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Abstract

We consider shot noise processes (X(t))t≥0 with deterministic re-
sponse function h and the shots occurring at the renewal epochs 0 =
S0 < S1 < S2 . . . of a zero-delayed renewal process. We prove conver-
gence of the finite-dimensional distributions of (X(ut))u≥0 as t → ∞
in different regimes. If the response function h is directly Riemann
integrable, then the finite-dimensional distributions of (X(ut))u≥0 con-
verge weakly as t→∞. Neither scaling nor centering are needed in this
case. If the response function is non-negative, eventually decreasing but
non-integrable, then, after suitable shifting, the finite-dimensional dis-
tributions of the process converge. Again, no scaling is needed. In both
cases, the limit is identified as a collection of independent shot noise
processes in equilibrium. If (the distribution of) S1 is in the domain of
attraction of an α-stable law and the response function is regularly vary-
ing at∞ with index β (with β < 1/α or β ≤ 1/α, depending on whether
ES1 <∞ or ES1 =∞), then scaling is needed to obtain weak conver-
gence of the finite-dimensional distributions of (X(ut))u≥0. The limiting
processes are fractionally integrated stable processes if ES1 < ∞ and
fractionally integrated inverse stable subordinators if ES1 =∞.
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1 Introduction

Continuing the line of research initiated in [18], in the present paper, we are
investigating the convergence of the finite-dimensional distributions of renewal
shot noise processes. Some work on convergence of renewal shot noise processes
has already been done by other authors [17, 32, 34]. However, their results do
not intersect with those obtained here. The special case of Poisson shot noise
has received more attention, see e.g. [15, 23, 25, 26, 36].

Initially, shot noise processes were introduced to model the current induced
by a stream of electrons arriving at the anode of a vacuum tube [39]. Since
their first appearance in the literature, shot noise processes have been used to
model rainfall [35, 43], stream- and riverflows [27, 44], earthquake occurences
[42], computer failures [28], traffic noise [30], delay in claim settlement in
insurance [23, 24], and several processes in finance [37], to name but a few.
The recent paper [1] offers a list of further references.

We now start with the mathematical setup. Let ξ1, ξ2, . . . be a sequence of
independent copies of a positive random variable ξ. The distribution of ξ is
denoted by F . By (Sk)k∈N0 we denote the random walk with initial position
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S0 := 0 and increments Sk − Sk−1 = ξk, k ∈ N. The corresponding renewal
counting measure is denoted by N , that is,

N =
∑
k≥0

δSk ,

where δx denotes the Dirac distribution concentrated at x. We write N(t)
for N [0, t], t ≥ 0. By U we denote the intensity measure corresponding to N .
Hence, U(B) := EN(B) for Borel sets B ⊆ R. We write U(t) for U [0, t], t ≥ 0.
Throughout the paper, we denote by h a real-valued, measurable and locally
bounded function on the positive half-line R+ = [0,∞). Further, let

X(t) :=

N(t)−1∑
k=0

h(t− Sk) =

∫
[0,t]

h(t−y)N(dy), t ≥ 0. (1.1)

While the stochastic process (X(t))t≥0 is called renewal shot noise process, h
is called response function.

In the recent paper [18], functional limit theorems for (X(ut))u≥0 are de-
rived in the case that the response function is eventually increasing1. The
motivation behind the present work in general and the use of the specific time
scaling in particular is the following. First, we intend to obtain counterparts of
the results derived in [18] for functions h that are eventually decreasing. Sec-
ond, in a forthcoming publication [20] some results of this paper will be used
to prove the finite-dimensional convergence of the number of empty boxes in
the Bernoulli sieve (see [12] for the definition and properties of the Bernoulli
sieve). Of course, transformations of time other than ut may also lead to use-
ful limit theorems. For instance, convergence of (X(t + u))u≥0 may be worth
investigating. Yet another transformation of time has proved important [17],
where one only rescales the time of the underlying renewal process, whereas
the deterministic component runs in its original time scale.

Unlike in [18], where functional limit theorems are derived, in the present
paper, we investigate convergence of finite-dimensional distributions only. In
some cases, the limiting processes do not take values in the Skorokhod space of
right-continuous functions with left limits which excludes the possibility that
a classical functional limit theorem holds. However, in some cases, if h belongs
to the Skorokhod space, so does the limit. Whether in these cases there is
actually convergence in a functional space remains open for future research.

2 Main results

As mentioned in the introduction, we centre our attention on the case of even-
tually decreasing response functions. Let us remark right away that the situa-
tions where h is eventually decreasing and either limt→∞ h(t) = c ∈ (−∞, 0) or
limt→∞ h(t) = −∞ and −h(t) is regularly varying at∞ with some index β ≥ 0

1Notice that we call a function h increasing if for all s < t we have h(s) ≤ h(t). We call
h strictly increasing if s < t we have h(s) < h(t). Analogously, h is said to be decreasing if
s < t implies h(s) ≥ h(t) and it is said to be strictly decreasing if s < t implies h(s) > h(t).
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are covered by Theorem 1.1 in [18]. See Remark 2.10 for more details. Keep-
ing this in mind our main results mainly treat eventually decreasing functions
with non-negative limit at infinity.

Our results fall into two fundamentally different categories. The first type
of results considers finite-dimensional convergence of the process (X(ut))u≥0 as
t→∞ when no scaling (normalization) is needed. In this case, all randomness
in the limiting process can be described in terms of (copies of) the stationary
renewal counting process N∗ to be introduced below. In the second type of
results scaling is needed. As an effect of the scaling, some of the fine features
of the process (X(ut))u≥0 vanish in the limit. Therefore, in the second case,
robust limit theorems are obtained in the sense that the limiting behavior
only depends on the asymptotic behavior of h and the tails of S1. The limiting
processes are stochastic integrals with integrators being certain Lévy processes.
For instance, if ξ is square-integrable, the integrator is Brownian motion.

For the formulation of our main results, we need to introduce further nota-
tion. First, let µ := E ξ. Since ξ > 0 a.s., µ is well-defined but may equal +∞.
Whenever µ < ∞ and the law of ξ is non-lattice, we denote by S∗0 a positive
random variable which is independent of the sequence (ξk)k∈N and which has
distribution function

F ∗(t) := P{S∗0 ≤ t} :=
1

µ

∫ t

0

P{ξ > x} dx , t ≥ 0. (2.1)

Moreover, we set S∗k := S∗0 + Sk, k ∈ N0. The associated renewal counting
process N∗ :=

∑
k≥0 δS∗

k
has stationary increments. Equivalently, the corre-

sponding intensity measure U∗(·) := EN∗(·) satisfies U∗(dx ) = µ−1 dx , see
Subsection 3.1 and [29, Section III.1.2] or [41, Section II.9] for further back-
ground information and details.

For stochastic processes (Zt(u))u≥0, t ≥ 0 and (Z(u))u≥0, we write Zt(u)
f.d.⇒

Z(u) as t→∞ to denote weak convergence of finite-dimensional distributions,
i.e., for any n ∈ N and any selection 0 ≤ u1 < . . . < un <∞

(Zt(u1), . . . , Zt(un))
d→ (Z(u1), . . . , Z(un)) as t→∞.

The record Zt(u)
f.d.→ Z(u) as t→∞ means that the above relation holds for all

choices 0 < u1 < . . . < un <∞, whereas Zt(0) does not (necessarily) converge
to Z(0).

2.1 Limit theorems without scaling

If µ <∞ and F is non-lattice, define

X∗ :=
∑
k≥0

h(S∗k) (2.2)

whenever the sum converges in probability. In this case, denote by (X∗(u))u≥0

a family of i.i.d. copies of X∗.
Our first result states that if h is directly Riemann integrable (d.R.i.),

then the finite-dimensional distributions of (X(ut))u>0 converge weakly to the
finite-dimensional distributions of the process (X∗(u))u>0.

4



Theorem 2.1. Let h : R+ → R be directly Riemann integrable and F be
non-lattice.

(a) If µ = E ξ <∞, then the random series X∗ converges a.s. and

X(ut)
f.d.→ X∗(u) as t→∞. (2.3)

(b) If µ =∞, then

X(t)
P→ 0 as t→∞.

If F is spread-out, then assertions (a) and (b) also hold for functions h that
are bounded, a.e. continuous and Lebesgue integrable.

Remark 2.2. Since the focus of this paper is on eventually decreasing response
functions it is worth mentioning that Theorem 2.1 covers the case when h
is eventually decreasing and improperly Riemann integrable since any such
function is necessarily directly Riemann integrable.

Example 2.3. Assume that µ < ∞ and that F is non-lattice. For fixed
0 ≤ a < b, choose h(t) := 1[a,b)(t), t ≥ 0 as response function. Then Theorem
2.1 implies that

N(t− a)−N(t− b) =
∑
k≥0

h(t− Sk)
d→ N∗(b− a) as t→∞. (2.4)

Though the one-dimensional convergence in Theorem 2.1 is quite expected,
a rigorous proof is necessary. It is tempting to conclude this from Theorem
6.1 in [32]. However, the cited theorem does not hold in the generality stated
there. Regularity assumptions on the function h appearing in the theorem
above or the function g in the cited result, respectively, cannot be avoided.
This will be demonstrated in Example 2.6 at the end of this subsection.

Our second result is an extension of Theorem 2.1 to the situation where
h is not integrable. In this case, X∗ is not well-defined and in order to still
obtain non-trivial finite-dimensional convergence of the process (X(ut))u≥0 as
t→∞ centering is needed. Let

X◦(t) := X(t)− µ−1

∫ t

0

h(y) dy , t ≥ 0. (2.5)

Under suitable assumptions, we obtain finite-dimensional convergence of the
process (X◦(ut))u>0 as t → ∞. The limiting process is a close relative of
(X∗(u))u≥0 and is to be introduced next. When µ < ∞ and F is non-lattice,
define

X∗◦ := lim
t→∞

(∑
k≥0

h(S∗k)1{S∗
k≤t}−

1

µ

∫ t

0

h(y) dy

)
. (2.6)

Whenever X∗◦ exists as the limit in probability and is a.s. finite, denote by
(X∗◦ (u))u≥0 a family of i.i.d. copies of X∗◦ .

Theorem 2.4. Assume that F is non-lattice. Let h : R+ → R be locally
bounded, eventually decreasing and non-integrable.
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(C1) Suppose σ2 := Var ξ <∞ and∫ ∞
0

h(y)2 dy < ∞. (2.7)

Then X∗◦ exists as the limit in L2 in (2.6) and

X◦(ut)
f.d.→ X∗◦ (u) as t→∞. (2.8)

(2.8) also holds when (X◦(ut))u≥0 is replaced by (X(ut)− EX(ut))u≥0.

For the rest of the theorem, assume that h is eventually twice differentiable
and that h′′ is eventually nonnegative.

(C2) Suppose E ξr <∞ for some 1 < r < 2. If∫ ∞
0

h(y)r dy <∞, (2.9)

and2

h′′(t) = O(t−2−1/r) as t→∞, (2.10)

then X∗◦ is well-defined and the a.s. limit in (2.6). Further, (2.8) holds.

(C3) Suppose P{ξ > x} ∼ x−α`(x) as x→∞ for some 1 < α < 2 and some `
slowly varying at ∞. If∫ ∞

1

h(y)α`(1/h(y)) dy < ∞, (2.11)

and
h′′(t) = O(t−2c(t)−1) as t→∞ (2.12)

where c(t) is any positive function such that

lim
t→∞

t`(c(t))

c(t)α
= 1, (2.13)

then X∗◦ exists as the limit in probability in (2.6) and (2.8) holds.

Remark 2.5. The cases (C2) and (C3) of Theorem 2.4 impose, besides con-
ditions on the law of ξ, smoothness and integrability conditions on h. The
smoothness conditions may seem rather restrictive but are an essential ingre-
dient of our proof which is based on an idea we have learned in [22]. We
believe that in each assertion (C1)–(C3), given the respective assumption on
the law of ξ, the corresponding integrability condition is close to optimal. In
a sense, the extra smoothness conditions in (C2) and (C3) are the price one
has to pay for this precision (we do not claim, however, that the smoothness
conditions are indeed necessary using them seems to be a restriction caused by
the method). For comparison, we mention the following. Assuming nothing

2If h′′ is eventually monotone, then (2.10) and (2.12) are consequences of (2.9) and (2.11),
respectively.
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beyond the standing conditions of the theorem (in particular, not requiring
h to be differentiable) we can prove that (2.8) holds under more restrictive
integrability conditions:

E ξr < ∞ and

∫
[0,∞)

y1/r d(−h(y)) < ∞

for some 1 < r < 2, and

P{ξ > x} ∼ x−α`(x) as x→∞ and

∫
[1,∞)

c(y)d(−h(y)) < ∞

for some 1 < α < 2 and some ` slowly varying at ∞, respectively. Without
going into the details, we mention that the conditions

∫
[0,∞)

y1/rd(−h(y)) <∞
and

∫
[1,∞)

c(y)d(−h(y)) < ∞ are sufficient for (N∗(y)−y/µ) being a.s. abso-

lutely integrable w.r.t. d(−h(y)) whereas the conditions (2.9) and (2.11) are
sufficient for the a.s. (improper) integrability of (N∗(y)−y/µ) w.r.t. d(−h(y)).

Example 2.6. Let h(t) := (1∧1/t2)1Q(t), t ≥ 0. Further, let the distribution
of ξ be such that P{ξ ∈ Q∩(0, 1]} = 1 and P{ξ = r} > 0 for any r ∈ Q∩(0, 1].
Then the distribution of ξ is non-lattice. From (2.1) we conclude that the
distribution of S∗0 is continuous w.r.t. Lebesgue measure and concentrated on
[0, 1]. Therefore, with probability 1, S∗0 takes values in [0, 1]∩(R \Q). Since the
ξk take rational values a.s., all S∗k take irrational values on a set of probability 1.
Consequently, the random variable X∗ =

∑
k≥0 h(S∗k) equals 0 a.s. But in the

given situation, X(t) does not converge to 0 in distribution when t approaches
+∞ along a sequence of rationals. In fact, for t ∈ Q, X(t) = Y (t) a.s. where
Y (t) =

∑
k≥0 f(t− Sk)1{Sk≤t} with f(t) = 1 ∧ 1/t2 for t ≥ 0. Therefore, from

Theorem 2.1 we conclude that

X(t) = Y (t)
d→
∑
k≥0

f(S∗k) as t→∞, t ∈ Q .

Plainly, the latter random variable is positive a.s.

Example 2.6 does not only demonstrate that Theorem 6.1 in [32] fails when
assuming only that limt→∞ h(t) = 0. It moreover shows that also Lebesgue
integrability of h is not enough to ensure (2.3) to hold. A stronger assumption
such as the direct Riemann integrability of h is needed.

2.2 Limit theorems with scaling

In the case when scaling is needed our main assumption on the response func-
tion h is regular variation at ∞:

h(t) ∼ t−β`h(t) as t→∞ (2.14)

for some β ≥ 0 and some `h slowly varying at ∞. Recall that `h(t) > 0 for
all t ≥ 0 by the definition of slow variation, see [5]. Note further that the
functions h with limt→∞ h(t) = b ∈ (0,∞) are covered by condition (2.14)
with β = 0 and limt→∞ `h(t) = b.

7



Theorem 2.7. Assume that µ <∞ and that F is non-lattice. Let h : R+ → R
be locally bounded, measurable and eventually decreasing.

(A1) Suppose σ2 := Var ξ <∞ and let (W (u))u≥0 denote a standard Brownian
motion. If (2.14) holds for some β ∈ (0, 1/2), then

X(ut)− µ−1
∫ ut

0
h(y) dy√

σ2µ−3th(t)

f.d.⇒
∫

[0, u]

(u− y)−β dW (y) as t→∞,

whereas if condition (2.14) holds with β = 0, the limiting process is
(W (u))u≥0.

(A2) Suppose σ2 =∞ and∫
[0, t]

y2 P{ξ ∈ dy} ∼ `(t) as t→∞

for some ` slowly varying at ∞. Let c(t) be any positive continuous

function such that limt→∞
t`(c(t))
c(t)2

= 1 and let (W (u))u≥0 denote a standard

Brownian motion. If condition (2.14) holds with β ∈ (0, 1/2), then

X(ut)− µ−1
∫ ut

0
h(y) dy

µ−3/2c(t)h(t)

f.d.⇒
∫

[0, u]

(u− y)−β dW (y) as t→∞,

whereas if condition (2.14) holds with β = 0, the limiting process is
(W (u))u≥0.

(A3) Suppose
P{ξ > t} ∼ t−α`(t) as t→∞

for some 1 < α < 2 and some ` slowly varying at ∞. Let c(t) be

any positive continuous function such that limt→∞
t`(c(t))
cα(t)

= 1 and let

(W (u))u≥0 denote a spectrally negative α-stable Lévy process such that
W (1) has the characteristic function

z 7→ exp
{
−|z|αΓ(1−α)(cos(πα/2)+i sin(πα/2) sign(z))

}
, z ∈ R (2.15)

where Γ(·) denotes the gamma function. If condition (2.14) holds with
β ∈ (0, 1/α), then

X(ut)− µ−1
∫ ut

0
h(y) dy

µ−1−1/αc(t)h(t)

f.d.⇒
∫

[0, u]

(u− y)−β dW (y) as t→∞,

whereas if condition (2.14) holds with β = 0, the limiting process is
(W (u))u≥0.

Remark 2.8. In Theorem 2.7, we only consider limit theorems with regularly
varying scaling. However, there are cases in which the scaling function is slowly
varying. The treatment of these requires different techniques and is left for
future research.
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Our second result in this subsection is concerned with the case of infinite
µ. Here the assumptions on the response function h are less restrictive.

Theorem 2.9. Let h : R+ → R be locally bounded and measurable. Suppose
that P{ξ > t} ∼ t−α`(t) as t → ∞ for some 0 < α < 1 and some ` slowly
varying at ∞, and that h satisfies (2.14) for some β ∈ [0, α]. If α = β, assume
additionally that

lim
t→∞

h(t)

P{ξ > t}
= lim

t→∞

`h(t)

`(t)
= c ∈ (0,∞]

and if c =∞ that there exists an increasing function u(t) such that

lim
t→∞

`h(t)

`(t)u(t)
= 1.

Let (W (u))u≥0 denote an inverse α-stable subordinator defined by

W (u) := inf{t ≥ 0 : D(t) > u}

where (D(t))t≥0 is an α-stable subordinator with − logE e−tD(1) = Γ(1 − α)tα

for t ≥ 0. If α > β or α = β and c =∞, then

P{ξ > t}
h(t)

X(ut)
f.d.⇒

∫
[0, u]

(u− y)−βdW (y) as t→∞.

If α = β and c <∞, then the same convergence holds with
f.d.⇒ replaced by

f.d.→.
Furthermore, in all cases above there is convergence of moments:

lim
t→∞

(
P{ξ > t}
h(t)

)k
EX(ut)k = E

(∫
[0, u]

(u− y)−βdW (y)

)k
= uk(α−β) k!

Γ(1− α)k

k∏
j=1

Γ(1− β + (j − 1)(α− β))

Γ(j(α− β) + 1)
, k ∈ N, (2.16)

where Γ(·) denotes the gamma function.

Remark 2.10. Let the assumptions concerning ξ in Theorem 2.7 or Theorem
2.9 be in force with eventually decreasing h and with condition (2.14) replaced
by

−h(t) ∼ tβ`h(t) as t→∞
for some β ≥ 0 and some `h slowly varying at ∞. No further restrictions on β
like those appearing in Theorem 2.7 are needed. Then the limit relations of the
theorems remain valid when the limiting processes are replaced by

∫
[0, u]

(u −
y)βdW (y), cf. Theorem 1.1 in [18].

From Theorem 2.9 it follows that if α = β and

lim
t→∞

h(t)

P{ξ > t}
= c ∈ (0,∞), (2.17)

then X(t)
d→ Exp(c−1) as t → ∞ where Exp(c−1) denotes an exponentially

distributed random variable with mean c. In fact, the one-dimensional conver-
gence takes place under the sole assumption (2.17). In particular, the regular
variation of neither h(t), nor P{ξ > t} is needed.
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Proposition 2.11. Assume that µ =∞ and let h : R+ → R+ be a measurable
and locally bounded function which satisfies condition (2.17). Then

lim
t→∞

EX(t)k = ckk!, k ∈ N,

which entails X(t)
d→ Exp(c−1) as t→∞.

2.3 Properties of the limiting processes in Theorems 2.7
and 2.9

In this section we find it more transparent to add subscripts in the notation
of the processes to bring out the dependence on the parameters α and β.
Throughout this subsection, we use Γ(·) to denote the gamma function.

Limits in Theorem 2.7

Assuming in what follows that α = 2 corresponds to the cases (A1) and (A2),
in particular, that (W2(u))u≥0 is a Brownian motion, we define the limiting
stochastic integral

Yα, β(u) :=

∫
[0, u]

(u− y)−β dWα(y)

via the formula∫
[0, u]

(u−y)−β dWα(y) := u−βWα(u) + β

∫ u

0

(Wα(u)−Wα(y))(u−y)−β−1 dy .

(2.18)
This definition is consistent with the usual definition of a stochastic integral
with a deterministic integrand and the integrator being a semimartingale.
However, since limy↑u(u − y)−β−1 = ∞, it is necessary to check the existence
of the Lebesgue integral

∫ u
0
(Wα(u)−Wα(y))(u−y)−β−1 dy . Indeed, in view of

the inequality

E
∣∣∣∣ ∫ u

0

(Wα(u)−Wα(y))(u−y)−β−1 dy

∣∣∣∣
≤
∫ u

0

E |Wα(u)−Wα(y)|(u−y)−β−1 dy

=

∫ u

0

E |Wα(u− y)|(u−y)−β−1 dy

= E |Wα(1)|
∫ u

0

(u−y)1/α−β−1 dy .

the integral exists in the a.s. sense if β < 1/α, which explains the restrictions
imposed on β in the theorem. Further, if 1 < α < 2, it can be checked that,
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for z ∈ R,

log E exp

(
iz

∫
[0, u]

(u− y)−β dWα(y)

)
=

∫ u

0

logE exp(iz(u− y)−βWα(1)) dy

= − Γ(1−α)(cos(πα/2) + i sin(πα/2) sign(z))|z|α
∫ u

0

(u− y)−αβ dy ,

where the last equality is a consequence of (2.15). Note that the last integral
converges iff β ∈ [0, 1/α). Also we infer that, with u fixed,

Yα, β(u)
d
=

u1/α−β

(1− αβ)1/α
Wα(1), (2.19)

which means that Yα, β(u) has a spectrally negative α-stable law in the case
(A3). It is easy to check that (2.19) carries over to the case α = 2, in other
words, Yα, β(u) has a normal law in the cases (A1) and (A2).

Assuming that β ∈ (0, 1/α), it follows from the defining equation (2.18)
that (Yα, β(u))u≥0 has a.s. continuous paths with Yα, β(0) = 0. Arguing along
the lines of Subsection 2.2 in [18] one further concludes that (Yα, β(u))u≥0 is
self-similar with Hurst index 1/α− β, i.e., for every c > 0,

(Yα, β(cu))u≥0
f.d.
= (c1/α−βYα, β(u))u≥0;

its increments are neither independent, nor stationary.

Limits in Theorem 2.9

In this case, the (Wα(u))u≥0 denotes an inverse α-stable subordinator as defined
in Theorem 2.9 and the limiting integral is Yα,β(u) :=

∫
[0, u]

(u − y)−βdWα(y).

This integral can be thought of as a pathwise Lebesgue-Stieltjes integral since
the integrator Wα has increasing paths. However, the finiteness of the integral
should be verified. This is done in the following lemma:

Lemma 2.12. For every 0 < β ≤ α < 1, EYα,β(u) < ∞. In particular,
Yα,β(u) <∞ a.s. and∫

(ρu, u]

(u− y)−βdWα(y) → 0 a.s. as ρ ↑ 1.

Proof. It is well known that Wα(1) has a Mittag-Leffler law with EWα(1) =
(Γ(1−α)Γ(1+α))−1 =: cα. Since the α-stable subordinator is self-similar with
Hurst index 1/α, (Wα(u))u≥0 is self-similar with Hurst index α. In particular,
EWα(u) = cαu

α. Therefore,

EYα,β(u) = E
(∫

[0,u]

(
u−β + β

∫ y

0

(u− x)−β−1 dx

)
dWα(y)

)
= u−β EWα(u) + β

∫ u

0

E(Wα(u)−Wα(x))(u− x)−β−1 dx

= cαu
α−β + βcαu

α−β
∫ 1

0

(1− xα)(1− x)−β−1 dx < ∞.
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It is implicit in the proof of Lemma 2.12 that (2.18) holds also in the
given situation. From this representation, recalling the standing assumption
0 < β ≤ α < 1, it follows that (Yα, β(u))u≥0 has a.s. continuous paths. Arguing
in the same way as in Section 3 of [18] one can check that (Yα, β(u))u≥0 is
self-similar with Hurst index α− β. The latter implies that its increments are
not stationary.

Further we infer from [19] that the law of Yα, β(u) is uniquely determined
by its moments

EYα, β(u)k = uk(α−β) k!

Γ(1−α)k

k∏
j=1

Γ(1−β+(j−1)(α−β))

Γ(j(α−β)+1)
, k ∈ N . (2.20)

In particular,

Yα, β(u)
d
= uα−β

∫ R

0

e−cZα(t) dt , (2.21)

where R is a random variable with the standard exponential law which is
independent of (Zα(u))u≥0, a drift-free subordinator with no killing and Lévy
measure

να(dt) =
e−t/α

(1− e−t/α)α+1
1(0,∞)(t) dt ,

and c := (α− β)/α.
Now we want to investigate the covariance structure of (Yα, β(u))u≥0. One

can check that formula (2.20) with k = 1 remains valid whenever α ∈ (0, 1)
and β ∈ (−∞, 1). Hence the process (Yα, β(u))u≥0 is well-defined for such α
and β.

Lemma 2.13. For any α ∈ (0, 1), β ∈ (−∞, 1) and 0 < t1 ≤ t2,

EYα, β(t1)Yα, β(t2) =
Γ(1−β)

Γ(α)Γ(1−α)2Γ(1+α−β)
(2.22)

×
∫ t1

0

(t1−y)−β(t2−y)−βyα−1((t1−y)α + (t2−y)α) dy .

Proof. If t1 = t2, (2.22) coincides with (2.20) in the case k = 2 as it must be.
Now fix t1 < t2 and set

H1(y) :=

∫
[0, y]

(t1 − x)−βdWα(x), y ∈ [0, t1],

H2(y) :=

∫
[0, t2−t1+y]

(t2 − x)−βdWα(x), y ∈ [0, t1].

12



Integrating by parts we obtain

Yα, β(t1)Yα, β(t2) = H1(t1)H2(t1)

=

∫
[0, t1]

H1(x) dH2(x) +

∫
[0, t1]

H2(x) dH1(x)

=

∫
[0, t1]

∫
[0, x]

(t1 − y)−βdWα(y)(t1 − x)−βdWα(t2 − t1 + x)

+

∫
[0, t1]

∫
[0, x]

(t2 − y)−βdWα(y)(t1 − x)−βdWα(x)

+

∫
[0, t1]

∫
[x, t2−t1+x]

(t2 − y)−βdWα(y)(t1 − x)−βdWα(x)

=: I1 + I2 + I3.

According to Proposition 1(a) in [4]3,

E
(
dWα(x)dWα(y)

)
=

xα−1(y − x)α−1

Γ2(α)Γ2(1− α)
dx dy , 0 < x < y <∞. (2.23)

Below we make a repeated use of the formula (see Lemma A.5)

E
∫
A

f(x)g(y)dWα(x)dWα(y) =

∫
A

f(x)g(y)E
(
dWα(x)dWα(y)

)
,

where f, g are arbitrary non-negative measurable functions and A ⊂ R2
+ Borel.

Using (2.23) and the change of variable yields

E I3 = bα

∫ t1

0

(t1 − x)−βxα−1

∫ t2−t1

0

(t2 − x− y)−βyα−1 dy dx

where bα := Γ(α)−2Γ(1 − α)−2. Using (2.23) and changing the order of inte-
gration followed by a change of variable (z = t2 − t1 + x− y) gives

E I1 = bα

∫ t1

0

(t1 − x)−β
∫ x

0

(t1 − y)−β(t2 − t1 + x− y)α−1yα−1 dy dx

= bα

∫ t1

0

(t1 − y)−βyα−1

∫ t1

y,

(t1 − x)−β(t2 − t1 + x− y)α−1 dx dy

= bα

∫ t1

0

(t1 − y)−βyα−1

∫ t2−y

0

(t2 − y − x)−βxα−1 dx dy

−bα
∫ t1

0

(t1 − y)−βyα−1

∫ t2−t1

0

(t2 − y − x)−βxα−1 dx dy

= Bα,β

∫ t1

0

(t1 − y)−β(t2 − y)α−βyα−1 dy −E I3,

3Keep in mind that Bingham uses a different scaling.
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where Bα,β := Γ(1−β)
Γ(α)Γ2(1−α)Γ(1+α−β)

. Analogously

E I2 = bα

∫ t1

0

(t1 − x)−β
∫ x

0

(t2 − y)−β(x− y)α−1yα−1 dy dx

= bα

∫ t1

0

(t2 − y)−βyα−1

∫ t1

y

(t1 − x)−β(x− y)α−1 dx dy

= bα

∫ t1

0

(t2 − y)−βyα−1

∫ t1−y

0

(t1 − y − x)−βxα−1 dx dy

= Bα,β

∫ t1

0

(t1 − y)α−β(t2 − y)−βyα−1 dy .

It remains to sum up these expectations.

Similar to the preceding lemma our next result treats both positive and
negative β thereby solving a problem which has remained open in [18].

Proposition 2.14. For α ∈ (0, 1) and β ∈ (−∞, 1), the process (Yα, β(u))u≥0

does not have independent increments.

Proof. We use the idea of the proof of Theorem 3.1 in [31]. Assume that the
increments are independent. Then, with 0 < t1 < t2 < t3 <∞,

E
(
Yα, β(t2)− Yα, β(t1)

)(
Yα, β(t3)− Yα, β(t2)

)
= E

(
Yα, β(t2)− Yα, β(t1)

)
E
(
Yα, β(t3)− Yα, β(t2)

)
=

Γ(1− β)2

Γ(1− α)2Γ(1 + α− β)2

(
tα−β2 − tα−β1

)(
tα−β3 − tα−β2

)
=: A(t1, t2, t3).

On the other hand,

E
(
Yα, β(t2)− Yα, β(t1)

)(
Yα, β(t3)− Yα, β(t2)

)
= EYα, β(t2)Yα, β(t3)− EYα, β(t2)2 − EYα, β(t1)Yα, β(t3) + EYα, β(t1)Yα, β(t2)

=
Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

×
(∫ t2

0

(t2 − y)−β(t3 − y)−βyα−1
(
(t2 − y)α + (t3 − y)α

)
dy

−
∫ t1

0

(t1 − y)−β(t3 − y)−βyα−1
(
(t1 − y)α + (t3 − y)α

)
dy

+

∫ t1

0

(t1 − y)−β(t2 − y)−βyα−1
(
(t1 − y)α + (t2 − y)α

)
dy

)
− 2Γ(1− β)Γ(1 + α− 2β)

Γ2(1− α)Γ(1 + α− β)Γ(1 + 2α− 2β)
t2α−2β
2 =: B(t1, t2, t3).

By the assumption A(t1, t2, t3) = B(t1, t2, t3) for all t1 < t2 < t3. But

∂2A(t1, t2, t3)

∂t1∂t3
= − Γ2(1− β)

Γ2(1− α)Γ2(1 + α− β)
(α− β)2(t1t3)α−β−1,
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and

∂2B(t1, t2, t3)

∂t1∂t3

= − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

∂2

∂t1∂t3

(∫ t1

0

(t1−y)−β(t3−y)−βyα−1
(
(t1−y)α + (t3−y)α

)
dy

)
= − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

× ∂2

∂t1∂t3

(
tα−β1

∫ 1

0

(1−y)−β(t3−t1y)−βyα−1
(
tα1 (1− y)α+(t3−t1y)α

)
dy

)
= − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

×
[
∂

∂t1

(
− βt2α−β1

∫ 1

0

(1− y)α−βyα−1(t3 − t1y)−β−1 dy
)

+
∂

∂t1

(
(α− β)tα−β1

∫ 1

0

(1− y)−βyα−1(t3 − t1y)α−β−1 dy
)]

= − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

×
[
− β(2α− β)t2α−β−1

1

∫ 1

0

(1− y)α−βyα−1(t3 − t1y)−β−1 dy

− β(β + 1)t2α−β1

∫ 1

0

(1− y)α−βyα(t3 − t1y)−β−2 dy

+ (α− β)2tα−β−1
1

∫ 1

0

(1− y)−βyα−1(t3 − t1y)α−β−1 dy

− (α− β)(α− β − 1)tα−β1

∫ 1

0

(1− y)−βyα(t3 − t1y)α−β−2 dy

]
.

To show that these expressions are not equal, assume that 0 < t1 < 1 and set
t3 = t−1

1 , z := t21. Then the first one does not depend on z. The second, after
some manipulations, becomes

D(z) := − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)

×
[
− β(2α− β)zα

∫ 1

0

(1− y)α−βyα−1(1− zy)−β−1 dy

− β(β + 1)zα+1

∫ 1

0

(1− y)α−βyα(1− zy)−β−2 dy

+ (α− β)2

∫ 1

0

(1− y)−βyα−1(1− zy)α−β−1 dy

− (α− β)(α− β − 1)z

∫ 1

0

(1− y)−βyα(1− zy)α−β−2 dy

]
.
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Using the asymptotic expansion (1 − z)α = 1 − αz + O(z2) which holds for
α ∈ R as z → 0 yields

D(z) = − Γ(1− β)

Γ(α)Γ2(1− α)Γ(1 + α− β)
×

×
[
(α−β)2

∫ 1

0

(1−y)−βyα−1 dy −β(2α−β)zα
∫ 1

0

(1−y)α−βyα−1 dy

+O(z)
]
,

as z → 0. From this expansion it is clear that D(z) depends on z if β(2α−β) 6=
0 since α < 1. If β = 0 then Yα,β(u) = Wα(u) and this process does not have
independent increments as was shown in Theorem 3.1 in [31]. If 2α = β using
the same idea one can show

D(z) = c1 + c2z +O(zα+1)

where c1c2 6= 0, we omit the details.

Formula (2.21) entails that

Yα, α(u)
d
= R,

i.e., all one-dimensional distributions of (Yα, α(u))u≥0 are standard exponential.
This leads to a conjecture that the process (Yα, α(u))u≥0 may bear some kind
of stationarity.

Lemma 2.15. The process (Yα, α(eu))u∈R is strictly stationary with covariance
function R(s) := E(Yα, α(eu)− 1)(Yα, α(eu+s)− 1), s ∈ R given by

R(s) =
1

Γ(α)Γ(1− α)

∫ ∞
|s|

(1− e−y)−αe−αy dy , s ∈ R . (2.24)

Proof. The strict stationarity follows from the case α = β and c < ∞ of

Theorem 2.9. Indeed, by that theorem, as t → ∞, (X(u1t), . . . , X(unt))
d→

c(Yα, α(u1), . . . , Yα, α(un)) for any n ∈ N and any 0 < u1 < . . . < un, and, for
any h > 0, the weak limit of (X(u1ht), . . . , X(unht)) is obviously the same.
To prove (2.24), it suffices to show that, for 0 < t1 < t2 <∞,

EYα, α(t1)Yα, α(t2) = 1 +
1

Γ(α)Γ(1− α)

∫ t1/t2

0

(1− y)−αyα−1 dy .

The last equality follows from (2.22) with α = β.

3 Preliminaries

3.1 Stationary renewal processes and coupling

Our first result in this section shows that the finite-dimensional distributions
of the increments of the stationary renewal counting process is invariant under
time reversal. The proof is based on a simple coupling argument and an
application of the point-at-zero duality (Theorem 4.1 in Chapter 8 of [41]).
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Proposition 3.1. Let µ <∞ and F be non-lattice. Then, for every t > 0,

(N∗(t)−N∗((t− s)−) : 0 ≤ s ≤ t)
d
= (N∗(s) : 0 ≤ s ≤ t).

Proof. For the proof of this proposition, it is convenient to embed the zero-
delayed random walk (Sk)k∈N0 into a two-sided random walk (Sk)k∈Z. To this
end, assume that on the basic probability space, there is an independent copy
(ξ−k)k∈N of the sequence (ξk)k∈N. Let S−k := −(ξ−1 + . . . + ξ−k) for k ∈ N.
Further, assume there is a random variable ξ0 which is independent of the ξk,
k ∈ Z \{0} with size-biased distribution

P{ξ0 ∈ B} = µ−1 E ξ 1{ξ∈B} (B ⊆ [0,∞) Borel).

Finally, let U have the uniform distribution on (0, 1) and assume that U is
independent of the sequence (ξk)k∈Z. Define S∗0 := Uξ0 and S∗−1 := −(1 −
U)ξ0. Then S∗0 and −S∗−1 have distribution function F ∗ (see e.g. [41, p. 261]
for a quick proof). Now recall that S∗k = S∗0 + Sk for k ∈ N and define
analogously S∗k := S∗−1 +Sk+1 for k < −1. By the first Palm duality (point-at-
zero duality, Theorem 4.1 in Chapter 8 of [41]), the process N∗Z :=

∑
k∈Z δS∗

k
is

distributionally invariant under shifts. Using this and the fact that (−S∗−k)k∈N
has the same distribution as (S∗k−1)k∈N, we infer for given t > 0

(N∗Z[0, s] : 0 ≤ s ≤ t)
d
= (N∗Z[−t,−(t−s)] : 0 ≤ s ≤ t)

d
= (N∗Z[t−s, t] : 0 ≤ s ≤ t).

This implies the assertion in view of the fact that N∗(·) = N∗Z(· ∩ [0,∞)).

Next, we briefly introduce a classical coupling that will prove useful in
several proofs in this paper and which works in the case when µ <∞ and F is
non-lattice. Let (ξ̂k)k∈N be an independent copy of the sequence (ξk)k∈N. Let
ξ̂∗0 denote a random variable that is independent of all previously introduced
random variables and has distribution function F ∗ (recall the definition of F ∗

from (2.1)). Put

Ŝ0 := 0 and Ŝk := ξ̂1 + . . .+ ξ̂k, k ∈ N .

Let N̂ be the renewal counting process associated with the process (Ŝk)k∈N0 .
In particular, N̂(t) := N̂ [0, t] = #{k ∈ N0 : Ŝk ≤ t}, t ≥ 0. Further, define
Ŝ∗k := ξ̂∗0 + Ŝk, k ∈ N0 and let N̂∗ :=

∑
k≥0 δŜ∗

k
denote the associated renewal

counting process. As usual, put N̂∗(t) := N̂∗[0, t], t ≥ 0. By construction,
(N̂∗(t))t≥0 is a stationary renewal process.

It is known (see e.g. [29, p. 74]) that, for any fixed ε > 0, the stopping time

τ := τ(ε) =

{
inf{k ∈ N0 : |Sk − Ŝ∗k | ≤ ε}, if infk∈N0 |Sk − Ŝ∗k | ≤ ε,

+∞, otherwise,

called the time of ε-coupling, is a.s. finite. Define the coupled random walk

S̃∗k :=

{
Ŝ∗k , for k ≤ τ,

Sk − (Sτ − Ŝ∗τ ) = Ŝ∗τ +
∑k

j=τ+1 ξj, for k ≥ τ + 1,
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k ∈ N0. Then (S̃∗k)k∈N0

d
= (Ŝ∗k)k∈N0

d
= (S∗k)k∈N0 . In particular, the random

process (Ñ∗(t))t≥0 defined by

Ñ∗(t) := #{k ∈ N0 : S̃∗k ≤ t},

is a stationary renewal process. Further, the construction of the process
(S̃∗k)k∈N0 guarantees that

S̃∗k − ε ≤ Sk ≤ S̃∗k + ε (3.1)

for k ≥ τ + 1.
Further, one can check that, for any fixed ε > 0 and arbitrary 0 ≤ y ≤ t,

on {τ <∞} (hence, with probability one),∑
k≥τ+1

1{t−y<Sk≤t} ≤
∑
k≥τ+1

1{t−y−ε<S̃∗
k≤t+ε}

≤ Ñ∗(t+ε)− Ñ∗(t−y−ε) (3.2)

where Ñ∗(x) := 0 for x < 0 is stipulated. Similarly, for any fixed ε > 0 and
0 ≤ y ≤ t, again on {τ <∞} (and thus with probability one),∑

k≥τ+1

1{t−y<Sk≤t} ≥
∑
k≥τ+1

1{t−y+ε<S̃∗
k≤t−ε}

= Ñ∗(t−ε)− Ñ∗(t−y+ε)−
τ∑
k=0

1{t−y+ε<S̃∗
k≤t−ε}

. (3.3)

3.2 Stable distributions and domains of attraction

Naturally, the asymptotics of the shot noise process (X(ut))u≥0 as t → ∞ is
connected to the limiting behavior of Sk as k → ∞. Under the assumptions
of the limit theorems with scaling, F (the distribution of ξ) is in the domain
of attraction of a stable law. To be more precise, for appropriate constants
ck > 0 and bk ∈ R,

Sk − bk
ck

d→ W as k →∞ (3.4)

whereW has a stable law Sα(σ′, β′, µ′) that is characterized by four parameters,
the index of stability α and the scale, skewness, and shift parameters, σ′, β′,
and µ′, respectively. We refer to [38] for the precise definition of the law
Sα(σ′, β′, µ′) as well as for a general introduction to stable random variables.
Due to the assumption that ξ > 0 a.s., Sα(σ′, β′, µ′) will automatically be
totally skewed to the right, i.e., it will have skewness parameter β′ = 1.

By changing bk and ck if necessary, it can be arranged that the shift pa-
rameter µ′ equals 0 and the scale parameter σ′ is as we wish. Particularly, the
limit can be arranged to be standard normal in the case α = 2 and to have
characteristic function

z 7→ exp
{
− |z|αΓ(1−α)(cos(πα/2)− i sin(πα/2) sign(z))

}
, z ∈ R (3.5)

in case 0 < α < 2, α 6= 1. The constants bk and ck that produce this limit in
(3.4) can be described in terms of the distribution of ξ.

18



(D1) The case σ2 <∞:
If σ2 := Var ξ <∞, then (3.4) holds with bk = kµ, ck = σ

√
k, k ∈ N. W

then has the standard normal law.

(D2) The case when σ2 =∞, yet there is attraction to a normal law:
If
∫

[0,t]
y2 P{ξ ∈ dy} ∼ `(t) for some function ` that is slowly varying at

+∞, then (3.4) holds with bk = kµ and the ck, k ≥ 1 being such that

limk→∞
k`(ck)

c2k
= 1. Again, W has the standard normal law.

(D3) The case 1 < α < 2:
If P{ξ > t} ∼ t−α`(t) for some 1 < α < 2 and some ` slowly varying
at ∞, then (3.4) holds with bk = kµ and the ck, k ≥ 1 being such that
k P{ξ > ck} ∼ k`(ck)/c

α
k → 1. W then has a spectrally positive stable

law with characteristic function given by (3.5).

(D4) The case 0 < α < 1:
If P{ξ > t} ∼ t−α`(t) as t → ∞ for some 0 < α < 1 and some ` slowly
varying at ∞, (3.4) holds with bk = 0 and ck, k ≥ 1 being such that
k P{ξ > ck} ∼ k`(ck)/c

α
k → 1. Again, W has a spectrally positive stable

law with characteristic function given by (3.5). Further, W > 0 a.s. in
this case and its Laplace exponent is given by

− logϕ(s) = Γ(1− α)sα, s ≥ 0.

Clearly, (D1) is the classical central limit theorem. (D2) follows from [10,
Theorem IX.8.1 and Eq. (IX.8.12)]. (D3) and (D4) follow from the lemma on
p. 107 of [9]. (D4) is also Theorem XIII.7.2 in [10] (where Laplace transform
methods are used rather than characteristic functions).

3.3 Weak convergence of the renewal counting process

When F is in the domain of attraction of a stable law of index 1 < α ≤ 2, then
N(t), centered and suitably scaled, converges in law to a stable random variable
as t → ∞. This convergence in law carries over to a functional convergence
which forms the core of our analysis. Here, we give a brief summary of the
relevant results and the necessary notation.

Denote by D := D[0,∞) the space of right-continuous real-valued functions
on [0,∞) with finite limits from the left. It is well known (see, for instance,
Theorem 5.3.1 and Theorem 5.3.2 in [14] or Section 7.3.1 in [45]) that the
following functional limit theorems hold:

Wt(u) :=
N(ut)− µ−1ut

g(t)
⇒ W (u) as t→∞ (3.6)

where

• in the case (D1) (W (u))u≥0 is a Brownian motion; g(t) =
√
σ2µ−3t and

the convergence takes place in J1 topology on D;
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• in the case (D2) (W (u))u≥0 is a Brownian motion; g(t) = µ−3/2c(t) where
c(t) is any positive continuous function such that limt→∞ t`(c(t))c(t)

−2 =
1; the convergence takes place in J1 topology on D;

• in the case (D3) (W (u))u≥0 is a spectrally negative α-stable Lévy pro-
cess such that W (1) has the characteristic function given in (2.15);
g(t) = µ−1−1/αc(t) where c(t) is any positive continuous function with
limt→∞ t`(c(t))c

−α(t) = 1; the convergence takes place in M1 topology
on D.

We refer to [45] for extensive information concerning both the J1 and M1

convergence in D.
For later use we note the following lemma.

Lemma 3.2. c(t) and g(t) are regularly varying with index 1/2 in the cases
(D1) and (D2), and with index 1/α in the case (D3). As a consequence, given
A > 1 and δ ∈ (0, 1/α) (here, α = 2 in the cases (D1) and (D2)) there exists
t0 > 0 such that

g(tv)

g(t)
≤ Av1/α−δ, (3.7)

for all v ≤ 1 and tv ≥ t0.

Proof. We only check this for the case (D2), the case (D3) being similar, and
the case (D1) being trivial.

The function c(t) is an asymptotic inverse of

t2
(∫

[0, t]

y2 P{ξ ∈ dy}
)−1

∼ t2/`(t).

Hence, by Proposition 1.5.15 in [5], c(t) ∼ t1/2(L#(t))1/2 where L#(t) is the
de Bruijn conjugate of L(t) = 1/`(t1/2). The de Bruijn conjugate is slowly
varying and hence c regularly varying of index 1/2.

(3.7) is Potter’s bound for g (see Theorem 1.5.6 in [5]).

There is also an analog of (3.6) in the case (D4). The functional convergence

Wt(u) :=
N(ut)

g(t)
⇒ W (u) as t→∞ (3.8)

under the J1 topology in D where (W (u))u≥0 is an inverse α-stable subordi-
nator and g(t) := 1/P{ξ > t} was proved in Corollary 3.4 in [31]. (Notice
that the function b̃(t) in the cited article can be chosen as g(t) = P{ξ > t}−1,
t ≥ 0.)

3.4 Moment convergence

The next result is on the asymptotic behavior of E |N(t) − t/µ| in the case
when µ = E ξ <∞. We do not claim the result stated below is new. However,
we have been unable to locate it in the literature.
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Theorem 3.3. Let µ := E ξ <∞. Then the following assertions hold:

(A1) If σ2 := Var ξ <∞, then

lim
t→∞

E |N(t)− µ−1t|√
t

=
σ

µ3/2
E |W | = σ

√
2

πµ3

where W is a random variable with standard normal law.

(A2) Suppose σ2 =∞ and∫
[0, t]

y2 P{ξ ∈ dy} ∼ `(t) as t→∞

for some ` slowly varying at ∞. Then

lim
t→∞

E |N(t)− µ−1t|
c(t)

=
1

µ3/2
E |W | =

√
2

πµ3

where c(t) is a positive function satisfying limt→∞ t`(c(t))/c(t)
2 = 1, and

W is a random variable with standard normal law.

(A3) Suppose P{ξ > t} ∼ t−α`(t) as t → ∞ for some α ∈ (1, 2) and some `
slowly varying at ∞. Then

lim
t→∞

E |N(t)− µ−1t|
c(t)

=
E |W |
µ1+1/α

=
2Γ(1− 1

α
)|Γ(1− α)|1/α sin(π

α
)

πµ1+1/α

where c(t) is a positive function such that limt→∞ t`(c(t))c(t)
−α = 1, and

W is a random variable with characteristic function given by (2.15).

In any of the three cases (A1)-(A3), E |N∗(t) − µ−1t| ∼ (E |N(t) − µ−1t|) as
t→∞.

Assertion (A1) is well known and can be found, for instance, in [14, The-
orem 3.8.4(i)]. The proof of assertion (A1) is included here, for it requires no
extra work in the given framework.

Knowing already the weak convergence relation (3.6) (evaluated at u = 1),
uniform integrability of the family |N(t) − t/µ|/c(t), t ≥ 1 would suffice to
conclude convergence of the first absolute moments. This approach has been
used in [14]. However, the relevant results on uniform integrability presented
in the cited book (such as Theorem 3.7.3 there) are not strong enough for our
purposes. This is why we follow a different approach in the proof.

Proof of Theorem 3.3. Our purpose is to show that

lim
t→∞

E |N(t)− µ−1t|
g(t)

= E |W |. (3.9)

where g is defined as in the context of (3.6). We start with the representation

E |SN(µn) − Sn| = E(SN(µn)∨n − SN(µn)∧n)

= µE
(
(N(µn) ∨ n)− (N(µn) ∧ n)

)
= µE

∣∣N(µn)− n|,
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where the second equality follows from Wald’s identity. We thus infer

E
(
|Sn − µn| − (SN(µn) − µn)

)
≤ µE |N(µn)− n|
≤ E

(
|Sn − µn|+ (SN(µn) − µn)

)
.(3.10)

From the discussion in (3.2) we know that c(n)−1(Sn − nµ)
d→ −W . Further-

more, according to Lemma 5.2.2 in [16],

sup
n∈N

E
(∣∣Sn − µn∣∣

c(n)

)1+δ

< ∞

for some δ > 0. Consequently,

lim
n→∞

E
∣∣Sn − µn∣∣
c(n)

= E |W |. (3.11)

If F is non-lattice, then from [33] it is known that

E(SN(t) − t) ∼


const in the case (A1),

const · `(t) in the case (A2),

const · t2−α`(t) in the case (A3),

(3.12)

as t → ∞. Similar asymptotics hold in the lattice case. In fact, when F is
lattice with span d > 0, then, in the case (A1),

lim
n→∞

E(SN(nd) − nd) → const

by Theorem 9 in [9]. Hence

E(SN(t) − t) = O(1) as t→∞.

In the cases (A2) and (A3), according to Theorem 6 in [40], E(SN(s)− s) again
exhibits the same asymptotics as in the non-lattice case.

Recalling that c(t) is regularly varying at ∞ with index 1/α (where α = 2
in the Cases (A1) and (A2)), we conclude that

lim
t→∞

ESN(µn) − µn
c(n)

= 0.

Applying this and (3.11) to (3.10) we infer

lim
n→∞

µ
E |N(µn)− n|

c(n)
= E |W |.

Now we have to check that this relation implies (3.9). For any t > 0 there
exists n = n(t) ∈ N0 such that t ∈ (µn, µ(n+ 1)]. Hence, by subadditivity,

E
(
N(t)−N(µn)

)
≤ E

(
N(µ(n+ 1))−N(µn)

)
≤ EN(µ).

It remains to observe that, as a consequence of the regular variation of c(t),
we have limt→∞ c(µn(t)µ−1)/c(t) = µ−1/α, hence (3.9).
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The formula for E |W | in the case (A3) is proved in Lemma A.1.
It remains to check that E |N∗(t)− µ−1t| exhibits the same asymptotics as

E |N(t)− µ−1t|. But this is a consequence of the chain of equalities

E |N∗(t)−N(t)| = E(N(t)−N∗(t)) = µ−1(ESN(t)− t) = o(c(t)) as t→∞

where the second equality follows from Wald’s equation and the third is a
consequence of (3.12). The proof is complete.

4 Proofs of the limit theorems without scaling

4.1 Preparatory results

A couple of preliminary results are needed before Theorems 2.1 and 2.4 can
be proved.

Proposition 4.1. Assume that µ < ∞ and that F is non-lattice. Then, for
any k ∈ N0,

(t− SN(t)−1, ξN(t)−1, . . . , ξN(t)−k,1{N(t)>k})
d→ (S∗0 , ξ1, . . . , ξk, 1) as t→∞.

Notice that in Proposition 4.1, there is a small change in perspective re-
garding the number of visits N(t) to the interval [0, t]. N(t) can also be viewed
as the first time at which the walk exceeds the level t. Therefore, we always
have t− SN(t)−1 ≥ 0.

Proof. We prove the assertion for k = 1. Since P{N(t) ≥ 2} → 1 we can
centre our attention on events contained in {N(t) ≥ 2}. Fix x, y ≥ 0. Then

P{t−SN(t)−1 ≤ x, ξN(t)−1 ≤ y,N(t) ≥ 2}

=
∑
k≥2

P{Sk−1 ≤ t, Sk > t, t− Sk−1 ≤ x, ξk−1 ≤ y}

=
∑
k≥2

E1{t−Sk−2−x≤ξk−1≤(t−Sk−2)∧y}(1−F (t−Sk−2−ξk−1))

=

∫
[0,t]

∫
[t−s−x,(t−s)∧y]

(1−F (t−s−z))F (dz)U(ds)

=

∫
[0,t]

fx,y(t− s)U(ds) (4.1)

where fx,y(t) =
∫

[t−x,t∧y]
(1−F (t−z))F (dz). We claim that fx,y is d.R.i. To see

this, first observe that

0 ≤ fx,y(t) = P{t− x ≤ ξ1 ≤ t ∧ y, ξ1 + ξ2 > t}
≤ P{ξ1 + ξ2 > t} =: f(t).

f is decreasing and integrable since E(ξ1 + ξ2) = 2µ < ∞. Thus, f is d.R.i.
and, therefore, fx,y is sandwiched between two d.R.i. functions and has only
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countably many discontinuities. Consequently, fx,y is d.R.i. This justifies the
application of the key renewal theorem in (4.1) which gives

lim
t→∞

P{t− SN(t)−1 ≤ x, ξN(t)−1 ≤ y,N(t) ≥ 2} =
1

µ

∫
[0,∞)

fx,y(s) ds .

The latter integral can be rewritten as follows:∫ ∞
0

fx,y(s) ds =

∫ ∞
0

∫
[s−x,s∧y]

(1−F (s−z))F (dz) ds

=

∫
[0,∞)

∫ ∞
0

1{s−x≤z≤s∧y}(1−F (s−z)) ds F (dz)

=

∫
[0,y]

∫ (z+x)∧y

z

(1−F (s−z)) ds F (dz)

+

∫
[0,y]

∫ z+x

y

(1−F (s−z)) ds F (dz)

=

∫
[0,y]

∫ x∧(y−z)

0

(1−F (s)) ds F (dz)

+

∫
[0,y]

∫ x

y−z
(1−F (s)) ds F (dz)

=

∫
[0,y]

∫ x

0

(1−F (s)) ds F (dz)

= F (y)µF ∗(x) = µP{S∗0 ≤ x, ξ1 ≤ y}.

The case k = 0 is a particular case of the case k = 1. The case k > 1 can be
treated similarly but the calculations become more involved.

Now we show that under the assumptions of Theorems 2.1 and 2.4, the
limiting variables X∗ and X∗◦ , respectively, are well-defined. It turns out that
in the case of X∗◦ , this is more than halfway to proving one-dimensional con-
vergence in Theorem 2.4.

Proposition 4.2. Assume that µ <∞ and that F is non-lattice. If h is d.R.i.,
then X∗ exists as the a.s. limit and the limit in L1 in (2.2). In particular, X∗

is integrable, a fortiori a.s. finite.

Proof. Since µ < ∞, the stationary walk (S∗k)k∈N0 exists and we can define
X∗n :=

∑n
k=0 h(S∗k), n ∈ N0. Recall that U∗(dx ) =

∑
k≥0 P{S∗k ∈ dx} equals

µ−1 dx . Hence, since |h| is assumed to be d.R.i., we have

E
∑
k≥0

|h(S∗k)| =

∫ ∞
0

|h(x)| dx < ∞.

Consequently, X∗n → X∗ a.s. and in L1.
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Proposition 4.3. Assume that µ <∞ and that F is non-lattice. Let h : R+ →
R be locally bounded, eventually decreasing and non-integrable and recall that

X∗◦ := lim
t→∞

(∑
k≥0

h(S∗k)1{S∗
k≤t}−

1

µ

∫ t

0

h(y) dy

)
.

Under the assumptions of Theorem 2.4, X∗◦ exists as the limit in L2 in the
case (C1), as the a.s. limit in the case (C2) and as the limit in probability in
the case (C3), and in all three cases, it is a.s. finite.

Proof. Define

X∗t :=
∑
k≥0

h(S∗k)1{S∗
k≤t}−

1

µ

∫ t

0

h(y) dy , t ≥ 0.

Our aim is to show that X∗t converges as t→∞ in the asserted sense.
We start with the case (C1) and first prove the result assuming that h is

decreasing on R+. We then have to show that X∗t converges in L2 as t→∞,
equivalently,

lim
s→∞

sup
t>s

E(X∗t −X∗s )2 = 0.

Since
X∗t −X∗s =

∑
k≥0

h(S∗k)1{s<S∗
k≤t}−E

∑
k≥0

h(S∗k)1{s<S∗
k≤t}

for t > s, we conclude that

E(X∗t −X∗s )2 = E
(∑

k≥0

h(S∗k)1{s<S∗
k≤t}

)2

−
(
E
∑
k≥0

h(S∗k)1{s<S∗
k≤t}

)2

= E
(∑

k≥0

h(S∗k)1{s<S∗
k≤t}

)2

−
(

1

µ

∫ t

s

h(y) dy

)2

= E
(∑

k≥0

h(t− S∗k)1{S∗
k<t−s}

)2

−
(

1

µ

∫ t

s

h(y) dy

)2

,

where the last equality follows from Proposition 3.1. The first term on the
right-hand side equals

E
∑
k≥0

h(t−S∗k)2
1{S∗

k<t−s}+2E
∑

0≤i<j

h(t−S∗i )1{S∗
i <t−s} h(t−S∗j )1{S∗

j<t−s}

=
1

µ

∫ t−s

0

h(t−y)2 dy +
2

µ

∫ t−s

0

h(t−y)

∫
(0, t−s−y)

h(t−y−x)U(dx ) dy

=
1

µ

∫ t

s

h(y)2 dy +
2

µ

∫ t

s

h(y)

∫
(0, y−s)

h(y − x)U(dx ) dy .

Hence

E(X∗t −X∗s )2

=
1

µ

∫ t

s

h(y)2 dy +
2

µ

∫ t

s

h(y)

∫
(0, y−s)

h(y − x) d(U(x)−µ−1x) dy .
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Since h2 is assumed to be integrable, lims→∞ supt>s
∫ t
s
h(y)2 dy = 0 and it

remains to check that

lim
t→∞

sup
t>s

∫ t

s

h(y)

∫
(0, y−s)

h(y − x) d(U(x)−µ−1x) dy = 0. (4.2)

Put Hs,t(x) :=
∫ t−x
s

h(x + y)h(y) dy for x ∈ [0, t − s) and Hs,t(x) := 0 for
all other x. Note that Hs,t(x) is right-continuous and decreasing on [0,∞).
Changing the order of integration followed by integration by parts gives∫ t

s

h(y)

∫
(0, y−s)

h(y − x) d
(
U(x)− µ−1x

)
dy

=

∫
(0,t−s)

∫ t−x

s

h(x+ y)h(y) dy d
(
U(x)− µ−1x

)
≤
∫

(0, t−s)
(U(x)− µ−1x) d(−Hs,t(x))

≤ sup
x≥0

∣∣U(x)− µ−1x
∣∣Hs,t(0)

= sup
x≥0

∣∣U(x)− µ−1x
∣∣ ∫ t

s

h(y)2 dy .

It is known (see Theorem XI.3.1 in [10]) that limt→∞(U(t)−µ−1t) = µ−2(σ2 +
µ2) <∞, hence supx≥0 |U(x)− µ−1x| <∞, and (4.2) follows.

Next we assume that h is only eventually decreasing (rather than decreasing
everywhere). Then we can pick some t0 > 0 such that h is decreasing on [t0,∞).
Define h(t) := h(t0 + t), t ≥ 0. Then h is decreasing on R+. Further, the post-
t0 walk (S

∗
k)k∈N0 := (S∗N∗(t0)+k − t0)k∈N0 is a distributional copy of (S∗k)k∈N0 .

Therefore, by what we have already shown,

X
∗
◦ := lim

t→∞

(∑
k≥0

h(S
∗
k)1{S∗

k≤t}−
1

µ

∫ t

0

h(y) dy

)
exists in the L2-sense. Therefore, also

X∗◦ = lim
t→∞

(∑
k≥0

h(S∗k)1{S∗
k≤t0+t}−

1

µ

∫ t0+t

0

h(y) dy

)
= X∗t0 + lim

t→∞

(∑
k≥0

h(S
∗
k)1{S∗

k≤t}−
1

µ

∫ t

0

h(y) dy

)
exists in the L2-sense.

Now we turn to the cases (C2) and (C3). Again, we begin by assuming
that h satisfies the assumptions of the theorem and is decreasing and twice
differentiable on R+ with h′′ ≥ 0. The proof is divided into three steps.

Step 1: Prove that if, as n → ∞, Un :=
∑n

k=0(h(S∗k) − h(µk)) converges a.s.
in the case (C2) or converges in probability in the case (C3), then, as
t→∞,

∑
k≥0 h(S∗k)1{S∗

k≤t}−µ
−1
∫ t

0
h(y) dy converges in the same sense.
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Step 2: Prove that if the series
∑

j≥0(ξ∗j −µ)
∑

k≥j h
′(µk) converges a.s., then, as

n→∞, Un converges a.s. in the case (C2) and converges in probability
in the case (C3).

Step 3. Use the three series theorem to check that, under the conditions stated,
the series

∑
j≥0(ξ∗j − µ)

∑
k≥j h

′(µk) converges a.s.

Step 1.
Case (C2). Assume that Un converges a.s. Then, by Lemma A.6, the se-
quence

∑n
k=0 h(S∗k)−µ−1

∫ µn
0
h(y) dy converges a.s., too. Since limt→∞N

∗(t) =

∞ a.s., we further have that
∑N∗(t)−1

k=0 h(S∗k)−µ−1
∫ µ(N∗(t)−1)

0
h(y) dy converges

a.s. as t→∞. To complete this step, it remains to prove that

lim
t→∞

∣∣∣∣ ∫ µ(N∗(t)−1)

0

h(y) dy −
∫ t

0

h(y) dy

∣∣∣∣ = 0 a.s. (4.3)

To this end, write∣∣∣∣ ∫ µ(N∗(t)−1)

0

h(y) dy −
∫ t

0

h(y) dy

∣∣∣∣
=

∫ µ(N∗(t)−1)∨t

µ(N∗(t)−1)∧t
h(y) dy

≤ |µ(N∗(t)− 1)− t|h(µ(N∗(t)− 1) ∧ t), (4.4)

where the inequality follows from the monotonicity of h. By Theorem 3.4.4 in
[14], E ξr <∞ implies that

N(t)− µ−1t = o(t1/r) a.s. as t→∞, (4.5)

where it should be recalled that

N(t) := inf{k ∈ N : Sk > t} = inf{k ∈ N : S∗k − S∗0 > t}.

Since
N∗(t) = 1{S∗

0≤t}+N(t− S∗0)1{S∗
0≤t} a.s.

and S∗0 is a.s. finite, we infer

N∗(t)− µ−1t = o(t1/r) a.s. as t→∞.

This relation implies that the first factor in (4.4) is o(t1/r), whereas the second
factor is o(t−1/r) as t → ∞. The latter relation can be derived as follows.
First, in view of (2.9), we have

h(t) = o(t−1/r) as t→∞. (4.6)

Second, by the strong law of large numbers for N∗(t), we have

[µ(N∗(t)− 1)] ∧ t ∼ t a.s. as t→∞.

Altogether, (4.3) has been proved.
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Case (C3). Assume that Un converges in probability. In view of Lemma A.6

we conclude that, as t → ∞,
∑bt/µc

k=0 h(S∗k) − µ−1
∫ µbt/µc

0
h(y) dy converges in

probability, too.
From (2.11) it follows that h(t)α`(h(t)−1) = o(t−1). This and (2.13) imply

that

0 = lim
t→∞

th(t)α`(h(t)−1) = lim
t→∞

c(t)αh(t)α
`(h(t)−1)

`(c(t))
= lim

t→∞

P{ξ > h(t)−1}
P{ξ > c(t)}

.

From this, using the monotonicity and regular variation of x 7→ P{ξ > x}, we
conclude that

lim
t→∞

c(t)h(t) = 0 (4.7)

The latter relation implies that limt→∞ h(t) = 0. Hence

lim
t→∞

(∫ µbt/µc

0

h(y) dy −
∫ t

0

h(y) dy

)
= 0.

Further,

lim
t→∞

N∗(t) ∧ (bt/µc+ 1)

t
= µ−1 a.s. and lim

t→∞

SN∗(t)∧(bt/µc+1)

N∗(t) ∧ (bt/µc+ 1)
= µ a.s.

by the strong laws of large numbers for renewal processes and random walks,
respectively. Hence

SN∗(t)∧(bt/µc+1)

t
= 1 a.s.

Using this and (4.6) we obtain that∣∣∣∣ bt/µc∑
k=0

h(S∗k)−
N∗(t)−1∑
k=0

h(S∗k)

∣∣∣∣ =

(N∗(t)−1)∨bt/µc∑
k=N∗(t)∧(bt/µc+1)

h(S∗k)

≤
∣∣N∗(t)− 1− bt/µc

∣∣h(SN∗(t)∧(bt/µc+1)

)
=

∣∣N∗(t)− 1− bt/µc
∣∣o(1/c(t)).

From (3.6) for u = 1 in the case (D3) in Subsection 3.2 we infer that |µ(N∗(t)−1)−t|
c(t)

converges in distribution to an α-stable law with characteristic function given
by (2.15). This entails

bt/µc∑
k=0

h(S∗k)−
N∗(t)−1∑
k=0

h(S∗k)
P→ 0 as t→∞.

Combining pieces together gives the needed conclusion for this step.
Step 2. For each k ∈ N, by Taylor’s formula, there exists a θk ∈ [S∗k ∧

µk, S∗k ∨ µk] such that

h(S∗k)− h(µk) = h′(µk)(S∗k − µk) +
1

2
h′′(θk)(S

∗
k − µk)2.
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Set

In :=
1

2

n∑
k=1

h′′(θk)(S
∗
k − µk)2

and write

Un − h
(
S∗0
)

+ h(0) =
n∑
k=1

h′(µk)(S∗k − µk) + In

= S∗0

n∑
k=1

h′(µk) +
n∑
k=1

(ξk − µ)
n∑
j=k

h′(µj) + In

= S∗0

n∑
k=1

h′(µk) +
n∑
k=1

(ξk − µ)
∑
j≥k

h′(µj)

−(Sn − µn)
∑
k≥n+1

h′(µk) + In. (4.8)

Since −h′ is decreasing and nonnegative we have∑
k≥n+1

−h′(µk) ≤
∫ ∞
n

−h′(µy) dy = µ−1h(µn) ≤
∑
k≥n

−h′(µk). (4.9)

for all n. Using the first inequality in (4.9) and the fact that limy→∞ h(y) = 0,
one immediately infers that the first summand in the penultimate line of (4.8)
converges as n → ∞. The a.s. convergence of the second (principal) term is
assumed to hold here. As to the third and fourth terms, we have to consider
the cases (C2) and (C3) separately.
Case (C2). By the Marcinkiewicz-Zygmund law of large numbers [7, Theorem
2 on p. 125],

Sn − µn = o(n1/r) as n→∞ a.s. (4.10)

Therefore, in view of (4.6) and (4.9), the third term converges to zero a.s.
Further, limk→∞ k

−1θk = µ a.s. by the strong law of large numbers. Hence, in
view of (2.10),

h′′(θk) = O(θ
−2−1/r
k ) = O(k−2−1/r) as k →∞.

From (4.10) we infer

h′′(θk)(S
∗
k − µk)2 = o(k−(2−1/r)) a.s. as k →∞,

which implies that In converges a.s. as n→∞, for 2− 1/r > 1. Hence the a.s.
convergence of

∑
k≥1(ξ∗k − µ)

∑
j≥k h

′(µj) entails that of Un.

Case (C3). By the discussion in Subsection 3.2 Sn−µn
c(n)

converges in distri-

bution to an α-stable law. Hence, in view of (4.7) and (4.9), the third term
converges to zero in probability.
Now pick some 0 < ε < α− 1. Since E ξα−ε <∞, we conclude (again from the
Marcinkiewicz-Zygmund law of large numbers, [7, Theorem 2 on p. 125]) that

29



(4.10) holds with r = α− ε. Using (2.12) and the facts that θk ∼ µk a.s. and
that c(t) ∼ t1/αL(t) for some slowly varying L (see Lemma 3.2), we conclude:

h′′(θk) = O(θ−2
k c(θk)

−1) = O(k−2−1/αL(k)−1) a.s. as k →∞.

Therefore,

h′′(θk)(S
∗
k − µk)2 = o(k−(2− α+ε

α(α−ε) )L(k)−1) a.s., k →∞,

which implies that the fourth term In converges a.s., as for sufficiently small
ε, 2− α+ε

α(α−ε) > 1. Hence we arrive at the conclusion that the a.s. convergence

of
∑

k≥1(ξk − µ)
∑

j≥k h
′(µj) entails convergence in probability of Un.

Step 3. Set

ck :=
∑
j≥k

−h′(µj) and ζk := −ck(ξk − µ), k ∈ N .

Case (C2). Condition (2.9) ensures that
∑

k≥1 h(µk)r <∞. In view of (4.9),

∑
k≥1

E |ζk|r = E |ξ − µ|r
∑
k≥1

(∑
j≥k

(−h′(µj))

)r

≤ µ−r E |ξ − µ|r
∑
k≥1

h(µ(k − 1))r < ∞.

Hence the series
∑

k≥1 ζk converges a.s. by Corollary 3 on p. 117 in [7].
Case (C3). By the three series theorem [7, Theorem 2 on p. 117], it suffices
to show that the following series converge∑

k≥1

P{|ζk| > 1},
∑
k≥1

E(ζk 1{|ζk|≤1}) and
∑
k≥1

Var(ζk 1{|ζk|≤1}).

By Markov’s inequality, the first series converges if
∑

k≥1 E(|ζk|1{|ζk|>1}) con-
verges. Since E ζj = 0 for all j ≥ 1, the second series converges if and only if
the series

∑
k≥1 E ζk 1{|ζk|>1} converges. By Theorem 1.6.5 in [5],

E(|ζk|1{|ζk|>1}) = ck

∫
[c−1
k ,∞)

xP{|ξ − µ| ∈ dx} ∼ α

α− 1
cαk `(c

−1
k ) as k →∞.

Hence, recalling (4.9) and (2.11),∑
k≥1

E(|ζk|1{|ζk|>1}) < ∞.

Further, by Theorem 1.6.4 in [5],

E(ζ2
k 1{|ζk|≤1}) = c2

k

∫
[0,c−1

k ]

x2 P{|ξ − µ| ∈ dx} ∼ α

2− α
cαk `(c

−1
k ) as k →∞.

Again using (4.9) and (2.11), this entails∑
k≥1

Var(ζk 1{|ζk|≤1}) ≤
∑
k≥1

E(ζ2
k 1{|ζk|≤1}) < ∞.
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Finally, we need to prove that the assertion also holds for h that are only
eventually decreasing and eventually twice differentiable with h′′ ≥ 0 eventu-
ally. Indeed, for any such h, there is some t0 > 0 such that h is decreasing
and twice differentiable on [t0,∞) with h′′ ≥ 0 on [t0,∞). Using this t0,
define h and (S

∗
k)k∈N0 as in the proof in the case (C1). Notice that with

h, also h satisfies the assumptions of the theorem, for instance, in case (C3),

h
′′
(t) = h′′(t0 +t) = O((t0 +t)−2c(t0 +t)−1) = O(t−2c(t)−1) as t→∞. Now one

can argue as in the corresponding part of the proof in the case (C1) to conclude
that X∗◦ exists as the a.s. limit or the limit in probability, respectively.

4.2 One-dimensional convergence

The proofs of Theorems 2.1 and 2.4 are preceded by the corresponding state-
ments on one-dimensional convergence and their proofs.

Proposition 4.4. Assume that F is non-lattice and let h be directly Riemann
integrable.

(a) If µ <∞, then the random series X∗ converges a.s. and

X(t)
d→ X∗ as t→∞.

(b) If µ =∞, then

X(t)
L1→ 0 as t→∞.

Proof. We first deal with assertion (a) and assume µ <∞. Recall the definition
X∗n :=

∑n
k=0 h(S∗k), n ≥ 0 from the proof of Proposition 4.2. The latter

proposition implies that X∗n → X∗ a.s. and in L1. We now claim that

Xn(t) :=

N(t)−1∑
k=N(t)−n−1

h(t− Sk)1{N(t)≥n+1}
d→ X∗n as t→∞. (4.11)

This follows from Proposition 4.1 and the continuous mapping theorem once
we have shown that the random vector (S∗0 , . . . , S

∗
n) takes values in the set of

discontinuities of the mapping s ◦ g with probability 0 where s ◦ g : Rn+1 → R
is defined as follows. s : Rn+1 → R maps (x0, . . . , xn) to the sum x0 + . . .+xn.
g : Rn+1 → Rn+1 maps (x0, . . . , xn) to (h(x0), . . . , h(xn)). Since s is continuous,
attention can centre on g. Let Dh denote the set of discontinuities of h on R
and let Dg denote the set of discontinuities of g in Rn+1. It is readily checked
that Dg =

⋃n
k=0(Rk×Dh × Rn−k). For h is d.R.i., Dh has Lebesgue measure

0. Consequently,

P{(S∗0 , . . . , S∗n) ∈ Dg} ≤
n∑
k=0

P{S∗k ∈ Dh} = 0,

where we have used that S∗0 and therefore also S∗k for k ∈ N have absolutely
continuous distributions. From (4.11) and the fact that X∗n → X∗ a.s. (and, in
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particular, in distribution), we want to conclude that X(t)
d→ X∗ as t → ∞.

This follows from Theorem 3.2 in [3] if we can show that for every ε > 0,

lim
n→∞

lim sup
t→∞

P{|Xn−1(t)−X(t)| > ε}

= lim
n→∞

lim sup
t→∞

P
{∣∣∣∣N(t)−n−1∑

k=0

h(t− Sk)1{N(t)≥n}+X(t)1{N(t)<n}

∣∣∣∣ > ε

}
= 0.

Since X(t)1{N(t)<n} =
∑N(t)−1

k=0 h(t − Sk)1{N(t)<n} → 0 a.s. as t → ∞, this
reduces to showing that

lim
n→∞

lim sup
t→∞

P
{∣∣∣∣N(t)−n−1∑

k=0

h(t− Sk)1{N(t)≥n}

∣∣∣∣ > ε

}
= 0.

By Markov’s inequality, it suffices to verify that

lim
n→∞

lim sup
t→∞

E
N(t)−n−1∑
k=0

|h(t− Sk)|1{N(t)≥n} = 0. (4.12)

To see this, we define pn(x) := P{Sn ≤ x}. Then, for n ≥ 2,

E
N(t)−n−1∑
k=0

|h(t− Sk)|1{N(t)≥n} = E
∑
k≥0

|h(t− Sk)|1{Sk+n≤t}

= E
∑
k≥0

|h(t− Sk)| pn(t− Sk)1{Sk≤t}

→ 1

µ

∫ ∞
0

|h(x)|pn(x) dx as t→∞, (4.13)

where in the last step we have used the key renewal theorem and the fact that
if h is d.R.i., then so is |h|pn. Using the dominated convergence theorem and
limn→∞ pn(x) = 0, we infer (4.12) by taking the limit n→∞ in (4.13).

Assertion (b) is a straightforward consequence of the key renewal theorem.

Proposition 4.5. Assume that µ <∞ and that F is non-lattice. Let h : R+ →
R be locally bounded, a.e. continuous, eventually decreasing and non-integrable
with limt→∞ h(t) = 0. If X∗◦ exists as a limit in distribution, then

X◦(t)
d→ X∗◦ as t→∞. (4.14)

In particular, (4.14) holds under the assumptions of Theorem 2.4. Further,

X(t)− EX(t)
d→ X∗◦ as t→∞ in the case (C1) of Theorem 2.4.

Proof. First assume that h is decreasing everywhere. Let ε > 0 and τ = τ(ε)
be defined as in Section 3.1. Then

X(t) =
τ∑
k=0

h(t− Sk)1{Sk≤t}+
∑
k≥τ+1

h(t− Sk)1{Sk≤t} .
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By assumption, limt→∞ h(t) = 0. Hence limt→∞
∑τ

k=0 h(t−Sk)1{Sk≤t} = 0 a.s.
Using (3.1) and the monotonicity of h, we infer for any t > ε:∑

k≥τ+1

h(t− Sk)1{Sk≤t}

≤
∑
k≥τ+1

h(t− ε− S̃∗k)1{S̃∗
k≤t−ε}

+
∑
k≥τ+1

h(0)1{t−ε<S̃∗
k≤t+ε}

≤
∑
k≥0

h(t− ε− S̃∗k)1{S̃∗
k≤t−ε}

+h(0)(Ñ∗(t+ ε)− Ñ∗(t− ε)).

In view of Proposition 3.1,∑
k≥0

h(t− S̃∗k)1{S̃∗
k≤t}

d
=
∑
k≥0

h(S̃∗k)1{S̃∗
k≤t}

.

Hence, since X∗◦ exists as a limit in distribution,∑
k≥0

h(t− ε− S̃∗k)1{S̃∗
k≤t−ε}

− 1

µ

∫
[0, t−ε]

h(y) dy
d→ X∗◦ .

From limt→∞
∫ t
t−ε h(y) dy = 0, Ñ∗(t+ε)− Ñ∗(t−ε) d

= Ñ∗(2ε), and Ñ∗(2ε) ↓ 0
a.s. as ε ↓ 0, we conclude

lim sup
t→∞

P{X◦(t) > x} ≤ P{X∗◦ > x}

for every continuity point x of the law of X∗◦ . To be more precise, let x and
x− δ (δ > 0) be continuity points of the law of X∗◦ . Then

lim sup
t→∞

P{X◦(t) > x}

≤ lim sup
t→∞

P
{∑

k≥0

h(t−ε−S̃∗k)1{S̃∗
k≤t−ε}

− 1

µ

∫ t−ε

0

h(y) dy > x− δ
}

+ lim sup
t→∞

P
{
h(0)(Ñ∗(t+ ε)− Ñ∗(t− ε)) > δ/2

}
+ lim sup

t→∞
P
{ τ∑

k=0

h(t− Sk)1{Sk≤t} > δ/2

}
= P{X∗◦ > x− δ}+ P{h(0)Ñ∗(2ε) > δ/2}.

As ε ↓ 0, the second probability goes to zero. Sending now δ ↓ 0 along a
sequence such that each x− δ is a continuity point of the law of X∗◦ , we arrive
at the desired conclusion. The lower bound can be obtained similarly, we omit
the details.

We next extend the assertion to response functions h that are only even-
tually decreasing. Indeed, when h is assumed to be eventually decreasing,
there exists a t0 > 0 such that h(t) is decreasing on [t0,∞). Define h1 :=
h(t0)1[0,t0] +h(t)1(t0,∞) and h2 := h − h1. Let (X1(t))t≥0 and (X2(t))t≥0 be
the shot noise processes with response functions h1 and h2, respectively. Then
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X(t) = X1(t) + X2(t), t ≥ 0. Now h1 is d.R.i. Therefore, Proposition 4.4

implies that X1(t)
d→ X∗1 as t→∞. What is more, X1,◦(t)

d→ X∗1,◦ as t→∞,
where these quantities are defined in the obvious way. Further, from what
we have already shown, X2,◦(t), which is again defined in the obvious way,
converges to X∗2,◦ in distribution as t→∞.

It now follows from Proposition 4.3 that the assumptions of Theorem 2.4
are sufficient for (4.14) to hold.

In the case (C1) of Theorem 2.4, limt→∞ |EX(t) − µ−1
∫ t

0
h(y) dy | = 0

by Corollary 3.1 in [21]. Hence, the limiting distribution of X(t) − EX(t) as
t→∞ is the same as that of X∗◦ (t).

4.3 Finite-dimensional convergence

It remains to extend one-dimensional convergence to finite-dimensional con-
vergence. This is done in this subsection.

Proof of Theorem 2.1. We have to show that for all 0 < u1 < . . . < un < ∞,
the random vector (X(u1t), . . . , X(unt)) converges to (X∗(u1), . . . , X∗(un)) in
distribution as t → ∞. For ease of notation, we will prove this in the case
n = 2; the case n > 2 can be treated analogously. Without loss of generality
we may assume that u1 = 1. We write u for u2 > 1. Set m1 = (1 + u)/2 and
let m1 < m2 < u. For t > 0 set also

X1(ut) :=

N(m1t)−1∑
k=0

h(ut−Sk)1{Sk≤ut} and X2(ut) :=
∞∑

k=N(m1t)

h(ut−Sk)1{Sk≤ut} .

Clearly, X(ut) = X1(ut) +X2(ut) for all t > 0. We claim that

X1(ut)
P→ 0 as t→∞. (4.15)

Hence, by Slutsky’s lemma it is enough to show that

P{X(t) ≤ a,X2(ut) ≤ b} → P{X∗ ≤ a}P{X∗ ≤ b} (4.16)

as t→∞ for continuity points a, b ∈ R of the law of X∗.
We first prove (4.16) and then (4.15). Write the probability on the left-hand

side of (4.16) as follows:

P{X(t) ≤ a,X2(ut) ≤ b}

=

∫
(m1t,∞)

P{X(t) ≤ a,X2(ut) ≤ b, SN(m1t) ∈ dy}

=
(∫

(m1t,m2t]

. . .+

∫
(m2t,∞)

. . .
)

=: J1(t) + J2(t).

Clearly, 0 ≤ J2(t) ≤ P{SN(m1t) > m2t} = P{SN(m1t)−m1t > (m2−m1)t} → 0

as t → ∞ since SN(m1t) −m1t
d→ S∗0 and (m2 −m1)t → +∞ as t → ∞. For

J1(t) we may write:

J1(t) =

∫
(m1t,m2t]

P{X(ut− y) ≤ b}P{X(t) ≤ a, SN(m1t) ∈ dy}
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where we have used that (Sk+N(m1t) − SN(m1t))k∈N0 has the same distribution
as (Sk)k∈N0 and is independent of (Sk)0≤k≤N(m1t). Further,

J1(t) = P{X∗ ≤ b}
∫

(m1t,m2t]

P{X(t) ≤ a, SN(m1t) ∈ dy}

+

∫
(m1t,m2t]

(P{X(ut−y) ≤ b} − P{X∗ ≤ b})P{X(t) ≤ a, SN(m1t) ∈ dy}

=: J11(t) + J12(t).

The integral in the first summand converges to P{X∗ ≤ a} by Proposition 4.4
since a is a continuity point of the law of X∗ and P{m1t ≤ SN(m1t) ≤ m2t} → 1
as t→∞. To show that J12(t) converges to zero, write

|J12(t)|

= sup
y∈[m1t,m2t]

∣∣∣P{X(ut− y) ≤ b} − P{X∗ ≤ b}
∣∣∣ ∫

(m1t,m2t]

P{SN(m1t) ∈ dy}

≤ sup
y≥(u−m2)t

∣∣∣P{X(y) ≤ b} − P{X∗ ≤ b}
∣∣∣,

which goes to zero since (u − m2)t → ∞, as t → ∞, in view of Proposition
4.4. The proof of (4.16) is complete. It remains to show (4.15). By the key
renewal theorem,

E |X1(ut)| ≤ E
N(m1t)−1∑

k=0

|h(ut− Sk)| =

∫
(0,m1t]

|h(ut− y)|U(dy)

=

∫
(0, ut]

|h(ut− y)|U(dy)−
∫

(m1t, ut]

|h(ut− y)|U(dy)

=
1

µ

∫ ∞
0

|h(y)| dy −
∫

(m1t, ut]

|h(ut− y)|U(dy) + o(1)

as t→∞. So it is sufficient to show that

lim inf
t→∞

∫
(m1t, ut]

|h(ut− y)|U(dy) ≥ 1

µ

∫ ∞
0

|h(y)| dy .

For fixed δ > 0 set Iδk = [kδ, (k + 1)δ) and mδ
k = infx∈Iδk |h(x)|. Then, for large

enough t > 0,∫
(m1t, ut]

|h(ut− y)|U(dy) ≥
b((u−m1)t)/δc−1∑

k=0

mδ
kU(ut− Iδk)

where bxc denotes the largest integer ≤ x. Given 0 < δ < 1 there is N = N(δ)
such that

∑
k>N m

δ
k < δ, for |h| is dRi. Let t be so large that b(u−m1)t/δc−1 >
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N . Then∫
(m1t, ut]

|h(ut− y)|U(dy) ≥
b(u−m1)t/δc−1∑

k=0

mδ
kU(ut− Iδk)

≥
N∑
k=0

mδ
kU(ut− Iδk) →

t→∞

δ

µ

N∑
k=0

mδ
k

≥ δ

µ

∞∑
k=0

mδ
k −

δ2

µ
→
δ↓0

1

µ

∫ ∞
0

|h(y)| dy ,

which finishes both the proof of (4.15) and of the whole theorem for n = 2.
The case of general n ∈ N can be treated in a similar manner by con-

ditioning the probability P{X(u1t) ≤ a1, . . . , X(unt) ≤ an} on the values
of (SN(m1t), . . . , SN(mn−1t)) at appropriately chosen middle points ui < mi <
ui+1.

The scheme of the proof of Theorem 2.4 is the same as that of the proof
of Theorem 2.1 above. On the other hand, it differs in many details which is
why we decided to include it in the paper.

Proof of Theorem 2.4. As in the case of Theorem 2.1, we will prove this the-
orem only for n = 2 and assume that u1 = 1 and u := u2 > 1. Let
p(t) := µ−1

∫ t
0
h(y) dy and set m1 := (1 + u)/2, z2(t) := m1t + r(t) where r(t)

is some function to be specified below. Decompose X◦(ut) := X(ut) − p(ut)
as follows

X◦(ut) =

(N(m1t)−1∑
k=0

h(ut− Sk)−
1

µ

∫ ut

(u−m1)t

h(y) dy

)
+

( ∞∑
k=N(m1t)

h(ut− Sk)1{Sk≤ut}−p((u−m1)t)

)
=: Y1(t) + Y2(t).

Similar to the proof of Theorem 2.1, we conclude that it is enough to show
that

Y1(t)
P→ 0, (4.17)

and

P{X(t) ≤ a+ p(t), Y2(t) ≤ b} → P{X∗◦ ≤ a}P{X∗◦ ≤ b}, (4.18)

as t→∞ for all a, b ∈ R that are continuity points of the law of X∗◦ .
We begin by proving (4.17). Using integration by parts (see Lemma A.3),
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we infer

Y1(t) =
(N(m1t)−1∑

k=0

h(ut− Sk)1{Sk≤ut}−
1

µ

∫ ut

(u−m1)t

h(y) dy
)

=

∫
[0,m1t]

h(ut− y) d
(
N(y)− y

µ

)
= h(ut) + h((u−m1)t−)

(
(N(m1t)−

m1t

µ

)
− h(ut−)

−
∫

(0,m1t]

(
N(y)− y

µ

)
dh(ut− y)

= h(ut)− h(ut−) + h((u−m1)t−)
(
N(m1t)−

m1t

µ

)
+

∫
[(u−m1)t, ut)

(
N(ut− y)− ut− y

µ

)
d(−h(y)). (4.19)

We now distinguish between two cases:
Cases (C1) and (C3): We invoke the estimate E |N(t)− t

µ
| ≤ K1 +K2c(t)

which holds for all t ≥ 0 and some fixed K1, K2 > 0, see Theorem 3.3. Here
c(t) is chosen as

√
t in case (C1) and in case (C3) it is as stated there. Then

E |Y1(t)| ≤ h((u−m1)t)E
∣∣∣N(m1t)−

m1t

µ

∣∣∣+ o(1)

+

∫
((u−m1)t, ut]

E
∣∣∣N(ut− y)− ut− y

µ

∣∣∣ d(−h(y))

≤ h((u−m1)t)
(
K1 +K2c(m1t)

)
+ o(1)

+

∫
((u−m1)t, ut]

(K1 +K2c(ut− y)) d(−h(y)).

Note that since c is regularly varying with positive index we may assume,
without loss of generality, that c(t) is eventually increasing (see Theorem 1.5.3
in [5]). This observation implies that, for arbitrary κ, λ > 0,

lim
t→∞

c(κt)h(λt) = lim
t→∞

c(t)h(t) = 0, (4.20)

under each assumption (i), (ii) and (iii). Recalling that m1 = (1 + u)/2 < u
and using (4.20) we infer that the first summand in the estimate for E |Y1(t)|
above converges to zero as t→∞. Further, again using (4.20),∫

((u−m1)t, ut]

(K1 +K2c(ut− y)) d(−h(y))

= K2

∫
((u−m1)t, ut]

c(ut− y) d(−h(y)) + o(1)

≤ c(m1t)(h((u−m1)t)− h(ut)) + o(1) → 0

as t→∞.
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Case (C2): In this case E ξr < ∞. Thus, by the Marcinkiewicz-Zygmund
law of large numbers for N(t), see (4.5),

lim
t→∞

sup0≤s≤t |N(s)− s
µ
|

t1/r
= 0 a.s.

From the monotonicity of h and (2.9) it follows that h(t) = O(t−1/r) as t→∞.
Hence

lim
t→∞

h(κt) sup
0≤s≤λt

∣∣∣N(s)− s

µ

∣∣∣ = 0 a.s.

for arbitrary κ, λ > 0. Using this in (4.19) implies that Y1(t) → 0 a.s., in
particular also in probability.

We now turn to the the proof of (4.18). Write the probability on the
left-hand side of (4.18) as follows:

P{X(t) ≤ a+ p(t), Y2(t) ≤ b}

=

∫
(m1t,∞)

P{X(t) ≤ a+ p(t), Y2(t) ≤ b, SN(m1t) ∈ dy}

=
(∫

(m1t, z2(t)]

· · ·+
∫

(z2(t),∞)

· · ·
)

=: J1(t) + J2(t).

Clearly, 0 ≤ J2(t) ≤ P{SN(m1t) ≥ z2(t)} = P{SN(m1t)−m1t ≥ r(t)}. The latter
probability tends to 0 as t→∞ whenever

r(t)→∞ as t→∞ (4.21)

since SN(m1t) −m1t
d→ S∗0 .

For J1(t) we may write:

J1(t)

=

∫
(m1t, z2(t)]

P{X(t) ≤ a+ p(t), SN(m1t) ∈ dy ,

∞∑
k=N(m1t)

h(ut−y−(Sk−SN(m1t)))1{Sk−SN(m1t)
≤ut−y} ≤ b+ p((u−m1)t)}

=

∫
(m1t, z2(t)]

P{X(ut−y) ≤ b+p((u−m1)t)}P{X(t) ≤ a+p(t), SN(m1t) ∈ dy},

where the last equality follows from the independence of (Sj)j=1,...,N(m1t) and

(Sk+N(m1t)−SN(m1t))k∈N, the distributional identity (SN(m1t)+k−SN(m1t))k∈N0

d
=

(Sk)k∈N0 and the inequality t < m1t. Further,

J1(t) = P{X∗◦ ≤ b}
∫

(m1t, z2(t)]

P{X(t) ≤ a+ p(t), SN(m1t) ∈ dy}

+

∫
(m1t, z2(t)]

(
P{X(ut− y) ≤ b+ p((u−m1)t)} − P{X∗◦ ≤ b}

)
× P{X(t) ≤ a+ p(t), SN(m1t) ∈ dy}

=: J11(t) + J12(t).
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When (4.21) holds, then P{m1t < SN(m1t) ≤ z2(t)} → 1 as t → ∞. Conse-
quently, an application of Proposition 4.5 shows that the integral in the first
summand converges to P{X∗◦ ≤ a}. To show that J12(t) converges to zero,
write

|J12(t)| ≤ sup
m1t<y≤z2(t)

∣∣P{X(ut−y) ≤ b+ p(ut−m1t)} − P{X∗◦ ≤ b}
∣∣

×
∫

(m1t, z2(t)]

P{SN(m1t) ∈ dy}

≤ sup
m1t<y≤z2(t)

∣∣P{X◦(ut−y) ≤ b+p(ut−m1t)−p(ut−y)} − P{X∗◦ ≤ b}
∣∣

= sup
m1t<y≤z2(t)

∣∣P{X◦(ut−y) ≤ b+ µ−1

∫ (u−m1)t

ut−y
h(x) dx −P{X∗◦ ≤ b}

∣∣.
Using the fact that h is non-negative, we proceed as follows:

|J12(t)| ≤ sup
m1t<y≤z2(t)

∣∣∣P{X◦(ut−y) ≤ b} − P{X∗◦ ≤ b}
∣∣∣

+ sup
m1t<y≤z2(t)

P
{
b < X◦(ut−y) ≤ b+ µ−1

∫ ut−m1t

ut−y
h(y) dy

}
≤ sup

y≥ut−z2(t)

∣∣∣P{X◦(y) ≤ b} − P{X∗◦ ≤ b}
∣∣∣

+ sup
m1t<y≤z2(t)

P
{
b < X◦(ut−y) ≤ b+ µ−1

∫ ut−m1t

ut−y
h(y) dy

}
.

Due to Proposition 4.5, the first summand converges to zero whenever

ut− z2(t) = (u− 1)t/2− r(t) → ∞ as t→∞. (4.22)

Assume that r also satisfies

lim
t→∞

h((u− 1)t/2− r(t))r(t) = 0. (4.23)

Then, for arbitrary ε > 0, there exists t0 such that for all t > t0

0 ≤ µ−1

∫ ut−m1t

ut−z2(t)

h(x) dx ≤ µ−1h((u− 1)t/2− r(t))r(t) < ε.

Thus, when (4.22) and (4.23) hold and ε > 0 is chosen such that b + ε is a
continuity point of the law of X∗◦

sup
m1t<y≤z2(t)

P

{
b < X◦(ut−y) ≤ b+ µ−1

∫ (u−m1)t

ut−z2(t)

h(x) dx

}
≤ sup

m1t<y≤z2(t)

P{X◦(ut−y) ∈ (b, b+ ε]}

→
t→∞

P{X∗◦ ∈ (b, b+ ε]} →
ε→0

0,
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since b and b+ ε are continuity points of the law of X∗◦ . We thus have proved
that limt→∞ J12(t) = 0 if r satisfies the conditions (4.21), (4.22) and (4.23). A
possible choice of r such that the above conditions are satisfied is the following.
Let δ = (u− 1)/4. Then choose r as r(t) = h(δt)−1/2 ∧ δt, t ≥ 0. Then (4.21)
holds since h(t)→ 0 as t→∞ and (4.22) holds since r(t) ≤ δt. Finally, (4.23)
holds since h(t(u − 1)/2 − r(t))r(t) ≤ h(δt)1/2 → 0 as t → ∞. The proof of
(4.18) is complete.

5 Proofs of the limit theorems with scaling

Whenever possible we intend to treat the all cases simultaneously. To this end,
for t > 0, put

Xt(u) :=
X(ut)−

∫ ut
0
h(y) dy

g(t)h(t)
, u ≥ 0.

5.1 Reduction to continuous and decreasing h

Regarding the proof of Theorem 2.7, we make our life easier by showing that
without loss of generality we can replace h by a decreasing and continuous
function h∗ on R+ satisfying h∗(t) ∼ h(t) as t → ∞. This follows an idea in
[18].

Suppose we have already proved that

X∗t (u) :=

∫
[0, ut]

h∗(ut− y) dN(y)− µ−1
∫ ut

0
h∗(y) dy

g(t)h∗(t)

f.d.⇒ Y (u), t→∞,

where Y (u) := W (u), u ≥ 0 if β = 0, and

Y (u) := W (u)u−β + β

∫ u

0

(W (u)−W (y))(u− y)−β−1 dy , u ≥ 0

if β > 0. To ensure the convergence Xt(u)
f.d.⇒ Y (u) as t → ∞, it suffices to

check that, for any u > 0,∣∣∣∣∣
∫

[0, ut]
(h(ut− y)− h∗(ut− y)) dN(y)

g(t)h(t)

∣∣∣∣∣ P→ 0 as t→∞, (5.1)

and ∣∣∣∣∣
∫ ut

0
(h(y)− h∗(y)) dy

g(t)h(t)

∣∣∣∣∣ → 0 as t→∞. (5.2)

By assumption, h is eventually decreasing. Hence, there exists an a > 0 such
that h is decreasing on [a,∞). Let ĥ be a bounded, right-continuous and

decreasing function such that ĥ(t) = h(t) for t ≥ a. Note that the so defined ĥ

is non-negative. The first observation is that replacing h by ĥ in the definition
of X(t) will not change the asymptotics. Indeed, if X̂ denotes the shot noise
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process with the shots occurring at times S0, S1, . . . and response function ĥ
instead of h, then for given u > 0 and all large enough t,

|X(ut)− X̂(ut)| =

∣∣∣∣∣
N(ut)∑
k=0

h(ut− Sk)− ĥ(ut− Sk)

∣∣∣∣∣
≤ sup

y∈[0, a]

|h(y)− ĥ(y)|(N(ut)−N(ut− a))

d

≤ sup
y∈[0, a]

|h(y)− ĥ(y)|N(a)

by the well-known distributional subadditivity of N . The boundedness of h
and ĥ ensures the finiteness of the last supremum. Since β < 1/α, in all cases
we have limt→∞ g(t)h(t) =∞. Consequently,∣∣∣∣∣X(ut)− X̂(ut)

g(t)h(t)

∣∣∣∣∣ P→ 0 as t→∞. (5.3)

Further, for ut ≥ a,∣∣∣∣∣
∫ ut

0
(h(y)− ĥ(y)) dy

g(t)h(t)

∣∣∣∣∣ ≤
∫ ut

0
|h(y)− ĥ(y)| dy

g(t)h(t)

=

∫
[0, a]

∣∣h(y)− ĥ(y)
∣∣ dy

g(t)h(t)
→ 0 as t→∞. (5.4)

Thus, in what follows, we can replace h by ĥ. We will now construct h∗ from ĥ.
To this end, let θ be a random variable with standard exponential distribution.
Set

h∗(t) := E ĥ
(
(t− θ)+

)
= e−t

(
ĥ(0) +

∫ t

0

ĥ(y)ey dy

)
, t ≥ 0. (5.5)

It is clear that ĥ(t) ≤ h∗(t), t ≥ 0 and that h∗ is continuous and decreasing

on R+ with h∗(0) = ĥ(0) < ∞. Furthermore, h∗(t) ∼ ĥ(t) ∼ h(t), t → ∞.
While this is trivial if limt→∞ h(t) 6= 0, in the opposite case (limt→∞ h(t) = 0)
the first equivalence does require a proof. We use the second equality in (5.5).

Being a regularly varying function 1/ĥ grows subexponentially fast. Using this

and the regular variation of ĥ at infinity, we infer for any ε ∈ (0, 1):

h∗(t)

ĥ(t)
= E

[
ĥ
(
(t− θ)+

)
ĥ(t)

1{θ>εt}

]
+ E

[
ĥ
(
(t− θ)+

)
ĥ(t)

1{θ≤εt}

]

≤ ĥ(0)

ĥ(t)
e−εt +

ĥ((1− ε)t)
ĥ(t)

(1− e−εt) →
t→∞

(1− ε)−β →
ε→0

1.

Since ĥ(t) ≤ h∗(t) for all t ≥ 0, this implies h∗(t) ∼ ĥ(t) as t → ∞. Let us
now prove that

lim
t→∞

∫ t

0

(h∗(y)− ĥ(y)) dy = ĥ(0). (5.6)
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We use the representation∫ t

0

(h∗(y)− ĥ(y)) dy

= ĥ(0)(1− e−t)− E
∫ t

t−θ
ĥ(y) dy 1{θ≤t}−

∫ t

0

ĥ(y) dy e−t.

Since ĥ grows subexponentially, the last term vanishes as t→∞, and we are
left with investigating the second term. By the monotonicity of ĥ and the
dominated convergence theorem,

E
∫

[t−θ, t]
ĥ(y) dy 1{θ≤t} ≤ E θĥ(t− θ)1{θ≤t} → 0 as t→∞,

which proves (5.6). In particular,∣∣∣∣∣
∫ ut

0
(ĥ(y)− h∗(y)) dy

g(t)h(t)

∣∣∣∣∣ =

∫ ut
0

(h∗(y)− ĥ(y)) dy

g(t)h(t)
→ 0 as t→∞

because limt→∞ g(t)h(t) = ∞. In combination with (5.4) the latter proves
(5.2). Recalling (5.6) and the fact that in all cases limt→∞ g(t)h(t) = ∞, we

conclude from Lemma A.7 (with f1 = h∗ and f2 = ĥ)∣∣∣∣∣
∫

[0, ut]
(ĥ(ut− y)− h∗(ut− y)) dN(y)

g(t)h(t)

∣∣∣∣∣
=

∫
[0, ut]

(h∗(ut− y)− ĥ(ut− y)) dN(y)

g(t)h(t)

L1→ 0 as t→∞.

This together with (5.3) leads to (5.1).

5.2 Proofs of Theorems 2.7 and 2.9

Proof of Theorem 2.7. By the Cramér-Wold device and the discussion in Sub-
section 5.1, in order to show finite-dimensional convergence of Xt(u), it suffices
to prove that for any n ∈ N, γ1, . . . , γn ∈ R and 0 ≤ u1 < . . . < un we have
that

n∑
k=1

γkX
∗
t (uk)

d→
n∑
k=1

γkY (uk) as t→∞.

Since

X∗t (0) =
h∗(0)

g(t)h∗(t)
→ 0 = W (0) as t→∞,
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in what follows we assume that u1 > 0. Integrating by parts we obtain that

n∑
k=1

γkX
∗
t (uk)

=
n∑
k=1

γk
g(t)h∗(t)

(
h∗(ukt) +

∫
(0,ukt]

h∗(ukt− y) d
(
N(y)− y

µ

))
=

n∑
k=1

γk
g(t)h∗(t)

(
h∗(0)

(
N(ukt)−

ukt

µ

)
−
∫

(0,ukt]

(N(y)− µ−1y) d(h∗(ukt− y))

)
=

n∑
k=1

γkWt(uk)
h∗(ukt)

h∗(t)

+
n∑
k=1

γk
g(t)h∗(t)

(
(h∗(0)− h∗(ukt))

(
N(ukt)−

ukt

µ

)
−
∫

[0,ukt)

(
N(ukt− y)− ukt− y

µ

)
d(−h∗(y))

)
=

n∑
k=1

γkWt(uk)
h∗(ukt)

h∗(t)

+
n∑
k=1

γk

∫
[0, ukt)

(N(ukt)−N(ukt− y)− µ−1y) d(−h∗(y))

g(t)h∗(t)
(5.7)

where the definition of Wt(u) should be recalled from (3.6).
Case β = 0. Our aim is to show that each summand of the second term in
(5.7) converges to zero in probability, for the convergence

n∑
k=1

γkX
∗
t (uk)

d→
n∑
k=1

γkY (uk) =
n∑
k=1

γkW (uk)

is then an immediate consequence of limt→∞ h
∗(ukt)/h

∗(t) = 1, (3.6) and Slut-
sky’s theorem.

For given 0 < ε < 1, recall the construction of the coupled stationary
random walk (S̃∗k)k∈N0 which satisfies (3.1), that is, S̃∗k − ε ≤ Sk ≤ S̃∗k + ε
for k ≥ τ + 1 where τ is an almost surely finite stopping time (the time of
ε-coupling). For the renewal counting process Ñ∗ corresponding to (S̃∗k)k∈N0 ,
we then have ∑

k≥τ+1

1{t−y<Sk≤t} ≤ Ñ∗(t+ε)− Ñ∗(t−y−ε)

and ∑
k≥τ+1

1{t−y<Sk≤t} ≥ Ñ∗(t−ε)− Ñ∗(t−y+ε)−
τ∑
k=0

1{t−y+ε<S̃∗
k≤t−ε}
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by (3.2) and (3.3), respectively. For each summand in (5.7), we can use these
two inequalities with t replaced by ukt to obtain that∣∣∣∣∣

∫
[0, ukt)

(N(ukt)−N(ukt− y)− µ−1y) d(−h∗(y))

g(t)h∗(t)

∣∣∣∣∣
d

≤

∣∣∣∣∣
∫

[0, ukt)
(Ñ∗(ukt)− Ñ∗(ukt− y)− µ−1y) d(−h∗(y))

g(t)h∗(t)

∣∣∣∣∣
+

(Ñ∗(2ε) + τ + 1)h∗(0)

g(t)h∗(t)
(5.8)

where the distributional identity Ñ∗(x + c) − Ñ∗(x)
d
= Ñ∗(c) (x, c ≥ 0) has

been utilized. Since g(t)h∗(t) → ∞ as t → ∞, an application of Markov’s
inequality shows that it is sufficient to check that

lim
t→∞

∫
[0, ut]

E |N∗(y)− µ−1y| d(−h∗(y))

g(t)h∗(t)
= 0.

By Theorem 3.3, E |N∗(y) − µ−1y| = O(g(y)) as y → ∞. Consequently, it is
enough to show that

lim
t→∞

∫
[0, ut]

g(y) d(−h∗(y))

g(t)h∗(t)
= 0.

Since the function g(t)h∗(t) is regularly varying, the latter is equivalent to

lim
t→∞

∫
[0, t]

g(y) d(−h∗(y))

g(t)h∗(t)
= 0. (5.9)

Using (3.7) gives∫
[t0, t]

g(y) d(−h∗(y))

g(t)h∗(t)
≤ A

∫
[t0, t]

y1/α−δ d(−h∗(y))

t1/α−δh∗(t)

for t ≥ t0, and, as t→∞, the last ratio tends to zero by Theorem 1.6.4 in [5].
Further, since g(t)h∗(t)→ 0, also

lim
t→∞

∫
[0, t0]

g(y) d(−h∗(y))

g(t)h∗(t)
= 0.

Thus, (5.9) follows.
Case β > 0. For any ρ ∈ (0, 1), one can write

X∗t (uk) = Wt(uk)
h∗(ukt)

h∗(t)
+

∫
(0, uk]

(Wt(uk)−Wt(v)) ν∗t, k(dv)

= Wt(uk)
h∗(ukt)

h∗(t)
+

∫
(0, ρuk]

. . .+

∫
(ρuk, uk]

. . . ,
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where ν∗t, k is the finite measure on [0, uk] defined by

ν∗t, k(a, b] :=
h∗(t(uk − b))− h∗(t(uk − a))

h∗(t)
, 0 ≤ a < b ≤ uk.

In view of (3.6) and the continuous mapping theorem,

Wt(uk)−Wt(v) ⇒ W (uk)−W (v) as t→∞.

Further, by the regular variation of h∗, the finite measures ν∗t, k converge weakly
on [0, ρuk] to a finite measure ν∗k on [0, ρuk] which is defined by ν∗k(a, b] =
(uk− b)−β− (uk− a)−β. Clearly, the limiting measure is absolutely continuous
with density x 7→ β(uk − x)−β−1, x ∈ [0, ρuk]. Hence, by Lemma A.2,

Wt(uk)
h(ukt)

h(t)
+

∫
(0, ρuk]

(Wt(uk)−Wt(v)) ν∗t, k(dv)

d→ W (uk)u
−β
k + β

∫ ρuk

0

(W (uk)−W (v))(uk − v)−β−1 dv .

Likewise, again by the continuous mapping theorem,

n∑
k=1

γkWt(uk)
h(ukt)

h(t)
+

n∑
k=1

γk

∫
(0, ρuk]

(Wt(uk)−Wt(v)) ν∗t, k(dv)

d→
n∑
k=1

γkW (uk)u
−β
k +

n∑
k=1

γkβ

∫ ρuk

0

(W (uk)−W (v))(uk − v)−β−1 dv .

According to Theorem 3.2 in [3], it remains to check that, as ρ ↑ 1,

n∑
k=1

γkW (uk)u
−β
k +

n∑
k=1

γkβ

∫ ρuk

0

(W (uk)−W (v))(uk − v)−β−1 dv

d→
n∑
k=1

γkW (uk)u
−β
k +

n∑
k=1

γkβ

∫ uk

0

(W (uk)−W (v))(uk − v)−β−1 dv

and that, for any c > 0,

lim
ρ↑1

lim sup
t→∞

P
{∣∣∣∣ n∑

k=1

γk

∫
[ρuk, uk]

(Wt(uk)−Wt(v)) ν∗t, k(dv)

∣∣∣∣ > c

}
= 0. (5.10)

The first relation is equivalent to

n∑
k=1

γkβ

∫ uk

ρuk

(W (uk)−W (v))(uk − v)−β−1 dv
P→ 0 as ρ ↑ 1. (5.11)

To prove (5.11) it suffices to verify that each summand converges to zero in
probability. But each summand actually tends to zero a.s. by the discussion
in Subsection 2.3.
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The sum in (5.10) equals

n∑
k=1

γk

∫
[0, (1−ρ)ukt]

(N(ukt)−N(ukt− y)− µ−1y)d(−h∗(y))

g(t)h∗(t)
.

In view of (5.8) and Markov’s inequality it suffices to check that, for k =
1, . . . , n,

lim
ρ↑1

lim sup
t→∞

∫
[0, (1−ρ)ukt]

g(y)d(−h∗(y))

g(t)h∗(t)
= 0

or just

lim
ρ↑1

lim sup
t→∞

∫
[0, (1−ρ)t]

g(y)d(−h∗(y))

g(t)h∗(t)
= 0, (5.12)

for g(t)h∗(t) is regularly varying. Since g(t)h∗(t) → ∞ as t → ∞ by the
assumptions of the theorem, we have

lim
t→∞

∫
[0, t0]

g(y) d(−h∗(y))

g(t)h∗(t)
= 0

and, further,∫
[t0, (1−ρ)t]

g(y) d(−h∗(y))

g(t)h∗(t)

(3.7)

≤ A

∫
[t0, (1−ρ)t]

y1/α−δ d(−h∗(y))

t1/α−δh∗(t)

∼ β

1/α− β − δ
(1− ρ)1/α−β−δ,

where the last relation is justified by Theorem 1.6.4 in [5], (5.12) follows. The
proof is complete.

Proof of Theorem 2.9. For t > 0, put

Xt(u) :=
X(ut)

g(t)h(t)
=

∫
[0, ut]

h(ut− x) dN(x)

g(t)h(t)
, u ≥ 0.

For any n ∈ N, fix γ1, . . . , γn ∈ R and 0 < u1 < . . . < un. We have to show
that

n∑
k=1

γkXt(uk)
d→

n∑
k=1

γkY (uk) as t→∞

in all cases, where Y (u) :=
∫

[0, u]
(u− y)−βdW (y), u ≥ 0 and that

Xt(0) =
h(0)

g(t)h(t)
→ 0 = Y (0) as t→∞

in the cases α > β, and α = β and c = ∞, the latter relation being trivial.
We want to stress that in the remaining case limt→∞Xt(0) = h(0)/c, whereas
Y (0) = 0.
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Since the convergence limt→∞ h(ut)/h(t) = u−β is uniform on compact sets
not containing zero, and (W (u))u≥0 has a.s. continuous paths, the relation
(3.8) and Lemma A.2 entail∫

[0, ρuk]

h
(
t(uk − y)

)
h(t)

d
N(ty)

g(t)

d→
∫

[0, ρuk]

(uk − y)−β dW (y) as t→∞

for any ρ ∈ (0, 1) where here and in the rest of the proof integration w.r.t.

dN(ty)
g(t)

means integration w.r.t. νt(dy) where the finite measure νt is defined

by νt(A) = g(t)−1N(tA), A ⊂ R Borel. By the continuous mapping theorem,

n∑
k=1

γk

∫
[0, ρuk]

h
(
t(uk − y)

)
h(t)

d
N(ty)

g(t)

d→
n∑
k=1

γk

∫
[0, ρuk]

(uk − y)−βdW (y)

as t→∞. According to Theorem 3.2 in [3], it remains to check that, as ρ ↑ 1,

n∑
k=1

γk

∫
[0, ρuk]

(uk − y)−β dW (y)
d→

n∑
k=1

γk

∫
[0, uk]

(uk − y)−βdW (y)

and that, for any c > 0,

lim
ρ↑1

lim sup
t→∞

P
{∣∣∣∣ n∑

k=1

γk

∫
[ρuk, uk]

h
(
t(uk − y)

)
h(t)

d
N(ty)

g(t)

∣∣∣∣ > c

}
= 0. (5.13)

The first relation is equivalent to

n∑
k=1

γk

∫
[ρuk, uk]

(uk − y)−β dW (y)
P→ 0 as ρ ↑ 1. (5.14)

To prove (5.14) it suffices to verify that each summand converges to zero in
probability. Hence (5.14) is a direct consequence of Lemma 2.12.

For (5.13), in view of Markov’s inequality it suffices to check that

lim
ρ↑1

lim sup
t→∞

∫
[ρukt, ukt]

h(ukt− y) dEN(y)

h(t)g(t)
= 0.

Recalling that h(t)g(t) is regularly varying the latter holds true by Lemma 5.2
below. This completes the proof of finite-dimensional convergence.

Convergence of moments follows from Lemma 5.3 below. The proof is
complete.

5.3 Convergence of moments in the case µ =∞ and the
proof of Proposition 2.11

Lemma 5.1. Assume that µ = ∞ and let h : R+ → R+ be a measurable and
locally bounded function such that

lim
t→∞

h(t)

P{ξ > t}
= c ∈ [0,∞].
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Then
lim
t→∞

EX(t) = c.

In particular, X(t)
P→ 0 as t→∞ if c = 0.

Proof. Denote by Z(t) := t− SN(t)−1 the undershoot at time t and put

f(t) :=
h(t)

P{ξ > t}
, t ≥ 0.

The proof is based on the representation

EX(t) =

∫
[0, t]

h(t− x)U(dx ) = E f(Z(t)), t ≥ 0

where U(·) := EN(·) denotes the renewal measure associated with (Sk)k∈N0 .
Under the sole assumption µ = ∞, the renewal theorem gives Z(t) → ∞ in
probability. Hence f(Z(t)) → c in probability. If c < ∞, the function f is
bounded, and limt→∞ E f(Z(t)) = c by the dominated convergence theorem.
If c =∞, we obtain limt→∞ E f(Z(t)) = c =∞ by Fatou’s lemma.

The last assertion of the lemma follows from Markov’s inequality.

Now we are ready to prove Proposition 2.11:

Proof of Proposition 2.11. Since the exponential law is uniquely determined
by its moments, the second assertion of the proposition is an immediate con-
sequence of the first.

To prove convergence of moments, we use induction on k, the order of the
moments. The case k = 0 is trivial, the case k = 1 follows from Lemma 5.1.
Assuming that

lim
t→∞

EXj(t) = cjj! for j = 0, . . . , k − 1,

we will prove that
lim
t→∞

EXk(t) = ckk!. (5.15)

To this end, we use the representation

X(t) = h(t) +X∗(t− ξ1)1{ξ1≤t}, (5.16)

where
X∗(t) :=

∑
j≥1

h(t− Sj + S1)1{Sj−S1≤t}
d
= X(t).

The latter implies

X(t)k = X∗(t− ξ1)k 1{ξ1≤t}+
k−1∑
j=0

(
k

j

)
h(t)k−jX∗(t− ξ1)j 1{ξ1≤t} .

We have EX(t)k = E fk(Z(t)) where

fk(t) :=

∑k−1
j=0

(
k
j

)
h(t)k−j EX∗(t− ξ1)j 1{ξ1≤t}

P{ξ > t}
.
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Arguing as in Lemma 5.1, it suffices to show that

lim
t→∞

fk(t) = ckk!,

as fk(t) is then bounded and relation (5.15) follows by the dominated conver-
gence theorem.

Since limt→∞ h(t) = 0 by the assumption of the proposition, and the ex-
pectations EX∗(t− ξ1)j 1{ξ1≤t}, j = 0, . . . , k− 1 are bounded by the induction
hypothesis, we conclude∑k−2

j=0

(
k
j

)
hk−j(t)EXj

∗(t− ξ1)1{ξ1≤t}

P{ξ > t}
= 0.

Hence

lim
t→∞

fk(t) = k lim
t→∞

h(t)EX∗(t− ξ1)k−1
1{ξ1≤t}

P{ξ > t}
= ck lim

t→∞
E
(
X(t)− h(t)

)k−1

= ck lim
t→∞

(
EX(t)k−1 +

k−2∑
j=0

(
k − 1

j

)
h(t)k−1−j EX(t)j

)
= ck lim

t→∞
EX(t)k−1 = ckk!,

where the penultimate equality follows from the induction hypothesis and
limt→∞ h(t) = 0.

Lemma 5.2. Assume that the assumptions of Theorem 2.9 hold. Then

lim
ρ↑1

lim sup
t→∞

P{ξ > t}
h(t)

∫
[ρt, t]

h(t− y)U(dy) = 0 (5.17)

where U(·) := EN(·). In particular,

lim
t→∞

P{ξ > t}
h(t)

EX(t) = E
∫

[0, 1]

(1− y)−βdW (y) =
Γ(1− β)

Γ(1− α)Γ(1 + α− β)
.

Proof. We use the notation of Lemma 5.1, that is, Z(t) := t− SN(t)−1 denotes
the undershoot at time t and f(t) := h(t)/P{ξ > t}, t ≥ 0. Then, the
expression under the double limit in (5.17) equals E f(Z(t))1{Z(t)≤(1−ρ)t} /f(t).

Case 1: We first consider the case when α > β or α = β and c =∞.
If α > β then, by Theorem 1.5.3 in [5] there exists an increasing function u
such that u(t) ∼ f(t) as t→∞. If α = β and c =∞ such a function u exists
by assumption. Now fix ε > 0 and let t0 > 0 be such that (1− ε)u(t) ≤ f(t) ≤
(1 + ε)u(t) for all t ≥ t0. Then

E f(Z(t))1{Z(t)≤t0}

f(t)
≤

sup0≤y≤∈t0 f(y)

f(t)
→ 0 as t→∞
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by the local boundedness of f . Further, for t such that (1− ρ)t > t0,

E f(Z(t))1{t0<Z(t)≤(1−ρ)t}

f(t)
≤ 1 + ε

1− ε
Eu(Z(t))1{Z(t)≤(1−ρ)t}

u(t)

≤ 1 + ε

1− ε
P {Z(t) ≤ (1− ρ)t}.

By a well-known result due to Dynkin (see, for instance, Theorem 8.6.3 in [5])

lim
t→∞

P {Z(t) ≤ (1− ρ)t} =
1

Γ(α)Γ(1− α)

∫ 1−ρ

0

y−α(1− y)α−1 dy

When ρ ↑ 1 the last integral goes to zero, which proves (5.17).
Case 2: Now consider the case when α = β and c < ∞. Then f is

bounded. Hence E f(Z(t))1{Z(t)≤(1−ρ)t} ≤ const · P{Z(t) ≤ (1 − ρ)t}, t ≥ 0.
The rest of the proof is the same as in the previous case.

We now turn to the second assertion of the lemma. Define U(t) := EN(t).
Then, by the transformation formula,

P{ξ > t}
h(t)

∫
[0,ρt]

h(t− y)U(dy) = P{ξ > t}U(t)

∫
[0,ρ]

h(t(1− y))

h(t)
Ut(dy)

where Ut([0, x]) = U([0, tx])/U(t), 0 ≤ x ≤ 1. Formula (8.6.4) on p. 361 in [5]
says that limt→∞ P{ξ > t}U(t) = Γ(1−α)−1Γ(1+α)−1. Further, by [5, Formula
(8.6.3) on p. 361], Ut(dx ) converges weakly to αxα−1 dx as t → ∞. This in
combination with the uniform convergence theorem [5, Theorem 1.2.1] yields:

lim
t→∞

P{ξ > t}U(t)

∫
[0,ρ]

h(t(1− y))

h(t)
Ut(dy)

=
α

Γ(1−α)Γ(1+α)

∫ ρ

0

(1− y)−βyα−1 dy

→
ρ→1

Γ(1− β)

Γ(1 + α− β)Γ(1−α)

where we have used the expression of the Beta function in terms of the Gamma
function and the functional equation of the Gamma function. (5.17) now gives
the second assertion of the lemma.

Lemma 5.3. Under the assumptions of Theorem 2.9, (2.16) holds.

Proof. Case 1: First assume that α > β and case α = β and c =∞.
Set g(t) = 1/P{ξ > t} and observe that limt→∞ g(t)h(t) = ∞ in the present
situation. We prove the result only for u = 1. Define

dk :=
k!

Γ(1− α)k

k∏
j=1

Γ(1− β + (j − 1)(α− β))

Γ(j(α− β) + 1)
, k ∈ N .

We then have to prove that

lim
t→∞

EX(t)j

g(t)jh(t)j
= dj (5.18)
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for all j ∈ N. We will use induction on j. The case j = 1 follows from Lemma
5.2. Assuming that (5.18) holds for j = 1, . . . , k − 1, we will prove (5.18) for
j = k.

From the decomposition (5.16), one can derive the following representation
for EX(t)k:

EX(t)k =

∫
[0, t]

rk(t− y)U(dy) (5.19)

where U(·) := EN(·) and

rk(t) =
k−1∑
j=0

(
k

j

)
h(t)k−j EX∗(t− ξ1)j 1{ξ1≤t} =

k−1∑
j=0

vjh(t)k−j EX(t)j

for some real constants vj, 0 ≤ j ≤ k − 1 with vk−1 = k.
If we can prove that

lim
t→∞

rk(t)

g(t)k−1h(t)k
= kdk−1, (5.20)

which, among other things, means that rk(t) is regularly varying at ∞ with
index (k − 1)α − kβ, then (5.19) in combination with the argument given in
the proof of Lemma 5.2 shows that

lim
t→∞

EX(t)k

g(t)kh(t)k
= kdk−1 lim

t→∞

U(t)

g(t)

∫
[0, t]

rk(t− y)U(dy)

rk(t)U(t)

=
αkdk−1

Γ(1− α)Γ(1 + α)

∫ 1

0

(1− y)(k−1)α−kβyα−1 dy

=
Γ(1− β + (k − 1)(α− β))

Γ(1− α)Γ(k(α− β) + 1)
kdk−1 = dk.

We now verify (5.20). By the induction hypothesis, for j = 0, . . . , k−1, EX(t)j

is regularly varying with index j(α − β). Hence, for such a j, h(t)k−j EX(t)j

is regularly varying with index jα−kβ. Since g(t)k−1h(t)k is regularly varying
with index (k − 1)α− kβ, we conclude that

lim
t→∞

∑k−2
j=0 vjh(t)k−j EX(t)j

gk−1(t)hk(t)
= 0.

Hence

lim
t→∞

EX(t)k

g(t)k−1h(t)k
= lim

t→∞

k EX(t)k−1

g(t)k−1h(t)k−1
= kdk−1,

which proves (5.20).
Case 2: α = β and c < ∞. (2.16) has been proved in Proposition 2.11

under weaker assumptions.
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A Appendix: Auxiliary results

Lemma A.1. Let W be a random variable with characteristic function given
by (2.15). Then, for r < α,

E |W |r =
2Γ(r + 1)

πr
sin (rπ/2)Γ(1− r/α)|Γ(1− α)|r/α cos (πr/2− πr/α)

where Γ(·) denotes the gamma function. In particular,

E |W | = 2π−1Γ(1− 1/α)|Γ(1− α)|1/α sin (π/α).

Proof. We use the integral representation for the rth absolute moment (see
Lemma 2 in [2])

mr := E |W |r =
Γ(r + 1)

π
sin
(rπ

2

)∫
R

1− Re E eitW

|t|r+1
dt . (A.1)

Set A := π−1Γ(r + 1) sin (rπ/2), B := Γ(1 − α) cos (πα/2) and C := Γ(1 −
α) sin (πα/2). Using Euler’s identity eix = cosx+ i sinx in (2.15), we obtain

Re E eitW = exp (−B|t|α) cos (−C|t|αsgn(t)).

Substituting this into formula (A.1) yields

mr = 2A

∫ ∞
0

1− exp (−Btα) cos (Ctα)

tr+1
dt .

A change of variables (u := tα) gives

mr =
2A

α

∫ ∞
0

(
1− exp (−Bu) cos (Cu)

)
u−1−r/α du

=
2A

α

∫ ∞
0

(
1− exp (−Bu)

)
u−1−r/α du

+
2A

α

∫ ∞
0

(
exp (−Bu)− exp (−Bu) cos (Cu)

)
u−1−r/α du

=: I1 + I2. (A.2)

According to formula (3.945(2)) in [13], we have

I2 =
2A

α
Γ(−r/α)

(
Br/α − Γ(1− α)r/α cos (πr/2− πr/α)

)
.

To calculate I1 we use integration by parts:

I1 =
2A

α

∫ ∞
0

(
1− exp (−Bu)

)
u−1−r/α du

=
2AB

r

∫ ∞
0

u−r/α exp (−Bu) du

=
2ABr/α

r
Γ(1− r/α) = − 2ABr/α

α
Γ(−r/α).
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Now plugging in the values of I1 and I2 in (A.2) gives

mr = −2A

α
Γ(−r/α)Γ(1− α)r/α cos (πr/2− πr/α)

=
2A

r
Γ(1− r/α)Γ(1− α)r/α cos (πr/2− πr/α).

The proof is complete.

Lemma A.2. Let 0 ≤ a < b < ∞. Assume that Xt(·) ⇒ X(·) as t → ∞ in
D[a, b] in the M1 topology. Further, assume that νt, t ≥ 0 are finite measures
such that νt → ν weakly as t→∞ where ν is a finite measure on [a, b], which
is continuous w.r.t. Lebesgue measure. Then∫

[a, b]

Xt(y) νt(dy)
d→
∫

[a, b]

X(y) ν(dy) as t→∞,

and, for any fixed c ∈ [a, b],

Xt(c) +

∫
[a, b]

Xt(y) νt(dy)
d→ X(c) +

∫
[a, b]

X(y) ν(dy) as t→∞.

Proof. The assertion of the lemma follows from Lemma 6.5 in [18] in combi-
nation with Skorokhod’s representation theorem.

Lemma A.3. Let F : [a, b] → R and G : [a, b] → R be left- and right-
continuous functions of bounded variation, respectively. Then∫

(a,b]

F (y) dG(y) = F (b+)G(b)− F (a+)G(a)−
∫

(a,b]

G(y) dF (y). (A.3)

Proof. The result follows from Theorem T2 (Product Formula) of [6] with
f(x) = G(a+x) and g(x) := F ((a+x)+). The so-defined g is right-continuous
and the theorem applies. Since F is assumed to be left continuous, g(x−) =
F (a+ x). The asserted formula therefore follows from (2.1) in the cited book.

Lemma A.4. Let (X1,A1) and (X2,A2) be measurable spaces. Let µ1(·) be a
finite measure on (X1,A1). Assume that µ2(x, ·) is a measure on (X2,A2) for
every x ∈ X1, and that for every B ∈ A2 the function X1 3 x 7→ µ2(x,B) is
measurable with respect to A1. Then ν(B) :=

∫
X1
µ2(x,B)dµ1(x) is a measure

on (X2,A2). Furthermore, for every non-negative measurable function f on
(X2,A2), the function g(x) :=

∫
X2
f(y)µ2(x, dy) is measurable with respect to

A1 and ∫
X2

f dν =

∫
X1

g dµ1. (A.4)

The proof of this lemma is a standard approximation argument: check
(A.4) for indicators of sets in A2, then for the finite linear combinations of
such indicators with positive coefficients and finally for arbitrary non-negative
measurable functions.
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Lemma A.5. Let (X(ω, u))u∈R be an arbitrary increasing random process de-
fined on probability space (Ω,A,P). For fixed k ∈ N let h : Rk → R+ be a
positive Borel function. Then

E
∫
Rk
h(s1, . . . , sk)dX(s1) . . . dX(sk) =

∫
Rk
h(s1, . . . , sk)E

(
dX(s1) . . . dX(sk)

)
.

Proof. Lemma A.4 can be applied as follows. Define (X1,A1) := (Ω,A) and
(X2,A2) := (Rk,B) where B is a standard Borel σ-algebra of subsets of Rk.
Set also µ1 := P. For every ω ∈ Ω put

µ2(ω, (a1, b1]× . . .× (ak, bk]) := (X(ω, b1)−X(ω, a1)) . . . (X(ω, bk)−X(ω, ak))

and extend this to a measure on (X2,A2). This is possible since X(ω, u) is
increasing for almost all ω. It is clear that ω 7→ µ2(ω,A) is measurable for
every A ∈ B. By Lemma A.4, ν(A) = Eµ2(ω,A) is a measure and for any
given positive Borel function h : Rk → R+, the function g : Ω → R+ defined
by g(ω) :=

∫
Rk h(s1, . . . , sk)µ2(ω, ds1, . . . , dsk) is measurable and

E
∫
Rk
h(s1, . . . , sk) dX(s1) . . . dX(sk)

= E
∫
Rk
h(s1, . . . , sk)µ2(ω, ds1× . . .× dsk)

=

∫
Ω

g(ω) P(dω)
(A.4)
=

∫
Rk
h(s1, . . . , sk) ν(ds1× . . .× dsk)

=

∫
Rk
h(s1, . . . , sk) E

(
dX(s1) . . . dX(sk)

)
.

Lemma A.6. Let f : R+ → R+ be a decreasing function with limt→∞ f(t) ≥ 0.
Then, for every θ > 0,∫ n

0

f(θy) dy =
n∑
k=0

f(θk) + δn(θ), n ∈ N,

where δn(θ) converges as n→∞ to some δ(θ) ≤ 0.

Proof. We assume w.l.o.g. that θ = 1. For each n ≥ 1,

n∑
k=0

f(k)−
∫ n

0

f(y) dy =
n−1∑
k=0

(
f(k)−

∫ k+1

k

f(y) dy

)
+ f(n).

Since f is decreasing, each summand in the sum is non-negative. Hence, the
sum is increasing in n. On the other hand, it can be bounded from above by

n−1∑
k=0

(
f(k)−

∫ k+1

k

f(y) dy

)
≤

n−1∑
k=0

(f(k)− f(k + 1)) ≤ f(0) < ∞.

Consequently, the series
∑

k≥0

(
f(k)−

∫ k+1

k
f(y) dy

)
converges. Recalling that

limn→∞ f(n) exists completes the proof.
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Lemma A.7. Let f1, f2 : R+ → R+ be bounded decreasing functions such that
f1(t) ≥ f2(t) for all t ∈ R+ and such that

∫ t0
0

(f1(y) − f2(y)) dy > 0 for some
t0 > 0. Then

sup
t≥t0

E
∫

[0, t]
(f1(t− y)− f2(t− y)) dN(y)∫ t

0
(f1(y)− f2(y)) dy

< ∞. (A.5)

Proof. Decompose the integral in the numerator of the left-hand side of (A.5)
as follows:∫

[0,[t]]

(f1(t−y)−f2(t−y))dN(y)+

∫
([t],t]

(f1(t−y)−f2(t−y))dN(y) =: I1(t)+I2(t).

By the distributional subadditivity of N , we get for I2(t):

I2(t) ≤
∫

([t], t]

f1(t− y) dN(y) ≤ f1(t− [t])(N(t)−N([t]))

≤ f1(0)(N(t)−N(t− 1))
d

≤ f1(0)N(1),

hence E I2(t) < f1(0)EN(1) <∞ for all t ≥ 0. It remains to consider I1(t):

E I1(t) = f1(t)− f2(t) + E
[t]−1∑
j=0

∫
(j, j+1]

(f1(t− y)− f2(t− y)) dN(y)

≤ f1(t)− f2(t) +

[t]−1∑
j=0

(f1(t− j − 1)− f2(t− j))E(N(j + 1)−N(j))

≤ f1(0) +

[t]−1∑
j=0

(f1(t− j − 1)− f2(t− j))EN(1)

= EN(1)

(∫ [t]

0

(f1(y)− f2(y)) dy +O(1)

)
.

This proves the lemma.
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[36] Rosiński, J. (2001). Series representations of Lvy processes from the perspective of
point processes. Barndorff-Nielsen, Ole E. (ed.) et al., Lvy processes. Theory and
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