

Photoluminescence properties of red-emitting Mn2+-activated CaAlSiN3 phosphor for white-LEDs

Citation for published version (APA):

Zhang, Z., Delsing, A. C. A., Notten, P. H. L., Zhao, J., Dorenbos, P., & Hintzen, H. T. J. M. (2013). Photoluminescence properties of red-emitting Mn2+-activated CaAlSiN3 phosphor for white-LEDs. ECS Journal of Solid State Science and Technology, 2(4), r70-r75. https://doi.org/10.1149/2.017304jss

DOI: 10.1149/2.017304jss

Document status and date:

Published: 01/01/2013

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Photoluminescence Properties of Red-Emitting Mn²⁺-Activated CaAlSiN₃ Phosphor for White-LEDs

Zhijun Zhang,^{a,b} Anneke C. A. Delsing,^a Peter H. L. Notten,^{a,*} Jingtai Zhao,^b Pieter Dorenbos,^c and Hubertus T. Hintzen^{a,z}

^aEnergy Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands ^bKey Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai 200050, China

^cLuminescent Materials Research Group, Delft University of Technology, 2629 JB Delft, The Netherlands

 Mn^{2+} -doped CaAlSiN₃ phosphors have been prepared by a solid-state reaction method at high temperature and the solubility of Mn^{2+} in the host lattice as well as their photoluminescence properties were investigated. In CaAlSiN₃, not only Ca²⁺ sites, but also Al^{3+} sites can be substituted by Mn^{2+} ions. CaAlSiN₃ : Mn^{2+} absorbs blue light in the spectral range of 440–460 nm, and exhibits a broad band emission in the wavelength range of 475–750 nm, which can be ascribed to the $^{4}T_1$ (^{4}G) $\rightarrow ^{6}A_1$ (^{6}S) transition of Mn^{2+} located at two different sites in CaAlSiN₃. The emission bands at lower energy (15,950 cm⁻¹ or 627 nm) and higher energy (18,250 cm⁻¹ or 548 nm) are assigned to the Mn^{2+} locating at the Al site (Mn_{Al}) and Ca site (Mn_{Ca}), respectively with energy transfer from Mn_{Ca} to Mn_{Al} . In addition, the integral luminescence intensity only decreases to about 94% at 150°C of the value at 50°C, which is of great interest for the applications of white-LEDs.

© 2013 The Electrochemical Society. [DOI: 10.1149/2.017304jss] All rights reserved.

Manuscript submitted October 29, 2012; revised manuscript received January 28, 2013. Published February 8, 2013.

Multinary nitrides and oxynitrides have attracted more attentions in recent years. They have been extensively investigated as host lattices for phosphors when activated by rare-earth ions, such as M^1SiN_2 : Eu^{2+} , Ce^{3+} ($M^1 = Ca$, Sr, Ba),^{1,2} $M^1_2Si_5N_8$: Eu^{2+} , Ce^{3+} [$M^1 = Ca$, Sr, Ba],³⁻⁸ $M^{II}AlSiN_3$: Eu^{2+} , Ce^{3+} ($M^{II} = Ca$, Sr, Ba],³⁻⁸ $M^{II}AlSiN_3$: Eu^{2+} , Ce^{3+} ($M^{II} = Ca$, Sr, Sr^{3+}),⁹⁻¹² α -SiAlON : RE (RE = Eu^{2+} , Ce^{3+} , Yb^{2+} , Tb^{3+} , Pr^{3+} , Sm^{3+}),¹³⁻¹⁶ $M^{I}Si_2O_{2-8}N_{2+2/36}$: Eu^{2+} , Ce^{3+} ($M^I = Ca$, Sr, Ba),^{17,18} $M^{I}Si_xAl_{2-x}O_{4-x}N_x$: Eu^{2+} ($M^{II} = Ca$, Sr, Ba),¹⁹ $M^{III}_ySi_{6-z}Al_{z-y}O_{z+y}N_{8-z-y}$ ($M^{III} = 2Li$, Mg, Ca, Sr, Ba).²⁰ These nitrides and oxynitrides have many advantages including strong absorption from UV to blue, high quantum efficiency, chemical stability as well as excellent thermal characteristics, allowing them to be widely used as efficient conversion phosphors for white-LEDs.

Rare-earth ions with 4f - 5d transitions (e. g. Eu²⁺, Ce³⁺) show long wavelength absorption and emission in nitride, due to the high covalency and large crystal splitting effect of nitrogen anion.²¹ The nitrides and oxynitrides activated by these rare-earth ions have been demonstrated to be promising efficient conversion phosphors for white-LEDs.²² More recently, interests also have been focused on the luminescence properties of transition metals, such as Mn²⁺.^{23–25} The wavelength position of the emission band of Mn^{2+} , as a typical transition ion, also depends strongly on the host lattice, including the strength of the ligand field and the coordination number (CN). In general, Mn²⁺ usually gives a green emission when it is located on a lattice with weak crystal-field, whereas it shows an orange to deep red emission on a strong crystal-field site. On the other hand, the coordination number also has a great effect on the emission color: the Mn^{2+} ions emit green light when it is tetrahedrally coordinated (CN = 4) in the lattice whereas it emits red light in octahedral coordination (CN = 6).²⁶ Mn²⁺-doped inorganic phosphors have been used as phosphors for white-LEDs, e.g. Ba_2ZnS_3 : Mn^{2+} (Red),^{23,27} fluorescent lamps, such as $BaAl_{12}O_{19}$: Mn^{2+} (Green)²⁸ and Zn_2SiO_4 : Mn^{2+} (Green),²⁹ and cathode-ray tubes (CRT), e.g. $ZnS : Mn^{2+}$ (Orange), $^{30,31} Zn_3(PO_4)_2 :$ Mn²⁺ (Red).^{24,25} There are few reports with regard to the luminescence properties of Mn²⁺ in nitride host lattices except some publications on $M^{IV}SiN_2$: Mn^{2+} ($M^{IV} = Mg$, Zn, Ca),^{32,33} $M^{I_2}Si_5N_8$: Mn^{2+} ($M^{I} =$ Ca, Sr, Ba),³⁴ MgSiN₂ : Mn^{2+} ,³⁵ ZnGeN₂ : Mn^{2+} ,³⁶ γ -AlON : Mn^{2+} , Mg²⁺.³⁷ However, Mn²⁺ doped M₂Si₅N₈ and MgSiN₂ show weak absorption in the range of 350-470 nm due to the forbidden d - d transitions of Mn²⁺. As for the white-LEDs applications this absorption has to be increased by use of suitable sensitizer ions, such as Ce^{3+} , Mn^{2+} : MgSiN₂.³⁸

Recently, a new quaternary nitride system, CaAlSiN₃ has drawn much attention for its applications in the white-LEDs when doped with Eu^{2+} or Ce^{3+} .^{10,39} CaAlSiN₃ is isostructural with ASi_2N_3 (A = Li, Na) and crystallizes in *Cmc*2₁ space group.⁹ The Ca atom is located at the channels built up by the six-membered rings of (Al/Si)N₄ tetrahedra and directly coordinated with five nitrogen atoms cross over the unit cell (Figure 1). The Al and Si atoms are randomly distributed on the same tetrahedral sites and connected with nitrogen atoms to form the vertex-linked $M^V_6N_{18}$ ($M^V = Al$, Si) rings.⁴⁰ CaAlSiN₃ : Eu^{2+} and CaAlSiN₃ : Ce^{3+} exhibit efficient red and yellow-orange emission respectively under blue irradiation.^{10,39} In the present work, we focus on investigating the luminescence properties of Mn^{2+} in CaAlSiN₃ and explore its potential possibilities to be used as a new kind of LED conversion phosphor, which is up to now only claimed but not proofed.⁴¹

Experimental

Starting Materials.— Ca₃N₂ (Alfa, 98%, powder), AlN (Tokuyama Chemical Co., Ltd., F-grade), α -Si₃N₄ (Permascand, P95H, α content, 93.2%, oxygen content: ~1.5%) and Mn powder (Alfa, > 99%) are used as the as-received raw materials.

Syntheses of Mn^{2+} -doped CaAlSiN₃.— CaAlSiN₃ : Mn^{2+} powder samples were prepared by a solid-state reaction method at high temperature. Appropriate amounts of starting materials were firstly weighed out, thoroughly mixed and ground in an agate mortar. The powder mixtures were fired in molybdenum crucibles at 1600 °C for 2 h in a horizontal tube furnace under N₂-H₂ (10%) atmosphere. After firing, the samples were gradually cooled down in the furnace. Subsequently, the resulting powder was reground and pressed into pellets of 1 cm in diameter under 170 MPa, then fired at 1750 °C for 2 h in a molybdenum crucible under flowing N₂-H₂ (10%) atmosphere. After sintering, these samples were gradually cooled down to room temperature in the furnace. There was no apparent reaction of the prepared samples with the Mo crucibles. All processes were handled in a dry glove box flushed with dry nitrogen because of air and water sensitivity of some starting materials.

X-ray diffraction data collection and analysis.— All measurements were performed on finely ground samples, which were analyzed by X-ray powder diffraction (XRD) (Bruker, D4 Endeavor X-ray Diffractometer) using Cu K_a radiation at 40 kV and 40 mA with a graphite monochromator. The 2θ ranges of all the data sets are from 10 to 80° using step scan with a step size of 0.02° in 2θ

^zE-mail: h.t.hintzen@tue.nl

Figure 1. Crystal structure of CaAlSiN₃, and the coordination environment of Ca, Al/Si atoms, as well as Ca-N, Al/Si-N distances (Å) in CaAlSiN₃.

and a count time of 1 s. The XRD measurements were performed at room temperature in air. The cell parameters of CaAlSiN₃ : Mn^{2+} were determined from the X-ray powder diffraction patterns using the indexing program Fullprof.⁴²

X-ray absorption near-edge structure (XANES).— Mn K-edge of X-ray absorption near-edge structure (XANES) spectra at about 6540 eV were recorded at room temperature at Shanghai Synchrotron Radiation Facility (SSRF, China) in transmission modes. The X-ray light source was from the BL14W1 beam line at the SSRF. The electron energy in the storage ring was 3.5 GeV, with a current of 200 mA and the emission angle of the light was $1.5 \times 0.1 \text{ mrad}^2$. The beam size can be focused to $0.3 \text{ mm} \times 0.3 \text{ mm}$. The scanning range was from 6500 to 6650 eV. The energy steps were 0.2 eV (from 6500 to 6650 eV), which was appropriate for obtaining a clear Mn K-edge XANES spectrum. The information on the valence state and local structure of the element of interest can be obtained from the XANES spectra based on the energy, shape and fine structure of the edges.

Optical measurements.— The diffuse reflectance, emission and excitation spectra of the samples were measured at room temperature by a Perkin Elmer LS 50B spectrophotometer equipped with a Xe flash lamp. The reflection spectra were calibrated with the reflection of black felt (reflection 3%) and white barium sulfate (BaSO₄, reflection $\sim 100\%$) in the wavelength region of 230–700nm. The excitation and emission slits were set at 15 nm. The emission spectra were corrected by dividing the measured emission intensity by the ratio of the observed spectrum of a calibrated W-lamp and its known spectrum from 300 to 900 nm. Excitation spectra were automatically

Figure 2. The X-ray absorption near-edge structure (XANES) spectra of Mn^{2+} in CaAlSiN₃, and the standard samples MnO and MnO₂.

corrected for the variation in the lamp intensity (and thus for the spectral dependence of the excitation energy) by a second photomultiplier and a beam-splitter. All luminescence spectra were measured with a scan speed of 400 nm/min at room temperature in air. The temperature dependent emission measurement was carried out by the special equipment made by University of Jena under excitation with 450 nm from room temperature to 200° C with a heating rate of 8°C/min, and the temperature was hold for 5 min before starting the measurement.

Results and Discussion

Valency State of Mn in CaAlSiN₃.— It can be observed from Figure 2 that the position of the K-edge of Mn in CaAlSiN₃ is similar to that of MnO (6540.6 eV), locating at lower energy than that of MnO₂ (6541.6 eV), which means that Mn in CaAlSiN₃ is found in the divalent state. However, the signal of the extended X-ray absorption fine structural (EXAFS) data is too weak to get information about the number of Mn^{2+} sites and about the local structure of Mn^{2+} in CaAlSiN₃.

Phase formation and the solubility of Mn^{2+} in CaAlSiN₃.— According to the powder XRD patterns (Figure 3), the Mn-doped CaAlSiN₃ samples were obtained as nearly single phase material with CaAlSiN₃ structure (ICSD no: 161796). Like in the case of CaAlSiN₃ :

Figure 3. Powder X-ray diffraction patterns of Mn-doped CaAlSiN₃.

Figure 4. The relationship between unit cell volume of $Ca_{1-x}Mn_xAISiN_3$ and the *x* value. The value for MnAISiN₃ (i.e. x = 1, JCPDS : 50-0749) is taken from Ref. 44.

Ce³⁺, Li⁺, ¹⁰ it is difficult to obtain undoped and Mn-doped CaAlSiN₃ samples as a single phase material according to the stoichiometric composition. It was found that Al/Si disorderly occupies the 8*b* site in the space group of *Cmc*2₁ with a ratio of about 1/2 with a more appropriate formula CaAl_{1-4b/3}Si₁₊₈N₃ ($\delta = 0.3 - 0.4$) instead of 1/1 proposed for an ideal CaAlSiN₃, probably due to the incomplete reaction resulting in a significantly lower Al solubility in CaAlSiN₃.¹⁰ Thus, a small amount of AlN can be detected for undoped and Mn-doped CaAlSiN₃ samples.

The unit cell volume of Ca1-xMnxAlSiN3 decreases with increasing Mn^{2+} concentration (Figure 4), as expected for Mn^{2+} (r = 0.75 Å, CN = 5, r = 0.83 Å, CN = 6) being smaller than Ca^{2+} (r = 1.00 Å, CN = 6).⁴³ In agreement with Ca²⁺ by Mn²⁺ replacement, the unit cell volume of $Ca_{1-x}Mn_xAlSiN_3$ extrapolated for high Mn^{2+} to x = 1concentration agrees with that of MnAlSiN₃ (JCPDS : 50-0749, the cell volume of MnAlSiN₃, i.e. x = 1.0, was calculated from D. P. Thompson⁴⁴). However, as a function of the Mn²⁺ concentration, two linear regimes can be discriminated: for high Mn^{2+} concentrations (x > 0.15) the dependence is stronger than for low Mn²⁺ concentrations (x < 0.15), with a bending point at about 15 at% Mn²⁺ (x = 0.15). The weaker dependence can be explained by assuming that at low Mn concentrations, Mn²⁺ not only occupies the Ca²⁺ position, but in addition also partly occupies the Al³⁺ site with Mn²⁺ (r = 0.66 Å, CN = 4) larger than Al^{3+} (r = 0.39 Å, CN = 4). The Al^{3+} by Mn^{2+} replacement can be charge compensated by Al³⁺/Si⁴⁺ replacement or N³⁻/O²⁻ replacement. Unfortunately, a Rietveld refinement of the XRD patterns with Mn^{2+} substituted on both the Ca^{2+} as well as Al^{3+} sites or XANES/EXAFS measurements did not allow us to confirm this interpretation, which however is fully supported by luminescence measurements, as discussed in the next section.

Diffuse reflection spectra.— Figure 5 shows the diffuse reflection spectra of undoped and Mn^{2+} -doped CaAlSiN₃ samples. For undoped CaAlSiN₃ show a drastic drop in reflection in the ultraviolet (UV) range around 300 nm with an estimated bandgap at about 240 nm (5.2 eV), essentially corresponding to the valence-to-conduction band transitions of CaAlSiN₃ host lattice. The value of the bandgap is close to the results published.^{10,39} The intense reflection in the visible spectral range is in agreement with the observed gray-white daylight color of undoped CaAlSiN₃. For Mn²⁺-doped CaAlSiN₃, there are several weak absorption bands can be observed in the wavelength range of 350–600 nm, which can be attributed to the transitions from the ⁶A₁ (⁶S) ground state of Mn²⁺ to its excited states. In contrast to the undoped sample, the daylight color of Mn²⁺-doped CaAlSiN₃ shows gray-white to light red color, varying with Mn²⁺ concentration as a result of the absorption by Mn²⁺ ion the visible range of 350–600 nm.

Figure 5. The diffuse reflection spectra of $Ca_{1-x}Mn_xAlSiN_3$ ($0 \le x \le 0.5$) samples.

Additionally, the absorption edge of CaAlSiN₃ : Mn^{2+} shifts to longer wavelength, corresponding to the decrease in the optical bandgap with increasing Mn^{2+} concentration. According to the band and electronic structure calculation results, the bottom of the conduction band (CB) of CaAlSiN₃ is mainly composed of Ca 3*d* orbitals, and Al/Si 3*s/3p* orbitals are hybridized at higher energy, while the top of valence band (VB) are dominated by the 2*p* states of N atoms.⁴⁵ Thus, the VB \rightarrow CB inter-band transition of CaAlSiN₃ is corresponding to a transition from N 2*p* to Ca 3*d* and Al/Si 3*s/3p* energy levels. The red-shift of the optical bandgap of CaAlSiN₃ : Mn^{2+} with increasing Mn^{2+} concentration can be ascribed to the spin-exchange interaction between the Mn^{2+} ions and the band electrons (the so-called *s* - *d* and *p* - *d* interactions), which gives rise to a negative and a positive correction to the energy of the conduction and valence bands, respectively, and leads to a redshift of the optical bandgap.⁴⁶

Photoluminescence properties of Mn^{2+} in CaAlSiN₃.— In general, it is well known that the $3d^5$ multiplet energies of Mn^{2+} in the host lattice strongly depends on the crystal field and the covalent interaction with the host lattice because the 3d electrons of the transition metal Mn²⁺ ions are outermost electrons, thus, the emission spectrum of Mn^{2+} (3d⁵) consists of a broad band varying from green to red color. It is well known that Tanabe-Sugano diagrams are used in coordination chemistry to interpret the characteristics of UV-Vis spectra due to the intra-3d shell transition of transition metal ions in host lattice.^{47–49} According to the Tanabe-Sugano diagram for the $3d^5$ electron configuration of Mn²⁺, the energies of the 4E (4G), 4A_1 $({}^{4}G)$ and ${}^{4}E({}^{4}D)$ excited state relative to the ${}^{6}A_{1}({}^{6}S)$ ground state are insensitive to the crystal-field strength Dq, and is determined only by the Racah parameter B. The Racah B depends greatly on the covalent interaction between Mn²⁺ ions and surrounding ligand and decreases from the free-ion value with increase of the covalent interaction (the nephelauxetic effect⁵⁰). On the other side, the Mn^{2+} ion exhibits a ⁶S ground state and the first excited state is a ${}^{4}G$ state, the Tanabe-Sugano diagrams predict that the energy differences between the ${}^{4}T_{1}$ (${}^{4}G$) and ${}^{4}T_{2}$ (${}^{4}G$) excited states and the ${}^{6}A_{1}$ (${}^{6}S$) ground state of Mn²⁺ ions are extremely sensitive to the crystal-field strength Dq and decreases with increase of crystal field strength Dq. The emission wavelength of Mn²⁺ strongly depends on the crystal field strength of the host lattice. Mn^{2+} usually gives a green emission when it is located on a lattice site with weak crystal field, whereas it exhibits an orange to deep red emission on a strong crystal field site.²

Figure 6 shows the excitation and emission spectra of $Ca_{1,x}Mn_xAlSiN_3$ (x = 0.05). Under 451 nm excitation, $Ca_{1,x}Mn_xAlSiN_3$ (x = 0.05) shows a broad emission band in the wavelength range of 500–800 nm. The observed band emission is ascribed to the 4T_1 (4G) $\rightarrow {}^6A_1$ (6S) transition of Mn^{2+} incorporated

Figure 6. Excitation and emission spectra of $Ca_{1-x}Mn_xAlSiN_3$ (x = 0.05).

in the CaAlSiN₃ host lattice. ${}^{6}A_{1}$ (${}^{6}S$) is the ground level, and ${}^{4}T_{1}$ $({}^{4}G)$ is the lowest excitation level the energy of which decreases with the increase of the crystal field. Moreover, two obvious overlapping emission sub-bands in the wavelength range of 450-800 nm could be distinguished in the emission spectra of $Ca_{1-x}Mn_xAlSiN_3$ (x = 0.05) under 334, 381 and 451 nm excitation (Figure 7). In the crystal structure of CaAlSiN₃, there is only one crystallographic site for the Ca atom, which is coordinated with five N atoms (Figure 1). For Eu^{2+} and Ce³⁺-doped CaAlSiN₃, only the Ca sites with strong crystal field strength are substituted by Eu^{2+} and Ce^{3+} ions. As a consequence, a red emission band from Eu^{2+} and yellow-orange emission band from Ce^{3+} are observed in CaAlSiN₃.^{9,10} Thus, if only the Ca^{2+} sites are substituted by Mn²⁺ ions, it is expected that there will be only a single narrow symmetrical emission band in the luminescence spectra of Mn²⁺-doped CaAlSiN₃. As already mentioned above, however, the emission band is nonsymmetrical, and can be further deconvoluted into two Gaussian subbands with peaks at about 548 nm $(18,250 \text{ cm}^{-1})$, green emission) and about 627 nm (15,950 cm⁻¹, red emission), respectively (Figure 7). This indicates that there are two different Mn^{2+} sites in CaAlSiN₃ which are ascribed to Mn_{Ca} and Mn_{Al}: not only the Ca²⁺ sites (Mn_{Ca}), but also Al³⁺ sites (Mn_{Al}) can be substituted by Mn^{2+} , which occurs in some other cases.^{51,52} Thus, Mn^{2+} ions will be located in a tetrahedrally and pentahedrally nitrogen coordinated site. According to the crystal structure of CaAlSiN₃, Al³⁺ site is coordinated with four N atoms with the average Al - N distance 1.8050 Å, which is much smaller than that of Ca^{2+} , coordinated with five N atoms with the average Ca-N distance 2.4934 Å. As a consequence, the crystal field strength is larger for Mn²⁺ at the Al³⁺ site than at the Ca²⁺ site. Considering the Tanabe-Sugano diagram, the emission band at lower energy (15,950 cm⁻¹ or 627 nm) is assigned to the Mn^{2+} locating at the Al site (Mn_{Al}), and the other emission band at higher energy (18,250 cm⁻¹ or 548 nm) originates from the Mn^{2+} locating at the Ca site (Mn_{Ca}).

There are four principle excitation bands extending over a broad range of wavelengths by monitoring the emission wavelengths of

Figure 7. Luminescence spectra of $Ca_{1-x}Mn_xAlSiN_3$ (x = 0.05) with deconvoluted Gaussian subbands for emission spectra.

548 and 627 nm, as shown in Figure 6, which is consistent with the diffuse reflectance spectra. Definitely, the weak excitation band below 275 nm originates from host lattice excitation, which is in agreement with the results published.^{39,53} However, it rules out the possibility that there exists efficient energy transfer from CaAlSiN₃ host lattice to Mn²⁺ ions due to the weak excitation band from host lattice. There is big difference in the excitation spectra by monitoring the different emission wavelengths : two excitation maxima at 334/451 nm (in the wavelength range of 275-600 nm) and 334/381 nm (in the wavelength range of 275–500 nm) can be observed by monitoring the peak wavelength at 627 and 548 nm, related to Mn²⁺ incorporated on the Al³⁺ site and Ca²⁺ site, respectively. The excitation band of Mn²⁺ consists of several overlapping transitions due to the disordered Al/Si occupation of the same crystallographic position in the CaAlSiN₃ lattice. These excitation subbands can be assigned to the transitions of Mn^{2+} at different sites (Mn_{Ca} , Mn_{Al}) from ground state ${}^{6}A_{1}$ (${}^{6}S$) to ${}^{4}T_{1}$ (${}^{4}G$), ${}^{4}T_{2}$ (${}^{4}G$), [${}^{4}A_{1}$ (${}^{4}G$), ${}^{4}E$ (${}^{4}G$)], ${}^{4}T_{2}$ (${}^{4}D$) and ${}^{4}E$ (${}^{4}D$) excited states, respectively. Table 1 summarizes the characteristics of CaAlSiN₃ : Mn^{2+} (5%) phosphor and compares them with other typical Mn²⁺-doped nitride based phosphors.

Figure 8 shows excitation spectra of CaAlSiN₃ : Mn^{2+} with different Mn^{2+} doping concentrations. The position of the overall excitation bands in the spectra is nearly independent of the Mn^{2+} concentration, which is similar to that of Eu²⁺ and Ce³⁺ in CaAlSiN₃.^{9,10} However, the Mn^{2+} concentration exhibits a great effect on the luminescence intensities, as well as the profiles of the emission bands. With increasing Mn^{2+} concentration, the peak positions of the emission bands for

Table I. Characteristics of Mn²⁺-doped CaAlSiN₃ phosphor as compared to typical Mn²⁺-doped nitride based phosphors at room temperature.

Phosphors	CaAlSiN ₃ :Mn ²⁺	$ZnSiN_2:Mn^{2+}$	ZnGeN2:Mn2+	MgSiN ₂ :Mn ²⁺	Ca2Si5N8:Mn2+	$Sr_2Si_5N_8{:}Mn^{2+}$	Ba2Si5N8:Mn2+
Crystal system Body color Host absorption edge (nm)	Cmc2 ₁ Light red 240	Pna2 ₁ Gray-white 250	<i>Pna2</i> ₁ Gray-white 376	Pna2 ₁ Gray-white 287	Cc Gray-white 250	<i>Pmm2</i> ₁ Gray-white 265	<i>Pmm</i> 2 ₁ Gray-white 270
Excitation bands (nm) Emission bands (nm)	275, 334, 381, 451 548, 627	260, 390, 420, 470, 490 620	327, 425 610	360, 380, 430, 465 625, 692	250, 307, 396, 426, 489 599	250, 263, 316, 405, 427, 488 606	248, 261, 290, 436, 405, 421, 486 567
FWHM (nm) Ref.	100 This work	- 32	130 36	70 35	70 34	60 34	60 34

Figure 8. Excitation and emission spectra of $Ca_{1-x}Mn_xAlSiN_3$ (0.005 $\leq x \leq 0.3$) samples.

 Mn_{Ca}^{2+} and Mn_{Al}^{2+} sites show a redshift according to the results of fitting the overall emission bands. The redshift of the emission bands of the individual Mn^{2+} centers (Mn_{Ca} , Mn_{Al}) is ascribed to the shrinkage of the host lattice with increasing Mn^{2+} concentration resulting in a larger crystal field strength, and consequently a lower emission energy according to the Tanabe-Sugano diagram. The position of the overall emission band shows a slight redshift (less than 7 nm) under

Figure 9. Relative emission intensity of $Ca_{1-x}Mn_xAlSiN_3$ (0.005 $\le x \le 0.3$) samples as a function of the Mn²⁺ doping concentration under the excitation wavelength of 451 and 332 nm. The inset shows the change of the ratio between the luminescence intensities of these two emission bands (627 vs. 548 nm) under the excitation wavelength of 451, 383 and 332 nm with increasing Mn²⁺ concentration.

451 nm excitation. However, a redshift of the overall emission bands under 331/383 nm is observed at low Mn^{2+} concentration (x < 0.05), then the overall emission bands exhibit a blueshift with increasing Mn^{2+} concentration (x > 0.05). The combination of the redshift of the individual Mn^{2+} centers (Mn_{Ca} , Mn_{Al}) discussed before with the energy transfer from high-energy Mn_{Ca}^{2+} to low-energy Mn_{Al}^{2+} is anticipated to eventually results in the redshift of the overall emission band. The observed blueshift of the overall emission band cannot be explained with the above mentioned effects and therefore is attributed to preferential site occupation of the Ca²⁺ sites with Mn²⁺ for higher Mn-concentrations (x > 0.05), resulting in a higher intensity of the high energy Mn²⁺ emission center. Figure 9 shows the overall emission intensity of CaAlSiN₃: Mn²⁺ as a function of Mn²⁺ concentration under the excitation wavelength of 451 nm and 332 nm. The maximum emission intensity is observed for 5 at% Mn²⁺ doped CaAlSiN₃. The overall emission intensity declines gradually as the concentration of Mn²⁺ exceeds 5 at% due to concentration quenching, which is mainly caused by the non-radiative energy transfer among Mn²⁺ ions, which usually occurs as a result of exchange interaction or a multipole multipole interaction.

The change of the ratio between the emission intensity of the luminescence from Mn_{Al}^{2+} (lower energy, 15,950 cm⁻¹ or 627 nm) and Mn_{Ca}^{2+} (higher energy, 18,250 cm⁻¹ or 548 nm) is shown in the inset of Figure 9. When Mn^{2+} ions were incorporated into CaAlSiN₃, at low concentration ($0 < x \le 0.05$), not only the Ca²⁺ site, but also the Al³⁺ site can be substituted by Mn^{2+} . As a consequence, emission at lower energy from Mn_{Al}^{2+} , as well as emission at higher energy from Mn_{Ca}^{2+} can be observed, besides, there exists energy transfer from Mn_{Ca}^{2+} to Mn_{Al}^{2+} according to the excitation spectra. Thus, the ratio between the emission intensity of Mn_{Al}^{2+} and Mn_{Ca}^{2+} increases from 0.5 at% Mn^{2+} to 5 at% Mn^{2+} . As the concentration of Mn^{2+} exceeds 5 at% till 15 at%, the ratio declines intensively due to the related concentration quenching of Mn_{Al}^{2+} , then it increases slightly with concentration quenching for Mn_{Al}^{2+} because most of Mn_{Ca}^{2+} and less concentration quenching for Mn_{Al}^{2+} because most of Mn_{Ca}^{2+} and less concentration quenching for Mn_{Al}^{2+} because most of Mn_{Ca}^{2+} and less concentration quenching for Mn_{Al}^{2+} because most of Mn_{Ca}^{2+} increase will substitute Ca²⁺ ions instead of Al³⁺ at high Mn^{2+} concentration (>15 at%). This is in good agreement with a linear decrease of the unit cell volume with varying Mn^{2+} content (>15 at%).

Figure 10 shows the relative emission intensity of CaAlSiN₃ : Mn^{2+} (5 at%) as a function of sample temperature, using commercial YAG : Ce³⁺ phosphor as a standard for comparison. The quenching temperature T_q (the temperature at which the relative emission

Figure 10. Temperature dependence of the relative emission intensity of $Ca_{1-x}Mn_xAlSiN_3$ (x = 0.05) and commercial YAG : Ce^{3+} . The inset shows the relative emission intensity of CaAlSiN₃ : Mn^{2+} (5 at%) compared to the commercial red-emitting phosphor CaAlSiN₃ : Eu^{2+} (LP-N640) under the same conditions.

intensity is half to the initial intensity at room temperature) for CaAlSiN₃: Mn^{2+} (5 at%) is above 200°C, which is much better than that of commercial YAG : Ce^{3+} phosphor. In addition, the emission intensity of CaAlSiN₃ : Mn^{2+} (5 at%) can reach up to about 30% to that of the commercial red-emitting phosphor CaAlSiN₃ : Eu^{2+} (LP-N640) for excitation with blue light (450 nm) at room temperature, as shown in the inset of Figure 10.

Conclusions

 Mn^{2+} -activated CaAlSiN₃ phosphors have been prepared by a solid-state reaction successfully and the solubility of Mn^{2+} in host lattice as well as their photoluminescence properties were investigated. CaAlSiN₃ : Mn^{2+} exhibits a broad band emission in the wavelength range of 475–750 nm. There are two obvious overlapping Mn^{2+} emission bands with peak centers at 548 and 627 nm, which are attributed to the Mn^{2+} locating at the Ca site (Mn_{Ca}) and Al site (Mn_{Al}), respectively. The effect of the Mn^{2+} concentration in CaAlSiN₃ on the luminescence properties was investigated and explained on the basis of the presence of the two Mn^{2+} sites, combined with preferential site occupation and energy transfer depending on the Mn^{2+} concentration. CaAlSiN₃ : Mn^{2+} materials are attractive LED phosphors due to the absorption in the blue range of the spectrum (440–460 nm), efficient luminescence with emission bands in the red part of the spectrum (590–670 nm) and a high thermal quenching temperature in air.

Acknowledgment

The authors gratefully acknowledge financial support from the European Union, the Freistaat Thueringen, the Leuchtstoffwerk Breitungen GmbH (Germany) under contract 2008FE0070 and the National Natural Science Foundation of China under grant No. 11104298. And we thank Dr. Sven Rösler for the temperature dependent luminescence measurement. The authors also gratefully acknowledge Prof. Dr. Yuying Huang and Dr. Xing Gao (SSRF, China) for helpful technical assistance of XANES experiments.

References

- C. J. Duan, X. J. Wang, W. M. Otten, A. C. A. Delsing, J. T. Zhao, and H. T. Hintzen, *Chemistry of Materials*, 20, 1597 (2008).
- V. Bachmann, T. Jüstel, A. Meijerink, C. Ronda, and P. J. Schmidt, *Journal of Luminescence*, 121, 441 (2006).
- Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, *Journal of Alloys and Compounds*, 417, 273 (2006).
- R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, and M. Mitomo, *Chemistry of Materials*, 18, 5578 (2006).
- Y. Q. Li, G. de With, and H. T. Hintzen, *Journal of Solid State Chemistry*, 181, 515 (2008).
- 6. Y. Q. Li, G. de With, and H. T. Hintzen, Journal of Luminescence, 116, 107 (2006).
- M. Zeuner, P. J. Schmidt, and W. Schnick, *Chemistry of Materials*, 21, 2467 (2009).
 K. S. Sohn, S. Lee, R. J. Xie, and N. Hirosaki, *Applied Physics Letters*, 95, 121903
- (2009).9. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto,
- Electrochemical Solid Solid-State Letters, 9, H22 (2006).
- Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, *Chemistry of Materials*, 20, 6704 (2008).
- H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, *Journal of the Electrochemical Society*, 155, F31 (2008).
- 12. H. Watanabe and N. Kijima, Journal of Alloys and Compounds, 475, 434 (2009).

- R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, *Journal of the American Ceramic Society*, 85, 1229 (2002).
- R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, *Applied Physics Letters*, 84, 5404 (2004).
- R. J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, *Journal of Physical Chemistry B*, 108, 12027 (2004).
- R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, *Applied Physics Letters*, 88, 101104 (2006).
- Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, *Chemistry of Materials*, 17, 3242 (2005).
- Y. Q. Li, G. de With, and H. T. Hintzen, *Journal of Materials Chemistry*, 15, 4492 (2005).
- Y. Q. Li, G. de With, and H. T. Hintzen, *Journal of the Electrochemical Society*, 153, G278 (2006).
- Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, and M. Mitomo, *Journal of Solid State Chemistry*, 181, 3200 (2008).
- J. W. H. van Krevel, H. T. Hintzen, R. Metselaar, and A. Meijerink, *Journal of Alloys and Compounds*, 268, 272 (1998).
- R. J. Xie, N. Hirosaki, and M. Mitomo, *Journal of Electroceramics*, 21, 370 (2008).
 Y. F. Lin, Y. H. Chang, Y. S. Chang, B. S. Tsai, and Y. C. Li, *Journal of Alloys and*
- *Compounds*, **421**, 268 (2006).
- A. L. Smith, *Journal of the Electrochemical Society*, 98, 363 (1951).
 J. K. Berkowitz and J. A. Olsen, *Journal of Luminescence*, 50, 111 (1991).
- G. Blasse and B. C. Grabmaier, *Luminescent Materials*: Springer-Verlag, Berlin,
- 1994. 7 Y. M. Zhang, H. D. Zang, and O. Su, *Laurent of Allows and Compared 441*, 250
- X. M. Zhang, H. P. Zeng, and Q. Su, *Journal of Alloys and Compounds*, 441, 259 (2007).
- D. Y. Lee, Y. C. Kang, H. D. Park, and S. K. Ryu, *Journal of Alloys and Compounds*, 353, 252 (2003).
- R. P. Sreekanth Chakradhar, B. M. Nagabhushana, K. P. Ramesh, and J. L. Rao, *Journal of Chemical Physics*, **121**, 10250 (2004).
- Y. Hattori, T. Isobe, H. Takahashi, and S. Itoh, *Journal of Luminescence*, 113(1-2), 69 (2005).
- Y. Takahashi and T. Isobe, Japanese Journal of Applied Physics Part 1, 442(2), 922 (2005).
- K. Uheda, H. Takizawa, and T. Endo, *Journal of Materials Science Letters*, 20, 1753 (2001).
- V. Bonder, L. Axelrud, V. Davydov, and T. Felter, *Materials Research Society Symposium Proceedings*, 639, G11.36.1 (2001).
- C. J. Duan, W. M. Otten, A. C. A. Delsing, and H. T. Hintzen, *Journal of Solid State Chemistry*, 181, 751 (2008).
- C. J. Duan, A. C. A. Delsing, and H. T. Hintzen, *Journal of Luminescence*, 129, 645 (2009).
- 36. Q. H. Zhang, J. Wang, C. W. Yeh, W. C. Ke, R. S. Liu, J. K. Tang, M. B. Xie, H. B. Liang, and Q. Su, *Acta Materialia*, **58**, 6728 (2010).
- R. J. Xie, N. Hirosaki, X. J. Liu, T. Takeda, and H. L. Li, *Applied Physics Letters*, 92, 201905 (2008).
- C. Kulshreshtha, J. H. Kwak, Y. J. Park, and K. S. Sohn, *Optical Letters*, 34, 794 (2009).
- K. Uheda, N. Hirosaki, and H. Yamamoto, *Physica Status Solidi* (a), 203, 2712 (2006).
- X. Q. Piao, K. I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, *Chemistry of Materials*, 19, 4592 (2008).
- 41. N. Hirosaki, K. Sakuma, K. Ueda, and H. Yamamoto, WO 2005/078811.
- 42. J. Rodriguez-Carvajal, *Fullprof*, Institute Laue-Langervin: Grenoble, France. July, 2006.
- 43. R. D. Shannon, Acta Crystallographica, 751, A32 (1976).
- 44. D. P. Thompson, Materials Science Forum, 47, 21 (1989).
- 45. M. Mikami, K. Uheda, and N. Kijima, Physica Status Solidi, 203, 2705 (2006).
- 46. Y. R. Lee, A. K. Ramdas, and R. L. Aggarwal, *Physical Review B*, 38, 10600 (1988).
- 47. Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan, 9, 753 (1954).
- 48. Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan, 9, 766 (1954).
- 49. Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan, 11, 864 (1956).
- J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge, 1961.
- A. Bergstein and W. B. White, *Journal of the Electrochemical Society*, **118**, 1166 (1971).
- Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, *Applied Physics Letters*, 89, 231909 (2006).
- Z. J. Zhang, O. M. t. Kate, A. C. A. Delsing, E. v. d. Kolk, P. H. L. Notten, P. Dorenbos, J. T. Zhao, and H. T. Hintzen, *Journal of Materials Chemistry*, 22, 9813 (2012).