definition dataset. The interface definition for a specific 
PCS-process combination is usually made once, whereas the experiment 
definition may change in each experiment. Therefore. a separation of 
tasks is made for reasons of safety and convenience. 

The IDM produces the interface definition that is used by the EDM in 
producing the experiment definition. The interface definition 
contains information such as: the available PIM options, the maximum 
number of process inputs and outputs, the type and range of the 
ADC's and DAC's and the range of addresses that identify the process 
inputs and process outputs. 

The experiment definition contains information such as: the sampling 
interval, default experiment length, the selected PIM options, the 
selected inputs and outputs, their default, minimum, maximum and 
warning levels, prefiltering options, etc. 

The Experiment Control Module 

The Experiment Control Module has two parts. The kernel is 
constructed as a PCS-independent PRIMAL module, using the standard 
tools for collllll.lnicating with the user and accessing the datasets. 
The other part is Pes-dependent and implements the specific 
requirements of the cOlllllllnication protocol with the PIM. 
Any new PCS may be coupled to PRIMAL simply by adding an appropriate 
ECM to the package. Each ECM is assigned a unique name, by which it 
is known to PRIMAL. 

In short, the ECM performs the following tasks: 

a) It loads an experiment definition dataset. 
b) It sets up the communication channel to the PIM. 
c) It sends the experiment definition parameters to the PIM. 
d) It waits for commands from the Monitor and from the PIM. 
e) When a request arrives to start an experiment, it asks the PIM 

to send process data and stores these data in its output 
dataset(s), automatically making it available to other modules 
for analyses and/or presentation in real-time plots. 

f) It instantly responds to user commands to adapt or stop the 
experiment. 

g) It stores all status information, messages from the PIM and all 
user commands in the experiment log book (a Text dataset). ready 
to be accessed by the user at any time. 

h) It remains resident after the experiment is stopped, ready to be 
re-activated and to repeat steps a) -h). 
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Safety 

Concerning safety. the set-up described above has the following 
properties: 

- Only a relatively simple program (PIM) must be implemented on 
the PCS to couple PRIMAL to the process. 

- All PRIMAL interactions with the process pass through this 
module, which rigorously checks whether all actions remain 
within the limits of the experiment definition. 

- The operator may overrule remote commands. 
- Failing modules in the Analysis Computer do not affect the PCS. 

The two-computer concept and the built-in flexibility of the PIM and 
the ECM to enable/disable certain parts of experiment control are 
usually sufficient to comply with the safety requirements 
encountered in practice. 

Real-time aspects 

The PRIMAL package is designed to operate correctly, no matter the 
number of active modules and the computational workload. As long as 
the ECM, running at high priority, can keep up with the PIM, the 
analyses may lag behind. but will not conflict with the real-time 
demand. 
By providing sufficient buffering of data sent over the data link, 
the real-time demands for the ECM may be relaxed: it must keep up 
with the average data transfer rate. but may lag behind at peak 
activities of the Analysis Computer. Of course, this does not hold 
if the ECM is used to generate test signals or to implement a 
controller. 
To prevent the user from blocking ECM execution, the module does not 
allow direct user input. User interaction is only possible through 
commands handled by the Monitor. 

Experiment control 

The experiment definition dataset does not include experiment 
control actions, such as starting, stopping and introducing test 
signals. These actions are carried out interactively by the user by 
commands such as: 

# LOAD PROCESS WITH EXPERIMENT 
# START PROCESS 
# PUT STEP ON PROCESS.FLOWl (AMPLITUDE=40) 

See Section 4.7 for further examples. 

Experiment control commands may be programmed in command datasets 
and may include time specifications. In this way, experiments can be 
programmed beforehand, to be executed automatically later. 
The Monitor parses the commands and passes them to the ECM, which in 
turn orders the PIM to start, stop, or adjust the experiment. If the 
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commands indicate that an adjustment must be made at some future 
time, it is entered in the scheduling table of the PIM. 

For experiments with high sampling rates, the experiment duration is 
usually short and interactive analysis and experiment adjustment may 
not be feasible. But then, PRIMAL may be used to switch back and 
forth rapidly between experimenting and analysing the data. 

The experiment definition dataset, and the session and experiment 
log books allow the user to reconstruct the experimental conditions 
at any later time. The log books store all commands issued by the 
user and all messages sent by the PIM. Adjustments to the experiment 
are confirmed by the PIM. 

Control system implementation 

The design of PRIMAL allows a gradual implementation of new control 
systems. In a first step, the control system may be simulated in 
PRIMAL using the best process model found. In a second step, the 
control system outputs are computed by the Analysis Computer and 
passed to the PIM to be imposed on the process inputs. In a third 
step, the control system may be implemented in the PCS. 

4.7 A sample session with PRIMAL 

To demonstrate the PRIMAL package, this section discusses a sample 
session in the style of the user manual, [Van der Linden & Renes, 
1989a]. 

PRIMAL sessions 

As the user enters PRIMAL, he is asked for a user name and a session 
name. The package uses this information to create a session folder 
in the database of the user. All datasets produced in this session 
are by default stored in the session folder. 

The full and unique specification of a dataset is: 

[<user name>.<sesston name>]<dataset name>.<extenston>:<uerston) 

e.g. [JACK.ETHENE]PROCESS.DATA:2 
[JACK.TEST1)FFT.DATA:3 
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At a given moment the directory of the session folder may look like: 

Directory of Folder (JACK.HYDRO] 

30MAR90 10:17 CORRELAT DATA 
30MAR90 10:17 CORRELAT TEXT 
30MAR90 10:11 EXPEDIT IFD 
30MAR90 10:14 HYDRO EXP 
30MAR90 10:10 HYDRO LOG 
30MAR90 10:39 MARKOV DATA 
30MAR90 10:39 MARKOV MODEL 
30MAR90 10:39 MARKOV RESFONSE 
30MAR90 10:39 MARKOV TEXT 
30MAR90 10:39 MTEST CO~ 
30MAR90 10:39 MTEST DATA 
30MAR90 10:39 MTEST TEXT 
30MAR90 10:17 PREFILTE DATA 
30MAR90 10:17 PREFILTE TEXT 
30MAR90 10:16 PROCESS DATA 
30MAR90 10:16 PROCESS TEXT 
30MAR90 10:17 RPE DATA 
30MAR90 10:17 RPE MODEL 
30HAR90 10:17 RPE TEXT 
30MAR90 10:37 RPEM DATA 
30MAR90 10:37 RPEM MODEL 
30MAR90 10:37 RPEM TEXT 

Figure 4.7.1: 

1 Cross correlations for inputs Q and QS 
1 Cross correlations for inputs Q and QS 
1 Thermo Hydraulic process interface def 
1 Definition FRBNS experiment 1 
l [L] Leg-book of session(JACK.BYDRO] 
1 Impulse responses Q,QS -> T3,T4 
l Impulse responses Q,QS -> T3,T4 
1 Impulse responses Q,QS -> T3,T4 
l Impulse responses Q,QS -> T3,T4 
l Model validation of the RPEM; l 
l Model validation of the RPEM;l 
1 Model validation of the RPEM;1 
l Trend corrected process data 
l Trend corrected process data 
1 PRBNS experiment 1 
1 FRBNS experiment 1 
1 SISO estimate Q -> T2 order 2 
1 SISO estimate Q -> T2 order 2 
1 SISO estimate Q -> T2 order 2 
1 Output error Q,QS -> T3,T4 order 3 
l Output error Q,Qs -> T3,T4 order 3 
l Output error Q,QS -> T3,T4 order 3 

Example of a session folder directory. 
The datasets in this folder are characterised by their name, a 
user-added label and their time and date of creation. 
Furthermore, the session folder includes a log book. 

The user may manipulate (e.g. copy. move. rename, delete) the 
datasets with appropriate Monitor commands. 

Examples: 

#COPY [JACK.HYDRO]PROCESS.DATA TO [JOHN.TESTl]HYDROl.DATA 
#DELETE FFT.DATA:l 

Performing experiments 

Suppose the Experiment Control Module has been named PROCESS. 
After the interface definition has been made, the user generates an 
experiment definition with: 

# EDIT HYDRO.EXP 

The Monitor will start up the Experiment Definition Module which 
presents a set of question pages to the user, for defining the 
experiment parameters, process inputs and outputs and their 
properties, [Vander Linden & Renes, 1989d]. 

The ECM is loaded with the command: 

# LOAD PROCESS WITH HYDRO.EXP 
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The ECM sets up the communication channels to the PIM. loads the 
experiment definition from the EDM and passes the appropriate 
information to the PIM. Furthermore, the module creates a dataset 
for storing the data generated in the experiment, and a log book to 
store the experimental conditions. 
The package responds with: 

Created {unit 1): [JACK.HYDRO]PROCESS.TEXT:l 
Created {unit 2): [JACK.HYDRO]PROCESS.DATA:l 
Module PROCESS:l loaded 

The user may now start an experiment with: 

# START PROCESS 

Sampling will now start and the measured data will be stored in the 
dataset PROCESS.DATA by the ECM. 
The data from the process can be accessed immediately. For example, 
to monitor the experiment, the data may be displayed in a real-time 
plot with the command: 

# PLOT Pl = PROCESS.DATA IN WINDOW Cl 

The· user may modify the experiment interactively, for instance by 
specifying test signals: 

#PUT BNOISE ON PROCESS.PS:lO {AMPL=0.2,LAMBDA::5) 

which informs the Experiment Control Module PROCESS to initiate a 
binary signal with amplitude 0.2 and a minimal clock period of 5 
samples in the input signal with name PS. beginning at sample 10. 

On-line analyses 

While the experiment is active, the user may directly apply analysis 
methods to the data. For instance: 

# APPLY PREFILTER TO PROCESS.DATA 

starts up the recursive data conditioning module PREFILTER to 
separate the trend from the raw measurement data. 
With: 

# APPLY CORRELATOR TO PREFILTER.DATA 

correlation analysis is applied to the output data of PREFILTER, and 
with: 

# PLOT P2--CDRRELATOR.DATA IN WINDOW D2 

the updating correlation functions are displayed next to the 
updating measurement data. The user may proceed immediately, for 
instance, by applying a recursive prediction error method to the 
data: 
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#APPLY RPE TO PREFILTER.DATA 

A default presentation of the corrected process output, the output 
predicted by the model, and the prediction error may be shown on the 
graphical screen with: 

# PLOT P3:RPE.DATA {SET:OUTPUT) IN WINDCW 04 

The modules PROCESS, PREFILTER, CORRELATOR, RPE and the Graphical 
module are now simultaneously active, synchronised by the data flow. 
The graphical screen presents plots as shown in Figure 4.7.2. 
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Figure 4.7.2: 
Copy of the graphical screen at some moment during on-line 
analysis of the experiment data. 
Updating pictures are present of the process data (a), estimated 
correlation functions (b), the process output, the model output 
and prediction error of a recursive identification method (c). 
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4.8 Comparison to existing software packages 

After this outline of the design and functionality of PRIMAL, we 
summarise its most important features here and compare it to other 
software packages. 

PRIMAL provides: 

- Support for all steps in our Experimental Modelling scheme. 
- A variety of modules for the different steps in the EM-scheme. 
- Analyses in real-time. 
- The ability to perform several analyses in parallel and/or in 

synchronised structures. 
- Real-time graphical presentation of multiple datasets. 

Inspection of intermediate results. 
- Command input, question page input and graphical input. 

Interaction with and adaptation of active methods. 
- Full database support. 
- Self-documented datasets. 
- Automated log book support. 
- Results presented in a form suited to less experienced users. 
- Support for multiple users. 
- An environment that can be extended freely with new modules. 

The combination of real:-time capabilities and an extensive set of 
modules for data conditioning, identification and control system 
design, makes the PRIMAL package unique in providing the facilities 
for bridging the gap between control theory and industrial practice. 
Among other software packages, it fills a gap between, on the one 
hand, real-time packages for experimenting and on the other hand, 
packages for off-line data analysis and CACSD (Computer Assisted 
Control Systems Design). 

To the first category belong PCS-type packages, (e.g. The Fix, 
Genesis, .. ) and analysis packages (e.g. ASYST). They provide 
facilities for experiment control and signal analyses, but usually 
very limited support for identification and control design. 

To the second category belong packages such as CTRL-C, MATRIX-X. 
PRO-MATLAB (belonging to the MATLAB family), KEDDC and LUND. See 
Cellier & Rimvall [1986] for an overview. 
These packages are mainly intended for off-line use, but a few, such 
as KEDDC and MATRIX-X, offer some real-time capabilities, which, 
however, are not fully integrated into the package. 

Of the popular MATLAB family, CTRL-C and MATRIX-X aim mainly at 
simulation and control, and offer only limited support for 
identification. Closest to PRIMAL is PRO-MATLAB, because its 
identification and control toolboxes provide an extensive set of 
tools for modelling and control. 
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The main differences between PRQ-MATLAB and PRIMAL concerning 
experimental modelling. are summarised below. 

- The MATLAB user interface ls essentially a language for matrix 
manipulation, including variables and flow control. that is more 
powerful and offers more flexibility than the PRIMAL command 
language. It is, however. less suited to inexperienced users. 

- By supporting the development of programs written in ftlATLAB 
language, MATLAB provides a suitable environment for fast 
prototyping of programs for numerical analyses. 

- MATLAB supports a large set of tools for signal analysis, 
identification and control system design. 
Its facilities for multivariable MFD's are as yet not well 
developed. 

-The package has an open architecture (MEX-files). 
- It has no real-time capabilities. 
- Experiment design/control facilities are not available. 
-Analyses cannot be carried out in parallel. 
- Intermediate results cannot be inspected. 
- The workspace consists of a loose collection of matrices. Data 

can be structured to some extent within a matrix only. 
- No structured database is available, so that a convenient 

storage of results and reconstruction of the analyses is not 
supported. 

- No facilities are available for (automatically) generating 
reports of the results of the different methods. 

- Data structures are insufficiently standardised. especially 
among the different toolboxes. 

Concluding. I think that, in their current form, PRO-MATLAB is an 
excellent tool for exploring and developing methods, whereas PRIMAL. 
owing to its interface to the process, real-time analysis support. 
database and reporting facilities, is much stronger in practical 
applications. 
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CHAPTER 5 IDENTIFICATION METHODS IN PRIMAL 

5.1 Introduction 

Following the Experimental Modelling strategy presented in 
Chapter 3, the approach to identification is to provide the user 
with a variety of methods, based on different types of models and 
estimation methods, and let the user choose from among these 
methods, probably applying several of them in parallel and comparing 
their results. 

In this chapter, we discuss the identification methods presently 
available in PRIMAL. We consider the following classes of methods: 

a) (One-step ahead) prediction error methods, in their recursive, 
direct, and iterative variants. 

b) As a special case of a), the estimation of a (high order) FIR 
model, followed by a realisation step. 

c) Instrumental variable methods. 
d) Effective new variants, based on a Monte-carlo approach. 

5.2 Prediction Error Methods 

The Prediction Error Methods (PEM's) form an important class of 
identification methods, that is popular for several reasons: 

a) PEM's are well established from a statistical point of view. In 
the case of a quadratic prediction error criterion they can be 
derived directly from the Maximum Likelihood method,· assuming 
Gaussian distributed noise. 

b) Using special choices of the general model parametrisation 
(2.6.4) and discerning gradient type and Gauss-Newton type 
optimisation techniques, Ljung [1983] has shown that many 
"classical" identification schemes, such as Generalised Least 
Squares, Approximate Maximum Likelihood, etc., are special cases 
of a general PEM. 

c) They may be implemented in an iterative or recursive fashion, 
and perform reportedly well. 

d) Without modification they may be used in closed loop 
experiments. 

e) The PEM can be extended to include data prefiltering and/or 
other norms of the prediction error. 

For the above reasons several PRIMAL modules were based on the PEM 
approach. In the sequel we will briefly summarise the basic 
iterative and recursive implementations. The general predictor model 
for the SISO case [Ljung, 1983] is extended here to suit the MISO 
case. 
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The parameter estimate is defined as the minimising argument of the 
criterion function: 

N 

VN(a,ZN) = ~ l ~T(t,9)A- 1~(t.a) 
t=1 

(5.2.1) 

(5.2.2) 

For notational convenience, the subscript N and the argument zN are 
dropped in the sequel. Cenerally, V(9) is a non-linear function of 
the parameters and its minimum cannot be computed analytically. 
Several nUmerical optimisation techniques have been developed for 
this non-linear least squares problem, see [Cill & Murray, 1981; 
Dennis & Schnabel, 1986]. We will briefly discuss the gradient and 
Causs-Newton techniques. 

At a we approximate V(9+AS) by its second order Taylor eXPSnsion. 
neglecting higher order terms. 

(5.2.3) 

with g(9) the gradient, and C(9) the Hessian of V(9) with respect 
to 9. A strong local minimum 90 of the criterion function satisfies: 

g(90 ) = 0 (5.2.-4) 
C(90 ) positive definite. 

Defining ~(t,S) as the gradient of the prediction error with respect 
to 9: 

a~T 
~(t,e) := - ~t.a) 

a a 
we get: 

N 

g(9) = V'(9) = l ~(t,9)A- 1~(t,9) 
N t=1 

N 

C(9) = V''(9) = l ~(t,S)A-t~T(t,S) - S 

N t=1 

N 

where [S]nm. = ·-1-l 
N t=1 

q q 

l l a: (~mt(t,9))Atjej(t,9) 
1=1 J=1 n 
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Iterative optimisation techniques 

The parameter estimate at in the i. 'th iteration may be updated in 
the steepest descent direction, with step-size at)O using: 

(5.2.8) 

or, using second order derivatives, with a Newton technique: 

(5.2.9) 

The Newton technique requires knowledge of the Hessian (5. 2. 7). 
which consists of a positive semi-definite first term and a 
remainder S. Neglecting the remainder results in a Gauss-Newton 
scheme. 

N 

al+l = 91 +at[ l >l!(t.91)r 1 _,T(t.9f.)]- 1 

t=l 

N 

l >l!(t,a1 )A- 1~(t.at) 
t=1 

(5.2.10) 

A step size at is included in this scheme and may be computed using 

a line minimisation method. 
The advantage of a Gauss-Newton scheme over a Newton scheme is that 
it only requires the first derivatives and that the positive 
definite approximation of the Hessian guarantees a descent 
direction. However. the Gauss-Newton scheme is less suited for large 
residual problems and problems with a near to singular approximate 
Hessian. In the case of singular approximate Hessian the 
Levenberg-Marquardt technique may be employed to ensure a regular 
Hessian. For large residual problems, a modified Newton technique 
may be employed. 

Recursive optimisation techniques 

For the derivation of the recursive Gauss-Newton technique the 
criterion function is extended to include a forgetting factor A. 

t 

= __ 1 __ l At-s~T(s,B)A-t~(s,a) 
2 s=1 

(5.2.11) 

Assume that at_1 minimises Vt_1(a). Vt(9) is approximated locally at 

at_1 by a second order Taylor series. neglecting higher order terms: 
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(5.2.12) 

The minimising argument at of this quadratic expression is: 

(5.2.13) 

To obtain recursive relationships gt(a) and Ct(a) are expressed in 

terms of gt_1 (a) and Ct_1 (9). Straightforward differentiation of 

(5.2.11) results in: 

gt(9) = Agt_1(e) - ~T(t,e)A- 1+T(t.e) 

Ct(e) = ACt_1(e) + +T(t.e)A- 1+(t,e) -

z z ~t(t.e)A(j+jT(t.e) 
t j 

(5.2.14) 

(5.2.15) 

Near the optimimum the last term of (5.2.15) will be approximately 
zero if ~(t,e) converges to a white noise. This part of the Hessian 
may therefore be neglected, leading to the Causs-Newton algorithm: 

et = et-1 + [Ct(et-1)J-1+(t,et-1)A-1~(t.et-1) 

Ct(et-1) = ACt-1(et-1) + +(t.et-1)A-1+T(t,et-1) 

To arrive at an algorithm suitable for on-line use: 

{5.2.16) 

-the signals ~(t.e), +(t,e) are replaced by on-line 
approximations ~(t), +(t), 

- ct-1(et-1) is approximated by ct-l{et-2). 
-the matrix A is replaced by an on-line approximation At' 

- and the matrix inversion lemma is applied. 

This leads to the recursive algorithm: 

P(t) = A- 1 [P(t-1) - L(t)+T(t)P{t-1)] 

L(t) = P(t-1)+(t)[AAt + +T(t)P(t-1)+(t)J- 1 

T 
At = (1-lt)At_1 + lt~(t)~ (t) lt = 1/t 

et = et_1 + L(t)~(t) 
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The predictor model 

We will use the following predictor model, based on the MISO data 
generating model (2.6.5): 

;(tlt-1:9) = [ 1- A(q- 1 :9)D(q- 1 :9)C- 1 (q- 1 :9)Jy(t) + 
p 

D(q- 1 ;9)C-1 (q- 1 :9) l B
1

(q- 1 :9JF( 1 (q- 1 :9)ut(t) 

t=1 
(5.2.18) 

e(t;9) = y(t) - ;(tlt-1;9) (5.2.19) 

The MISO, rather than the MIMO version, is selected to reduce the 
computational workload in on-line operation. Then, in order to model 
a MIMO system q independent estimations must be carried out. 
Defining: 

w1(t) := Bt(q- 1 ;9)Ft- 1 (q- 1 ;9)ut(t) 

p 

v(t) := A(q- 1 ;9)y(t) - l wt(t) 

t=1 

the prediction error can be written as: 

Equation (5.2.22) can be rewritten to: 

;(tlt-1;9) = y(t)-e(t) 
p 

t = 1. .p (5.2.20) 

(5.2.21) 

(5.2.22) 

= [1-A(q- 1 ;9)]y(t) + l { Bt(q- 1 ;9)u1(t) + 

t=1 
[1-Ft(q- 1 :9)]wt(t) } + [1-D(q- 1 ;9)]v(t) + 

[C(q- 1 :9)-l]e(t) 
T 

:= ~ (t.9)9 (5.2.23) 

(5.2.24) 

Each component of a represents the row-vector of coefficients of the 
corresponding polynomial. 
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Consequently, the vector ~(t,B) consists of past signal values: 

T 
~ (t.B) = ( -y(t-1) .. -y(t-na) u1(t) •• u1(t-nb1) •• 

up(t) .. up(t-nbp) -w1(t-1;9) .• -w1(t-nf1;9) 

-w (t-1:9) •. -w (t-nf ;B) e(t-1;9) .. e(t-nc;B) p p p 
-v(t-1;9) •. -v(t-nd;9)) (5.2.25) 

An expression for·the gradient is obtained by differencing (5.2.23) 
with respect to e. 

T aa a a a aa 
.p (t,B) = -(aa• 8b

1
' ··• 8bp' 8f

1
' •. , 8fp' 8c' 8d)e(t,B) 

T T T T T TT 
:= (.Pa .Pbl ·· .Pbp .Pfl(t) .Pfp(t) .Pc .Pd) 

lu:l .• na 

C(q- 1 ;0)F1(q- 1 ;9).Pbi,k(t:9) = D(q- 1 :9)u1(t-k) 

R.--o •• nb
1

• i=l. .p 

C(q- 1 :9)-J~ L(t:B) = e(t-k;B) c .... k=l. .nc 

k=l. .nd C(q- 1 ;9)-Pd,k(t;B) = -v(t-k;B) 

C(q- 1 ;9)F1(q- 1 ;0),Pfi,k(t;B) = -D(q- 1 ;B)w1(t-k:9) 

k=l .. nf1, i=l .• p 

(5.2.26) 

Iterative methods 

The equations (5.2.10), (5.2.23) and (5.2.26) form an iterative 
Gauss-Newton algor! tm. This scheme has been implemented in the 
second step of the PRIMAL module MCRPEM. [Van der Linden & Renes, 
1989e] taking into account the following implementation points: 

- (5.2.10) is not used directly, but instead the QR-decomposition 
of the associated least-squares problem is used, which also 
serves to check the rank of the Jacobian for the purpose of 
regularisation. 

- The step size (damping factor) a is determined with a line 
minimisation algorithm, based on safeguarded quadratic 
interpolation. 

- The Gauss-Newton method has been developed for unconstrained 
optimisation problems. However, 9 is restricted to the subset 
!lm, (2.3.4), which implies that all roots of the polynomials 
C(:z:) and F t (z), i=l .. p must lie inside the unit-circle. This 

projection into the unit circle is implemented in the line 
minimisation algorithm. 
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Recursive methods 

Recursive algorithms based on the model (5.2.18) have been 
implemented in the module RPEM (for the MISO case) and RPE (for the 
SISO case), [Van der Linden & Renes. 1989e]. The following points 
were taken into consideration: 

- The P-matrix in (5.2.17), which may be interpreted as the 

parameter covariance matrix, is computed using a UDUT 
decomposition, guaranteeing a strict monotonic decrease. 

- e(t.a) and ~(t,9) are approximated by e(t) and ~(t), using the 
shift properties, cf. [Ljung 1983]. 

- The stability of the predictor is guaranteed by a projection of 
unstable zero's of C(z) and F(z) into the unit circle. 
In updating ~(t), the residual is used instead of the prediction 
error. 

- Switching from a Pseudo Linear Regression (PLR) to a 
Gauss-Newton scheme has been bull t in to circumvent possible 
convergence problems when the initial estimate is far from the 
optimum. 

- To achieve accuracies comparable to the iterative version of the 
PEM algorithm, re-iteration of the data has been built-in. This, 
of course, is not suitable for real-time application. 

Some notes on equation error and output error methods 

Depending on the selected parametrisation in (5.2.18) we may speak 
of equation error type methods (F(q- 1 ;9) ;J) or output error type 
methods (A(q- 1 ;9) ;J). 
Comparing these types, we may note the following: 

Simple ARX-type equation error models may be estimated using 
ordinary least squares, see Section 5.3. Therefore, they are 
computationally more attractive than output error models, which 
usually require non-linear optimisation techniques and which 
may suffer from local optima. 

- Output error methods explicitly minimise a direct measure for 
the model performance in simulation. 
An important property of equation error methods is, that for 
low-pass processes more weight is put at high frequencies. This 
is demonstrated by Wahlberg & Ljung [1986), using an expression 
for the limiting criterion function in the frequency domain. It 
has been shown by Van den Hof & Janssen [1985] that in the time 
domain (under certain assumptions) equation error methods fit 
the initial set of Markov parameters. For output error methods 
the weight is averaged over the frequencies. 
For output error models of type (5.2.18). where the process and 
noise transfer function are independently parametrised, and the 
system operates in open loop, it can be shown that the process 
transfer function converges to the "true" transfer function 
(assuming an exact fit is possible) even if the noise filter is 
not parametrised appropriately. 

-89-



5.3 Least Squares Methods 

For the quadratic criterion function (5.2.1) and the special case 
that the prediction error is linear in the parameters, the (unique) 
minimum of V(9) can be computed directly, using a Least Squares 
method. We will briefly discuss two cases. 

ARX-model 

In the case of an ARX-model (2.6.1), the prediction error can be 
written as: 

e(t) = -A(q- 1 ;9)y(t) + B(q- 1 :9)u(t) 
T 

:= 'f! (t)9 

which is of the equation error type. 

(5.3.1) 

The parameter 9 may be computed directly from the normal equations 
(2.4.13). A direct Least Squares method for ARX-models, using the 
QR-decomposition instead of directly solving the normal equations, 
is implemented in the PRIMAL module DLS. 

The Least Squares problem may also be solved in a recursive way, 
using the algorithm (5.2.17), and substituting _,(t) = !fl(t). The 
recursive algorithm is utilised in Cuidorzi 's method, [Cuidorzi, 
1975] and is implemented in the PRIMAL module CUIOORZI, [Renes, 
1984]. 

The estimation of the parameters in equation error models has the 
advantage of moderate computational cost and, more important, no 
numerical optimisation algorithms are needed, but instead the global 
minimum is found directly. However, in general the results will be 
biased, see (2.4.15). 
Another cause of problems may be the emphasis put on fitting the 
high frequency part of the transfer function, which may result in a 
bad simulation model if only the initial Markov parameters are 
estimated correctly (see the previous section). 
If. for instance, the process responses are slow compared to the 
sampling interval, an equation error method may find a good one step 
ahead prediction by extrapolating the values of past outputs. 
However, the output error will generally be large. 

To prevent biasedness, the model may be extended with a noise filter 
H(q- 1 ;9). In this case the regression vector !fl(t) is no longer 
independent of 9 and one has to resort to the general PEM. 

FIR-model 

For the FIR-model (2.6.2), the prediction error can be written as: 

e(t) = y(t)- B(q- 1 ;9)u(t) (5.3.2) 
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In this case e(t) represents the output error. The parameters of 
B(q- 1 ;6) have a direct physical interpretation, being the finite 
impulse response parameters (i.e. Markov parameters) of the model. 
As with the ARX-model, the Least Squares method is implemented in an 
direct way (module DLS) and in a recursive way (module MARKOV), see 
[Van der Linden & Renes, 1989e]. 

The estimation of the Markov parameters has several important 
properties. 

Provided the inputs are independent of the output noise. the 
parameters are asymptotically correctly estimated, irrespective 
of the noise properties. 
In the case of a persistently exciting input signal of 
sufficient order, the solution is unique. 

- To get a good fit of the impulse responses of the process, the 
degree of B(q- 1 ;6) must generally be chosen high. 

- The advantage of the high order is that the user is not 
confronted with difficult choices concerning order or structural 
indices. Furthermore, delays may be estimated within the model 
set as zero coefficients of B(q- 1 :6). 
The method is therefore especially useful if little knowledge of 
the process behaviour is yet available. 

- The large number of parameters makes the method unsuited for 
short datasets and for low-informative inputs. 

If successful, the Markov parameter estimation produces a model 
showing good simulation behaviour. However, due to its high order 
the model is usually not immediately suited for its intended use. 
Therefore, it should be reduced to a low order model by using 
realisation techniques, or, alternatively, 1t may be used as an 
initial estimate in the estimation of a lower order model, [Backx, 
1987]. 
In PRIMAL. realisation methods based on the singular value 
decomposition of the Hankel matrix have been implemented, [Zeiger & 
McEwen, 1974: Damen & Hajdasinski. 1982: Kung, 1979: Cerlings, 
1987]. 

The basic algorithm is given below: 
Civen a finite dimensional block Hankel matrix H, composed of Markov 
parameters. The singular value decomposition of this matrix is 
computed: 

(5.3.3) 

In order to approximate the high-order model with an n-dimensional 
state-space model, only the first n singular values are taken into 

i-1 account. Substituting M1 = CA B, the Hankel matrix can be written 

as the product of the observability and the controllability matrix. 
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The matrices of the state-space model can then be constructed with: 

A = (~ )-1/2 UT H V (~ )-1/2 
n n s n n 

B = (~ )1/2 VT E 
n n p 

C = E U (~ ) 1/ 2 
q n n 

D = Mo 

where ET = [ I I 0 ]. E = [ I I 0 ]. 
p p q q 

V ,U are the first n columns of V. resp. U. n n 
! is the upper left nxn matrix in !. n 

(5.3.4) 

Hs is a shifted Hankel matrix. found by shifting all columns p 

places to the left. Its construction may be used to create several 
variants. see Damen & Hajdasinski [1982]. 
The realisation method leaves the user with the question which 
singular values are to be considered negligible. This problem may be 
tackled by inspecting the singular values and their ratio's, [Backx, 
1987], and has been implemented in the PRIMAL module HANKDIM. It is 
experienced that in the case of "noisy" Markov parameters the 
decision may not be clear. 
If the model is intended to show a good simulation performance, we 
may take a more suitable approach. by simulating with realisations 
of different dimensions, using the process data. The relative output 
error criterion, in combination with a penalty on the number of 
parameters (such as the AIC criterion), is used to select the 
appropriate dimension. The computational cost of this approach is 
moderate, since the singular value decomposition of the Hankel 
matrix just has to be computed once. 

5.4 Instrumental variable methods 

The Bootstrap IV. including a grid search for the delays. is 
implemented in PRIMAL as an iterative method in the module CIV. [Van 
der Linden & Renes, 1989e], using an instrument vector of delayed 
inputs and undisturbed outputs, computed by filtering the inputs by 
the process model obtained in the previous iteration step, cf. 
[Young, 1984]. 

The four-step (approximately optimal) IV will be briefly discussed 
below. 

A four-step IV 

Based on the model: 
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taking the full polynomial form of (2.6.1). we obtain the 
corresponding regressions: 

T y(t) = ~ (t)9 + v(t) 

e(t) = ~T(t)~ + v(t) 

(5.4.3) 

(5.4.4) 

Consider the IV-method, with a matrix of instruments Z(t) and a 
stable data prefilter F(q- 1

): 

N N 

9 = [ l Z(t)F(q- 1 )~T(9)]- 1 [l Z(t)F(q- 1 )y(t)] (5.4.5) 

t:::l t=l 

Under certain assumptions, including that the "true" system belongs 
to the model set, it can be proved that for any IV of this type, it 
holds that the asymptotic parameter covariance matrix: 

opt 
PIV ~ PIV ' 

meaning that the difference matrix is non-negative definite, 
[SOderstrOm & Stoica, 1983a, 1983b]. 

(5.4.6) 

Equality is achieved for the following choices of F(q- 1) and Z(t): 

Z(t) = [A-tWt(q-t)~T(t)]T 

F(q-1) = u-1(q-1) 

(5.4.7) 

where ~(t) represents the noise-free counterpart of ~(t), i.e. 
replacing the delayed outputs by the their corresponding undisturbed 
equivalents. 

The optimal IV estimation cannot be applied directly. since 

knowledge of the ~(t) and W 1(q- 1
) is required to filter the data 

and generate the instruments. To overcome this problem a multi-step 
algorithm has been proposed by Soderstrom & Stoica [1993a]. 

Step 1: 
Apply an arbitrary IV-method to (5.4.3). 

A 

The resulting estimate will be denoted 81. 
Step 2: 

Apply a prediction error method to estimate ~ in 
T ,.. ,.. " 

y(t) = ~ (t)B1 + H(q- 1 :Bt.~)e(t:9t.~). 
A A 

Denote the result ~2 • In the MIMO-case estimate A2 

- 93 -



Step 3: 

Compute the optimal IV-estimate, as given by (5.4. 7), using at 
to form :P(t). and el. . ~2 to form H(q- 1

) and Aa to replace A. 
A 

The resulting estimate will be denoted a~. 
Step 4: 

A 

Repeat step 2 withe~. 

This multi-step algorithm offers a certain amount of freedom in its 
construction. For the implementation in PRIMAL [Berben, 1987] the 
following choices were made. A full polynomial model was 
parametrised as. [Jakeman & Young, 1979]: 

T 9 =col [ A1, T T 
.. • Ana' Bl' (5.4.8) 

For the first step, a bootstrap IV technique which starts-up with a 
Least Squares method, has been implemented. For Step 2 a Pseudo 
Linear Regression (PLR) is used, [Stoica, 1984]. 

Remarks: 

- The optimal accuracy of the IV-method is proven by ~derstrom & 
Stoica [1983a, b] under the restriction that the true system 
belongs to the model set. If this is not the case, no general 
statements can be made about the accuracy. 

- In general it may be expected that an IV-method will perform 
less well than a corresponding PEM. [Soderstrom, 1989]. However, 
the IV-method is computationally more efficient, because the 
process and noise transfer function are estimated separately. 

5.5 Effective new variants 

As has been experienced, the identification methods discussed in the 
previous sections may perform badly if we are dealing with short 
datasets and a relatively high noise level, such that: 

- The estimation of high-order models (such as the FIR model) will 
fail to deliver a satisfactory model. 
It is difficult to estimate possible delays. 
Equation error methods may not be appropriate. 

- Estimation of low-order models may show bad convergence. 

To find a suitable linear model, requiring a good simulation 
performance. we turn to output error methods. In practical 
implementations of output error methods, usually. an equation error 
method is employed as a start-up method, optionally followed by an 
IV-method. However, the parameter vector at which the minimal 
equation error is found, may be far from the parameter vector 
minimising the output error criterion. As a result the output error 
method may have problems, showing bad convergence and/or convergence 
to a local minimum. 
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In these cases a more suitable start-up method, which also minimises 
the output error criterion, is more appropriate. 

In this section we will discuss a start-up method based on the 
output error, which is robust, in the sense that it cannot diverge, 
and which is also well-suited to estimate the delays. 
The principal idea is to combine a Monte-Carlo approach with Least 
Squares, optionally followed by a zero-order optimisation method. 

A Monte-Carlo approach 

Consider the MISO model: 

p 

y(t) = 2 
i.=1 

Bt.(q- 1 ;9) 

Ft.(q- 1 ;9) 

where dt. denotes the delay. 

+ v(t) 

We can separate this model into two components: 

p 

y(t) = 2 Bi.(q- 1 ;9)wt.(t) + v(t) 

l=1 

(5.5.1) 

(5.5.2) 

(5.5.3) 

Equation (5.5.3) is linear in the parameters and can be solved using 
a Least Squares method. We now introduce the following Monte-Carlo 
algorithm, cf. [Renes & Vander Linden, 1987]: 

Step 1: 
Randomly select the required number of time constant values and 
delays from the space of feasible values. 

Step 2: 
Compute the signal w(t) = [w1(t), w2(t), ... , wp(t)], 

using (5.5.1). 
Step 3: 

Minimise the prediction error criterion (5.2.1), using an 
ordinary Least Squares method. 

Step 4: 
Compute the output error variance and accept the model if its 
value is smaller than the current value. 
Repeat from step 1, until a certain number of iterations is 
made. 

This algorithm is strikingly simple, and it can be implemented very 
efficiently. Note that it has the desired property that it: 

cannot diverge, 
is capable of "escaping•• from local optima, 

- uses the same modelstructure as the output error PEM, 
and makes no assumptions concerning the noise properties. 

- 95 -



The major drawback is, of course, that it may take a very large 
number of simulations to cover the parameter space sufficiently 
well. This is especially true if the number of parameters is large. 
Therefore the algorithm is suited only for estimating low-order 
models. It should be noted that under the conditions stated above, 
that is precisely what we want. 

Simulation experiments show that in almost all cases, a few hundred 
iterations are sufficient to attain a solution near the optimum. 
The Monte-Carlo approach performs well. owing to the Least Squares 
step: 

- The LS method scales the impulse responses to each input to the 
appropriate ranges. If an input has a small effect on the output 
the LS step will reduce its influence, and consequently badly 
selected poles for this input have little effect on the 
performance. 

- If the degree of the a-polynomial is sufficiently high, the LS 
step compensates badly selected poles by zeros. 

The performance of the Monte-carlo method can be further optimised 
by switching to a zero-order search method (e.g. the simplicial 
method, cf. (Box, Davies and Swan, 1969]). The method of Box finds 
the optimum of a function by moving and deforming a simplex in 
multi-dimensional parameter space, according to rules based on the 
function values in the vertices. 
Zero-order methods have the advantage that mixed integer/real 
problems may be handled, so that the delays and parameters of the 
F-polynomials in (5.5.1) may be simultaneously optimised. 

The procedure described above has been implemented in PRIMAL as a 
stand-alone method in module MCR, and as the start-up method of an 
output error PEM in module MCRPEM. See Chapter 6 for their 
performance in practice. 

Remark: 
Monte-Carlo and zero-order methods are not very popular in the field 
of identification. Typically, the literature on this subject dates 
back to the 1960's. However, as the results prove, the method 
produces results comparable to the other investigated identification 
methods in a computation time that is comparable to the high-order 
methods. Therefore we think that, taking into account the simplicity 
and robustness of the method, the method is especially useful in 
practical applications to get estimates for the delays and to give a 
first estimate of the achievable model performance. 
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CHAPTER 6 CASE STUDIES 

6.1 Introduction 

The Experimental Modelling strategy described in Chapter 3, and 
implemented in the PRIMAL package, has been applied to a variety of 
industrial processes. 
In this chapter we discuss the application of PRIMAL in three cases: 

case I an industrial glass feeder process. 
case II a para-xylene crystallization process. 
case III a toluene-xylene distillation process. 

For each case we will discuss the identification experiments, the 
results obtained in the identification and (in cases II and III) the 
performance of the control system. 

Since (part of) the models were to serve feed-forward control, the 
output error was chosen to be the primary criterion of assessment in 
identification. 
The results of the identification methods will be presented in 
tabular form. Each entry consists of: 

a) The (PRIMAL) name of the method, see Chapter 5 and Appendix B. 
(real. : realisation with the HANKEL method, see Section 5.3). 

b) The selected polynomials: A,B,C,D,F (see Section 2.6). 
c) The type of method and model: 

ee equation error type PEM 
oe output error type PEM 
ree : recursive equation error type PEM 
roe : recursive output error type PEM 
iv : instrumental variable method 

d) The selected polynomial degrees: na, nb, nf 
e) the relative output error (defined in Section 3.6) in the 

validation interval and cross validation interval. 
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6.2 Case I An industrial Class Production Process 

This section describes the application of PRIMAL to a Class 
Production Process at Philips. 

Process description 

The process consists of a glass furnace followed by a feeder, cf. 
Figure 6.2.1. In a furnace, quartz sand is melted to produce liquid 
glass. A continuous stream of glass flows out of the furnace through 
a feeder. The main function of the feeder is to cool the glass down 
to a temperature suited for a shaping process. To satisfy the 
requirements for the shaping process the glass at the outlet of the 
feeder, called the spout, must be kept at a constant and homogeneous 
temperature profile. A detailed description of the process is given 
in [Van Vucht, 1987]. 

The control inputs of the feeder for this purpose are: 
The gas flow rate to the burners in the first section. 
The gas flow rate to the burners in the second section. 
The cooling air flow rate. 

l.___COOL AU (CA) Cl 

F~l FA2 FAJ ·--, I 
FLA Fll F21 FJt YRA 

I I r:u .Fkt 
Fl2 F22 m FLI 

Fj12 1 SPOL'T 
FL:! Fj'IJ FRZ I ·temp 

Hit.. 
FM5 

Figure 6.2.1: 
Outline of the glass feeder. The glass enters the feeder at the 
left and leaves the feeder at the spout on the right. 
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The main 
names: 

process inputs and outputs are indicated by the following 

G1: 
G2: 
CA: 
F51: 

measured gas input flow rate to section 1 
measured gas input flow rate to section 2 
measured cool air input flow rate to section 1 
spout temperature (outlet temperature) 

The purpose of eXperimental modelling is to model the dynamical 
behaviour of the temperature profile near the spout in response to 
the inputs listed above, in order to improve its control, see 
[Backx, 1987]. 

The most important dynamical relations are: 

- The relation between the three control inputs and the glass 
temperature at the spout. 

- The relation between the three control inputs and the 
homogeneity of the temperature distribution in the glass, as 
measured by thermocouples in a cross-section of the feeder 
(FL1, Fl2, FMl, FM2. FM3, FM4, FM5, FRl, FR2). 

The exper !mental modelling project was carried out in cooperation 
with and under supervision of the local systems and control group 
PlODS, at Philips. PRIMAL was used to supervise the design and to 
control the eXperiments, to monitor the eXperiment and to carry out 
the on-line analyses. 

In the sequel, the results obtained with the various identification 
methods in PRIMAL are discussed. The analyses with PRIMAL were 
carried out in 1987, independently from and in parallel to the work 
of Backx [1987}, who used an identification technique based on 
Finite Impulse Response (FIR) estimation and the subsequent 
estimation of a so-called MPSSM-model. 

Instrumentation 

The process serves as a pilot plant for testing new operating 
procedures and is therefore well-equipped with sensors. A 
transportable computer system taking care of analog data 
pretreatment, analog to digital conversion, and a front-end computer 
for real-time data acquisi tlon, were coupled to the conventional 
instrumentation system of the process, cf. Figure 6.2.2. 
A VAX/VMS computer was coupled to the front-end to perform the 
analyses of the measured data. In this second system the PRIMAL 
package was installed. A communication protocol was developed to 
exchange commands and experiment data between PRIMAL and the 
front-end in real-time. 
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I Process I I 
Analog 
instrumentation 
system 

I 
I 

Programmable 
AOC's and DAC's 

I 
Front-end 
data acquisition 
computer (PCS) 

! 
Analysis Computer 
with. PRIMAL 

I 
User 

Figure 6.2.2: 
Schematic overview of the experiment set-up 

Identification Experiments 

On the basis of a priori knowledge and preliminary experiments. 
identification experiments were carried out involving small, 
independent PRBS, simultaneously imposed on the three inputs. About 
45 output signals were measured with a sampling interval T0 = 50 s. 
The PRBS had a clock period of 500 s. 
12472 samples were collected during about 7 days of experiment time. 
In Figure 6.2.4, some of the collected signals are shown. Figure 
6.2.3 lists a part of the experiment log book, kept automatically by 
PRIMAL. 
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20MAY87 11 25 03 
20MAY87 11 26 25 
20MAY87 11 31 03 
20MAY87 11 32 23 

20MAY87 11:32:24 

20MAY87 11:32:25 

20MAY87 11:32:48 
20MAY87 12:22:39 
20MAY87 12:27:01 
20MAY87 12:28:31 
20MAY87 13:57:11 
20MAY87 13:57:11 
21MAYS7 11:12:06 

21MAY87 11:19:27 

21MAY87 11:22:07 
21MAY87 11:23:09 
21MAY87 11:23:09 
21MAY87 11:54:27 
21MAY87 11:56:43 
21MAY87 12:01:59 
21MAY87 12:02:17 
21MAY87 12:12:00 
21MAY87 12:48:35 

21MAY87 14:36:48 

21MAY87 14:40:03 
21MAY87 14:40:30 
21MAY87 14:40:30 

21MAY87 15:24:40 
21MAY87 15:40:23 
21MAY87 15:43:22 
21MAY87 15:44:54 

21MAY87 15:54:27 
22MAY87 09:09:56 

22MAYS7 09:25:28 
22MAY87 09:57:06 
22MAYS7 10:11:58 

Figure 6.2.3: 

SESSION BEGIN 
fEDIT PRBNS130.EXP 
tLOAD PICOS WITH PRBNS130 
fPUT PRBNS(WIPTR•l0,AMPL-40,SEEP•4234) 

ON PICOS.GAS 1 IN:10 
fPUT PRBNS(WIDTH•l0,AMPL-40,SEEP•7645) 

ON PICOS.GAS 2 IN:lO 
fPUT PRBNS(WIDTH•l0,AMPL•40,SEEP•26911) 

ON PICOS.AIR IN:10 
fSTART PICOS -

* Something goes wrong. 
* There is a measurement problem with the qasflows. 
* Also with cool air sample range 10-30 
* Remark of 12:2' irrelevant 
• Cool air corrected by Roel 
• All signals inspected, cool air shows some oscillation 

near sample 1000. Also osciilation in FA6, Fl_AIR and 
F3l. 

• I'm going to look if the oscillations are visible after 
filtering the data. 

fAPPLY FFT TO PlCOS. DATA 
* FFT was applied to raw data of F31, AIR_IN, COOL_AIR, F51 
>>Application FFT;OOl stopped 

fAPPLY PREFILTER TO PlCOS.PATA 
>>Application PREFILTE;OOl stopped 

fAPPLY FFT TO PREFILTER 
>>Application FFT;002 stopped 
• F2 GAS and F2 AIR get stuck at the low side 
• On-sample 181' the fysical offset of F2 AIR, F2_GAS 

raised from 20% to 70%. -
* On sample 1936 F2 AIR, F2 GAS reset by PUNIC-card 

adjustment. - -
fAPPLY CORRELATOR TO'PREFILTER 

>>Application correlat;001 stopped 
* First attempt to see correlation with the spout F5l 

fAPPLY PREFILTER TO PICOS.PATA 
fAPPLY CORRELATOR TO PREFILTER· 
fAPPLY MARKOV TO PREFILTER 
fSTOP PREFILTER 

* Not much to be seen yet 
• Operator remarks: 7.30u (sample 3100) low spout 

temperature caused high spread in tube diameter. 
fAPPLY PREFILTER TO PICOS.PATA 
fAPPLY CORRELATOR TO PREFILTER 

* First correlation results, 
Fl_GAS*FA3 acceptable, COOL_AIR*FA3 absent11, ••• 

Part of the original log book kept by PRIMAL. 
(The remarks have been translated into English). 

The on-line signal analyses were mainly used to monitor the 
experiment and check the existence of correlation between the inputs 
and the important output signals. 

- 101 -



"c 

, .... 
..... .. o Bll 

1•2• 

... :a • 

... !1! .. 
Q 

Figure 6.2.4(a): 
Class temperature in the furnace preceding the feeder. 
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Figure 6.2.4(b): 
Part of the PRBS on Cl, CA and C2. 
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Figure 6.2.4(c): 
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Class temperature F12 in the beginning of the first section. 
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'c 

F22 

D 10000 

Figure 6.2.4(d): 
Glass temperature F22 in the middle of the first section. 

'c 
•cos 

1000 Fl!3 

... 

Figure 6.2.4(e): 
Glass temperature FM3 in second section. 

'c 

FSI 

aooo 10000 

Figure 6.2.4(f): 
Spout temperature F51. 
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Data conditioning 

The data conditioning consisted of two steps .. In the first step the 
data were corrected for measurement errors, such as outliers. 
Several output signals were disturbed severely by outliers. Figure 
6.2.5 illustrates the effect of automatic outlier correction using 
the method described in Chapter 3. 
The inputs to the model were measured signals (C1, CA. C2), which 
were corrected for the sensing delays. 
After the outlier and delay correction, the power spectra of the 
inputs and outputs were computed to determine the bandwidths of the 
measured signals. 
The results are shown in Figure 6.2.6 for three representative 
signals. As is clear from this picture, the sampling rate is high 
enough for all dynamical interactions, and the clock frequency of 
the PRBS is sufficiently high for all glass temperatures. 

The results of the first data conditioning step indicate that the 
data may be reduced by a factor of 10 (in the time). To achieve 
this, the data is filtered with a sharp (high-order) low-pass 
FIR-filter to eliminate all frequencies higher than 1/(S*To) Hz. 
After application of this· digital anti-aliasing filter, the excess 
data is reduced by selecting 1 sample out of every 10 samples. 

Before removing trends in the data that were not caused by the PRBS, 
but by slow changes in . the furnace and the environmental 
temperature, the cross correlation functions of the control inputs 
and the temperatures were computed. 
These functions were used to get a first impression of the delays 
and time constants involved, and further to check the causality of 
the input-output relations. 
The results of the correlation analyses for some signals, are shown 
in Figure 6.2.7: 

- (a) gives an impression of the impulse responses, since the 
inputs are nearly white. As expected, the effect of C2 is much 
faster than C1 and CA. 

- (b) the correlation functions of the inputs and the output 
temperatures in the cross-section of the second section are all 
similar. 

- (c),(d) the correlation functions of C1, CA and the temperatures 
at the end of the first section are nearly identical, with 
opposite sign, which implies that their effect is probably due 
to the same physical principle. This result indicates that it 
may be difficult to control the vertical temperature gradient in 
the glass. 
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Figure 6.2.5: 
(a) A part of signal F31 corrupted by outliers. 
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(b) F31 after automatic outlier correction with the median 
filter, see Section 3.3.4. 
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Figure 6.2.6: Spectra of (a) Cl, (b) FRA and (c) F51. 
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Figure 6.2.7(a): Cross-correlations between the inputs and F51 . 
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Figure 6.2.7(b): Cross-correlations between C2 and temperatures in a 
cross-section of section 2. 
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Figure 6.2.7(c): Cross-correlations between Cl and FA3, F31 and F32. 
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Figure 6.2.7(d): Cross-correlations between CA and FA3, F31 and F32. 
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Identification results 

After conditioning the data, various identification methods in 
PRIMAL have been applied, all using samples 1 .. 750 of the (reduced) 
dataset. To evaluate the performance of the methods, the output 
error was computed, under equal conditions, over the identification 
interval (1 .. 750) and over a cross-validation interval (750 .. 1247). 
The results are shown in Table 6.2.8. 

method 

1 RPEM BF 
2 GUIDORZI BA 
3 real. n::::3 
4 MARKOV B 
5 real. n::::3 
6 DLS B 
1 real. n::::3 
8 DLS BA 
9 GIV BA 

10 MCR BF 
11 IVM BACD 
12 MCRPEM BF 
13 MCRPEM BF 

Table 6.2.8: 

relative output error (mre) 
nf 

type na nb validation 
cross­

validation 

roe 5 5 3.1 " 4.8 " 
ree 8 8 2.7 " 3.7 " 

3.2 " 3.2 " 
roe 050 2.3 " 5.4 " 

2.5 " 4.1 " 
oe 050 2.2 " 5.8 " 

2.5 " 4.2 " 
ee 8 8 2.7 % 3.7 " 
iv 6 6 2.7 " 3.2 % 
oe 3 3 2.1 " 3.8 " 
iv 5 4 1.9 " 3.4 " 
oe 3 2 1.6 " 3.6 " 
oe 4 4 1.4 " 4.1 " 

Representative results of different identification methods in 
modelling F51 on a validation and cross-validation interval. 

Table 6.2.8 reveals that all identification methods achieve a small 
output error, which indicates that the process can be described 
accurately by a linear model and that the signal-to-noise ratio is 
excellent. 
The lowest output errors on the identification interval are obtained 
by the output error method MCRPEM (Method 12, 13) arid the four-step 
lV-method IVM (Method 11), using the delays estimated by MCRPEM. The 
impulse responses estimated by these methods are presented in Figure 
6.2.9. As. is the case here with all methods, the differences between 
the impulse responses are small. The output error methods arrive at 
a lower output error by modelling a longer tail of the impulse 
responses of Gl and CA. This low-frequency component of the impulse 
responses proves to .. be artificial, causing a slightly higher output 
error in the cross-validation. 
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Remarks about the methods: 

Impulse response estimation works well and may be used to 
provide first estimates of the delays and the model orders. 
In the realisation step a third-order model proves to be 
sufficiently accurate. 

- The Monte-Carlo method (MCR) provides good estimates of the 
delays and obtains a good model, usually within 100 trials. Its 
performance and efficiency is comparable to the other methods. 

- Because the errors are small. the best models found with the 
equation error techniques show practically the same impulse 
responses as the models found by the IV- and output error 
techniques. 

Figure 6.2.10 presents the fit of Model 11, see Table 6.2.8, on the 
validation and the cross-validation interval. The output error has 
mainly low-frequency components and is uncorrelated with the inputs. 

In the identification of the transfer functions to the temperatures 
in a cross section of the glass bed (see Figure 6.2.1), similar 
impulse responses and accuracies were obtained. The results will 
therefore not be presented here. Backx reports similar results, 
obtained with the MPSSM-approach, see [Backx 1987, 1989]. 
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Figure 6.2.9: 
(a) Impulse responses of Model 11 (estimated by IVM) 
(b) Impulse responses of Model 12 (estimated by MCRPEM) 
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Figure 6.2.10: 
Fit of Model 11 on the (a) cross-validation interval, (b) 
validation interval. F51M: model output, OE: output error 

Conclusions 

The dynamical behaviour of the output temperature F51 of the feeder 
process, which - on the basis of the physical principles - should be 
regarded as a highly non-linear, distributed parameter system, could 
be approximated well with a third-order linear black box model. In 
the identification dataset about 96 % of the energy in the output 
signal is explained by the model. 
Owing to the excellent signal-to-noise ratio, and the conditioning 
of the data, all methods attain a similar output error level. 
Comparison of the impulse responses shows that the small differences 
between the results of the methods are mainly found in the 
low-frequency part (tail) of the impulse responses. 

Looking back upon the modelling exercise as a whole, we may further 
conclude, that: 

- The impulse responses provide information about the delays in 
the responses of the spout temperature to the inputs. 

- More surprisingly, the time constant values are very large 
compared to residence time of the glass, leading to the 
conclusion that the storage of energy in the wall of the feeder 
was a much more important factor than was expected. 

- Remarkably and unexpectedly, the cool air flow rate and the 
energy input by the gas burners in the first section show 
comparable dynamics, indicating that the cool air input 
decreases the radiation temperature of the wall of the feeder. 

Here we see but a few examples of how black box methods may provide 
valuable physical ("white box") insight. 
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6.3 Case II A Para-Xylene Crystallization Plant 

This section describes the application of PRIMAL to an industrial 
crystallization plant. 
The para-xylene production plant of EXXON Chemical Holland in 
Rotterdam isolates para-xylene from a mixture of para-. ortho­
and meta-xylene, toluene and benzene. The process makes use of 
the high melting point of pure para-xylene (13 "C) with respect 
to the melting points of the other components (-95 to -25 •c). 

Process description 

The process consists of several stages of drums and centrifuges, 
see Figure 6.3.1. In each stage a slurry flow enters a set of 
centrifuges, where it is separated in a cake flow (consisting 
mainly of para-xylene crystals) and a liquid flow, called the 
filtrate. 

Figure 6.3.1: 

feed flow 
l 

product 

input 
PE2 

STACE I 

STACE II 

STACE Ill 

Schematic overview of part of the Para-Xylene Crystallization 
Plant. FD = filtrate drum. SD = slurry drum. 
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The investigation of the process dynamics has concentrated on the 
second stage. A better control strategy had to be developed for 
the purity and solid content of the flow leaving the second-stage 
slurry drum (SD2). The temperature of the flow is taken as a 
measure of its purity and the goal is to keep this temperature 
(T3) near its set point, while maximising the solid content (A3) 
of the flow. 

The solid content and temperature of drum SD2 are controlled by a 
filtrate flow of liquid para-xylene, that is recycled from the 
third stage centrifuges and that is heated in a heat exchanger. 
The control inputs are: 

the filtrate recycle-flow rate (FF3). 
the temperature of the filtrate flow (FT3). 

A serious ·complication was that the flow rate, temperature and 
solid content of the cake flow entering the second stage slurry 
drum could not be measured. To cover this problem, the power 
required by the centrifuges (PE2) was taken as an indirect 
measure of the flow. The temperature (T2) and solid content (A2) 
of the slurry flow just after the first-stage slurry drum were 
taken as measures of the temperature and solid content. 

On the basis of an ·investigation of the available process 
know ledge and a physical model based on first principles, cf. 
[Hogendoorn, 1988]. experiments were planned to find the 
dynamical responses of A3 and T3 to: 

the 2 control inputs FF3 and FT3. 
the 3 inputs A2, PE2, and T2. 

Identlflcatlon Experiments 

During the experiments the process had to stay within the 
specified range, so only small test signals were allowed. On the 
basis of a priori knowledge and preliminary experiments. PRBS 
were superimposed upon the set points of the slave controllers of 
FF3 and FT3. To get information about the dynamical influence of 
variations in the cake flow, a PRBS was also superimposed on a 
valve controlling the slurry flow to the second-stage 
centrifuges. The effect of the flow variations is measured by 
PE2. 

Inputs 

FF3 (PRBS 1) 

FT3 (PRBS 2). 

PE2 (PRBS 3) 

A2 

T2 

outputs 

A3 
model 

T3 
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The purpose of the identification experiment was to generate data 
for modelling the output A3. The test signals were designed to 
cause approximately equivalent variations in this output. To get 
accurate information about the dynamics, minimal PRBS clock 
periods of 5 minutes and 10 minutes were taken. 14 signals were 
measured with a sampling interval of 60 seconds. 

During the experiment, signal analyses and identification methods 
were used to get preliminary models and to check the information 
contents of the data. It was decided to reduce the amplitude of 
the test signal in FT3 and to eliminate the test signals after 48 
hours. Subsequently, 17 hours of normal plant operation were 
measured. Figure 6.3.2 gives an overview of the experiment data. 
Figure 6.3.3 presents their spectra. In order not to reveal 
proprietary information no physical ranges of the inputs and 
outputs are presented. 

PE2 

FT3 

!I 20 4!1 60 

TIME [KOURSl 

Figure 6.3.2 (a): 
The inputs with the test signals: FF3, FT3 and PE2. 
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Figure 6.3.2(b): The solid contents A2 in the first stage. 

Figure 6.3.2(c): The temperature T2 in the first stage. 

A3 

0 eo •o 

Figure 6.3.2(d): The solid contents A3 after slurry drum 2. 
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Figure 6.3.2(e): The temperature T3 after slurry drum 2. 
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Figure 6.3.3 (a)-(d): 
Spectra of (a) FF3, (b) FT3, (c) PE2, (d) A2. 
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Figure 6.3.3 (e-f): 
Spectra of (e) A3, (f) T3. 

Data conditioning 

The data were corrected for measurement errors, measurement 
delays and trends. Analyses of the resulting data and of a 
dataset that was reduced to a sampling interval of 5 minutes, 
showed comparable results. 

Identification results 

A variety of identification methods in PRIMAL have been applied 
to the data. All methods have used 35 hours (samples 1 . .450 of 
the reduced dataset) for identification. To evaluate the 
performance of the methods, the output error was computed, under 
equal conditions, over the identification interval and a 
cross-validation interval of 28 hours (samples 450 .. 786), of 
which 17 hours without test signals. 

Results for the solid content A3 

Initially, the identification was carried out for the three 
inputs with the PRBS test signals. This resulted in an output 
error of about 45 % . Correlating the output error with the other 
inputs showed that the solid content A2 had a significant 
influence on the behaviour of A3, reducing the output error to 
about 15 % , which immediately indicated the importance of taking 
the disturbances in the first stage into account. 

Representative results for various identification methods in 
modelling A3, using FF3, FT3, PE2 and A2 as inputs, are shown in 
Table 6.3.4. 
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nf relative output error (mre) 
method type na nb validation cross validation 

1 RPEM BF roe 2 2 !fl. % 16 % 
2 CUIOORZI BA ree 5 5 13 % 18 % 
3 MARKOV B roe 0 15 12 % 19 % 
4 real. n=2 16 % 17 % 
5 MCR BF oe 1 1 15 % 18 % 
6 DLS BA ee 4 4 14 % 17 % 
7 CIV BA iv 5 5 14 % 14 % 
s MCRPEM BF oe 1 1 14 % 17 % 
9 IVM BACD iv 4 4 13 % 14 % 

10 MCRPEM BF oe 2 1 13 % 16 % 
11 DLS B oe 0 15 12 % 18 % 
12 real. n=2 15 % 17 % 
13 MCR BF oe 2 2 11 % 21 % 

~~ MCRPE.\i BF oe 2 2 10 % 19 % 
DLS B oe 020 10 % 19 % 

Table 6.3.4: 
Representative results of various identification methods in 
modelling the solid content A3, using inputs FF3, FT3, A2 and 
PE2. 

Table 6.3.4 indicates that various identification methods show a 
comparable performance. As expected, the output error methods. 
estimating a high order impulse reponse model (DLS) or a low 
order model (MCR, MCRPEM), realise the lowest output errors. 
However, in the cross validation the best results were obtained 
by the models estimated with the IV-methods. 
Figure 6.3.5 shows the simulated output and observed output of 
the model found by the four-step IV-method (IVM) on the 
identification and the cross validation interval. 

Closer inspection of the models reveals that all methods find 
approximately the same impulse responses. see Figure 6.3.6. 
Civen sufficient freedom, the output error methods find a better 
fit to the data by adding low-frequency components to the impulse 
responses, as can be observed in the tail of the responses (see 
Figure 6.3.6 (c)-(d)). However, in the cross validation these 
low-frequency components prove to be artificial. 

Observations: 

a) Inspection of the results of the equation error methods show 
that the equation error is nearly white. A close 
correspondence of the estimates of equation error methods and 
output error methods may thus be expected. 
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b) The impulse responses show the expected behaviour, an 
increase of the 'hot' filtrate flow FF3 or an increase of its 
temperature FT3 results in a decrease of the solid content. A 
larger cake flow (PE2, A2) results in an . increased solid 
content. The time constant values lie in the range of 10-20 
minutes, corresponding to the mean residence time of the 
liquid in the drum. 

c) Correlating the output error with the inputs reveals that no 
significant correlation remains. Thus, first or second order 
models are sufficient to describe the process' dynamics. 

d) In the identification interval, the relative contribution of 
the inputs to the power of the output signal was FF3: 30%, 
FT3: 23%, A2: 29% and PE2: 18% . 

• 

0 

-· 
.. " 

• 

" 

-· 
.... 

During the period without test signals the model "explains" 
85 % of the output signal and shows a relative contribution 
of the inputs to the output of 19 %, -4 %, 39 %, 38 % 
respectively. 
These results show the importance of taking A2 and PE2 into 
account when developing a new control strategy. 
Figure 6.3. 7 shows the contribution of each input to the 
model output. Obviously. A2 causes the large drops in A3. 

(a) 

" ..... 300 ... ., 
•ttco•o 

(b) 

. .. ., ... ., ace ?QO 

•cca•o 

Figure 6.3.5: 
Observed output A3 and simulated output A3M of Model 9: (a) 
validation interval. (b) cross-validation interval. 

- 117 -



(a) ... (b) 

... ... 
•G.r .... 
.... .... - - ·- - - -rue .... ... ... . 

.... 
~.Ot 

Figure 6.3.6: 
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(a) Impulse responses of Model 9 (estimated by IVM). 
(b) Impulse responses of Model 10 (estimated by MCRPEM). 
(c) Tail of the impulse responses of Model 9. 
(d) Tail of the impulse responses of Model 10 . 

Figure 6.3.7(a): Contribution of FF3 to A3 ( total dataset). 
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Figure 6.3.7(b): Contribution of FT3 to A3 (on the total data) . 
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Figure 6.3.7(c): Contribution of PE2 to A3 (on the total data) . 
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Figure 6.3.7(d): Contribution of A2 to A3 (on the total data). 
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Results for the temperature T3 

Although the identification experiment was intended to model the 
solid content (A3), the intermediate analyses of the data 
indicated that a satisfactory model could also be found for the 
temperature T3. 
The results showed a negligible influence of A2, but a large 
contribution of T2 to T3. Therefore, models were estimated using 
FF3, FT3. PE2 and T2 as inputs. 
Representative results for T3 are presented in Table 6.3.8. 

nf relative output error (mre) 
method type na nb validation cross-validation 

1 CUIDORZI BA ree 6 6 24 % 32 % 
2 RPEM BF roe 2 2 21 % 26 % 
3 MARKOV B roe 0 20 20 % 33 % 
4 real. n:3 33 % 33 % 
5 IVM BACD iv 3 3 27 % 33 % 
6 DLS BA ee 6 6 25 % 33 % 
7 CIV BA lv 4 4 24 % 29 % 
8 MCRPEM BF oe 2 2 22 % 29 % 
9 MCRPEM BF oe 2 3 21 % 26 % 

10 MCRPEM BF oe 2 4 19 % 31 % 
11 DLS B oe 0 20 17 % 32 % 
12 MCR BF oe 3 3 16 % 38 % 

Table 6.3.8: 
Representative results of various identification methods in 
modelling T3, using inputs FF3, FT3. PE2 and T2. 

The output error methods obtain the best results in the 
validation and cross validation interval. 
Comparing the impulse responses reveals that the response to T2 
is nearly identical for all methods. The responses to FT3 and PE2 
differ slightly and the response to FF3 varies considerably. 
This behaviour can be explained by looking at the relative power 
contribution of the inputs to the output: FF3: 3 %, FT3: 23%, 
PE2: 18%, T2: 56 % . Due to its small contribution, the response 
to FF3 is not estimated reliably. See Figure 6.3.9, for the 
impulse responses of Model 9, estimated by MCRPEM. 
The output error methods estimate a longer tall in the impulse 
responses of PE2 and FT3, compared to the IV- and equation error 
methods. This results in an improved fit of the low frequency 
disturbances in both the validation and the cross validation 
interval. 
The simulated output of model 9 in Table 6.3.8 is presented in 
Figure 6.3.10. For this model the contribution of each input to 
the model output is presented in Figure 6.3.11. 
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Fi~re 6.3.9: Impulse responses of Model 9 . 
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Figure 6.3.10: Observed output T3 and simulated output T3M, by 
model 9 in the (a) validation interval, (b) cross validation 
interval. 
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Figure 6.3.11 (a): Contribution of FF3 to T3 (total data set). 
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Figure 6.3.11 (b): Contribution of FT3 to T3 (total dataset) 
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Figure 6.3.11 (c): Contribution of PE2 to T3 (total dataset). 
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Figure 6.3.11 (d): Contribution of T2 to T3 (total dataset). 
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Observations: 

a) The responses show that an increase of the temperature of the 
filtrate flow (FT2) or the cake flow temperature (T2) leads 
to a delayed increase of T3. An increase of the (cold) cake 
flow rate (PE2) has the expected negative influence on T3. 
Increasing the hot filtrate flow rate (FF2) leads to an 
increase of T3, although this effect is small compared to the 
effect of the other inputs. The time constants lie in the 
range of 20 minutes to 1 hour, which was larger than 
expected. 

b) The impulse response estimation results in "noisy" Markov 
parameters due to the short identification interval compared 
to the length of the response. 

c) The four-step IV-method has problems with instability of the 
estimate in the third step in several cases. 

Control system design 

The parameters of the estimated first-order models were used in 
the implementation of a "dynamically reconciled" control system, 
cf. [Bartman, 1981], where disturbances in T2, A2 and PE2 are 
compensated for by feed-forward. The remaining disturbances are 
taken care of by the feed-back loop. 

controller FF2 plant A3 

FT2 

The performance of the controller was monitored during eight days 
and compared to the performance during conventional operation, 
see Figure 6.3.12. 
The new control system reduced the standard deviation of A3 and 
T3 by 40% and 30%,respectively. 

Conclusions 

The identification results show that the process dynamics of the 
second stage of the para-xylene production process can be 
modelled sufficiently well, using only first-order and 
second-order models of the SISO subsystems. 
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The analyses have shown that the indirect measurements of the 
slurry flow (PE2) and the temperature and solid content (T2, A2) 
in the first stage show a strong correlation with the behaviour 
of the output temperature and solid content (T3, A3) in the 
second stage. Moreover, the large disturbances in A2 and T2, 
(caused by "wash" operations to prevent plugging in the first 
stage), were a major cause of control problems in the second and 
third stage. 
By estimating the dynamical influence of disturbances in A2, T2 
and PE2, these measurements could be used in feed-forward 
control. The controller developed for the second stage takes A2. 
T2 and PE2 into account, which results in a significantly 
improved control performance. 

The results clearly indicated that an even better performance 
might be achieved by reducing the number of wash operations, for 
instance by changes in the plant for reducing plugging, e.g. by 
heating the walls of the pipes and drums. 
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Figure 6.3.12: 
Behaviour of T3 and A3 during two eight day periods: 
(a) with· conventional control. 
(b) with the new control system. 
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6.4 Case III A Toluene-Xylene Distillation Plant 

This section describes the application of PRIMAL to a distillation 
unit for separating toluene from xylenes at EXXON Chemical Holland 
in Rotterdam. The unit is part of a fractionation section comprising 
three distillation towers. The bottom product of two parallel 
benzene distillation towers, consisting of a mixture of benzene, 
toluene and xylenes, constitutes the feed flow to the Toluene Tower: 
its top product (toluene) is delivered to tankage and its bottom 
product (xylene) is further treated in the Xylene Plant. 

Process description 

A schematic description of the toluene-xylene tower is presented in 
Figure 6.4.1. 

Con.denaou 

'-----~-
Figure 6.4.1: 

Schematic overview of (part of) the Toluene-Xylene Distillation 
Plant. 
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The tower has 65 trays. The feed enters at tray 21. The toluene 
product leaves the tower as a "side-stream" at tray 55 or 57. A 
small flow consisting of benzene and toluene is extracted at the top 
and is recycled (through tankage) to the beginning of the 
fractionation section. 
The heat input to the tower is delivered by a steam-heated flooded 
reboiler. The top vapour flow is condensed and cooled by an 
air-cooled condenser in parallel to a flooded condenser, which 
serves heat-integration with other distillation units. 

The main goal is to utilise the maximum capacity of the 
keeping the xylenes content of the side-stream 
specification (maximally e.g. SOD ppm xylenes). 
requirement for the bottom product is less critical: 
contain maximally e.g. 1.5% toluene. 

tower, while 
product on 

The quality 
the flow may 

The compositions of the side-stream and bottom products are measured 
by analysers (A1 and A2), delivering new values every 15 minutes. 
If the tower operates at a fairly constant pressure, the faster 
responding temperatures in the lower part of the rectifying section 
(T29) and in the stripping section, near the bottom (T9), may be 
taken as indicative measures of the product compositions. 

As control inputs we consider: 
the reboiler steam flow rate (SF). 
the side-stream flow rate (SS). 
the reflux flow rate (R). 

Disturbance sources are: 
the weather. which influences the rate of heat transfer in the 
condensers. 

- variations in the feed flow rate (FF) and feed composition (AF). 

The maximum capacity at cool weather is determined by the steam flow 
rate. 

The experiments were planned to find the dynamical responses of T29 
and T9 to variations in: 

the feed flow rate: FF. 
the control inputs: SF, SS and R. 

During the 
the reflux 
dynamical 
variations 
TS. 

experiments the tower was under top pressure control by 
flow rate, see Figure 6.4.1. To get an impression of the 
influence of the reflux, small zero-average reflux 
were induced by variations in the top-stream flow rate: 

During the investigation of the process, early estimates of the 
process dynamics were made. making use of a simulation program of 
the plant, historical data and practical experience, cf. [Tolboom, 
1989]. Only a few initial experiments could be carried out before 
planning the identification experiments. During all experiments, the 
top product composition had to stay within its specified range, so 
only small test signals were allowed. 
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Identification experiments 

In the main identification experiment, PRBS were imposed 
simultaneously on the feed flow rate (FF), the side-stream flow rate 
(SS), the steam flow rate (SF) and the top-stream flow rate (TS), 
cf. Figure 6.4.2. 

inputs outputs 

FF (PRBS 1) Al 

SF (PRBS 2) T29 

ss (PRBS 3) T9 

TS (PRBS 4) A2 

Figure 6.4.2: 
Inputs and outputs of the model. 

Since control of the top product composition is considered to be the 
most important, the identification experiment concentrated on 
modelling T29. 
On the basis of the initial experiments and a priori knowledge, a 
minimal PRBS clock period of 10 minutes was selected. The 
input/output data was collected with a sampling interval of 30 
seconds. 

The experiment was carried out under what turned out to be rather 
unfavourable conditions, because the feed composition changed 
considerably, i.e. from 65 X to 87 X toluene, see Figure 6.4.4(f). 
To accommodate this change, the set points of the feed and the 
side-stream flow controllers had to be adjusted by the operators, 
see Figure 6.4.4(a). The top product has been off-spec twice during 
the experiment, see Figure 6.4.4(b). 

Inspection of the experiment data revealed that the variations in 
the steam flow rate dominated in the responses of T29. Therefore, 
the amplitudes and periods of the PRBS in FF and SS were increased 
somewhat, whereas the amplitude of the PRBS in SF was reduced by a 
factor of three for the last 1 hours of the experiment. 
For technical reasons the analyses had to be carried out off-line. 
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Figure 6.4.4 (a): 
Reflux (R) [m3 /h], feed flow rate (FF) [m3 /h], side-stream flow 
rate (SS) [m3 fn], and steam flow rate (SF) [ton/h) as a function 
of the sample number (sampling interval: 30 s). 

Figure 6.4.4 (b): 
Temperature [•c] at tray 29 (T29) . 
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Figure 6.4.4 (c): 
Temperature [•CJ at tray 9 (T9). 
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Figure 6.4.4 (d): 
Pressure [bar] in the top of the tower (P). 
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Figure 6.4.4 (e): 
Xylenes-content (ppm] of the side-stream product (Al) . 
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Figure 6.4.4 (f): 
Toluene content (%] of the feed (AF). 
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Data conditioning 

The data were corrected for outliers, measurement delays and trends. 
After applying a digital anti-aliasing filter, the data were reduced 
to sampling intervals of 2.5 minutes and 10 minutes. 

Identification results 

All identification methods have used 17 hours of the dataset, 
(samples 7000 .. 9000). In this interval the feed composition was 
fairly constant. To evaluate the performance of the methods, the 
output error was computed over the identification interval as well 
as over a cross-validation interval of 21 hours, (samples 
2500 .. 5000). By selecting these intervals, the off-spec peaks in the 
side-stream composition were not taken into consideration. 

Results for T29 

The initial analyses showed that the top stream PRBS did not 
contribute significantly to the variations in T29, and therefore the 
model interrelating these two variables could not be estimated with 
sufficient accuracy. However, its dynamical influence could be 
determined from a separate reflux test, involving a test signal in 
the top stream only. 
Subsequently, the remaining three inputs were used in the 
identification. Representative results of the various identification 
methods are listed in Table 6.4.3. 

na relative output error (mre} 
method nf nb validation cross validation 

1 CUIOORZI 4 4 16 % 25 % 
2 RPEM 2 2 16 % 24 % 
3 MARKOV B 0 15 14 % 26 % 
4 real. n:=3 17 % 25 % 
5 DLS BA ee 4 4 18 % 24 % 
6 DLS BA ee 6 6 17 % 25 % 
7 crv BA iv 4 4 17 % 24 % 
8 IVM BACD iv 4 4 16 % 25 % 
9 MCR BF oe 2 2 16 % 23 % 

10 MCRPEM BF oe 1 3 14 % 22 % 
11 DLS B oe 0 15 14 % 24 % 
12 MCRPEM BF oe 2 3 13 % 24 % 

Table 6.4.3: 
Representative results of various identification methods in 
modelling the temperature T29, using inputs FF, SF and SS. 
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As can be seen in Table 6.4.3, the differences in performance 
between the methods are small, both in the identification and in the 
cross validation interval. 
In the validation and cross validation, the estimated models show a 
similar output error behaviour, the output error methods finding the 
best fit at the low frequencies, resulting in a smaller error 
variance. 

The impulse responses of Model 10 to SF and FF are presented in 
Figure 6.4.5 (a). Due to the small contribution of the PRBS in SS to 
the variations in T29, the response of T29 to SS could not be 
estimated reliably. 
Figure 6.4. 7 presents the observed output (T29) and the predicted 
output on the validation interval and a data interval of 33 hours 
(samples 1000 .. 5000), including the cross validation interval. As 
expected, a bad fit is found for the initial phase (samples 
1000 .. 2200), due to the shifting operating conditions. 

The estimated model of the process dynamics incorporates the 
pressure control. As follows from Figure 6.4.4 (d) and the estimated 
impulse response of P to the steam flow SF, see Figure 6.4.5 (b), 
the pressure is not at all kept constant by the pressure controller. 
Therefore, the column temperatures not only respond to composition 
changes, but also to the ·changes in the pressure. The fast positive 
initial response of T29 to SF is caused by this effect. 

Figure 6.4.6(a) shows the step responses of T29 to the inputs. 
After the initi~l pressure effects. the temperatures show the 
expected slow r~sponse due to the composition changes. Remarkably, 
T29 did not respond to changes in SS in this experiment, while the 
side-stream composition, measured by the analyser A1, clearly did. 
We did not yet have the opportunity to investigate this effect, 
which may be due to the position of tray 29 with respect to the 
composition profile in the tower. 

Results for Al 

For modelling the slow composition changes of the side-stream 
product, models have been estimated for the analyser output (A1), 
using SF, SS and FF as inputs. The step responses of A1 to the 
inputs, see Figure 6.4.6 (b) clearly demonstrate the expected very 
slow responses of the side-stream composition to step changes in the 
inputs, cf. [Rademaker, Rijnsdorp en Maarleveld, 1975]. As expected, 
a larger feed or steam flow rate increases the purl ty of the 
side-stream, while a larger side-stream flow rate decreases it. 

Results for T9 

The identification experiment focused on modelling T29, causing 
relatively large variations in T9, see Figure 6.4.4(c). During two 
periods, of 19 hours (samples 2460 . .4700) and 17 hours (samples 
7000 .. 9000), the temperature was in its normal range. Therefore, 
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these intervals have been used to estimate models of the bottom 
temperature, although influences of the preceding upsets might still 
be present. 
Figure 6.4.S(b) shows that the faster variations in T9 can be 
largely explained by SF. and the slower variations by FF. 

(a) (b) 

1.5 

0.11 
0.1 

0.111 
SF SF 

D.l 

0.1 
G.lll 

·US i-----r-----.----r-----1 
lllill 

Ill£ lot. 

Figure 6.4.5: 
(a) Impulse responses of T29 to FF [°C.h/~0 ] and SF [°C.hlton]. 
(b) Impulse responses of P to FF [bar.h/m ] and SF [bar.hltonJ. 

·1.1 ~---....... ----...... ----' -~i-----r----r----~ 
1111111 D 1DIIlll 

Ill£ lJI[ Sa!.. 
Figure 6.4.6: 

(a) Step responses of T29 to FF, SS [°C.h/m0
] and SF [°C.h/ton]. 

(b) Step responses of Al to FF, SS [ppm.h/m0
] and SF [ppm.h/tonJ. 
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Control 

The estimated models were used to adjust the parameters of the 
feed-forward and feed-back in the plant's existing control scheme, 
which required first-order-plus-delay models of the dynamics. 
The control scheme consists of: 

1) feed-forward compensation for changes in feed flow rate and feed 
composition (ratio control), 

2) feed-back of the temperatures T29 and T9, corrected for pressure 
changes, and: 

3) feed-back of the top and bottom composition measured by the 
analysers, 

all being combined to act upon the setpoints of the slave flow 
controllers of SF and SS. 
The performance of the improved control scheme was monitored during 
6 weeks, in which the energy demand decreased by 3 %, enabling a 
higher throughput during cool weather, when the heat input is the 
limiting factor. 
Unfortunately, a better evaluation of the control performance could 
not be carried out, due to problems with a leaking valve in the 
steam circuit, which hampered the control by the heat input. 

Obviously. the existing circumstances have not yet allowed a better 
exploitation of the potential possibilities for improving the 
control performance. For instance, a better performance may be 
achieved by implementing a better model of the dynamical influence 
of the side-stream, by improving pressure control and the correction 
for pressure changes in T29 and T9, and by adapting the control 
system, so as to make more effective use of the models than is 
possible with first-order-plus-delay transfer functions in the 
feed-forward, feed-back, and decoupling paths. 

Conclusions 

In this ease, the experiment data were analysed off-line using 
PRIMAL. Satisfactory models have been found for the dynamical 
response of A1 to FF, SS and SF and for T29 to FF and SF. Pressure 
control turned out to be far less satisfactory than was thought 
before and during the experiments, and, unexpectedly, the influence 
of SS on T29 was much smaller than anticipated. 
Looking back upon the modelling exercise, more complete information 
about the process behaviour would have been obtained if we had been 
able to carry out the analyses in real-time. This would have enabled 
us to detect the unexpected effects in an early stage and to modify 
the experiment accordingly. 
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Figure 6.-4. 7: 
Performance of Model 11 in validation and cross validation. 
T29 [•c] "--" and model output T29M [•c] "-- -" on: 
(a) an interval (samples 1000 .. 5000) including the cross validation 
interval. 
(b) the validation interval. 
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Figure 6.4.8: 
(a) Model fit for temperature T9 "--" and model output T9M 

"-- .... r on the identification interval 
(b) individual contributions of the inputs FF and SF to the 

output T9M. 
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CHAPTER 7 CONCLUSIONS 

In this thesis, I have focused attention on experimental modelling 
of continuous production processes in the process industry. 
For this purpose, a new and comprehensive scheme for experimental 
modelling in industrial practice is described. 
In contrast to conventional identification approaches, this scheme 
is based on an interactive learning strategy for process analyses 
and control syntheses in real.-time. 
A key property of the scheme is that the user may carry out a 
variety of analyses during the experiment, accumulating knowledge 
about the process and improving the experimentation accordingly. 

The real-time approach lets the user: 
• monitor the experiment; 
• analyse the data in real-time, using signal analyses and 

identification, and inspect the intermediate results to check 
whether they contain the necessary information; 

• use these results to instantly adapt the experiment, improving 
the information content of the data and/or switching experiments 
if insufficient (or unexpected) information is obtained; 

• run a model in parallel to and synchronised with the process, 
predicting its future outputs and comparing them to the actually 
observed outputs. 

• immediately test the actual performance of a designed control 
system. Many of the techniques used in modelling the process may 
also be used for testing and validating the control system. 

The developed strategy comprises the following steps: 

1. Definition of the goal and the purpose of the models 
2. Investigation of the available process knowledge 
3. Installation of equipment (to connect to the process) 
4. Experiment control and data acquisition 
5. Data conditioning and signal analyses 
6. Identification 
7. Model validation 
B. Control system specification and design 
9. Control system testing (and performance analysis) 

10. Control system implementation and evaluation 

PRIMAL (fackage for Real-Time Interactive Modelling, Analyses and 
bearning), which is the main product of the work presented here, has 
been designed and constructed to implement this experimental 
modelling strategy. It was set up as a professional tool for 
real-time experimenting, analyses and control system design in 
industrial environments, particularly in the process industry. 
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Experience with PRIMAL has been built up in a variety of practical 
applications. Its most important properties proved to be: 

• the facilities for coupling to industrial processes, and for 
designing and controlling experiments: 

• the ability to carry out real-time analyses: 
• the facilities for inspecting and processing intermediate 

results: 
• the ability to adjust the experiment and the parameters of the 

active analyses: 
• the availability of a complete set of compatible tools for all 

steps in the experimental modelling scheme; 
• the ability to carry out analyses to real-time data, as well as 

to historical data, or even to both simultaneously; 
• the automatic reporting: 
• the storage of all results in a structured database and the easy 

retrieval and reconstruction of results: 
• the powerful tools for manipulating real-time graphical 

presentations of the data: 
• the open environment, readily extensible with new modules and 

conveniently interfaceable with other software packages. 

Rather than adopting one single identification or control system 
design method, a variety of methods are made available. The user may 
select any appropriate method or, following the learning strategy, 
he may apply several methods in parallel and/or in series, and 
select the best results. 

In this thesis, three cases are presented where PRIMAL has been 
applied in industry. The results proved that the experimental 
modelling strategy (and its methods), could indeed be applied 
successfully during normal process operation and did lead to 
improved insight and control of the process. 
The results in applications not presented here, support this 
conclusion. 

From practical experience with the experimental modelling scheme it 
follows that: 

• Real-time analysis, interpretation of the intermediate results, 
and modifying the experiment accordingly, is often essential to 
arrive at good models. 

• The data-condi tloning step may be of decisive importance to 
identification. 

• Preference should be given to identification methods 
robust and which give reliable results in the initial 
the experiments, when little and possibly poor 
available. 

which are 
phases of 
data is 

For this purpose, new low-order output error methods have been 
developed, using Monte-carlo search combined with Least Squares 
estimation and zero-order search, providing initial estimates 
for an output error method. These methods prove to be valuable 
tools for estimating the delays and getting initial estimates of 
the process dynamics. 
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• Of the investigated identification methods: 
a) one-step ahead prediction error methods (PEM' s), using an 

equation error or output error type of criterion, 
b) instrumental variable techniques, 
c) Monte-carlo / Least-Squares (MCLS) techniques and zero-order 

search, optionally followed by an output error PEM, 
d) impulse response estimation and subsequent realisation, 

the output error PEM, using a MCLS start-up procedure, generally 
performed best, achieving the lowest output error in validation 
and cross validation. 

• Equation error methods generally performed less than output 
error methods. However, in the cases presented in Chapter 6, the 
results were close to those of the output error methods. 

• The four-step instrumental variable method often showed only 
minor improvements or even instability in the third step. 

• Impulse response estimation failed in the case of short datasets 
and/or bad signal-to-noise ratio's. However, when successful!, 
it provided valuable information about the delays and the 
required model orders. 

• Although the MCLS method was developed for problematic data, 
because of its robustness and ability to cope with unknown 
delays, high noise levels, and short datasets, its performance 
proved to be comparable to the other methods in the 
identification experiments also. 

A striking finding is that experimental modelling, even with black 
box techniques, may yield valuable physical process insight. 

Prospects 

Up till now, the PRIMAL project has focused mainly on experimental 
modelling, and to a lesser extent on control system design. An 
important step in the future will be to fully exploit the 
PRIMAL-facilities to immediately test and analyse the actual 
in-plant performance of an improved control system. 

Another domain of interest is the extension of the set of tools to 
gray/white models, i.e. incorporating physical process knowledge. 

The advent of powerful computer facilities coupled to the plants in 
the process industry has provided new opportunities for improving 
plant performance. Civen the availability of satisfactory sensors, 
no longer the problem is how to get data from the process, but what 
to do with it. The practical experience with PRIMAL and its methods 
have shown that experimental modelling may be exploited successfully 
to improve process control, thus bridging the gap between control 
theory and industrial practice. 
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PRIMAL, and the experience built up by its practical use, further 
serve us as a prototype for the design of the next generation of 
rea.t-ttme tools for industrial processes. Extrapolating the PRIMAL 
strategy, the tools could be used in a flexible interactive 
environment, permanently coupled to a plant, for (expert assisted) 
model-based process monitoring, control and real-time optimisation. 
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APPENDIX A 

Definition A.l Quasi stationary signals 

A signal {s(t)} is quasi-stationary if 

1) Vt~+ Es(t) = m(t) II m(t) II ~ C1 

2) vt,r~+ Es(t)s(r) = R(t,r) II R(t.r) II~ Cz Cz e. IR 

N 

lim --1-- l Es(t)s(t-T) exists for all T e. Z 0 

N~ N t=l 

The expectation operator is defined with respect to the 
stochastic components of s(t). 

Notation: Es(t) := lim 
N-tro N 

N 

l Es(t). 
t=l 

(A.l) 

The operator E may be applied to stochastic and deterministic 
signals. If applied to a stationary stochastic process: 

Es(t) == Es(t) since the stochastic properties do not 
depend on t. 

and if applied to a deterministic signal: 

N 

Es(t) = ~ N ~=l s(t) 

Definition A.2 Generalized weakly stationary processes 

Let {x(t)} t~ be a n-dimensional discrete time stochastic 
T process for which Ex(t) and Ex(t)x (s) exist for all t,s e. Z. 

{x(t)} teZ is called generalized weakly stationary if: 

N 

Rx(t) := lim l Ex(t+r)xT(t) exists for all re.Z o 
N-tro N t=l 
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Theorem A.3 Single realisation behaviour 

Let {C9 (q) I e e ~} be a uniformly stable family of filters, and 

assume that the family of deterministic signals {w
9
(t)}, e e ~. 

is subject to ve Vt lwe(t) I ~ cw cw e ffi. 

Define s9(t) := c8(q)v(t) + w9(t) for all e e ~-

Let {v(t)} be subject to v(t) = Ht(q)e(t) where Ht(q) is a 

uniformly stable family of filters and {e(t)} is a sequence of 
T independent zero-mean random variables with Ee( t )e ( t) = At and 

bounded fourth moments. 
Then: 

N 

sup II -
1-l, [s8(t)s!(t) - Es9(t)s!(t)] 112 - 0 (A.2) 

Be!m N t=1 

w.p. 1 as N- eo [J 

Proof: [Ljung. 1987], Theorem 28.1. 

Definition A.4 Model set 

A model set is defined as a collection of models: 

~ = {~ (q) I a e ~ } a 
where the index a covers an index set ~. [J 

Remark: 
In the context of Ljung [1981] the models constituting the model 
set are predictor models (i.e. residual generating models). 

Definition A.S Model parametrisation 

A model parametrisation of the elements in the model set ~ is a 
mapping P: ~ ~ ~ for some parameter set ~. IJ 

Let ~ be a model set parametrised by e e ~- This may be written 
as: ~ = {J(e) I e e ~ } 
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APPENDIX B 

The following list gives an overview of currently available 
PRIMAL modules. A full description of each module may be found in 
the PRIMAL manuals [Van der Linden & Renes, 1989 a-e] 

IDM 
EDM 
ECM 

IMPORT 
EXPORT 
MATLAB 

PLOT 
LIST 
PRINT 

PREFILTER 
FILTER 
FFT 
RFT 
CORRELATOR 
SPECTRUM 

RPE 
RPEM 
EMM 
MARKOV 
TRANSFER 
DLS 
GUIDORZI 
GIV 
MCR 
MCRPEM 
IVM 

MFDSS 
SSMFD 

SIMSYS 
MODELTST 
MTEST 
RESPONSE 
MATED IT 
RSM 

Interface definition module 
Experiment definition module 
Experiment control module 

Modules for importing files from other packages 
Modules for exporting files to other packages 
Interface to MATLAB 

Graphical presentation module 
Presentation of dataset contents on screen 
Presentation of dataset contents on a printer 

Recursive data conditioning 
Data conditioning 
Discrete Fourier transform 
Reverse discrete Fourier transform 
Recursive correlation analysis 
Spectral analysis 

Recursive prediction error method 
Recursive prediction error method 
Recursive extended matrix method 
Recursive impulse response estimation 
Direct transfer function estimation 
Least squares method 
Guidorzi's method 
Bootstrap-IV + delay grid search 
Monte-Carlo search + zero order opt. 
Monte-Carlo search + output error PEM 
Four-step Instrumental variables 

(SISO) 
(MISO) 
(SISO) 
(MIMO) 
(SISO) 
(MIMO) 
(MIMO) 
(MISO) 
(MIMO) 
(MISO) 
(MIMO) 

Matrix fraction model to state space conversion 
State-space to Matrix Fraction model conversion 

System simulation 
Recursive model simulation+ process monitoring 
Model validation module + residual analysis 
Analysis of subsystem contribution 
Model editor 
Dummy process simulator 
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ORDER TEST 
HANKDIM 
HANKEL 

KALMAN 
LQC 
PPLCR 

Equation error dimension test 
Order test based on the Hankel matrix 
Realisation method based on the Hankel matrix 

Kalman f 1l ter 
LQC control design 
Robust pole placement 
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NOTATIONS. SYMBOLS AND ABBREVIATIONS 

Mathematical notations: 

arg min 
AsN(m,P) 

col(A) 
deg 
det 
min 
sol 
tr 
AT 
A-1 

II . II 
V' (9) 

Symbols: 

e(t) 
G(q- 1 ;9) 

G1(9) 

h(t) 
H(q- 1 :9) 
M(k) 
na,nb,nc,nd,nf 
n9 
N 
p 
p 
q 
Ru(T) 

R (T) uy 

t 
To 
u(t) 

VN(9,zN) 

x(t) 
y(t) 

;(tlt~l) 
ym(t) 
Z(t) 

minimising argument 
asymptotically normal distribution with mean m 
and covariance matrix P 
vector containing the columns of matrix A 
degree 
determinant 
minimise 
solution of the equation 
trace 

transpose of A 
inverse of A 
equivalence relation 
infinity 
norm of a vector or matrix 
derivative of V w.r.t. 9 

disturbance at time t 
process transfer operator 

the coefficient matrix of q-f. in G(q- 1 ;9) 

impulse response 
noise transfer operator 
k'th Markov parameter 
degrees of A(q- 1 ;9), .•• F(q- 1 ;9) 
dimension of a 
number of samples 
number of inputs 
parameter covariance matrix 
number of outputs 
correlation function of u(t) 

cross-correlation function between u(t) and 

y(t) 
discrete time 
sampling interval 
input signal at time t 

criterion function 

state vector at time t 
output signal at time t 

one step ahead prediction of the output 
model output 
instrument matrix 
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a 
II:: 
A 

ot..J 
o(t) 
~ 
e.(t) 
E 

E 
.p(t) 
~y(f.l) 

~uy(t) 
I 

IP 
X 
.M 
Tl( t) 
.P(t, 9) 
n 
q 
IR 

" T 

e 
A 

e 

-1 

Abbreviations: 

ADC 
AIC 
AR 
ARIMA 
ARMA 
ARMAX 
ARX 
DAC 
DCS 
DCM 
DLS 
ECM 
ee 
EM-scheme 
FIR 
FPE 

vector of delayed inputs and outputs at time t 
step length, amplitude 
the complex numbers 
noise covariance matrix 
Kronecker delta 

unit pulse 
domain of e 
prediction error 
expectation operator 

generalised expectation operator 
regression vector 
spectrum of y(t) 

cross spectrum of u(t) and y(t) 

identity matrix 
pxp identity matrix 

forgetting factor, minimal PRBS clock period 
model set 
vector of instruments at time t 
gradient of -e.(t) w.r.t. e 
weighting matrix 
backward shift operator 
the real numbers 
standard deviation 
time lag 
parameter vector 
true parameter vector 

parameter estimate 
angular frequency 
the integers { ;, -2, -1, 0, 1. 2, ... } 
the nonnegative integers {0, 1, ... } 

Analog to Digital Conversion 
Akaike's Information theoretic Criterion 
Auto Regressive 
Auto Regressive Integrating Moving Average 
Auto Regressive Moving Average 
Auto Regressive Moving Average eXogeneous 
Auto Regressive with eXogeneous inputs 
Digital to Analog Conversion 
Distributed Control System 
Data Generating Model 
PRIMAL Module (See Appendix B) 
Experiment Control Module 
equation error method 
Experimental Modelling scheme 
Finite Impulse Response 
Final Prediction Error criterion 
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CIV 
CUIDORZI 
HANKEL 
IDM 
IV 
IVM 
LS 
MA 
MARKOV 
MCR 
MCRPEM 
MFD 
MIMO 
MISO 
mre 
oe 
PCS 
PEM 
pdf 
PIM 
PEM 
PLR 
PRBS 
re 
ree 
roe 
RCM 
RPEM 
SIMO 
SISO 
SVD 
wpl 

PRIMAL Module (see Appendix B) 
PRIMAL Module (see Appendix B) 
PRIMAL Module (see Appendix B) 
Interface Definition Module 
Instrumental Variables 
Instrumental Variable Method (see Appendix B) 
Least Squares 
Moving Average 
PRIMAL Module (see Appendix B) 
PRIMAL Module (see Appendix B) 
PRIMAL Module (see Appendix B) 
Matrix Fraction Description 
Multi Input Multi Output 
Multi Input Single Output 
mean relative output error 
output error method 
Process Control System 
Prediction Error Method 
probability density function 
Process Interface Module 
Prediction Error Method 
Pseudo-Linear Regression 
Pseudo Random Binary Signal 
relative output error 
recursive equation error method 
recursive output error method 
Residual Generating Model 
PRIMAL Module (see Appendix B) 
Single Input Multi Output 
Single Input Single Output 
Singular Value Decomposition 
with probability one 
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SA.MENVATTINC 

In de beheersing van continue produktieprocessen speelt het 
dynamische procesgedrag vaak een belangrijke rol, zodat inzicht in 
en kennis van de dynamica, bij voorkeur in de vorm van een voldoende 
betrouwbaar model, is vereist. Deze kennis kan langs theoretische en 
experimentele weg worden opgebouwd. 
In de experimentele modelvorming wordt aan de hand van metingen van 
ingangs- en uitgangssignalen een mathematisch model van het proces 
gevormd, dat vervolgens gebruikt kan worden voor onder andere 
diagnose, procesbewaking. voorspelling van procesgedrag en 
automatische regeling. 

Dit proefschrift beschrijft een strategie voor experimentele model­
vorming, de ontwikkeling van een pakket voor het ondersteunen van 
deze strategie, en de toepassing en evaluatie van de strategie (en 
zijn methoden) op industriele produktieprocessen. 

De ontwikkelde strategie wordt gekenmerkt door lnteracttef leren en 
real-ttme analyse. Het omvat de definitie van projectdoelen. 
onderzoek van proceskennis, installatie van apparatuur, experiment­
ontwerp, uitvoering van metingen. dataconditionering. signaal­
analyse, identificatle en modelvalidatie, als ook ontwerp. 
beproeving en evaluatie van regelaars. 

In tegenstelling tot de gangbare "off-line" aanpak van modelvorming, 
staat het belang van real-time analyse centraal in deze strategie. 
Het plannen en uitvoeren van de metlngen zijn hierin essentiele 
onderdelen. 
De analyse van de gemeten data kan interactief, in real-time, uit­
gevoerd worden. waarbij de gebruiker kennis van het procesgedrag 
opbouwt en vervolgens deze kennis gebruikt om het experiment en de 
analyses te verbeteren. 
Ook kunnen de gevormde modellen synchroon aan het proces meelopen 
als "voorspellers", waarvan de ultkomsten direct vergeleken kunnen 
worden met het werkelljke procesgedrag. Tenslotte kunnen de ont­
worpen regelsystemen gebruikt worden voor simulaties, die 
(geleidelijk) in toepassing worden gebracht onder voortdurende 
controle van hun prestatles, waarbij de daarbij verzamelde kennis 
gebruikt kan worden om hun werking verder te verbeteren. Aldus kan 
in alle projectfasen effectief geleerd worden en snel en doel­
treffend van het geleerde geprofiteerd worden. 

Om de strategie voor experimentele modelvorming in de praktijk te 
ondersteunen is het pakket PRIMAL (Package for Real-time Modelling, 
Analyses and Learning) ontworpen en ontwikkeld. Het biedt de 
mogelijkheden om aan industriele processen te koppelen. metingen te 
verrichten, in real-time de gemeten data te analyseren, modellen te 
schatten en het ontwerp en de beproeving van regelsystemen direct 
uit te voeren. 
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Voor alle stappen in het experimentele modelvormingsschema zijn in 
PRIMAL diverse methoden ontwikkeld en geYmplementeerd. Speciale 
aandacht is hierbij geschonken aan de identificatie stap, waaronder 
prediction-error methoden, instrumentele variabelen methoden en hier 
beschreven nieuw ontwikkelde varianten op output-error methoden. Aan 
de hand van de praktijktoepassingen is een evaluatie van zowel 
PRIMAL. als van de prestaties van deze methoden uitgevoerd. 
Daarnaast is aandacht geschonken aan de bewerking (conditionering) 
van de ruwe procesdata, die in de praktijk vaak van meer belang 
blijkt te zijn dan de keuze van de identificatiemethode. 

PRIMAL is reeds op een aantal industriele processen toegepast, 
waarvan de resultaten op een glasproductieproces, een para-x:yleen 
kristallisatie-proces en een tolueen-x:yleen destillatletoren in dit 
proefschrift worden beschreven. 
De resultaten tonen aan, dat experimentele modelvorming van 
industriele processen, met behulp van moderne multivariabele 
methoden, succesvol toegepast kan worden en tot waardevolle fyslsche 
inzichten in het proces en de regeling ervan kan leiden. 
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-I-

Experlmentele modelvormlng van produktleprocessen In de proceslndustrle dlent blj 

voorkeur gekoppeld aan het proces en In real-time plaats te vlnden (dlt proefschrift; 

L.jung (1983) Theory and Practice of Recursive Identification; lsermann (1988) 

ldentlfikatlon Dynamlscher Systeme). 

- II -

Voor een breda toepasslng van expertmentele modelvormlng In de praktljk Is een 

"software environment• verelst, die nlet aileen geschlkte analysemethoden bevat, maar 

Ievens het leerproces van de gebrulker ondersteunt door krachtlge real-time 

lnteractleve facAitelten, rapportage en gestructureerde gegevensopslag (SOderstrom & 

Stoles (1989): System Identification, en dlt proefschrlft). 

- Ill -

ldentlflcatle op basis van black-box technleken kan belangrljk fyslsch lnzlcht In een 

proces opleveren, waannee door aanpasslngen In het proces soms meer berelkt kan worden 

dan door op basis van het model ontworpen regellngen (dlt proefschrllt). 

- lv -

De praktlsche aspecten van ldentlflcatle wQfden In de llteratuur onvolledlg bellcht: 

nlet vanwege het gerlnge belang, maar wegens het ontbreken van een slultende aanpak 

(dlt proefschrllt, zle bljvoorbeeld voor wat data condltlonerlng betreft: L.jung (1987) 

System Identification - Theory for the user; Backx (1987) Identification of an 

Industrial Process - A Markov Parameter Approach ). 

- v-

Over de toepasslng van klelne testslgnalen op lndustrli!le processen tljdens nonnaal 

bedrlfl word! vaak te moelijk gedaan, lerwiJI dlt In praktijk zelden of noolt tot 

problernen leldt. 



• vi • 

Zolang In het veld van de experlmentele modelvormlng de wljze waarop een experlmentator 

kwalltatlef graflsche presentatles lnterpreteert nlet geed te expllclleren Is, mag van 

expert-systemen nlet veal verwacht worden en bllfll: de experlmentator een onmlsbare 

schakel. 

• vii -

De proceslndustrle heeft belang biJ procesontwerpers die rekenlng kunnen en durven 

houden met de dynamics. 

- viii -

Aangezlen In steeds meer wetenschappelijk onderzoek de ontwlkkellng van programmatuur 

een belangrljke plaats 1nneemt. dlent deze prolessloneel en voor hergebrulk ontworpen 

te worden. De unlversllelt zou hleraan In de oplek:llng en In de ullvoerlng van het 

onderzoek veal meer aandacht moeten schenken. 

- lx -

In een omvangrljk unlversltalr software project als PRIMAL. Is de standaardlsatleregel 

dat alles wat nlet aan de standaard voldoet word! weggegoold, de baste manler om 

studenten te bewegen om daadwerkelljk volgens de standaard tewerk te gaan . 

• X. 

De colleges een half uur eerder Iaten beglnnen heeft op korte termijn waarschljnlljk 

nauwelljks gevolgen voor de tljden waarop studenten met een OV-jaarkaart retzen . 

• xl • 

Een belangrqke oorzaak voor de matlge telefonlsche berelkbaarheld van wetenSchappers 

aan deze unlversllelt Is, dat zq n1et goed weten om te gaan met de mogelljkheden die 

het telefoonsysteem bled! (de TUE telefoonglds biz. 28-38). 




