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I. Preliminaries 

1.1 lntroduction. 
Given a collection Ç} of directed graphs, a Ç-design (X,B) is a set X 

together with a family 8 of directed graphs, each isomorphic to some 
member of g, such that for some constant À each ordered pair of ele
ments of X (i.e., each directed edge of the complete directed graph on 
X) is covered by precisely À members of 8. In this thesis we shall always 
assume À = 1. Ç-designs are studied widely. E.g., when g is a collec
tion of complete directed graphs then the Ç-designs are the pairwise 
balanced designs with corresponding block sizes. In particular, when Ç 
consists of a single complete graph the corresponding designs are the 
Balanced Incomplete Block Designs used in statistics. When Ç consists 
of matchings then Ç-designs can be regarded as tournament schedules 
for two-player games, maybe with a constraint on the number of simul
taneous games. Similarly, for complete bridge tournaments one may use 
Ç-designs where g = {C4} or g = {2K2}. Work has been done on the 
case where g consists of trees or paths or cycles, and in most cases where 
g consists entirely of small graphs ( say, on not more than five vertices) 
the spectrum (i.e., the collection of values v = IXI for which a Ç-design 
(X,B) exists) has been determined completely. 

A large set of Ç-designs is a collection fD; li E I} of Ç-designs Vi = 
(X,B;) on the same point set X, such that every subgraph of (the com
plete directed graph on) X that is isomorphic to a member of Ç is 
element of precisely one family 8;. Maybe the first to investigate large 
sets of designs was Cayley[Ca](1850) who showed that a large set of 
Steiner triple systems of order 7 does not exist. Proba.bly 7 is the only 
bad order; at least it is known now by the work of Schreiber[Sch], Wil
son[Wi2], Denniston[De), Teirlinck[Teil,2] and Lu Jiaxi[Lu] that large 
sets of Steiner triple systems of order v -:f: 7 do exist for all admissible 
orders v except perhaps v = 141, 283, 501, 789, 1501, 2365 . In Chap
ter 5 of this thesis we show how to reduce the existence problem for 
these six values of v to the construction of two relatively small struc
tures. So far about the undirected case. There are two ways to orient 
a. triangle, giving a directed 3-cycle and a transitive triple, respectively. 
Corresponding large sets have been studied by C.J. Colbourn, M.J. Col
bourn[CoCo], Wu Lisheng[Wu], L.Teirlinck[TeiLinJ, C.C.Lindner[Linl,2] 
and A.P. Street[LinStJ; in Cha.pters 2 and 4 we describe our progress. 
As a generalization of the directed 3-cycle we consider in Chapter 3 the 
case of the directed k-cycle. or course much less complete results can 
be expected in this case, for k ;;:: 15 not even the existence problem for 
Ç-designs has been settled, let alone that of large sets of Ç-designs. Here 
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we do the first steps towards the beginnings of a theory by considering 
the cases k = v and k = v 1. Unfortunately, it has been necessary 
in a few cases (in Chapters 4 and 5) to just give a detailed suggestion 
of how we think a solution can most likely be obtained. Indeed, since 
our stay at Eindhoven University of Technology lasted only one year, 
and scarcely eight months were available for research and writing and 
typesetting of this thesis, it was impossible to do more. (However, I 
hope to return to these questions on some fut ure occasion.) 

1.2 Some background about algebra. 
This section contains some de:finitions that most readers will be ac

quainted with already- we add it for completeness only. 
Let S and T be two sets. We denote by S x T the set of all ordered 

pairs (x,y) with x E S and y E T. This set is called the Gartesian 
product of S and T. Any subset of S x T is called a correspondence 
between S and T. A mapping from S to T is a correspondence between 
S and T such that to each s E S there corresponds exactly one t E T. 
If f is the mapping, usually one writes 

f:S--+T and s 1--t t. 

An important special case of a mapping is that of a one-to-one mapping, 
also called a bijection. Here there corresponds to each t E T just one 
s E S. Given a mapping f : S --+ T we shall denote the mapping from 
the power set of S to the power set of T defined by 

A 1--t {f(a);a E A} 

by the same symbol f. 
By a monoi.d we understand a set S with an element e and a mapping 

f : S x S --+ S such that if f ( x, y) is the result of applying f to the 
pair (x, y) E S x S then 

{ 
f(x, f(y, z)) = f(f(x, y), z), Vx, y, z ES 

f(e,x) = x = f(x, e), Vx ES 

. The mapping f is called a (binary) operation on S and denoted by xy 
(instead of f( x, y) ). The element e is called its v.nity element. An 
element x of a monoid S is said to be invertible if there exists x' E S 
such that xx' = x' x = e. If x is invertible, the corresponding x' is uni que 
and is denoted by x-1 • By a grov.p one understands a monoid in which 
every element is invertible. If the operation of a group is commutative 
(i.e. xy = yx Vx,y) then the group is called abelian. A subgroup of the 

3 



group Gis a subset of G, which is a group relative to the operation in 
G. Given a group G and a subgroup H, for any x E G the subset of 
G: xH = {xhlh E H} (resp. Hx = {hxlh E H}) is called a left (resp. 
right) coset of H in G. Clearly, 

xH=yH(orHx=Hy) iff 

There is a partition of the group Gin the form 

G=LJxH (or G= LJHx). 

For a fini te group G containing n elements, and any x E G, there 
exists a positive integer m with mln such that xm = e and xk # e 
('Ik < m), where e is the unity element of G. Call the integer m the 
order of the element x. Let S be an arbitrary subset of a group G. Then 
there exists a uni que smallest subgroup of G containing S. We shall 
denote this subgroup by < S > and call it the subgroup generated by S. 
In case S = { x1, • •• , Xt} we also write < X1, • •• , Xt > for this subgroup. 
A cyclic group is a group generated by a single element. 

Let X be a fini te set containing n elements 1, 2, ... , n. A permutatfon 
e of x is a bijection from x to x' and is usually denoted by 

e-(1 2 ... n) 
- i1 i2 . . . i" ' 

where i1 = Ç( k ), 1 $ k $ n. All such permutations of X form a group, 
which is called the symmetrie group on X and is denoted by Sym(X), 
brief S", It is well known that Sn (or Sym(X), if X contains n el
ements) contains just n! elements. The permutation which maps i; 
to i;+i (0 $ j $ k - 1, subscript mod k) and fixes each element in 
X\ { io, i1, ... , Îk-1} is called a. cyclic permutation of length k and is de
noted by (i0,i11 ••• ,i1;_1). 

A ring ( with identity) is a set R with two binary operations, ( x, y) 1-+ 

x + y, called addition, and (x, y) i-+ xy, called multiplication, such tha.t 
(i) Ris an a.belian group under the addition; (ü) Ris a monoid under 
the multiplica.tion; (iii) The addition and the multiplication are related 
by the distributive laws: 

(x + y)z = xz +yz and z(x +y) = zx + zy, Vx,y,z ER. 

The unity element of the additive group is called the zero element of the 
ring and is usually denoted by 0. 
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Fora given positive integer n, all integers are separated into n classes: 
Ö, Ï, ... , n - 1, where 

k={in+k; iEZ}, k=0,1,".,n-1, 

and Z is the set containing all integers. Provided with the two operations 
defined by 

k1 + k2 = k1 + k2 and k1 · k2 = k1k2, 

the set { Ö, Ï, ... , n - 1} forms a ring, which is called the residue class 
ring modulo n and is denoted by Zn. 

A ring is called a field, if its non-zero elements (for its multiplication) 
form a commutative group. The unity element of the multiplicative 
group is usually denoted by 1. It is well known that if a finite field 
contains v elements, then v must be a prime power, and conversely, if 
visa prime power then up to isomorphism there is a unique field with 
v elements. A flnite field is usually denoted G F(pn) or Fpn where p is 
a prime and nis a positive integer. The multiplicative group of a finite 
field F is a cyclic group, a generator g of which is called a primitive 
element of F* = F\{O}. So the set of non-zero elements of Fp" can be 
written as {l, g, g2 , ••• , gP"-2 }. 

A so-called quasigroup is a set Q with a binary operation, multiplica
tion o, such that both maps 

lq : x i----+ a o x and rq : x 1--+ x o a 

are pennutations of Q for ea.ch a E Q. It is denoted by ( Q, o ). A 
quasigroup ( Q, o) is called idem potent if a o a = a for ea.ch a E Q. 

1.3 Block designs and large sets of block designs. 
Starting with two famous recreational problems, Kirkman's schoolgirl 

problem and Euler's problem of the 36 o:fficers, and inspired by the 
needs of statisticians, the subject of design theory has grown into a 
large branch of combinatorial mathematics. 

In Combinatorics the subject of design theory, roughly speaking, is the 
study of incidence structures satisfying certain numerical requirements. 
It contains many sub-branches such as block designs, magie squares, 
Latin squares, difference sets, Hadamard matrices and so on. 

In general, a block design is a pair (X,8), where X is a set and B 
is a collection of subsets of X, called blocks, such that some conditions 
are satistied. A design (X, 8) is called resolvable when 8 can be parti
tioned into partitions of X. The classical type of block designs is the 
so-called BIBD (balanced incomplete block design): X is a set of v 
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elements and 8 is a collection of k-subsets of X such that each 2-subset 
of X appears exactly in>. block.s. So-called t-designs and PBD designs 
are generalizations of BIBD's in two senses ("2-subset"-"t-subset" 
and "k"-"ki, k2 , ••• , k,,''). A BIBD, with some additional conditions 
(such as the resolvability"of 8, a fixed order on each block., etc.), will 
become some new type of block design (such as a RBIBD, a Mendel
sohn system, a transitive system and so on). Of course, there are still 
other block. designs. 

A BIBD is also called a (v, k, >.)-design. The simplest nontrivial 
BIBD's are the (v,3, 1)-designs; these are called Steiner triple sys
tems (STS(v)). A resolvable STS(v) is called a Kirkman triple system 
(KTS(v)). In genera!, a block design with block size k = 3 is called 
a triple system, and below we shall meet M endelsohn triple systems 
(MTS) and transitive triple systems (TTS). The main topics of our 
thesis will be the three kinds of triple systems and a generalization of 
MTS's. We will devote attention to the problem of so-called large sets 
of such designs. 

In genera!, a large set of a certain kind of block. design is a collection 
of (X, 8,) such that each (X, 8,) is one of this kind of block designs, and 
all 8, are pairwise disjoint ( two block. systems are disjoint if there are 
no common blocks) and together they contain all subsets of X with the 
stipulated size. 

In this thesis, the problem of the isomorphism of the block. designs also 
will be touched upon. Two block. designs (X, 8) and (X', 81

) of the same 
type and with the sa.me parameters are called isomorphic if there exists a 
bijection f from X to X' such that all block.s in 8 are just mapped by f 
to all blocks of 8 1 (Here the image of a block B = (xi, x2, ... , Xk) under f 
is the block. f(B) = (/(x1),/(x2), ... , /(x1:))). Two large sets {(X, Bi)} 
and {( X', BD} are called isomorphic if there exists a bijection f from X 
to X 1 such that all 8, are just mapped by f to all B~. (The image of a 
block system 8 under fis the block system f(B) = {f(B); b EB}.) 

A Latin square of order nis defined to be a n-by-n array made out 
of n distinct symbols (for example 1, 2, ... , n) with the property that 
each of the n symbols occurs exactly once in each row of the array and 
exactly once in each column. Let A = (a,;)f and B = (bï;)~ be two 
Latin squares of order n (ai;, bi; E {1,2" .. ,n}). If the n2 ordered 
pairs (ai;,~;) for 1 $ i,j $ n are distinct, then A and B are called 
orthogona.l (and B is called an orthogonaJ mate of A). Obviously, for 
given k E {1,2, ... , n}, there are exactly n pairs (aij, k) among the n2 

ordered pairs (ai;, bi;), 1 $ i,j $ n, and these ai; are distinct and lie 
in distinct rows and distinct columns of A. We call. these positions of 
A a. tr&fU11eraaJ of A. For a Latin square A of order n, there exists an 
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orthogonal mate of A if and only if A has n disjoint transversals. A 
Latin square A = (ai;)~, 1 S ai; S n, is called idempotent if ai; = i, 
Vi. It is easy to see that an (idempotent) Latin square of order v is 
equivalent to an (idem potent) quasigroup containing v elements. 

A transversal design T(k,n) is a triad (X,Ç,A), where X is a set of 
kn elements, g = {G;li EI} (I is an indexing set of cardinality k) is a 
partition of X into k n-subsets G; (called groups), and Ais a class of 
k-subsets of X (called bloclcs) such that IA n G;I = 1 for each bloclc A 
and each group G;, and for any pair of distinct elements which belong 
to different groups, there is a uni que block A containing this pair. 

We now mention some concepts from graph theory, that occur in some 
of our proofs. A graph G consists of a finite set V of objects called 
vertices, along with a set E of unordered pairs of vertices, which are 
called edges. A directed graph (or digraph) is a graph in which each 
edge has been assigned a direction. In a directed graph, for a given 
vertex, there are two kinds of edges ( called arcs for a digraph): in-arcs 
and out-arcs. A path in a digraph D is a sequence xo, x1, ... , x k of k + 1 
different vertices of D such that (xo, xi), (xi, x2), ... , (x1._ 1 , x1.) are arcs 
of D with no are repeated. A circuit is defined like a path except that 
the vertex xo is the same as the vertex x1.. The length of a circuit is 
the number of vertices it contains. If the length of a circuit is k, then 
we call it a k-circuit. A Hamilton circuit in D is a circuit containing 
all the vertices of D. If each vertex of D has just one in-are a~d one 
out-are, then D is the union of pairwise disjoint circuits. A complete 
symmetrie digraph K! is a graph with n vertices in which for any two 
distinct vertices x, y there are arcs x -1- y and y-+ x. 

7 



II. Mendelsohn triple systems 

2.1 Introduction. 
Let X be a set of v elements ( v ~ 3 ). A cyclic triple from X is a collec

tion of three ordered pairs (x, y), (y, z), (z, x), where x, y, and z are dis
tinct elements of X. We will denote the cyclic triple { ( x, y ), (y, z ), ( z, x)} 
by (x, y, z), or (y, z, x) or (z, x, y). A Mendelsohn triple system on X is 
a pair (X,8) where 8 is a collection of cyclic triples from X such that 
each ordered pair of distinct elements of X is covered by a uni que cyclic 
triple from 8. The number IXI = v is called the order of the Mendel
sohn triple system (X,8). For brevity, one denotes such a system by 
MTS( v ). It is easy to see that if (X, 8) is a MTS( v ), then IBI = "( "3-l). 

Thus, a necessary condition for the existence of a MTS(v) is v = 0 or 1 
(mod 3). 

This kind of design was studied first by N.S. Mendelsohn [Men]. He 
called such a design a generalized triple system and proved that the 
necessary condition for the existence of a MTS( v) is also sufficient except 
if v = 6. (J.C. Bermond [Berl] independently studied the same design 
and obtained the same result for this question, i.e., the decomposition 
of the symmetrie oriented complete graph into 3-circuits.) 

Let C(X) be the set of all cyclic triples from the set X of v elements. 
Then IC(X)I = lv(v - l)(v - 2). The following problem arises quite 
naturally. Given a set X with size v = 0 or 1 (mod 3) and v ~ 3, v ;/= 6, 
is it always possible to partition C(X) into v-2 subsets 81' 82, ... , 8"_2 
so that each of {X, 81 ), (X, 82), ... , (X, B"-2) is a MTS( v )? Such a 
collection of MTS( v )'sis called a. large set of pairwise disjoint MTS( v )'s, 
we denote it by LMTS(v). The research work on this problem started 
in 1981. By 1987 there already were some results on this problem (for 
details see §2.5). However, all known results are obtained recursively 
and the problem was very far from a complete solution. 

In this chapter a number of results of our research, sta.rted in 1987, 
will be stated. It contains one recursive construction (Theorem 2.3.3, 
v+2 --- uv+2 for u = ±1 (mod 6)), two direct constructions (Theorem 
2.2.1 for all odd orders and Theorem 2.4.6 for order 2n + 2, n ~ 3), a 
few corrections of errors in other papers (in §2.5) and a discussion a.bout 
nonisomorphic large sets of pairwise disjoint Mendelsohn triple systems. 
Through §2.2-2.4 we affirm the existence of LMT S( v) for the great 
majority of orders v., All tha.t rema.ins for a. complete solution of the 
problem is v = 6 or 22 (mod 72). 

2.2 The odd order case. 
For the odd order case, i.e. v = 1 or 3 (mod 6), v ~ 3, if there is a 

LSTS(v) (a large set of disjoint Steiner triple systems of order v), then 
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we can get LMTS(v) by replacing each triple {x,y,z} by the ·cyclic 
triples (x,y,z) and {x,z,y}. It is well known that there exist LSTS(v) 
for all v = 1 or 3 (mod 6), v f:. 7 except for six possible orders: 141, 283, 
501, 789, 1501 and 2365 [Lu]. In the following we do not use the results 
on LSTS(v)'s hut construct directly LMTS(v) for all admissible odd 
order v. 

In the following construction, each MTS(v) = (X,B) has the prop
erty: there exist a -:f; b E X such that 

(*) 
(a,b,x) EB~ (b,a,x) EB 

{a,x,y) EB~ (b,y,x} EB 

where x,y E X\{a,b}. In [Kal], we called such a MTS a Symmetrie 
Mendelsohn triple system and denoted it by SMTS. 

Theorem 2.2.1. For v = 1 or 3 (mod 6) and v 2:: 3, there exists an 
LMTS(v). 

Proof. We use the following construction. 
Let u :: ±1 (mod 6) and X = {a, b} uz", where Z" = {O, 1, ... , u 1} 

is the residue class ring modulo u, a, b '/. Z" and v = u + 2 IXI. We 
can construct u cyclic triple systems Bi (i E Z") on X as follows. 

There are three types of cyclic triples in Bi: 
(1) (a, b, i), (b, a, i}; this gives two cyclic triples. 
(2) (a, x + i, -2x + i}, (b, -2x + i, x + i), where x E Zu \ {O}; this gives 

2( u - 1) cyclic triples. 
(3) {x,y,z},(x,z,y), where x < y <zand {x,y,z} is a 3-subset of 

z" such that x + y + z = 3i (mod u); this gives l-{u - l)(u - 2) cyclic 
triples. 

We now prove that this indeed defines an LMTS(v). 
Firstly, for u = 1 (i.e. v = 3), LMTS(3) = {{(a,b,O),(b,a,O)}} is 

trivial. Next, let u ;::: 5; notice u 'f!: 0 (mod 2) and u 'f!: 0 (mod 3); it 
is easy to see that 2 and 3 are invertible in z" and x + i f:. -2x + i 
(x E Z" \{O}). 

1° Each of the Bi's is a MTS(v): 
Direct calculation shows that Bi contains Î( u + 1)(u+2) cyclic triples, 

just the number we expected. Therefore, we only need to show that no 
ordered pair of distinct elements of X is covered by more than one cyclic 
triple in Bi, hut that is immediately clear. 

2° {Bïli E Zu} is an LMTS(v): 
Again it su:ffices to verify that no cyclic triple is in more than one Bi 

(since we have the right total number of triples). This is obvious for the 
triples of types (1) and (3) and easy to see for those of type (2): 

(a, x, y) E B(,,+2z)/3 and (b, x, y} E B(z+2y)/3· 
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This completes the proof. D 
This theorem establishes the existence of an LMTS( v) for all a.d

missible odd orders v, including the six orders, for which an LSTS( v) is 
unknown and the single order for which there does not exist an LSTS( v ). 

2.3 A recursive construction. 
We now establish a recursive construction. 

Lemma 2.3.1. For u E ±1 (mod 6) and v ~ 3 , if there exists an 
LMTS(v + 2) then there also exists an LMTS(uv + 2). 

Proof. Again, we give a construction and show that it works. 
Let {({a,b} U Z",B;)li E Zv.} be an LMTS(u + 2), where the Bi 

are indexed such that {a,b,i} E B;. By Theorem 2.2.1, there exists 
such an LMTS(u + 2) satisfying the so-called symmetry condition (see 
§2.2(*)). Let {({a,b}USv,C;);j E Sv} be an LMTS(v+2), where Sv = 
{O, 1"" "v-1} is a set containing v elements, a, b ~ Zv. USv and (Sv,o) 
is an idempotent quasigroup of order v over Sv. Let a = (0, 1, ... , v-1) 
be a cyclic permutation of length v on the set S.,,. Now we can construct 
uv cyclic triple systems 7i; (i E Zv.,j ES.,,) on the set {a, b} U{Zu x Sv) 
as follows: 

(1) ((x,m),(y,n),(z,(m o n)ai)) with {x,y,z) E B;,x,y,z E Zu, 
m,n ES"; this gives ~v2(u - l)(u -2) cyclic triples. 

(2) {(x,m),(x,n),(y,(m on)ai)) with (a,x,y) E B;,x,y E z",m :/: 
n E S"; this gives (v2 - v)(u - 1) cyclic triples. 

(3) {a,(x,m),(y,mai)) and (b,(y,mai),(x,m)} with {a,x,y} EB;, 
x,y E Zu,m ES"; this gives 2v(u -1) cyclic triples. 

(4) ((i,m),(i,n),(i,l)) with (m,n,l} E C; (whenever a orb appears 
for m, n, l, omit the first coordinate i); this gives lC v + 2)( v + 1) cyclic 
triples. 

We prove that the construction works. 
By the symmetry condition (*) of B; and {a, b, i) E B;, it is easy to see 

that the conditions in (2) and (3) imply x, y E Zu \ { i} and both {a, x, y} 
and (b, y, x} belong to B;:. 

1° Each T;; is a MTS( uv+ 2). 
Direct calculation shows that each 7i; contains i(uv+2}{uv+l) cyclic 

triples, just the number we expected. Therefore we only need to show 
that every ordered pajr Pof distinct elements of the set {a,b} U (Zu x 
Sv) is contained in some cyclic triple in 'T;;. All the possibilities are 
exhausted as follows: 

i) P = (a,b) E {a,b,(i,m)} in (4), where m ES" such that (a,b,m) E 
C;; P = (b,a) E {b,a,(i,n)) in (4), where n ES" such that (b,a,n} E C;. 

ii) For x E Zv. and m E S", P = ( a, ( x, m)) belongs to the cyelic triple 
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(b, a, (i, m)} in (4), if x = i and (a, m, b} E C;; 
{a,(i,m),{i,n)} in (4), if x = i and (a,m,n} E C;,n E Sv; 
{a,(x,m),(y,mai)) in (3) if x -:f: i and (a,x,y} EB;. 

Similarly, for P = (b,(x,m)),((x,m),a) and ((x,m),b). 
iii) For x E Zu and m -:f: n E Sv, P = ((x,m),(x,n)) belongs to the 

cyclic triple 
((x,m),(x,n),(y,(m on)ai)) in (2), if x-::/= i and (a,x,y) E Bi; 
((i, m), (i, n), (i, /)} in (4), if x = i and (m, n, l) E C;. 

iv) For x-::/= y E Zu and m,n E Sv, P ((x,m),(y,n)) belongs to the 
cyclic triple 

((x,m),(y,n),(z,(m on)ai)) in (1), if (x,y,z) E Bi and z E Zu; 
(a,(x,m),(y,mai)) in (3), if (x,y,a) E Bi and mo:i = n; 
((x,n'),(x,m),(y,(n' o m)ai)} in (2), if {x,y,a} E Bi and (n' o 

m)ai = n; 
(b, (x, nai), (y, n)) in (3), if (x, y, b) E Bi and nai = m; 
((y,n),(y,m'),(x,(n o m')ai)} in (2), if (x,y,b) E Bi and (no 

m')ai =m. 
2°{Tt;li E z.,j E Bv} is an LMTS(uv + 2) 
We only need to show that every cyclic triple T from the set { a, b} U 

( z. x Sv) is contained in some Ts; above. All the possibilities are ex
hausted as follows: 

i) T = (a,b,(i,m)), where i E z.,m E Sv, is contained in (4) of 'Fi;, 
where j E Sv such that (a, b, m) E C;. Similarly, for T = (b,a, (i, m)). 

ii) T = (a,(i,m),(i,n)}, where i E z.,m -:f: n E Sv, is contained 
in (4) of T;;, where j E Sv such that (a,m,n} E C;. Similarly, for 
T= (b,(i,m),(i,n)). 

iii) T = (a,(x,m),(y,n)), where x -:f: y E Zu,m,n E Sv, is contained 
in {3) of Tt;, where i E z.,j E Sv such that (a, x, y} E Bi and n = mai. 
Similarly, for T = (b,(x, m),(y, n)}. 

iv) T = ((i, m), (i, n), (i, l)), where i E Zu and m, n, l E Sv are pairwise 
distinct, is contained in (4) of Tt;, where {m, n, l} E Cj. 

v) T = ((x,m),(x,n),(y,l))(x -:f: y E Z11 ,m,n,l E Sv,m-::/= n) is 
contained in (2) ofT;;, where i E z.,j E Sv such that (a,x,y) EB; and 
(mon)ai = l. 

vi) T = ((x, m), (y, n), (z,l)}(x,y, z E Z11 , x-::/= y z-::/= x and m, n, l E 
Sv) is contained in (1) ofT;;, wherei E Zu,i E Sv such that (x,y,z) E B1 
and (m o n)a; = l. 

This completes the proof. D 

Lemma 2.3.2. For u = ±1 (mod 6), tb.ere ezists an LMTS(2u + 2). 

Proof. 
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Let {({a,b} U Zu,ei);i E Zu} be an LMTS(u + 2), where the ei are 
indexed such that ( a, b, i} E ei. By Theorem 2.2.1 there exists such an 
LMTS( u + 2) satisfying the so-called symmetry condition (see §2.2(*)). 
Letl2 = {0,1}. Wecanconstruct2ucyclictriplesystems8ij(i E Zu,i E 
12) on the set {a, b} U (Zu x 12), where the elements (x, 0) and (x, 1) of 
Zu x 12 are briefly denoted by Xo and x1. 

Bi,o(i E Zu) consists of the following four types of triples 
{l) (a,b,io}, (b,a,i1}, (a,io,i1} and (b,ii,io}; this gives four cyclic 

triples. 
(2) (a,xo,Yo), (a,xi,y1}, (b,yo,x1) and (b,yi,xo) with (a,x,y) E 

ei,x,y Ez.; this gives 4(u -1) cyclic triples. 
(3) (xo, Xi, Yo} and (x1, xo, Y1} with (a, x, y) E Ci, x, y E Zu; this gives 

2( u - 1) cyclic triples. 
(4) (xo,yo,zo), (xo,yi,z1}, (xi,yo,z1} and (xi,yi,zo) with (x,y,z} E 

ei, x, y, z E Z.; this gives ~( u - l)(u - 2) cyclic triples. 
Bi,1 ( i E Zu) consists of the following four types of triples 
(1) (a,b,i1), (b,a,io), {a,ii.io) and (b,io,i1 ). 

(2) (a,xo,111), (a,x1,Yo}, (b,yo,xo} and (b,yi,x1) with (a,x,y) E 
Cj,x,y Ez •. 

(3) (xo,xi,y1) and (xi,xo,110) with {a,x,y} E e;,x,y Ez •. 
(4) (x1,yi,z1}, (xi,yo,zo), {xo,yi,zo) and (xo,yo,z1) with (x,y,z} E 

ei,x,y,z Ez •. 
The proof that the method works follows. 
Firstly, since each ei has the so-called symmetry property, both (a, b, i) 

and (b,a, i} belong to ei, and the condition in (2),(3) implies that x, y E 
z. \ { i} and both (a, x, y) and (b, x, y} belong toe;. 

1° Each of Bï; is a MTS(2u + 2). 
Direct calculation shows that Bi; conta.ins l{2u + 1)(2u + 2) cyclic 

triples, just the number we expected. So, we only need to show that 
every ordered pair Pof distinct elements of the set {a, b} U (Z. x 12) is 
conta.ined in some cyclic triple of Bï;· All the possibilities are exhausted 
as follows (We only give the proof for Bï,o, the proof for Bi,t is similar 
to it.): 

i) P = (a,b) and (b,a) are conta.ined in part (1). 
ii) P = (a,i;),(b,i;),(i;,a) and (i;,b) are conta.ined in part (1). 
iii) P = (a,x;),(b,x;),(x;,a) and (x;,b)(x -:f. i) are conta.ined in part 

(2). ' 
iv) P = (x;,x1-;)(x E z.,j E 12) belongs to part (1), if x = i; or 

part (2), if x :f:. i. 
v) P = (z;, f/k)(z :f:. y E z.,j E I2) belongs to 

part (2)(or (3)), if {x,y,a) E ei and j = k (or j :f:. k); 
part (3)( or (2) ), if {x, y, b) E ei and j = k (or j # k ); 
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part (4), if {x, y, z) E C; and z E z". 
2° {Bi;; i E Z",j E !2} is an LMTS(2u + 2). 
We only need to show that every cyclic triple T from { a, b} U ( Zu x ! 2 ) 

is contained in some B;; above. All the possibilities are exhausted as 
follows: 

i) T = (a,b,i;) and (a,i;,i1-;)(i E Z",j E l2) are contained in (1) of 
Bi;; T = (b,a,i;) and (b,i;,i1-;)(i E Z",j E I2) are contained in (1) of 
Bï,1-;. 

ii) T = (a,x;,yk) (or (b,x;,Yk)) (x :/: y E Z",j,k E !2) is contained 
in (2) of Bi,a (or Bï,i-a), where (a,x,y) E Ci and s:::: j + k (mod 2). 

iii) T = (x;,x1-;,yr.) (x :/: y E Z",j,k E !2) is contained in (3) of 
Bi,o or Bi,1, where (a,x,y) E Ci. 

iv) T = (x;,yk,zr.) (x,y,z E Z" are pairwise distinct, j,k E 12 ) is 
contained in (4) of Bij, where (x,y,z) E C;. 

This completes the proof. 0 

Theorem 2.3.3. For u = ±1 (mod 6) and v ?: 2, if there exists an 
LMTS(v + 2) then there also exists an LMTS(uv + 2). 

Proof. This is a consequence of Lemma 2.3.1 and 2.3.2. D 

2.4 LMTS(2n + 2), n :/: 2. 
We have already discussed the designs LMTS(v) for all odd orders v 

(of course, v ~ 2 (mod 3)). For even order v (also v ~ 2 (mod 3)), we 
can express vin the form v = 2nu + 2, where nis a positive integer and 
u = ±1 (mod 6). By Theorem 2.3.3, if we can construct LMTS(2n + 2) 
for each positive integer n, then the existence problem of LMTS(v) for 
all v will be solved completely. 

For n = 1, it is very easy to give the following LMTS(2 + 2) 
{( {a, b} U 12, B;); i E 12}: 

Bo= { (a, b, O}, (b, a, 1), (a, 0, 1), {b, 1, 0) }, 

B1 = { (a, b, 1}, (b, a, 0), (a, 1, O}, (b, 0, 1}}. 

But for n = 2 there does not exist an LMTS(22 + 2), since there does 
not exist an MTS(6). Now we will devote attention to the construction 
of an LMTS(2n + 2) for every positive integer n ?: 3. 

2.4.1 The pair class and triple class. 
Let F be a finite field containing 2n elements (n ?: 3). lts zero and 

unit elements are denoted by 0 and 1, respectively. Let g be a primitive 
element of F* = F\{O}. We define two elements ooi,oo2 </: F. Let 
R = Z2"_1 = {O, 1, ... , 2n - 2} be a. residue class ring modulo 2n - 1. 
Below, all operations are over F or R, respectively. 
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For o:,(3 ER* = R\{O}, if ga+ gf3 = 1 then call a,(3 a couple and 
denote this by aC (3. We point out that 

(Cl) H o:C{:J then o: =F {:J and (3Ca, (-[:J)C(a - (3), (-o:)C(P - a), 
(2to:)C(2t.8) for an arbitrary positive integer t. 

(C2) If o:CP and 7Cê then(ind(o:+ê, .8+7)-.B)C(ê-{1) and (ind(a+ 
6,/3 + 'Y)-7)C(o: - 'Y),where e = ind().,µ) means g>.. + g" = g"'. 

Let x E F be given. For an ordered pair (y,z) of distinct elements in 
F\{x }, we have;:::: E F\{O, 1}. So we can let ;:::: =ga, where o: ER*, 
and write z = ga x + gP y, where f3 E R *, o.C /3. Then we say that the 
ordered pair (y,z) = (y,gax + gPy) in F\{x} belongs to the pair class 
< a, {:J > (briefly PC < o:, f1 > or < a > ). 

Lemma 2.4.1. Fora gfoen element x E F, 
(1) Each ordered pair of didinct elements of F\{x} belongs toa uni

quely determined PC. The total number of pair classe8 is 2n - 2. Each 
PC contaim 2n - 1 distinct ordered pair8. 

(2) For the cyclic triple (g'Yx + g6y,y,gax + gf3y), where y E F\{x}, 
a, /3, "'(, 6 E R*, aC {3, "'(Cê and a =F "'(, its three ordered pairs belong to the 
pair classes< a,(3 >,< ind(o:+ê,,8+7)-/3, 6-/3 >and< 7-6,-6 >, 
respectfoely. 

(3) For the cyclic triple (u, y, g0 x+gPy), where u = x (or 001, or 002 ), 

a, f3 E R* and aC/3, only one among its three ordered pairs, namely 
(y,gax + gPy), belongs to PC< a,/3 >. 

Proof. 
(1) is trivia! by de:finition. 
(2) Let X = g"fx + g6y, Y = y a.nd Z = gax + gfly, then Y = g"f-6x + 

g-6 X and g/J X + g6 Z = (g"t+/J + ga+6)x. And the latter implies 

(3) is trivia!. 0 
For an ordered triple ( ( u, v, w)) of distinct elements in F, similar to 

the above process, we can also write v = g°'u +gPw, where a, /3 ER and 
aC/3. We say that the ordered triple ((u, v, w}} belongs to [a, (3]. Since 
a cyclic triple (u, v, w) is equivalent to three ordered triples ((u, v, w}}, 
( (v, w, u}) and ( (w, u, v) ), and v = g0 u + gf1w implies w = g-Pv + g"'-Pu 
and u = gf3-aw + g-0 v, we shall say that the cyclic triple (u, v, w) 
belongs to the triple clas1 {[at,8],[-,8,a - ,8Jt[,8- a,-a]} (brief TC 
{ a, -,8, /3 - a} ). Note that the three couples in a TC have the following 
property: 
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(T) The first coordinate of each couple equals the negative of the 
second coordinate of another couple. 

For convenience below, we call three such couples having property 
(T) a trio, and denote them by {a,-/9,{3 a} (only write down their 
first coordinates). We point out that, if A = {a, -/9, P - a} is a trio, 
then -A = {-a,,8,a-,8}, 2A = {2a,-2/9,2,8-2a} and (-2)A = 
{-2a, 2,8, 2a - 2,8} also are. 

Lemma 2.4.2. 
(1) The total number of trios (in R *) is if n is odd, or 2" 3-

4 + 2 ij 
n i8 even. When n i8 even, there are two so· called small trios: { 8, 8, O} 
and {28,28,20}, where 9 = 2"3-

1 • In all other cases eack trio consists 
of three different numbers. 

(2) Eack cyclic triple of distinct elements in F belongs to a uniquely 
determined TC. Eack small TC (corresponding toa small trio) contains 
2n<2

;-
1> pairwise distinct cyclic triples, and each of the otker TC's con

tains 2n(2n - 1) pairwise distinct cyclic triples. 
(3) The cyclic triple (g"fx+g6y,y,gax+gPy) belongs to the TC {[a 

e,7 - e], [e - 7,a -1], h- a,e - a]}, where a, ,8,1,fi ER*, aC,8, 1Cfi 
ande=ind(a+6,,8+1). The cyclic triple (x,y,g°'x+gPy} belongs to 
the TC {[a - ,8, -,8], [,B, a], [-a, f3 - a]}. 

Proof. 
{1) First, we analyze the possibilities of equality between three num

bers in a trio. Suppose the trio is { a, -/3, /3 - a}, where a, /3 E R * and 
aCf3. We have the following three possibilities: 

{ 

a = -{3, then aC(2a) since (-P)C(a -/3); 
a = P - a, then 2a = /3, i.e., aC(2a); 

-{3 = f3 - a, then a = 2/3, hut (2a)C(2,8) so (2a)Ca 

All cases give g2°' +ga+ 1 = 0, so g3° = 1. This implies (2n l)l3a, 
since gis a. primitive element in F*. But 0 < a < 2n - l(a ER*), so 
31(2" - 1). For odd n this is impossible, hut when nis even this gives 
a = 2";1 or 2<2~-1>. Then, the corresponding trio will be {O, 0, O} or 
{20,29,29}, i.e. a small trio. 

By this a.nalysis, when n is odd all numbers in R * are partitioned into 
2"3-

2 trios; when nis even all numbers in R*\{9,28} are partitioned 
into 2"

3
- 4 trios. 

(2) The cyclic triples belonging to different TC's are different. In fa.et, 
suppose (u,g°'u + gflw, w) = (u', g"fu' + g6w1

, w1
} (of course u #- w, u1 #

w' and aC/3, 1Cfi), hut {a, -{3,{3 - a} and {T, -Ei, fJ - "}'} are different 
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TC's. Then, there are the following three possibilities (hut they are all 
impossible ): 

i) u = u',gau + gPw = g"'fu' + g'1w 1 and w = w'. Then (g°' + g"Y)u = 
(gP + g6)w, hut ga+ g"'f = gP + g6 #:- 0, sou= w, a contradiction. 

ii) u = g"'fu' + g6w 1,gau + gllw = w' and w = u'. Then gflu + g"'fw1 = 
gP+6w1 + ga+"'fu, so (gil+ g°'+"'t)u = (g"Y + gP+6)w1

• But g/J{l + g6) = 
g/J g"'f = (1 + ga)g7 and gil + g°'+"'f #:- 0 ( else 1 = P - a, two TC will be 
the same), sou= w'. This implies u = gau + gPw, so gP(u - w) = 0, 
i.e. u = w, again a contradiction. 

iii) u = w',gau + gllw = u' and w = g"Yu' + g6w1
• This case is similar 

to ii). 
Futbermore, suppose (u,gau + gllw, w) = (u1,gau1 + gPw1

, w') (u #
w, u' #:- w', aC fJ). There are the following three cases: 

i) u = u', gau+gPw = g°'u' +gllw' and w = w'. Then { u, w) = ( u', w'). 

ii) u = gau' + gllw', gau + gPw = w' and w = u'. Then gflu + g0tw1 = 
g2Pw'+g2au, 80 (g2a+gP)u = (g2/J +ga)w'. But 9a+gP = 1 = g2a+g2/J, 

so (g20 + gP)(u - w') = 0. Since u #:- w 1 (or else g°'u + gf:lw = u, then 
gf:I ( u - w) = 0, so u = w, a contradiction ), so g2cx + gP = 0. Thus 2a = f3 
and 2/1 = a ( mod 2n - 1 ), i.e. 3a = 0 ( mod 2n - 1 ). This is equivalent 
to stating that {er, -fJ,[3 - a} is a small trio {or a small TC). 

iii) u = w',g0 u + gllw = u',w = gcxu + gPw1
• This case is similar to 

ii). 
Since there are 2n(2n - 1) ordered pairs ( u, w) of distinct elements in 

F, if a TC is not a small TC, it contains exactly 2n(2n - 1) pairwise 
distinct cyclic triples, and each small TC (by ii) and iii)) only contains 
2"<2

;-
1> pairwise distinct cyclic triples. 

(3) For the cyclic triple {u, v, w}, where u = g"'f x + g6y, v = y, w = 
g°'x + gfly with a given x E F, we have g°'u + g"'fw = (ga+6 + g/J+"Y)v. 
So 

ga g"'f 
v= u+ w 

ga+6 + gll+"'f ga+6 + gll+"'f ' 

g0t+6 + gll+"'f 
w = v + ga-"'fu; 

g"'f 

9a+6 + gfl+"'f 
u = g7 -aw + v. 

ga 

Similarly, for the cyclic triple (x, y,g0 x + glly). D 
Later, in §2.4.3, the 2n disjoint Mendelsohn triple systems of the 

LMTS(2n + 2) over the set X = {ooi,oo2 } U F that we shall con
struct, are indexed with elements x E F. The Mendelsohn triple system 
(X,Bs) will contain the followingfour types of cyclic triples (y E F\{x}) 
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name 

001-triple 
oor triple 
x-triple 
y-triple 

form of cyclic triple 

(ooi, y, gai x + gf31 y) 
(002, y, ga2x + gf32y) 

(x, y, g>..x + g"y) 
(g-rx + g6y, y, getx + gf3y) 

PC 

(ai,,81) 
(a.2, .82) 
(,\, µ) 

** 

TC 

# 
* 

where #={[,\, µ], [-µ, ,\- µ], [µ - À,-,\]},** represents (a, f.J)(e -)3, 8 
fJ)('y - ó, -ó) and *={[a - 1:, 'Y - 1:), [1: - 1, a - 1], [f - o:, E o:]}; and 
the parameters ai,(J1 ,a2,a2,À,µ,a,f31y, ó ER* and ,\Cµ, a:C,B, 7Có, 
0t1C{3i, a2Cf32, e=ind(a + 6,(J + 1). By Lemma 2.4.1 and 2.4.2, our 
main task will be to choose suitable parameters such that the PC and 
TC listed in the table exactly are all posible PC and TC. Note that all 
y-triples will occupy 2"3-

5 TC if n is odd, or 2"3-
7 + 2 TC if n is even 

(including two small TC). 

2.4.2 The choice of parameters. 
Fora given TC, one can give 3(2n - 3) pairs (a,'Y) such that the 

corresponding y-triples (g'Y x + g6y, y, ga x + gf3y) all belong to the given 
TC's (of course aC{3 and 1Có). But the PC's given by these pairs 
usually are rather chaotic, which gave us much difficulties. However, 
luckily, we have found the following 

Lemma 2.4.3. The three PC's of a y-triple (g'Yx + g6y, y, gax + gf3y) 
can form a trio {i.e. they meet the property (T) in §2.4.1) if and only 
if one of the following holds: 

(1) ó = a {and 'Y = f3 ). In this case the PC's and TC consist of the 
same couples: < a,{3 >,< -fJ,a -{3 >and< fJ a, -a >. 

(2) ó = fJ- a (and 1 = -a). In this case the PC's are < a,/3 >, < 
fJ - a, -a > and< -/3,a - f3 >, but its TC is {[-2a, 2fJ - 2a], [2a -
2,8,2/1], [2,8,2a]}. 

Proof. By the property (T) and the forms of the three PC's given by 
Lemma 2.4.1(2), we only have the following two possibilities: 

1° -6 = -a and 6 - fJ = -(1- ó). This implies 6 = a and 'Y = fJ. 
Futhermore, e = ind( a + ó, fJ + 'Y) = ind(2a, 2fJ) = 0, and by Lemma 
2.4.1(2) and 2.4.2(3) we get the case (1). 

2° f3 = -( 1- ó) and 6 - fJ = -a. This implies ó = f3 - a and 'Y = -a. 
Futhermore, e = ind( a + 5, f3 + 'Y) = ind({3, fJ - o: )=2/3 - a, and for the 
same reason we get the case (2).0 

This lemma is very useful. It can help us to choose the parameters in 
the table of §2.4.1. The lemma gives two transformations between the 
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trios: case (1) gives the transformation from trio a, -/3,/3- a to itself; 
case (2) gives the transformation from trio A = { a, -/3, fJ - a} to trio 
B = {-2a,2/3,2(a -/3)}, i.e. each number in the second trio is (-2) 
times as large as each number in the first trio (we write B = (-2)A). 

Now we construct a directed graph G(R*), which is named trio
incidence grapk. lts vertex set consists of all trios on R*. From vertex 
A to vertex B there is an are if and only if B = (-2)A (we call B the 
successor of A). The graph has (resp. 2

n3-
4 + 2) vertices, when n 

is odd (resp. even). Obviously, every vertex has exactly one in-are and 
one out-are, by Lemma 2.4.3 and since (-2) is invertible in R. So, in 
fact, the graph is a union of disjoint directed circuits. Each number a 
of R* belongs to a uni que vertex denoted by V( a ). Each vertex A of 
G(R*) belongs to a unique circuit denoted by u{A), and the length of 
the circuit is denoted by p(A). 

Lemma 2.4.4. Let the vertez A E G(R*) 
(1) IJ (-2)" A = A, tken p(A)ls; 
(2) p(A) = 1 ij and only if A ia a 1mall trio; 
(3) IJ -A E u(A) = u,then p(A) ia even. And /or any B E a, -B = 

(-2)~ BE O' re<:> ia minimum). If -A E T f: u(A), then T and O' 

kave the same length and /or any BE u, -BE r. 

Proof. 
(1) Obviously, s ~ k = p(A). Lets= pk+ t, 0 $ t <k. Then 

A = (-2)" A = (-2)' · (-2)1:(-2)1: ... (-2)1: A = (-2)' A. 

e 

So, t = 0, i.e. p(A)ls. 
(2) If p(A) = 1, let A = {a,-/3,,8-a}. Then (-2)a = a (so 3a = 0) 

or (-2)a = -{J (so fJ = 2a, i.e. aC(2a)) or (-2)a = {J- a (so -a = {J, 
i.e. aC( -a) ). Thus in each case A is a small trio. The converse is 
trivia!. 

(3) Clearly, 

(-2)" A = B if and only if (-2)"(-A) = -B(*) 

(for any positive s). J.,etting B = A we have both p(-A) $ p(A) and 
p(A) $ p(-A), thus p(A) = p(-A). As well as, by the sa.me rela
tionship (•), if A and Bare in the same circuit then -A and -B also 
are. Furthermore, since B f: -B for any trio B, 80 if -A E u( A) 
( thereby -B e u( A) .for any B e u( A)) then p( A) must be even. Sup
pose (-2)'B = -B (t is minimum, 80 t < p(A)) for B e u(A), then 



(-2)2tB = B. So, by (1), p(A)l2t, i.e. e~A)jt, hut t < p(A) so we must 

have t = e<;> .0 
By this lemma (3), for a circuit u E G(R*) if there exists a vertex 

A E n and a positive integer s such that (-2)'' A = -A, then call this 
circuit o selJ-dual. 

Lemma 2.4.5. For any n ~ 3, G(R*) kas a selJ-dual circuit o(V(a)) 
(1) IJ tkere exists an odd s > 1 witk sin, then a = ;::;. And 

p(V(a)) = 2s (iJ 3 f s) or 2 (iJ s = 3). 
(2) IJ 4ln, tken a = 2~;1 and p(V(a)) = 4. 

Proof. 
(1) First, we have (2"-l)a = 0 (mod 2n-1), so (-2)'"a = -2"a = -a. 

Thus (-2)" A = -A (A = V(a)), i.e. n(A) is self-dual. 
Since (-2)2• A = A (({-2)2• - l]a = (228 

- l)a = {28 +1)(2n 1) = 0 
(mod 2n - 1)), so p(A)l2s and p(A) is even, by Lemma 2.4.4. 

When 3 f s, let p(A) = 2t. Then ti.s. By A (-2)2tA 22tA and 
a E A, we have the following three cases ( where aC {3): 

i) 22ta = a. Then ;:':{{2" -1) = (22t - l)a:: 0 (rood 2n -1), so 
(2 11 

- 1)1(22
' - 1), so sl2t. As sis odd, .sit, so t = s. 

ii) 22'a = -{J. Then 22t(-{J) = {J - a, 22t(p - a) = o: by (Cl) in 
§2.4.1. Thus (26

' - l)a = 0, so sl6t. But 2 f s, 3 f s, so sit, which. 
implies t = s. . 

iii) 22'a = f3 - a. Then 22 '(-P) = a, 22t(p - a) = -{3 by (Cl). 
The argument is the same as in ii). So, when 3 f s, we always have 
p(A) = 2s. 

When s = 3 we have g8a =ga. Let x =ga. Then 

x8 
- x = x( x - 1 )( x3 + x + 1 )( x3 + x2 + 1) = O. 

But x =ga :f. 0, 1, so g3a +ga= 1(thus{J=3a, i.e. (-2)a = -({3-a)) 
or g3a + g2a = 1(thus2/1=3o:, i.e. (-2)(/3- a) = -a). Both cases 
give (-2)A = -A, thus (-2)2 A = A, p(A) = 2. 

(2) Since (24 - l)a:: 0 (mod 2"-1), we have g16a =ga. Let x =ga. 
Then 

x16 
- x = x(x5 

- l)(x2 + x + l)(x4 + x + l)(x4 + x3 + 1) = 0. 

But ga :f. O, g50 :f. 1 and g2a = ga + 1 :f. 0 ( else g3a = 1, hut 3a = 
2"5-

1
:: 0 (mod 2"-1)), sog4a+g0 +1=0 (thus f3 = 4a, i.e. (-2)2a = 

{J) or g4"' + g30 +1=0 (thus 4/1=3a, i.e. (-2)2 (.8 - a) = -a). Both 
give (-2)2 A = -A. Obviously, (-2)A :f. -A, so p(A) = 4.0 
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By this lemma we can get a self-dual circuit in G(R*) for any n ~ 3 
(if there exists an odd s > 1, sin, then by (1); else n = 2k ~ 3 and we 
must have 4ln, by (2)). Here, we give a table for 3 $ n $ 20. 

n 3 4 5 6 7 8 9 9 10 11 12 12 13 

s 3 4 5 3 7 4 3 9 5 11 3 4 13 
a 1 1 1 9 1 17 7371 33 1 585 273 1 

p(V(a)) 2 4 10 2 14 4 2 18 10 22 2 4 26 
n 14 15 15 16 17 18 19 20 20 

8 7 3 5 4 17 3 19 4 5 
a 1 4681 1057 4369 1 37449 1 69905 33825 

p(V(a)) 14 2 10 2 34 2 38 4 10 

2.4.3 The construction and examples. 
Let a be given by Lemma 2.4.5, p(V(a)) = 2.s. Define o:; = (-2)io:, 

0 $ i $ s - 1, and À = (-2)"a. Take a number 1; from each vertex 
A; E G(R*)\S, where 

S = {V(ao), V(a1), ... , V(a11-1), V(A)} U So, 1 $ j $ t. 

and S0 = !f>(if nodd)or {{9,9,9}, {29,29,29}} (if neven, 9 = i(2n-1)); 
t = !(2" - 2) - s - 1 (if n odd) or i{2" - 4) - s - 1 (if n even). Let 
aïCfJï, ACµ, 1;C6;, 0 $ i $ s - 1, 1 $ j $ t. Then, as announced in 
§2.4.1, Bz will contain the following triples: 

(1) (ooi,002,x), (002,ooi,x); this gives two bloclcs. 

(2) (001, y, u-"x + u"-"y), (002, y, u"-"x + u-"y); this gives 2(2n - 1) 
blocks. 

(3) (x, y, u"x + g"y); this gives 2" - 1 blocks. 
(4) (g-a•x+gtlf-a;fl, y,ga•x+gP'y), 0 $ i $ s-1; this gives s(2n -1) 

blocks. 
(5) (g61 x + g'YJ y, y, g"fJ x + g6J y), 1 $ j $ t; this gives t(2" - 1) bloclcs. 
(6) (g29x + g1y,v,g9x + g21y}, (g1x + g29y,y,g21x + g1y); this gives 

~(2" -1) block:S. 
where y runs over F\ { x}. Type ( 6) occurs only if n is even. Letting y 
run over F\ { x} produces eac.b. element three times hut we only retain 
one copy of eac.b. triple. 

Theorem 2.4.6. For n ~ 3, the abo11e conatruction { ( { 001 , 002 } U 
F,Bz);x E F} gi11e& an LMTS(2" + 2), uih.ere F = GF(2"). 

Proof. By §2.4.1 and 2.4.2, we only need to show the following three 
points aga.in. 
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1° The total number of cyclic triples in each Bx equals 

2n -2 
2 + 3(2n -1) + s(2n - 1) + (-

3
- - s - 1)(2n -1) (n odd) 

2 + 3(2n -1) + s(2n - 1) + (2n - 4 - s - 1)(2n - 1) + 2. 2n - l 
3 3 

Both totals are i{2n + 2)(2n + 1 ), exactly as expected. 
2° The parts (2)-(6) contain all PC's. 

(neven). 

Suppose the vertex V( a) in the cir
cuit a as in Figure 1. By Lemma 2.4.5, 
ais self-dual and {a,-/3,/3 - a} = 
-{À,-µ,µ->.}. Obviously, the parts 
(2) and (3) contain the thrèe PC's cor
responding to the trio V(>.). And, by 
Lemma 2.4.3(2), each cyclic triple in 
part (4) contains the three PC's cor
responding to the trio V(a;), 0 $ i $ 
s - 1. All other PC's consisting of all 
trios A; and small trios, are covered 
by parts (5) and (6), by Lemma 2.4.5 
(1 ). 

V(a.)=V(a.0 ) 

V(>.) 

3° The parts (3)-(6) cover all TC's. 
By Lemma 2.4.5(2), the cyclic triple in part ( 4) corresponding to the 

trio V(ai) occupies the TC corresponding to the trio V(ai+1 ), where 
0 $ i $ s - 1 and V(a 8 ) = V(>.). And the TC corresponding to 
V(a) = V(ao) is occupied by x-triple (in part (3)). All other TC's 
( corresponding to trios A; and to small trios) are occupied by the y
triples in part (5) and (6), by Lemma 2.4.5(1). D 

Example 1. n = 3, g3 + g + 1 = 0 
1C3, 2C6, 4C5 G(Z7): 
Take a = ao = l(/30 = 3,s = 1), 

>. = 5(µ = 4). 
LMTS(lO) = {({ooi,002} U Fs,Bx);x E Fs}, 

where Bx contains: 

(1)(001, 002, x}, (002, 001, x} 
{2) (ooi,y,g3x+gy) <3,1 > 

(002,y,g6x + g2 y) < 6,2 > 

{1,4,2} 

{3,6,5} 

{3) (x,y,g5x+g4y) <5,4> {3,6,5} 
(4) (g6x + g2y,y,gx + g3y) < 1,3 >< 2,6 >< 4,5 >{1,4,2} 
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Example 2. n = 4, g4 + g + 1 = 0 

1C4,2C8,3C14,5C10, G(Z;s): 0 0 
6C13, 7C9, 11C12 {5,5,5} {10,10 ,10} 
Take a = ao = l(Po = 4,s = 2), {1,11,3} 

a1 = 13(/31 = 6), ~I~ 
À=4(µ=1),;1 =2(ó1 =8). {2,7,6} ~ {8,13,9} 

LMTS(18) = {({ooi,002} U F16,Bx);x E F16}, 80 . 
where Bx contains: 

{4,14,12} 

(1) {ooi. 002, x}, {002, ooi,x} 
(2) (001,y,g14x+g3 y} {14,3} 

(002,y,g12x+glly) {12,11) 
(3) (x, y, g4 x + gy) (4, 1) {3, 1, 11} 
( 4) (g14x + g3 y, y, gx + g4y} (1, 4)(3, 14)(11, 12) {9, 8, 13} 

(g2 x + g8 y, y, g13 x + g6 y} (13, 6}{8, 2)(9, 7) {14, 12, 4} 
(5) (g8 x + g2 y, y, g2 x + g8 y) (2, 8)(7, 9)(6, 13} {2, 7, 6} 
(6){g16x + g5y, y, g5 x + g16y} (5, 10} {5, 5, 5} 

(yf'x + gloy, y, g16x + g5y) (10, 5) {10, 10, 10} 

Example 3. n = 5, g5 + g2 + 1 = 0 

1C18, 2C5, 3C29, 4C10, 6C27, 7C22, 

8C20, 9Cl6, 11C19, 12C23, 13C14, 

15C24, 17C30,21C25,26C28 G(Z31): 

Take a = a 0 =1 {1,13,17} 
(fJo = 18, s = 5), 
a1 =29(.81 =3), {9,15,7} 

a2 = 4(P2 = 10), 
as= 23(~ = 12).{8,11,12 

a 4 = 16(P4 = 9), · 
- 2(C - 5) {10,27 ,25} 

Tl - Ut - 1 

72 = lO(ó2 = 4), {2,26,3} 

'Y3 = 8( Ó3 = 20), 

")'4 = 7(64 = 22), 
,\ = 30(µ = 17). 

:% {5,29,28} 

i~ {4,21,6} 

\§W{19,20,23} 

,..@<16,22,24} 

{14,18,30} 

LMTS(34) = {({ooi,002} UFa2,Bx);x E Fa2}, 
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where Bz contains: 

(1) (ooi,002,x), (oo2,ooi,x). 
(2) {ooi, y, g14 x + g13 y} (14, 13} 

(oo2,y,g18x+gy) {18,1} 
(3) {x,y,g30x+g11 y) {30,17) {13,17,1} 
(4) (g3°x + g11 y, y, gx + g18y) {1, 18)(17, 30){13, 14} {28, 5, 29} 

(g2x+g5 y,y,g29x+g3y) {29,3)(5,2){28,26) {21,6,4} 
(921 x + g6y, y, g4x + g10y} (4, 10)(6, 27)(21, 25} {19, 20, 23} 
(gsx + g2°y, y, g23 x + g12 y)(23, 12}(20, 8}(19, 11){22, 24, 16} 
(g15x + g24 y,y,g16 x + g9 y) {16,9)(24, 15}{22, 7) {14, 18, 30} 

(5) (g5 x + g2 y, y, g2x + g5 y) (2, 5)(26, 28)(3, 29) {2, 26, 3} 
(g'x + g10 y, y, g10x + g4 y) {10, 4)(27, 6){25, 31) {10, 27, 25} 
(g20x + g8 y, y, g8 x + g20y} (8, 20}(11, 19}(12, 23} {8, 11, 12} 
(g22x+g1y,y,g1x+g22 y) (7,22}{9,16)(15,24} {7,9,15} 

The above examples were constructed and checked using a computer. 
In order to show the coi:nplication and usefulness of the trio-incidence 
graph G(R*), here we still give the graph G(Z63 ) as follows: 

0 0 
{21,21,21} {42,42,42} 

{7.37,19} {9,18,26} {11,38,14} 

6 ~ D 
{13,28,22}{25,52,49} {27,45,54} {26,56,44}{35,50,41} 

{16,31,17} 

{l,57 ,5} {2,51,10} 

{12,61,53} {24,59,43} 

{23,48,55} 

{6,62,58} 

{32,00,43} 
{4,39,20} {8,15,40} 

{33,47,46} 

In this gra.ph the shaded circuit is the unique self-dual circuit. 

2.5 Correction of an error. 
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Apart from our results mentioned above, there were the following re
sults concerning large sets of disjoint Mendelsohn triple systems (before 
the end of 1988): 

(2.5.1) LMTS{v)-+ LMTS(3v) (Lindner [Linl]) 
(2.5.2) LMTS(v + 1)-+ LMTS{3v + 1), v ~ 3 {Lindner (Linl]) 
(2.5.3) GLS(2 + m)-+ LMTS(2 + 2m) (Wu Lisheng [Wu]) 
(2.5.4) LMTS(n+2)-+ LMTS(nv+2), v:: ±1 (mod 6) (Teirlinck 

& Lindner [TeiLin]). 
Also, there were some simple direct constructions, for the examples 

LMTS(3), LMTS(4) and LMTS(1). Here the listed results are all 
recursive, but our results in §2.2 and §2.4 are the only two kinds öf direct 
construction of infinite series of LMTSs. Lemma 2.3.2 is an extension 
of the above-mentioned (2.5.3), where GLS is a special LSTS defined by 
Lu Jiaxi in [Lu]. The result (2.5.4) is equivalent to our Theorem 2.3.3, 
which was published almost at the sa.me time as (TeiLin] and uses a 
different method as [TeiLin]. For the above-mentioned references (2.5.1) 
and (2.5.2) we would like to point out some errors and correct them. 

In the paper [Linl] (C.C.Lindner), there are the following mistakes: 
i) In the construction (3) of Theorem 2.1 {p. 328, D(3v) ~ 2v + D(v)) 

the number of cyclic triples is too small. In this paper, part {i) gives 
v(v-1) triples and part {ii) gives 2v( v-1) triples, totalling only 3v{ v-1), 
i.e" short by 2v triples. 

ii) In the construction (3') of Theorem 3.1 (p. 329, D(3v + 1) ~ 2v + 
D( v + 1)) the number of cyclic triples is also too small (part ( i') gives 
v(v+ 1) triples and part (ii') gives 2v(v- l) triples). Part (ii') and (iii') 
do not touch upon the case k = 1, and the case k = v - 1 is not well 
handled. 

iii) For the symbol Q, it is said "a Latin square of order v having 
v disjoint transversals" in p. 327, hut it is again said "any idempotent 
quasigroup" and "not necessarily related in a.ny way to the Latin square 
Q" in p. 328. This is not correct, the second Q bas to rele.te to the first 
Q (or the part (i) of t,, and ti will join the part (ii) of d1;, since o is 
determined by '!/ik = i o Xik). In faet, the Q should be an idempotent 
Latin square ha.ving an orthogonal mate. 

iv) It is enough to keep three cyclic triples from (l)(ii) and (2)(ii) in 
section 2 {p. 328), respectively, because the choice of i and j is unordered. 

Below, we give a corrected description of this construction and prove 
its correctness {there was not any proof in [Lint]). 

Let v ~ 3, v ':/: 6, and let Q be an idempotent Latin square of order v 
ha.ving v disjoint transversals T1, T2, ... , Tv. The symbols T1;, a", at, fh:, 
p;, "Y• and "Yi are the sa.me as in the paper [Linl]. The Latin square Q 
corresponds to a quasigroup ( Q, o ), so Yik = i o Xik· 
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A. The construction of v ---!> 3v. 
Define 2v + D(v) MTS(3v) 8 ' over the set Q x {1, 2, 3} as follows: 
( 1) Define a collection of cyclic trip les t k ( 1 ::; k ::; v) by 

(i) (( i, 1 ), (Xik, 2), (Yik, 3)), ((Xik, 2), ( i, 1 ), (Yik, 3)), i E Q; this gives 
2v triples. 

(ii) (( i, 1 ), (j, 1 ), ((ioj)a1c, 2)), (( i, 2), (j, 2), ( ( ioj),81c, 3)), (( i, 3), (j, 3) 
,((i o j)î'1c, 1)}, i i: j E Q; this gives 3v(v -1) triples. 

(2) define a collection of cyclic triples ti (1 ::; k::; v) by 
(i) {( i, 1 ), (xik, 2), (Yi1c• 3)), (x;1c, 2), ( i, 1 ), (Yi1c• 3)), i E Q; this gives 

2v triples. 
(ii) ((i,1),(j,1),((ioj)ai;,3)}, ((i,3),(j,3),{(ioj)/3Z,2)}, ((i,2),(j,2 

), ((i o j)î';, 1)), i =/= j E Q; this gives 3v( v - 1) triples. 
(3) Let (Q,q1c); 1 S k ::; D(v) be any collection of D(v) pairwise 

dis joint MTS( v ). Define a collection d1c of cyclic trip les by 
(i) (( x, i), (y, i), (z, i)) with (x, y, z} E q1c, i = 1, 2, 3; this gives v( v -

1) triples. 
(ii) (( i, 1 ), (j, 2), (( i o j)ak+1 , 3)), ((j, 2), ( i, 1 ), (( i o j)ak+1 , 3)), i, j E 

Q; this gives 2v2 triples. 

Proof. 
1° Each t1c is a. MT S(3v) (Similarly for ti). 
The total number of triples is 2v + 3v(v -1) = 3v<3

;-
1>, .as required. 

For any ordered ·pair P of distinct elements of the set Q x { 1, 2, 3}, we 
have the following cases: -

P = ((x,i),(y,i)) with x =f= y, i = 1,2,3 is contained in part (ii). 
P = ((i, 1),(j,2)). There exists s such that (s o i)a1c = j. Now Pis 

contained in part (i) if s = i (j = (i o i)a1c ia1c = Xï1c), and otherwise 
in part (ii). 

P = ((i, 1),(j,3)). There exists s such that (j o s}r1c = i. Now Pis 
contained in part (i) if s = j (i = (j oj)î'1c = i'"'fk,j Yi1c), and otherwise 
in part (ii). 

P = ((i,2),(j,3)). There exists s such that (s o i)f3k = j. Now P 
is contained in part (i) if s = i (j = ( i o i)/31c = if31c, let i = Xi• k then 
j = Y1•1c), and otherwise in part (ii). 

P = ((i,3),(j,2)). There exists s such that (j o s)/31c = i. Now Pis 
contained in part (i) if s = j (i = (j o j)f31c = jf3i:, let j = Xi'k then 
i = Yï•1c), and otherwise in part (ii). 

P = ((i,3),(j, 1)). There exists s such that (s o ih1c = j. Now Pis 
contained in part (i) if s = i (j = (i o ih1c = Î"(1c, i = Y;1c), and otherwise 
in part (ii). 

P = ((i,2),(j,1)). There exists s such tha.t (j o s)a1c = i. Now Pis 
contained in part (i) if s = j ( i = (j o j)a1c = j a1c = x jk ), and otherwise 
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in part (ii). 
2° Ea.ch d1: is a MTS(3v) too. 
The total number of triples is v(v - 1) + 2v2 = 3v(

3
;-

1>, as just 
required. For any ordered pair P of distinct elements of the set Q x 
{1,2,3}, we have the following cases: 

P = ((x,i),(y,i)) with x =F y, i = 1,2,3 is contained in part {i), 
since q1; is a MTS(v). 

P = ((i, 1), (j, 2)) and ((i, 2), (j, 1)) are contained in part (ii). 
P = ((i, 1),(j, 3)). There exists s such that (i o s)o:"+1 = j, so P E 

part {ii). 
P = ((i,3),(j, 1)). There exists s such that (j o s)a"+I = i, so P E 

part {ii). 
P = ((i,2),(j, 3)). There exists s such that (s o i)a"+1 = j, so P E 

part (ii). 
P = ((i,3),(j,2)). There exists s such that (s o j)a"+1 i, so P E 

part (ii). 
3° All cyclic triples in all t1.:, tt and d1.: are pa.irwise different. Instead 

ofthis, let usprove that {t1.:}U{tk}U{di:} is aLMTS(3v) if D(v) = v-2. 
For any cyclic triple T from Q x {1, 2, 3} we have the following cases. 

T = ((x, i), (y, i), (z, i)) with x =F y =F z i= x. There exists k such 
tha.t (x, y, z} E q1.:, 80 T. E part {i) of d11:. 

T = ({x, i), (y, i), (z,j)) with x i= y, i =F j. There exists k such that 
(x o y)a1.: = z ü {i,j) = (1,2), and now TE part (ii) of t1:; 
(x o y)/31.: = z ü (i,j) = (2, 3), and now TE part (ii) of t1:; 
(zo Yh1: = z if (i,j) = (3, 1), and now TE part (ii) of t1:; 
(x o y)ai = z ü (i,j) = (1, 3), and now TE part (ii) of tk; 
(x o y)fJZ = z ü (i,j) = (3, 2), and now TE part {ii) of ti; 
(x o t1hZ = z if (i,j) = (2, 1), and now TE part (ii) of tî. 

T = ((i,1),(j,2),(s,3)}. There exists m (0 $ m $ v-1) such that 
(i O j)o:m = s. 

If m = 0, let j = Xik, then i oj = s = Yik, so TE part (i) of fl;; 
if m = 1, let j = Xil.:, then s = ( i o j)a = YïkO: = Yt1:, so T E 

part{i) of tt; 
if 2 ::; m ::; v - 1, then T E part (ii) of dm-1 · 

T = ((i,2),(j, 1),{s,3)). There exists m (0 $ m::; v-1) such tha.t 
(j o i)am = s. _ 

If m = 0, let i = z;1:, then j o i = s = Y;11:, so TE part (i) of t1<; 
if m = 1, let i = z;1:, then s = (j o i)a = Y;11:a. = Yji:, 80 T E 

part(i) of tt; · 
ü2::; m $ v-1, then TE part (ii) of dm-1· 

This completes the proof. D 
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B. The construction of v + 1 --+ 3v + 1. 
Define 2v+D(v + 1) MTS(3v + 1)/ over the set {oo} U(Q x {1, 2,3}) 

as follows 
(1) Define a collection of cyclic triples t~ (1 $ k $ v) by 

(i) (oo,(i,l),(x1k,2)), {oo,(Xik,2},(y1k,3)), {oo,(Yik,3),(i,1)), i E 
Q; this gives 3v triples. 

(ii) ((Xïk,2),(i, 1),(Yik,3)), i E Q; this gives v triples. 
(iii) Same to A(l)(ii); this gives 3v(v - 1) triples. 

(2) Define a collection of cyclic triples t'Z (1 ;5 k ;5 v) by 
(i) {oo,(i, 1),(y;k,3)}, {oo,{Xïk,2),(i, 1)}, (oo,(y;k,3},(xa,2)), i E 

Q; this gives 3v triples. 
(ii) (( i, 1 ), (x1k, 2), (Yik• 3)), i E Q; this gives v triples. 
(iii) Same to A(2)(ii); this gives 3v( v - 1) triples. 

(3) Let ( { oo} UQ,q' k); 1 $ k '$; D(v + 1) be any collection of D(v+ 1) 
pairwise disjoint MTS( v + 1 ). Define a collection d' k of cyclic triples by 

(i) {(x,i),(y,i),(z,i)) with (x,y,z) E q'k• i = 1,2,3 (whenever oo 
appears for x,y,z, omit the second coordinate i); this gives v(v+ 1) 
trip les. 

(ii) ((i,1),(j,2),((ioj)ak+1 ,3)}, ((j,2),(i,1),((ioj)ak,3)), i,j E Q; 
this gives 2v2 triples. [Note: the two exponents of a are different.] 

Proof. 
1° Each t'1c is a MTS(3v + 1) (Similarly for t'i). 
The total number of triples is 3v+v+3v( v-1) = 3 vC3;+t), as required. 

For anyorderedpair Pof distinct elements of the set {oo}U(Qx{l, 2, 3} ), 
we have the following cases: 

P = (oo,(x,i)) and ({x,i),oo) with x E Q, i = 1,2,3 is contained 
in part (i). 

For other P the argument is similar to A 1°. 
2° Each d'k is a MTS(3v + 1). 
The total number of triples is v(v + 1) + 2v2 = 3

1.1<
3;+1>, as required. 

For any ordered pair P of distinct elements of the set { oo} U( Q x { 1, 2, 3} ), 
we have the following cases: 

P = (oo,(x,i)) and ((x,i),oo) with x E Q, i = 1,2,3 are contained 
in part (i). 

P = ((x, i), (y, i)) with x :f. y E Q is contained in part (i). 
P = ((i, 1), (j, 2)) and ((i, 2), (j, 1)) are contained in part (ii). 
P = ((i, 1), (j,3)) is contained in part (ii) (there exists s such that 

(i o s)ak = j). 
P = ((i, 3), (j, 1)) is contained in part (ii) (there exists s such that 

(j os )o:H1 = i). 
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P = ((i,2),(j,3)) is contained in part (ii) (there exists s such that 
(s o i)ak+1 = j). 

P = ((i,3),(j,2)) is contained in part (ii) (there exists s such tha.t 
(s o j)ak = i). 

3° All cyclic triples in all t' 1c, t'i a.nd tl k are pairwise different. Instead 
of this let us prove {t' 1c} U {t'k} U {tl 1c} is a LMTS(3v+ 1) if D(v + 1) = 
v - 1. For any cyclic triple T from {oo} U (Q x {1,2,3}) we have the 
following cases: 

T = (oo,(s,i),(t,j)} with (s,i) =/: (t,j) 
If i = j then s =/: t E Q a.nd there exists k (1 $ k $ v - 1) such 

that (oo,s,t) E </1c, so TE part (i) of tl1c; 
H ( i,j) = (1, 2), (2, 3) or (3, 1) then T E part (i) of t' 1c, where k 

satisfies: t = Xak (if i = 1), s = Ytk {if i = 3) or (s,t) = (Xik,Yik) (if 
i = 2); 

H (i,j) = (1,3),(2, 1) or {3,2) then TE part (i) of t 1
:, where k 

satisfies: t = y;k (if i = 1 ), s = Xtk (if i = 2) or ( s, t) = (y;k, Xï1:) (if 
i = 3); 

[Remark: Since, for 1 $ k $ v, 

2 ... v ) 
• •• Xvk 

• • • Yvk 

are v disjoint transversals of Q and a = (1, 2, ... , v) is a tra.nsformation 
of Q, it follows that {(xik,!/ik); 1 $ i,k $ v}=Q x Q and {(x;i:,YiiJ; 
1 $ i, k $ v }=Q x Q, where 11i1: = 1lika] 

T = ((x,i),(11,i),(z,i)) with x =/: 11 =/: z =F x E Q, and ((x,i),(y,i), 
(z,j)) with x :/: 11 E Q, i =/: j, z E Q. Similar to A 3°. 

T = ((i, 1),(j,2),(s,3)) with i,j,s E Q. Thereexists m (1 $ m $ v) 
such that (i o j)am = s 

ifm = 1 letj = x;1c then s = (ioj)a = Yika = 11;., soT E part(ii) 
of t':; 

else 2 $ m $ v then TE part (ii) of d'm-1· 
T = ((i,2),(j,1),(s,3)) with i,j,s E Q. Thereexists m {O $ m $ 

v -1) such that (j o i)am = s 
if m = 0 let i_ = x jk then s = {j o i)a = 11;1ca = Y]k• so T E 

part(ii) of t' ki 
else 1 $ m $ v -1 then TE part (ii) of d' m-1· 

This completes the proof. 0 

2.6 Nonisomorphic large sets. 
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Our construction of LMTS(2n + 2) = {( { 001 , 002 } U F, Bx; x E F} 
in §2.4 is of such a character that the systems Bx and 8 1 are iso
morphic for any x E F*. In fact, let a bijection f x from the set 
S = {ooi,002} U F onto S be defined by fx(oo1) =ooi, fx(oo2) = 002, 
fx(O) = 0 and f1:(Y) = xy where y E F*. Then the mapping fx induces 
a mapping J; from the cydic triple system 81 into Bx: J;( {u, v, w)) = 
(/z(u),/z(v),Jz(w)}. By the construction in §2.4.3, all cases are as fol
lows (for brevity, the power index of g is written p, q or s, t): 
part (1) 

J;((oo;,003_;,l}) = (oo;,003-;,x} (j = 1,2). 
part (2) 

J;( (oo;, y, gP · l +g'ly} )=(oo;, xy, x(gP • l+g'ly ))=(oo;, xy, gPx+gq( xy )) 
(j = 1,2, y E F*\{1}, so xy E F*\{x}); 

J;((oo;, 0, gP · 1 + gq · O}=(oo;, 0, x(gP · l + g'l · O))=(oo;, 0, gPx + gq · 0) 
(j = 1,2). 
part (3) 

J;((l,y,gP. 1+gfy})=(x,xy,x(gP.1 + g'ly)}=(x,xy,gPx + gq(xy)) 
(y E F*\{1}); 

J;( (1, 0, gP · 1+g'·0) )=(x, O, x(gP · 1 + g'l · O)}=(x, 0, gPx + g'l · 0). 
part (4)-(6) 

J;((g' • 1+g"y,y,gP·1 + g'y))=(gtx +g"(xy),xy,gPx + g'l(xy)) (y E 
F*\{1}); 

J;((gt • 1 + g" · O,O,gP · l + g'l · O})={g'x + g8 
• 0,0,gPx + g'l · 0). 

Clearly, the induced mapping J; is a bijection from 8 1 onto Bx. So 
we can assert that, maybe except for one system Bo, all Bx in our con
struction LMTS(2n + 2) = {(S,Bx)i x E F} are pairwise isomorphic. 

But, the constructions LMTS(v) ---+ LMTS(3v) and LMTS(v + 
1) ---+ LMTS(3v+ 1) in §2.5 do not have the above-mentioned character. 
The large set LMTS(3v) (or LMTS(3v + 1)) consists of three parts 
t1:, tî and d1: (or t' 1:, t 1

: and d' 1: ), which are constructed by different 
methods. And each d1: (od diJ contains three subsystems LMTS(v) 
(or LMTS(v + 1)), hut none of the f1: and tt (ort'" and t';) does 
contain such subsystems when v > 3 ( when v = 3, they do contain 
such ones, since each t'1: and t'i contains v sub-LMTS(4) and each t1: 
and ti contains v sub-LMTS(3)). So we can assert that, for v > 3, 
both the constructions LMTS(3v) and LMTS(3v + 1) in §2.5 have not 
the character ha.ving by our construction LMTS(2n + 2). Therefore, 
if we can give the construction of some LMTS(2n + 2) using recursive 
methods v - 3v or v + 1 ---+ 3v + 1 then we will get nonisomorphic 
large sets for these orders 2n + 2. This is possible. 

Lemma2.6.1. Forn = 3 or5 (mod 6), a large set LMTS(2n+2) can 

29 



be con.atructed by the recursive methods of Lemma 2.9.2 and (2.5.2). 

Proof. Firstly, obviously, we have 26k -1 = 0 (mod 9) for any nonneg
ative integer k. So, 

{ 

26H;- l = 4(~:-1) + 1E1 (mod 6) 

26k+4 - 1 16(26k - 1) 
= 

3 
+ 5 = 5 (mod 6). 

Thus, by Lemma 2.3.2, there exist LMTS(v) for 

{ 

. 
26k+2 - 1 26k+3 + 1 

v=2· 
3 

+2= 
3 

+1 

26k+4 - 1 26k+5 + 1 
v=2· 

3 
+2= · 

3 
+1. 

Futhermore, by (2.5.2), we can construct LMTS(26k+3 +2) and LMTS 
(26k+li + 2).0 

Lemma 2.6.2. For n s 10 or 16 (mod 18), a large .set LMTS(2n + 2) 
can be comtructed by the recursive methods of Lemma 2.9.1 and (2.5.1). 

Proof. Firstly, since a9 -1 = (a - l)(a2 + a + l)(a6 + a3 + 1), if a = 1 
(mod 3) and a > 1 then each of the factors in the right-hand of the 
equation contains a factor 3, so 27la9 - 1. Thus, we have 

Hence, 

{ 
49H 3 -10 = 43(49k -1) + 54 = 0 (mod 54) 

49H 6 -46=46(49 k -1)+4050=:0 (mod54). 

{ 

491:+3 - 1 49 k+3 - 10 

9 
= 

9 
+ 1 = 1 (mod 6) 

49k+6 - 1 49k+6 - 46 

9 
= 

9 
+ 5 = 5 (mod 6). 

By Lemma 2.3.1 and Theorem 2.4.6, there exist LMTS(v) for 

{ 

49k+3 _ 1 218k+l0 + 2 
v=:t· +2=----

- 9 9 
491'+6 _ 1 218k+l6 + 2 

v=24
• +2= . 

9 9 

Futhermore, using (2.5.1) twice, we can construct LMTS(218"+10 + 2) 
and LMTS(218k+ 16 + 2). 0 

30 



Lemma 2.6.3. For n = 0 or 12 (mod 18), a large set LMTS(2n + 2) 
can be constructed by tke recur&ive method& of Lemma 2.9.2 and (2.5.1}, 
(2.5.2). 

Proof. Since 27la9 - 1 when a = 1 (mod 3) and a > 1, we have 

{ 
491: -28 = 49 (49(1:-t) -1) + 262116 = 0 (mod 108) 

49k+6 - 100 = 46 (49 1: -1) + 3996 = 0 (mod 108). 

Consequently, 

{ 

49k - 10 49k - 28 
18 

= 
18 

+ 1 = 1 (mod 6) 

49k+6 - 10 - 49k+6 - 100 = 

18 
-

18 
+ 5 _ 5 (mod 6). 

By Lemma 2.3.2, there exist LMTS(u) for 

{ 

49k - 10 49k + 8 
u = 2· 18 + 2 = 9 

- • 49k+6 - 10 - 49k+6 + 8 
u - 2 18 +2 - 9 . 

Furthennore, by (2.5.2), there exist LMTS(v) for 

{

v=3(49k+8_1)+1= 49k+2 
9 3 

49k+6 + 8 49k+6 + 2 
v=3( 

9 
-1)+1=---

Finally, we can construct LMTS(218k + 2) and LMTS(218"+12 + 2), 
using (2.5.1 ). D 

Theorem 2.6.4. For n = 3, 5 {mod 6) and n = 0, 10, 12, 16 (mod 18) 
there ezut nonuomorphic large &eu LMTS(2n + 2) through direct and 
recur1Ïtle con&truction method&. 

Proof. By Lemmas 2.6.1, 2.6.2, 2.6.3 and the beginning statements 
(which exclude the case v = 3), we only need to show that for LMTS(23 

+2) the direct and recursive construction results are nonisomorphic. In 
fact, in the reeursive construction LMTS(3+ 1) --+ LMTS(9+ 1), each 
of the cyclic triple systems MTS(lO) contains three sub-MTS(4), hut 
one may check that no MTS(lO) in the direct construction LMTS(lO) 
in §2.4 has a sub-MTS(4).D 
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Examples. The recursive way for LMTS(2n + 2): 
Lemma 2.6.1 

23 + 2 = 10 = 9 + 1 {:::: 3 + 1 = 2 · 1+2, 1 = 1 (rood 6) 

25 + 2 = 34=33+1{::::11+1=2·5 + 2, 5 = 5 (mod 6) 

Lemma2.6.2 

210 + 2 = 1026 +-- 342 +-- 114 = 24 · 7 + 2, 7 = 1 (mod 6) 

216 + 2 = 65538 +-- 21846 +-- 7282 = 24 · 455 + 2, 455 = 5 (mod 6) 

Lemma2.6.3 

212 + 2 = 4098 +-- 1366 = 1365 + 1 {=: 455 + 1 = 2 . 227 + 2 

227 = 5 (mod 6) 

218 + 2 = 262146 +-- 87382 = 87381+1{=:29127+1=2·14563 + 2 

14563 = 1 (mod 6) 

where the symbols +-- and {=: denote v -+ 3v and v + 1 ::;.. 3v + 1. 
Bythewa.y, for LMTS(2n+2), n = 1,2 (rood 6) or n = 4,6 (mod 18) 

the above-mentioned recursive way cannot be used, since 
(1) (20+~+2)-1+1 = 2(2s;-1) +2 = 2 and 2B•~2+2 = 22(2:"-1) +2 = 2 

(mod 3), hut there do not exist MTS's for such orders. 
2tUH+2 2(86"'+1) 

(2) v = 3 = 3 = 0 (mod 6) and for affirming the exis-
tence of LMTS(v) there are only two possibilities: 

(using (2.5.1)) f = 
42

<4:"'-l) + 2 = 2 (mod 3), this is impossible; 

(using Theorem 2.4.6) v = 22 ( 40~
1

-1 ) + 2, this is impossible also. 

(3) v = 2m;•+2 = 2l22<4
H

3
-l)+3

3
l + 4 = 4 (mod 18) and for affirming 

the existence of LMT S( v) there are only two posihilities: 

(using (2.5.2)) t13t + 1 = 64<
40

; 1>+s4 + 2 = 2 (mod 3) this is 
impossible. 

(using Theorem 2.4.6) v = 22 (''0~2 -1 ) + 2, this is impossible too. 
Finally, we point out tha.t there is a lot of freedom in our direct con

struction method for LMTS(2n + 2). For example, the self-dual circuit 
maybe not only one, can select 8.ny vertex from the self-dual circuit as a 
{ see Lemma 2.4.5), all vertices of every circuit ( except the selected self
dual circuit) can take-the transformation (1) or (2) (see Lemma 2.4.3), 
and so on. These different choices will give some different constructions 
for same LMTS(2n + 2), which may supply more nonisomorphic large 
sets. 
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III Mendelsohn systems 

3.1 A generalization of MTS's. 
Let X be a set of v elements, and x1, x2, ... , x k distinct elements of 

X, where k is a. positive integer and v ;:::: k ;:::: 3. A directed k-cycle 
is a. collection of k ordered pairs (xi,x2), (x2,xa), ... , (xk-1,xk) and 
(xk,x1), which is denoted as (xi,xz,.",xk) or (x2,x3,".,xk,x1} ... 
or {xk,xi, ... ,Xk-i). A Mendelsohn system M(2,k,v) on X is a pair 
(X,8), where Bis a collection of directed k-cydes of X such that each 
ordered pair of distinct elements of X is covered by a unique directed 
k-cycle of B. The numbers IXI = v and k are called the order and 
the circuit size of the Mendelsohn system M(2, k, v ), respectively. The 
symbol M(2, k, v) and the name Mendelsohn system were chosen by 
analogy with the Steiner system S(2, k, v ). By definition, a Mendelsohn 
triple system of order v, MTS(v), is just a M(2,3,v). In this sense, 
the Mendelsohn system M(2, k, v) is a generalization of the Mendelsohn 
triple system MTS( v ). 

It is a trivial exercise to see that if (X,B) is a M(2,k,v), then IBI = 
11<11

;
1>. Thus, a necessary condition for the existence of a M(2, k, v) is 

(*) v;:::: k;:::: 3 and v(v -1) = 0 (mod k). 

It is well known that the spectrum for M(2, 3, v) is the set of all v = 0 or 
1 (mod 3), except v = 6 [Men]. Concerning the existence of M(2, k, v) 
with circuit size k > 3, partial results are known. We first discuss the 
case k = v, and then the general case. 

(1) Tuscan square. 
An Italian square is an n x n array in which each of the symbols 

1, 2, ... , n appears exactly once in each row. A Latin square is an ltalian 
square in which each of the symbols also appears exactly once in each 
column. A Tuscan square, besides being Italian, has the property: 

For any two symbols a, b, there is at most 
one row in which b is the symbol immedi
ately to the right of a. lt is easy to see 
that the words "at most" can be replaced by 
"at least" or "exa.ctly". Sometimes a Tus
can square is also called row complete. By 
the way, a square is Roman if it is both Tus
can and Latin. The relations between these 
squares are shown in the fi.gure. 
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It is well known that the existence of a Tuscan square with size v x v 
is equivalent to the existence of a M(2, v + 1, v + 1). In fa.et, firstly, it is 
not difficult to see that the first column and the last column of a Tuscan 
square consist of pairwise distinct numbers. Suppose A is a v x v Tuscan 
square on the set X = {1, 2, ... , v }. Then all rows of the extended array 
(O,A) just consist of all directed (v + 1)-cycles of a M(2, v + 1, v + 1) on 
the set X U {O}, where 0 is a column vector ( consisting of v numbers 0). 
Conversely, if there exists a M(2, v + 1, v + 1) on the set X U { 0}, then 
there are v directed ( v + 1 )-cycles in the system and each block contains 
all of the numbers of X U { 0}. Denote these blocks {O, ai1, a;2, ... , a;v), 
1 $ i $v. Then the array A = (ai;)r is just a Tuscan square on the set 
x. 

(2) Decomposition of K; into circuits. 
A complete symmetrie directed graph K; is a simple directed graph 

with v vertices in which for any two distinct vertices x, y there are arcs 
x -+ y and y -+ x. In Graph Theory, what is called the problem of the 
decomposition of K; into circuits is: for what va.lues of v is it possible to 
partition the arcs of K; into k-circuits (i.e. directed circuits with length 
k). Obviously, the existence of the decomposition is equivalent to the 
existence of a M{2, k, v). In particular, the existence of a Tuscan square 
with size v x v is equivalent to the existence of a Hamilton decomposition 
ofK:+i· 

It is well known that there exists a Tuscan square of order v if and 
only if v f= 1, 3, 5 [Til,GoTa]. So we can say that there exists a M{2, v, v) 
if and only if v ~ 3 and v =f:. 4, 6. For the decomposition of K; into k
circuits, our knowledge is less complete. So far, about the non-existence 
of the M(2,k,v), we have seen that there is no M(2,4,4), M(2,6,6) 
or M{2,3,6). J.C. Bermond conjectured that (in our terminology): for 
the existence of M(2, k, v ), the necessary conditio.n (*) is also sufficient 
except in the cases v = k = 4, v = k = 6 and v = 6, k = 3. Now, it is 
has been proved that this conjecture is true for: 

(i) v = 0 or 1 (mod k) (J.C. Bermond and V. Fa.her [BerFa] for k 
even, D. Sotteau [So] for k odd); 

(ii) 4 $ k $ 16 and k even (J.C. Bermond [Ber2] for k = 10, 12, 14, 
J.C. Bermond & V. Fa.her [BerFa] for k = 4, 6, 8, 16); 

{iii) v large enough_{for a given k) (R.M. Wilson [Wi2]). 
By the condition (i), obviously, if k is a prime power then the conjecture 
is also true, for example 3 $ k $ 13 and k odd. All that remains for a 
complete solution of the conjecture is the case k ~ 15, where k has at 
least two distinct prime factors. 

Let C(X) be the set of all directed k-cycles of a set X containing v 

34 



elements, then IC(X)I = iv(v-1) ... (v-k+l). Thefollowingproblem 
arises quite naturally: Given a set X of size v, for which there exists a 
M(2, k, v ), is it always possible to partition C(X) into s ( v - 2)( v 
3) ... (v - k + 1) subsets Bi, B2, ... ,88 so that each of (X, 8 1), (X, B2 ), 

... , (X,Bs) is a M(2,k,v)? Such a collection of M(2,k,v) is called a 
large set of pairwi.se di.sjoint M(2, k, v ); we denote it LM(2, k, v ). For 
LM(2,3, v), i.e., LMTS(v), many results are known (see Chapter II). 
However, for the existence of LM(2, k, v) with circuit size k > 3 nothing 
seems to be known, even though much is known for the M(2, k, v ). In 
this chapter we will start to do this work. In §3.2 we give construction 
of LM(2, 2t + 1, 2t + 1), LM(2, 2t, 2t + 1) and LM(2, 2t + 1, 2t + 2). For 
p prime, we give another construction for LM(2,p,p), LM(2,p 1,p) 
and LM(2,p,p + 1) in §3.3. 

3.2 The construction of some LM(2, k, v)'s. 
Let X be a set and Sym(X) the symmetrie group on X. Fora per

mutation Ç E Sym(X) and a directed k-cycle B = (bii bz, ... , bk), we 
denote BÇ = {b1Ç, bzÇ, ... ,bkÇ) where biÇ represents the image of the 
element bi under the permutation Ç. 

Let 8 be a set of directed k-cycles on a set X, and let X' Ç X. 
A subgroup G :::; Sym(X) fixing X\X' pointwise is called a complete 
automorphi.sm group over X' of B if 

1° for any Ç E G and any B E B, BÇ E B; 
and 
2° for any B and B' E B, if there exists Ç E Sym(X) fixing X\X' 

pointwise such that BÇ = B', then Ç E G. [Of course, this is only 
possible for {B}\X' = {B'}\X', where {B} represents the set of the 
elements in the block B.] 

In this and the next section, B will be the set of all directed k-cycles 
of some M(2, k, IXI). We shall identify the subgroup of Sym(X) fixing 
X\X' pointwise with Sym(X'). 

Lemma 3.2.1. 
(1) If(X,8) is a M(2,k,v), then (X,BÇ) too, where Ç E Sym(X) and 

BÇ = {BÇIB E 8}. 
(2) IJ a set B has a complete automorphism group G over X' Ç X, 

then {{8e}IÇ E Syma(X')} is a collection of pairwi3e disjoint BÇ, where 
Syma(X') is a set of right coset representatives for G in Sym(X1

). 

(3) IJ G =< u >is the subgroup generated by a, a v-cyclic permutation 
on a "et X with v elements, then Sym(X\ { x}) i.'J a set of right co.'Jet 
representatives /or G in Sym(X), for any x E X. 

Proof. 
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(1) The permutation Ç on X induces a permutation on (X x X)\~x' 
where ~z = {(x,x)lx EX}, so, by the definition of the M(2, k, v), the 
system (X, BÇ) is also a M(2, k, v ). 

(2) Suppose there exist B, B' E B and Ç # 1J E Syma(X') such 
that BÇ = B 117, then B(Ç17-1

) = B' and Ç17-1 E G by the definition of 
complete automorphismgroup G over X'. This implies GÇ = G17, i.e., Ç 
and 17 belong to identical right cosets, which is impossible. 

(3) For an arbitrary perrnutation ( E G ( ( # e, e is the unity of G) 
and any a EX, a( #ais always true, since (=ui, 1 Si S v l. But 
for any Ç # 11 E Symo(X\{x}), x(çq-1 ) = x holds. So Çq-1 </:. G, i.e., 
GÇ#Gq.D 

Below, in this and the next section, we will only use the cases X = X' 
and X = X' U {oo}. 

Theorem 3.2.2. There exists an LM(2, 2t + 1, 2t + 1) /or any positive 
integer t. 

Construct ion. 
Let X · = { 0, 1, 2, ... , 2t - 1}. Take the directed ( 2t + 1 )-cycles 

B1 = (oo,b10,bili···•bi,2t-1) i EX, 

where b1,2k = i + k and b1,211:+1 = i - k - 1 ( mod 2t, 0 S k $.t - 1). 
Let Bo= {Bo,B1, .. "B2t-d and B; BoÇ;, where Ç; E Sym(X\{O}). 
Then {(X u {oo},B;)IO s j s (2t - 1)! -1} is an LM(2, 2t + 1, 2t + 1). 

Proof. Since i + k = i k1 
- 1 implies k + k' + 1 = 0 (mod 2t), hut 

1 S k + k' + 1 S 2t - 1, it follows that each B1 is indeed a directed 
(2t + 1 )-cycle. 

For x E X, the ordered pair ( oo, x) (or ( x, oo)) is covered by the block 
Bx (or Bx+t)· For x # y EX, the ordered pair (x,y) is covered by the 
block Bx+s (if y - x = 2s, mod 2t) or Bx+s-t (if y - x = 2s - 1, 
mod 2t). Thus,(XU{oo},8o)isaM(2,2t+l,2t+l). And, by Lemma 
3.2.1(1), each (X U {oo},8;) is also a M(2,2t + 1,2t + 1). 

Futherrnore, let the 2t-cyclic perrnutation u = (0, 1, ... , 2t - 1) E 
Sym(X). Then the subgroup G =< u >is the complete automorphism 
group over X of (X U {oo},Bo). In fact, 

1° For any Ç E G (let Ç u 1, 0 S l < 2t) and B1 E Bo, we have 
BiÇ = B;u1 = B;+1 E Bo (subscripts modulo 2t). 

2° For any BiiB; E Bo, if there exists Ç E Sym(X) such that B1Ç = 
B;, then it is inevitaOle that b11Ç = b;1 (0 s l s 2t - 1), since ooÇ = oo. 
So, obviously, Ç = ui-i EG. Thus, by Lemma 3.2.1(3), Sym(X\{O}) ç 
Symo(X). But, we have 

ISym(X)I (2t)! 
ISymo(X)I = IGI = 2t = (2t -1)! = !Sym(X\{O})j. 
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So, Sym(X\{O}) = Syma(X). Note that the number (2t - 1)! is just 
the desired number of M(2, 2t + 1, 2t + 1) in an LM(2, 2t + 1, 2t + 1 ), 
therefore, by Lemma 3.2.1(2), our construction is alright. D 

Theorem 3.2.3. There exists an LM(2, 2t, 2t + 1) for any positive in
teger t > 1. 

Construction. 
Let X = {O, 1, ... , 2t - 1 }. Take the directed 2t-cycles 

Bi= (oo, b;o, bii, ... , bi,u-2) i EX 

C = {O, 1, ... ,2t -1) 

where bi,2k = i + k, 0 :::; k S t - 1 and bi,2k+1 = i - k l, 0 S k :::; 
t 2 {mod 2t). Let Bo= {B0 ,Bi, . .. ,Bu-1 ,C} and B; = BoÇj, where 
Ç; E Sym(X\{O}). Then {{X u {oo},Bi)IO:::; j :::; (2t - 1)! - 1} is an 
LM(2, 2t, 2t + 1 ). 

Proof. Similar to Theorem 3.2.2, we can see that ea.ch B; is indeed a 
directed 2t-cycle. As for the block C, it is trivial. 

For x E X, the ordered pair ( oo, x) (or ( x, oo)) appears in the block 
Bx (or Bx-t+1). For x =/= y EX, the ordered pair (x,y) appears in the 
block Bx+a (if y x = 2s mod 2t) or Bx+s-t (if y - x = 2s - 1 =/= 1 
mod 2t) or C (if y x = 1). So, (X U {oo},Bo) is a M(2,2t,2t + 1). 
And, by Lemma 3.2.1 (1), each (X U {oo},Bj) is also a M(2,2t,2t + 1). 

Take the 2t-cyclic permutation <T = (0, 1, ... , 2t-l) E Sym(X). Then 
the subgroup G =< q > is a complete automorphism group over X of 
(XU {oo},Bo). In fact, 

1° For any Ç EG (let Ç = q 1, 0 s l < 2t) and B; (or C)E Bo, we have 
Bie= Bw1 = Bi+I E Bo (or C<T = C). 

2° For any U, V E B0 , if there exists Ç E Sym(X) such that UÇ = V, 
then both U and V are C or not, since ooÇ = oo. If U = V = C, 
let U and V be the i-th and the j-th shift of (0, 1, ... , 2t - l}. Then 
Ç = qi-i EG. If U =Bi and V = 8;, just like in the proof of Theorem 
3.2.2, 2°, we have also Ç = qi-i EG. 

Now continue just as in the proof of Theorem 3.2.2. D 

Theorem 3.2.4. There exists an LM(2, 2t + 1, 2t + 2) for any positive 
integer t. 

Construction. 
Let X = {O, 1, ... , 2t}. Take the directed (2t + 1 )-cycles 

Bi = {oo, bio, bii, ... , bi,2t-1} i E X 

C = {O, t + 1, 1, t + 2, 2, ... , 2t, t} 
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where bi,2k = i + k, 0 :5 k :5 t - 1 and bi,2k+I = i - k - 1 (if 0 :5 
k :5 [ f] - 1) or i - k 2 ( if [f] :5 k $ t - 1) ( mod 2t + 1). Let 
Bo= {Bo,Bi,".,B2i,C} and Bj = Boej, where ej E Sym(X\{O}). 
Then {(X u {oo}, B;)IO :5 j :5 (2t)! - l} is an LM(2,2t + 1, 2t + 2). 

Proof. Firstly, since the following cases are impossible, it follows that 
each Bi is indeed a directed (2t + 1)-cycle: 

ifi+k = i-k'-1 then k+k'+l = 0 (mod 2t+l), hut 1 $ k+k'+l $ 
t+[î]-1; 

if i + k = i - k" - 2 then k + k" + 2 = 0 ( mod 2t + 1 ), hut [ i] + 2 $ 
k + k" + 2 $ 2t; 

if i - k' - 1 = i - k" - 2 then k" - k' := -1 = 2 (mod 2t + 1), hut 
1$k11 -k'$t-1. 

For x E X, the ordered pair ( oo, x) (or { x, oo)) appears in the block 
B x (or B x+t-1 ). For x '#- y E X, the ordered pair ( x, y) appears in the 
block Bx+s (if y - x = 2s - 1 > t + 1 or y - x = 2s < t + 1, mod 
2t + 1) or Bx+s-t (if y-x = 2s 1<t+1 or y-x = 2s > t+ 1, mod 
2t+l)orC(ify-x=t+l, mod 2t+l). 

Take the (2t + 1)-cyclic permutation u = (0,1, ... ,2t} E Sym(X). 
Then the subgroup G =< u > is a complete automorphism group over 
X of {X U {oo},Bo). In fäct, noting that Ga is the 2nd shift of C, it 
can be obtained similarly to .the proof of Theorem 3.2.3. The rest of the 
proof is also similar. D 

3.3 Another method for the prime case. 
In this section we will give another method to construct LM(2,p,p), 

LM(2,p-1,p) and LM(2,p,p+l) for prime p. Their existence has been 
proved in the last section, hut this construction may produce systems 
that are nonisomorphic to the above ones, since the starting system 8 0 

has a different complete automorphism group. 
Below, Fp will always be a finite field containing p elements 0, 1, 2, ... , 

p - 1 (p is an odd prime), and g is a primitive element of F;. Moreover, 
u = (1,g, g2

". "gP-2) and r = (0, 1, 2, ... ,p 1) will represent two 
:fixed permutations in Sym( Fp ). 

Lemma 3.3.1. 
(1) The permuta.tions u and T genera.te a. subgroup G =< u, r > of 

Sym(Fp)· lts order ï.,' p(p - 1). Ea.ch of its elements can be written in 
the form utr• or r"ut, 0 :5 t :5 p-2, 0 :5 s $ p-1. And utr• = r"Y-• ut, 
r"ut = utr11l 

(2) Sym( Fp \ { x, y}) is for x # y a. set of representa.tives /or the right 
cosets of Gin Sym(Fp)· 
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Proof. 
(1) For an arbitrary element x of Fp, we have 

T t7 

ra: x-+x+l-+(x+l)g, 
t7 Tg 

aT9: x -t xg---+ xg + g = (x + l)g, 
thus T<T = ar9. Futhermore, for 0 S t S p- 2 and 0 s s S p - 1 

r"a = T"- 1(ra) = r"-1ur9=r"-2<Tr29 · · · = ar"9, 
r"at = (r"a)at-1 = ur"gat-1 = 0'2Tsg2 ut-2 = ... = utrsgt' 

u'T" = O'tT(sg-')g' = r"g-• at. 

Noting that the orders of a and Tin Sym(Fp) are p-1 and p respec
tively, we can get all conclusions. 

(2) Any permutation ( E G ( ( #- e, e is unity element of G) fixes 
one element of Fp at most. But for any Ç #- 1J E Sym(Fp\{x,y}), the 
permutation Ç 'f/-1 E S ym( Fp \ { x, y}) fixes the two elements x, y of Fp. 
So {17-1 rf. G, i.e., G{ #- G'f/. But, we have 

_ 
1 

_ ISym(Fp)I 
ISym(Fp\{O, 1})1- (p-2). - IGI , 

so we have found representatives for all right cosets of G. 
Below it will be necessary, in some cases, to distinguish the vari

ous forms of the same directed cycle. To this end, for a given di
rected k-cycle B = { 60 , bi, ... , bk-l) we call the same directed cycle 
(bm, bm+l' ... , bk-1' bo, b1 " .. , bm-1} the m-shift of B, and denote it by 
B(m) 0 < m < k - 1. ' - -
The construction of LM(2,p,p). 

Take Bi = {O,gi,2gi" .. ,(p - l)gi}, 0 s i s p 2. Let Bo 
{Bo,Bi, ... ,Bp-2} and B; =Bo{;, where {; E Sym(Fp\{0,1}). Then 
{(F_,,B;)IO s j s (p-2)! -1} is an LM(2,p,p). 

Proof. Obviously, each Bi is a directed p-cycle. For any x #- y E Fp, let 
y-x = gî and xg-î =m. Then the orderedpair (x, y) = (mgi, (m+l)gi) 
appears in Bï (at the m-th position). So, (Fp,Bo) is a M(2,p,p). And, 
by Lemma 3.2.1 (1), each (Fp, B;) also is. 

Furthermore, we point out that the subgroup G =< a, T > is a com
plete automorphism group over Fp of (Fp,80 ). In fact, 

1° For any Bim> E Bo and {EG, we have B!m>ç E Bo since 

B
(m) 8 _ B(m+s) B(m) t _ B(m) d 
oT-o ,o<T-t an 

B
(m) /1 _ B(m) à s _ B(m) sg-i i _ B(m+sg-'} i _ B(m+sg-;) 
i T- 0 O'T- 0 TO'- 0 O'- i ' 

B
(m) ,..t _ B(m) ,..i+t _ B(m) 
i v - 0 v - i+t. 
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2° For any B~m), Bt> E Bo, if there exists e E Sym(Fp) such that 
B~m)é = B~n) then é = r<n-m)gi(J'j-i EG (by 10 B~m)T(n-m)gi(J'j-i = 

• " J ' " ' • 
B~m+(n-m)gig-i)O'j-i = B~n)O'j-i = B~+n)(. ') = B~n)). Thus, by Lemma 

• • 1 J-1 J 

3.3.1 (2), Sym(Fp \{O, 1}) is a set of representatives for the right cosets 
of G in Sym(Fp)· Note that the number (p - 2)! is just the desired 
number of M(2,p,p)'s in an LM(2,p,p), so our construction is alright 
by Lemma 3.2.1 (2). D 

The construction of LM(2,p -1,p). 
Take Bi = (1 + i,g + i,g2 + i, ... ,gP-2 + i}, 0 ::5 i ::5 p - 1. Let 

Bo= {Bo,B1, ... ,Bp-i} and B; =Boe;, where e; E Sym(Fp\{0,1}). 
Then {(Fp, B;); 0 $ j ::5 (p- 2)! -1} is an LM(2,p - 1,p). 

Proof. For any x-:/: y E Fp, let (y - x)(g -1)-1 = gm and x - gm = i. 
Then the ordered pair (x, y) = (gm + i, gm+I + i) appears in Bi (at the 
mth position). So, (Fp,Bo) is a M(2,p- 1,p). And, by Lemma 3.2.1 
(1), each (Fp,B;) also is. 

For verifying that the subgroup G =< a, T > is the complete auto
morphism group over Fp of ( Fp, Bo), we have 

1° For any B~m) E Bo and e EG, we have B~m>e E Bo since 

B
(m) • _ B(m) B(m) t _ B(m+t) d oT-a,oO'-o an 

B
(m),..a _ B(m),..i+a _ B(m) 
ä ' - 0 ' - i+•• 

B
(m) t _ B(m) ä t _ B(m) t il _ B(m+t) äg' _ B(m+t) 
i O' - 0 T O' - 0 O' T - 0 T - ig' · 

2° For any B~m), Bt> E Bo, if there exists e E Sym(F,) such that 
B~m) e = B~n)' then e = O'n-mTj-ign-m E G (by 10' B~m) O'n-mTj-ign-m 
= B~n) . j-ign-m = B~n)) 1gn-mT 1 • 

Now continue just as in the proof of the above construction. D 

The construction of LM(2,p,p + 1). 
Take the directed cycles Bik= (1 + i,g + i, ... ,gk + i,oo,gk+1 + 

i, ... , gP-2 + i}, 0 :::; i :::; p - 1, 0 :::; k :::; p - 2, which are obtained 
from the blocks Bi of the above-mentioned LM(2,p - l,p) by insert
ing a new element oo between gk + i and gk+1 + i. Moreover, take 
Ck = (O,gk(g - 1), 2gk(g - 1), ... , (p - l)gk(g - 1)}, 0 ::5 k ::5 p - 2. 
Let Bok = {Bok,Bu, ... ,Bp-1,k,Ck} and B;1c = Boke;. where e; E 
Sym(F,\{0,1}). Then {(FpU{oo},B;1c);O $ k $ p-2,0 $ j $ 
(p- 2)! -1} is an LM(2,p,p + 1). 

Proof. Firstly, fora given k, we prove that the system Bok is a M(2,p, 
p+l). 
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For any x E Fp, obviously, the ordered pairs ( x, oo) and ( oo, x) appear 
in Bz-g•,k and Bz-g•+i,k respectively. And for any x :/= y E Fp, let 
(y- x)(g - 1)-1 = gm. Then: 

if m :/= k, let x - gm = i, then the ordered pair (x,y) = (gm + 
i, gm+l + i) appears in B;kj 

if m = k, let x(gk(g - 1))-1 = s, theti the ordered pair (x, y) = 
(sgk(g -1),(s + l)gk(g -1)) appears in ck. 
Furthermore, the number of the blocks in Bok is p + 1, just as desired.

Let us show that the subgroup G =< a, r > is the complete automor
phism group over Fp of the collection 8 = {Boki 0 $ k $ p- 2}. 

1° For any U E 8, 
if U = cim>, We have cim)T3 = cim+s(g•(g-1))-l) and cim)qt 

-c<m>. - k+t' 
if U =Bak, we have B;kT11 = Bi+a,k and B;kat = B 91i,k+t· 

So, ue E 8 for any e E G =< {J', T >. 
2° For any U, V E 8, if there exists Ç E S ym( Fp) such that U Ç = V, 

then since ooe = oo, there are only two possibilities: 
u = crm>, v = cjn>. Then, by 10, crm)T(n-m)g•(g-l)ql-k = 

c1n)O'l-A: = cin», so e = r<n-m)g"(g-l)ql-A:; 

U = Ba1:, V = B;1. Then, by 1°, B;1:u1-kri-g'-"'ï = B
9
1-•;,1Ti-g'-"'; 

= B;1), so e = ql-kT;-,1-"i. 
In both cases Ç E G. 

Now continue just as in the proof of the first construction (Note: in 
using Lemma 3.2.1 (2), the collection 8 is the union of p-1 M(2,p,p+ 
l)'s. 0 

3.4 Examples. 
In this section we give three examples. For comparison, two kinds of 

construction, by the methods in §3.2 and §3.3, are listed simultaneously. 

Example 1. LM(2, 7, 7) 
(1) (by Theorem 3.2.2) X = {0,1,2,3,4,5} 

B0 : B0 = (oo,0,5,1,4,2,3) 

B1 = (oo,1,0,2,5,3,4) 

B2=(oo,2,1,3,0,4,5) 

B3 = (oo,3,2,4,1,5,0} 

B4 = (oo,4,3,5,2,0,1) 

Bs = (oo,5,4,0,3, 1,2) 

B; =Boe;, Ç; E Sym(X\{O}) = Ss. 
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(2) (by §3.3 LM(2,p,p)) 
p = 7, g = 3, O" = (1,3,2,6,4,5), T = (0, 1,2,3,4,5,6). 

Bo: Bo= (0, 1,2,3,4,5,6) 

B1 = (0,3,6,2,5,1,4) 

B2={0,2,4,6,1,3,5) 

Ba = (0, 6,5,4, 3, 2, 1} 

B4 = (0,4,l,5,2,6,3) 

Bs = (0,5,3,1,6,4,2) 

B; = BoÇ;, Ç; E Sym(H\{0,1}) = Ss. 

Example 2. LM(2, 6, 7) 
(1) (by Theorem 3.2.3) X {O, 1,2,3,4,5} 

Bo: Bo= (oo,0,5,1,4,2) 

Bi = {oo, 1, 0, 2, 5, 3} 

B2={oo,2,1,3,0,4) 

B3 =(oo,3,2,4,1,5) 

B4 = (oo,4,3,5,2,0) 

Bs = (oo,5,4,0,3,1) 

c = (0, 1, 2, 3, 4, 5) 

B; = BoÇ;, Ç; E Sym(X\{O}) = 85. 
(2) (by §3.3 LM(2,p - 1,p)) 
p,g,a,r are the same as in Example 1 (2). 

Bo: B0 = {l,3,2,6,4,5} 

Bi = {2, 4, 3, 0, 5, 6} 

B2={3,5,4,1,6,0) 

B3 = (4,6,5,2,0,1) 

B4 = (5, 0, 6, 3, 1, 2} 
Bs = (6, 1, 0, 4, 2, 3) 

B6 = {O, 2, 1,5,3, 4) 

B; = BoÇ;, Ç; E Sym(F1\{0, 1}) = Ss. 

Example 3. LM(2, 5, 6) 
(1) (by Theorem 3.2.4) X = {O, 1,2,3,4} 
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Bo: Bo= {oo,0,4, 1,2) 

Bi = {oo, 1, 0, 2, 3) 

B2 = (oo, 2, 1, 3, 4) 

B3 = {oo,3,2,4,0} 

B4 = {oo, 4, 3, 0, 1} 

c = (0,3, 1,4,2} 

B; =Boe;, e; E Sym(X\{O}) = 54. 
(2) (by §3.3LM(2,p,p+1)) 
p = 5, g = 2, O' = (1,2,4,3), T = (0, 1,2,3,4) 

Boo : Boo {1, oo, 2, 4, 3) 

Bio = (2, oo, 3, 0, 4) 

B2o = {3, oo, 4, 1, 0) 
B3o = {4, oo, 0, 2, 1} 

B4o (0, oo, 1, 3, 2} 
C0 (0, 1, 2, 3, 4) 

802 : Bo2 = (1, 2, 4, oo, 3} 
B12 = (2, 3, 0, oo, 4) 

B22 = (3, 4, 1, oo, 0) 

B32 = (4, O, 2, oo, 1) 
B42 = (0, 1, 3, oo, 2) 

C2 = {O, 4, 3,2, 1) 

801 : Bo1 = {l, 2, oo, 4, 3) 

B11 = {2, 3, oo, 0, 4) 

B21 = (3, 4, oo, 1, 0) 

B31 = {4, 0, oo, 2, 1) 

B41 (0, 1, oo, 3, 2) 
C1 ={0,2,4,1,3} 

803 : Boa = (1, 2, 4, 3, oo} 

B1a = (2, 3, 0, 4, oo) 

B23 = {3,4,1,0,oo) 

B33 (4,0,2,1,oo) 

B43 = (0, 1, 3, 2, oo) 

C3 = (0, 3, 1, 4, 2) 

B;i: = Boi:e;, e; E Sym(Fs\{O, 1}) =Sa. 
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IV Transitive triple systems 

4.1 Introduction. 
Let S be a set of v elements ( v ~ 3). A transitive triple from S is 

a collection of three ordered pairs (x,y), (y,z) and (x,z), where x,y 
and z are distinct elements of S. We will denote the transitive triple 
{(x,y),(y,z),(x,z)} by ((x,y,z)). A transitive triple system on Sis 
a pair (S,8), where 8 is a collection of transitive triples from S such 
that each ordered pair of distinct elements of S belongs to exactly one 
transitive triple of B. The number ISI = v is called the order of the 
transitive triple system ( S, 8), which is denoted by TT S( v ). It is a 
trivia! exerdse to see that if (S, 8) is a TTS of order v then IBI = v(\-I). 

And it is well known that the spectrum for TTS's is the set of all v = 0 
or 1 (mod 3) [LinSt]. 

Now, let T(S) be the set of all transitive triples of the set S containing 
v elements, then IT(S)I = v(v - l)(v - 2). In view of the fact that a 
TTS of order vis equipped with v(v

3
-t) transitive triples, the following 

problem is natura!: Given a set Sof size v = 0 or 1 (mod 3), is it always 
possible to partition T(S) into 3(v - 2) subsets 81,82, ... ,B3(v-Z)> so 
that each of ( S, 81 ), ( S, 82 ), ... , ( S, 83( v-2)) is a TT S( v )? Such a col
lection of TTS(v) is called a large set of pairwise disjoint TTS(v). We 
denote it by LTT S( v ). 

All known results about LTTS(v) are (see [LinSt],[Lin2]): 
(1) Direct constructionfor v = 3,4,6, 7, 18,24 and all v = 1,3 (rood 6) 
(2) Recursive construetion: 

v --+ 3v ( v ;=:: 3, v =f:. 6, 8) 
v + 1 --+ 3v + 1 ( v ~ 3) 
v + 2--+ nv+ 2 (n = ±1 (mod 6)) 

All that remains for a complete solution of the existence problem for 
LTTS is a construction for LTTS(2"+2). C.C.Lindner said, in his paper 
[Lin2), "The a.uthor has struggled valia.ntly in a.n attempt to produce a 
2 + 2a construction. So far, no luck !" lt seems that the construction of 
an LTTS(2n + 2) maybe is considerably difficult. 

In this chapter we will try to construct LTTS(2n+2) using the method 
in §2.4. We give some preliminary results, which include a possible way 
to construct LTTS(2" + 2), the pa.rtitions of some kinds of transitive 
triples a.nd some successful examples. 

4.2 An analysis for order 2n + 2. 
let set S = { 001, 002 } U X, where X is a set containing v elements 

and 001,002 <t X. For T(S), the set of all transitive triples of S, we list 
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all kinds of transitive triples (the form, the number of containing triples 
and the number of covered ordered pairs) as follows: 

form # (0011002) (002,ooi) (001,*) (*,001) (002,*) (*,002) (*•*) 

((001,002,*)) v 1 0 1 0 1 0 0 
((001,*,002)) v 1 0 1 0 0 1 0 
((•,001,002)} v 1 0 0 1 0 1 0 
((002,001,*)) v 0 1 1 0 1 0 0 
((002,*1001)} v 0 1 0 1 1 0 0 
«*,002,001)) v 0 1 0 1 0 1 0 

((001 ;•,•)) v(v - 1) 0 0 2 0 0 0 1 
((•,001,•)) v(v - 1) 0 0 1 1 0 0 1 
((•.•,001)) v(v - 1) 0 0 0 2 0 0 1 
((002,•.•)) v(v - 1) 0 0 0 0 2 0 1 
((•,002,•)) v(v - 1) 0 0 0 0 1 1 1 
({•,•,002)) v(v- 1) 0 0 0 0 0 2 1 

«*•*•*» 11( 11-l )( 11-2) 0 0 0 0 0 0 3 

where the #-column indicates the number of triples, and where the 
symbol * represents any element of X. 

By the table and the definition of TTS we can give a possiblè partition 
of T($); Bz, 8~ and s:, where x EX and each Bx (and B~, B~) is a 
TTS(v + 2). Of course, such a partition is not the only one. Here, in 
order to get a simple structure, we set up the partition as symmetrically 
as possible. 

When v = 1 (mod 3), we can give such an arrangement: 

Bx # B' z #' B" z #" 
((001,002,z)) 1 {(001,z,002)) 1 ((z,ooi,002)) 1 
((002,001,z)) 1 ((002,z,001)) 1 {(002,ooi,z)) 1 

((001.•.•)) 
(11-l) 

((001,•.•)) 
(v-1) 

{(001,•.•)) 
(v-1) 

3 -3- -3-

((•,001,•)) 
(v-1) 

((•,001,•)) !.E.=!l {(+,001,*)) 
(11-l) 

3 3 -3-

«*·•,001)) 
(v-1) 

((•,•,001)) 
(v-1) 

{(*,*,001 )) 
(11-l) 

3 3 3 

((002,•.•)) 
(v-1) 

((002,•,•» 
(v-1) 

(( 002 •*•*)) 
(v-1) 

3 3 3 

{(•,002,•)) 
(v-1) 

((•,oo"*)) 
(v-1) 

({*,002,•)) 
(v-1) 

3 -3- -3-

( (•,•,002)) 
(v-1) 

((•,•,002)) 
(v-1) 

«*•*1002)) 
(v-1) 

3 3 3 

((•,•,•)) (v - 2)1131 «*•*·•)) (v- 2)v31 «*•*•*» (v - 2)1'31 

where the #-column, #'-column and #"-column indicate the numbers 
of triples in Bz, 8~ and B:, respectively. 

When v = 2 (mod 3), we have the following possible àrrangement: 
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Bx # B' x #' 8" x #" 
((001,002,x}} 1 ((001,x,oo,)) 1 ((x,ooi,002}} 1 
((002,001,x}} 1 ((oo,,x,001}} 1 ((•,002,001)) 1 

(( 001 •*•*)} 
(v-2) 

((001,•,•» 
(v-2) 

({001,•,•» 
(v+l) 

-3- 3 -3-

((•,ooi.•)} 
(v-2) 

{(•,ooi,•)) 
(v+l) 

({•,001,•)) 
(v-2) 

3 3 -3-

((•,•,001}) 
(v+I) 

({•,•,001)) 
(v-2) 

({•,•,001)) 
(v-2) 

3 3 3 

{(002,•,•» 
(v-2) 

{(002,•,•)) 
(v-2) 

({ 002 •*•*» 
(11+1) 

3 -3- -3-

((•,002,•)) 
(v-2) 

{(•,002,•)) 
(11+1) 

((•,002 ,•)) 
(v-2) 

-3- 3 3 

({•,•,002}} 
(v+I) 

((•,•,002)) 
(v-2) 

({•,•,002}) 
(v-2) 

3 3 3 

({•,•,•» (v - 2)";1 ((•,•,•)) (v - 2) 11
;

1 ((•,•,•)) (v - 2)v;l 

Below, we only consider the case v = 1 (mod 3); for v = 2n this means 
n = 0 (mod 2). 

Firstly, imita.ting §2.4.1, we have these concepts (where F = GF(22 n ), 

F* = F\{O}, R = Z22n_1 = {O, 1, ... , 22
n - 2} and g is a primitive 

element of F* ): 
couple a.Cf'- a,p ER"'= R\{O} and ga+ gfJ = 1. 
pair clua (PC) < a, fj > - all such ordered pairs (y, z) of F\ { x} that 

z = gax + gPy, aC[j and x E Fis fi.xed. 
triple clua (TC) [.X, µ]- a.11 such tra.nsitive triples ((u, v, w)} of F that 

w = g"u + g"v and .XCµ. 
And, we will a.lso use some methods and conclusions of §2.4. 

Lemma 4.2.1. Por a given element x E F, 
(1) Each ordered pair of diatinct elemenu of F\{x} belongs to a 

uni.quely determined PC. The total number of the PC ia 22n - 2. Each 
PC contains 22n - 1 pairwiae diatinct ordered paira. 

(2) Eack transiti'l1e triple of diatinct elementa in F belonga to a unique
ly determi.ned TC. The total number of the TC ia 22n - 2. Eack TC 
containa 22"(22" -1) pairwiae diatinct transitive triplea. 

(3) Por the tranaitive triple ({y,gax + gPy,g"Tx + g6y)), where y E 
F\{x}, a,fJ,;,6 E R*, o:Cfj, "fCD and a ':/; {, ita three ordered pairs 
belong to the pair claasea < a,{3 >, < -y,ó > and< ind(a + 6,{J + 
'Y) - fJ, 6 - fJ >, reapectively. And the transitive triple belongs to the TC 
(ind(a + S, (:J + 'Y)- a,; - a). 

(4) Por the tranaitive triple {(y,x,gax + gPy)), where y E F\{x}, 
a,fJ ER* and aC{j, onl11 one among three ordered paira, namely (y,gax 
+gl1y), belang& to PC< a, fJ >. And the transiti'l1e triple belong& to TC 
[fJ, a]. 

[Note: for the symbol ind( a + S, P + ; ) see §2.4.1 ( C2). J 
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Proof. 
(1) and (2) are simila.r to Lemma 2.4.1 (1) and Lemma 2.4.2 (2). Note 

the difference beween cyclic triple and transitive triple. 
(3) Let y = u, gax + gf1y = v and g'îx + g6y = w, then 

g6v + gf1w = (gaH + gf1+'Y)x --t w = g"'+
1+/1

+-r x + g6-f1v 
g 

" < a+6+ 11+-r 
g'îv + g0tw = (g"'+'Y + g0t+")u --t w = 9 

9
"9 u + g'Y-av. 

(4) Let y = u, x = v and gax + gf1y = w. Then w = gf1u + gav. 0 
Imitating the method of construction of LMTS(2n + 2), we can pay 

attention to the balance of the PC's (for each TTS(22n + 2)) and the 
TC's (for all TTS's). But, the following differences between LMTS and 
LTTS must be considered: 

i) For MTS, there is only one type of oo-triple (i.e. the triple just 
containing one of 001 or 002 ). But for TTS, there are threè types: 
{{oo, ui, v1}), ((u2, oo, v2)) and ({u3, v3 , oo) ). So, besides considering the 
balance of these ordered pairs (ui,vi) in' each TTS, we have to check 
the balance of those ordered pairs contairiing oo and the balance of each 
type of co-triple in all Bx, 8~ and 8~, , 

ii) The triple class TC consists of three [*, *] for MTS, and only one 
[*, *] for TTS. But the total number of all triples in a LTTS is three 
times that in a LMTS of the same order. 

Here, we give a method which can be used to meet the requirements 
raised in i). ·· 

Lemma 4.2.2. For any couple >.C µ, th.ere exists an arrangement for 
co-triples in Bx, 8~ and B~ (each part contains 22~-l oo-triples): 

parti ((oo,y,gÀx+g"y)) 
part 2 {(y,oo,gÀx + g"y}) 
part 9 {{y,gÀx + g"y, oo}), 

such that following conditions are satisfied: 
(1) In each Bx (or B~ or B~) all oo-triples cover all ordered pairs in 

the PC<>.,µ>. 
(2) In each Bx (or B~ or B~) all oo-triples cover all ordered pairs 

(oo,u) and (u,oo), where u E F, u =F x. 
(3) Each co-triple in the form ((oo, u, v)) (or ((u, oo, v}) or ((u, v, oo))) 

,where u =F v E F, appears in part 1 {or part 2, or part 9) of 

LJ (Bx UB~ UB~). 
zEF 

Proof. Firstly, we consider the mapping f from F\ { x} into F\ { x} 

f : y i--t gÀx + g"y. 
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We have(*) 
j(2)(y) = j[/(y)] = g'\l + gP)x + g2Py 
j{3)(y) = g.\(1 + gl" + g2P) + g3Py 

where J<0>(y) = y and j<k>(-y) = /(J<1- 1>(y)). So, j<1>(y) = y if and 
only if (1- gk")(x -y) = 0, i.e., g"" = 1 since y E F\{x}. But g"µ = 1 
means kµ = 0 (mod 22n -1 ). Thus for any x E F and y E F\ { x}, under 
the action of f, the smallest period of y is k = f(2

" ;,~ _ 1) , which is an g.c. µ, 

odd integer and kl22n - 1, k > 1. 
Below, we will discuss the three cases: 

1° k = 3. In this case,µ= 22~-1 or 2<
22;-1). All numbers in F\{x} 

are separated into 22~-l circuits with length 3. (Note: Regarding each 
number y in F\ { x} as a vertex and making an are from y to J(y ), we will 
get a directed graph. By the above, this graph consists of some circuits 
having the sa.me length.) Denote the three numbers in each circuit by 
9,(t) y<t> y<t) where 1 < t < 22n-l and "~t) = /(y~t)) (the subscript is 
uo ' 1 ' 2 ' - - 3 u1+1 1 
modulo 3). Then we can give the following arrangement: 

8s 8~ 8~ 
part 1 {{oo,y~t>,y~t))) ((oo,y~t>,y~t))) ((oo,y~t>,y~t))) 
part 2 ( (y~t)' oo, y~t))) ( (y~t)' oo, y~t))) ( (y~t)' oo, y~t)}} 
part 3 ((y~t) ,y~t) ,oo)) ({ y~t) ,y~t) ,oo)) {(y~t) ,y~t) ,oo)) 

where 1 ~ t ~ 22~-1 • It is trivial to verify the conditions (l)-(3). 
2° k = 22" - 1. In this case, all numbers in F\ { x} make up a single 

circuit withlength 22"-1. Denote these numbers Yo, Y1, •.• , YN"-1• where 
N = 22" - 1. We give the following arrangement: 

8z: part 1 ((oo,y2;+i.Y2;+2)) 

part 2 ((Y;+~,oo, Y;+2: +1)) 

- part 3 ((Y2;, Y2;+i, oo}} 

8~: part 1 ((oo,Y2;+f+HY2;+f+2)) 

part 2 ((y;,oo,y;+1}} 

part 3 (( f/2;+f" !12;+f+1 • oo)) 
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B~: part 1 ((oo,y2;+..,_+t,Y2;+1f+2)) 

part 2 ((Y;+f•oo,yi+f+I}} 

part 3 ((t12;+..,.•tl2;+..,.+t,oo}} Yo 

where 0 5 j 5 !/- - 1 and the sub- YN-1." • • • ·~1 
script is modulo N. In order to ver- • / · : -.....,, Y2 
ify the conditions ( 1)-(3 ), we can look 1 . . 
at the digraph, which is the arrange- • 1 

ment for Bz, where the arcs --, J, 
d d " • / ........ 

. ... . . and - represent the or ere •. ,,,,. ' • . / ' 
pairs in part 1, 2 and 3, respectively. •.• ,,,,. ', y 
And for B~ (or 8~), the subscript of yi-N ~· ~ 
each vertex in the digraph will be in-

3 
, • • 

creased by ~ (or 2f ), rood N. • • · 
3° 3 < k < 22

n - 1. In this case, all numbers in F\ { x} are separated 
into ~ circuits with length k. 

If 3lk, our construction will be similar to the case 1° (all circuits are 
the same ... ) and 2° (each circuit is separated into three parts."). 

Or else 31 ~, we separate all circuits into three types and denote all 
numbers in each circuit as (let k 2m + 1, since kis odd): 

(t} (t) (t) ( ·1( )) type 1 Yo , t/1 , · · "Y2m t/;+1 Y; ' 
type 2 z~t>,z~t>, ... ,z~2 (z;+1 = f(z;)), 15t5 ~· 
type 3 r~t>, rit), ... , r~2 (r;+t = f(r;)), 

Now, we can give the following arrangement: 

Bz B~ 8~ 

(( (t) (t))) (( (t) (t) }} (( (t) (t)}} part 1 oo, t/2;-1 • Y2; oo, Y2;, Y2;+1 oo, Yo , Y1 

((oo, zi?, zi?+I)) ((oo, z~t), zit))} ((oo, zi?-1' z~j)} 
({oo,r~t),r1t») ((oo,r~f-t•r~7)) ((oo,r~j,r~f+1}} 

part 2 ((y~~,oo,y~t))) ((y~t>,oo,yit')} ({y~t>,oo,y~21 }} 
( (z~t), oo, z~t))) ( (z~t), oo, z~21 }} {{z~2, oo, z~t») 
((r~t>, oo, r~21 )) ( (r~~' oo, r~t)}} {(r~t>, oo, r~t»} 

part 3 ((y~f-2•Y~'l-1,oo}) ({Y~f-t•Y~J;oo}} . {(y~~,y~t>,oo)} 
(( (t) (t) )) ({ (t) (t) }} {{ (t) (t) )} 

Z2;-11 z2; '00 Z2m' Zo ' 00 Z2;-2' Z2;-11 00 

( (r~~' r~t), oo)) { {r~j_2 , r~f-t • oo}} ( (r~~!_1 , r~j, oo)) 

where 1 5 j 5 m, 1 5 i 5 2m - 1 and all subscripts are modulo 2m + 1. 
In order to verify the conditions (1)-(3), we can look at the digraphs, 

which are the arrangement for Bz, .where the arcs -, ...... and 
-represent the ordered pairs in part l, 2 and 3, respectively. For B~, 
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ro 

r2m;lf~~l . . . 
1 r2 . . . 

·lr, .ir 3 . . 
" ' •• " t •• &f 

. . 4 

substitute the symbols r, y, z for y, z, r in the digraphs. And for B~, the 
symbols in the digraphs will be substituted by z, r, y. 

Finally, we point out that for any given couple ).C µ, we have 

U {(y,g.xx + g"y);y E F\{x}} = (F x F)\{(t,t);t E F}. 
zEF 

This completes the proof. 0 

4.3 A way to construct LTTS(22" + 2). 
Now, by the last section, we will try to construct LTTS(22" + 2) 

for n > 1. Denote LTTS(22" + 2) = {(X, Bx)lx E F} U {(X, B~)lx E 
F} U {(X,B:)lx E F}, where X = {ooi,002} U F and F GF(22n). 
Each collection 8% (and 8~, 8:) contains the following transitive triples. 
(where <*•*>and h*] represent the PC and TC respectively) 

8%: 
part 1 (It contains 2 triples.) 

((ooi, 002, x)), ((x, 002, 001)) 
part 2 (It contains 3 · 22~-1 triples, where j = 1, 2.) 

((oo;,y,g.xix + g"iy)) 
((y,oo;,g.\ix + g"iy)) (l;,µ;) 
{ (y, g.\J X + gl'I y, OOj)) 

part 3 (It contains 22" - 1 triple8.) 
({y,x,g-Xx + g"y)) (,\,µ) [µ,).] 

part 4 (It contains 22~-7 (22" -1) triples, where 1 ~ i ~ 22~-7 
.) 

{{y,g0
1z + gl1•y,g'Ylz + g61y))(ai,/li)(1'ï,Ói}(*,6i - Pi) 

[*,"fi - ai] 
part 5 (It contains 2 · 

22~-1 triples, where 8 = 22~-1 .) 
((y, g1 x + 92• 11,928 :1: + g8y)){8, 28)(28, 8)(8, 28)[28, 8] 
{(y,g2'x + g1y,g8x + g28y))(26,6)(6,26)(28,6)[6,26] 
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81. 
x· 

part 1 {It contains 2 triples.) 
((ooi,x,002)), ((002,x,001}) 

part 2 and part 5 are the same as the corresponding parts of Bx. 
part 3 (It contains 22n - 1 triples.) 

. { {y, X, g>..' X + gP
1 

y)) (..\1, µ') [µ1, ,\'] 

part 4 (It contains 22~-7 (22n - 1) triples, where 1 $ i $ 22~-7 
.) 

I {J' I 6' ((y,gaïx + 9 ïy,g'Yïx + g •y))(aj,,8;}{1-:,6D(*,6~ - fJD 
[*,/: - a~] 

s:: 
part 1 (It contains 2 triples.) 

( (x, ooi, 002} }, { (002, 001, x)) 
part 2 and part 5 are the same as the corresponding parts of Bx. 
part 3 (It contains 22n - 1 triples.) 

((y, x, g>." x + gP" y)) P·"' µ") [µ"' ,\1'] 
part 4 (It contains 22~-7 (22n - 1) triples, where 1 $ i $ 22~-7 .) 

{ (y, ga~' x + gPl' y, g-Y:' x + g6:' y)) (a~1 , tJ:'Hî'~', 6~'){*, éj' - (J~') 
[*,;:' a~'] 

Part 5 of Bx, B~ and s: is arra.nged by a genera! method provided by 
following lemma. 

Lemma 4.3.1. For a couple >.Cµ, let k and t be the smallest posi
tive integers such that kµ = 0 and 2tµ = µ (mod 22

n - 1). IJ 3lk, 
then there exists a partition of all transitive triples belonging to all 
TC [µ, >.], [2µ, 2>.],... and [2t-l µ, 2t-l ,\J such that all ordered pairs in 
these triple.! occupy ezactly all PC < >., µ >, < 2,\, 2µ >,. . . and < 
2t-l >., 2t-l µ >. 

Proof. Firstly, we give the following transitive triples, which occupy the 
required PC and TC (by Lemma 4.2.1 (3)), where x E F and y E F\ {x }: 

((y,g>.x + gPy,g2>.x + 92"y)) 
(>., µ)(2>., 2µ)(,\, µ)[µ, ,\] 

{(y,g2>.x + g2"y,g2
2
>.x + 92

2
"y)) 

{2.\, 2µ)(22 ,\, 22 µ){2.\, 2µ)[2µ, 2,\] 
{{y,92'>.x + g2,"y,g2s>.x + g2aPy)) 

(22 ,\, 22 µ)(~À,~ µ)(22 >., 22 µ)[22 µ, 22 ,\] 

{(y,92*-,>.x + g2*-,"y,g2•-1>.x + g2•-1Py}} 

(2t-2 ,\, 2t-2 µ){2t-1,\, 2t-l µ}(2t-2 >., 2t-2 µ)[2t-2 µ, 2t-2 ,\] 
((y,92*-1>.x + g21-1Py,g>.x + g"y}) 

(2t-l >., 2t-1 µ)(,\, µ)(2t-l À, 2t-l µ)[2t-l µ, 2t-l _x] 
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Let /i be the mapping from F\ { x} into F\ { x} (0 $ i $ t - 1) 

Then, for any y E F\ { x}, the smallest period of y under the action of 
fo (further each /i) is k. Lets=~ and k = 3m (since 3lk), then all 
numbers in F\{x}, under the action of Jo, are separated into s circuits 
of length 3m. Denote all numbers in each circuit by y~t), y~t), ... , y~~-I, 
1 $ t $ s, where y;i1 = fo(y}'>), 0 $ p $ 3m - 1 (here and in what 
follows, all subscripts are modulo 3m ). 

By Lemma 4.2.2 (*), we have 

!~2\y) = (1- g2;µ)x + g2" y = g2;>.x + g2;µy = fi(y). 

Futhermore, 

/,·(y(t)) = ç(2;)(y(t)) = y(t) . and f~;)(y(t)) = ç(2;;)(y<'>) = Y(t) . 
1 p JO p p+2' 1 p JO p p+2'] 

And we specify Jf0>(y) = y and Jf1>(y) = fï(y). 
Below, we can denote all above-mentioned transitive triples by 
( uf 0> (y), 1f1> (y ), Jf 2> (y )) ), 

which belongs to TC [2iµ,2i..X], where 0 $ i $ t -1 and y E F\{x}. 
These triples contain all ordered pairs (y, fi(Y )). 

Now, we give the following partition of all above-mentioned triples: 
( ). (( (t) (t) (t) )) (" ) * · Y2•(a;+2)-2' Y2•(a;+a)-2' Y2•(a;+4)-2 m Bx 
( ) '· (( (t) (t) (t) )) (" B') * · Y2;(a;+2)-l' Y2•(a;+a)-1' Y2•(a;+4)-1 m z 

( )"· (( (t) (t) (t) )) (" B") * · Y2•(a;+2)• Y2•(a;+a)' Y2•(a;+4) m z 
where 0 $ i $ t - 1, 0 $ j $ m - 1, 1 $ t $ s. 

For given x E F, let us show that any ordered pair P = (y,fï(y)) is 
covered by a certain transitive triple in ( *) (( * )' and ( * )" are similar ), 
where y E F\{x} and 0 $ i $ t -1. Let y = y~t) (0 $ p $ 3m - 1, 
1 $ t $ s. Below, for brevity, the superscript t will be omitted). 

Since g.c.d(2i,3m) = 1, there exists a positive integer q (1 $ q $ 
3m - 1) such that 2iq = 1 (mod 3m). Let j = (p - (2i+I - 2))q 
(mod 3m), then p = _2i(j + 2) - 2 (mod 3m) and P = (y,,/i(y,)) = 
(Y2•(j+2)-2, Y2•(j+a)-2)· If j = 0 or 1 (mod 3), then P is covered by a 
certain triple in(*), obviously. If j = 3j' + 2 (0 $ j' $ m - 1), then 

2i(j + 2)- 2 = 2i-l[3(2j' + 2) + 2) - 2, 

2i(j + 3)- 2 = 2ï-1[3(2j' + 2) + 4) - 2. 
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P will be also covered by another triple in ( * ). 
Finally, we will prove, for any x E F, that any transitive triple T 

((!}0>(y),J}1>(y),J}2>(y))) is in(*) or(*)' or(*)", where y E F\{x} and 
0 $ i $ t - 1. Let y =vit> (0 $ p $ 3m - 1, 1 $ t $ s. Below, the 
superscript t will omitted, too ). 

Let 2iq = 1 (mod 3m) and j = pq (mod 3m), 0 $ q $ 3m - 1, 
0 $ j $ 3m - 1, then p = 2i j and 

H j = 2 ( mod 34) then, obviously, T is in ( * )". Furthermore, we no te 
the following facts: 

(1) q 't 0 (mod 3), since 2iq:: 1 (mod 3m); 
(2) H 2iq :: 1 (mod 3m) and q = 1 or 2 (mod 3) then 2i-1q' = 1 

(mod 3m) and</= 2 or 1 (mod 3). 
Thus we have: 

If j = 3j', when q = 1 (mod 3), let q' 3q"+ 2, then 2ij = 2i[3( q" + 
j') + 2] - 2 and T E (*); when q = 2 (mod 3), let q = 3q11 + 2, then 
2ij = 2i[3(</' + j') + 2]-1 and TE(*)'. 

H j = 3j' + 1, when q = 1 (mod 3), let q = 3q" + 1, then 2ij = 
2i[3(q" + j') + 2} -1 and TE ( * )'; when q 2 (mod 3), let q' = 3q11 +1, 
then 2ij = 2i[3(q11 + j') + 2] - 2 and TE ( * ). 

This completes the proof. D 
We give an example: F = GF(26), µ = 7. In this case, t = 6 and 

k = 9. All numbers in F\ { x} are separa.ted into 7 circuits with length 
9. We only list one circuit and only write down the subscript j of the 
vertex Yk· 

B:r: 8' :r: B" :r: 
012 345 678 123 456 780 234 567 801 
246 813 570 357 024 681 468 135 702 
615 048 372 726 150 483 837 261 504 
543 210 876 654 321 087 765 432 108 
318 642 075 420 753 186 531 864 207 
840 516 273 051 627 384 162 738 405 

4.4 Two sufficient conditions and examples. 

Theorem 4.4.1. Let R = Z22"_1 = {O, 1, ... , 22n - 2} and 9 = 22
n3-l. 

If there exist two nu.mber1 µ1 f:. µ2 E R*\{9,29} and six subsets of 
R = R*\ {9, 29, µ1, µz} su.ch that the following conditions are satisfied, 
then there ezists an LTTS(22n + 2): 
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(1) Each of these subsets {,8i}i, {6i};, {,B'i}it {6\}i, {,8"i}; and {6"i}; 
contains elements and 6i - .Bi, 61 i - {3' ;, 611 i - {3" i E R, for any i 
(these differences are one-to-one). 

(2) {.8i}1, {6i}i and {6i - Pi}i are pairwise disjoint {between {,81i}i, 
{6'i}i and {ó'i - .B'ï}i, between {,B"i}i, {6"i}; and {ó"i - P"i}i also). 

(3) {,\, ,\', N'} U {/; - ai}i U { -y\ - a'1}i U h" i - a" ;}i = R*\ { 9, 20}, 
where >.Cµ, a;C,Bi, /iC61 and {µ}U{f11}1Uhi};U{'1ï-.8i}; = R (and 
si.milar for these parameters with ' and 11 

). 

Proof. By Lemma 4.2.1, these pa:rameters satisfying conditions (1)-(3) 
will enable all PC and TC to be balanced for the construction in the 
beginning of this section. And, by Lemma 4.2.2 and 4.3.1, these triples 
in pa:rt 2 and part 5 can be sepa:rated successfully into B:i:, 8~ and !3~. 
As for those triples in pa:rts 3, 4, 5, which don't need to be separated 
(of course, some of them may be done by Lemma 4.3.1 also), have been 
well done by Lemma 4.2.1. D 

Example. For R = Z15 (i.e. n = 2), by the conditions (1)-(3) in the 
lemma, we have already found a lot of solutions by computer search as 
follows: 

2 
2 3 µ1 4 6 7 8 9 11 12 13 14 

1 2 2 2 4 2 2 4 8 44 2 16 
2 4 2 2 8 2 44 2 4 16 2 
3 44 28 4 4 28 2 0 4 44 
4 4 2 2 4 16 2 2 8 
6 2 44 0 4 28 44 4 
7 16 44 2 4 2 2 
8 2 2 4 8 2 
9 4 28 2 4 
11 44 2 2 
12 4 2 
13 2 

The total number of solutions is 682 and for any µi ':/:- µ2 E R*\ { 5, 10}, 
except (µ1, µ2) = (3, 12) and (6, 9), there exist all the solutions. Here, 
we only select one of tP.em, (µi,µ 2) = (1, 2), and give the corresponding 
LTTS(18). 

{.Bïlf=1 ={4,8,12}, {P'iH=1 ={12,9, 14}, {P"ïlf=1 = {3,8,9}, 
{fii}f=l = {7,6,11}, {fi'i}f.1={3,13,7}, {6"i}f=1={14,12,7}, 
LTTS(l8) = {(X,B:i:);x E Fie} U {(X,B~);x E F16} U {(X,B~);x E 

Fie}, where X = {ooi,002} UF1e, <*•*>and[*,*] represent the PC 
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and TC respectively. 

Bx: (PC) (TC) (#) 
(1) ( (001, 002, x)) 1 

((x,002,001)) 1 
(2) ((ooi,y,g4x + gy)) 5 

((y,001,g4x + gy)) (4, 1) 5 
((y,g4x + gy, 001)) 5 
((002,y,gsx + g2y)) 5 
((y,002,gsx + g2y)) (8,2) 5 
( (y, gsx + g2y, oo2)) 5 

(3) ((y,x,g1x+g9y)) (7,9) [9,7] 15 
(4) ((y,gx + g4y,g9x + g7y)) {1,4)(9, 7)(14,3) [2,8] 15 

((y,g2x + gsy,gl3x + g6y)) (2, 8)(13, 6) (6, 13) [12,11] 15 
((y,gllx + gl2y,g12x + g11y)) {11, 12)(12, 11)(3, 14) [4,1] 15 

(5) ((y,gsx + gloy,gtox + gsy)) (5, 10)(10, 5)(5, 10) [10,5] 5 
((y,g1ox + gsy,gsx + gloy)) (10, 5)(5, 10)(10, 5) [5,lOJ 5 

B'. x• 
(3) ((y,x,gl2x + glly)) {12, 11) [11,12] 15 
(4) ((y,gllx + gl2y,gl4x + g3y)) {11,12)(14,3)(13,6) [14,3] 15 

((y,g1 x + g9y,g6x + g13y)) (7, 9)(6, 13){1, 4) [3,14] 15 
{{y,g3x + gl4y,g9x + g1 y)) (3, 14)(9, 7)(2, 8) [13,6] 15 

B"· x• 
(3) ({y,x,gl3x + g6y)) (13,6) [6,13] 15 
(4) ((y,gl4x + g3y,g3x + g14y)) {14, 3){3, 14)(12, 11) [1,4] 15 

((y,g2x + gsy,gllx + g12y)) (2, 8) (11, 12)(1, 4) [7,9] 15 
((y,g1 x + g9y,g9x + g7y)) (7' 9) (9, 7) (6, 13) [8,2] 15 

where y E F\{x} and the forms of parts 1, 2 and 5 in Bx, B~ and B~ 
are the same (of course, these triples are distinct: part 1-trivial, part 
2-by Lemma 4.2.2 and part 5-by Lemma 4.3. l ). This construction of 
a LTTS(18) has been verified in detail by use of the computer. 

It is regrettable that even though the way, pointed by Theorem 4.4.1, 
seems feasible, up to now we have not been able to find a suitable general 
method to choose these parameters in the theorem. The value of our 
work lies in that: 

i) We give a possible way to construct LTTS(22 n +2) that most likely 
will work in general, and indeed give some successful examples. 

ii) In cases where an LTTS(22n + 2) was known already, our system 
may be nonisomorphic to the known system. For example, the only 
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previously known LTTS(18) is the one constructed in [LinSt]. lt is not 
difficult to show that LTTS(18) is nonisomorphic to our LTTS(18) (see 
also §2.6). 

iii) The methods employed in Lemma 4.2.2 and 4.3.1 are useful for 
other design problems. 

Finally, we give another sufficiency theorem. It is only for LTT 8(24 + 
2), but this idea can perhaps be generalized. 

Theorem 4.4.2. IJ µi + µ2 = 24 - 1 and 3 f µ 1, then 31.>.1 or 31.Àz 
{suppose 31..\2). The following arrangement of the parameters will satisfy 
all conditions in Theorem 4.4.1. 

{.8ïH=1 = {2µi,2..\2,->.i}, {Sïlf=i = {-2..\2,..\2,>.i}, 
{.8'ïH=1 = {2>.1,>.2,-2>.1}, {S';}f=1 = {2>.2, ->.2,-..\i}, 
{,8"ïlf=1 = {2µ1'2..\2,-2.l.1} (or {>."->.2,À2}), 
{ S" i}f=1 = {-2µi, -2À2, À1} (or {2µ1' 2..\2, -,\1 }). 

where the two sets /or f:J~' and S~' are one-to-one. 

Proof. Firstly, we point out that for any n the condition µ1 + µ2 = 
22

n - 1 implies À1 - µ1 = À2 and À2 - µ2 = À1. For 2n = 4, there are 
four such {..\i,µ1)-(>.2,µ2): 

(4, 1) - (3, 14), (2,8) - (9, 7), {8,2) - {6, 13}, {1,4} - (12, 11}, 
where the primitive element g of Fi6 satisfies g4 + g + 1 = 0. By the 
conditions we have 5À2 = 0, .À1 = 4µ1 and 4,\1 = µ1 (mod 24 

- 1). It is 
easy to see that the elements 

exactly are all elements of the set Zi5 \{9,28}, where 8 = 2"31 = 
5. According to the given arrangement of the parameters, we can 
give the following construction (Only for Parts 3, 4 and their PC and 
TC. As for Part 2, its PC is same: < ,\1 , µ 1 > and < À2, µ2 > ): 
Bx: part 3 (2>.2,2µ2) [2µ2,2.l.2] 

{

(2Ài,2µ1) (-2..\1, -2.l.2) {-2..\2,-2,\1) [2..\2,2µ2] 
part 4 (2µ2, 2..\2) (µ2, ..\2) (-..\i, -À2} [..\i, Pt] 

(-..\2,-..\1) {µ11À1) . (2µi,2.À1) [µ1,À1] 
8~ : part 3 {2Ài; 2µ1) [2µi, 2..\1] 

{

(2µ1, 2..\1) (2µ2, 2..\2} (2..\2, 2µ2) [-À2, -,\1] 
part 4 (µ2, ..\2) {-Ài, -..\2} ( --2,\i, -2..\2) [-..\i, -À2] 

{-2..\2,-2..\1} (-..\2,-..\1} {µi,À1) [µ2,À2] 
B:: part 3 {2µi,2l1} [2..\i,2µ1] 

{

(2..\i,2µ1) (2..\2,21'2) (-l2,-À1} [2..\2,2µ2] 
part 4 (2µ2,2..\2) (-2..\1,-2,\2) (mu2,..\2) [:-2À1,'-2À2] 

(-2..\2, -2Àt) (µ1, À1) (-À1, -À2) [-2À2, -2À1] 
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IJ~ : part 3 (-2..\2, -2..\1) [-2,\i, -2>.2] 

l
(µi,.\1) (2..\i,2µ1} (2À2,2µ2) [-2À2,-2>.i] 

part 4 (-À1,-À2) (2µ2,2À2) (-2Ài,-2À2) [2..\i,2µ1] 
(µ2,À2) (-À2,-À1) {2µi,2>.1) [2À2,2µ2] 

here, we give two solutions: (Bz,B~,B;) and (Bz,B~,B~). One can 
easily verify that both are indeed LTTS(18). 0 

Examples. By the theorem, we have the following eight LTTS(18), 
where only the second coordinate of the PC and TC are written down. 

8 8' 8" 811 
z z z z 

(µ1 = 1, P.2 = 14) 
(13) [ 6] {2) [ 8] (8) [ 2] (7) [ 9] 

(2)(9)(7) [14] {8)(6){13} [11] (2)(13)(11) [13] (4)(2)(13) [ 7] 
(6}{3){12) [ 1] (3}(12)(9) [12] (6)(9){3} [ 9] {12)(6)(9} [ 2] 
(11)(4)(8) [ 4] (7)(11)(4) [ 3] (7){4){12} [ 7] (3)(11){8) [13] 

(µ.1 = 8, P.2 = 7) 
{14) [ 3] (1) [ 4] {4) [ 1] {11) [12] 

{1)(12)(11) [ 7] {4)(3)(14) [13] (1){14)(13} [14] {2)(1)(14) [11] 
{3)(9)(6} [ 8] {9}(6}(12) [ 6] {3){12)(9} [12] (6){3)(12} [ 1] 

{13){2){4} [ 2] {11)(13){2) [ 9] {11}(2)(6} [11] {9}{13}(4) [14] 
(µ.1 = 2, P.2 = 13) 

{11} [12] (4) [ 1] (1) [ 4] (14) [ 3] 
{4){3){14} [13] (1){12)(11} [ 7] {4}(11}(7) [11] (8}(4)(11) [14] 
{12){6) (9) [ 2] {6){9)(3} [ 9] {12)(3)(6) [ 3] (9)(12)(3} [ 4] 
{7}(8)(1) [ 8] {14}(7){8) [ 6] {14)(8)(9) [14] (6}(7)(1) [11] 

(P.1 = 4, P.2 = 11) 
{7) [ 9] (8) [ 2] (2) [ 8] {13} [ 6] 

{8)(6)(13} [11] (2}(9)(7) [14] (8)(7)(14) [ 7] (1)(8)(7) [13] 
(9)(12){3) [ 4] (12)(3}{6} [ 3] {9}(6){12) [ 6] (3}(9)(6) [ 8] 
(14){1){2} [ 1] {13)(14}(1} [12] {13}(1}(3) [13] {12)(14){2} [ 7] 
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V. Steiner triple systems 

5.1 Introduction. A Steiner triple sy8tem of order v (briefly STS(v)) 
on the set Sis a pair (S, 8), where ISI = v and 8 is a set of 3-subsets 
of S ( called triple8) such that any two elements of S are contained in 
exactly one triple of 8. This kind of design was introduced by W.S.B. 
Woolhouse (1844) and J. Steiner (1853). T.P. Kirkman (1847) and M. 
Reiss (1859) independently proved the following existence theorem: 

There exists a STS(v) if and only if v =lor 3 (mod 6). 

Two STS(v) on the same set S are said to be disjoint if they have no 
triples in common. If there exist v - 2 pairwise disjoint STS(v), then 
we call them a large set of disjoint STS( v) and denote the collection by 
LSTS(v), The research work on the existence of LSTS(v)'s has a long 
history. Many mathematicians, such as T.P. Kirkman, J.J. Sylvester, 
A. Cayley, J. Doyen, A. Kotzig, R.H.F. Denniston, S. Schreiber, R.M. 
Wilson, T. Teirlinck, A. Rosa made constributions to this problem, see 
[Ki2], [Sy], [Ca], [Do], [KLR], [De], [Sch], [Wil], [Teil], [Ro]. In 1983, a 
Chinese teacher of physics at a middle school, Lu Jiaxi, announced the 
following result [Lu], which is the best up to now: 

For v = 1or3 (mod 6), v > 7 and v 't {141, 283,501, 789, 1501,2365}, 
there exists an LSTS(v). 
For the rema.ining unknown six orders, he bas once given an imaginative 
method to solve them. But, it is unfortunate that he died shortly before 
realizing his idea. 

In this chapter, our purpose is to make some efforts towards solving 
the rema.ining existence problem of LSTS( v )'s. Our work includes two 
aspects. First, in §5.2 and §5.3, we will discuss the possibility to con
struct LSTS(p + 2) for an odd prime p #: 3 (note: 139, 281, 499, 787 
and 1499 are all prime). And, in §5.4 and §5.5, we will give some results 
a.bout LD designs, introduced by Lu Jiaxi and playing an important röle 
in bis imaginative method. 

Although, at present, we have not found a construction of LST S( v) 
for the rema.ining six orders v, it is most likely possible, and our method 
is useful for getting soîne nonisomorphic LST S( v) from known ones and 
for further research. 

5.2 A way to construct LSTS(p" + 2). 
Let F be a finite field conta.ining p" elements, where p is an odd 

prime number, p #: 3 and n is a positive integer. lts zero and unity 
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elements are denoted by 0 and 1, respectively. Let g be a primitive 
element of F* = F\{O} and define elements ooi,oo2 rt, F. Let R 
Zp"-1 = {O, 1, ... ,p" - 2} be the residue class ring modulo (pn - 1). 
Below denote m = p";:1 and g9 = 2 (6 ER). Note gm = -1. 

Similar to §2.4.1, a couple (denoted by aCfJ-unordered, or< a,fJ >
ordered) means ga+ gP = 1 and a,fJ ER*= R\{O}. We have: 

(CPI) If cxCfJ then a -:/: f3 except if a = fJ = -6 (call (-O)C(-0) 
single couple). 

(CP2) H aCfJ then f3Ca, (m + a-fJ)C(-f:J), (-cx)C(m + fJ- ex) and 
(pta)C(ptfJ) for an arbitrary positive integer t. 

(CP3) If aCfJ and "(Có then (a - À)C("f - µ), (µ - "t)C(cx - 'Y) and 
("t-a)C(.X-a), where À= ind(a+ó, m+/3+"(), µ ind(m+a+c5, /3+-y). 
(For the symbol ind(*,*) see §2.4.1.) 

Fix an element x E F. For an (unordered) pair {y,z} of distinct 
elements in F\{x}, similar to §2.4.1, we can write z = gax + gPy, where 
aC/3. Moreover, y = gm+a-Px +g-l1z. Then we say that the pair {y, z} 
over F\ { x} belongs to the pair claJJs (PC) 

{ 
< a,fJ >} 

< m + a - {3, -/3 > 

(briefly{ _;}, the two couples are unordered). When f3 = -,(3, i.e. 

f3 = ,"2_
1 = m (the corresponding a = 8), call { :} half pair class 

(HPC). 

Lemma 5.2.1. Fora given element x E F, 
(1) Each (unordered) pair of distinct elements of F\{x} belongs to a 

uniquely determined PC. The total number of the PC's is P"2-
3 + 1 (one 

of them is the HPC). The HPC contains r"2-
1 painnise distinct pairs, 

and each other PC contains p" - 1 pairwise distinct pairs. 
(2) Fora so-called y-triple (y,gax+gl1y,g7 x+g6y), where y E F\{x }, 

aCfJ, "(Có and a-:/: 'Y, its three pairs belong to PC: { _~}, { _~} and 

{ fJ-ó} 
6 

_ fJ , respecti11ely. 

Fora so-called co-triple (oo;, y,gax+gf1y) or x-triple (x, y, gax+gPy), 
where j = 1,2, only one among its tkree pairs, i.e. (y,gax+gPy), belongs 

to the PC { _;} ... 
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Proof. We only need to show that, for the sets of ordered pairs, 

{(y,g"'x + gPy); y E F\ {x}} n {(g"'x + gPy, y); y E F\{x}} =/- </> 

if and only if { _;} is the HPC. 

In fact, if there are y, y1 E F\{x} such that y = g"'x + gPy' and g"'x + 
gPy = y', then y = g"'x+gP(gax+gfly), this implies ga(l+gP)(x-y) = 0. 

But y =/- x,g"' =/- O, so gfl = -1,{J = m, i.e., { _:} = { :} is a HPC. 

The converse is trivial. All other conclusions can be seen from Lemma 
2.4.1. D 

For a triple ( u, v, w) of distinct elements in F, similar to §2.4.1 we 
can write v = gau + gflv, where aC(3. Moreover, we have also w = 
g-flv + gm+a-flu and u = gm+fJ-"'w + g-"'v. Then we say the triple 
( u, v, w) belongs to the triple cltMs {TC) 

[ 
<0t,{1><-fJ,m+0t-fJ><m+{J-0t,-a>] . 
<fJ,0t><m+a-fJ,-fJ><-a,m+P-a> 

Note that its first row has property (T) of §2.4.1 (hut the six couples 
are unordered). 

Lemma 5.2.2. 
(1) There are three types of TC: 

[

mmm mm ml 
ATC. < 3·--.3 >< 3'-3 >< 3'-3 > . 

• mm mm mm ' 
< -- - >< -- - >< -- - > 3'3 3'3 3'3 

BTC: [< 6,m >< m,fJ >< -9,-6 >]; 
< m,9 >< 8,m >< -8,-6 > 

CTC: [< a,f:J >< -{:J,m +a-{J >< m+ /3-a,-a >]. 
< {J, a >< m + a - {J, -P >< -a, m + fJ - a > 

When pn = 1 (mod 6), the total number of ATC, BTC and CTC is 1, 
1 and ,",-T, reapectively. When pn = 5 (mod 6), the total number of 
ATC, BTC and CTC û O, 1 and 1"5-

5 • 

(2) Each triple of dûtinct elementl in F belonga to uniquely deter
mined TC. Each ATC containa r"<r;-1> pa.irwile diltinct triple1; each 
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BTC contains p"(p;-1> pairwise distinct triples; and each CTC contains 
pn(pn - 1) pairwise distinct triples. 

(3) The y-triple (y,g"'x + gfly,g'Yx + g6y) belongs to TC 

[ 
< a - À, "'Y - µ >< µ - "'f, a - "'Y ><; - .a, À - a >] 
< 1- µ,a - À>< a - Î,µ - Î ><À - a,-y - a > ' 

where À= ind(a + 6,m + ,8 + -y) andµ= ind(m + a + 6,,8+1')· And 
the x-triple (x,y,g"'x + gfly) belongs to TC 

[ 
< m + a - ,8, -,8 >< {3, a >< -a, m + P - a >] . 
< -{3, m + o: - fJ >< a, fJ >< m + /3 a, -a > 

Proof. First, we point out that for an odd prime p i= 3 and a positive 
integer n always pn =: ±1 (mod 6) (since p =: ±1 (mod 6)). 

(1) Fora TC 

[ 
< a, /3 >< -/3, m + a - /3 >< m + /3 - a, -a >] . 
< {J, a >< m + a - /3, -/3 >< -a, m + /3 - a > 

we consider two special cases: 
i) H there are two equal couples in the TC's fust row, then 

{ 

m m 
a = -fJ,/3 = m +a -/3 - a = -3,/3 = 3;or 

m m 
a = m+fJ-a,fJ= -a--+ a = -,/J= --;or 

3 3 
-{3 = m + fJ - a, m + a - /3 = -a - /3 = m + 2o: -

g"' - g2Ct = 1 - g30t = -1 - 0: = ±1;(/J = =f';). 
These all give ATC and only for pn = 1 (mod 6), since 3lm and m 
p"-1 

2 • 
il) H there are two such couples that < .\, µ > and < µ, .\ > in the 

TC's first row, then 

{ 

fJ = -{J,a = m + a - fJ - 2/3 = 0--+ P = m(o: = O); 
fJ = m + {J- o:,o: = -a--+ 2o: = 0 - a = m(fJ = O); 

-fJ = -a, m + a - P = m + fJ - a --+ a = fJ --+ a = /3 = -8. 

These all give BTC and only one. 
Except i) and ii) all other TC are called CTC (its six couples are 

pairwise different). 
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Since each ATC (or BTC, or CTC) consists of two (or three, or six) 
distinct couples, and the total number of the ordered couples is pn - 2, 
we have the conclusion about TC's number. 

(2) For (u, w) '1:: (u', w') if (u,gau + gf1w,w) = (u',gau + g' /3w', w') 
then we have the following five possibilities: 

i) u = u',gau + gflw = w',w = gau + g' f:Jw'--+ (gfl + l)(w - w') = 
0 --+ gil = -1 --+ f3 = m; 

ii) w = w',gau + gllw = u', u = gau1 + gflw1 --+ (ga+ l)(u - u') = 
0--+ gOI = -1-+ et= m; 

iii) u = w',w = u',gau + gllw = gau' + gPw' __..(ga - gP)(u - w) = 
0 --+ gOI = gil --+ et = fJ = -6; 

iv) u = gau' +gf1w',gau+gPw = w',w =ui--+ (ga+fJ _ I)u +(ga+ 
g21l)w = 0--+ (g2fl - gP + l)(w - u) = 0--+ g2P - gil+ 1 = 0--+ fJ 
±';'; 

v) u = w',gau +gf:lw = u',w = gau' +gf:lw1 --+ (ga+fJ _ l)w+(g2a + 
gP)u = 0--+ (g2a-ga+l)(u-w) = 0--+ g2a-ga+l = 0--+ a = ±r;. 
The cases i), ii) and iii) give BTC, and the cases iv) and v) give ATC. 

As there are pn(pn - 1) ordered pairs ( u, w) of distinct elements in 
F, each CTC (which does not touch upon anyone of i)-v)) contains 
pn(p" - 1) distinct triples. For ATC, by iv) and v ), the ordered pairs 
( u, w ), ( w, gau + gllw) and (gau + gllw, u) give the same triples, where 

a m m m m S __ t.. ''"TC t · p"(p"-1) < a,/J >=< T•-T >or< - 3 , 3 >. o, eöCU A con ains 3 
distinct triples. For BTC, by i) (or ii), or iH)) the ordered pairs (u,w) 
and (u,gau + gf:lw) {or (gau + gllw,w), or (w, u)) give the same triples, 
where < a, fJ >=< fJ, m > (or < m, fJ >, or < -8, -8 > ). So, each BTC 

t . p"(p"-l) di . . 1 con ains 2 stmct tnp es. 

(3) Similar to the proof of Lemma 2.4.2 (3). D 

For brevity, we can denote the ATC, BTC and CTC ( using the simple 
symbol of the PC) by 

respectively. By definition, each ATC (or BTC, or CTC) consists of one 
(or two, or three) different PC, and consists of two (or three, or six) 
different numbers. Furthermore, we can say that each PC belongs to 
a unique TC. The table below gives all couples and TC for p" :5 25 
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(p :f: 2, 3). 

pn 
Coup les ATC BTC CTC (g) 

p=5 
1C2 3C3 (g},{!}] (g=2) 

p=7 
1C5 2C3 4C4 [{!}] [C},{!}] (g=3) 

p=ll 1C5 2C3 [Gh{!}] [ {!}, g}, {!}] (g=2) 
4C7 6cs 9C9 

p=l3 1C6 2C10 3C5 [Uoll [{:}, {i1i}] [G}, {!}, g}] (g=2) 
4C7 sCg 11C11 

1C6 2C2 
[ {i1s},{13s},{160}] p=17 

3C10 4C5 7C11 [ GL {i~} 1 (g=3) [ U2},{151},g}] 
sC14 9C12 13C15 

1C9 2C4 3C15 
[ {126},{1~},{171}] p=19 

5C6 7C14 sC12 [Usll [G}, U1l1 (g=2) [ {15s}.{162},{:o}] 
10C13 11C16 17C17 

1C15 2C11 [ {,\},{1~}.{i3s}] 
p=23 3C21 4C5 6cs [ nD, {io} l [ {1~}.{157l.n~l1 (g=5) 

1C19 9C14 10C17 

12C1s 13C16 20C20 
[ { 166}.{184},{ 19s}] 

1C5 2C3 4C20 [g},{1~},{M] 
p=25 6C12 7C9 sC19 (gD, {iol1 [{M,{M.nn1 (g2=g+3) 

10C15 11C21 13C22 

14C17 l6C23 1sC1s 
[ { 16s},{ 184},Ua}] 

Now, we can give an arrangement to construct LSTS(pn + 2) = {(F U 
{ooi,002},Bz)lx E F}, where Bi: contains the following triples (where 
y E F\ { x} and ( #) denote the number of triples) 
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where >.Cµ, a,C{3;, 'YiCfJ,, aC 2;', 1 $ i $ t, t = Pn
6
_ 7 or 'n

6
_ 5 (if pn ::: 1 

or -1 (mod 6)), and there is part 5 only if pn = 1 (mod 6). The total 
numberoftriplesineachBa: is l+i(pn-1)+'"

6
- 5(pn-1) = (p"+I~(p"+2), 

which is exactly as expected. 

About Part 2. 
Considering the pairs containing an element oo (oo1 or 002), the con

struction of part 2 must meet such condition that all pairs {y,g).x+g"y} 
should be a partition of the set F\{x}, for the selected P"2-

1 y. So, by 
the expression ( *) in the proof of Lemma 4.2.2 ( which still holds for 
GF(pn)), we need that 

pn-1 
k = d ( l) = 0 (mod 2). g.c . . µ,pn -

If the condition is satisfied, let v1;), y~;), ... , y~21 (1 $ j $ 1tk-1
) be all 

numbers in F\{x}, where YWi = g).x + g"~~i) (0 $ i $ k - 2). Then 
the following construction of part 2 will be alright: 

(j) (j) (j) (j) 
(ooi, Y2; , Y2i+1) and ( 002, Y2;+1 • Y2;+2), 

Q < i < k - 2 1 < . < pn - 1 • 
- - 2 ' _J_ k 

These triples will exactly contain all pairs {001,y}, {002,y} (where y E 

F\ { x}) and all pairs belonging the pair class { -: } . 

About Part 3. 
By the same reason (for the pairs containing x), for the selected p"2-

1 

y, all pairs {y,g8x + gmy} should also be a partition of the set F\{x }. 
And since m = p"2-

1 and g.c.tl~:_~~"-l) = 2, this condition holds. Let 

v1;>,yp> (1 $ j $ r"
2
- 1 ) be all numbers in F\{x}, where Yi;) = g'1x + 

gmy1;> (and also Yä;> = g8 x + gmy~;»· Then the triples ( x, 111;>, y~;» and 
(x, y~j), 111;)) are identical. So, if we select these triples (to form the part 
3): 

(x,y1j>,yp') 1$j$pn;1, 

then they will contain all pairs {x,y} (where y E F\{x}) and all pairs 

belonging to the half pair class { m}. And the triples of part 2 in LJ Bx 
m zU 

will be exactly all triples in the unique BTC : 

[
< 8,m >< m,8 >< -8,-6 >]. 
< m,8 >< 8,m >< -8,-8 > 
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About Part 5. 
Firstly, we show tha.t if aC 2;" then (a + T )C 4

;". In fa.et, since 
get+g1r- = 1, we have ga+zg. +gm = g!f, hut gm = -1 thus g°'+Zf-glff = 
1, i.e., get+!f + g'1 = 1. Obviously, the triple contains three same PC 

{ + } and beloogs the unique ATC : 

N h t 2m - 11"-1 p"-1 - 3 B th b all b ote t a -3 - 3 , so d (& "-l) - . y e a. ove, num ers g.c . . 3 ,p 

in F\{x} can be denoted y(j) y(j) y(j) (1 < J. < r"-t) where y~j) = 
0 ' 1 ' 2 - - 3 ' a+l 

g°'x + glfLy!j) (i = 0, 1,2 and y~;) = y~i>). Moreover, we have yet 

y~j) = g°'+ 't x + g '1 y~i) ( see the expression ( *) in the proof of Lemma 
4.2.2). Therefore, if we select these triples (to construct the part 5): 

1<1· < pn -1, 
- - 3 

then they wil! contain all pairs belonging the pair class { :~ } . And 

the triples of part 5 in LJ Bx will be exactly all triples in that ATC. 
xEF 

5.3 A sufficient condition and examples. 
Now, through the analysis in the last section, our main task will be 

the choice of those parameters in part 4. 
Denote R = {1,2, ... ,m -1} C R = z,"_1 ={O,1,2, . .. ,pn 2}, 

where m = r"2-•. For >. E R* = R\{O}, denote l = min{>.,->.}. 
Obviously, l E R. 
Theorem 5.3.1. When pn = 1 (or -1) mod 6, ij there ezi8t two t
aubaeu {Pïh, {ói}i of R*\{m, 2;', 4;'} {or R*\{m}), t = (or 
1 "6-

5 
), auch fha.t fhe following conditions are .satisfied, then there ezi.st.s 

an LSTS(pn + 2). 
(1) {Pi}i, {ii}i and {Pi :. Ói}i a.re pairwiae disjoint t-subsets of the JJet 

R\{ 2
;'} (or R). 
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(2) Let {µ} u {~;}:=1 u { i; l:=i u {Pï .:. ó; l:=i = R\ { 2;;'} (or R}, then 
pn-1 • 

g.c.d.(P,,p"-l) Ut even. 
(3) All numbers of the set {ai - iïh belong to different CTC, where 

a;C/3i and ;;Cói {1 $ i $ t). 

Proof. When we, according to the arrangement given in the last sec
tion, make use of these chosen parameters Pï,Ói (and ai,'Yi) to construct 
LSTS(2n + 2}, the condition (1) will ensure the balance of all PC (see 
Lemma 5.2.1), the condition (2) will ensure the success of the part 2 (see 
"About Part 2") and the condition (3) will ensure the balance of all TC 
{see Lemma 5.2.2). 

Example 1. 
p = 13, g = 2, PC and TC see Table (§5.2). 
LSTS(15) = {({oot;oo2}UF13,8z)lx E F13}, Bx consists offollowing 

triples ( where y E Fi3 \ { x} and the symbol ( #) denotes the number of 
triples, for the selection method of parts 2, 3 and 5 see §5.2): 

(PC) (TC) (#) 
(1) ( 001; 002, x) 1 
(2) (001,y,glx + gsy) g} 6 

(002,y,gax + gsy) {;} 6 
(3) (x,y,gx+g6y) {:} [{:}, {i1i}] 6 
(4) (y,g2x+grny,g6x+gy) {;0JU1H~l [{:}, {!}, g}] 12 
(5) (y, g1 x + g•y, g9x + gsy) {!} [fi2o}] 4 

There is still another construction for LSTS(15). 

(PC) (TC) (#) 
(1) (ooi, 002, x) 1 
(2) (ooi,y,g6x + gy) Uil 6 

(002,y,g6x + gy) {111} 6 
(3) (x, y, gx + g6y) {:} [ {:}, {111}] 6 
(4) (y,g•x + g1y,g8x + g9y) UlGl{12°l [{:}, {!}, g}] 12 
(5) (y,g1x+g•y,g9x+gsy) {:} [ {12oll 4 

In the construction by us each STS(15) is not resolvable, soit is non
isomorphic to the known LSTS(15) (by [De] using computer), which 
is a large set of disjoint KTS(15). Moreover, our construction is also 
nonisomorphic to another known LSTS(15) (see [Tei2]), since our one 
has that character mentioned in §2.6, hut his construction satisfi.es Bi = 
Bo+ i lor all i E F13 (let the LSTS(15) = {Bï;i E F13}). 
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Example 2. 
p=31,g=3 
1C9, 2C27, 3C20, 4Cll, 5C25, 6C6, 7C21, 8Cl9, 10C28, 12C13, 

14C17, 15C24, 16C18,22C26,23C29 
LSTS(33) = {( {ooi, 002 } U Fai, B:e)lx E F3 i}, B:e consists of the fol

lowing triples ( where y E F31 \ { x} and j = 1, 2): 

(PC) (TC) ( #) 
(1) (ooi, 002, x) 1 
(2) (oo;,y,g'x+g11y) G!} 30 
(3) (x,y,g24x+gI5y) g;} [{;4}, G~}] 15 
(4) (y,g1x+g21y,g1'x+g11y) {2nGDL~} [G9}, {;3}, {:1}] 30 

(y,g6x+g6y,g26x+g22y) {264} {2s2} G!l [{is},{{1},gg}] 30 
(y,g2x+g21y,g1ox+g28y) g1}{2:J{2t} [ L~}, L82}, G!} 1 30 
(y,g21x+g1y,gsx+g2sy) {z

13H2:JGD [G!}, g;}, {i!ll 30 
(5) (y,g28x + 91oy,g3x + 92oy) G~} [Us}1 10 

For LSTS(33), we have still three other solutions. For brevity, below 
we will only write down part 2, 4 (part 1, 3, 5 are the sa.me as above ), and 
for triples (oo;, y,g~x+g"y) and (y,g0 x+gPy, g'Yx+g6y) denote by(>.,µ} 
and (a,{J}{'y,S}, for PC {!,6} denote by {P}, where P = min{,8,-/1}, 
for TC ( which consists of some PC) use similar symbol. 

The second LSTS(33): 

{2) {21, 7) 
(4) (13, 12)(20,3) 

(6, 6)(26, 22) 
(4, 11)(12, 13) 
{11, 4)(25, 5) 

The third LSTS(33): 

(2) (1, 9) 
( 4) (15, 24)(22, 26) 

(9, 1)(29, 23) 
(5, 25)(13, 12) 
{18, 16} (2, 27) 

The fourth LSTS(33): 

(2) {1,9) 
(4) {20,3){27,2) 

{6, 6)(26, 22} 
{5, 25)(13, 12} 
(8, 19)(22, 26) 

{7} 
{12}{3}{9} 
{6}{8}{14} 
{11}{13}{2} 
{4}{5}{1} 

{9} 
{6}{4}{2} 
{1}{7}{8} 

{5}{12}{13} 
{14 }{3}{11} 

{9} 
{3}{2}{1} 

{6}{8}{14} 
{5}{12}{13} 
{11}{4}{7} 
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[1, 7,9] 
[2,3,10] 
[4,8,11] 

[12,13,14] 

[1,7,9] 
[2,3,10) 
[4,8,11) 

[12,13,14] 

[l, 7,9] 
[2,3,10] 
[4,8,11] 

[12,13,14] 



Example 3. 
p= 31,g = 2 
1C18, 2C8, 3C14, 4C31, 5C27, 6C30, 7C22, 9C32, lOCll, 12C28, 

13C15, 16C21, 17C25, 19C26, 20C23, 24C34, 29C33, 35C35 
LSTS(39) = {( { 001, 002} U Fa1, Bx)lx E Fa7}, Bx consists of the fol

lowing triples: 
The first solution: 

(1) (ooi, 002, x) 
(2) (25, 17) 
(3) {1,18) 
{4) (8, 2}{20, 23} 

{3, 14}(10, 11) 
(4, 31}(31, 4) 
(6, 30}(23, 20) 
(2, 8}(18, l} 

(5) (28, 12}(34, 24} 

The seoond solution: 

(2) (15, 13} 
(4) (13, 15}(25, 17) 

(3, 14}(10, 11) 
(4, 31}(31, 4) 
(6, 30}(23, 20) 
(2, 8)(18, 1} 

The third solution: 

(2) 
(4) 

Example 4. 
p= 19,g = 3 

(15, 13) 
(18, 1)(30, 6) 

(3, 14)(10, 11) 
{11, 10)(2,8} 
(5, 27}(22, 7} 

(9, 32)(25, 17) 

1 
{17} 36 
{18} [1,18] 18 

{2}{13}{15} [2,8,12] 36 
{14 }{11 }{3} [3, 7,14] 36 
{5}{4}{9} [4,5,9] 36 

{6}{16}{10} [10,11,17] 36 
{8}{1}{7} [13,15,16] 36 

{12} (6] 12 

{13} 
{15}{17}{2} [2,8,12] 
{14}{11}{3} [3,7,14] 
{5}{4}{9} [4,5,9] 

{6}{16}{10} [10,11,17] 
{8}{1}{7} (13,15,16] 

{13} 
{1}{6}{5} [2,8,12] 

{14}{11}{3} [3,7,14] 
{10}{8}{2} [4,5,9] 
{9}{7}{16} [10,11,17] 
{4}{17}{15} [13,15,16] 

1C43, 2C51, 3C77, 4C39, 5C23, 6C60, 7C38, 8C40, 9C29, 10C76, 
11C22, 12Cl4, 13C65, 16C24, 17C20, 18C63, 19C49, 21C55, 25C30, 
26C33, 27C68, 28C56, 31C54, 32C45, 34C48, 35C75, 36C58, 37C64, 
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41C66, 42C61, 44C53, 46C52, 47C62, 50C67, 57C73, 59C69, 70C71, 
74C74 

LSTS(8I) = {({ooi,002} U F19,Bz);x E F19}, Bx consists of the 
following triples: 

(1) (ooi, 002, x) 1 
(2) (35, 75) {3} 78 
(3) (4, 39) {39} [4,39] 39 
(4) (11, 22)(8, 40) {22}{38}{18} [1,3,35] 78 

(1, 43)(69, 59) {35}{19}{16} [2,10,27] 78 
(2, 51)(23, 5) {27}{5}{32} [5,21,23] 78 
(3, 77)(66, 41) {1 }{37}{36} [6,15,18] 78 
(9, 29) (17, 20) {29}{20}{9} [7,8,38] 78 
(15, 72) (34, 48) {6}{30}{24} [9,19,29] 78 
(26, 33)(54, 31) {33}{31 }{2} [11,22,28] 78 
(37,64)(74, 74) {14}{4}{10} [12,14,37] 78 
(13, 65)(44, 53) {13}{25}{12} [16,24,31] 78 
(20, 17) (56, 28) {17}{28}{11} [17,20,36] 78 
(21, 55)(55, 21) {23}{21 }{34} [25,30,34] 78 
(40, 8)(72, 15) {8}{15}{7} [26,32,33] 78 

(5) {33, 26)(46, 52) {26} [13] 26 

5.4 About LD designs. 
In the third paper of [Lu], for constructing LSTS, Lu Jiaxi introduced 

a kind of auxiliary design-LO design, which played an important role in 
his work. And, by his imagination, the designs will be able to solve the 
LSTS problem for the remaining six orders. Besides, in our opinion, it 
is also worth investigating the LD designs as a new kind of combinatorial 
design. 

Let X be a set of n elements. We call a collection consisting of n + 2 
sets ! 1, C2 and Lz (x runs over X) a LD design of order n and denote 
it by LD(n) = LD[X] = {.C1,C2,lzlx EX}, if the following conditions 
(CI)-(C5) are satisfied: 

(Cl) Each Lz consists of ordered triples of the set X\ { x}. Each ei 
(j = 1,2) consists of ordered quadruples of the set X. 

(C2) For any x EX, (Ft x(X\{x }), Oz,Az) forms a transversal design 
T(3,n-1), where Oz = {{z} x(X\{x})lz E F4}, Ax = { {(g0 ,xo), (g1, x1 
),(g2,x2)}l(xo,x1,x2) E lz} and gis a fixed primitive element of F,t 
(so F, = {O,g0 ,g1,g2}). 

(C3) For any j E {1, 2}, (F4 x X, Ç, Ai) forms a transversal design 
T{4,n), where g = {{z} x Xlz E F4 } and Ai= {{(g0 ,x0 ),(g1,xi),(g2 , 

x2),(0,xa)}l{xo,x1,x2,xa) E Ö}. 
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( C4) There exists an element co E X such that ( x, x, x, Co) belongs to 
Ci, for a.rbitrary x EX and j E {1,2} 

(C5) For any ordered triple (xo,xi,x2) of the set X, either there 
exists x such that (x0 ,xi,x2) E Lz, or there exist x3 and j such that 
(xo,xi,x2,xa) E Ci. 

By definition, it is a kind of design that consists of several transver
sal designs having a certain balanced connection. By the equivalency 
between the transversal design and the orthogonal Latin squares, the 
definition can be stated as: 

LD(n) = LD[X] = {A1 ,A2,Az;x EX}, where X = {O, 1,2, .. "n -
l} and 

i) Each Az is an n x n array (a!t)~-l with a!z = a!t = oo (o :5 s, t :5 
n -1) and Àz = (a!t)a#,t# is a Latin square over X\{x}. 

ii) Each Ai = (a!1)~-l (j = 1, 2) is an idempotent Latin square over 
X having n disjoint transversals. 

iii) For any s,t E X, {a!,}zex U {a!tbe{1,2} = X U {oo}, where 
the element oo appears twice (if s 'f:. t) or element x appears twice (if 
s=t=x). 
lt is easy to verify the equivalence of both definitions. Here we only 
point out that 

Az=(a!1) ifa.ndonlyif lz={(s,t,a;,)}, 

Ai=(a!,) ifandonlyif C'={(s,t,a!0 •)}, 

where a!t belongs to the kth transversal. 
As an example, we give LD(4) = LD[X] (X = {0,1,2,3}): 

~= rn 
00 00 îl ,A, = [ t 00 0 

tl' 3 2 00 00 

2 1 00 3 
1 3 00 2 

A2= [~ 
1 00 0] . [ 1 0 2 

m· 
0 00 7 ,A, = ! 2 1 
00 00 1 0 
3 00 00 00 

A' = [~ 
3 1 

~i A' - r~ 
2 3 1] 1 3 1 0 2 

0 2 1 ' - 1 3 2 0 . 
2 0 3 2 0 1 3 
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A class of special LD designs, LD* designs, was a1so introduced by 
Lu. The LD* design satisfies besides (Cl)-(C5) the condition: 

(C6) (F4 x X, Ç, A8 )forms a transversal design T(4, n), where gis as 
in (C3) and A0 = {{(g0,xo),(g1,x1),(g2 ,x2),(0,x3)}; (xo,x2,x3,*) E 
.C1,(x11x2,xa,*1

) E .C2}. 
The ma.in use of the LD design for LST S designs is the following 

theorem (see [Lu] III, Theorem 1): 
IJ there exist both an LD(n) and an LSTS(n + 2), then there exists 

an LSTS(3n) also. (**) 
Of course, for giving full play to the theorem's role, one must investi

gate the existence of LD designs. All known results about LD and LD* 
designs in [Lu] are listed as follows: 

(1) For any positive integer a > 1, there exists an LD*(2°'). 
(2) For n = 5 (mod 8), there exists an LD(n). For n = 5 even an 

LD*(n) exists. 
(3) For n = 7 {mod 12), there exists an LD(n). For n = 7, 19 even 

an LD*(n) exists. 
(4) For n = 11 (mod 12) except n=23, 47, 59, 83, 107, 167, 179, 227, 

263, 299, 347, 383, 719, 767, 923 and 1439, there exists an LD(n). For 
n = 11 even an LD*( n) exists. 

(5) If there exist both an LD*(n1) and an LD(n2), then there exists 
an LD{n1n2). 

(6) For odd prime pand positive integer a, if there exists an LD(p°') 
then there exists an LD(3p°'). 

(7) For prime power q > 4 and positive integer n, if there exists an 
LD(l + n) then there exists an LD{l + qn). 

(8) For odd prime power q ~ 7 and 0 :::;;. t :::;; 2r-l - 3 {r > 2), if there 
exist both an LD(l + q) and an LD(l + (q l)t) then there exists an 
LD(l + (q - l)t + 2rq). . 

(9) For odd prime power q, q1 ~ 7 and 0 :::;; t :::;; (2r-t - 3)(q' - 3) 
(r > 2), if there exist both an LD(l + qq') and an LD(l + (q - l)t) then 
there exists an LD(l + (q - 1)t+2r qq'). 

(10) For n =2, 3, 6 there does not exist an LD(n). 
By these condusions, there are 33 unknown orders in n $ 110 for 

LD(n). And there are only 9 known orders for these s.aine n for LD*(n). 
We have done some study for the designs and give the following results: 

(A) For n > 1, if there exists an LD(n), then there exists an LD(3n). 
(B) For prime power q > 4 and n =/:: 6, if there exists an LD*(l + n) 

then there exists an LD*(l + qn ). 
( C) If there exist both an LD*( m) and asymmetrie LD*( n) then there 

exists an LD*(mn), where the symmetrie condition means (i0 , ii, i 2 , i 3 ) 
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E C1 ifandonlyif(i1 ,io,i2,i3) E C2 (let LD*(n) = {C1,C2 ,Cx;x E 
In}). 

By (A), which construction and proof will be shown in next section, 
we will get a lot of new orders for LD, for example 12, 24, 48, 66, 72, 89, 
102, 108, .... Therefore, the remaining unknown orders less than 110 will 
be only 9, 10, 14, 17, 18, 23, 26, 27, 30, 38, 41, 42, 46, 47, 54, 59, 62, 68, 
73, 74, 83, 86, 90, 98 and 107. And, by (B) and (C), the known orders 
for LD* will be extended, for instance the number of known orders for 
n :::; 110 has grown to 50 from 9. 

Finally, to show the imaginative way by Lu Jiaxi to construct the 
LSTS(v) for the remaining six orders v, we give the following concepts. 

Let LD(n) = {C1 ,C2 ,Cx;x EX} and LD(m) = {b,i2,.êx;x EX}, 
where IXI = n, IXI =mand X Ç X. If b Ç Ci for any j E {1,2} 
and fx Ç Cx for any x EX, then call the LD(n) contains sub-LD(m). 
Denote Dm= {n; 3 LD(n) containing sub-LD(m)}. Obviously, for any 
positive integer m, Dm CD and Di = D, where D = {nl3LD(n)}. in 
addition, if n E Dm then Dn :,) Dm. The imaginative way by Lu consist 
of three steps (20]. 

Step 1. Prove the theorem: If m + q' E Dm then m + qq' E Dm+q', 
where mis a positive integer, q, q' are prime powers and q 2: 5. 

Step 2. Prove 47 ED and 39 E D7. 
Step 3. Complete the construction LSTS(v) for v =141, 283, 501, 

789, 1501 and 2365: 

47 ED ---+ LSTS(141)===} LSTS(283) 

167E D39 c D--+LSTS(501)~ LSTS(1501) 
39 E D7 

(m=7,q'=32 
263 E D39 C D--+LSTS(789)-+ LSTS(2365) 

where (#) means by Step 1, --+ means by above-mentioned (**), ===} 
means by LSTS(v) ===} LSTS(2v+l) ([Ro]) and-. means by LSTS(l 
+4v) ..._. LSTS(l + 12v) ([Lu] IV). Now, Step 1 has been completed 
(by Lu Jiaxi and Liou Kai). So, the complete solution for the existence 
of LSTS only remains the Step 2, if running the way. 

5.5 A recursive construction for LD(3n ). 
Let In = {O, 1, ... , n - 1} be a set of n elements (n > 1) and Z3 = 

{O, 1, 2} be the residue class ring modulo 3. Suppose there exists an 
LD(n) = LD(In] = {.ê1,.ê2,.ê,lt E In}, where co= 0 in the condition 
(C4) satisfied by the design. For convenience, we denote ê1 =Mand 
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M = {(io,ii,i2)l3i3 EI" such that (io,i1,i2,i3) E M}. We define the 
following mappings from In into In: 

li(O,j,x,a) and (i,j,y,/3) E M, let 
gi: x 1-+ y (gi is denoted by ft or '2 when f3 = 0 or 1) 
t/>;: y ......._. i 
t/Ji: y 1-+ j 
u: i 1-+ y (only for /3 = 1). 

It is easy to see that these mappings are all one-to-one. And we have 

{
ft(x)=i ifandonlyif Yi(x)=i, 
h(x) = u(i) if and only if 9i(x) = u(i). 

Now, we will construct LD(3n) = LD[Z3 x In] = {.C1,.C2 ,.C",tlx E 
Z3, t E In} as follows (where k runs over Z3). 

The system ei (j = 1, 2) consists of three parts (each part gives 3n2 

ordered quadruples ): 
part 1. ((k,io),(k,i1),(k,i2),{0,ia)) provided (io,ii,i2,i3) Eb; 
part 2. {{k, io ), (k + 1, ii), (k - 1, /;( i2)), (1, i3)) provided ( io, ii, i2, ia) 

EM; 
part 3. {{ k, i1), (k - 1, io), (k + l,/;(i2)), (2, i3)) provided ( io, i 1, i 2 , i3 ) 

EM. 
The system .Co,t (t E In) consists of eight parts: 
part 1. ((0, io), (0, i1 ), (0, i2)) provided ( io, i1, i2) E ê, and io -:/: t -:/: i1; 

this gives { n - 1 )2 ordered triples. 
part 2. ((O,io),(±l,i1),(±l,t/Jt(i2))) provided (io,ii,i2) E M and 

io -:/: t; this gives 2n( n - 1) ordered triples. 
part 3. ((±l,i1),(0,io),(±l,t/Jt(i2))) provided {i0 ,ii,i2) E M and 

io f: t; this gives 2n( n - 1) ordered triples. 
part 4. {(1,io),(2,i1),(0,g,(i2))), ((2,i1),(l,io),(O,gt(i2))) provided 

(io, ii, i2) E Mand 9t{i2) f: t, u(t); this gives 2n(n - 2) ordered triples. 
part 5. ((1,io),(2,i1),(l,io)), ((2,i1),(l,io),(l,io)) provided {io,i1, 

i2) E Mand g,(i2) = t; this gives 2n ordered triples. 
part 6. ((1,io),(2,i1),(2,i1)), ((2,ii),(1,io),(2,i1)) provided (io,ii, 

i2) E Mand g,(i2) = u(t); this gives 2n ordered triples. 
part 7. ((l,io),(l,i1),(2,t/Ji2 (gï1(u(t))))), ((2,io),(2,i1),(l, 

~,2 (gê1 (t)))) provided (io,ii,i2) E Mand io-:/: i1; this gives 2n(n -1) 
ordered triples. 

part 8. ((±1, i), (±1, i), (O,u(t))) provided i E I"; this gives 2n ordered 
triples. 

The system Cz,t (x E Za\{O},t E J") consists of the ordered triples 
((ko +z, io), (k1 +x, i1 ), (k2 +x, i2 )) provided ((ko, io), (ki, ii), ( k2, i2)) E 
Co,t• 

73 



Theorem 5.5.1. For n > 1, if there exi8ts an LD(n) then there exi8ts 
an LD(3n ), which i8 given by the above-mentioned con8truction. [Ka3] 

Proof. 
We only need to verify the conditions (C3), (C2) and (C5), respec

tively. 
(C3) By the construction of[) (j = 1,2), the total number of the 

ordered quadruples in each Ci is 3 · 3n2 = (3n)2. Therefore, we only 
need to show that for any ordered pair P = ((k8 , i"), (ki, ii)) of the 
set Z3 x In there exists an ordered quadruple of C) such that its two 
components in the sth and the tth positions just are (k 8 , i 8 ) and (ki, ii) 
respectively, where 0 ~ s < t ~ 3. 

1. P = ({ko,io),(ki,ii)) 
(1) If ko =ki, let i2,i3 E In such that (i0 ,ii,i2,i3) Eb, then 

PC ((ko,io),(ko,ii),(ko,i2),(0,i3)) E part 1. 
(2) If ko =ki -1(mod3), let i2,i3 E In such that (io,ii,i2,i3) E 

M, then PC ((ko,io),(ki,ii),(ko - l,f;(i2)),(l,i3)) E part 2. 
(3) If ko =ki+ 1(mod3), let i2,i3 E In such that {ii,io,i2,i3) E 

M, then PC ((ko,io),(ki,ii),(ko + l,f;(i2)),(2,i3)) E part 3. 
2. P = ((ko,io),(k2,i2)) {similarly, P = ((ki,ii),(k2,i2))) 

(1) If ko = k2, let ii,i3 E In such that (io,ii,i2,i3) Eb, then 
PC ((ko, io), (ko, ii), (ko, i2), (0, i3)) E part 1. 

(2) If ko = k2 + 1 (mod 3), let i~ = f;-i(i2) and ii, i3 E In such 
that (io,ii,i~,i3) E M, then PC ((ko,io),(ko + l,ii),(k2,i2),(1,i3)) E 
part 2. 

(3) If ko = k2 - 1 (mod 3), let i~ = Jj1(i2) and ii, Ï3 E In such 
that (ii,io,i~,i3) E M, then PC ((ko,io),(ko - l,ii),(k2,i2),(2,i3)) E 
part 3. 

3. P = ((ko, io), (k3, i3)) (similarly, P =((ki, it), (k3, i3))) 

(1) If k3 = 0, let ii,i2 E In such that (io,ii,i2,i3) E Ci, then 
PC ((ko, io), (ko, it), (ko, i2), (0, i3)) E part 1. 

(2) H k3 = 1, let ii,i2 E In such that (io,ii,i2,i3) E M, then 
PC ((ko,io),(ko + 1,ii),(ko - l,f;(i2)),(l,i3)) E part 2. 

(3) If k3 = 2, let ii,i2 E In such that (ii,io,i2,i3) E M, then 
PC ((ko,io),(ko -1,ii),(ko + l,f;(i2)),(2,i3)) E part 3. 

4. p = ({k2, i2), (k3-, i3)) 

(1) H k3 = 0, let io,ii E In such that (io,ii,i2,i3) E Ci, then 
PC ((k2, io), (k2, ii ), (k2, i2), {O, Ï3)) E part 1. 

(2) H k3=1, let i~ = /ji(i2) and io,ii E In such that {io,ii,i~,i3) 
E M, then PC {{k2 + 1, io), {k2 - 1, i1), {k2, i2), (1, i3)) E part 2. 
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(3) If k3 = 2, let i~ = fj1(i2) and io, i1 E In such that (il! io, i~, ia) 
E M, then PC ((k2 - l,io),(k2 + l,i1),(k2,i2),(2,ia)) E part 3. 

(C2) By the construction of Ci:,t (x E Za, t E In), the total number 
of the ordered triples in each Ci:,t is ( n - 1 )2 + 4n( n - 1) + 2n( n - 2) + 
4n + 2n( n - 1) + 2n = (3n - 1 )2 • Therefore, we only need to show that 
for any ordered pair P = ((k",i"),(ki,it)) of the set (Za x In)\{(O,t)} 
there exists an ordered triple of Co,t such that its two components in the 
sth and the tth positionsjust are (k",i") and (ki,it) respectively, where 
0 ~ s < t ~ 2. 

1. P = ((ko, io), (ki, it)) 
(1) If ko = ki = 0 (then io :f. t :f. i1), let i2 E In \{t} such that 

(io,ii,i2) E ê" then PC ((O,io),(O,i1),(0,i2)) E part 1. 
(2) If ko = 0 :f. ki (then io :f. t), let i2 E In such that (io, i1, i2) E M, 

then P C { (0, io ), {ki, i1 ), (ki, 1/it( i2))) E part 2. 
(3) If ko :f. 0 = k1 (then i1 :f. t), let i2 E In such that (ii, io, i2) E M, 

then PC ((ko,io),(O,ii),(ko,1/it(i2))) E part 3. 
( 4) If ko = k1 :f. 0, then when io = ii, P C ((ko, io), (ki, i1), (0, u(t)) 

E part 8. And when io :f. ii, let i2 E In such that ( io, ii, i2) E M, 
then P C ((l,io),(l,i1),(2,fjii2 (g(1(u(t))))) E part 7 (if ko = 1) or 
PC ((2,io),(2,i1),(l,</li,(Yï1(t)))) E part 7 (if ko = 2). 

(5) If ko = 1, k1 = 2, let i2 E In such that (io, ii, i2) E M, then 

{ 

((1,io),(2,ii),(1,io)) E part 5 (when g1(i2) = t) 

PC ((1,io),(2,ii),(2,ii)) E part 6 (when g,(i2) = u(t)) 
((1,io),(2,ii),(O,gt(i2))) E part 4 (otherwise). 

(6) If ko = 2, ki = 1, let i2 E In such that (ii, io, i2) E M, then 

{ 

({2,io),(1,i1),(l,i1)) E part 5 (when Yt(i2) = t) 
PC ((2,io),(1,ii),(2,io)) E part 6 (when g1(i2) = u(t)) 

((2,io),(1,ii),(O,gt(i2))) E part 4 (otherwise). 

2. P = ((ko, io), (k2, i2)) 
{1) If ko = k2 = O, similar to the case 1(1). 
{2) If ko = 0 :f. k2 {then io :f. t), let i~ = 1/>ï1(i2) and i1 E In such 

that {io,ii,i~) E M, then PC ({O,io),(k2,ii),(k2,i2)) E part 2. 
(3) If ko :f. 0 = k2 (then i2 :f. t), then when i2 = u(t) P C 

{(ko,io),(ko,io),(O,i2)) E part 8. And else let i~ = gf"1(i2) and i1 E In 
such that 

{ 
(io,ii,i~) E M{if ko = 1), then PC ((1,io),(2,ii),(O,i2)) E part 4 

(ih io, i~) E M(if ko = 2), then P C ((2, i0), {1, ii), (0, i2)) E part 4 
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(4) H ko = k2 :/; 0, let i~ = 'l/Jt"1(i2) and i1 E In such that 
(ii,io,i2) E M, then when i1 :/; t, PC ((ko,io),(O,i1),{k2,i2)) E part 
3. And when i1 = t we have (t,i2,i~),(t,io,i~) E M so io = i2. 

i) H ko = 1, let z2 = gt"1(t) and z1 E In such that (io, z1)2) E M, 
then Pc {(1,io),(2,zi),(1,io)) e part 5. 

ii) H ko = 2, let z2 = gt"1(a(t)) and I1 E In such that (Ii, io, I2) E 
M, then Pc ((2,io),{1,I1),(2,io)) e part 6. 

(5) H 1 = ko :/; k2 :/; O, let i~,i1 E In such that 'l/J1~(gt" 1 (a(t))) = i2 

and (io,i1,i~) EM. 
i) H io :/; i1 then PC ((l,io),(l,i1),(2,i2)) E part 7. 
ii) H io = i1 (then i~ = io by (C4)), let I2 = gt"1(a(t)) then 

(io,i2,I2) E Mand ui(I2) = O"(t), so Pc ((1,io),{2,i2),(2,i2)) E part 
6. 

(6) H 2 = ko :/; k2 :/; 0, let i2, i1 e In such that tPi~(gt" 1 (t)) = i2 and 
(io,ii,i~) EM. 

i) Hio ::/: i1 then PC {(2,io),(2,i1),(l,i2)) E part 7. 
ii) H io = i1 (then i~ = io by (C4)), let z2 = gi"1(t) then 

(i2, io, I2) E M and ui(I2) = t, so P C ((2, io), (1, i2), (1, i2)) E part 
5. 

3. p = ((kll i1),(k2,i2)) 
(1) H ki = k2 = 0 (or k1 = 0 :/; k2 or k1 :/; 0 = k2) then similar to 

the case 2(1) (or 2(2) or 2(3)). 
(2) H ki = k2 :/; 0, let i~ = 'l/J't1(i2) and io E In such that 

(io,il!i2) E M, then when io :/; t, PC ((O,io),(ki,i1),(k2,i2)) E part 
2; when io = t similar to the case i1 =tin 2(4). 

(3) H k1 :/; k2 :/; 0 # ki then similar to the case 2(5)(6). 
(C5) We will show that for any ordered triple T = ((ko, io), (k1 , i 1), (k2 

, i 2)) of the set Z3 x I" there exists an .C:e,t (x E Z3 , t E I") or an Ö (j = 
1, 2) such tbat TE Cz,t or (Tl( ka, ia)) = ((ko, io), (ki, i1 ), (k2, i2), (k3, Ï3 

) ) E Ö. Below, for brevity, we also denote the last case by T E Ö. 
1.ko = k1 = k2(= k) 

(1) H (io, i1, i2) E ê, then TE part 1 of Ck,t· 
(2) H (io, it,i2) Eb then TE part 1 of ä. 

2. ko = ki ::/: k2 
(1) H io = i1t let t = 0'-

1(i2) then TE part 8 of Ck-z,t· 
(2) H io ::/: i1, let i~ E In such that ( io, i1, i~) E M 

i) When k2=ko+1 (mod 3), let t = O'-l h(t/>;1 (i2)), i.e" O'(t) 
2 

= h(t/>~1 (i2)) = 9t(t/>~1 (i2)), then T €part 7 of .Cko-1,t• 

ii) When k2 = k0 - 1 (mod 3), let t = fi(?;1(i2 )), i.e" t = 
2 

Ut(?~1 (i2)), then TE part 7 of Cko+i,t· 
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3. ko = k1 - 1 (mod 3) 
(1) If k2 =ki, let i; E In such that (io, ii, i~) E M 

i) When i2 = ii, let t = u-1 h(i~) i.e. a(t) = 9t(i~), then TE 
part 6 of C1e0 -1,t· 

ii) When i2 '/: ii, let t E In such that tPt(i;) = i2, then t '/: io (or 
else, from (t,i2,i;) E M, i2 = ii, a contradition) so TE part 2 of Cko,t· 

(2) If k2 = k1 - 1 {mod 3), let i~ E In such that (!1, io, i2) E M 
i) when i2 = io, let i2 E In such that (io, i1, i2) E M, let t = fi(i2) 

i.e. t = 9t(i2) then TE part 5 of Cko-1,t• 

ii) when i2 '/: io, let i2,t E In such that (ii,io,i2) E M and 
tlit(i2) = i2 then t '/: i1 (or else, from (t,i2,i2) E M, i2 = io, a contradi
tion) so T E part 3 of Cki.t· 

(3) If k2=k1+1(mod3), let i2,ia,t E In such that (io,i1,i2ia) E 
Mand 9t(i2) = i2 

i} When i2 = t (then t = 9t(i;) i.e. fi(i;) = t = i2) then T E 
part 2 of C1 • 

ii) When i2 = a(t) (then a(t) = Ut(i;) i.e. h(i;) = a(t) = i2) 
then TE part 2 of C2 • 

iii) Or else T E part 4 of C1e2 ,t. 

4. ko = ki + 1 (mod 3) 
{1) If k2 = k1 

i) when i2 = ii. let i;,t E In such that (ii,io,i;) E Mand 
t = ft(i2) i.e. t = 9t(i2) then TE part 5 of Lko+t,t· 

ii) when i2 '/: ii, let i2,t E In such that (io,ii,i~) E Mand 
7/it(i2) = i2 then t '/: io (see 3(1)) so TE part 2 of Cko,t· 

{2) If k2 = k1+1 (mod 3), let Îz E In such that (ii, io, i2) E M 
i) When i2 = io, let t = u-1 /2(i2) i.e. u(t) = 9t(i2), then T E 

part 6 of C1e0 +1,t· 

ii) When i2 '/: ii, let t E In such that tfat(i2) = i2, then t '/: i1 (see 
3(2)), so TE part 3 of C1ei.t· 

(3) If k2 = k1 -1(mod3), let iz,ia,t E In such that (io,i1,i2i3 ) E 
Mand gt(i2) = i2 

i) When i2 = t {then t = 9t(i2) i.e. fi(i2) = t = i2) then T E 
part 3 of C1 • 

ii) When i2 = a(t) (then u(t) = 9t(i2) i.e .. /2(i2) = u(t) = i2) 
then TE part 3 of C2 • 

iii) Or else T E part 4 of Ck2 ,t· 

The proof is completed. D 

Below, for more direct perception, we will explain the construction 
method using Latin square language through the example LD( 4) -+ 
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LD(12). In the statement, all mappings e (g;,fi,h,ef>;,t/J; and a) will 
appear in the form of a. pennuta.tion, and denote e(A) = [~(a;;)] and 
[x, A] = [(x,a1;)] for the array A = [a;;] and x E Z3 • The array AT 
denotes the transpose of the array A. The symbol < i,j > denotes the 
position on the intersection of the ith row and the jth column of an 
array. 

Take the example mentioned in §5.4 as the known LD( 4) = LD[ 14 ] = 
{.Î1,.î2,Î};t E /4}: 

JJ =M, 

A 00 

[

00 

Lo= : î I î1· 

3 1 l 0 2 
2 0 
1 3 

i] 

where the symbols ( *) and .! denote the elements * belonging to the 
transversals {J = 0 and {J = 1 in Latin square M, respectively. 

By the array M and the defi.nitions of all mappings, we have: 

90 = (~ 3 1 
;) ,g1 = (~ 3 1 

n' (Othrowof M) 3 1 1 3 

92 = (~ 3 1 i) ,g3 = (~ 3 1 2) g; = ith row of M 

0 2 2 0 3 ' 

ef>o = (~ 2 3 !),ef>1=(~ 1 0 

n' ( oolumnj of M) 1 2 1 2 
4'2 = (~ 3 2 ~).ef>3=(~ 0 1 3) ~; = the row index 

1 2 1 2 3 , 

(0 3 1 2) (2 1 3 

n' cth rowof M) 1/Jo = 0 1 2 3 ' tPl = 0 1 2 

(3 0 2 1) (1 2 0 3) o/J; = oolumn index 
..P2= 0 1 2 3 ,..Pa= 0 1 2 3 ' 
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fi = (~ 3 1 2) { the Oth row of M } ( 0 3 1 ~) =h. 1 2 3 /3=0 /3=1 3 2 1 

u= (~ 1 2 3) {the row index} 
0 3 2 /3=1 

[o 1 2 

~],B=h(M)=[~ 
2 1 

!l 3 2 1 1 2 
Let A = fi { M) = 1 O 3 3 0 

2 3 0 0 3 
Then we get 

[ (O,fl) {2,A) (1,AT)l 
L1 = (2,AT) (1,fi) (0,4) and 

(1,A) (O,AT) (2,C1) 

[ (0, i 2 ) (2, B) (J,BT)l 
L2 = (2, BT) (1, f 2 ) (O, f!) . 

{1, B) {O, BT) (2, C2) 

Let C, be the array [O, Ut(M)] a.fter substitution of elements (0, t) and 
(O,u(t)) in the position < i,j > for (1,i) and (2,j). Below, for brevity, 
we will denote the element (i,j) by ij in an array. 

[00 
03 01 m] [10 

03 22 02) 02 01 03 00 t=O 02 21 03 11 
[O, go( M)] = 03 00 02 01 0'(0)=1 03 12 02 23 =Co. 

01 02 00 03 20 02 13 03 

[02 01 03 
00) [02 10 03 

~] 00 03 01 02 t=l 20 03 11 02 
[O,g1(M)J = Ol 02 00 03 O'(l)=O 12 02 22 03 = C1. 

03 00 02 01 03 21 02 13 

[ro 00 02 01) [20 00 10 01] 01 02 00 03 t=2 01 11 00 23 
[O, 92( M)] = ~ 03 01 02 0'(2)=3 00 21 01 12 = C2. 

01 03 00 13 01 22 00 

[01 02 00 ro] [01 21 00 
10) 

[O,g,(M)) = : 00 02 01 t=3 11 00 22 01 
01 03 00 o-(3)=2 20 01 12 00 =Ca. 

03 01 02 00 13 01 23 

The following diagram shows the procedure from array Ct to array Et 
and Ft (take t = 0 as example ), where the symbols ( *) and ! represent 
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the second component *of the element (1, *) and (2, *) in array Ct. By 
the construction of Ci, the element ! in the < i, i > position of array U1 

is tPi(gë1(o'(t))), and the element(*) in the< j,j > position of array vt 
is t/l;(gë1(t)). The arrays Pt = Çt(M), Qt = TJt(M), where 

TJt = C/>o~x) </>1~x) </>2~x) <f>3~x)) · 
and x = gë1(u(t)), y = gë1(t). The array Et (or F,) is the array [2,P1] 

(or [1,Qt]) after substitution of all its elements on the ma.in diagonal by 
(0,u(t)). 

01 20 21 231 [g 0 1 3}-[g-+ - - - - - 0 )- - - - 2 j 
23 01 20 22 3 ! 0 2 .! --- - - - ~- -1 - (1) 

20 22 01 21 - o 2 ~ 1 i• - -:-c2>--- --.i et 
21 23 22 01 1 3 2 .Q. Q. - Q : (3) : 

l 1 1 

Similarly, we can get Ei, Fi, E2, F2, Ea, Fa. 
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1 1 1 

l 1 1 
1 

t 1 1 
(O) 1 1 

t 
(2) 

t 

r ~\~) ~ ~i Qt 
2 1 (3) 0 

3 0 2 (1) 

i 
01 13 11 12 

11 01 10 13 Ft 

12 11 01 10 

13 10 12 01 



Let D1 be the array tPt(M) after substitution of all elements in its tth 
row for element oo. For example, 

[o 1 2 3) [00 00 00 îl. 3 2 1 0 3 2 1 
t/Jo(M) = 1 0 3 2 --+Do= 1 0 3 

2 3 0 1 2 3 0 

Finally we get (t E In) 

[ (O,t~ (1, Dt) (2, D,) l 
Lo,t = (1, Dt ) Et Ct , 

(2, D'f) CT Ft t 

[ F 
(O,Dt) C'T l 

L1,t = (O,D,) (1, .Ît) (2, bt) ' 
C' (2,Df) E' t t 

[ E:' C" (O,DT)l t 

L2,t = c:'T F." {1, IJ_'[) . t 
(O,D,) (1,Dt) (2, Lt) 

where the arrays E; (or Fl) and E;' (or Fl') are obtained by substitution 
of all elements ( x + 1, y) and ( x -1, y ), respectively. The first component 
of the element (x,oo) in the array (x,ê,) is omitted. 
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Nederlandse samenvatting van 
de inhoud van het proefschrift 

'Large sets of block designs' 

van Kang Qingde 

Dit proefschrift gaat over het probleem: Bestaan er zgn. grote collec
ties blokkenpatronen (proefopzetten, 'block designs') - d.w.z. collec
ties blokkenpatronen zodanig dat elk mogelijk blok in precies één van 

patronen voorkomt? 
Voor Steiner tripelsystemen is dit een klassiek probleem, al door Cay
ley gesteld, en recentelijk door Lu Jiaxi vrijwel geheel opgelost. In 
hoofdstuk S geven we enkele alternatieve constructies voor collecties 
LSTS (p"+2) met p een priemgetal groter dan 3, en behalen nieuwe 
resultaten voor LO-patronen (dit zijn hulpstructuren ingevoerd door 
Lu Jiaxi ten einde de zes opengebleven gevallen te behandelen). 
De blokken van een Steiner tripelsysteem kunnen in grafentheore
tische tenninologie beschreven worden als ongerichte 3-cykels. Er 
zijn twee wezenlijk verschillende manieren om de kanten van een 3-
cykel te oriënteren, zodat het gerichte analogon bij blokgrootte 3 in 
twee gevallen uiteenvalt, namelijk dat waarbij de blokken transitieve 
toemooien op 3 punten zijn, en dat waarbij de blokken gerichte 3-
cykels zijn. Het eerste geval wordt onderzocht in hoofstuk 4; het 
tweede (dat van de Mendelsohn tripelsystemen) in hoofdstuk 2. De 
belangrijkste resultaten van hoofdstuk 2 zijn een recursieve construc
tie (l.MTS(v+2) ~ lMTS(uv+2) voor u=±l (mod 6)) en twee directe 
constructies (van lMTS (v) voor v:l of 3 (mod 6) en van 
!MTS (2"+2) voor ~3). Ten slotte worden in hoofdstuk 3 in plaats 
van 3-cykels nu k-cykels bekeken voor willekeurige k. 



1. (see !1]) 
Let 

PROPOSITIONS 

accompanying the dissertation 

LARGE SETS OF BLOCK DESIGNS 

by Kang Qingde 

Eindhoven, August 18, 1989 

A = !" + ( 0 Pk) 
Q"_" 0 

be a matrix of order n, where I" is a unit matrix of order n, 

1 5 k :5 n -1 and alla;= ±1 (1 :5 i :5 n). Denote d = g.c.d.(k,n). 
Then the matrix equation AX 0 bas a binary solution (i.e., X = (x1 , 

x2, ... , Xn)T, all x; = ±1) if and only if 

#{a; =lij= i (mod d)} = 0 (mod 2), VI 5 i 5 d. 

And when the condition is satisfied, the equation has 2d binary solutions. 

2. (see [1]) 
Let CCR,. be a shift register sequence of order n generated by the 

Boolean function Xn = 1 + xo. Then in the CC R's factor-incident graph: 
i) There are B(n)=lrp(2n) loops. 



ii) There are C( n) quadruple-lines, where 

C(n)= 

where cp is Euler cp-function. 

3. (see [1]) 
Let PC R" be a shift register sequences of order n generated by the 

Boolean function Xn = x0 • Then in the PC R's factor-incident graph: 
i) There are no loops or quadruple-lines. 
ii) There are D(n) double-lines, where 

4. (see [2]) 

D(n) = E 211-2(s- 2)cp(j). 
dln 
d,.t:n 

A fault-free tiling of a rectangle with a x b tiles exists if and only if 
the size of the rectangle is: 

{ 

pax qb (p ~ 2b = l,q ~ 2a + 1) 

(if a > 1) { q ~ 2ab + 1 
pab x q (p ~ 3 and ) 

q = ab + sa + tb < 2ab 

(ifa=l) pbxq (p~3,q~2b+l and(pb,q)#=(6,6)). 

5. (see [2]) 
A t-fault-frèe tiling of a. rectangle with 1 x b tiles exists only if the size 

of the rectangle is pb x q, where p ~ 3 

> b(p - 2) + p(b - l)[q] 
q_ (b-l)p-b 

(where 1$t5 b, [q] = q (mod b)), t $ [q] 5 b+t-1). 
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6. (see [2]) 
A 2-fault-free tiling of a rectangle with 1 x 2 tiles exists if and only if 

the size of the rectangle is 2p x q, where p ::'.:: 3, q ::'.:: 7 and (p, q) -:f. (3, 7), 
(3, 9) and ( 4, 7). 

7. (see [3]) 
If Sk + 5 is a prime power then there exists a CBHR(l6k + 12), i.e., 

a Complete Balanced Howell Rotation for 16k + 12 partnerships. 

8. The product graph Pm x C4n is k-graceful, where m, n, k are any 
positive integers, Pm is a path with m vertices and C4n is a circuit with 
4n vertices. 

9. ( Chang Yanxun & Kang Qingde) 
Let q = pn be a prime power. S.W. Golomb conjectured the following 

(see [4}, conjecture C). Any nonzero element in GF(q) can be written 
as a sum of twö primitive elements of GF(q). This conjecture is true if 
one of the following cases holds: 

(1) q > 7 x 1011 ; 

(2) n ~ 2 and pn :f:. 4. 
On the other hand, for q=3, 4, 5, 7, 11, 13, 19, 31, 43 and 61 not 

every nonzero element in GF(q) is the sum of two primitive elements. 

10. Fora nonsingular Boolean function Xn = xo + f(xi, x 2 , •.. , Xn-i) 

d (0) !:' ( k ) 'f f( (0) (0) (0) ) an X1c E ""'2 1 ~ $; n-1, 1 x1 ,x2 , •• "xn-l = 1 then the 
number 

n-1 

8(0) = L x~o)2n-1-k 
k=l 

is called a $ma.ll term of the function f. And the collection of all small 
terms of f is denoted S /· 

J:I the Boolean function f will genera.te a de Bruijn sequence of order 
n, then 

(1) In each of the following sets there exists a number, at least, 
which does not belong to S 1: 

{l(2n-l - 1), f(2n-l - 1)}, Ü n = 1 (mod 2); 
dc2n - 4), l(2n+l - 3), i(2n-l - 2), l(3 · 2n-l - 1)}, ü n = 2 

(mod 4); 
{ f,,(2" ..,-16), f,,(2n+l -15), 1\(2n+2 -13), 1

1
7 (2n+3 - 9), lr(15 • 

2n-l - 1), 1\(13 · 2n-l - 2), f,,(9 • 2n-l - 4), i17 (2n-l - 8)}, if n := 4. 
(mod 8); 
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{ A(3 • 2n -14), A(5 · 2n -12), i\(3 • 2n+i -11), 1
1
7 (7 · 2n - 10), 

.1...(3 · 2n-l - 7) 1-(5 · 2n-l - 6) .1...(7 • 2n-l - 5) .1...(11 · 2n-l - 3)} if 
17 ' 17 ' 17 ' 17 , 
n = 4 (mod 8). 

(2) In each of the following sets there exists a number, at least, 
which is contained in S 1: 

{l(2n - 1), i(2n-2 -1)}, if n = 0 (mod 2); 
nc2n -1), f(2n -1), *<2n-3 -1)}, if n 0 (mod 3); 
{f(2n -1), t(3 · 2n-l - 5), t{5 · 2n-l - 6)}, if n := 0 (mod 3); 
{;il (2n -1), ; 1 (2n -1), ii (2n -1), 3

8
1 (2n - 1), !~(2n-5 -1)}, if 

n = 0 (mod 5); 
{.1..(2n-1) ..!.(2n-1) 12 (2n-1) ..!..(17·2n-l_24) ..!..(3·2n-l 

31 , 31 ' 31 , 31 ' 31 
17)}, if n = 0 (mod 5); 

{...2...(2n -1) lL(2n -1) lO (2n 1) .1...(9 · 2n-l - 20) .1...(5 · 2n-l -
31 ' 31 ' 31 ' 31 ' 31 

18)}, if n = 0 (mod 5); 
{.'L(2n-1) li(2n-1) ..l.(7·2n-l_19) ..!..(19·2n-l_25) .1...(25· 

31 ' 31 ' 31 , 31 , 31 
2n-l - 28)}, if n :: 0 (mod 5); 

{ll(2n - 1) 13 (2n - 1) .1...(11 • 2n-l - 21) .1...(13 • 2n-l - 22) 
31 ' 31 ' 31 ' 31 ' f1 (21·2n-l - 26)}, if n = 0 (mod 5); 

{
15 (2n 1) ..!..(15·2n-l_23) ..!..(23·2n-l_27) ..l.(27·2n-l_29) 
31 ' 31 ' 31 ' 31 ' 

3\ (29 · 2n-l 30)}, if n:: 0 (mod 5). 
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