
 

Multi-scale mechanics of traumatic brain injury

Citation for published version (APA):
Cloots, R. J. H. (2011). Multi-scale mechanics of traumatic brain injury. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR719431

DOI:
10.6100/IR719431

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR719431
https://doi.org/10.6100/IR719431
https://research.tue.nl/en/publications/c72c8407-8d86-44e1-aa11-61ba59832c2b


Multi-scale mechanics of traumatic brain injury

M
ul

ti-
sc

al
e 

m
ec

ha
ni

cs
 o

f t
ra

um
at

ic
 b

ra
in

 in
ju

ry
  

 
 

 
R

ud
y 

C
lo

ot
s

Photograph © Fragile 2009 - courtesy Raphaël Dallaporta Rudy Cloots

Invitation to attend the 
defense of my 

PhD dissertation

Rudy Cloots
Jacob van Maerlantlaan 26

6136 TM Sittard
rudycloots@gmail.com

On Monday November 21, 
2011 at 16:00 hrs. 

in the Collegezaal 5,
at the Auditorium of the 
Eindhoven University of 

Technology.

Multi-scale 
mechanics of 

traumatic brain injury



Multi-scale mechanics of

traumatic brain injury

Rudy Cloots



This work has been supported by the Dutch Technology Foundation STW,
applied science division of NWO and the Technology Program of the Min-
istry of Economic Affairs.

A catalogue record is available from the Eindhoven University of Technology
Library.

ISBN: 978-90-386-2909-4

Cloots, Rudolf J. H.

Multi-scale mechanics of traumatic brain injury

Eindhoven University of Technology, 2011.
Proefschrift.

Copyright c© 2011 by R.J.H. Cloots. All rights reserved.

Photograph on cover: Overdose - Congestive brain
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Summary

Multi-scale mechanics of traumatic brain injury

Traumatic brain injury (TBI) can be caused by road traffic, sports-related
or other types of accidents and often leads to permanent health issues or
even death. For a good prevention or diagnosis of TBI, brain injury criteria
are used to assess the probability of brain injury as a result of a mechanical
insult. TBI is concerned with a wide range of length scales from several
decimeters at the head level, where the mechanical insult is applied, to
several micrometers at the cellular level, where the actual injury occurs
in case of diffuse axonal injury (DAI). However, a well-defined relation
between these levels has not been established yet. The most used method
to assess the likelihood of brain injury is based on head level kinematics, but
suffers from a number of drawbacks and does not consider the mechanisms
by which brain injury develops. Finite element models are being developed
to predict brain injury based on tissue level injury criteria.

Because most finite element head models used nowadays for injury pre-
diction do not contain anatomical details at the tissue level, the first part
of this research is concerned with the influence of the heterogeneous sub-
structure of the brain on the mechanical loading of the tissue. For this,
four finite element models with different geometries were developed, where
three models have a detailed geometry representative for a small part of the
cerebral cortex including the sulci and gyri. The fourth model has a homo-
geneous geometry and it is used together with the heterogeneous models to
analyze the influence of the morphological heterogeneities in the cerebral
cortex. The results of the simulations show concentrations of the equivalent
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Summary

stress that correspond to pathological observations of injury in literature.
This implies that tissue-based injury criteria may not be directly applied
to most computational head models used nowadays, which do not account
for sulci and gyri.

The next step in this research is involved with the relation between the
tissue and the cellular-level mechanics since the microstructural organiza-
tion will affect the transfer of mechanical loads from the tissue level to the
cellular constituents and will thereby affect the sensitivity of brain tissue
to mechanical loads. According to literature, discrete axonal impairments
caused by a mechanical insult on the brain are located where axons have to
deviate from their normal course due to the presence of an inclusion, such
as a blood vessel or a cell body. Based on the hypothesis that the observed
discrete injuries are caused by the micromechanical heterogeneities, finite
element models representing a critical volume for discrete local impairment
of the axons have been developed. From the results of these simulations,
concentrations of axonal strains are located at similar locations as the ax-
onal impairments. Furthermore, it is concluded that the sensitivity of brain
tissue to a mechanical load is orientation-dependent. In a multi-scale ap-
proach, finite element models of the head and the axonal level are coupled,
where it is observed that the maximum axonal strains do not correlate
with the strain levels of the head model in a straightforward manner. An
anisotropic criterion for brain injury based on tissue-level strains is pro-
posed that describes the orientation dependent sensitivity of brain tissue
to mechanical loads and is derived from the observed axonal strain in the
micromechanical simulations. With the anisotropic brain injury criterion,
computational head models will be able to account for aspects of DAI at
the cellular level and will therefore more reliably predict injury.
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Notation

In the following definitions, a Cartesian coordinate system with unit vector
base {~e1, ~e2, ~e3} applies and following the Einstein summation convention,
repeated indices are summed from 1 to 3.

Quantities

scalar a

vector ~a = ai~ei
second order tensor A = Aij~ei~ej
local quantities a, A
global quantities ā, Ā
relative quantities â = a

ā

normalized quantities ǎ = ā
āreference

Operations

transpose A
T = Aji~ei~ej

inverse A
−1

determinant det(A) = (A · ~e1) · (A · ~e2)× (A · ~e3)
trace tr(A) = A : ~ei~ei = Aii
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Notation

isochoric part Ã = det(A)−
1
3A

deviatoric part A
d = A− 1

3tr(A)I
first invariant I1 = tr(A)
second invariant I2 =

1
2

[

tr(A)2 − tr(A2)
]

third invariant I3 = det(A)
fourth invariant I4 = A : ~n~n
Macaulay operator 〈a〉 = 1

2(|a|+ a)

time derivative Ȧ

multiplication c = ab

~c = a~b

C = aB

dyadic product C = ~a~b = aibj~ei~ej

cross product ~c = ~a×~b

inner product c = ~a ·~b = aibi
C = A ·B = AijBjk~ei~ek

double inner product c = A :B = AijBji
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Chapter one

Introduction

1.1 General introduction

Traumatic brain injury (TBI) caused by a mechanical insult on the head
causes high rates of mortality and disability [1,2]. The social costs of traffic
accidents are evaluated at some 160 billion euro per year in the European
Union alone [3]. Other major causes of head injuries are sports and falls [4].
In collision sports such as soccer, ice hockey, rugby and American football,
a high frequency of concussions is documented [5–10]. In the Netherlands
for example, 54% of professional soccer players and 50% of amateur players
experience a concussion at some point in their career [7,8]. Although the
severity of the head injuries resulting from collisions in sports or falls are
generally lower than those resulting from traffic accidents, their effects can
also be long-lasting or even cause disabilities [11,12]. This is especially
true for axonal injury, which is a common pathology resulting from brain
trauma [13–15].

During accidents, the mechanical impact on the head is translated into
stresses and strains of brain tissue. It is generally agreed that tissue damage
associated with injury to the central nervous system (CNS) is a consequence
of an extended neuro-chemical cascade on the cellular level, set in motion by
deformation of brain tissue inside the head [16–20]. Thus, the mechanism
of TBI involves biomechanics at various length scales; from the macro level
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at which the external loads occur to the micro level at which brain cells are
injured (see Figure 1.1).

In this chapter, background information on TBI will be given at the indi-
vidual length scales followed by the objective of this study and the outline
of this thesis.

Macro level

Meso level

Micro level

Loading conditions

Head kinematics

Tissue response

Brain substructures

Cellular response

Head Injury Criterion

Tissue-based injury criteria

Cell-health

Figure 1.1: Schematic representation of different length scales that are involved
in the mechanism of TBI development due to a mechanical load on
the head and the criteria for injury at these different levels.

1.2 Traumatic brain injury: from macro to micro

In this section, the aspects of TBI at the macro, the meso and the micro
level will be elaborated (see Figure 1.1). Each of the following subsections
presents the anatomy and the injury biomechanics of these length scales.
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1
1.2.1 Macro level

This section covers the aspects of TBI on the length scale that is typical
for the whole head including its most important substructures.

Anatomy – macro level

The central nervous system (CNS) consists of the brain and the spinal cord
[21,22]. Protection against mechanical loads is provided by the cranium
(i.e., the part of the skull holding the brain) and by the vertebrae. The
brain consists of the cerebrum, the diencephalon (which is sometimes con-
sidered to be a part of the cerebrum), the cerebellum and the brain stem
(Figure 1.2). The latter is connected to the spinal cord. The cerebrum
accounts for about 83% of the total brain mass and it consists of the two
cerebral hemispheres [21].

(a) (b)

Cerebrum

Brain stem

Brain stem

Diencephalon

Cerebellum

Cerebellum

Corpus callosum

Corona radiata
Cerebral cortex
White matter
Lateral ventricle

Third ventricle

Thalamus

Figure 1.2: Anatomy of the human brain (adapted from [21]). (a) Left lateral
view. (b) Coronal cross-section.

The meninges are the membranes that cover the CNS and thereby provide
additional protection [21,22]. Three types of meninges exist: dura mater,
arachnoid, and pia mater (Figure 1.3). The dura mater is the strongest
meninx and it is attached to the inside of the cranium [21,22]. At several
places in the cranium, the dura mater extends inwards forming dural septa,
which provide mechanical stability. The dural septa include the falx cerebri
(separating the cerebral hemispheres), the falx cerebelli (separating the
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Skin

Skull

Dura mater

Arachnoid mater

Subarachnoid space

Cerebral cortex

Pia mater

Figure 1.3: Schematic representation of a cross section of a part of the skull and
meninges [23,24].

cerebellar hemispheres), and the tentorium cerebelli (separating cerebrum
and cerebellum). The arachnoid is a thin meningeal layer between the other
two meninges [21,22]. It is attached to the dura mater bridging the folding
structure of the outer surface of the cerebrum. This causes the existence
of the subarachnoid space, which contains cerebrospinal fluid (CSF) and
blood vessels. The arachnoid is connected to the pia mater by arachnoid
trabeculae, which help suspend the brain within the meninges. This might
have a mechanical influence. These trabeculae are more existent outside
the sulci and almost not existent inside the sulci. The pia mater also is a
thin meningeal layer and it is attached to the surface of the CNS, which
means that it follows the irregularities of the surface of the CNS [21,22]. It
contains small blood vessels that penetrate the cerebrum.

The brain and spinal cord are surrounded by CSF [21,22,25]. It is thought to
have a mechanical protective function for the brain. In case of a mechanical
load applied to the head, it allows the brain to move independently to
the cranium to some extent. Furthermore, it provides a physiologically
stable internal environment, which is necessary for normal brain functioning
[26]. Its total volume is approximately 150 ml, of which 25 ml is situated
within four communicating ventricles inside the brain. The remaining part
is located inside the subarachnoid space. It is composed of 99% water and
is similar in composition to blood plasma, from which it originates [21,27].
The CSF is secreted mainly inside the ventricles and reabsorbed into the
venous system at several sites in the arachnoid [22,25].
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1
Injury biomechanics – macro level

Brain injury types can be categorized, according to their clinical appear-
ance, in focal injury and diffuse injury [28]. Mechanical loading conditions
that lead to TBI are subdivided into static (>200 ms) and dynamic (<200
ms) loads [28]. Static loads are associated with focal brain injuries. Dy-
namic loads can occur either from a contact load of the head inducing strain
waves through the cranium and the brain and in some cases even skull frac-
ture or from a non-contact acceleration of the head, in which the mechanical
load is transmitted from the body to the head [28]. Dynamic contact loads
are associated mainly with focal brain injuries, whereas non-contact loads
are associated mainly with focal brain injuries for translational accelera-
tions and diffuse brain injuries of cerebral white matter for rotational ac-
celerations. However, some more recent studies have shown that rotational
accelerations lead to high local stresses in the cerebral cortex (gray mat-
ter) [29–31]. A translational acceleration of the head leads to compressive
hydrostatic stresses in one side of the brain and tensile hydrostatic stresses
in the opposite side. However, if the brain deforms inhomogeneously due
to virtually incompressibility, deviatoric stresses occur as well. In case of
a rotational acceleration of the skull, the rotation of the brain is delayed
because of inertia. As a consequence, deviatoric stresses occur within the
brain.

The most commonly used brain injury criterion in the automotive industry
is the Head Injury Criterion (HIC), which is based on global head kinemat-
ics and is defined as [32]:

HIC =

{

(t2 − t1)

[

1

t2 − t1

∫ t2

t1

a(t)dt

]2.5
}

max

, (1.1)

in which a(t) refers to the translational head acceleration in g as a func-
tion of time, and t1 and t2 refer to the initial and final time in seconds,
respectively. These times are chosen such that the HIC obtains a maxi-
mum value, provided the time interval between t1 and t2 does not exceed
an empirically determined maximum. The HIC is based on experimental
data, in which only anterior-posterior contact loading has been applied to
human cadavers, not accounting for angular accelerations of the head.
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For a better approximation of the relation between TBI and a mechanical
load, more advanced methods have been developed in which the internal
head response is investigated. These methods include the usage of physical
and numerical models of the head and brain. Margulies et al. [33] found
that the falx cerebri has a strain reducing effect on the brain tissue using
a physical experiment. Ivarsson and co-workers [34,35] investigated the
influence of the cerebral ventricles by means of a physical set-up. They
found a reduction in the strain in the sagittal and coronal plane due to the
ventricles.

Numerical models to predict head injury were initially developed in the
1970s and early 1980s, but newer numerical head models were not devel-
oped until the early 1990s [27]. From then on, numerical head models
were being refined to include more and more details of the anatomy and
mechanical behavior of the head and brain. The latest three-dimensional
numerical head models contain viscoelastic material behavior and its ge-
ometries contain the main anatomical substructures, such as the ventricles
and the falces (e.g., [36–39]). Two of these head models are depicted in
Figure 1.4. A three-dimensional head model containing the detailed sub-
structures of the cerebral cortex has been developed by Ho and Kleiven
[40]. These head models form a bridge towards the loads at the tissue level.

Skull

Dura mater

Brain

Pia mater

(a) (b)

Figure 1.4: Numerical head models developed for predicting TBI developed by
(a) Hrapko et al. [39] and (b) Kleiven [37]
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1
The CSF is considered to have a protective function for the brain during
mechanical loading, making it an important constituent of the head with
respect to TBI. Therefore, it is important to provide a good representation
of CSF in a numerical head model. Some of the current models simulate
CSF, arachnoid and dura mater as one material [41–43]. Because of this
assumption, the CSF is modeled too stiff in terms of its shear modulus.
Perhaps, this has been done because a low shear modulus can result in
numerical instability [44]. A different approach used in some FE head
models to represent the CSF is by means of a sliding interface (e.g., [37,45]).

1.2.2 Meso level

In this section, the anatomical and mechanical details leading to a hetero-
geneous injury distribution of the tissue are discussed.

Anatomy – meso level

Besides the larger substructures of the head discussed in the previous sec-
tion, also small anatomical heterogeneities exist in the head that can in-
fluence the development of TBI. At the tissue level, the convolutions of
the cerebral cortex can be distinguished, where gyri are separated by sulci
[21]. Some of the sulci are deeper and they divide the brain into brain
lobes. The cortex contains gray matter and is 2 to 5 mm in thickness
[21,22,25,27,46]. The gyral regions have an average and standard deviation
thickness of 2.7±0.3 mm versus 2.2±0.3 mm for the sulcal regions [46].
Still, it accounts for about 40% of the total brain mass [21].

Inferior to the cerebral cortex lies the cerebral white matter [21]. It contains
mainly neurons with myelinated axons, which give the white matter its
color. The white matter is also found in other parts of the CNS, e.g.,
the brain stem, the cerebellum, and the spine. The function of the white
matter neurons is the communication between cerebral areas and between
the cerebral cortex and the lower CNS areas [21]. Neurons connecting more
distant areas are bundled. The largest bundle of neurons connecting the
two cerebral hemispheres is the corpus callosum (Figure 1.2b). The axons
in the corona radiata connect the cerebral cortex to the spinal cord, as is
depicted in Figure 1.2b, as well as the neurons throughout the cortex to
one another.
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Injury biomechanics – meso level

In a study by Bradshaw et al. [47], a gel-filled chamber that represented
the brain and skull in a coronal plane including the falx cerebri and the
sulci of the cerebral cortex has been used. They have found an increase of
the maximum principle strain in the cerebral cortex due to the sulci.

Many studies have been conducted to characterize the material behavior
of brain tissue, but the discrepancy between the results of these studies is
large. According Hrapko and co-workers [48], the storage and loss modulus
to describe the linear viscoelastic behavior differs orders of magnitude be-
tween the various studies in literature. More recent non-linear viscoelastic
constitutive models for brain tissue have been developed by Hrapko et al.
[49] and Shen et al. [50]. Their independently measured data are relatively
similar. Hrapko and co-workers have taken their samples from the corona
radiata, whereas the samples from Shen and co-workers are a combination
of white matter from the corona radiata and gray matter from the cere-
bral cortex. These experiments have been performed with porcine brain
tissue. Experiments on fresh human brain tissue material have indicated
that its mechanical properties are approximately 30% stiffer than those of
fresh porcine brain tissue [51].

Differences in mechanical properties and variation of anisotropy of the tis-
sues between the various regions in the brain can constitute mechanical
heterogeneities. In their results, Prange et al. [51] found differences be-
tween the average material properties of the corpus callosum and the cere-
bral cortex, but not between the corona radiata and the cerebral cortex.
The shear modulus of the brainstem was found to be almost twice as high
as the shear modulus of the cerebrum [52]. Several studies conducted by
Elkin and co-workers showed heterogeneities of the mechanical properties
within the hippocampus and the cortex [53,54] as well as between different
regions of the brain [55,56]. Anisotropy has been found for the corona radi-
ata, where the ratios of the shear moduli in different directions was found
to be up to 1.5 [51,57]. For the brainstem, these ratios are between 1.1 and
1.2 [52]. The material properties of the brainstem were determined by Ning
et al. [58]. The initial shear modulus of the matrix was 12.7 Pa, whereas
initial modulus of the fibres was 121.2 Pa.
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1
In research performed by Bain and co-workers [59,60], tissue strains are
related to axonal injury. For the white matter of the optic nerve of the
guinea pig, morphological injury does not occur below a Lagrange tissue
strain 0.14, whereas all axons were injured for a strain above 0.34. The
functional impairment of the optic nerve in the same study was tested by
exposing the eye to light flashes. No functional impairment of the axons
occurred below a tissue strain of 0.13, whereas all axons experienced im-
pairment above a tissue strain of 0.28. In most cases, the functionality
returned to pre-injury levels after 72 h.

Morrison III et al. [61] used a method in which organotypic brain slice
cultures were stretched on a membrane. By using organotypic brain slices,
the three-dimensional cellular structure of brain tissue was accounted for in
the experiments. It was found that a biaxial Lagrange strain between 0.2
and 0.5 at a strain rate of 10 s−1 applied to rat organotypic hippocampal
slice cultures resulted in cell injury at two days after loading, but this was
decreased at four days. For strain rates of 20 and 50 s−1, injury was not
existent at two days after injury, but it was at four days. A Lagrange strain
of 0.35 at a strain rate of 10 s−1 caused about twice as much cell damage as
a 0.10 Lagrange strain at a strain rate of 20 s−1 [62]. In a following study,
however, using more statistical data it was concluded that hippocampal cell
death is dependent on tissue strain, but not on strain rate [63].

For an improved interpretation of mechanical tissue responses in FE head
models, meso-level axonal orientations have been accounted for in recent
studies. Chatelin and co-workers [64] investigated the possibility of ob-
taining tissue strain in the axonal directions using diffusion tensor imaging
(DTI). Colgan et al. [65] used the fiber-reinforced Holzapfel-Gasser-Ogden
model together with DTI to describe the anisotropic behavior of brain tis-
sue in an FE head model. In a study performed by Wright and Ramesh
[66], local variations of axonal orientations at the tissue level obtained from
DTI were used for the anisotropic tissue behavior as well as for the axonal
strains in a plane strain model with dimensions of 7 by 7 mm. The results
of these three studies showed a significant influence of the axonal orienta-
tion in terms of the axonal strains as well as the anisotropic mechanical
behavior.
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1.2.3 Micro level

The micro level is here defined as the typical length scale at which individual
cells or their processes can be distinguished.

Anatomy – micro level

Nervous tissue consists of two types of cells: neurons and glial cells [21,
22]. The structure of the neurons consists of a soma (i.e., cell body) and
processes that extend from the soma. Typically, a (multipolar) neuron has
multiple dendrites which are short processes, whereas it has a single axon
that is much longer. In the CNS, including both gray and white matter,
the average ratio of glial cells to neurons is 9 to 1. Glial cells make up
about half the mass of the brain and of these glial cells, the astrocytes
are the most abundant and have numerous radiating projections that cling
to neurons and capillaries. Other glial cells are the oligodendrocytes, the
microglia and the ependymal cells. Oligodendrocytes have fewer branches
than the astrocytes and they wrap their processes around the thicker fibers
in the CNS producing myelin sheaths (i.e., insulating coverings). Microglia
are small ovoid cells with processes that touch nearby neurons. Ependymal
cells are in different shapes and they line the central cavities of the CNS.

Pyramidal cells have a conical soma from which multiple processes emerge
[22]. Pyramidal cells range in size from 10 µm in diameter all the way
up to the 70 to 100 µm giant pyramidal cells (Betz cells) of the motor
cortex, which are among the largest neurons in the CNS. Several studies
show somal sizes of (healthy) cortical and hippocampal neurons of about
10 to 20 µm [67–72]. Pyramidal cells have long axons that leave the cortex
to reach either other cortical areas or various subcortical sites. Axons are
uniform in diameter and can be many centimeters long, whereas dendrites
taper away from the cell body and rarely exceed 500 µm in length [73]. The
nonpyramidal cells are small (i.e., often less than 10 µm) granular cells, but
a variety of other types and sizes have been described. Glial cells have a
spherical soma and most of them have a diameter of about 5 to 10 µm
[68,70]. In the cerebral cortex, the ratio of glia to neurons is in the range
of about 1.0 to 2.0 [70,74–76].
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1
Injury biomechanics – micro level

The response of neurons to a traumatic mechanical load can be divided in
three phases [77]:

1. Initial physical damage of cellular structures, especially the plasma
membrane, and the immediate consequences of this damage, e.g.,
membrane depolarization and increase of the intracellular calcium
level.

2. Injured neurons either recover to some degree or they die within 24
hours, typically characterized by necrosis, i.e., unregulated cell death.

3. After 24 hours still cell death can occur, but typically via apoptosis,
i.e., programmed cell death. The causation of cell death during this
period is much less clear than in phase 2.

Mechanical and functional injury of the neurons and glial cells has been
investigated in several different studies. The measured quantities indicative
of injury were amongst others: change of intracellular Ca2+ concentration,
uptake by the cells of molecules that are normally impermeable to the cell
membrane, blocking of certain channels in the cell membrane, swelling,
signal conduction, gene expression and axotomy. In these studies, brain
cells are stretched individually or by means of a stretched membrane on
which the cells are adhered. Uniaxial and biaxial linear strains up to 0.5
of rat cortical neurons did not lead to cell death within 24 hours after
the applied strain according to a study conducted by Geddes-Klein et al.
[78]. In that same study, however, it was evidenced that biaxial strains
resulted in much more injury than uniaxial strain. Floyd and colleagues
[79] concluded that a mechanical load applied to rat cortical astrocytes
results in about 20% up to almost 60% cell death within 24 hours caused
by a linear strain of 0.3 and 0.5, respectively. Axotomy of cultured human
neurons did not occur at a linear strain below 0.65 according to Smith
and co-workers [80]. According to a study by Lusardi et al. [81], uniaxial
straining of rat hippocampal neurons led to an injury response for linear
strains between 0.01 and 0.17 with strain rates ranging from 0.007 to 8 s−1.
However, cell death at 24 hours after loading did only occur for strains above
0.5. Experiments conducted by Singh and colleagues [82] showed that the
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strength and conduction velocity of the action potential in rat dorsal nerve
roots was influenced for linear strains below 0.1 and completely blocked
above 0.2, which indicates that physiological damage of neurons is related
to mechanical loading in a gradual manner.

According to a pathological study performed by Povlishock et al. [15],
DAI is not associated with direct mechanical tearing of axons in the white
matter, but with discrete focal impairment of individual axons. The impair-
ments were all found at locations where the axon changed its anatomical
course, e.g., near a blood vessel, a nucleus, or another, decussating axon.
Furthermore, they have found that damaged axons could be found inter-
mingled with intact axons.

In addition to the research that tries to relate mechanical loading to cellular
injury, several studies were performed on the local mechanics at the cellular
or axonal level. According to the results of the experiments conducted by
Lu et al. [83], pyramidal cells and astrocytes are much softer than most
other eukaryotic cells. Furthermore, they found that the storage modulus
of pyramidal and glial processes amounted to about one-third of their re-
spective somata. In a study by Heredia et al. [84], the myelinated layer
covering white matter axons had no significant influence on the mechanical
behavior for a load in the direction perpendicular to the axonal axis using
AFM. For both myelinated and demyelinated axons, the Young’s modulus
was similar, i.e., 0.9±0.7 MPa and 0.8±0.5 MPa, respectively. The me-
chanical stiffness of the axons was studied by Dennerll and co-workers [85]
as well as by Bernal and co-workers [86]. An important observation by
Dennerll et al. was that chick dorsal root ganglion neurites had a stiffness
10 times that of PC12 neurites. According to Dennerll and co-workers,
this difference in stiffness was possibly contributed to the existence of the
neurofilaments in the DRG neurites, which are not a significant feature of
the PC12 ultrastructure.

Bain and co-workers [87] developed a micromechanical analytical model
that accounted for the undulation of the axons. Arbogast and Margulies
[88] made a micromechanical analytical model representing several aligned
fibers in the brainstem. The model consists of a fiber volume fraction and a
matrix volume fraction, in which the material properties of the fibers were
obtained from mechanical experiments with a guinea pig optic nerve that
was assumed to consist completely of fibers. After that, the material prop-
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1
erties of the matrix were determined by obtaining the volume fractions of
fibers and matrix of the brainstem and fitting the model to the mechanical
tissue properties of the brainstem.

It is clear that each length scale has its own characteristics with respect to
TBI. Moreover, these characteristics are related to each other, both within
and across length scales, which makes TBI a multi-scale phenomenon.

1.3 Objective

A crucial step in understanding the mechanism by which TBI develops and
being able to predict TBI, is to translate the global head loads to the local
loading conditions, and consequently damage, of the cells and to project
cellular level and tissue level injury criteria back towards the level of the
head. Although much research has focused on head injury at individual
length scales, the relation between these levels has not been established yet.
Therefore, the objective of this research is to bridge the various length scales
that are involved in the mechanism of TBI development due to impact,
such that the macroscopic mechanical loads are translated into mechanical
loading of brain tissue and individual cells via the underlying microstructure
at various levels. For this, several numerical models at different length
scales are used, which will be introduced in the next section.

1.4 Outline of the thesis

In this thesis, a computational multi-scale approach is used to obtain the
tissue and the cellular response due to a mechanical load on the head.

In Chapter 2, a meso-level model is developed, which represents a detailed
part of the cerebral cortex. This model forms the bridge between the head
and the tissue by accounting for the influence of the heterogeneous substruc-
tures of the brain, in particular the gyri and sulci of the cerebral cortex.
The loading conditions of the meso-level model are obtained from a head
model simulation (see Figure 1.5).

A critical volume element (CVE) is developed in Chapter 3 representing
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Head
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Macro head model

Meso-level model

Brain substructures

Figure 1.5: Modeling approach of the study in Chapter 2.

a critical region for axonal injury at the cellular level in a single scale
plane strain modeling approach (see Figure 1.6). The CVE is based on the
observations of a pathological study conducted by Povlishock [15] and it
relates axonal strains to tissue strains.

The CVE is extended in Chapter 4 to a three-dimensional model in a single
scale approach. Furthermore, an anisotropic equivalent strain measure is
developed that is able to predict axonal strains from tissue strains and
thereby forms an alternative to a full multi-scale approach using the three-
dimensional CVE (see Figure 1.6).

Critical Volume Element

Tissue

Axons

Anisotropic equivalent strain measure

Figure 1.6: Modeling approach of the study in Chapters 3 and 4.
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1
In Chapter 5, the three-dimensional CVE is used in a multi-scale frame-
work where a computational head model is used at the macro level (see
Figure 1.7). In addition to this, a single (macro) scale approach is used, in
which the anisotropic equivalent strain measure is used to predict axonal
strains directly from the tissue strains in the head model.

External load

Head

Tissue

Macro head model

Critical volume element

Axons
Anisotropic equivalent strain measure

Figure 1.7: Modeling approach of the study in Chapter 5.

In Chapter 6, a general discussion, conclusions and future recommendations
concerning the multi-scale modeling of TBI as well as the development and
use of the anisotropic equivalent strain measure are given.

The finite element implementation of the non-linear viscoelastic material
model used in Chapter 2 is explained in Appendix A.
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Chapter two

Injury Biomechanics of the Cerebral Cortex

Traumatic brain injury (TBI) can be caused by accidents and often leads to permanent

health issues or even death. Brain injury criteria are used for assessing the probability

of TBI, if a certain mechanical load is applied. The currently used injury criteria in

the automotive industry are based on global head kinematics. New methods, based on

finite element modeling, use brain injury criteria at lower scale levels, e.g., tissue-based

injury criteria. However, most current computational head models lack the anatomical

details of the cerebrum. To investigate the influence of the morphologic heterogeneities

of the cerebral cortex, a numerical model of a representative part of the cerebral cortex

with a detailed geometry has been developed. Several different geometries containing

gyri and sulci have been developed for this model. Also, a homogeneous geometry

has been made to analyze the relative importance of the heterogeneities. The loading

conditions are based on a computational head model simulation. The results of this

model indicate that the heterogeneities have an influence on the equivalent stress.

The maximum equivalent stress in the heterogeneous models is increased by a factor of

about 1.3 to 1.9 with respect to the homogeneous model, whereas the mean equivalent

stress is increased by at most 10%. This implies that tissue-based injury criteria may

not be accurately applied to most computational head models used nowadays, which

do not account for sulci and gyri.

Reproduced from: R.J.H. Cloots, H.M.T. Gervaise, J.A.W. van Dommelen and
M.G.D. Geers (2008). Biomechanics of Traumatic Brain Injury: Influences of the Mor-
phologic Heterogeneities of the Cerebral Cortex. Annals of Biomedical Engineering, 36
(7), 1203-1215.
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2.1 Introduction

The brain is often one of the most seriously injured parts of the human
body in case of a road traffic crash situation [89–91]. The incidence rate
and mortality rate in Europe are estimated to be 235 and 15.4 per 100,000
of the population per year, respectively [89]. Traumatic brain injury (TBI)
is therefore considered as a widespread problem. Understanding the mech-
anisms inducing TBI is necessary for reducing the number of occurrences,
e.g., by developing more appropriate protective systems and diagnostic
tools.

Brain injury criteria are used for the assessment of the probability of TBI
for certain mechanical loading conditions. The most commonly used injury
criterion in the automotive industry is the Head Injury Criterion (HIC)
[92,93]. It is developed to predict TBI resulting from a translational accel-
eration of the head. One of the drawbacks of the HIC is that it is based
on global kinematic data to predict TBI, whereas actual brain damage is
caused at the cellular level as a consequence of tissue strains and stresses
[94]. Furthermore, it is based on experimental data, in which only anterior-
posterior contact loading has been applied to human cadavers, not account-
ing for angular accelerations of the head. For a better approximation of the
relation between TBI and a mechanical load, more advanced methods have
been developed. For instance three-dimensional finite element (FE) head
models have been developed to predict brain injury [41–45,95–99]. With
these numerical head models, different injury mechanisms and loading con-
ditions can be distinguished. However, in these models, the heterogeneous
anatomy of the cerebrum is usually represented by a relatively homoge-
neous geometry. A comparison between the homogeneous geometry of a
typical finite element head model and the complex structure of a real brain
is given in Figure 2.1. The main function of the heterogeneous morphology
is to increase the cortical surface in order to obtain a more complex level of
the brain functions [22]. The most recent numerical head models include
ventricles and the invaginations of the dura mater, but none include the
convolutions of the cerebral cortex. Consequently, the stresses and strains
that are predicted from these models likely do not represent actual tissue
stresses and strains, at least in the cortex. Therefore, although tissue-based
injury criteria may be used, their accuracy is expected to be limited. This
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(a) (b)

Figure 2.1: (a) Numerical head model developed by Claessens [41,95]. (b) Lat-
eral view of the human brain. Adapted from Welker et al. [100].

might prohibit the direct use of tissue-based injury criteria. Such criteria
predict injury at the tissue level and are based on in vitro and in vivo ex-
periments. [59–62,78,79,101] For a direct application of tissue-based injury
criteria in a computational head model, a more detailed description of the
biomechanical behavior of the cerebrum may be required, which can be
achieved by including its morphologic heterogeneities in these models. A
few two-dimensional FE models of the brain containing the convolutions
of the cerebral cortex have been described in literature. Miller et al. [102]
compared different modeling techniques for the relative motion between the
brain and the cranium. Nishimoto and Murakami [103] developed a model
to investigate the relation between brain injury and the HIC. However,
these models have not been developed with the purpose of investigating
the local biomechanics at the level of these convolutions. No conclusions
have been drawn from these studies on the biomechanical influence of the
heterogeneities of the cerebral cortex, due to the limited spatial resolution
of the mesh.

Physical experiments have been conducted in several studies to investigate
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the biomechanical consequences of the heterogeneities of the cerebrum [104].
In a study by Bradshaw et al. [47], a gel-filled chamber that represented the
brain and skull in a coronal plane including the falx cerebri and the sulci of
the cerebral cortex was subjected to a rotation with a peak acceleration of
approximately 7800 rad s−2. An increase of the maximum principle strain
in the cerebral cortex due to the sulci was found.

The aim of this study is to investigate the biomechanical influences of the
morphologic heterogeneities in the cerebral cortex. To achieve this, several
two-dimensional FE models with detailed geometries of a part of the cere-
bral cortex have been developed. Also, a FE model with a homogeneous
morphology of the cortex has been made. The loading conditions are based
on simulations with a computational head model as used by Brands et al.
[41]. The results of the simulations of the heterogeneous models will be
compared to those of the homogeneous model.

2.2 Methods

In this study, plane strain models of small sections of the cerebrum are made
using the FE code Abaqus 6.6-1 (HKS, Providence, USA). An explicit time
integration is used, anticipating a dynamic load with a high magnitude
and a short duration. The time increments are limited by the stability
condition, which is determined in the global estimator function in Abaqus.

2.2.1 Geometries

To investigate the influence of the heterogeneities of the cerebral cortex, a
homogeneous model and three heterogeneous models have been developed.
The heterogeneous models, which are shown in Figure 2.2b, d, and e have
detailed geometries of a small part of the cerebrum, including also a part
of the cerebrospinal fluid (CSF). The cranium is modeled by a boundary
constraint, as will be detailed further on. Since the dura mater and the
arachnoid are connected to the inside of the cranium in the region that is
modeled [21,22], it is assumed that they can be ignored for this situation.
The pia mater, which is a thin and delicate membrane covering the brain
[21,22], is also not included, since it is expected to have no mechanical
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Figure 2.2: (a) Sagittal cross-section of a human head (adapted from Mai et al.
[105]). (b) Heterogeneous geometry 1 and (c) its spatial discretiza-
tion. (d) Heterogeneous geometry 2. (e) Heterogeneous geometry 3.
(f) Homogeneous geometry.

influence for the used loading conditions. The same assumption is used
for the arachnoid trabeculae, which extend from the arachnoid to the pia
mater and are less existent inside the sulci [22]. The first geometry has one
narrow sulcus on the right hand side and a small part of a sulcus on the left
hand side. The second geometry contains two deeper and wider sulci than
the other two geometries. The third geometry consists of one vertical sulcus
and one partly horizontal sulcus, where vertical and horizontal refer to the
x- and y-direction, respectively. These geometries, which represent typical
stylized shapes of the cerebral cortex, are based on the topological studies
by Mai et al. [105]. The left and right boundaries of the models are chosen
to be periodic, i.e., the internal geometries near the opposite boundaries
match. The periodicity of the boundary conditions will be explained further
on. The models do not distinguish between gray (cerebral cortex) and white
matter. In Figure 2.2f, the homogeneous model is shown. Similar to the
heterogeneous models, it also consists of CSF and brain tissue, but it does
not contain any gyri and sulci. The outer dimensions of each model are
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32 mm by 24 mm. The meshes consist of bi-linear, quadrilateral, reduced
integration elements with hourglass control. The heterogeneous models
also contain a small number of triangular elements. The total number of
elements of the heterogeneous models ranges from 4243 to 4533 elements.
The homogeneous geometry consists of 3072 elements.

2.2.2 Material properties

For the material properties of the CSF, a nearly incompressible, low shear
modulus elastic solid has been assumed, since the shear stress in the brain
tissue due to the applied loading conditions is estimated to be about a
factor 104 higher than that in the CSF. The material properties are listed
in Table 2.1. The shear modulus of CSF is estimated from the loading
conditions that are described further on by using G = ηγ̇

γ
, in which G

is the elastic shear modulus, η is the viscosity, γ is the estimated shear
strain, and γ̇ is the estimated shear rate. Because two different loading
conditions have been used, also two different estimates for the CSF shear
modulus have been used. However, with these shear moduli being much
lower than that of the brain tissue, the exact values of these estimates do

Table 2.1: Linear material parameters.

Material Bulk modulus Shear modulus Time constant
(GPa) (Pa) (s)

CSF 2.2 0.036a ∞
0.12b ∞

Brain tissue 2.5 182.9 ∞
9884 0.00013
835.5 0.012
231.2 0.35
67.1 4.62
3.61 12.1
2.79 54.3

aShear modulus in case of loading condition A.

bShear modulus in case of loading condition B.
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2not affect the outcome of this study. The bulk modulus is obtained from
literature [44,45].

The material properties of the brain tissue are described by a non-linear
viscoelastic constitutive model that has been developed by Hrapko et al.
[49]. This model was found to accurately describe the response of brain
tissue for large deformations in both shear and compression. This model is
extended here to account for compressibility.

The constitutive model consists of an elastic part, denoted by the subscript
e, and a (deviatoric) viscoelastic part, denoted by the subscript ve, with
N viscoelastic modes. The total Cauchy stress tensor σ is written as

σ = σ
h
e + σ

d
e +

N
∑

i=1

σ
d
vei

, (2.1)

in which the superscripts h and d denote the hydrostatic and the deviatoric
part, respectively. For simplicity, the subscript i indicating the number of
the viscoelastic mode will be omitted from this point on. The hydrostatic
part of Equation 2.1 is defined as

σ
h
e = K(J − 1)I , (2.2)

where K is the bulk modulus and J = det(F ) is the volume change ratio.

The deviatoric elastic mode describes a non-linear response to the defor-
mation gradient tensor F , which is given by

σ
d
e =

G∞
J

[

(1−A)exp

(

−C

√

bĨ1 + (1− b)Ĩ2 − 3

)

+A

]

[

bB̃
d − (1− b)(B̃

−1
)d
]

,

(2.3)

where G∞ is the elastic shear modulus, B̃ = J− 2
3B is the isochoric part of

the Finger tensor B , and Ĩ1 and Ĩ2 are the first and second invariant of the
isochoric Finger tensor B̃ , respectively. A, C, and b are fitting parameters
describing the non-linearity of the elastic response.

The third term on the right hand side of Equation 2.1 consists of the sum-
mation of the viscoelastic modes. The deformation gradient tensor F is
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partitioned into an elastic deformation gradient tensor F e and a viscous
deformation gradient tensor F v by assuming multiplicative decomposition
[106,107]:

F = F e ·F v. (2.4)

The decomposition involves a fictitious intermediate state, which could ex-
ist after application of merely the viscous deformation gradient tensor F v.
This is the stress-free state, which after application of the elastic defor-
mation tensor F e transforms into the final state. The third term on the
right hand side of Equation 2.1 describes the viscoelastic contribution to
the stress as follows:

σ
d
ve =

G

J

[

aB̃
d

e − (1− a)(B̃
−1
e )d

]

, (2.5)

with G the shear modulus, B̃e = J− 2
3Be the isochoric part of the elastic

Finger tensor Be, and a a fitting parameter.

The viscous deformation F v is assumed to be volume-invariant, i.e.,
det(F v) = 1 and Je = det(F e) = J . The viscous rate of deformation
tensor is calculated from the flow rule as

Dv =
σ
d
ve

2η(τ)
, (2.6)

where the dynamic viscosity η is a function of the scalar equivalent stress

measure τ =
√

1
2σ

d : σd, for which the Ellis model is adopted:

η(τ) = η∞ +
η0 − η∞

1 +
(

τ
τ0

)(n−1)
, (2.7)

with subscripts 0 and ∞ denoting the initial and infinite values, respec-
tively. The initial value for the viscosity is defined as η0 = Gλ, whereas the
infinite viscosity is defined as η∞ = kη0.

Although differences between the material properties of the gray and white
matter may exist, these differences are not well characterized. Therefore,
no distinction between gray and white matter has been made in this study,
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2except for the investigation of the influence of varying the material prop-
erties of gray matter with respect to those of white matter (see Section
2.4 Discussion and conclusions). For simulating a head impact situation
representative of road traffic accidents, an extra viscoelastic mode with a
smaller time constant has been added to the behavior as characterized by
Hrapko et al. [49]. The extra mode [57] is based on the experimental data
from Hrapko and co-workers in combination with the data by Shen et al.
[50]. The linear material properties are listed in Table 2.1. The values of
the non-linear viscoelastic parameters are shown in Table 2.2.

Table 2.2: Non-linear material parameters for brain tissue.

Elastic Viscous

A = 0.73 τ0 = 9.7 Pa
C = 15.6 n = 1.65
a = 1 k = 0.39
b = 1

2.2.3 Boundary conditions

The boundary conditions have been chosen such that they represent the
biomechanical influences of the surroundings on the cerebral cortex model.
Figure 2.3 shows the labeling of the corner nodes and boundaries. The
symbols x and y denote the components of position vector ~x with respect
to a Cartesian vector basis (~ex, ~ey), whereas u and v are the components of

Γ1

Γ2

Γ3

Γ4

C1 C2

x

y

Figure 2.3: Labeling of corner nodes and boundaries.
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the displacement vector ~u with respect to this basis.

The Young’s modulus of the cranium is much higher than that of brain
tissue [49,108]. Still, in a contact loading situation of the head, the defor-
mation of the skull may be important. In this study, however, only inertial
loading of the head is considered and therefore the cranium is assumed to
be rigid. The cranium is incorporated in the boundary conditions at Γ3.
Because of the low shear modulus of the CSF, the influence of the rigid
constraint associated with the cranium at boundary Γ3 in the x-direction
can be neglected. Provided no rotation of the model occurs, the constraint
equation for all nodes on boundary Γ3 is

v|Γ3 = vs, (2.8)

with vs the vertical displacement of the skull.

The boundaries Γ2 and Γ4 are subjected to periodic boundary conditions
[109]:

~u|Γ2 − ~u|Γ4 = ~u|C2 − ~u|C1 . (2.9)

These constraints imply that throughout the deformation process the
shapes of the opposite boundaries, Γ2 and Γ4, remain identical to each
other, while the tractions on opposite boundaries are opposite to satisfy
stress continuity, which can be written as

σ · ~n2 = −σ · ~n4, (2.10)

with σ the Cauchy stress tensor and ~ni the unit outward normal vector of
boundary Γi.

The lower boundary, Γ1, of the brain tissue in the model lies adjacent to
brain tissue in neighboring regions. Therefore, boundary Γ1 has to be con-
strained accordingly. The applied constraint on Γ1 is obtained by tying all
nodal displacements on Γ1 to a linear interpolation between the displace-
ments of corners C1 and C2. For any node on boundary Γ1, this results in

~u|Γ1 = ~u|C1 +
|| ~x0|Γ1 − ~x0|C1 ||
|| ~x0|C2 − ~x0|C1 || (~u|C2 − ~u|C1) , (2.11)

with the subscript 0 denoting the initial configuration. The displacements
of corner nodes C1 and C2 are prescribed and calculated from the applied
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2loading conditions.

The loading conditions of the cerebral cortex model (micro-level in Fig-
ure 2.4) are based on the loading conditions that have been used by Brands
et al. [41] for a three-dimensional numerical head model (macro-level in Fig-
ure 2.4). In that model, an eccentric rotation has been applied to the skull
to simulate an angular head acceleration around the neck-shoulder joint in
the sagittal plane in the anterior-posterior direction. The eccentricity has
been chosen to represent a typical neck length. The axis of rotation has
been positioned at 155 mm below the anatomical origin, i.e., the ear hole
projected to the sagittal plane. The rotation of the head model consists of
two successive sine functions that describe the angular acceleration:

0 s < t ≤ 0.010 s : ω̇(t) = 250π sin (100πt) , (2.12)

0.010 s < t ≤ 0.030 s : ω̇(t) = −125π sin (50π(t − 0.010)) . (2.13)

In Equations 2.12 and 2.13, the angular acceleration ω̇ is given in rad s−2.
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Figure 2.4: The loading conditions of the cerebral cortex model (micro-level) are
derived from the region of interest in a parasagittal cross-section (15
mm offset from the midsagittal plane) of the head model (macro-
level). Shown at the macro-level is the equivalent stress field of the
head model at 10 ms.
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The loading conditions are applied to the cerebral cortex model by means
of body forces. In all integration points of the elements in the model, a non-
uniform body force is imposed that reversely simulates the inertial forces:

~q(~x, t) = ρ(~x) ü(y, t)~ex, (2.14)

in which ~q represents the distributed load per unit of volume, ρ is mass
density, t is time, and ü refers to the acceleration in the x-direction that
is represented by these body forces. Note that for the head model the
loading conditions contain an angular component, whereas the cerebral
cortex model uses translational loading conditions. Because only a small
part of the head is modeled and because of the small rotation of the head
model with a maximum of 4◦, the loading of the cerebral cortex model is
assumed to be translational in x-direction only.

The loading conditions of the cerebral cortex model, i.e., the representative
accelerations ü(y, t), are calculated from the head model (from the region
indicated in Figure 2.4) in two different approaches:

A. In the first approach, the input accelerations of the head model are
used to define the loading condition of the cerebral cortex model.
This approach will be referred to as loading condition A.

The translational acceleration ü can be calculated using

ü(y, t) = ω̇(t) r(y), (2.15)

with ω̇ the angular acceleration, which is defined by Equations 2.12
and 2.13, and r the radius from the axis of rotation (neck-shoulder)
in the head model to a point in the region of interest. The radius r
is a function of the y-position in the cerebral cortex model. It varies
between r(0) = 0.251 m at boundary Γ1 to r(0.024) = 0.275 m at
Γ3. The accelerations ü at Γ1 and Γ3 are depicted in Figure 2.5a.
All other accelerations are interpolated linearly between these two
boundaries, thereby creating a gradient across the height of the model.
The acceleration gradient is important for the resulting shear stresses.
Figure 2.5b shows the acceleration profile of the cerebral cortex model.
The accelerations are used to calculate the body forces as a function
of both time and y-position.
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Figure 2.5: Loading condition A. (a) Acceleration at the upper and lower bound-
ary of the cerebral cortex model. (b) Acceleration profiles at different
times.

The disadvantage of this loading condition is that a spatially constant
acceleration gradient is assumed and therefore it does not account for
the influence of the geometry of the cranium. To account for the
geometry of the head, another loading condition has been developed
that is described next.

B. The second approach, loading condition B, uses output accelerations
from a global head model simulation as the input of the cerebral
cortex model. For this, a modified version of the head model, as
used by Brands et al. [41], has been employed in the simulation code
Madymo, in which the constitutive model for brain tissue by Hrapko
et al. [49] has been implemented. The accelerations obtained from the
region inside the box in Figure 2.4 from the head model are imposed
on the cerebral cortex model. Hence, the influence of the geometry
of the head is modeled indirectly by means of an acceleration profile
that is obtained from the head model.

The displacements of the brain tissue in the head model in the field
of interest are almost entirely in the x-direction justifying the as-
sumption of inertial loading (of the cerebral cortex model) in the
x-direction only. In Figure 2.6, the acceleration profiles as a function
of the y-position are shown at 5 , 10, and 20 ms. Similar to loading
condition A, the accelerations are used to calculate the body forces
as a function of both time and y-position.
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Figure 2.6: Loading condition B: displacement (top) and acceleration (bottom)
profiles derived from the output of the head model.

In order to quantify the influence of the morphologic heterogeneities, the

equivalent stress σ̄ =
√

3
2σ

d : σd is used, in which σ
d is the deviatoric

part of the Cauchy stress tensor σ. The equivalent stress is chosen, because
the simulations are based on an angular acceleration of the head, in which
deviatoric stresses are considered to be the most important [102]. The
maximum principal strain is considered important as well with respect to
diffuse axonal brain injury [59,102]. Therefore, also the maximum principal
logarithmic strain was used to quantify the influence of the morphologic
heterogeneities.

2.3 Results

Figure 2.7 depicts the development in time of the equivalent stress fields
for the homogeneous model (top row) and the heterogeneous models from
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Figure 2.7: The equivalent stress fields as a result of loading condition A.

the simulation with loading condition A. Stress concentrations are present
in the heterogeneous models at the surface of the brain tissue between two
gyri at 5, 10 and 20 ms. Near boundary Γ1, all heterogeneous models have
lower equivalent stresses compared to the homogeneous model at 20 ms.

In order to obtain a good comparison of the results for all geometries dur-
ing the complete simulation time, the maximum and mean equivalent stress
from simulations with loading condition A are shown in Figure 2.8 as a
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Figure 2.8: Maximum and mean equivalent stress for the heterogeneous and ho-
mogeneous models as a result of loading condition A.

function of time. It shows the stresses in the brain tissue only. It can be
noticed that the heterogeneous models have a higher maximum equivalent
stress than the homogeneous model. Among the heterogeneous configu-
rations, geometry 1 causes a noticeably lower maximum equivalent stress
of 112 Pa compared to geometries 2 and 3, with a maximum equivalent
stress of approximately 156 Pa. The large maximum equivalent stress in
heterogeneous geometry 2 lasts longer than the stresses of the other geome-
tries. The maximum equivalent stress of the homogeneous model reaches
a value of 80 Pa. The mean equivalent stresses are nearly the same for all
geometries.

To investigate the influence of the heterogeneities, the equivalent stress of
the cerebral cortex in the heterogeneous models is taken relative to that
of the homogeneous model. For the maximum equivalent stress, this will
be done by taking the maximum values, whereas for the mean equivalent
stress, this will be done by taking the time averaged values. The maximum
equivalent stress of the heterogeneous models 1, 2, and 3 is 1.31, 1.84, and
1.83 times higher than the homogeneous model, respectively. The mean
equivalent stress of the heterogeneous models 1, 2, and 3 with respect to
the homogeneous model is 1.09, 1.08, and 1.10, respectively.

The equivalent stress fields obtained with loading condition B are displayed
in Figure 2.9. During the beginning of the simulation, the equivalent stress
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Figure 2.9: The equivalent stress fields as a result of loading condition B.

fields in the brain tissue are comparable for all models. When the field
of higher equivalent stress moves downwards, the heterogeneities result in
local peak stress concentrations, which can be seen at 10 ms for geometries
1 and 3. Later on, at 20 ms, the heterogeneous geometries 1 and 3 have
less influence on the equivalent stress fields. The differences of geometry 2
with respect to geometries 1 and 3 are a consequence of the deeper sulci in
geometry 2.
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The maximum and mean equivalent stress of the cerebral cortex as a func-
tion of time obtained with loading condition B is shown in Figure 2.10. The
maximum equivalent stress is higher for the heterogeneous models than for
the homogeneous models, but not for the complete duration of the sim-
ulation. After about 10 to 15 ms, the maximum equivalent stress of the
heterogeneous models drops to approximately the same magnitude as the
one obtained for the homogeneous model. For the heterogeneous models,
the maximum equivalent stress reaches values of approximately 470, 565,
and 624 Pa for geometries 1, 2, and 3, respectively. The homogeneous model
has a maximum equivalent stress reaching 325 Pa. Also, the moment in
time at which the maximum occurs differs from one geometry to the other.
The mean equivalent stress values of all the geometries are similar.

To quantify the influence of the heterogeneities, the equivalent stress of
the brain tissue of the heterogeneous models is taken relative to the ho-
mogeneous model in the same manner as described previously for loading
condition A. The maximum equivalent stress of the heterogeneous models
1, 2, and 3 has increased by 1.44, 1.74, and 1.92 with respect the homoge-
neous model, respectively. The mean equivalent stress of the heterogeneous
models 1, 2, and 3 is 0.97, 0.99, and again 0.99 relative to the homogeneous
model, respectively.

The distribution of maximum principal strains for loading condition B at
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Figure 2.10: Maximum and mean equivalent stress for the heterogeneous and
homogeneous models as a result of loading condition B.
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Figure 2.11: The maximum principal logarithmic strain field as a result of load-
ing condition B at 10 ms.

10 ms is shown in Figure 2.11. One can notice that a concentration of
maximum principal strains at 10 ms occurs in the same location as the
equivalent stress concentration at 10 ms (Figure 2.9), both in case of loading
condition B. The same method for the quantification of the influence of the
heterogeneities is used, but with the maximum principal strain instead of
the equivalent stress. For the simulations with loading condition A, the
peak maximum principal strain in the brain tissue of the heterogeneous
models 1, 2, and 3 has increased with respect to the homogeneous model
by 1.22, 1.92, and 1.80, respectively. If loading condition B was used, the
increases were 1.43, 1.84, and 1.90, respectively.

2.4 Discussion and conclusions

In this study, the influences of the heterogeneities in the cerebral cortex
were investigated. This was done with FE models of several different ge-
ometries from small detailed parts of the cortex. In a preliminary study,
the boundary constraints were tested. The loading conditions were derived
from a numerical head model.

In order to determine which constraints on the boundaries would represent
the surroundings best, a preliminary study was conducted in which several
different constraints were applied to boundaries Γ1 and Γ3. The different
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conditions on boundary Γ3, i.e., rigid constraint or slip-condition in the
x-direction, did not contribute to differences in the results of the brain
tissue. This was probably caused by the low shear modulus of the CSF.
For boundary Γ1, several different boundary conditions were tested and
compared to the results of models with the same width, but with twice the
height of the models in this study. By comparing the ’normal’ and the ’high’
models, the boundary condition at boundary Γ1 that represented adjacent
brain tissue could be determined. The periodic boundary condition that
were applied to boundaries Γ2 and Γ4, were used because of the assumed
periodicity in the cerebral cortex.

Since the loading conditions were dynamic they could not be applied to the
model by directly imposing a deformation, which would induce boundary
effects. For this reason, an indirect deformation was imposed by means of
body forces. This approach worked well for the first 20 ms of the simulation,
which had a total duration of 30 ms. After 20 ms the deformations of the
brain tissue differed from the deformations derived from the head model
that were indirectly applied to the model (Figures 2.6 and 2.9). Therefore,
only the first 20 ms of the simulation are considered to be realistic.

Loading condition A was derived from the acceleration pulse that has been
applied to a head model [41,110]. The equivalent stress fields of the ho-
mogeneous models caused by loading condition A (Figure 2.7) showed no
similarities to the equivalent stress field of the head model (Figure 2.4). Pro-
vided that the equivalent stress field of the head model is realistic, loading
condition A can be considered unrealistic. Loading condition B was ob-
tained from the resulting accelerations in the region of interest of the head
model. The equivalent stress fields of the homogeneous models from simu-
lations with loading condition B (Figure 2.9) were approximately similar to
the stress fields in the corresponding region of the head model (Figure 2.4)
during the first 20 ms. Nevertheless, differences in the equivalent stress
fields existed at the surface of the cortex. This is due to the CSF layer
in the cerebral cortex model being described elastically with a low shear
modulus, as opposed to the head model, which contains a relatively stiff
CSF/dura layer. In spite of all these obvious differences, by comparing
these two loading conditions, it was shown that the different loading condi-
tions have hardly any effect on the relative mean and maximum equivalent
stress and the relative peak maximum principal logarithmic strain. Hence,
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2the mechanical influences of the heterogeneities of the cerebral cortex seem
to be independent of the loading conditions.

The constitutive model for brain tissue was based on experiments on porcine
white matter [49]. This was used as a substitute for human brain tissue, as
it was readily available and it allowed to conduct experiments with a shorter
post-mortem time [110,111]. Experiments conducted by Prange et al. [51]
on fresh human brain tissue indicated that its mechanical properties are
approximately 30% stiffer than those of fresh porcine brain tissue. Although
the constitutive model for brain tissue in the cerebral cortex model was not
based on human brain tissue, the geometries of the models were based on
the human cerebrum. This assumption is expected to have more effect
on the absolute equivalent stress than on the relative equivalent stress,
which is dominated by the heterogeneities of the model. Furthermore, no
distinction between the mechanical properties of white and gray matter was
made, so that the material properties of the cerebral cortex, which consists
of gray matter, were based on experiments on white matter, as well. In
their results, Prange et al. [51] found differences between the material
properties of the corpus callosum, i.e., the white matter that connects the
two cerebral hemispheres, and the cerebral cortex, but not between the
corona radiata, i.e., the white matter that lies inferior to the cerebral cortex,
and the cerebral cortex. Nevertheless, in several other studies of head and
brain models, different material properties were used for gray and white
matter based on the assumption that white matter was more fibrous than
gray matter [44,45,102,112]. Therefore, simulations of the cerebral cortex
model with shear moduli for gray matter ranging from 75% to 125% with
respect to the shear moduli white matter were conducted as well. The
results of these simulations indicated that the material properties had an
effect on the magnitude of the equivalent stress, but not on the regions
in which the peak equivalent stress was observed. The equivalent stress
of the heterogeneous model relative to the homogeneous model was hardly
affected by the different material properties.

In this model, the meninges and the blood vessels were considered to have
no mechanical influence on the cerebral cortex for the used loading con-
ditions. Although it was suggested in literature that the pia mater [113]
and the pia-arachnoid complex [114] can have a mechanical influence on
the brain tissue during an impact, it is still not clear if it would affect the
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influence due to the gyrification of the cerebral cortex. However, it is ex-
pected that stress and strain concentrations near the sulci will also occur
in the presence of the meninges. In a study performed by Ho and Kleiven
[99], it was found that the vasculature of the brain can be neglected, as far
as the mechanical influences are concerned in a head model not containing
the gyrification of the cortex.

In order to validate this model, a comparison with physical experiments
is required. However, data of physical experiments at a typical length
scale of this level is rather limited. Parallel to this study, the results of
physical experiments, in which brain slices have been accelerated, showed
increased equivalent strains near the sulci [115]. In a later study conducted
by Ho and Kleiven [116], using an FE head model with a detailed geometry
containing the sulci, it was shown that the sulci caused local strain con-
centrations, although the overall response involved a decrease of the strain
values. Furthermore, some studies showed that angular accelerations of
the head induce high stress concentrations in and near the cerebral cortex
[30,31]. Another method of validation can be performed by comparing the
results of the model to clinically observed injury. It has been shown that
small cortical infarcts exist in diffuse brain injury at the bottom of the sulci
[117]. This is in accordance with the locations of the high stress and strain
regions in the cerebral cortex model.

The two loading conditions and the different geometries resulted in dif-
ferent equivalent stress fields. The simulations with loading condition A
resulted in a lower mean and maximum equivalent stress compared to the
simulations with loading condition B. However, relative to the homogeneous
model, it was observed that the equivalent stress was almost independent of
the different loading conditions used in this study. The differences between
the several heterogeneous geometries had more influence on the relative
mean and maximum equivalent stress. The morphologic heterogeneities of
the cerebral cortex led to an increase of the maximum equivalent stress by
a factor of about 1.3 to 1.9, depending mostly on the geometry, whereas the
relative mean equivalent stress values of all the geometries were 1.1 and 1.0
for loading condition A and B, respectively. Furthermore, the peak max-
imum principal logarithmic strain was increased by a factor of about 1.2
to 1.9 due to the morphologic heterogeneities of the cerebral cortex. This
is a strong indication that predictions of brain injury obtained from head
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2models with a homogeneous cerebrum should be interpreted with care. To
obtain a more accurate assessment of injury, the influence of the morpho-
logic heterogeneities in the cerebral cortex should be accounted for.
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3
Chapter three

Micromechanics of Diffuse Axonal Injury

Multiple length scales are involved in the development of traumatic brain injury, where

the global mechanics of the head level are responsible for local physiological impairment

of brain cells. In this study, a relation between the mechanical state at the tissue level

and the cellular level is established. A model has been developed that is based on

pathological observations of local axonal injury. The model contains axons surrounding

an obstacle (e.g., a blood vessel or a brain soma). The axons, which are described

by an anisotropic fiber reinforced material model, have several physically different

orientations. The results of the simulations reveal axonal strains being higher than the

applied maximum principal tissue strain. For anisotropic brain tissue with a relatively

stiff inclusion, the relative logarithmic strain increase is above 60%. Furthermore, it

is concluded that individual axons oriented away from the main axonal direction at a

specific site can be subjected to even higher axonal strains in a stress driven process,

e.g., invoked by inertial forces in the brain. These axons can have a logarithmic strain

of about 2.5 times the maximum logarithmic strain of the axons in the main axonal

direction over the complete range of loading directions. The results indicate that

cellular level heterogeneities have an important influence on the axonal strain, leading

to an orientation and location dependent sensitivity of the tissue to mechanical loads.

Therefore, these effects should be accounted for in injury assessments relying on finite

element head models.

Reproduced from: R.J.H. Cloots, J.A.W. van Dommelen, T. Nyberg, S. Kleiven
and M.G.D. Geers (2011). Micromechanics of diffuse axonal injury: influence of axonal
orientation and anisotropy. Biomechanics and Modeling in Mechanobiology, 10 (3), 413-
422.
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3.1 Introduction

Traumatic brain injury (TBI) can be caused by accidents, for instance in
road traffic or sports, leading to serious health issues or even death. The
incidence rate and mortality rate in Europe are estimated to be 235 and 15.4
per 100,000 of the population per year, respectively [89]. One of the most
frequently occurring types of TBI is diffuse axonal injury (DAI), which is
primarily involved with dynamic non-contact loads, although it is believed
to occur in closed head impacts as well and is associated with widespread
injury in the brain [118,119].

The most commonly used brain injury criterion, which relates brain injury
to mechanical loading, in the automotive industry is the Head Injury Crite-
rion (HIC) [92]. However, the application of HIC is limited, since it is based
on experimental data of head accelerations, in which only anterior-posterior
contact loading has been applied to human cadavers, not accounting for
head angular accelerations or brain tissue strains and stresses. Therefore,
finite element (FE) head modeling provides a more sophisticated method
for assessing the likelihood of brain injury as a result of a mechanical load
[41,43,45,97,98]. These models simulate the consequences of mechanical
loads on the head by predicting the stress and strain inside the brain.
However, at present, there is no direct link between mechanical load of the
tissue and cellular injury.

To investigate the mechanophysical mechanisms of TBI, different length
scales of the brain are distinguished (see Figure 3.1). At the head level, the
mechanical load is applied and transmitted to and through the brain. In
order to predict a true tissue stress and strain, the geometrical details of
the brain are important because of the induced concentrations of stress and
strain in the tissue (see Chapter 2 as well as [47,115,116]). Even more, these
tissue level strains will lead to a mechanical loading of brain cells, possibly
leading to physiological damage. Therefore, it is assumed that investigating
the mechanical phenomena at the cellular level might provide information
about the fundamental triggers of DAI. At this level, the individual brain
cells and their constituting elements can be distinguished. Neurons and
glial cells consist of a soma (i.e., a cell body) and processes (i.e., axons and
dendrites), which extend from the soma [21,22]. Somal sizes are about 5 µm
in diameter for the glial cells and often less then 10 µm for nonpyramidal
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Figure 3.1: The length scales involved with TBI ranging from decimeters for the
head level to micrometers at the cellular level.

cells and up to 20 µm for other cortical and hippocampal neurons [67–72].
Most of the somata of the neurons are found in the cortex from which the
axons extend into other parts of the brain. Axons have a uniform diameter
and can be many centimeters long, whereas dendrites taper away from
the soma and rarely exceed 500 µm in length [73]. The majority of the
brain tissue volume consists of axons. Even in the cerebral cortex, which is
relatively rich in somata and blood vessels in comparison with other parts
of the brain, about 5% to 10% consists of glial processes, 60% to 70% of
neuronal processes (including their boutons and spines), 10% to 20% of
somata and blood vessels, and the remaining part is the extracellular space
[120–123].

Povlishock [15] found that DAI is not associated with direct mechanical
tearing of axons in the white matter, but with the discrete focal impair-
ment of axoplasmic transport leading to local axonal swelling and lobula-
tion, which were all found at locations where the axon changed its anatom-
ical course (e.g., near a blood vessel or a soma). Furthermore, Povlishock
observed that damaged axons could be found intermingled with intact ax-
ons. These findings are still supported in more recent literature [124,125].
In the current study, it is therefore assumed that these locally occurring
injuries are caused by locally increased strains, since the brain is loaded
mechanically prior to injury. Furthermore, it is assumed that axonal ori-
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entation and the presence of inclusions (e.g., a blood vessel or a soma) in
the pathway of the axons are the main triggers of locally increased strains.

Computational mechanical modeling of the brain at the cellular level has
been done to some extent [88,126–128]. These studies were mainly focused
on the relation between the tissue level mechanical behavior and the cellu-
lar level structures. This study, however, focuses on injury sensitivity as a
function of the micromechanical characteristics. The aim is to assess the
relation between tissue level mechanical loading and cellular level injury.
Since local axonal damage has been observed for DAI, it is hypothesized
that locally a higher strain occurs due to geometric or mechanical hetero-
geneities, constituting a precursor of local damage.

3.2 Methods

In this study, a plane strain FE model that relates tissue level mechanical
loads to cellular level brain injury has been developed. In the simulations,
mechanical loads representing tissue level deformations have been applied
on a model with a length scale that is typical for individual cells. Based
on the pathological findings mentioned in the introduction, the model of
interest contains typically one inclusion surrounded by axons. In order to
determine which factors are critical for axonal strain concentrations, the
axonal orientations and the mechanical properties are varied.

3.2.1 Geometry

The geometry of the model is based on the anatomical and pathological
observations for axonal injury. The geometry contains a cylindrical inclu-
sion (e.g., a blood vessel or a soma) with a diameter of 8 µm. It is assumed
that the remaining part of the tissue consists of axons only. The interface
between the inclusion and the surrounding tissue is assumed to be fully
tied. The tissue surrounding the inclusion is modeled as a regular contin-
uum where the behavior in each material point corresponds to the response
of a mixture of axons. The spatial distribution of axonal orientations is
either oriented or unoriented (i.e., random). For the oriented models, the
axons are oriented fully uniaxially in every material point. However, the
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Figure 3.2: (a) Discretization and (b)-(d) axonal orientations of the model. The
maximum diversion angle ϕ is (b) 30◦, (c) 45◦, and (d) 60◦. The
outer dimensions are 50 µm by 50 µm.

axonal orientation in different material points differs as shown in Figure 3.2.
The axons are diverting from the inclusion, and the amount of diversion is
defined as the maximum angle ϕ between the local axon orientation and
the main axonal direction in the far field. To investigate the influence of
the diversion angle, it is chosen to model configurations with ϕ = 30◦,
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45◦, and 60◦. Also, analytical computations of the fiber-reinforced material
model, which will be explained later, are used, representing a homogeneous
geometry (i.e., without an inclusion) with oriented fibers. This situation
is referred to as ϕ = 0◦. To study the effect of the main axonal orienta-
tion, the principal loading direction is varied with respect the main axonal
orientation, as will be detailed further on.

3.2.2 Boundary conditions

Since the part of the brain that is modeled here is in reality surrounded by
adjacent brain tissue, periodic boundary conditions are adopted to include
that influence [109]:

~u|Γ34 − ~u|Γ12 = ~u|c4 − ~u|c1 , (3.1)

~u|Γ23 − ~u|Γ14 = ~u|c2 − ~u|c1 , (3.2)

where ci are the corner nodes, Γij represent the boundaries of the model as
shown in Figure 3.3 and ~u represents the displacement vector. An isochoric
overall deformation is applied, in which the principal strain direction is
varied. This direction is indicated by the angle θ with respect to the global
1-direction of the model that corresponds with the main axonal direction.
The deformation gradient tensor prescribed is defined as

F̄ = λ̄~m1 ~m1 +
1

λ̄
~m2 ~m2 + ~m3 ~m3, (3.3)

in which λ̄ = 1.01 is the globally applied stretch ratio and the vectors ~mi

(for i = 1, 2, 3) can be expressed in terms of the Cartesian vectors ~ej (for
j = 1, 2, 3) and the angle θ. The deformation gradient tensor is imposed
on the unit cell in a standard manner through the displacements of the
corner nodes c1, c2, and c4. This way, only the average deformation of the
model is prescribed, whereas the exact local deformations follow from the
equilibrium conditions and the heterogeneity of the model.
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Figure 3.3: (a) Labeling of the corner nodes and the boundaries. (b) Schematic
representation of the deformation defined by the loading angle θ and
the periodic boundary conditions.

3.2.3 Mechanical properties

The mechanical behavior of brain tissue is not homogeneous throughout
the brain. One marked aspect of the mechanical properties that shows
interregional variation is the degree of anisotropy. Areas in which the ax-
ons are more aligned have a higher fractional anisotropy (FA), which is a
measure to quantify the morphological anisotropy [129], as well as a higher
mechanical anisotropy [51,57,130]. Inside each axon, fibers are aligned in
the direction of the axon itself [73]. These fibers are the neurofilaments
and they provide the axon its mechanical strength. The mechanical re-
sponse of the brain tissue with a fibrous microstructure is described with
the following anisotropic strain energy potential [131]:

W =
G

2
(Ĩ1 − 3)+K

(

J2 − 1

4
− 1

2
lnJ

)

+
k1

2k2

N
∑

α=1

(

ek2〈Ẽα〉2 − 1
)

, (3.4)

where the third term on the right hand side is the Holzapfel-Gasser-Ogden
form [132] with

Ẽα = κ(Ĩ1 − 3) + (1− 3κ)(Ĩ4α − 1). (3.5)
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In Equation 3.4, W is the strain energy per unit of reference volume, K is
the bulk modulus, G is the shear modulus N is the number of fiber families,
Ĩ1 is the first invariant of the isochoric Cauchy-Green deformation tensor,
J = det(F ) is the volume ratio, and k1, k2, and κ are material parameters
for describing the behavior of the fibers. Furthermore, Ĩ4α = C̃ : ~n0α~n0α

where C̃ = J− 2
3C is the isochoric part of the right Cauchy-Green deforma-

tion tensor C and ~n0 is the fiber direction vector in the reference configu-
ration with unit length. The material parameter κ describes the dispersion
of the fiber orientations around the preferred fiber direction ~n0α. The two
limits of κ are 0 for fully aligned fibers (i.e., full transverse anisotropy) and
1
3 for randomly orientated fibers (i.e., isotropy). The Macaulay brackets 〈·〉
impose 〈Ẽα〉 to become 0 if Ẽα is negative, and therefore, the fibers con-
tribute only in tension and not in compression. The Cauchy stress tensor
is then expressed as

σ = σ
h + σ

d. (3.6)

The hydrostatic part is given by

σ
h =

K

2

J2 − 1

J
I (3.7)

and the deviatoric part is

σ
d =

1

J

(

GB̃
d
+ 2k1

N
∑

α=1

ek2〈Ẽα〉2〈Ẽα〉
(

κB̃
d
+ Ĩ4α(1− 3κ)(~nα~nα)

d
)

)

,

(3.8)

where I is the unit tensor and B̃
d
is the deviatoric part of the isochoric

Finger tensor B̃ = J− 2
3B.

The material properties of the part consisting of axons only and the cor-
responding geometrical conditions are summarized in Table 3.1 for three
different configurations. The material properties of the fiber-reinforced
oriented axons are based on the study performed by Ning et al. [58]. Also,
two other configurations are used: fiber-reinforced unoriented axons and
oriented axons without fiber-reinforcement. The fiber-reinforced oriented
configuration results in anisotropic tissue behavior, whereas the other two
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Table 3.1: Brain tissue material properties and maximum fiber diversion angle
ϕ for three configurations.

Tissue G (Pa) k1 (Pa) κ ϕ

without with
inclusion inclusion

Fiber-reinforced with:
- oriented axons 12.7 121.2 0 0◦ 30◦/45◦/60◦

- unoriented axons 12.7 121.2 1
3 N/A N/A

No fiber-reinforcement,
but with oriented axons 12.7 0 0 0◦ 30◦/45◦/60◦

configurations result in isotropic tissue behavior. For the fiber-reinforced
unoriented axons, isotropy is caused by the random distribution of axons,
which can be found closer to or within the cerebral cortex. For the oriented
axons without fiber-reinforcement, however, the fiber contribution to the
stiffness is ignored. Note that this reduces Equation 3.8 to a Neo-Hookean
constitutive equation. The main reason to include the latter isotropic con-
figuration, is to investigate the separate effects of anisotropic stiffness and
oriented axonal stretching. The material model is further simplified by us-
ing one fiber family (i.e., N = 1) and therefore, the axons are locally fully
aligned. However, the fiber orientation can be spatially heterogeneous, as
described previously. Furthermore, fiber contribution to the stiffness is as-
sumed to be linear and therefore the non-linear parameter k2 → 0 is used.
With these assumptions, Equation 3.4 can be rewritten as

W =
G

2
(Ĩ1 − 3) +K

(

J2 − 1

4
− 1

2
lnJ

)

+
k1

2
〈Ẽ1〉2. (3.9)

The bulk modulus K is assumed to be constant over the whole volume of
the tissue and is reported to range from 2.1 GPa [133] to 2.5 GPa, based
on the velocity of the dilatational waves in brain tissue of approximately
1550 m s−1 measured in ultrasonic experiments [134–136]. In this study, a
bulk modulus of 2.5 GPa is chosen.

The inclusion is assumed to be isotropic and its material properties are
based on the surrounding tissue. In case the inclusion represents a cross-
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section of a soma, which is assumed to consist of similar material as the
axons, the material properties are the same as the fiber-reinforced unori-
ented configuration for the brain tissue (see Table 3.1). For other cases
(e.g., blood vessels), the material properties of the inclusion are varied in
order to investigate the mechanical influence of the inclusion stiffness on
the surrounding axons.

3.2.4 Numerical approximation

The model has been developed within Abaqus 6.8-2 [131]. A geometrically
nonlinear approach is adopted using a model that contains 1076 quadri-
lateral bilinear elements with hourglass control and reduced integration
because of the near incompressibility of brain tissue.

3.2.5 Output quantities

This study is especially focussed on the local consequences of a global me-
chanical load on brain tissue. As mentioned previously, DAI is found to
be related to discrete focal impairment of axons [15]. Therefore, a relative
measure of the axonal strain with respect to a global load measure is used.
The axonal strain ε is defined as the maximum logarithmic strain in the
axonal direction, which is the material 1-direction for oriented axons and
the maximum principal strain direction for unoriented axons. By taking
the maximum principal tissue strain ε̄ = ln(λ̄), which is imposed on the
boundaries, as the global load measure, the relative strain becomes ε̂ = ε

ε̄
.

During realistic loading conditions responsible for DAI, however, the tissue
deformation is strongly driven by stress, because of the inertial forces acting
on the brain. Therefore, also the maximum local strain with respect to the
global normal stress difference of the tissue is considered. This measure is
representative for a process driven by a uniaxial stress and is defined as
ε̄σ = ε

(σ̄11−σ̄22)
, where σ̄11 and σ̄22 are the homogenized stress components

in the rotated coordinate system {~m1,~m2}, which are computed as in [109].
This normal stress difference corresponds to the maximum in-plane shear
stress. Then, the axonal strain relative to the applied stress is normalized
with this quantity for a reference situation, ε̌σ = ε̄σ

ε̄σ,ref
, where the reference
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situation is the homogeneous fiber-reinforced tissue with unoriented axons.
The above mentioned output measures are summarized in Table 3.2.

Table 3.2: Summary of the output measures.

Output measure Description

λ̄ applied tissue stretch
ε̄ = ln(λ̄) applied tissue strain
ε maximum axonal strain
ε̂ = ε

ε̄
maximum axonal strain relative

to the applied tissue strain
ε̄σ = ε

(σ̄11−σ̄22)
maximum axonal strain relative

to the applied tissue stress
ε̄σ,ref reference axonal strain relative

to the applied tissue stress
ε̌σ = ε̄σ

ε̄σ,ref
normalized maximum axonal strain

relative to the applied tissue stress

Besides relative or absolute axonal strains, an invariant stress measure will
be used as well to investigate the influence of the global loads. For this, the

equivalent stress σeq =
√

3
2σ

d : σd is used, in which σ
d is the deviatoric

part of the Cauchy stress tensor σ.

3.3 Results

This study is concerned with the global mechanical influences on axonal
injury and therefore, the results, including the field plots, depict the tissue
part that consists of axons, but not the inclusion. Figure 3.4 shows the
results of the simulations with oriented fiber-reinforced axons and a maxi-
mum diversion angle of 45◦ at three different loading angles. For both the
equivalent stress and the axonal logarithmic strain, it is obvious that the
values decrease for higher loading angles. Furthermore, at the same loading
angles, maximum values are located similarly for the stress and strain fields.
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At a loading angle of θ = 0◦, all axonal strain values are positive (i.e., all
the axons are stretched), whereas all axonal strain values are negative (i.e.,
all the axons are compressed) at θ = 90◦.

In Figure 3.5, the maximum relative axonal strains, which were defined pre-
viously, are plotted as a function of the loading angle for the configurations
with the oriented fibers. Unoriented fiber configurations as well as the ho-
mogeneous oriented fiber configuration are not shown, because the relative
strain in these cases has a value of 1 over the entire range of loading direc-
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Figure 3.4: Equivalent stress (upper row) and axonal logarithmic strain (lower
row) fields of the fiber-reinforced model with a maximum diversion
angle of ϕ = 45◦, and principal loading directions at an angle of
θ = 0◦, 45◦, and 90◦. Note that the stress and strain in the inclusion
is not shown in these field plots.
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Figure 3.5: The maximum relative local axonal strain as a function of the prin-
cipal loading angle θ for the oriented fibers with maximum diversion
angles of ϕ = 30◦, 45◦, and 60◦.

tions. The highest maximum axonal strain relative to the globally applied
strain is about 1.2 for the fiber-reinforced case. This value is obtained when
the tissue is loaded in the main axonal direction. Large axonal strains are
found for a small range of loading angles. In case of no fiber-reinforcement,
the local strain is never above the globally applied strain and the maximum
relative strain decreases depending on the maximum diversion angle. The
maximum relative strain is more dependent on the loading direction for
lower maximum diversion angles.

The maximum axonal strain relative to the applied stress normalized by a
reference value for homogeneous tissue is depicted in Figure 3.6 as a func-
tion of the loading angle for configurations with oriented fibers. Unoriented
fiber configurations are not shown, because the normalized relative strain
in these cases has a value of 1 over the entire range of loading directions.
The results of the model without fiber-reinforced axon are the same as
for the axonal strain relative to the tissue level strain. For loading angles
above approximately θ = 45◦, this is also the case for results of simulations
with the fiber-reinforced axons. At around a 45◦ loading angle, the fiber-
reinforced tissue reaches a normalized maximum axonal strain relative to
the applied stress that is 2.4, 2.5, and 2.8 times the value obtained at the
loading direction in the main axonal direction (i.e., θ = 0◦) for ϕ =30◦, 45◦,
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Figure 3.6: The maximum local axonal strain relative to the applied stress as a
function of the principal loading angle θ for the oriented fibers with
maximum diversion angles of ϕ = 0◦, 30◦, 45◦, and 60◦.

and 60◦, respectively. For lower loading angles, the normalized maximum
strains relative to the applied stress are lower than for the 45◦ loading an-
gle, because of the stiffening effect of the fibers that are oriented closely
towards the loading angle. For higher loading angles, however, the nor-
malized maximum strain relative to the applied stress decreases, because it
is affected by the decrease of the axonal strain relative the applied strain.
The homogeneous oriented fiber configuration (i.e., ϕ = 0◦) has a peak
value at around θ = 36◦, which is 1.7 times the value obtained at θ = 0◦.
For higher loading angles, the normalized maximum axonal strain relative
to the applied stress drops to lower values more rapidly than the heteroge-
neous orientations (i.e., ϕ = 30◦, 45◦, 60◦). Furthermore, it is observed that
the peak values for the heterogeneous configurations are a factor of 1.8 to
2.2 with respect to the peak value reached for the homogeneous configura-
tion. For the loading direction in the main axonal direction, the normalized
maximum strain relative to the applied stress for the heterogeneous cases
is increased by a factor 1.3 to 1.4 with respect to the homogeneous case.

In Figure 3.7, the strain in the axonal direction is displayed for the sim-
ulations with ϕ = 45◦ at a 0◦ loading angle for two different values of

the relative inclusion stiffnesses, which is defined as Ginclusion

Gtissue
=

k1,inclusion

k1,tissue
.

For all cases, it can be noticed that a higher relative inclusion stiffness
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Figure 3.7: Strain in the axonal direction for the simulations with a loading
angle θ = 0◦ and different relative stiffnesses of the inclusion. For
the oriented configurations, a maximum diversion angle of 45◦ is
used. Note that the strain in the inclusion is not shown in these field
plots.

results in higher axonal strains. If only the subset of the three different
configurations with a relative stiffness of 1 are compared to each other, it is
observed that axonal alignment causes a heterogeneous strain field. Axonal
alignment only leads to locally lower axonal strains, whereas alignment in
combination with fiber-reinforcement causes locally higher axonal strains.
In case the relative stiffness is 10, the axonal strain distribution is similar for
both the fiber-reinforced unoriented axons and the oriented axons without
fiber-reinforcement (i.e., the two situations with isotropic tissue behavior).
Maximum values are located equatorial as well as polar to the inclusion.
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However, the locations with lower axonal strain in the latter configuration
are similar to those observed for the situation with a relative stiffness of
1. The configuration with fiber-reinforced oriented axons and an inclusion
stiffness 10 times the surrounding tissue results in maximum values that
are located equatorial to the inclusion only.

In order to investigate the influence of the stiffness of the inclusion on the
axonal strain more carefully, the maximum relative axonal strain is plotted
against the relative inclusion stiffness in Figure 3.8. For a high relative
stiffness of the inclusion and fiber-reinforced oriented axons, the maximum
axonal strain can exceed 1.7 times the global maximum principal tissue
strain. This value is approximately 1.4 for the fiber-reinforced unoriented
axons as well as for the oriented axons without fiber-reinforcement.

3.4 Discussion

From the results of all simulations, the most general observation is that the
heterogeneities in the mechanical properties of brain tissue induce axonal
strains higher than the applied tissue strain. The maximum local strains
are all found near a stiff inclusion for axons aligned with the principal strain
direction. The principal strain direction has an important influence on the
results. For the fiber-reinforced oriented axons, the highest maximum ax-
onal strains relative to the principal tissue strain are found at a 0◦ loading
angle, which is the main axonal direction. However, the highest normal-
ized maximum axonal strain relative to the principal tissue stress occurs
at a loading angle of approximately 45◦ independently of the three differ-
ent maximum diversion angles for the heterogeneous configurations. For
the homogeneous case with fiber-reinforced oriented fibers, this occurs at
about 36◦. The reason the loading direction of the maximum axonal strain
is shifted away from the main axonal direction, is the stiffening effect of
the fibers in the main axonal direction. Nevertheless, this effect is coun-
teracted by the decrease of the axonal strain relative to the applied tissue
strain for higher loading angles. The heterogeneous fiber-reinforced cases
result in higher normalized maximum axonal strains relative to the applied
stress than for the homogeneous case. For a loading direction in the main
axonal direction, this factor is between 1.3 and 1.4 and is caused by the
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Figure 3.8: Axonal strain relative to the applied strain as a function of the stiff-
ness of the inclusion with respect to the tissue stiffness for the sim-
ulations with a maximum diversion angle of ϕ = 45◦ at a loading
angle of θ = 0◦.

heterogeneous distribution of stiffnesses. For the peak values, the factor
becomes 1.8 to 2.2. Here, also the fiber diversion angles have an influence
on the normalized maximum axonal strain relative to the applied stress.

In this paper, it is assumed there is a relation between mechanical deforma-
tion and injury at an axonal level based on the observation by Povlishock
[15] that mechanically induced DAI results in local axonal injury positioned
where the axon changes its anatomical course. The results of the simula-
tions show strain concentrations under similar circumstances, which is an
indication that such a relationship might exist. Also, in experimental stud-
ies it was shown that a mechanical load imposed on axons causes physiolog-
ical or functional impairments [59,60,137]. According to an experimental
study conducted by LaPlaca et al. [138], axonal injury is dependent on
the orientation of individual axons relative to the applied principal strain
and axons are mostly sensitive to injury for stretch in the axial direction of
the axon. This is in agreement with the orientation dependency of axonal
injury with respect to the tissue strain that is observed in the current study.

For the development of a model that relates the mechanical aspects of TBI
between the tissue level and the cellular level, several assumptions were
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made, such as for the geometry and the mechanical properties at the cellu-
lar level. Despite the complexity of the real structures, a relatively simple
model geometry was adopted in order to systematically compare different
situations within the limits set by the limited information on the mechan-
ical properties at the cellular level. Since no complex loading conditions
are considered, it is assumed that the material behavior can be modeled
completely elastic. Furthermore, the applied strain levels are chosen to be
small and are well below values commonly associated with DAI. However,
under the current assumption that no large non-linearities are present in the
material behavior, the observed strain concentrations are almost indepen-
dent of the strain level chosen. Relative quantities of predicted values are
considered to be more important than absolute values making the conclu-
sions drawn from this study partially independent of the chosen mechanical
properties and loading conditions.

According to Lu and co-workers [83], the storage modulus of glial cell pro-
cesses and pyramidal cell processes amounts to one-third of the modulus
of their respective somata. However, this is measured by indenting the
processes in a direction perpendicular to the axis of the process. For the
material model used in the current study, the inclusion has a lower stiffness
compared to an axon in the axonal direction, but it has a higher stiffness
compared to an axon in the direction perpendicular to the axonal direction.
In the latter case, this factor of one-third is reached for a logarithmic strain
of about 0.5.

Since the model is plane strain, the inclusion has in fact a cylindrical shape,
which could represent a blood vessel. However, the initially chosen mate-
rial properties are based on the assumption that the inclusion is a soma,
after which they were varied to investigate the effect of other types of inclu-
sions (e.g., a blood vessel). A future study with three-dimensional models
should elucidate the effects of different inclusion geometries with a three-
dimensional nature.

In the current study, the effects of a possible undulation of the axons have
not been accounted for. Although the mechanical effect of the undulation
could be implemented by the non-linear constant k2 at the tissue level,
this would lead to a violation of length scales in the current model. It has
been concluded by Bain et al. [87], that already at zero strain, parts of
the axons are fully coupled to their surroundings, which causes them to
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deform in an affine manner with respect to their surroundings. Although
the axonal strain relative to the applied tissue stress is expected to become
less dependent of the loading direction as a result of the undulation for
small strains, it is expected to have no influence for larger strains at which
DAI could occur and the axons are not undulated anymore.

3.5 Conclusion

In this study, the relation between mechanical loading of brain tissue
and axonal stretching is investigated, providing a bridge between different
length scales involved in TBI. Axonal strains resulting from a deforma-
tion at the tissue level can become higher than the applied tissue strain.
Values of over 1.7 for the relative axonal strain are found in the simula-
tions with a stiff inclusion. The maximum values are reached when the
principal loading direction is aligned with the main axonal direction. For
the loading conditions that represent a stress driven deformation, which
is more representative for the mechanisms leading to TBI, axonal strains
are shown to be influenced heavily by the fiber-reinforcement of the axons.
The peak normalized maximum axonal strain relative to the applied stress
is reached when the angle between the loading direction and the main ax-
onal direction is 36◦ and about 45◦ for the homogeneous and heterogeneous
configurations, respectively. The peak normalized maximum axonal strain
relative to the applied stress is between 1.8 and 2.2 times higher for the
heterogeneous cases than for the homogeneous case.

In the results of the simulations, the location of the peak strain is found
close to or within the axons that deviate from the main axonal direction.
Axonal injury has also been observed in a pathological study at locations
where axons are forced to deviate [15]. Factors that influence the increase
of the axonal strain relative to the applied tissue strain or stress are found
to be: (i) the inclusion stiffness with respect to the surrounding tissue, (ii)
the axonal orientation, (iii) the fiber-reinforcement (i.e, the effect of the
neurofilaments, which are aligned with the long axis of the axon), and (iv)
the maximum diversion angle of the axons. Factor (iii) and especially factor
(iv) have an important influence mainly on the axonal strain relative to the
applied stress.
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The heterogeneities at the cellular level cause increased axonal strains that
might lead to local injury of an axon as a result of the tissue level mechanical
load and as a consequence, a strong orientation dependent sensitivity of
axonal stretching to tissue level deformations is found. Therefore, FE head
models should account for the effects of the mechanical heterogeneities at
the cellular level and this orientation dependent sensitivity to predict more
accurately DAI by means of anisotropic and microstructure-related injury
criteria. Even though the current study indicates the importance of the
cellular level with respect to TBI, more research is needed to properly
quantify such injury criteria. Because it is not realistic to develop an FE
head model with a resolution typical for the axonal length scale, a proper
way to achieve this, is the integration of a detailed micromechanical model
in a macroscopic head model using a multiple scale approach, in which FE
models representing different discrete length scales of the same material are
coupled. It is expected that this will result in more realistic deformation
modes and hence also more realistic cellular level injury predictions. This
will be the subject of future work. Depending on the outcome of that work,
cellular level injury might be generalized to specific tissue level loads. In
that case, ultimately, macroscopic head model simulations can account for
the cellular level effects by merely applying these injury criteria. However,
if this generalization is not possible, a multiple scale approach might still
be necessary to predict brain injury caused by a mechanical load.
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Chapter four

Anisotropic Brain Injury Criterion

Different length scales from micrometers to several decimeters play an important role

in diffuse axonal injury. The kinematics at the head level result in local impairments

at the cellular level. Finite element methods can be used for predicting brain injury

caused by a mechanical loading of the head. Because of its oriented microstructure,

the sensitivity of brain tissue to a mechanical load can be expected to be orientation-

dependent. However, criteria for injury that are currently used at the tissue level in

finite element head models are isotropic and therefore do not consider this orientation

dependence, which might inhibit a reliable assessment of injury. In this study, an

anisotropic brain injury criterion is developed that is able to describe the effects of the

oriented microstructure based on micromechanical simulations. Both the effects of the

main axonal direction and of local deviations from this direction are accounted for.

With the anisotropic criterion for brain injury, computational head models will be able

to account for aspects of diffuse axonal injury at the cellular level and can therefore

more reliably predict injury.

Reproduced from: R.J.H. Cloots, J.A.W. van Dommelen and M.G.D. Geers (2011).
A tissue-level anisotropic criterion for brain injury based on microstructural axonal de-
formation. Journal of the Mechanical Behavior of Biomedical Materials, (in press).
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4.1 Introduction

Traumatic brain injury (TBI) can be caused by a mechanical action on the
head, for instance as a result of a sports or road traffic accident. More
than 1.5 million cases were reported in the United States in 2003 [139].
One of the most frequently occurring types of TBI is Diffuse Axonal Injury
(DAI) [140]. For an improvement of the prevention or diagnosis of TBI, it is
necessary to better understand the relation between the mechanical insult
on the head and the resulting injury. Brain injury criteria are used to
assess an injury level resulting from mechanical loading. The brain injury
criterion most commonly used nowadays is the Head Injury Criterion (HIC)
[32]. However, it has a number of drawbacks, among which the fact that
it is based on the translational accelerations of the head only. Although
injury occurs as a result of a mechanical load on the head, the actual injury
happens at the cellular level within the brain [94,141]. Therefore, more
sophisticated brain injury criteria that take this cellular level into account
may be able to better predict brain injury.

More detailed mechanical effects can be included in the relation between
a mechanical load and the resulting brain injury by using computational
models. Three-dimensional finite element (FE) models of the head and
brain have been developed to describe brain tissue strains and stresses
caused by a mechanical insult (e.g., [36–38,64,97]). The outcome of these
head models can be interpreted by means of tissue-level injury criteria that
can be obtained from experiments in which mechanically deformed brain
tissue is related to cell damage or electrophysiological impairments of the
neurons (e.g., [59–62,78,138,142–144]). Some of the tissue-level criteria are
based on strains, strain rates or the product of strain and strain rate, but
it is difficult to obtain a threshold for injury for any of the currently used
injury criteria. Besides numerical head modeling for injury prediction, also
several modeling studies have focused on the relation between the tissue-
level mechanical behavior and the cellular-level structures [88,126–128]. In
Chapter 3, the FE method was used to investigate the cellular-level effect of
brain injury. Even though research on TBI is being conducted at different
length scales, current numerical head models do not include the effects of
the cellular structure.

To understand how the global head load and cellular injury are connected,
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it is important to make a distinction between the different length scales
that play a role (see Figure 4.1). The mechanical load on the head results
in a head acceleration, which causes tissue stress and strain concentrations
due to the geometrical heterogeneities at the tissue level. This again leads
to cellular level stress and strain concentrations, which are affected by the
cellular microstructure. At the latter length scale, individual cells can be
distinguished. Neurons and glial cells consist of a cell body from which
processes extend [21,22]. The typical diameter of these cell bodies is about
5 µm for glial cells, whereas for neurons it is less than 10 µm or up to 20
µm for non-pyramidal neurons and other cortical and hippocampal neurons,
respectively [67–72]. Most neuronal cell bodies are in the cortex, but their
axons can be many centimeters long with a uniform diameter extending
into the other parts of the brain, whereas dendrites taper away from the
soma and rarely exceed 500 µm in length [73]. The vast majority of brain
tissue consists of axons and even in the cerebral cortex, which is relatively
rich in cell bodies and blood vessels in comparison with other parts of the
brain, 60% to 70% of the volume consists of neuronal axons and dendrites,
5% to 10% of glial processes, 10% to 20% of cell bodies and blood vessels,
and the remaining part is extracellular space [120–123].

An important aspect of DAI is that it is associated with discrete local
impairments of axons at locations where these have to deviate because of
the presence of an inclusion (e.g., a blood vessel or a soma) [124,125,141].
It has been shown in Chapter 3 that there might be a mechanical cause

Head level Tissue level Cellular level

∼1 dm ∼1 cm ∼10 µm

Figure 4.1: The length scales involved with TBI ranging from decimeters at the
head level to micrometers at the cellular level.
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for this, as concentrations of axonal stretch can occur more easily there,
depending on the local material properties, axonal orientations and loading
directions. From experiments with tissue deformations, the results indicate
that axons are mostly sensitive to injury for stretch in the axial direction of
the axon [138]. This could indicate that the micromechanics at an axonal
level should be accounted for in head level FE simulations. However, the
typical resolution of existing head models is much larger than the axonal
length scale, which means that these micromechanical effects cannot be
incorporated in the numerical head model in a conventional manner. To
overcome this problem, a multi-scale approach can be adopted, in which
two computational models of different length scales are coupled (e.g., [109]
or Chapter 5). However, drawbacks of this approach are the complexity
of modeling as well as the high computational demands, since for each
integration point of the head model for which the micromechanical effects
need to be accounted for, a micromechanical problem must be solved. For
practical applications, FE head models should be able to predict axonal
injury based on axonal orientation without the need for a nested multi-scale
coupling. Therefore, the aim of this study is to develop an anisotropic injury
criterion that accounts for the micromechanical effects that are important
for DAI and that can be directly applied at the tissue level of a numerical
head model.

4.2 Methods

In this study, a critical volume element (CVE) is modeled that represents a
critical region of the brain tissue for axonal injury at the micrometer length
scale. As opposed to a representative volume element, which represents a
microstructure that is continuously repeated throughout the material and
thereby describes the macroscopic material behavior, the CVE represents
only regions that are relatively sparsely present in the microstructure and
thereby the mechanical heterogeneities of the CVE do not influence the
macroscopic material behavior. Two different configurations of a CVE are
developed that can predict the strain concentrations at an axonal level
caused by a deformation that is applied at the level of the homogenized
tissue. One configuration represents a geometry with a cell body as an
inclusion and the other configuration represents a geometry with a blood
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vessel as an inclusion. Within those CVEs, the mechanical response of the
tissue anisotropically depends on local axonal orientations. Furthermore,
an anisotropic brain injury criterion is developed that can capture the con-
centrated axonal stretch within the CVE, which is considered to be critical
for brain injury, as a function of the applied homogenized tissue strain.

4.2.1 Critical volume element

In Chapter 3, a CVE was developed that describes DAI at an axonal level.
It was modeled with a plane strain assumption and was based on the patho-
logical observation of discrete local impairments of axons near an obstruc-
tion, such as a blood vessel or soma [141]. For the model in Chapter 3, it
was assumed that this typical critical geometry may be one of the causes
for injury due to mechanical strain concentrations in the axons surround-
ing the obstruction. Furthermore, it was assumed that axonal injury is
caused by axial stretching of the axon. In the current study, based on the
same assumptions, the CVE is extended to a three-dimensional model of
two different geometries. Both models represent a small volume of brain
tissue with dimensions 50x50x50 µm3 containing a critical configuration of
axons that curve around an inclusion. The material containing the axons
is modeled as a continuum and the interface with the inclusion is assumed
to be perfectly tied. In one of the geometries, the inclusion is a sphere
of diameter 8 µm, which represents a soma, whereas the second geome-
try contains a cylindrical inclusion of diameter 8 µm representing a blood
vessel (see Figure 4.2). The CVEs with the spherical and the cylindrical
inclusion are modeled with the FE code Abaqus 6.10 [145] and consist in
total of 28216 and 27960 linear hexahedral reduced integration elements
with hourglass control, respectively. Inside the CVE, the majority of the
axons is orientated in the ~ey direction, which is considered here as the
main axonal direction. Near the inclusion, however, the axonal orientation
is locally deviating from the main axonal direction. For this study, it is as-
sumed that the axonal orientation pattern can be described by a gradient
which is partially obstructed by the presence of an inclusion. Therefore,
the local axonal orientation is obtained by means of a classical diffusion
problem simulation, in which a concentration difference is imposed on the
top and bottom faces of the model. For all other faces, as well as for the

65



~ex

~ey

~ez

(a) (b)

Figure 4.2: The geometries and the spatial discretization of the CVEs with (a)
a spherical inclusion and (b) a cylindrical inclusion.

interface with the inclusion a zero flow rate across the boundary is mod-
eled (see Figure 4.3). With this method, for the model with the cylindrical
inclusion, the main axonal orientation is perpendicular to the long axis of
the inclusion. To investigate also other configurations for the CVE with
the cylindrical inclusion, different orientation fields are generated where the
main axonal direction varies with an angle β from 0◦ to 90◦ with respect to
the orientation of the long axis of the cylindrical inclusion. This is realized
by giving the local vector base {~e1, ~e2, ~e3}, in which the axonal orientation
is aligned with vector ~e2, at each integration point an additional rotation
about vector ~e1, where before rotation ~e3 = ~ez.

Inside each axon, fibers (i.e., neurofilaments) are aligned in the direction
of the axon itself and provide the axon its mechanical strength [73]. The
mechanical behavior of the local material consisting of oriented axons is
described by a fiber-reinforced material model, of which the strain energy
potential is [145]:

W =
G

2
(Ĩ1− 3)+K

(

J2 − 1

4
− 1

2
lnJ

)

+
k1

2k2

N
∑

α=1

(

ek2〈Ẽα〉2 − 1
)

, (4.1)

where the third term on the right hand side is the Holzapfel-Gasser-Ogden
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Figure 4.3: (a) A diffusion problem simulation is used to obtain the axonal orien-
tation for both CVEs. (b) Resulting vector field of the concentration
gradient that is used as the axonal orientation.

form [132] with

Ẽα = κ(Ĩ1 − 3) + (1− 3κ)(Ĩ4α − 1), (4.2)

where G is the shear modulus, K is the bulk modulus, J = det(F ) is
the volume change ratio, k1 and k2 describe the fiber stiffness, Ĩ1 is the
first invariant of the isochoric part of the right Cauchy-Green deformation
tensor C̃ = J− 2

3C, Ĩ4α = C̃ : ~n0α~n0α where ~n0α is the fiber family direction
vector in the reference configuration with unit length and N is the total
number of fiber families. The material parameter κ describes the dispersion
of the fiber orientations around the preferred fiber direction ~n0α. The two
limits of κ are 0 for fully aligned fibers (i.e., transverse isotropy) and 1

3
for randomly orientated fibers (i.e., isotropy). Therefore, the value of κ is
related to the degree of anisotropy. By means of the Macaulay brackets
〈·〉, the fibers contribute only in tension and not in compression, as 〈Ẽ〉
becomes 0 if Ẽ is negative.

The material properties of the axonal tissue are obtained from the study
by Ning et al. [58], which is based on the mechanical tissue behavior of the
brainstem and are G = 12.7 Pa, k1 = 121.2 Pa and κ = 0. Furthermore,
only one fiber family is assumed (i.e., N = 1) and the fiber contribution to
the stiffness is assumed linear (i.e., k2 → 0). Then, the third term on the
right hand side of Equation 4.1 becomes Wfiber =

k1
2 〈Ẽ1〉2. Because in the

current study, it is assumed that mechanical anisotropy is caused by the
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neurofilaments, which are of a much smaller dimension than the axons, the
tissue-level parameters obtained by Ning and co-workers are used in the
current study for the axonal material model. In Chapter 3, it was assumed
that a cell body mechanically behaves the same as the surrounding axonal
tissue, except that κ = 1

3 , referring to randomly oriented neurofilaments
within the cell body. Blood vessels may have different mechanical proper-
ties, which affects the axonal strains, which is discussed in Chapter 3, but
for a more in-depth investigation of the effect of the geometry the same
inclusion stiffness will be used for both CVEs. The bulk modulus K is
assumed to be constant over the whole volume. The parameter values are
shown in Table 4.1.

Table 4.1: Material properties obtained from Chapter 3 and [58].

G (Pa) k1 (Pa) κ K (GPa)

Axonal tissue 12.7 121.2 0 2.5
Inclusion 12.7 121.2 1

3 2.5

For the application of the mechanical loading, periodic boundary conditions
are used [109]. The displacement vectors ~u of corner nodes c1, c2, c4 and c5,
as shown in Figure 4.4, are calculated from the global deformation gradient
tensor F̄ , which equals the homogenized deformation of the CVE:

~uci = (F̄ − I ) · ~xc0i , (4.3)

in which ~x0 is the initial position vector and I is the unit tensor. The
nodal displacement vectors of the remaining parts of the boundary are tied
as follows:

~uΓ5678 − ~uΓ1234 = ~uc5 − ~uc1 (4.4)

~uΓ2673 − ~uΓ1584 = ~uc2 − ~uc1 (4.5)

~uΓ4378 − ~uΓ1265 = ~uc4 − ~uc1 , (4.6)

where Γjklm denotes the faces of the model. As a result of these periodic
kinematical boundary conditions, antiperiodicity of the tractions is satisfied
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Figure 4.4: Labeling of the corners and faces of the CVE for the periodic bound-
ary conditions.

as well [109].

Two types of loading conditions are used that both lead to isochoric de-
formations, because it is assumed that under impact conditions, deviatoric
strains are highly dominating over volumetric strains due to the near incom-
pressibility of brain tissue. The first loading condition is isochoric uniaxial
stretching that is described by the deformation gradient tensor

F̄ = λ̄− 1
2 ~m1 ~m1 + λ̄~m2 ~m2 + λ̄− 1

2 ~m3 ~m3, (4.7)

with λ̄ = 1.001, 1.01 or 1.1 the global stretch and the unit vectors ~mi

defining an orthogonal vector basis with ~m2 corresponding to the uniaxial
loading direction. Then, the logarithmic strain tensor becomes

ε̄ = ε̄

(

−1

2
~m1 ~m1 + ~m2 ~m2 −

1

2
~m3 ~m3

)

, (4.8)

where ε̄ = ln(λ̄) is the maximum principal tissue strain. The vector basis
{~m1, ~m2, ~m3} is defined with respect to the global Cartesian vector basis
{~ex, ~ey, ~ez} according to

~m1 = cosφcosθ~ex − sinφ~ey + cosφsinθ~ez (4.9)

~m2 = sinφcosθ~ex + cosφ~ey + sinφsinθ~ez (4.10)

~m3 = −sinθ~ex + cosθ~ez, (4.11)
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in which φ is the angle between ~m2 and ~ey and θ is the rotation angle about
~ey (see Figure 4.5). The angles θ and φ define the direction of loading
with respect to the principal directions of the CVE and are varied over
the entire space of orientations. Besides an isochoric uniaxial deformation,
an isochoric biaxial stretching is also applied, which is described by the
deformation gradient tensor

F̄ = λ̄~m1 ~m1 + λ̄−2 ~m2 ~m2 + λ̄~m3 ~m3. (4.12)

In addition to this CVE analysis, a homogeneous case is also considered,
in which no inclusion is present. This configuration is modeled analytically
as follows:

εax(θ, φ) =
1

2
〈ln(C(θ, φ) : ~n0~n0)〉, (4.13)

where εax = 〈lnλax〉 is the strain in the axial direction of the axon. This
case is independent of the material behavior and depends only on the de-
formation and the main axonal direction.

To analyze the axonal strain with respect to the global maximum principal

φ

θ ~ex

~ey

~ez
~m1

~m2

~m3

Figure 4.5: A rotated vector basis {~m1, ~m2, ~m3} that defines the main load-
ing directions with respect to the global vector basis {~ex, ~ey, ~ez}
according to the angles φ and θ.

70



4

tissue strain ε̄, a relative axonal strain is defined as

ε̂(φ, θ) =
εax(φ, θ)

ε̄
, (4.14)

where the relative axonal strain ε̂ is a local quantity that varies throughout
the CVE. For the maximum relative axonal strain, the most critical value
within the CVE is used:

ε̂max(φ, θ) = maxCVE {ε̂(φ, θ)} . (4.15)

4.2.2 Anisotropic equivalent strain measure

The most critical value of the relative axonal strain within the CVE, as
stated in Equation 4.15, depends on the loading direction and the loading
magnitude at the tissue level. This means that the maximum axonal strain
in the CVE can be expressed as a function of the tissue strain tensor and
therefore, an anisotropic equivalent strain measure is developed:

ε̄eq = maxCVE {εax(φ, θ)} , (4.16)

= f(ε̄), (4.17)

which gives the maximum axonal strain value as a function f of the tissue
strain tensor ε̄. To achieve this, an equivalent tissue strain based on the
Liu-Huang-Stout yield criterion [146], which is a combination of the Hill
[147] and Drucker-Prager [148] yield criteria (originally formulated in terms
of stress), is introduced:

ε̄eq =
[

F (ε̄yy − ε̄zz)
2 +G(ε̄zz − ε̄xx)

2 +H(ε̄xx − ε̄yy)
2

+2Lε̄2yz + 2Mε̄2zx + 2Nε̄2xy
]
1
2 + Iε̄dxx + Jε̄dyy +Kε̄dzz,

(4.18)

where ε̄ij are the tissue strain components in a Cartesian vector basis
{~ex, ~ey , ~ez} and the superscript d denotes the deviatoric part, defined as
(·)d = (·) − 1

3trace(·)I . The coefficients I, J and K referring to the linear
terms are used to describe the difference in the yield strain between uniax-
ial tension and compression. In the current study, a uniaxial and a biaxial
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deformation are used to determine the coefficients, which is comparable
to tension/compression since all deformations are isochoric. In contrast
to the original Liu-Huang-Stout criterion, the deviatoric part is used for
the linear terms, since only isochoric cases are tested in this study and for
volumetric loading, if critical, other quantities (e.g., pressure) than axonal
stretching are expected to be important due to the near incompressibility
of brain tissue. As a consequence, only two of the parameters I, J and K

can be determined independently and therefore, they are replaced by the
two (arbitrarily chosen) coefficients A = I − K and B = J − K, which
yields Iε̄dxx + Jε̄dyy + Kε̄dzz = Aε̄dxx + Bε̄dyy. The parameters of Equation
4.18 will be determined such that the equivalent strain values are the same
as the maximum axonal strains obtained from the CVE simulations. The
equivalent strain can be applied to any arbitrary loading condition. To
apply the deformation gradient tensor of Equation 4.7 or 4.12, the right
hand side of Equation 4.18 relative to the maximum principal tissue strain
ε̄ is denoted g(φ, θ), allowing to rewrite Equation 4.18 as

ε̄eq = ε̄g(φ, θ). (4.19)

By using Equations 4.14 to 4.19, it follows that the orientation dependence
of the equivalent strain is given by the maximum relative axonal strain,
i.e., g(φ, θ) = ε̂max(φ, θ), from which the coefficients of Equation 4.18 can
be determined, if the dependence of ε̂max on the direction of loading is
characterized. In case of isochoric uniaxial deformation (Equation 4.7),
function g can be expressed, using Equations 4.8 to 4.11, as

guni(φ, θ) =
3

2

[

F
(

cos2φ− sin2φsin2θ
)2

+G
(

sin2φsin2θ − sin2φcos2θ
)2

+H
(

cos2φ− sin2φcos2θ
)2

+ 6Lsin2φcos2φsin2θ

+ 6Msin4φsin2θcos2θ + 6Nsin2φcos2φcos2θ
]
1
2

+
1

2
A(3sin2φcos2θ − 1) +

1

2
B(3cos2φ− 1).

(4.20)
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For the isochoric biaxial deformation as defined in Equation 4.12, function
g can be written as

gbi(φ, θ) = 3
[

F (cos2φ− sin2φsin2θ)2 +G(sin2φsin2θ − sin2φcos2θ)2

+H(cos2φ− sin2φcos2θ)2 + 6Lsin2φcos2φsin2θ

+ 6Msin4φsin2θcos2θ +6Nsin2φcos2φcos2θ
]
1
2

−A(3sin2φcos2θ − 1)−B(3cos2φ− 1).

(4.21)

The coefficients F , G, H, A and B can then be derived from Equations
4.20 and 4.21 for φ and θ equal to 0◦ or 90◦, by solving a subset of five of
the following six equations where the value of g is obtained from the CVE
simulations:

guni(0, θ) =
3

2
(F +H)

1
2 − A

2
+B (4.22)

guni(90, 0) =
3

2
(G+H)

1
2 +A− B

2
(4.23)

guni(90, 90) =
3

2
(F +G)

1
2 − A

2
− B

2
(4.24)

gbi(0, θ) = 3(F +H)
1
2 +A− 2B (4.25)

gbi(90, 0) = 3(G +H)
1
2 − 2A+B (4.26)

gbi(90, 90) = 3(F +G)
1
2 +A+B. (4.27)

The subset will be chosen such that the highest maximum relative axonal
strain values are best captured by the anisotropic equivalent function. The
coefficients L, M and N , which characterize the influence of the shear
strains, are identified from a least squares fit of the equivalent strain values
for intermediate angles of φ and θ between 0◦ or 90◦ to the results of the
simulations for uniaxial deformations. Subsequently, the obtained coeffi-
cients are validated for biaxial deformations. The coefficients F , G, H, L,
M and N have to satisfy certain constraints, since the part corresponding
to the square root of Equation 4.18 should be positive semi-definite [149].
Therefore, the following conditions are required: N > 0, M > 0, L > 0 and
FG+ FH +GH > 0.
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In the homogeneous case or in the case of the CVE that contains a spherical
inclusion, both with the main axonal orientation in the ~ey-direction, the
geometry causes the axonal strain behavior to be transversely isotropic.
Due to this, the number of independent coefficients decreases according to:
F = H, M = H + 2G, L = N and A = 0.

Unlike in plasticity, for which the Liu-Huang-Stout criterion is used to
describe the onset of plastic deformation, the equivalent strain measure
represents the magnitude of axonal stretching. Thereby, the equivalent
strain measure can be used as an anisotropic brain injury criterion. If εax,c
is a constant value that represents a critical axonal strain for injury, then
at the onset of injury:

maxCVE {εax(φ, θ)} = εax,c, (4.28)

from which Equation 4.19 can be rewritten as a criterion for injury:

ε̄eqc = ε̄c(φ, θ)g(φ, θ), (4.29)

= εax,c, (4.30)

where ε̄c is the critical tissue strain for axonal injury, which depends on the
loading direction.

4.3 Results

In this section, the microstructural effects on the concentration of axonal
strain as observed in the simulations with the CVEs are shown, as well as
the ability of the proposed anisotropic equivalent strain measure to capture
these effects. Unless otherwise stated, the global stretch λ̄ is always 1.001
for the shown results.

In Figure 4.6, the maximum relative axonal strain is depicted as a function
of the loading angle for the homogeneous case (i.e., without inclusions).
The results of the analytical solution can be described perfectly by the
anisotropic equivalent strain over the entire range of loading directions for
both the uniaxial and the biaxial deformation modes. The axonal strain is
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Figure 4.6: The maximum relative axonal strain versus the loading angle φ for
(a) uniaxial and (b) biaxial deformations of homogeneous tissue with
uniaxially oriented axons. In both plots, the line represents function
g (Equations 4.20 and 4.21 for (a) and (b), repectively) and the
dots refer to the maximum relative axonal strain obtained from the
analytical solution for a homogeneous case.

equal to the applied tissue strain for the loading angle that corresponds to
a tensile strain in the main axonal direction. For loading angles that cause
only compressive strains in the main axonal direction, the relative strain
is zero. The values of the coefficients in the anisotropic equivalent strain
measure are summarized in Table 4.2, from which it can be noticed that all
shear coefficients are zero for an exact fit of the homogeneous configuration.

Figure 4.7 displays the equivalent stress σeq =
√

3
2σ

d : σd and the relative

axonal strain ε̂ for the CVE with a spherical inclusion and φ = 0◦ (i.e.,
the loading direction and the main axonal orientation are the same). It is
clear that both field plots are alike and the highest concentrations occur
equatorial to the inclusion. These results indicate that the equivalent stress
distribution is influenced by the local heterogeneities (i.e., stiffness and
orientation) in the same manner as the axonal strain distribution.

The relative strains that are obtained from the simulations with the CVE
containing a spherical inclusion are plotted in Figure 4.8. It can be noticed
that the overall dependency of the relative strain on the loading angle is
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Table 4.2: The values of the coefficients of Equation 4.18 obtained for the sim-
ulations without an inclusion, with a spherical inclusion and with a
cylindrical inclusion. The solution for the homogeneous case is exact.

Inclusion
Coefficient None Spherical Cylindrical

F 1/18 0.163 0.081
G -1/36 -0.056 -0.015
H 1/18 0.163 0.089
L 0 0.119 0.000
M 0 0.051 0.010
N 0 0.119 0.090
A 0 0.000 0.145
B 1/2 0.707 0.625

similar to the homogeneous case. However, the magnitude of the relative
strains is higher and nearly reaches 1.6, which means that the maximum
local axonal strain is considerably larger than the applied tissue strain.
This is a consequence of the local variation in axonal orientation around
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Figure 4.7: (a) Equivalent stress σeq and (b) relative axonal strain ε̂ of a cross-
section of the CVE with the spherical inclusion for a loading angle
of φ = 0◦.
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Figure 4.8: The maximum relative axonal strain versus the loading angle φ for
(a) uniaxial and (b) biaxial deformations for the CVE with a spheri-
cal inclusion. In both plots, the line represents function g (Equations
4.20 and 4.21 for (a) and (b), repectively) and the dots refer to the
maximum relative axonal strain obtained from the CVE simulations.

the inclusion as well as of the local differences in mechanical stiffness. The
variation in axonal orientation also causes a part of the axons to be more
aligned with the loading direction for higher loading angles resulting in
higher relative strains at loading angles for which the axons are not loaded
in tension in the homogeneous case. An exact agreement with the CVE
results is obtained for φ = 0◦ and 90◦ for the uniaxial deformation (Fig-
ure 4.8a) and for φ = 90◦ for the biaxial deformation (Figure 4.8b) as a
consequence of choosing to satisfy Equations 4.22 to 4.24, 4.26 and 4.27
exactly. There is a close agreement between the results of the CVE and the
anisotropic equivalent strain for uniaxial deformation with an R2 value of
0.9947. The values of the coefficient of the equivalent strain measure can
be found in Table 4.2. As a validation step, an overall reasonable agree-
ment is found for biaxial deformation with an R2 value of 0.8835, although
differences can be noticed around a loading angle of φ = 60◦ and below
φ = 20◦.

For the CVE with a cylindrical inclusion, of which the simulation results
are depicted in Figure 4.9, the relative strain is not only a function of
loading angle φ, but also of loading angle θ, where loading occurs in the
main axonal direction for φ = 0◦ and in the direction of the axis of the
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Figure 4.9: The maximum relative axonal strain versus the loading angles φ and
θ for (a) uniaxial and (b) biaxial deformations for the CVE with a
cylindrical inclusion. In both plots, the surface represents function
g (Equations 4.20 and 4.21 for (a) and (b), repectively) and the dots
refer to the maximum relative axonal strain obtained from the CVE
simulations.

cylindrical inclusion for θ = φ = 90◦. In the case of uniaxial deformation,
a relative strain of about 1.2 is reached, but this value is approximately
1.6 for biaxial deformation. An exact agreement with the CVE results is
obtained for φ = 0◦ and for φ = 90◦ with θ = 0◦ and θ = 90◦ for the uniaxial
deformation (Figure 4.9a) and for φ = 90◦ with θ = 0◦ and θ = 90◦ for the
biaxial deformation (Figure 4.9b). A close agreement between the results
of the CVE and the anisotropic equivalent strain for uniaxial deformation
is achieved with an R2 value of 0.9965. The values of the coefficients of the
equivalent strain measure are summarized in Table 4.2. Furthermore, an
overall reasonable agreement for biaxial deformation is obtained with an
R2 value of 0.9658.

Figure 4.10 shows the effect of the orientation of the main axonal direction

78



4
0 10 20 30 40 50 60 70 80 90

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6  

0.00  0.16  0.32  0.48  0.64  0.80  0.96  1.12  1.28  1.44  1.60

0.0    0.2    0.4    0.6    0.8    1.0    1.2    1.4    1.6    1.8    2.0

ε̂

ε̂max

ε̂p,max

ε̂p

β [◦]

~ex

~ey

Figure 4.10: The maximum relative axonal strain ε̂max and the relative maxi-
mum principal tissue strain ε̂p,max plotted against the angle β be-
tween the main axonal orientation and the long axis of the cylindri-
cal inclusion. The field plots show the relative axonal strain ε̂ and
the relative maximum principal tissue strain ε̂p of a cross-section
of the CVE with a cylindrical inclusion.

with respect to the blood vessel for a uniaxial deformation in the main
axonal direction with β the angle between the main axonal direction and
the direction of the blood vessel. For β = 90◦, the relative maximum axonal
strain is approximately 1.2 and it reaches a maximum value close to 1.6,
if the main axonal direction is at 30◦ relative to the cylindrical axis. In
the two lower field plots in Figure 4.10, it can be seen that the highest
relative axonal strains are located equatorial to the inclusion cross-section,
where not only the influence of the inclusion is felt, but also the axons are
aligned with the loading direction. The field plot representing the relative
maximum principal tissue strain, defined as the local maximum principal
strain with respect to the global maximum principal strain, on the upper
right hand side of Figure 4.10, shows that the highest values are at locations
diagonally with respect to the inclusion, at which the axons are locally
deviating most from the loading direction and therefore also at which the
tissue locally has the lowest stiffness in the loading direction. This effect
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gets stronger if β decreases until 55◦ and then diminishes again for lower
angles of β, because the more the loading direction is aligned with the long
axis of the cylindrical inclusion, the less the mechanical influence of the
inclusion is. Consequently, with decreasing angles of β, the location of the
maximum principal tissue strain moves towards the region equatorial to
the inclusion in the cross-section as can be seen in the upper left hand side
of Figure 4.10. These combined effects cause the relative maximum axonal
strain to show a peak at β = 30◦.

In the previous results, the global stretch λ̄ was 1.001, which is below levels
that are typically associated with DAI. To obtain the influence of higher
global strain levels on the maximum relative axonal strain, the results of
simulations with the CVE with a spherical inclusion with global stretch
levels of 1.001, 1.01 and 1.1 are depicted in Figure 4.11. It can be observed
that the overall relation between the maximum relative axonal strain from
the CVE and the loading angle is similar for all three levels of global stretch.
For global stretch levels of 1.001 and 1.01, the difference between resulting
maximum relative axonal strains is less than 4%. For a global stretch of
1.1, the maximum relative axonal strain is 14% smaller at φ = 0◦ than for
a global strain of 1.001. This difference decreases for higher loading angles,
but for loading angles larger than 60◦, the relative difference increases again,
although at these loading angles the maximum relative axonal strain is
small.

4.4 Discussion

In this study, an anisotropic equivalent strain measure based on axonal
loading is introduced. The results show that it is capable of describing the
effects of microstructural heterogeneity on axonal injury due to tissue-level
mechanical loading. From simulations with critical volume elements, it was
observed that locally axonal strains may be significantly larger than the
overall tissue strain and that the level of axonal stretching depends strongly
on the direction of loading. In Chapter 3, it was concluded that factors that
influence the axonal strain relative to the applied tissue strain are: (i) the
inclusion stiffness relative to the surrounding tissue, (ii) the main axonal
orientation, (iii) the mechanical anisotropy and (iv) the local deviation in
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Figure 4.11: The maximum relative axonal strain ε̂max as a function of the load-
ing angle φ with different global strain levels for the CVE with a
spherical inclusion.

axonal orientations. The three-dimensional CVEs of the current study pro-
vide two important additional insights into the micromechanical effects of
brain injury. Firstly, a spherical inclusion leads to higher axonal strain rel-
ative to the applied tissue strain compared to a cylindrical inclusion that
is oriented perpendicular to the main axonal direction. The latter con-
figuration is similar to the previously investigated two-dimensional cases
described in Chapter 3. Secondly, higher values of the relative maximum
axonal strain are observed in the three-dimensional CVE if the angle be-
tween the axis of the cylindrical inclusion and the main axonal direction
is varied, and in the most critical case, they are similar to those of the
spherical inclusion.

The effect of the microstructural heterogeneity in the CVE with the cylin-
drical inclusion depends on the loading direction in the three-dimensional
space. This CVE is representative for a critical volume in the brain tis-
sue near e.g. a single blood vessel. In reality, however, a distribution of
randomly oriented blood vessels could exist. In that case, the combined
effect of various CVEs with a cylindrical inclusion in all different directions
with respect to the main axonal direction should be considered. There-
fore, the sensitivity of the tissue to mechanical strains becomes transversely
isotropic, similar to the CVE with a spherical inclusion. Since it has been
shown that the highest axonal strains, which are obtained at a specific
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angle between the axis of the cylindrical inclusion and the main axonal
direction, are similar to those of the CVE with a spherical inclusion, it can
be concluded that the latter CVE could represent a network of blood ves-
sels as well. Nevertheless, the main focus of this research is to develop an
anisotropic equivalent strain measure to predict brain injury that is gener-
ally applicable, even for the complex micromechanical effects of tissue with
uniaxially oriented cylindrical inclusions.

The proposed anisotropic equivalent strain measure can be used to ob-
tain local maximum axonal strain levels directly from a macroscopic FE
head model. The equivalent strain measure was found to capture the ori-
entation dependent sensitivity to mechanical loads for the different cases
considered in this study and is expected to be generally applicable to other
configurations as well. Although the axonal strains relative to the tissue
strains obtained from the simulations have not been validated experimen-
tally, the coefficients of the equivalent strain could also be obtained from
deformation-controlled tissue-level injury experiments of a similar type as
performed in literature (e.g., [62,78,138]). In that case, the coefficients are
determined such that the equivalent strain describes actual injury rather
than axonal strains. Then, if a threshold is obtained for injury, the equiv-
alent strain can be used as an anisotropic brain injury criterion.

Although in reality the size and the shape of the inclusion can differ from
the simulations in this study, in this continuum mechanics-based model-
ing approach, for a given orientation field, the results are independent of
the length scale of the inclusion. However, the local orientation field does
affect the results and this orientation field may depend on the size of the
inclusion. It follows from the results that the most important reason for
the dependency on the loading direction is the local axonal orientation.
It is therefore expected that other sizes or shapes of the inclusion will re-
sult in similar relative maximum axonal strain values as the CVE with the
spherical inclusion.

The mechanical behavior of brain tissue is known to be viscoelastic. How-
ever, no viscoelastic behavior has been included in the CVE models, since
the loading path is not complex. In Chapter 5, in which the anisotropic
equivalent strain as well as a viscoelastic CVE is applied to an FE head
model, is is concluded that the outcome of both approaches is nearly iden-
tical. Therefore, the orientation dependence of the anisotropic equivalent
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strain measure is independent of the head level loading type or rate. Nev-
ertheless, the strain field predicted by an FE head model, to which the
anisotropic equivalent strain should be applied, will depend on the vis-
coelastic constitutive description of brain tissue in the head model.

In pathological studies, locally injured axons are found in between intact
axons [141,150]. The CVE in the current study cannot predict these in-
dividually injured axons, since the axonal tissue in the CVE is modeled
as a continuum. However, since these injuries are always present within
areas where the axonal orientation is deviating in its course due to an ob-
struction, it is assumed that the strain concentrations from the continuum
axonal material are sufficient to relate axonal injury to tissue loads. Fur-
thermore, the anisotropic equivalent strain measure can not only capture
the micromechanical effects as observed in the CVEs, but also the relative
axonal strain for a homogeneous case, where the mechanical behavior has
no influence at the microscale.

In the current study, only axonal-level simulations are conducted. However,
if the CVE or the anisotropic equivalent strain measure are used in FE
head models, the full potential of these techniques will be achieved. For
this purpose, the main axonal orientation should be included in the FE
head model (e.g., [64,65] or Chapter 5), where the CVE or the anisotropic
equivalent strain measure is applied in a local coordinate system within the
head model.

In the present simulations, the effects of a possible undulation of the ax-
ons have not been accounted for. Bain and co-workers [87] concluded that
already at zero strain, parts of the axons are fully coupled to their sur-
roundings, which causes them to deform in an affine manner with respect
to their surroundings. Although the maximum axonal strain relative to the
applied tissue strain is expected to become less dependent of the loading
direction as a result of the undulation for small strains, it is expected to
have no influence for larger strains at which DAI could occur and the axons
are not undulated anymore.
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4.5 Conclusion

For DAI, different length scales play an important role, where the mechan-
ical load occurs at the head level and the injury is occurring at a much
smaller cellular level. Simulations with different CVEs in this study show
that the heterogeneities at the cellular level result in elevated axonal strain
levels that may cause axonal injury and that the magnitude of these axonal
strains depends not only on the magnitude of the deformation at the tissue
level, but also on the direction of tissue loading relative to the orientation
of the microstructure. Current FE head models should account for these
micromechanical effects for a better prediction of DAI. The anisotropic
equivalent strain measure that is developed in this study is capable of de-
scribing an orientation dependence of axonal strains resulting from tissue
strains. Therefore, the anisotropic equivalent strain measure can be ap-
plied to FE head models in order to relate predicted strain fields to axonal
strain levels, from which a better prediction of DAI is possible. Further-
more, the parameters of the anisotropic equivalent strain measure can also
be obtained from deformation-controlled experiments. From this type of
experiments, the coefficients can be derived directly for injury as a conse-
quence of tissue loading in different directions resulting in an anisotropic
brain injury criterion. This study shows that the equivalent strain measure
can be fitted to agree well with the results of the CVEs that were modeled
as good as possible based on current knowledge. However, it is expected
that the equivalent strain measure can also be fitted well on future im-
proved simulations and/or experiments at both the cellular and the tissue
level.
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Chapter five

Multi-scale Mechanics of Traumatic Brain

Injury

The length scales involved in the development of diffuse axonal injury typically range

from the head level (i.e., mechanical loading) to the cellular level. The parts of the

brain that are vulnerable to this type of injury are mainly the brainstem and the corpus

callosum, which are regions with highly anisotropically oriented axons. Within these

parts, discrete axonal injuries occur mainly where the axons have to deviate from their

main course due to the presence of an inclusion. The aim of this study is to predict

axonal strains as a result of a mechanical load at the macroscopic head level. For this,

a multi-scale finite element approach is adopted, in which a macro-level head model

and a micro-level critical volume element are coupled. The results show that the axonal

strains cannot be trivially correlated to the tissue strain without taking into account

the axonal orientations, which indicates that the heterogeneities at the cellular level

play an important role in brain injury and reliable predictions thereof. In addition to

the multi-scale approach, it is shown that a novel anisotropic equivalent strain measure

can be used to assess these micro-scale effects from head level simulations only.

Reproduced from: R.J.H. Cloots, J.A.W. van Dommelen, S. Kleiven and
M.G.D. Geers (2011). Multi-scale Mechanics of Traumatic Brain Injury: Predicting
Axonal Strains from Head Loads. (Submitted)
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5.1 Introduction

The brain is a vulnerable part of the human body in case of an accident,
such as in a road traffic crash situation. In Europe, which has a total pop-
ulation of 330 million people, about 50,000 people die because of traumatic
brain injury (TBI) each year [89]. Diffuse axonal injury (DAI) is one of
the most frequently occurring types of TBI [140]. It is primarily involved
with dynamic non-contact loading, although it is believed to occur in closed
head impacts as well [118,119].

In order to improve the prevention and diagnosis of TBI, a better under-
standing of the relation between mechanical loading and TBI is necessary.
Therefore, brain injury criteria are developed that can predict TBI as the
result of a mechanical load. The most used brain injury criterion in the
automotive industry nowadays is the head injury criterion (HIC), which
is based on head level kinematics [32]. Although the mechanical loading
occurs at the head level, injury of the brain is often the result of more local
mechanical phenomena. Because of this, more sophisticated brain injury
criteria are needed to recover the local mechanics. For this purpose, three-
dimensional finite element (FE) head models are developed that simulate
the response to a mechanical loading of the head to assess the risk of TBI
(e.g., [36–38,97]). FE head models have a good potential to predict DAI,
since they describe local deformations within the brain [102,119]. How-
ever, an indisputably well-defined correlation between mechanical loading
and DAI using FE head models has not been achieved yet. A possible
explanation is that in most of the currently used head models, anisotropic
mechanical behavior of brain tissue is not included, even though experimen-
tal studies have concluded that neural tissue behaves clearly anisotropically
in some regions of the brain (e.g., [48,51,52,58,88,151]). In line with this,
recent studies have been performed that take the axonal orientation into
account leading to tissue strains in the axonal direction [64,66]. Neverthe-
less, even if tissue strains could be predicted accurately by head models,
the link to real injury is still not straightforward, as several studies con-
cerning TBI have shown that tissue strains lead to injury at a cellular level
(e.g., [53,60,62,63,79,101]), whereby the microstructural heterogeneities at
the cellular level are of influence.

Brain tissue contains neurons and glial cells, which both consist of a cell
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body from which processes (i.e., axons and dendrites) extend [21,22]. The
diameters of the cell bodies are about 5 µm for the glial cells and often less
than 10 µm for nonpyramidal cells and up to 20 µm for other cortical and
hippocampal neurons [67–72]. The cell bodies are mainly residing in the
cortex, but their axons, which have a uniform diameter, extend into the
white matter regions and can be many centimeters long [73].

In Chapter 3, a micro-level critical volume element (CVE) was developed
based on the pathological study of Povlishock [141], in which it was observed
that axonal injury is only present at locations where the axons have to
deviate from a straight path because of an obstruction (e.g., a blood vessel
or a cell body). This viewpoint is still supported in more recent literature
[124,125]. This pathological observation indicates that those axons might
be subjected to locally higher strains than the tissue level strains, because
of mechanical heterogeneities at the axonal level, which is discussed in
Chapter 3. Furthermore, it shows that a region with axons near an inclusion
can be considered as a critical region for axonal injury. Moreover, in the
pathological observations of brain-injured humans, Povlishock found axonal
damage mainly within white matter regions, such as the brainstem and the
corpus callosum.

This influence of the microstructure of the tissue might induce an orien-
tation dependence of the sensitivity of brain tissue to a mechanical load
in regions where the tissue has a unidirectionally oriented structure. This
highlights the importance of taking into account microstructural aspects of
the tissue in tissue-level brain injury criteria.

Within this context, the aim of this study is to investigate the local ax-
onal strains near an inclusion in relation to the tissue level strains of the
brainstem and the corpus callosum during mechanical loading of the head.
To achieve a coupling between an FE head model that does not contain
details at a cellular level and local axonal strains, a multi-scale framework
with a macroscopic head model and a microscopic critical volume element
(CVE) is used. Both levels are solved with the FE method. The CVE
is constructed on the basis of microscopic pathological findings for DAI.
An approximate single scale approach to include cellular level effects in
the same FE head model (without using a CVE) is pursued through an
anisotropic equivalent strain measure that can estimate axonal strains di-
rectly from head model tissue strains, which is described in Chapter 4. To
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investigate to capability of the anisotropic equivalent strain measure to ac-
count for microstructural effects (as modeled in a CVE), the outcome of
both approaches will be compared.

5.2 Methods

In this section, first, the multi-scale method will be explained, whereas the
anisotropic equivalent strain measure will be explained further on. For the
multi-scale approach, at the macro level an FE head model is used and
at the micro level a CVE is developed (see Figure 5.1). To achieve this,
the influence of the microstructural configuration as well as the anisotropic
sensitivity of the tissue to mechanical loads should be accounted for. The
FE head model is originally developed by Kleiven [37] and for the current
study, it is extended with anisotropic tissue behavior. The CVE developed
in this study represents a microstructural configuration that is critical for
axonal injury. In Figure 5.2, it is shown schematically how the head model
and the CVE are coupled in the multi-scale framework. Macroscopic load-
ing conditions are based on the reconstruction of a real sports accident
[37,152] and are imposed on the head model. After the simulations of the

(a) (b) (c)

Figure 5.1: Models at the macroscopic and the microscopic level: (a) head model,
(b) head model showing the brainstem and the corpus callosum and
(c) critical volume element.
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macroscopic loading conditions

tissue loading

axonal loading

�

�

�

�
head model: macroscopic anatomy

�

�

�

�CVE: cellular microstructure

Figure 5.2: Schematic representation of the computational multi-scale imple-
mentation.

head model are completed, the obtained internal brain tissue loading re-
sponse from the head model is used as a loading condition for the CVE,
where for each integration point in the regions of interest of the head model
a separate CVE simulation is conducted. The outcome of the CVE simu-
lations is the axonal loading, where the orientation of the axons are taken
into account. For completeness, a situation is also simulated in which no
inclusion is present in the microstructure by directly taking the logarith-
mic tissue strain obtained in the head model in the macroscopic local main
axonal direction (i.e., without a CVE simulation).

Since the discrete focal impairments of the axons are often found in the
brainstem and the corpus callosum, focus is put on these parts of the head
model. In order to perform an in-depth study of the axonal strains in
the CVE in relation to the tissue strains in the brainstem and the corpus
callosum of the head model, one specific injurious loading case of the head
model is considered, where for each element of the brainstem and the corpus
callosum a CVE simulation is performed.
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5.2.1 Head model

The head model used in this study is based on the model developed by
Kleiven [37] in the FE code LS-DYNA 971 (LTSC, Livermore, CA), which
consists of 11,158 eight-node hexahedral elements, 10,165 four-node shell
and membrane elements, and 22 two-node truss elements. The simulations
are performed in the dynamic regime with an explicit integration scheme.
For this study, the material behavior of the brain tissue is described by
a viscoelastic fiber-reinforced anisotropic material model. This model is
implemented as a user material of which the hyperelastic strain energy
potential is:

W =
G

2
(Ĩ1 − 3) +K

(

J2 − 1

4
− 1

2
lnJ

)

+
k1

2k2

(

ek2〈Ẽ〉2 − 1
)

, (5.1)

where the third term on the right hand side is based on the Holzapfel-
Gasser-Ogden form [132], with only one fiber family here, with

Ẽ = κ(Ĩ1 − 3) + (1− 3κ)(Ĩ4 − 1), (5.2)

whereG is the shear modulus,K is the bulk modulus, Ĩ1 is the first invariant
of the isochoric right Cauchy-Green deformation tensor C̃ = J− 2

3C with C

the right Cauchy-Green deformation tensor and J = det(F ) is the volume
change ratio. Furthermore, Ĩ4 = C̃ : ~n0~n0 is the isochoric fourth invariant
where ~n0 is the fiber direction vector in the reference configuration with
unit length; k1 is the scalar fiber stiffness, and κ is the dispersion of the
fiber orientations around the preferred fiber direction ~n0. The two limits of
κ are 0 for fully aligned fibers (i.e., transverse isotropy) and 1

3 for randomly
oriented fibers (i.e., isotropy). Therefore, the value of κ is related to the
degree of anisotropy. By means of the Macaulay brackets 〈·〉, the fibers
contribute only in tension and not in compression, as 〈Ẽ〉 becomes 0 if Ẽ
is negative. The fiber contribution to the stiffness is assumed linear (i.e.,
k2 → 0) [58]. Viscoelasticity is added by using:

S(t) =

∫ t

0

[

M∞ +
∑

i

Miexp

(

− t− τ

τi

)

]

∂S e

∂τ
dτ, (5.3)
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where M∞+
∑

iMi = 1, τ is a time variable that runs from from the initial
time up to the current time t, S(t) is the current deviatoric second Piola-
Kirchhoff stress tensor, S e is the deviatoric elastic second Piola-Kirchhoff
stress tensor as derived from the non-volumetric part of Equation 5.1 (i.e.,
the first and third term on the right side), M∞ is the long term parameter
recovering the role of the material parameters G and k1 in the limit, Mi

are the relaxation parameters of the viscoelastic modes and τi are the time
constants. The volumetric behavior is assumed to be independent of time.

The material properties of the brain tissue are based on a combination of
the experimental study of Ning et al. [58] on the brainstem of a 4-week
old pig and the material properties of the brain tissue in the original head
model [37]. The material properties used in the current study are given in
Table 5.1. Since the original head model has been validated with isotropic
mechanical behavior only, the mechanical response of the original and the
extended model are expected to be similar in case the extended model
would contain only isotropically oriented fibers (i.e., κ = 1

3 ) in the brain
tissue. Furthermore, the ratio of the parameter values for G and k1 is as-
sumed to be the same as the ratio in the study by Ning et al., although the
absolute parameter values are not taken from this study. The fiber orienta-
tion is modeled fully uniaxially in the corpus callosum (lateral orientation),
the brainstem (inferior-posterior orientation) and the spinal cord (inferior-

Table 5.1: Material properties of the brain tissue in the head model.

G (Pa) 1214
k1 (Pa) 11590
M1 for τ1 = 10−6 s 0.7685
M2 for τ2 = 10−5 s 0.1856
M3 for τ3 = 10−4 s 0.0148
M4 for τ4 = 10−3 s 0.0190
M5 for τ5 = 10−2 s 0.0026
M6 for τ6 = 10−1 s 0.0070
M∞ 0.0025

Isotropic parts Anisotropic parts
κ 1

3 0
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posterior orientation), which will result in anisotropic mechanical behavior.
For the remaining part of the brain tissue, the fiber orientation is modeled
fully isotropic. In the original isotropic head model, the brainstem has a
higher stiffness than the remaining brain tissue, which is here automatically
accounted for by the increased stiffness from the fiber contribution in the
inferior-posterior orientation. The bulk modulus of brain tissue is 2.1 GPa
[133], but to prevent volumetric locking of the elements, a lower value of
50 MPa is used, which is still much higher than the shear modulus.

The loading conditions of the head model are based on a reconstruction case
of an accident in the American National Football League with case numbers
57H2 [37,152]. This case is involved with loss of consciousness, which is
often related to brainstem injury [153]. In Figure 5.3, the acceleration of
the head model is shown.
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Figure 5.3: Head model loading condition based on the reconstruction of a struck
sports player (case number 57H2 [152]).
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5.2.2 Critical volume element

The CVE is developed using the FE code Abaqus 6.10-2 [145]. As opposed
to the head model, the CVE is analyzed with a quasi-static computation
with an implicit integration scheme. It contains 27,960 eight-node reduced
integration hexahedral elements. The three-dimensional geometry of the
CVE is based on pathological observations for axonal injury. It contains
a spherical inclusion with a cross-sectional diameter of 8 µm and its sur-
rounding material is assumed to consist of axons only. The inclusion and
the surrounding tissue are assumed to be fully compatible at the interface.
The tissue, consisting of axons, is modeled with a continuum approach.
In line with the head model used at the macroscopic level, an anisotropic
Holzapfel-Gasser-Ogden model [132] is used with the same properties as
the head model. Note that volume associated to these critical locations is
statistically small, so that the average tissue properties at the microstruc-
tural level correspond with those at the macroscopic level. Furthermore,
the neurofilaments causing the anisotropic behavior are characterized by
a much smaller length scale than the macro-level head model as well as
the micro-level CVE. The same material model can therefore be used in
the head model and the CVE without violating the separation of length
scales. In order to obtain the axonal strains, each material point of the
CVE has a specific orientation representing the local axonal orientation,
which is depicted in Figure 5.4. The CVE simulations are conducted

y

z

Figure 5.4: Cross-section of the CVE with the spatial discretization and the
axonal orientation in each element of the part that consists of axons.
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for material points (i.e., integration points in the FE discretization) of the
brainstem and the corpus callosum in the head model and therefore, the
main axonal direction in the CVE is aligned with the local axonal direction
of the brainstem and the corpus callosum in the head model.

The behavior of the inclusion is also described with the Holzapfel-Gasser-
Ogden model, but with isotropically oriented fibers (i.e., κ = 1

3). To inves-
tigate the influence of the inclusion stiffness, three different values of the
elastic parameters of the inclusion relative to those of the brain tissue are
used: A) equal to those of the isotropic brain tissue, B) three times stiffer,
and C) ten times stiffer. The bulk modulus is constant over the entire CVE
and is equal to that of the head model. The material properties are shown
in Table 5.2.

The loading conditions of the CVE are obtained from the deformation gra-
dient tensor in the corresponding material point in the brain tissue as pre-
dicted with the head model and imposed by means of periodic boundary
conditions [109]. The displacement vector ~u of a corner node ci, as shown
in Figure 5.5, is calculated from the global deformation gradient tensor
F̄ , which is obtained from the Green-Lagrange strain tensor in the head
model, through:

~uci = (F̄ − I ) · ~x0ci , (5.4)

in which ~x0 is the initial position vector and I is the unit tensor. Equa-
tion 5.4 is prescribed at the corner nodes c1, c2, c4, and c5. The nodal
displacement vectors of the remaining parts of the boundary are tied as

Table 5.2: Material properties of the CVE.

Axonal tissue Inclusion
A (1x) B (3x) C (10x)

G (Pa) 1214 1214 3642 12140
k1 (Pa) 11590 11590 34770 115900

κ 0 1
3

1
3

1
3

M1 to M6 and M∞ see Table 5.1
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(a) (b)

c1 c2

c3c4

c5 c6

c7
c8

Γ1234

Γ4378

Γ2673
Γ5678

Γ1265

Γ1584

Figure 5.5: CVE with (a) labeling of the corners and faces in the undeformed
state and (b) deformed model with periodic boundary conditions.

follows:

~uΓ5678 − ~uΓ1234 = ~uc5 − ~uc1 , (5.5)

~uΓ2673 − ~uΓ1584 = ~uc2 − ~uc1 , (5.6)

~uΓ4378 − ~uΓ1265 = ~uc4 − ~uc1 , (5.7)

where Γjklm denotes the faces of the model (see Figure 5.5). As a result of
these kinematical boundary conditions, antiperiodicity of the tractions is
satisfied [109].

5.2.3 Anisotropic equivalent strain measure

In Chapter 4, an anisotropic equivalent strain measure ε̄eq has been devel-
oped that represents the maximum axonal strain as a result of the tissue
strain components ε̄ij :

ε̄eq =
[

F (ε̄yy − ε̄zz)
2 +G(ε̄zz − ε̄xx)

2 +H(ε̄xx − ε̄yy)
2

+2Lε̄2yz + 2Mε̄2zx + 2Nε̄2xy
]
1
2 + Iε̄dxx + Jε̄dyy +Kε̄dzz,

(5.8)

This equivalent strain measure accounts for the orientation dependence
governing the contribution of tissue deformations to axonal stretching. The
coefficients of this equivalent strain were obtained from a CVE on which
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isochoric uniaxial and biaxial deformations in all loading directions were
applied. The values are given in Table 5.3 and they are obtained with a
CVE with a spherical inclusion, in which the main axonal direction is in the
y-direction. To simplify the analysis and eliminate the coupled solution at

Table 5.3: The values of the coefficients of the equivalent strain measure in Equa-
tion 5.8 as obtained from CVE calculations described in Chapter 4.

Coefficient F G H L M N I J K

Value 0.163 -0.056 0.163 0.119 0.051 0.119 0.000 0.707 0.000

two scales, the equivalent strain measure can be used to replace the CVE
as depicted in Figure 5.6. In the current study, the predictions based on
this equivalent strain measure will be compared with the maximum axonal
strain values obtained from the CVE simulations.

macroscopic loading conditions

tissue strain tensor

maximum axonal strain

�

�

�

�
head model: macroscopic anatomy

�

�

�

�
anisotropic equivalent strain measure

Figure 5.6: Schematic representation of the implementation of the anisotropic
equivalent strain measure.
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5.3 Results

In Figure 5.7, a strain field is shown for the head model, from which it is
clear that elevated (macroscopic) strain levels up to 0.28 occur, especially
around the brainstem. For this particular situation, in which loss of con-
sciousness was observed, this indicates that the brainstem is a vulnerable
part for injury in case an injurious mechanical load occurs.

The maximum axonal strains obtained from a CVE simulation as a function
of the tissue strain in a specific material point in the brainstem and the
corpus callosum are plotted in Figure 5.8. No clear relation between the
axonal strain and the maximum principal tissue strain is observed, both
for the simulations with and without an inclusion. Following the trajectory
in time, it can be noticed that two peak values of the maximum principal
logarithmic tissue strain are reached in the brainstem as well as the corpus
callosum. For these two peak values, however, the ratio between the tissue
strain and the maximum axonal strain is different. The presence of an
inclusion leads to increased local maximum axonal strains in the tensile
regime. Furthermore, the relation between the axonal strain and the tissue
strain is also dependent on the angle ϕ (between the maximum principal
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0.235

0.211

0.186

0.159

0.131

0.102

0.070

0.036

0.0

strain

brainstem

corpus callosum

Figure 5.7: Maximum principal logarithmic strain of a sagittal cross section of
the head model at 37 ms.
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loading direction of the tissue and the main axonal direction), which is most
pronounced in the trajectory without an inclusion. For this case, when the
angle ϕ approaches 90◦, a compressive axonal strain is found, whereas the
maximum principal tissue strain is positive.

The influence of the stiffness of the blood vessel on the maximum local
axonal strain is displayed in Figure 5.9. The inclusions A, B, and C
have material properties that are nearly equal to the brain tissue, three
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Figure 5.8: Time trajectory of the maximum axonal strain in the CVE versus
the maximum principal tissue strain from t0 to tend during the me-
chanical loading for one point in the brainstem and one point in the
corpus callosum in the head model. The inset shows the brainstem
and the corpus callosum with an arrow indicating the material point
of which the tissue loading is obtained. The colors refer to the angle
ϕ between the maximum principal loading direction of the tissue and
the main axonal direction.
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Figure 5.9: Trajectories of the maximum axonal strain in the CVE versus the
maximum principal tissue strain from t0 to tend during the mechani-
cal loading for the same location in the brainstem in the head model
with three different degrees of stiffness of the inclusion.

times higher, or ten times higher, respectively. The only difference is that
for all inclusions κ = 1

3 as opposed to κ = 0 for the anisotropic brain
tissue. Although the overall shape of the trajectory remains similar for all
three cases, some important differences are present. At 15 ms, the axonal
strain values are lower for an increased stiffness of the inclusion, whereby
an increase with a factor 10 of the inclusion stiffness leads to a decrease
of the maximum axonal strain by 1

3 . At time tend, however, the effect of
the stiffness is different, where the axonal strains for inclusion A and C
are similar and those for inclusion B are lower. Because the surrounding
brain tissue is anisotropic and the inclusion is isotropic, the stiffness of the
inclusion relative to the brain tissue depends also on the loading direction,
which causes the dissimilarities between 15 ms and tend.

Figure 5.10 shows the axonal strain field of the CVE with inclusion A
obtained from the material point in the brainstem (used for Figure 5.8)
during the injurious load case at 15 ms. Adjacent to the inclusion, strain
concentrations are present at the location where the local axonal orientation
is most aligned with the tissue loading direction. One can also notice that
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Figure 5.10: Cross section of the axonal strain field of the CVE at t = 15 ms in
the brainstem. For clarity, the strain field of the inclusion is not
depicted.

the axonal strain values more distant from the inclusion are in agreement
with the strain values of the case without an inclusion (see Figure 5.8).

When the axonal strain is plotted against the maximum principal tissue
strain for all elements of the brainstem in the head model at each time
step (see Figure 5.11), it is observed that overall the maximum principal
tissue strain is an overprediction for the maximum axonal strain in the
CVE. The amount of this overprediction is partially related to the angle
ϕ, where higher angles generally result in a larger overprediction. The
results of the simulations with an inclusion show a good correlation between
axonal and tissue strains for the range of angles ϕ from 0◦ to about 40◦.
However, still many local values deviate from these general observations.
This indicates that the maximum principal strain observed in the tissue
of the head model is not able to predict strains occurring at the axonal
level due to the influence of axonal orientation. Furthermore, the inclusion
causes the axonal strains to be larger than without an inclusion for the same
tissue strains. Moreover, whereas compressive axonal strains are occurring
for the situation without an inclusion, they are only in the tensile regime
for the situation with an inclusion. This is caused by the local deviation
of axonal orientation near the inclusion due to which at least some of the
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Figure 5.11: Maximum axonal strain in the CVE versus the maximum principal
tissue strain at each time step during the mechanical loading for all
elements of the brainstem in the head model.

axons are always fully or partially aligned with the tissue loading direction,
which is not the case without an inclusion.

In a first step towards including the effects of axonal orientation, the
(macroscopic) tissue strains in the main axonal direction are considered,
for which it should be noted that this is the same as the axonal strain for
a region without an inclusion. Figure 5.12 depicts the axonal strain of the
CVE with an inclusion versus the tissue strain of the head model in the main
axonal direction for all elements of the brainstem. For a situation without
an inclusion, the same values would be plotted on both axes and therefore
the line y = x can be interpreted as the axonal strain value for a situation
without an inclusion. It can be noticed that the inclusion causes the axonal
strains to increase, in particular when the angle between the loading direc-
tion and the main axonal direction is large and the tissue strain is positive.
Nevertheless, several instances with a smaller angle still lead to high axonal
strains indicating that the tissue strain in the main axonal direction is not
able to predict the local axonal strain accurately in case of an inclusion.
Only for lower values of ϕ, the axonal strain shows a close agreement with
the tissue strain in the main axonal direction. Furthermore, it is observed
that also negative tissue strains in the main axonal direction lead to axonal
stretching. The general observation is that the tissue strain in the main
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Figure 5.12: Maximum axonal strain in the CVE with an inclusion versus the
tissue strain in the main axonal direction at each time step during
the mechanical loading for all elements of the brainstem in the head
model.

axonal direction is an underprediction of the maximum axonal strain in
the presence of an inclusion and the amount of underprediction depends
partially on the angle ϕ.

In Figure 5.13, tissue and axonal strains obtained in the brainstem and the
corpus callosum are plotted as a function of time. The maximum axonal
strains obtained from the CVE simulations are between the maximum prin-
cipal tissue strain and the tissue strain in the main axonal direction during
the entire simulation time. In the brainstem, the time-averaged relative
differences of the maximum principal tissue strain, the tissue strain in the
main axonal direction and the anisotropic equivalent strain with respect
to the maximum axonal strain in the CVE are 2.05±0.19, 0.39±0.11 and
1.05±0.064 (mean±standard deviation), respectively. In the corpus cal-
losum, the relative differences are 2.23±0.63, 0.33±0.17 and 1.05±0.059,
respectively. The anisotropic equivalent strain agrees therefore the most
with the maximum axonal strain in the CVE in terms of both the relative
mean differences and the smallest standard deviations. For this loading
case, the profile of the maximum axonal strain in the CVE is similar to
that of the maximum principal tissue strain for the brainstem. However,
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Figure 5.13: Maximum values of the tissue and the axonal strains versus time
in the brainstem and the corpus callosum.

the profiles of the remaining tissue strains, in particular the tissue strain in
the main axonal direction in the corpus callosum, deviate from the maxi-
mum axonal strain in the CVE (i.e., the standard deviations of the relative
differences are large with respect to their mean values). This indicates that
axonal strains cannot be generally obtained from the maximum principal
tissue strain or the tissue strain in the main axonal direction. Furthermore,
it can be noticed that the anisotropic equivalent strain, which is obtained
directly from the tissue in the macroscopic head model, agrees well with
the maximum axonal strain obtained from the CVE simulations.

For a more in-depth comparison between the CVE simulations and the
anisotropic equivalent strain measure, the maximum axonal strain of the
CVE simulations is plotted versus the anisotropic equivalent strain in Fig-
ure 5.14 for all material points of the brainstem. It can be observed that
all dots are close to the solid black line that represents an exact agreement
between the axonal strain and the equivalent strain. For large angles of
ϕ, the outcome of the CVE is generally higher than the equivalent strain,
whereas for small angles it is generally the opposite. The relative differ-
ences are 20% or less for equivalent strains higher than 0.06 and less than
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7% for equivalent strains above 0.10. The overall R2 value is 0.98. It is
clear that the anisotropic equivalent strain is a better predictor for axonal
strains as obtained from the CVE than the maximum principal tissue strain
(see Figure 5.11, left hand side) and the tissue strain in the main axonal
direction (see Figure 5.12).

The strain fields of the brainstem are shown in Figure 5.15 at 37 ms, when
the highest strain values have been reached. The anisotropic equivalent
strain is not only lower than the maximum principal tissue strain, but also
the strain concentrations are in different points for either the anisotropic
equivalent strain or the maximum principal tissue strain. Furthermore, the
material point for which the highest equivalent strain in the brainstem is
computed is the same as that obtained by means of the CVE simulations.
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Figure 5.14: Maximum axonal strain in the CVE with an inclusion versus the
anisotropic equivalent strain of the tissue at each time step during
the mechanical loading for all elements of the brainstem in the head
model.
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Figure 5.15: Field plots of the strain values in the brainstem at 37 ms for the
injurious loading case 57h2.

5.4 Discussion

In this study, a multi-scale approach was used with a macroscopic FE head
model to simulate the tissue response to mechanical loading and a micro-
mechanical FE model of a CVE to obtain the local axonal strains due to
the heterogeneities at the cellular level, which are assumed to be the cause
of the discrete local axonal impairments in case of DAI. The strain val-
ues of the CVE and the FE head model have no trivial correlation. The
maximum principal tissue strain in the FE head model is shown to be an
overprediction for the maximum axonal strain in the CVE. In a study using
the same FE head model, but with isotropic viscoelastic material behavior,
performed by Kleiven [37], it was shown that loading conditions associated
with concussion result in predictions of relatively high strain levels that
are on the same level as suggested for DAI [59], even though the mechan-
ical behavior for brain tissue in the model corresponds with the effective
shear modulus of approximately 10 kPa at 80 Hz found for brain tissue
in vivo by [154] using magnetic resonance elastography. The lack of cor-
relation between between the tissue strain and the diagnosis of concussion
in the study by Kleiven [37] might be explained by the overprediction of
tissue strains for the interpretation of the maximum axonal strain, which
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is shown in the current study. Furthermore, the tissue strain in the main
axonal direction in the head model is shown to be an underprediction for
the maximum axonal strain in the CVE. More importantly, the amount of
over- and underprediction depends on the microstructure and the loading
direction, which indicates that criteria for DAI should be developed taking
into account the effects of the cellular level. In addition to the multi-scale
method, an anisotropic equivalent strain measure (see Chapter 4) was im-
plemented in the FE head model to estimate axonal strains through a single
scale analysis. The equivalent strain was shown to be in close agreement
with the outcome of the CVE simulations, whereas it requires only tis-
sue strains predicted with a macroscopic head model and does not involve
a multi-scale analysis. Therefore, since the CVE in this study is modeled
with viscoelastic, anisotropic tissue behavior and the equivalent strain mea-
sure was originally developed for a hyperelastic, anisotropic tissue behavior,
it can be concluded that viscoelasticity has no significant influence on the
micro-level strains, unlike the tissue-level strains.

The FE head model has a geometry that distinguishes several parts of the
brain (e.g., cerebral cortex, corpus callosum, brainstem). Although it does
not include a detailed geometry (e.g., the folding structure of the cerebral
cortex), the influence of these details are assumed to be local and there-
fore do not affect the tissue deformations of the brainstem and the corpus
callosum. Although in reality, the brainstem would be more cylindrically
shaped than in the model, the total volume is close to MRI volumetric
measurements of the brainstem from healthy volunteers [37].

The loading conditions of the FE head model are based on the reconstruc-
tion of a specific injurious sports accident using HIII dummies [37]. Because
of this, only the motion of the head could be applied directly to the head.
Therefore, the possibly important influence of spinal cord bending could
not be included in the analysis, which might affect the strain levels in the
brainstem. Nevertheless, since this study is concerned with the maximum
local axonal strains with respect to the tissue strains, the conclusions drawn
are expected to remain valid for slightly different global mechanical loads.

The material properties of the head model were originally isotropic [37],
but for this study the behavior was extended with anisotropy, because sev-
eral studies have shown that areas of the brain with aligned axons reflect
an anisotropic material behavior (e.g., [48,51,52,58,88,151]). In the origi-
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nal isotropic head model, the brainstem was modeled with stiffer material
properties than the remaining brain tissue. In the current study, it is as-
sumed that the stiff nature of the brainstem is justified only in the main
axonal direction due to the anisotropic behavior. Therefore, the current
anisotropic head model contains the same material properties for the en-
tire brain tissue, except for the fiber orientation distribution (i.e., either
uniaxially aligned or randomly oriented).

In Chapter 3, it was shown that anisotropy at the tissue level causes the
strains to become smaller in the main axonal direction, but larger in other
directions for the same stress levels. For a homogeneous axonal alignment
(e.g., without the presence of an inclusion) this would also lead to reduced
axonal strains, even for the higher strain levels in other directions than
the main axonal direction, since then the loading direction is not aligned
with the axons anymore. However, when the axons have to deviate for an
inclusion, partial alignment exists for a wider range of loading directions
compared to the one without an inclusion. Hence, these axons have a higher
strain locally caused by anisotropic material behavior. Nevertheless, the
focus of this study is on the differences between the tissue-level strains and
the axonal strains.

The CVE has a geometry with a simplified inclusion, which has a spherical
shape that represents a cell body. In Chapter 4, also a cylindrical inclusion
was used that represents a blood vessel. It was found that the most critical
configuration of the cylindrical inclusion (i.e., main axonal direction about
30◦ with respect to the long axis of the cylinder) resulted in the same strain
levels as with the spherical inclusion. Because blood vessels inside the brain
are oriented rather randomly, it is assumed that this most critical config-
uration likely exists. The similar influence of the spherical and the most
critical cylindrical configuration on the axonal strains, originates from the
fact that the local axonal orientation with respect to the loading direction
has a greater influence on the axonal strain than the actual shape of the
inclusion. Therefore, it is assumed that the CVE with a spherical inclusion
does not only adequately represent the case of a cell body, but also the case
of a network of blood vessels. The stiffness of the inclusion relative to the
surrounding axons has an influence on the axonal strain levels relative to
the tissue strain level, but the overall relation between tissue and axonal
strains remains similar.

107



Currently, the CVE is coupled only to the brainstem and the corpus cal-
losum of the head model. Because also other parts of the brain can be
involved with DAI, it may be necessary to couple these parts as well. In
general, axons in other parts of the brain are less aligned, which will prob-
ably result in a different relation between the axonal strains and the tissue
strains than for the brainstem and the corpus callosum. Also, different
regions of the brain could have different tolerance criteria at the cellular
level, which has been shown in a study by Elkin and Morrison [155]. This
indicates there are more microstructural aspects that might play a role in
cellular-level injury and that have not been included in the CVE used in the
current study. Furthermore, the brainstem and the corpus callosum have
a relatively simple geometry, whereas other parts of the brain might need
more detailed geometries of the FE head model to obtain realistic tissue
deformations. A more extended implementation of anisotropy could there-
fore be realized in the FE head model created by automatic segmentation
and meshing based on medical images with a mesh size of 1 mm3, which
was developed recently [40]. The simulations of this more detailed model
showed a similar correlation with the localized brain motion experiments
of Hardy et al. [156], as observed for the model used in the present study.

5.5 Conclusion

This study shows that axonal strains deviate from the maximum principal
tissue strains as well as from tissue strains in the main axonal direction that
are predicted in an FE head model, where the tissue strains are an overpre-
diction or an underprediction of the maximum axonal strains, respectively.
The main observation, however, is that tissue strains do not consistently
scale with the maximum axonal strain, since the amount of over- and un-
derprediction depend on the loading direction relative to the main axonal
direction. This is caused by the local heterogeneities at the cellular level,
which are local axonal orientation, difference in stiffness between the axons
and the inclusion, and the anisotropic material behavior of the axons. The
latter factor also influences the tissue strain in the FE head model. Since
DAI is a type of injury in which the mechanical load occurs at the head
level and the actual injury occurs at the cellular level, a multi-scale method
with an FE head model and a CVE is a promising approach to obtain cel-
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lular based injury criteria. Furthermore, a single scale alternative to the
multi-scale approach is the anisotropic equivalent strain measure, which
can be used to obtain axonal strains directly from tissue-level strains. In
combination with a critical value for injury, this measure can be used as an
injury criterion.
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Chapter six

Discussion, conclusions and

recommendations

6.1 Discussion and conclusions

The brain is probably the most important part of a human body. With it,
we can control our body in terms of movement, thinking and many other
functions, both intentionally and unintentionally. At least, if one is healthy.
More than any other part of the body, it determines the human being as
a whole. Therefore, it is protected well against injury caused by exter-
nal chemical and mechanical influences by a range of natural mechanisms.
However, because brain tissue is a very delicate tissue, it is still vulnerable
to injury caused by mechanical loading of the head despite the protection
of for example the skull. Accidents that involve a severe loading of the head
may lead to injury of the brain.

The brain has been a subject of research for thousands of years [157] and
the biomechanics of TBI has been studied for many decades [27,104]. In
spite of that, the understanding of the mechanisms related to TBI is still far
from complete. One reason for this is that many processes are involved with
TBI simultaneously and continue long after the original mechanical insult,
leading to full or partial loss of functioning, which can be permanent or
temporary. Another reason concerning the difficulty in trying to understand
the true aspects of TBI is the complex anatomy of the brain, including the
substructures, the network of nerves and the many cells, which makes it
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hard to characterize the mechanical behavior. Both reasons, though, have
one aspect in common: they occur at several length scales at the same
time. Therefore, TBI is truly a multi-scale phenomenon. In this study, the
objective was to obtain a relation between the processes at these length
scales. This has been achieved by developing computational models that
bridge the mechanics of the brain’s substructure and the tissue as well as
the tissue and the axons.

In Chapter 2, the development of a meso-level plane strain FE model is
described that is able to relate head loads to local tissue stresses by de-
scribing the influences of the substructures of the cerebrum. The results of
the simulations show elevated levels of tissue stress near the bottom of the
sulci during the head loading. The agreement with local injuries that were
observed by Strich [117] indicates that these injuries are possibly triggered
by the locally increased deformations. The anatomical details of the cere-
brum are now also being included in the next generation of head models
(e.g., [40]).

Chapters 3 to 5 are concerned with axonal injuries and how these are caused
by higher level mechanical loads. First, several mechanical phenomena are
investigated in Chapter 3 by developing a plane strain FE model that is
a critical volume element (CVE), which relates tissue-level mechanics to
axonal strains in a critical region for axonal injury. This model is based
on the locations of axonal injury that were observed by Povlishock [15],
corresponding to axons that deviate from their anatomical course due to
the presence of an inclusion (e.g., a soma). In this thesis, it is assumed
that these local axonal injuries are a consequence of axonal strain concen-
trations. Therefore, if local axonal stretching leads to injury, the maximum
axonal strains in these critical regions are potentially a better predictor for
injury than the maximum principal tissue strain, which is often used as
an injury predictor. The mechanical phenomena that are investigated in
Chapter 3 are the effects of the amount of curvature of the axons around
the inclusion, the stiffness of the inclusion relative to the axons and the
axonal and tissue-level as well as axonal-level effects caused by anisotropy.
The main reason to vary these parameters is because the exact values of
these parameters are not well-known. The results of the simulations show
increased axonal strains at the same location, which indicates that ax-
onal injury might be caused by locally larger deformations of the axons.
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These strain concentrations occur due to the preferred orientation of ax-
ons through their oriented stretch directions and the resulting mechanical
anisotropy. Furthermore, the presence of an inclusion with a different stiff-
ness leads to a concentration of strain. As a consequence of these effects,
the sensitivity of brain tissue to a mechanical load will anisotropically de-
pend on the main axonal direction. The next step is the development of
two different fully three-dimensional CVEs (i.e., with a spherical and a
cylindrical inclusion) and an anisotropic equivalent strain measure that is
documented in Chapter 4. It is shown that for predefined uniaxial and
biaxial deformations in varying principal directions, the equivalent strain
measure is able to produce a similar strain as obtained for the maximum
axonal strains in the CVE simulations. The three-dimensional CVE and
the anisotropic equivalent strain measure are two different tools to obtain
local maximum axonal strains from simulations with an FE head model.
Thereby, both approaches can be considered as an anisotropic criterion for
injury, accounting for the orientation-dependent sensitivity of the tissue
and are to be compared to an appropriate critical level of axonal strain.
The CVE and the FE head model are coupled by means of a multi-scale
approach, whereas the application of the equivalent strain measure to the
head model is a single scale approach. Both approaches lead to a similar
prediction of maximum axonal strains in a head model simulation based on
an injurious load case, which means that the anisotropic equivalent strain
measure is a proper alternative for the multi-scale simulations with the
CVE, even for deformations that are not predefined as in Chapter 4. In
Figure 6.1, the approach and the results of this thesis are summarized.

The modeling approach in this thesis, in particular the meso-level and the
micro-level models, has been done such that the conclusions are gener-
ally valid. This is achieved by investigating the influence of varying the
values of parameters that are not indisputably well-defined and by using
relative measures. Nevertheless, the models are developed to represent
the real physical problem in mind and are therefore expected to account
for the most important aspects of injury at their respective length scale.
The material behavior of brain tissue is an important assumption for the
models, especially with the large variation in brain tissue properties in lit-
erature. The meso-level model and the FE head model in Chapter 3 use the
isotropic non-linear viscoelastic material model developed by Hrapko et al.
[48,49,57], which is obtained based on an extensive range of experiments.
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Figure 6.1: Schematic summary of the approach and the results of this study.

For the micro-level model, i.e., the CVE, anisotropic material behavior
caused by neurofilaments was assumed to be important and therefore the
Holzapfel-Gasser-Ogden fiber-reinforced anisotropic material model [132]
is used. The material values are obtained from the study by Ning et al.
[58], which contained only two successful test results. However, similar
relative differences in shear moduli in different directions were obtained in
other studies [51,52,57]. Since the density for critical regions for injury
in the tissue, as described by the CVE, is assumed to be small, the local
heterogeneities will not affect the overall tissue behavior. Therefore, the
constitutive behavior of the axonal tissue in the CVE and the behavior of
the tissue in the head model should be the same. Because the head model
used for the multi-scale analysis was originally validated for injury in a
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single scale analysis with isotropic viscoelastic brain tissue [37], the overall
viscoelastic behavior used in the validated head model is maintained for the
multi-scale analysis and anisotropy is added in the same ratio of stiffness in
different direction as that reported in Ning et al. [58]. The same material
behavior is adopted in the CVE in the multi-scale framework.

The geometries of the models describing the anatomy of the head and
brain at different length scales are another important assumption in this
thesis. At the macro level, two different FE head models are used. The
head model used in Chapter 2 was developed by Claessens et al. [95] and
later its geometry was refined by Brands et al. [41,158]. In Chapter 5, a
different head model with an even more refined geometry is used that was
developed by Kleiven [37,98]. However, compared to the anatomy of the
brain these head models contain relatively coarse geometries. This might
lead to the prediction of strains that are not true tissue strains, but the
overall mechanical response is expected to be accurate enough for this study.
Moreover, the loadings applied to the meso-level model and the CVE are not
only based on the head model simulations, but also on stylized or predefined
loading profiles. Therefore, the conclusions from these studies are relatively
independent of the head models chosen. The geometries of the meso-level
model are based on the anatomy of the cerebral cortex. Although they
are relatively stylized, they are much more detailed than the head models
used. It is assumed that the main features leading to local injuries at the
bottom of the sulci are accounted for and that more refined geometries
would not lead to different conclusions. Furthermore, from a mechanical
viewpoint, a more refined geometry does not lead to improved conclusions
if the heterogeneities of mechanical properties are not refined as well. This
is also one of the main reasons why the CVEs contain different geometries
with idealized inclusions. The second reason for the simple geometries of
the CVEs is the assumption that the main cause of increased axonal strains
is concerned with the orientation distribution of the axons relative to the
principal loading direction and the anisotropic mechanical behavior. More
realistic geometries will not lead to an overall different axonal orientation
distribution and therefore not to different maximum axonal strains.

Despite the study on the different length scales of injury biomechanics of the
brain in this thesis, predicting injury is still complicated. In order to trans-
late the findings of this thesis into true injury mechanisms, more research
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is necessary. The models can be a starting point for other researchers, care-
fully reconsidering the modeling assumptions if new information becomes
available. The most important outcome of this thesis for other researcher to
use is expected to be the anisotropic equivalent strain measure, because it
is a practical tool to account for the microstructural effects in a single scale
head model simulation and in combination with a critical level of axonal
strain forms a criterion for injury. Furthermore, tissue-level experiments
could be used to characterize the parameters of this generally formulated
anisotropic criterion for injury, in which case the underlying microstructural
effects do not need to be known.

6.2 Recommendations

The aim of this study was to relate the different length scales concerning
TBI, which has been achieved. For using or improving the findings of this
study, some recommendation are given:

• Depending on the region of interest with respect to local brain in-
jury, the meso-level heterogeneities should be accounted for, e.g., by
including these details in the geometry of the FE head model [40].

• If the region of interest for injury is sufficiently far away from the cere-
bral cortex, FE head models with less geometrical detail will probably
suffice for using the CVE or the anisotropic equivalent strain measure.
Importantly, the orientation of the axons and the anisotropy should
be accounted for in the FE head model.

• Diffusion tensor imaging (DTI), which is used to visualize the orien-
tation and degree of alignment of axons, is a promising technique to
implement axonal orientation in FE head models. To account for the
mechanical consequences of this orientation, the outcome of diffusion
tensor measurements, including the main orientation and the amount
of dispersion, should be related to mechanical anisotropy.

• The predictive capabilities of new anisotropic head models using the
CVE or the anisotropic equivalent strain measure as an injury crite-
rion should be validated. This can be done by using documentation
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based on accident reconstructions containing detailed information on
the loading conditions and the clinical observations.

• When more information becomes available about the micromechani-
cal aspects of axonal injury, improved CVEs can be made for a more
accurate understanding of local axonal injury. Some of the aspects
that can be investigated are the interface condition between the ax-
ons and the inclusion. Also, a more realistic microstructure can be
adopted, including the local heterogeneities of the mechanical proper-
ties. The current CVE is modeled with locally fully aligned axons or
with a fully isotropic orientation of axons (see Chapter 3). However,
if the degree of axonal alignment has an intermediate value, more
modeling assumptions need to be made for a proper implementation
in the CVE.

• For a better understanding of the relation between the mechanical
load and the physiological events of axonal injury, an even lower
length scale that accounts for damage of the network of neurofila-
ments probably has to be modeled.

• Further characterization of the anisotropic equivalent strain measure
can be done by at least two different approaches: 1) fitting the coeffi-
cients to a further improved CVE, or 2) fitting the coefficients to the
stretch levels that are critical for injury in different stretch directions
obtained from tissue-level experiments, thereby allowing it to be used
directly as an anisotropic criterion for injury.
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Appendix A

Finite element implementation

In Section A.1, the constitutive model for brain tissue that is used in Chap-
ter 2 is explained. This model is based on the incompressible constitutive
model developed by Hrapko et al. [49] for porcine white matter. For the
model in Chapter 2, compressibility is added. The numerical implementa-
tion of the constitutive model is explained in Section A.2.

A.1 Constitutive model of brain tissue

The constitutive model consists of an elastic part, denoted by subscript e,
and of a (deviatoric) viscoelastic part, denoted by subscript ve, with N

viscoelastic modes. The total Cauchy stress tensor σ is written as

σ = σ
h
e + σ

d
e +

N
∑

i=1

σ
d
vei

, (A.1)

in which superscripts h and d denote the hydrostatic and the deviatoric
part, respectively. The hydrostatic part of Equation A.1 is defined as

σ
h
e = K(J − 1)I , (A.2)

where K is the bulk modulus and J =
√
I3 = det(F ) is the change in

volume and I3 is the third invariant of the Finger tensor B .
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The deviatoric part of Equation A.1 is represented schematically in Figure
A.1. It shows the deviatoric elastic stress mode (σd

e) and the viscoelastic
stress modes (σd

vei
) with i = 1 to N . The deviatoric elastic mode describes

a non-linear response to the deformation F , which is given by

σ
d
e =

G∞√
I3

[

(1−A)exp

(

−C

√

bĨ1 + (1− b)Ĩ2 − 3

)

+A

]

[

bB̃
d − (1− b)(B̃

−1
)d
]

,

(A.3)

where G∞ is the elastic shear modulus, I3 is the third invariant of the
Finger tensor B , B̃ = J− 2

3B is the isochoric part of the Finger tensor B ,
and Ĩ1 and Ĩ2 are the first and second invariant of the isochoric Finger
tensor B̃ , respectively. A, C, and b are elastic fitting parameters.

The third term on the right hand side of Equation A.1 consists of the sum-
mation of the viscoelastic modes. The mechanical energy that initially is
stored as elastic energy in a viscoelastic material dissipates in time. This
means that for the current state, the mechanical energy is partly stored
as elastic energy and partly dissipated as heat. Therefore, the deformation
gradient tensor F i is partitioned into an elastic deformation gradient tensor
F ei and a viscous deformation gradient tensor F vi [106,107]. The partition-
ing of the viscoelastic deformations is depicted in Figure A.2. For simplic-
ity, the subscript i indicating the viscoelastic mode i is omitted throughout
the remaining part of this section. A multiplicative decomposition of the

F e1 F v1

F eN F vN

F

σ
d
ve1

σ
d
veN

σ
d
e

Figure A.1: Schematic representation of the deviatoric part of the constitutive
model for brain tissue with elastic deformation F e and F and vis-
cous deformation F v.
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deformation gradient tensor F is assumed:

F = F e ·F v. (A.4)

The decomposition involves a fictitious intermediate state, which could ex-
ist after application of merely the viscous deformation gradient tensor F v

(Figure A.2). This is the stress-free state, which after application of the
elastic deformation tensor F e transforms into the final state.

By using Equation A.4 with the velocity gradient tensor L = Ḟ · F−1, it
follows that

L = Le + Lv, (A.5)

with

Le = Ḟ e ·F−1
e (A.6)

Lv = F e · Ḟ v · F−1
v · F−1

e . (A.7)

F eF v

F

C0

Cv

Ct

Figure A.2: Partitioning of the deformation gradient tensor F into an elastic
deformation gradient tensor F e and a viscous deformation gradient
tensor F v in order to obtain a fictitious stress-free state Cv between
the initial configuration C0 and the current configuration Ct.

121



The velocity gradient tensor L can also be decomposed as

L = D +Ω, (A.8)

Le = De +Ωe, (A.9)

Lv = Dv +Ωv, (A.10)

in which D = 1
2(L + L

T ) is the symmetric rate of deformation tensor and
Ω = 1

2(L − L
T ) the skew-symmetric spin tensor. However, this does not

provide a unique intermediate state, as rigid-body rotation can be assigned
to both F e and F v. To obtain a unique intermediate state, the viscous
deformations are chosen to be spin-free. This assumption means that Ωv =
0 .

Furthermore, the viscous right Cauchy-Green deformation tensor is defined
as

C v = F
T
v ·F v. (A.11)

In order to update the tensor C v in the time integration scheme, which is
described in Section A.2, use is made of its time derivative:

Ċ v = F
T
v · Ḟ v + Ḟ

T
v · F v. (A.12)

By using Equations A.5 to A.7, Equation A.12 can be rewritten into

Ċ v = F
T ·B−1

e · [(L − Le) ·Be +Be · (LT − L
T
e )] ·B−1

e · F . (A.13)

Using the assumption of a spin-free viscous deformation, the time deriva-
tive of the viscous right Cauchy-Green deformation tensor for a unique
intermediate state yields

Ċ v = 2 · FT ·B−1
e ·Dv ·F . (A.14)

The elastic Finger tensor is calculated by

Be = F ·C−1
v ·FT . (A.15)

The third term on the right hand side of Equation A.1 describes the vis-
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coelastic contribution to the stress as follows:

σ
d
ve =

G√
I3

[

aB̃
d

e − (1− a)(B̃
−1
e )d

]

, (A.16)

with G the shear modulus, I3 the third invariant of the Finger tensor B ,
B̃e the isochoric part of the elastic Finger tensor B e, and a a viscoelastic
fitting parameter. The viscous deformation F v is assumed to be volume-
invariant, so that det(F v) = 1 and Je = det(F e) = J . This justifies the
use of the third invariant of B instead of B e in Equation A.16.

The viscous rate of deformation tensor, is calculated from the flow rule,
assuming incompressibility, as

Dv =
σ
d
ve

2η(τ)
, (A.17)

where the dynamic viscosity η is a function of the scalar equivalent stress

measure τ =
√

1
2σ

d : σd. It is described by the Ellis model, which states

η(τ) = η∞ +
η0 − η∞

1 +
(

τ
τ0

)(n−1)
, (A.18)

with subscripts 0 and ∞ denoting the initial and infinite values, respec-
tively. The initial value for viscosity is defined as η0 = Gλ, whereas the
infinite viscosity is defined as η∞ = kη0.

A.2 Numerical implementation

For the numerical implementation of the stress computation of Equation
A.1, several steps have to be taken for each time t. The elastic stresses σh

e (t)
(Step 2) and σ

d
e(t) (Step 3) can be computed directly. For the time inte-

gration of the viscoelastic stress computation (Step 4), the Heun’s method,
also known as the improved Euler’s method, is used [41]. This involves
an explicit time integration scheme for Equation A.14. First, a prediction
(indicated by )̄ of the derivative of the viscous right Cauchy-Green defor-
mation tensor C̄ vi(t) is computed in Step 4b by using the original Euler
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forward method. This is used to calculate ¯̇
C vi(t) and σ̄

d
vei

(t). After that,
C vi(t) is more accurately determined in Step 4d by applying the trape-
zoidal rule, after which Ċ vi(t) and σ

d
vei

(t) are calculated. For each time

step, the values of tensors C vi(t), Ċ vi(t), and σ
d
vei

(t) are stored for the
next time increment. For the initial values, no deformation is assumed,
which yields F (0) = I , C vi(0) = I , Ċ vi(0) = 0 , and σ

d
vei

= 0 . The steps
for the numerical implementation are as follows:

1. Compute the deformation F (t) from the nodal displacements.

2. Compute σ
h
e (t) = K(J(t)− 1)I .

3. Compute σ
d
e(t) =

G∞√
I3(t)

[

(1−A)exp

(

−C

√

bĨ1 + (1− b)Ĩ2 − 3

)

+A

]

[

bB̃
d
(t)− (1− b)(B̃

−1
)d(t)

]

.

4. (a) Retrieve C vi(t − dt) and Ċ vi(t − dt) from the previous time
increment for each mode i = 1 to N .

(b) For mode i = 1 to N , predict C vi(t), Bei(t), and σ
d
vei

(t):

C̄ vi(t) = C vi(t− dt) + Ċ vi(t− dt)dt,

B̄ei(t) = F (t) · C̄−1
vi

(t) ·FT (t),

σ̄
d
vei

(t) = Gi√
I3(t)

[

a
¯̃
B

d
ei
(t)− (1− a)( ¯̃B−1

ei
)d(t)

]

.

(c) Predict σd(t) and τ(t):

σ̄
d(t) = σ

d
e(t) +

∑N
i=1 σ̄

d
vei

(t),

τ̄(t) =
√

σ̄
d(t) : σ̄d(t).

(d) For mode i = 1 to N , predict ηi(t), Dvi(t), and Ċ vi(t):
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η̄i(t) = η∞i
+

η0i−η∞i

1+
(

τ̄(t)
τ0

)(ni−1) ,

D̄vi(t) =
σ̄

d
vei

(t)

2η̄i(t)
,

¯̇
C vi(t) = 2 · FT (t) · B̄−1

ei
(t) · D̄vi(t) · F (t),

determine C vi(t), Bei(t) and σ
d
vei

(t):

C vi(t) = C vi(t− dt) + 1
2 (Ċ vi(t− dt) + ¯̇

C vi(t))dt,

Bei(t) = F (t) ·C−1
vi

(t) · FT (t),

σ
d
vei

(t) = Gi√
I3(t)

[

aB̃
d

ei
(t)− (1− a)(B̃

−1
ei

)d(t)
]

,

and store C vi(t) for the next time increment.

(e) Determine σ
d(t) and τ(t):

σ
d(t) = σ

d
e(t) +

∑N
i=1 σ

d
vei

(t),

τ(t) =
√

σ
d(t) : σd(t).

(f) For mode i = 1 to N , determine ηi(t), Dvi(t) and Ċ vi(t):

ηi(t) = η∞i
+

η0i−η∞i

1+
(

τ(t)
τ0

)(ni−1) ,

Dvi(t) =
σ

d
vei

(t)

2ηi(t)
,

Ċ vi(t) = 2 · FT (t) ·B−1
ei

(t) ·Dvi(t) · F (t),

and store Ċ vi(t) for the next time increment.

5. Compute σ(t) = σ
h
e (t) + σ

d(t).
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[34] J. Ivarsson, D.C. Viano, P. Lövsund, and B. Aldman. Strain relief
from the cerebral ventricles during head impact: experimental studies
on natural protection of the brain. J Biomech, 33:181–189, 2000.

[35] J. Ivarsson, D.C. Viano, and P. Lövsund. Influence of the lateral
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Samenvatting

De hersenen vormen een belangrijk onderdeel van ons lichaam. Zelfs bij
voor de hand liggende taken, zoals het lezen van deze tekst, spelen ze
een voorname rol. De hersenen houden rekening met de positie van je
handen en het boek ten opzichte van het lichaam. Daarnaast wordt de
informatie die via de ogen de hersenen binnenkomt, verwerkt en naar andere
delen van de hersenen doorgestuurd. Daar worden de woorden die je leest
gekoppeld aan taal en associaties waarbij een groot deel van je hersenen
wordt aangesproken. En als je deze tekst uit hebt, herinner je er wellicht
nog iets van; in de korte tijd dat het lezen van deze tekst kost, zijn je
hersenen veranderd.

Het mag duidelijk zijn dat hersenletsel grote gevolgen kan hebben op het
functioneren van een persoon. Hersenletsel wordt in veel gevallen veroor-
zaakt door een zware belasting op het hoofd, zoals een klap of een plotse-
linge snelle beweging. Dit wordt traumatisch hersenletsel genoemd. Om
de oorzaak van traumatisch hersenletsel beter in beeld te brengen, wordt
in dit onderzoek gekeken naar het verband tussen de zware belasting op
het hoofd en schade aan de hersenen. Met de nieuwe inzichten uit dit on-
derzoek kunnen betere middelen worden ontwikkeld die moeten leiden tot
een juiste diagnostiek voor betere behandeling. Ook kan hersenletsel pre-
ventief (deels) tegen worden gegaan door de ontwikkeling van bijvoorbeeld
veiligere auto’s of het gebruik van verbeterde helmen.

Voornamelijk het type hersenletsel dat ontstaat door een plotselinge snelle
beweging van het hoofd (en niet door een klap) verloopt volgens een com-
plex proces. Een van de moeilijkheden hierbij is het feit dat hersenletsel op
verschillende schaalniveaus plaatsvindt: bij een plotselinge snelle beweging
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van het hoofd (macroniveau), zoals bij een ongeval, vindt de uiteindelijke
schade op een lager niveau plaats, namelijk de zenuwcellen (microniveau).
Echter, de relatie tussen deze niveaus was tot nog toe niet grondig onder-
zocht. Bij de meeste studies naar traumatisch hersenletsel wordt alleen
gekeken naar de plotselinge bewegingen van het hoofd en niet naar span-
ningen en rekken in de hersenen zelf. Een meer verfijnde methode is om
de spanningen en rekken van hersenweefsel als gevolg van een versnelling
van het hoofd met computermodellen te berekenen. Letsel kan dan worden
voorspeld door de berekende rekken of spanningen te koppelen aan letsel-
criteria. Deze criteria geven aan bij welke rekken of spanningen er schade
aan het hersenweefsel ontstaat.

De meeste van bovengenoemde computermodellen bevatten geen gedetail-
leerde beschrijving van de anatomie van de hersenen. Omdat het niet duide-
lijk is of deze vereenvoudiging in de bestaande modellen van invloed is op de
voorspellingen van hersenletsel, is het eerste deel van dit onderzoek gericht
op de juistheid hiervan. Hiervoor zijn vier computermodellen ontwikkeld
met elk een andere vorm. Drie van deze modellen geven de gedetailleerde
anatomie van een klein deel van de oppervlakte van hersenen met gevou-
wen structuren weer. Het vierde model heeft een massieve structuur (dus
zonder gevouwen structuur) die samen met de drie andere modellen wordt
gebruikt om de invloed van vouwen aan de oppervlakte van de hersenen te
analyseren. Met behulp van deze computermodellen is aangetoond dat er
lokaal hoge spanningen optreden aan de oppervlakte van de hersenen die in
andere modellen niet aanwezig zijn vanwege de vereenvoudigde weergave.
Bovendien komen de locaties van deze berekende spanningsconcentraties
overeen met de locaties waar volgens pathologische onderzoeken ook daad-
werkelijk hersenletsel wordt gevonden. Dit betekent dat de reeds bestaande
letselcriteria van hersenletsel, zoals hierboven genoemd, wellicht niet direct
toegepast kunnen worden op hoofdmodellen die geen anatomische details
van de hersenen bevatten.

Het tweede deel van dit onderzoek gaat over de mechanische relatie tussen
het weefsel- en celniveau van hersenletsel. Doordat de hersencellen allerlei
microstructuren vormen, wordt aangenomen dat de krachten op het weefsel
niet een-op-een worden doorgegeven aan de cellen, maar dat deze krachten
onregelmatig verdeeld worden. Dit heeft mogelijk invloed op de kans op
schade aan de hersenen. Om deze invloed te bestuderen zijn er voor dit
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onderzoek computermodellen ontwikkeld. Deze zijn gebaseerd op patholo-
gisch onderzoek, waarbij beschadigingen van hersencellen ter grootte van
enkele duizendsten van millimeters zijn ontdekt. De computermodellen ge-
ven verhoogde rekken aan op dezelfde plekken als deze beschadigingen in
de werkelijkheid voorkomen. Dat geeft aan dat de mechanische invloed op
microniveau mogelijk van belang is voor de kans op hersenletsel. Boven-
dien laten berekeningen met de computermodellen zien dat de gevoeligheid
van hersenweefsel voor letsel afhankelijk is van de richting van de belasting
op weefselniveau. Vervolgens is er in dit onderzoek een formule ontwikkeld
waarmee deze richtingsafhankelijke gevoeligheid van hersenweefsel voor let-
sel kan worden bepaald. Tenslotte zijn er in dit onderzoek berekeningen
uitgevoerd waarbij een computermodel van het hoofd is gebruikt waarbij de
effecten op microniveau zijn gëımplementeerd. Dit is op twee verschillende
manieren gebeurd: enerzijds door het micromodel rechtstreeks te koppelen
aan het hoofdmodel en anderzijds door de eerdergenoemde formule te ge-
bruiken in het hoofdmodel. Met het hoofdmodel is een ongeval gesimuleerd,
waarbij de resultaten voor beide methoden vrijwel gelijk zijn. Dit betekent
dat de praktisch toepasbaar ontwikkelde formule even goed werkt als de ge-
compliceerde methode, waarbij het micromodel direct aan het hoofdmodel
is gekoppeld.

De verschillende modellen die in dit onderzoek zijn ontwikkeld, tonen aan
dat de meeste van de huidige computermodellen van het hoofd details mis-
sen die een juiste voorspelling van hersenletsel in de weg kan staan. Het is
dus van belang om de effecten veroorzaakt door deze details mee te nemen
in toekomstige studies. Hierbij kan de ontwikkelde methode uit dit onder-
zoek van pas komen, of eventueel worden verbeterd door verder onderzoek.
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