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The Landau-de Gennes free energy plays a central role in the macroscopic theory of anisotropic fluids. Here,
the ideal, entropic contribution to this free energy—that is always present in these systems, irrespectively of the
detailed form of interactions or applied fields—is derived within the quasiequilibrium ensemble and successfully
tested. An explicit and compact form of the macroscopic, ideal entropy is derived. This entropy is nonpolynomial
in the order parameter, diverging logarithmically near the fully oriented state and therefore restricting the order
parameter to physical admissible values. As an application, it is shown that the isotropic-nematic transition within
the Maier-Saupe model is described in a simple and very accurate manner.
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I. INTRODUCTION

Anisotropic liquids are often modeled on the level of
kinetic theory, where their state is described by the single-
particle orientational distribution function. Examples comprise
liquid crystals and liquid-crystalline polymers [1], general
colloidal suspensions of anisotropic (e.g., fiber suspensions)
or dipolar (e.g., ferrofluids) particles [2], and more recently
also suspensions of self-propelled particles [3]. The Fokker-
Planck or Smoluchowski equation provides a solid physical
framework, which is flexible enough to include different types
of (typically mean-field) interactions as well as dynamical and
flow properties [4–7].

For many purposes, however, a more macroscopic descrip-
tion is sufficient, where the systems are described by the orien-
tational order parameter [8]. Such a macroscopic description
is of course more economical and therefore often preferred
for large-scale numerical simulations. The formulation of
the model in terms of order parameters has the additional
benefit of concentrating on the essential physical mechanisms
[9]. For the macroscopic theory of anisotropic fluids, the
Landau-de Gennes free energy is the important cornerstone [1].
However, different variants of the macroscopic theory have
been proposed that should correspond to the same underlying
system. Many different closure approximations have been
suggested in the past, in order to arrive at closed-form
macroscopic equations (see, e.g., Refs. [10,11] and references
therein). Identifying an effective Landau-de Gennes free
energy a posteriori [5,12], it is often overlooked that these
closure approximations also change static properties, like the
location of the isotropic-nematic transition in liquid-crystals.
One should also mention that the classical, fourth-order
Landau-de Gennes potential was meant to describe the vicinity
of the phase transition and is therefore not reliable when
used naively in strong external (electric or magnetic) fields
or flows. This deficiency has been noted several times in
the literature [13–16] and, e.g., led to the suggestion of an
empirical penalty function [13]. An extended effective free
energy for liquid-crystals based on Onsager’s excluded volume
entropy functional [17] is explored, e.g., in Refs. [18,19].
Here, we focus on the ideal, entropic contribution to the
effective free energy of noninteracting orientational degrees of

freedom, which is present in all anisotropic fluids, in addition
to specific interaction or field-contributions. It is shown that
this ideal entropy is quadratic in the order parameter only
near the isotropic state but nonpolynomial in general. We
derive the macroscopic form of the ideal entropy within the
quasiequilibrium ensemble that is obtained from the maximum
entropy principle. For weak uniaxial ordering, our results
reduce to those obtained in Ref. [15]. For strong ordering,
on the other hand, the entropy diverges logarithmically near
the fully oriented state, thereby limiting the order parameter
to physically admissible values.

II. ORIENTATIONAL ENTROPY

In this work, only spatially homogeneous systems are
considered in order to concentrate exclusively on the ideal ori-
entational entropy. For also including translational degrees of
freedom and spatial inhomogeneities, see, e.g., Refs. [8,20,21]
and references therein.

A. Boltzmann entropy

Let f (u) denote the orientational distribution function, with
u ∈ S2 a three-dimensional vector on the unit sphere S2. For
a proper probability density, f has to be positive semidefinite
f � 0 and normalized,

∫
d2u f (u) = 1, where the integration

is performed over S2. The Boltzmann entropy functional for
ideal (noninteracting) anisotropic fluids is given by

S0[f ] = Siso − kB

∫
d2u f (u) ln[4πf (u)], (1)

with kB the Boltzmann constant. In the isotropic state, f (u) =
1/(4π ), S0[f ] reaches its maximum value Siso. Therefore, the
equilibrium state is isotropic in the absence of interactions or
external fields. For simplicity, we set Siso = 0 in the following.

The total free energy can be written as

F (f ) = −T [S0(f ) + Sex(f )] + E(f ), (2)

where Sex denotes the excess entropy due to entropic (excluded
volume) interactions [17,18]. Energetic interactions and exter-
nal field effects are included in the energy functional E.
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B. Orientational order parameters

Deviations from the isotropic state can be quantified via the
scalar orientational order parameter, defined by

S2 =
∫

d2uP2(u · n)f (u), (3)

where P2(x) is the second Legendre polynomial, P2(x) =
(3x2 − 1)/2, and n denotes the axis of mean orientation, the
so-called “director” [1]. The isotropic state is characterized by
S2 = 0, while S2 = 1 and −1/2 correspond to the perfectly
parallel and planar alignment, respectively. Note that S2 is
invariant under inversion n → −n, as required by the head-tail
symmetry u = −u of anisotropic particles. An exception are
polar fluids, where the average orientation is nonvanishing and
proportional to the average polarization.

Equation (3) characterizes the orientational ordering in the
case of uniaxial symmetry around the director n. In the general
case, the orientational ordering can show biaxial symmetry [2]
and the order parameter is represented by a symmetric second
rank, so called alignment or order parameter tensor

Q =
∫

d2u [uu − (1/3)1]f (u), (4)

where 1 is the three-dimensional unit matrix. From Eq. (4),
the scalar order parameter (3) can be obtained from Q by
S2 = 3

2 nn :Q.

C. Canonical distribution functions

On a macroscopic level, anisotropic fluids can be described
solely in terms of orientational order parameters, without
reference to underlying probability densities. A cornerstone
of this macroscopic description is an effective Landau-de
Gennes free-energy F ∗(S2) for the order parameter [1].
Different routes to such a macroscopic description have been
proposed in the past, resulting in different, nonequivalent
formulations. Powerful thermodynamic approaches have been
developed [8] that allow formulation of the macroscopic model
directly. Unfortunately, however, this approach does not allow
derivation of the different terms and coefficients and, therefore,
it is possible neither to identify the microscopic origin of the
coefficients in the Landau-de Gennes free energy nor to derive
higher-order corrections.

Here, we suggest a statistical mechanics derivation of the
ideal contribution to the macroscopic entropy S∗

0 (S2). Due to
the elimination of degrees of freedom, the derivation shares the
common problem of statistical physics that it is not unique and
depends on chosen approximations. Typically, the Landau-de
Gennes free energy is identified a posteriori, after using
closure approximations that have been suggested for predicting
dynamical properties [12]. Since the entropy S0 is a static
quantity, there is in principle no need to rely on such closures.

What is needed, however, is the choice of a relevant
ensemble corresponding to the macroscopic level. Onsager
suggested in Ref. [17] a one-parametric family of distribu-
tion functions (A1) mainly for analytical convenience, see
Appendix A. Nevertheless, the highly nonlinear behavior of
the entropy as a function of this parameter gives little hope of
obtaining a simple form of the macroscopic entropy.

For the subsequent derivation, we now turn to a more
realistic ensemble. In many cases, ranging from polymer
solutions and melts, liquid-crystalline systems, polar liquids,
the quasiequilibrium ensemble derived from the maximum
entropy principle provides a good description of the chosen
macroscopic quantities of interest [22]. In the context of liquid-
crystalline systems, the corresponding ensemble is represented
by the family of Bingham distributions [23,24],

f (u) = 1

4π
exp [u · A · u − G(A)]. (5)

Without loss of generality, the symmetric matrix A is chosen as
trace-free from now on. Positivity of the distributions [Eq. (5)]
is obvious. The normalization is ensured by the cumulant
generating function

G(A) = ln
1

4π

∫
d2u eu·A·u = 1F1

(
1

2
,
3

2
,A

)
, (6)

where 1F1(a,b,A) is the confluent hypergeometric function of
matrix argument [23]. The function G(A) has the properties
G(0) = 0 and Q = ∂G/∂A. Higher order cumulants are
derived by higher derivatives of G(A). Thereby, the constraint
tr(A) = 0 should be imposed only after the derivative of the
generating function has been taken in order to ensure the result-
ing Q is indeed traceless. The ensemble of Eq. (5) is found to
provide reliable predictions under various circumstances, even
nonequilibrium flow situations [10,25,26]. Moreover, Eq. (5)
describes the canonical equilibrium distribution in the presence
of an applied field (when die particles have no permanent
dipole moment) or a mean-field-type interaction, as well as
the stationary distribution in uniaxial elongational flow for a
suitable choice of the tensor A proportional to the elongation
rate [27].

III. MACROSCOPIC ENTROPY

With the relevant ensemble f , Eq. (5), the macroscopic
entropy is defined by S∗(Q) ≡ S0[f ], i.e., the microscopic
expression evaluated with the relevant distributions [15,22,28].
Inserting Eq. (5) into (1), the macroscopic entropy can be
written as

S∗
0 (Q)/kB = −Q :A + G. (7)

Therefore, S∗
0 is the Legendre transform of G, which expresses

the thermodynamically consistent change of independent
variables from A to Q. An explicit form of S∗

0 (Q) is difficult to
achieve, since the relation A(Q) needed to eliminate A from
Eq. (7) is known only implicitly.

For weak orientational ordering, the first terms in the
expansion of G(A) are given by Eq. (B4). From this, a series
expansion of A in Q can be obtained; see Eq. (B6). Inserting
these expressions into Eq. (7), the macroscopic entropy
has the following expansion valid for weak orientational
ordering:

S∗
0 (Q)/kB = −15

4
tr(Q · Q) + 75

14
tr(Q · Q · Q)

− 3825

784
[tr(Q · Q)]2 + O(Q5). (8)
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In Eq. (8), we made use of the fact that tr(Q · Q · Q ·
Q) = (1/2)[tr(Q · Q)]2, see, e.g., Eq. (10.59) in Ref. [29].
Equation (8) differs from the corresponding expression,
Eqs. (10.41) and (10.50) given in Ref. [12], SDE

0 (Q)/kB =
−(1/2)tr(Q · Q). It is worth mentioning that SDE

0 does not
only fail for strongly ordered states, but is also in contra-
diction with Einstein’s fluctuation theory [30]. In the present
context, the latter states that the fluctuations in the isotropic
state 〈QQ〉iso = (4π )−1

∫
d2u QQ = (15/2)1 are identical to

〈QQ〉iso = −k−1
B (∂2S∗

0/∂Q∂Q)Q=0, which is indeed fulfilled
for Eq. (8).

For the important special case of uniaxial symmetry around
the director n, the alignment tensor Q can be written as Q =
S2(nn − 1

3 1), where the (Maier-Saupe) order parameter S2 has
been defined in Eq. (3). The expression for the entropy [Eq. (7)]
reads in case of uniaxial symmetry

S∗
0 (S2)/kB = −2

3
a(S2)S2 + Guni[a(S2)], (9)

where Guni is the corresponding generating function defined in
Eq. (B7). Guni can be evaluated in terms of the complementary
error function, Eq. (B8), from which the following asymptotic
expressions can be derived:

S∗
0 (S2)/kB =

⎧⎪⎪⎨
⎪⎪⎩

− 5
2S2

2 + 25
21S3

2 − 425
196S4

2 , |S2| � 1

ln(1 − S2) + 1 − ln 3, S2 → 1
1
2 ln

(
1
2 + S2

) + c1/2, S2 → − 1
2 ,

(10)

with c1/2 = 1
2 [1 + ln( 4π

3 )] − ln(2). The fourth-order expan-
sion in Eq. (10) for weak ordering has been previously derived,
see Eq. (4.22) of Ref. [15]. The asymptotic behavior of
the entropy near the perfectly aligned (S2 = 1) and perfect
planar-ordered (S2 = −1/2) state are less known. A simple and
rather accurate interpolation formula between these limiting
cases is provided by

S∗
0 (S2)/kB = ln[(1 − S2)(1 + 2S2)1/2]

− S2
2 + 4

21
S3

2 + S4
2

[
38

21
− 3

2
ln(3)

]
. (11)

Figure 1 shows the dimensionless entropy S∗
0 (S2)/kB, where

Eq. (9) is evaluated numerically by the Newton method
as implemented in the software package Mathematica. We
observe that the fourth-order expansion of S∗

0 provides accurate
results for −0.2 � S2 � 0.5 but fails for stronger ordering.
Contrary, the asymptotic expression for S2 → 1 captures the
strong decrease of entropy for strong alignment accurately for
S2 � 0.8. The divergence of the entropy near planar ordering
is accurately described by the asymptotic expression for
S2 � −0.3. Although Eq. (11) matches only the leading order
term for small S2, the interpolation formula is found to provide
a very good approximation over the whole admissible range
−1/2 � S2 < 1. If needed, even more accurate interpolation
formulas can be obtained by matching the next orders in the
regime of weak orientation.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
S

2

-5

-4

-3

-2

-1

0

en
tr
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y

numerical
quartic
asymptotic
interpolation

FIG. 1. (Color online) Squares show the dimensionless entropy
S∗

0 /kB as a function of the order parameter S2 for the case of uniaxial
symmetry, Eq. (9). Shown are also the limiting cases for weak (dashed
line) and strong (dot-dashed line) ordering; see Eq. (10). On this
scale, the interpolation formula [Eq. (11)], shown as solid line, is
indistinguishable from the numerical result of Eq. (9).

In the general case, the alignment tensor Q shows not
uniaxial but biaxial symmetry and is described by S2 and an
additional biaxiality parameter B2:

Q = (S2 + B2/2)nn + B2mm − (S2/3 + B2/2)1. (12)

The uniaxial case is recovered for B2 = 0. In general, the
directions perpendicular to n are not equivalent and the
parameter B2 quantifies the ordering parallel to the second
eigenvector m of Q (see, e.g., Ref. [29]). In Appendix B2,
the special case S2 = 0,B2 	= 0 is worked out and also there
a logarithmic divergence near the fully ordered state is found,
Eq. (B13). In the general case, S2 	= 0,B2 	= 0, we evaluate
the entropy S∗

0 numerically from Eqs. (7) and (6) for many
different matrices A. The upper half of Fig. 2 shows the
numerical result of S∗

0 plotted parametrically as a function of
S2(A) and B2(A). We observe that S∗

0 is symmetric in B2 and
therefore reserve the lower part of Fig. 2 for the fit function.
The numerical results as well as the analytical result obtained
in Appendix B2 suggest that the entropy decreases in a similar
manner when S2 or B2 deviate from their zero equilibrium
values. Therefore, we treat S2 and B2 on a similar footing in
the desired expression for S∗

0 (S2,B2). Since B2 is bounded by
|B2| � 2

3 (1 − S2) � 1 [29], we introduce the scaled variable
B = 1 − (3B2/[2(1 − S2)])2 which is bounded by 0 � B �
1.1 We also introduce the quantity S = (1 + 2S2)(1 − S2)2,
which is also restricted to the unit interval. Next, we make an
ansatz of the form S∗

0 (S2,B2) = f (Q), with Q = SB = (1 +
2S2)[(1 − S2)2 − (3B2/2)2]. Instead of S2,B2, it is common
to use the two tensorial invariants I2,I3 of Q. The invariants

1From Eq. (12) follows a relation between the order parameters and
the tensorial invariants (introduced later): I2 = (4S2

2 + 3B2
2 )/12 and

I3 = 2S2
2/27 − S2B

2
2 /6, from which follows that the entropy and any

scalar as function of the invariants is symmetric in B2.
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FIG. 2. (Color online) Contour plot of the dimensionless entropy
S∗

0 /kB as a function of the order parameters S2 and B2. The upper half
shows the numerical result from Eq. (7) for many different matrices
A in Eq. (6). In the lower half, the entropy is evaluated from Eq. (13).

can be chosen as I2 = 1
2 tr(Q · Q) and I3 = tr(Q · Q · Q) =

3 det(Q), while I1 = tr(Q) = 0 by construction. In terms of the
invariants, we find Q = 1 + 9(I3 − I2). A simple-fit function
that reproduces the leading term in the known limiting cases
is given by

S∗
0 (Q)/kB = ln(

√
Q) + 2

3
(
√
Q − 1). (13)

As seen from Fig. 2, the simple form of Eq. (13) reproduces
the numerical results rather accurately within the whole
physically admissible domain. Indeed, Eq. (13) in its uniaxial
limit reproduces the exact result and Eq. (11) to within 2% for
S2 ∈ [−0.1,0.6] and to within 11% for S2 outside this range.
It was noted in Ref. [31] that a term quadratic in the third
invariant I3 is needed to describe certain biaxial phases. Our
Eq. (13) reduces for small values of the tensorial invariants
to the (entropic contribution to the) sixth-order Landau-de
Gennes expansion [31]:

S∗
0 (I2,I3) = −15

2
I2 + 15

2
I3 − 27I 2

2 + 54I2I3

+ 1215

8
I 3

2 − 27I 2
3 + · · · (14)

The Landau-de Gennes free energy contains additional terms
describing effective interactions (e.g., nematic, see next sec-
tion). It is interesting to note, however, that already the ideal
entropic contribution contains all powers of the invariants with
rather large prefactors, such that the sixth-order expansion
might be of little practical use.

Eqs. (11) and (13) and their corresponding limiting cases (8)
and (10) are the main result of this work. Note that these
expressions are universal in the sense that they are inde-
pendent of applied fields or specific interactions, since they

describe the contribution of orientational ordering to the ideal
entropy.

IV. EXAMPLE APPLICATIONS

In the following, two examples are presented, in order
to illustrate the usefulness of the main results of Eqs. (8)
and (10).

A. Dilute suspension in magnetic field

In the presence of an external magnetic field H, the rod-like
particles attain induced magnetic moments, which lead to the
energy contribution,

E[f ] = − 1
2χQ :HH, (15)

where χ is the susceptibility (more precisely: the diamagnetic
anisotropy) and H denotes the magnitude of H. The
free-energy F ∗ is given by Eq. (2), where Sex = 0 for
noninteracting rods.

For weak fields χH 2 � kBT , the induced ordering is
given to leading order in the external field H by Q =
(χ/15kBT )(HH − (1/3)H 21) + . . . Since the external field
induces uniaxial ordering along the field direction H = Hn,
the order parameter is of the form Q = S2(H )[nn − (1/3)1],
where

S2(H ) = 1

15
h2 + 1

315
h4 − 1

4725
h6 + · · · , (16)

with the dimensionless quadratic field strength h2 =
χH 2/kBT . In the opposite case of a very strong external
field, h � 1, the asymptotic expression for the entropy can
be used, Eq. (10), and the approach to the fully oriented state
is described by S2 = 1 − 3/h2.

For general values of H , the induced ordering S2(H ) can be
obtained from ∂F ∗/∂S2 = 0, using the interpolation formula
of Eq. (13):

h2

3
= S2[3 + 2

√
1 + 2S2(1 − S2)]

(1 + 2S2)(1 − S2)
. (17)

Equation (17) gives h2(S2), which implicitly defines S2(h2).
Unfortunately, the explicit expression for the latter is rather
lengthy. As expected, S2 increases monotonically with h. The
expansion of Eq. (16) gives accurate values for h � 2, where
it deviates by 5%, whereas already for h � 4, the asymptotic
expansion is accurate to better than 2%.

B. Isotropic-nematic transition in liquid crystals

On a mean-field level, Maier and Saupe proposed an
account of effective interactions between particles in a mean-
field manner [1,32]:

E = − 3
4kBT UQ :Q, (18)

where T is the temperature and U denotes the dimensionless
interaction strength, which is a decreasing function of the
molecular volume. On the macroscopic level, the free-energy
functional Eq. (2) from Maier-Saupe interactions Eq. (18) and
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FIG. 3. The dimensionless Landau-de Gennes free-energy
F ∗/kBT as a function of the order parameter S2, Eq. (20). From
top to bottom, the strength of the Maier-Saupe interaction energy,
Eq. (18), increases as U = 0,2,4,6,8.

the ideal entropy Eq. (8) results in the Landau-de Gennes free
energy:

F ∗/kBT = 3

4
(5 − U ) tr(Q · Q) − 75

14
tr(Q · Q · Q)

+ 3825

784
[tr(Q · Q)]2 + O(Q5). (19)

For U < U ∗ = 5, the isotropic state with Q = 0 is stable but
loses its stability at U ∗. The same conclusions have been
obtained in Ref. [33] from an independent stability analysis.
Equation (19) is the classical Landau-de Gennes form of
the free energy with correct tensor structure. Same as in
classical Landau theory but different to the result [12], only
the coefficient of quadratic term changes sign at transition,
while the other coefficients are constant. In fact, the suspicious
appearance of the Maier-Saupe interaction strength U in the
cubic and quartic terms in [12] can be traced back to the
decoupling approximation in the equations of motion.

It is important to keep in mind that Eq. (19) displays only
the first terms of an expansion [1]. In order to discuss the
isotropic-nematic transition, we resort to the full expression of
Eq. (11), F ∗/kBT = − 1

2US2
2 − S∗

0/kB. The behavior of the
Landau-de Gennes free energy [Eq. (20)] is shown in Fig. 3.
The familiar scenario of a first-order phase transition is evident.
Note, however, that F ∗ diverges for S2 → 1 (and S2 → −1/2),
which guarantees that the order parameter stays within the
physically admissible range. Obviously, such a restriction is
absent in the fourth-order expansion.

In order to discuss the isotropic-nematic phase transition in
more detail, one needs to find the minima of F ∗. Thanks to the
simple form of F ∗, one finds that S2 = 0 is always an extremum
of F ∗(S2), becoming a maximum instead of a minimum for
U > U ∗ = 5. A second minimum of F ∗ arises at U � Uc. The
governing quartic equation resulting from inserting Eq. (11) in
dF ∗/dS2 = 0 is, however, difficult to study analytically. Since
nematics order typically parallel to the director, the planarly
ordered state does not play a crucial role. Therefore, a simpler
entropy function than (11) can be employed that does not
include the pole at S2 → −1/2. Ensuring the correct limiting

0 1 2 3 4 5 6 7 8 9 10
U

0

0.2

0.4

0.6

0.8

1

S
2

FIG. 4. The orientational order parameter S2 as a function of the
dimensionless interaction strength U of the Maier-Saupe potential,
Eq. (18). Solid line shows the result of Eq. (21), whereas the dashed
line is the result of Ref. [5]. Symbols denote the result from direct
numerical solution of the self-consistency relation.

behavior at weak ordering and near the fully aligned state, the
corresponding free energy with Maier-Saupe interaction reads

F ∗/kBT = −U

2
S2

2 − S2(1 − S2)2−ln(1 − S2)−S3
2 (1−ln 3).

(20)

This free-energy function is very similar to the one resulting
from Eq. (11), and Eq. (13) also has S2 = 0 as extremum,
which at U > U ∗ becomes a maximum instead of a minimum.
The second minimum of F ∗ for U � Uc is described by

S2(U ) = 1

6(2 − ln 3)

[
10 − 3 ln 3 − U

+
√

U 2 + 2(2 − 3 ln 3)U + 9(ln 3)2 − 20
]
, (21)

where Uc = 2
√

3(2 − ln 3) + 3 ln 3 − 2 ≈ 4.5847 is the lo-
cation of the isotropic-nematic phase transition. The value
of the order parameter at the transition S2(Uc) = 1 − [6 −
3 ln 3]−1/2 ≈ 0.39188. Figure 4 shows that the values obtained
here are very close to those obtained from directly solving the
self-consistency relation S2 = ∫

d2u P2(u · n)eUS2P2(u·n)/Z,
where Z denotes the partition function Z = ∫

d2u eUS2P2(u·n).
The latter values are Uc ≈ 4.54 and S2(Uc) ≈ 0.43 [1,32]. Due
to decoupling approximations, the results obtained in Ref. [5],
Uc = 8/3 and S2(Uc) = 1/4, deviate considerably from the
exact values.

It should be noted that, in general, the excess entropy due
to excluded volume interactions [17] should be added to the
free energy of Eq. (20), which will bring additional nonlinear
contributions to the effective free-energy F ∗ [18,19].

V. CONCLUSIONS

In this work, the macroscopic form of the ideal orientational
entropy in terms of the order parameter is derived within
the quasiequilibrium ensemble (which corresponds to the
maximum entropy principle). The limiting cases of weak and
strong orientational ordering are obtained exactly, Eqs. (8)
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and (10). Approximate interpolation formulas are proposed,
Eqs. (11) and (13), which are found to be quite accurate
over the whole range. While the orientational entropy shows
the expected fourth-order expansion near the isotropic state,
the entropy diverges logarithmically near the fully oriented
phase, thereby assuring that the order parameter always stays
within the physically admissible range. When combined with
the Maier-Saupe potential, the present approach accurately
predicts the isotropic-nematic phase transition and provides
analytical expressions for the critical point.

The present results can also be extended for spatially inho-
mogeneous systems, where the Landau-de Gennes potential is
augmented by so-called Frank-elastic terms [1,20,21,28,34].
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APPENDIX A: FAMILY OF TEST FUNCTIONS

Onsager proposed [17] the one-parametric family of test
functions:

fa(u) = a

4π sinh(a)
cosh(au · n). (A1)

He noted that the Bingham distributions of Eq. (5) provide a
more realistic description. However, the family of Eq. (A1)
is easier to handle analytically but still encompasses the
isotropic (a = 0) as well as the fully oriented (a → ∞) state.
Evaluating the order parameter of Eq. (3) with Eq. (A1) gives
S2 = 1 − 3 coth(a)/a + 3/a2 and the entropy functional of
Eq. (1) becomes the function

S0(a) = ln[a coth(a)] − 1 + tan−1[sinh(a)]/ sinh(a). (A2)

APPENDIX B: CUMULANT-GENERATING FUNCTION

From the definition of the generating function [Eq. (6)],
expand in power series

G(A) = ln
∞∑

n=0

1

n!
Kn(A), (B1)

where

Kn(A) = 1

4π

∫
d2u (u · A · u)n. (B2)

For symmetric second-rank tensor A, the first integrals read
K0 = 1,K1 = t1/3,

K2 = 1

15

(
t2
1 + 2t2

)
,

K3 = 1

105

(
t3
1 + 6t1t2 + 8t3

)
, (B3)

K4 = 1

105

(
t4
1 + 4t2

2 − 4t2
1 t2 + 32

3
t1t3

)
,

where tn = tr(An). In the generating function, it is important
to keep terms proportional to t1 since ∂t1/∂A = 1. With these
integrals, the first terms of the expansion read

G(A) = 1

3
t1 + 1

15

(
t2 − 1

3
t2
1

)
+ 4

315

(
t3 − t2t1 + 2

9
t3
1

)

− 1

1575

(
t2 − 1

3
t2
1

)2

+ . . . (B4)

From G(A), the order parameter tensor is derived via differ-
entiation,

Q = 2

15
A + 4

105
A · A − 4

1575
tr(A · A)A + . . . (B5)

Here, we introduced the notation X = X − 1
3 tr(X)1 for the

traceless part of a matrix X. Expressing A as a series expansion

in Q, A = c1Q + c2 Q · Q + . . ., one finds from Eq. (B5)

A = 15

2
Q − 225

14
Q · Q + c3 Q · Q · Q

+ c4tr(Q · Q)Q + . . . , (B6)

where c3 = 3825/98 − 2c4, and the representation of the third-
order term is not unique.

1. Uniaxial symmetry

For uniaxial symmetry, A = a[nn − (1/3)1], the cumulant-
generating function becomes

Guni(a) = ln
1

4π

∫
d2u ea[(n·u)2−1/3]. (B7)

Without loss of generality, choose n as the z-axis of a spherical
coordinate system. Then, the remaining integral in Eq. (B7)
can be evaluated to give

Guni(a) = −a

3
+ ln

[
1

2

√
π

a
erfi(

√
a)

]
. (B8)

The imaginary error function erfi(
√

a) = erf(i
√

a)/i can be
expressed as erfi(

√
a) = −a

∫ |a|
0 dz exp (z)/

√
πa2z. Note that

Guni can equivalently be expressed in terms of the Dawson
function D(x) = e−x2 ∫ x

0 dt et2
, but it is obvious from our

rewriting of Eq. (B8) that Guni is real for positive and
negative values of a. From the generating function, the order
parameter can be obtained by differentiation, Q = ∂G/∂A.
In the uniaxial case, this relation reads S2(a) = (3/2)G′

uni(a).
From Eq. (B8), we obtain the expression

S2(a) = 3ea

2
√

aπ erfi(
√

a)
− 3

4a
− 1

2
, (B9)

from which the asymptotic expressions can be derived

S2(a) =

⎧⎪⎨
⎪⎩

2
15a + 4

315a2 + O(a3), as a → 0

1 − 3
2a

− 3
4a2 + O(1/a3), as a → ∞

− 1
2 − 3

4a
+ O(ea), as a → −∞.

(B10)

Reverting these equation in order to express a(S2) gives

a =

⎧⎪⎨
⎪⎩

15
2 S2 − 75

14S2
2 + . . . , as S2 → 0

3
2(1−S2) + 1

2 + . . . , as S2 → 1

− 3
4(S2+1/2) , as S2 → −1/2.

(B11)
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2. Perfect biaxial symmetry

As a symmetric traceless tensor, A can always be repre-
sented as A = (a + b/2)nn + bmm − (a/3 + b/2)1, where
the director n has already been introduced above. For bi-
axial ordering, the two directions perpendicular to n are
not equivalent. Thus, the second eigenvector m appears in
the representation of A [29]. The uniaxial case considered
above is obtained for b = 0. Here, we consider the other
extreme case a = 0, which implies S2 = 0. Then, the gen-
erating function of Eq. (6) can be evaluated analytically to
give

Gbiax(b) = ln 1F2

(
1

2
;

3

4
,
5

4
;
b2

16

)
, (B12)

where 1F2 denotes the hypergeometric function. From Q =
∂G/∂A, one obtains Q = (B2/2)nn + B2mm − (B2/2)1,
where the biaxiality parameter B2 is given by B2 = 2G′

biax(b).
Since the general case of weak ordering has already been
worked out, Eq. (8), we focus on the case a = 0, b � 1
(“perfect biaxial ordering”). From the asymptotic expansion
of the hypergeometric function, we obtain Gbiax(b) ≈ |b|/2 −
ln |b| − 1

2 ln(2) + . . . for b → ±∞, and in this limit, therefore,
B2 = (|b| − 2)/b + . . . or b ≈ 2/(1 − |B2|). The Legendre
transform [Eq. (7)] here reads S∗

0 /kB = −bG′
biax(b) + Gbiax(b)

and becomes upon inserting the asymptotic expressions for
perfect biaxial ordering

S∗
0,biax(B2)/kB = ln(1 − |B2|) + 1 − B2

1 − |B2| − 3

2
ln(2) + · · ·

(B13)
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