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The motion of small particles in turbulent conditions is influenced by the entire range
of length- and time-scales of the flow. At high Reynolds numbers this range of scales is
too broad for direct numerical simulation (DNS). Such flows can only be approached
using large-eddy simulation (LES), which requires the introduction of a sub-filter
model for the momentum dynamics. Likewise, for the particle motion the effect of
sub-filter scales needs to be reconstructed approximately, as there is no explicit access
to turbulent sub-filter scales. To recover the dynamic consequences of the unresolved
scales, partial reconstruction through approximate deconvolution of the LES-filter is
combined with explicit stochastic forcing in the equations of motion of the particles.
We analyze DNS of high-Reynolds turbulent channel flow to a priori extract the ideal
forcing that should be added to retain correct statistical properties of the dispersed
particle phase in LES. The probability density function of the velocity differences that
need to be included in the particle equations and their temporal correlation display a
striking and simple structure with little dependence on Reynolds number and particle
inertia, provided the differences are normalized by their RMS, and the correlations
expressed in wall units. This is key to the development of a general “stand-alone”
stochastic forcing for inertial particles in LES. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4745857]

We focus on the problem of “statistically consistent” particle tracking in high-Reynolds number
turbulent flow. Euler-Lagrange simulation of the motion of inertial point particles in turbulence
adopts particle acceleration that depends on the fluid velocity at the particle position. In direct
numerical simulation (DNS) this velocity is known after interpolation, but in large-eddy simulation
(LES) only the spatially filtered fluid velocity is resolved. We use DNS of turbulent channel flow at
different Reynolds numbers to extract a priori high-Reynolds asymptotics for the “ideal” stochastic
forcing that would be required for particles to be dispersed statistically correctly in the LES flow field.
This extends recent work 1 to high Reynolds number flows. The “ideal” high-Reynolds forcing is
found to have little dependence on particle inertia and Reynolds number, a prerequisite to developing
a successful general “stand-alone” stochastic acceleration term for turbulent dispersion in LES.

The problem of restoring the influence of the unresolved scales in LES on the particle motion
stimulated the development of several models. These can be classified into two categories. The first
class uses phenomenological stochastic forcing directly added as velocity differences to the equation
of motion,2 or indirectly, adding broadband forcing to the momentum equations.3 The second class
applies approximate deconvolution 4, 5 of the fluid velocity to retrieve some of the small scale energy.6
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Using approximate deconvolution one may predict preferential concentration of inertial particles and
in particular turbophoresis in wall-bounded flows at relatively modest Reynolds numbers. It turns
out that the effects of the sub-filter scales cannot be omitted if the particle relaxation time is of the
same order of magnitude as the Kolmogorov time.7, 8 At larger Reynolds numbers, the deconvolution
improvement for the turbulent stresses was found to be insufficient.9 Here, we investigate adding
an explicit stochastic model term in the particle equation of motion, representing the effect of the
unresolved scales more accurately. We propose a “mixed” model; the approximate deconvolution
of the resolved velocity field in LES is expected to recover energy at the smaller resolved scales,
whereas the stochastic model should provide a model for the smallest, fully unresolved scales. As
a first step in the development of a combined deconvolution-stochastic-forcing model we use DNS
of particle-laden turbulent channel flow and determine the probability density function (PDF) of the
velocity differences and their temporal correlation at various particle sizes.

We consider DNS of turbulent particle-laden incompressible channel flow, in which the particles
are represented in a Lagrangian way as point particles. The mass fraction of the particles is considered
low enough to safely neglect the effect of these particles on the flow and, in addition, the volume
fraction is thought to be sufficiently low to also neglect particle-particle interactions. The fluid
satisfies the incompressible flow equations

∇ · u = 0;
∂u
∂t

+ 1

ρ
∇ p = f − ω × u + ν∇2u, (1)

where ρ, ν, and u denote mass density, kinematic viscosity, and velocity of the fluid, p total pressure,
ω vorticity, and t time. The equations are made non-dimensional using as reference scales the mass
density, half the channel height, H, and the friction velocity, uτ , so that Reτ is the friction Reynolds
number given by Reτ = Huτ /ν. Time is made dimensionless with timescale τ = ν/u2

τ . The friction
Reynolds number of the flow is kept fixed by prescribing the mean pressure gradient per unit mass
f in the streamwise direction parallel to the plates. The gas velocity satisfies no-slip conditions at
the two plates. In the other two directions periodic boundary conditions are applied for velocity and
pressure. We will use x, y, and z for the streamwise, wall-normal, and spanwise coordinates and
directions.

The motion of a particle is determined by the forces acting on it. If the particles are small and
have a mass density that is high compared to the mass density of the gas, the drag force exerted by
the gas is by far dominant.10 The governing equation for each particle is taken as

dv
dt

= u(x, t) − v
τp

, (2)

completed with the kinematic condition dx/dt = v. Here u(x, t) denotes fluid velocity at the particle
position x at time t and v the particle velocity. Moreover, τ p is the particle relaxation time given by
τp = ρpd2

p/(18ρν), where dp and ρp denote diameter and mass density of a particle. The particle
relaxation time in wall units is used to define the Stokes number.

In LES, u(x, t) is unknown, but ideally a filtered velocity, denoted by u(x, t) is available. The
difference between the unfiltered and filtered fluid velocity at a particle position can be considered
as the term which should be added to the particle equation of motion. In particular, we have in a
priori LES

dv
dt

= u(x, t) − v
τp

+ δu
τp

, (3)

where δu = u(x, t) − u(x, t). Using DNS the statistical properties of δu can be determined when
particles are tracked with the actual unfiltered velocity and u is determined by explicit filtering of
the DNS velocity field. This allows to infer properties of the “ideal” subfilter forcing that would
be required. The explicit filter applied in this work is the top-hat filter, which will be specified
momentarily. We will also investigate a possible combination of approximate deconvolution and
stochastic forcing. Correspondingly, we rewrite (2) as

dv
dt

= u∗(x, t) − v
τp

+ δu∗

τp
, (4)
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where δu* = u(x, t) − u*(x, t) in terms of the deconvolved fluid velocity field u*. From the DNS
u* can be explicitly computed by applying the approximate inverse of the filter to the filtered fluid
velocity field. We approximate the inverse top-hat filter by taking the first five terms in the geometric
series approximation for the formal inverse.5

The numerical method used to simulate the turbulent channel flow adopts a pseudo-spectral
discretization in the periodic directions, whereas the wall-normal direction is treated by a Chebyshev-
tau method. For integration in time a combination of a second-order accurate three-stage Runge-
Kutta method and the implicit Crank-Nicolson method is chosen.11 The particle equations of motion
are integrated in time with the same Runge-Kutta method as the nonlinear terms in the Navier-
Stokes equation. In the DNS the fluid velocity is interpolated to the particle position by tri-linear
interpolation. More accurate interpolation methods do not lead to significantly different results for
the statistical properties we consider in this paper. For the determination of u(x, t) and u*(x, t)
use is made of fourth-order accurate interpolation, since the filtered and deconvolved velocity field
are evaluated on a coarser LES grid. This fourth-order interpolation is a combination of Lagrange
interpolation in the two periodic directions and Hermite interpolation in the wall-normal direction.
In the two periodic directions the explicit top-hat filter is applied in spectral space by multiplication
with the Fourier transform of the filter kernel. In the wall-normal direction the integral in the top-hat
filter is approximated by the trapezoidal rule.

Simulations are performed at three different values of the friction Reynolds number, 150, 395,
and 950. For all three flow conditions the resolution was confirmed adequate by comparison of the
results of mean velocity, Reynolds stresses, and turbulent dissipation rate with literature results. The
value of �x+, the streamwise grid spacing in wall units, ranges in the DNS between 14 at Reτ = 150
and 8 at Reτ = 950. The spanwise grid spacing in wall units is smaller by a factor of 2. The coarse
LES grid used for the filtered and deconvolved velocity field satisfies the conditions for resolved
LES.12 This implies that �x+ has a value between 60 and 80 and �z+ ranges between 15 and 20
and the wall-normal grid spacing near the wall �y+ < 2.

Particles are inserted in a developed, statistically steady turbulent flow using a uniform random
distribution. The initial particle velocity equals the fluid velocity at the particle position. Particles of
four different Stokes numbers are considered, ranging between 0.2 and 25, and of each type 32 000
particles are tracked. Every ten time steps u(x, t), u(x, t), and u*(x, t) are written to file for later
analysis. This makes it possible to calculate moments, time correlation functions and probability
density functions of δu and δu*. We turn our attention to these quantities next.

An impression of the RMS of the wall-normal velocity component and wall-normal subfil-
ter velocity differences is given in Fig. 1 using the simulation at Reτ = 950 and particles with
St = 1. The chosen filter removes approximately 20% of the peak RMS values, when comparing DNS
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FIG. 1. RMS of wall-normal velocity component as a function of y+ for Reτ = 950; solid: DNS result, dashed: filtered DNS
result, dashed-dotted: δuy for particles with St = 1, and dotted: δu∗

y for particles with St = 1.
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FIG. 2. Root-mean square of δu∗
y as a function of y+ for Reτ = 950; solid: St = 1, dashed: St = 5, dashed-dotted: St = 25,

and dotted: St = 0.2.

and filtered DNS. Also included are the RMS of the subfilter forcing terms δuy and δu∗
y . The peak

RMS of the subfilter forcing term is approximately 50% of the DNS result and application of the
deconvolution results in a slight reduction of the RMS. In view of the close agreement between the
curves for δuy and δu∗

y we may infer that the corrections due to approximate deconvolution at this
rather high Reynolds number, in combination with the selected filter width, are quite modest. Much
of the dynamic consequences for the particle trajectories arising from the small turbulent scales,
need to be represented by the (stochastic) forcing model. Incorporating approximate deconvolution
as a first step seems nevertheless beneficial since it was also observed that the correlation between
u and δu* is smaller than that between u and δu.

The Stokes number of the particles has a rather modest influence on the velocity differences.
Figure 2 illustrates this in terms of the RMS of the wall-normal component of δu*. The results for
all four Stokes numbers are quite similar for the flow at Reτ = 950, each with a maximum at y+

= 60. The result for St = 5, which corresponds to particles whose relaxation time is closest to the
average Kolmogorov time, deviates somewhat from that of the other three Stokes numbers. Close to
the wall, particles with St = 5 are, with somewhat higher preference than at the other St, located in
positions where δu∗

y has a slightly lower value.6

When scaled with the RMS the PDF of δu* displays a remarkable independence of Stokes
number, as illustrated in Fig. 3, taking data where the RMS is maximal, i.e, y+ = 60. The PDF
deviates from a Gaussian distribution, which is also included in the figure. Large deviations from
the average value of the force are slightly more likely than in a Gaussian distribution. At y+ = 60
the PDF is almost symmetric, but closer to the center of the channel the skewness of the PDF attains
values around 0.3. The PDF of the wall-normal particle velocity component vy at St = 1 is included
as well, showing a close correspondence with the Gaussian distribution. For the other two velocity
components similar results are found: the RMS and PDF hardly depend on Stokes number. Also
similar deviations from a Gaussian distribution are obtained, a higher value of the flatness, and a
mild asymmetry, which depends both on the velocity component and on the wall-normal coordinate.

A further step in the analysis of the stochastic forcing arises by considering the influence of the
Reynolds number. We show results for St = 1; similar results are found at other Stokes numbers.
In Fig. 4 the RMS of δu∗

y is shown for the three Reynolds numbers studied here. The magnitude
of the force depends on the filter width and the velocity field. The smaller magnitude of the RMS
at Reτ = 150 could be explained by the fact that in this simulation the filter widths in wall units
are smaller than in the other two simulations. The location of the maximum of the RMS is equal
to y+ = 60, independent of the Reτ . The PDF’s of δu∗

y are given in Fig. 5 at y+ = 60, displaying
a strong collapse of the results for the three different Reynolds numbers, provided we scale by the
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FIG. 3. PDF of δu∗
y at y+ = 60 and Reτ = 950; solid: St = 1, dashed: St = 5, dashed-dotted: St = 25, and dotted: St = 0.2,

circles: Gaussian distribution, thin solid line: PDF of vy at St = 1.

Reτ dependent RMS. Similar results are obtained for the other two velocity components and at other
locations. We can conclude that the PDF’s are not only independent of Stokes number, but also of
Reynolds number as long as they are considered at the same value of y+. This constitutes a strong
simplification for the development of a “stand alone” stochastic model for the velocity differences
δu*.

Development of a stochastic model needs to incorporate the temporal correlation of the subfilter
forcing δu*. Since the subfilter forcing only contains small-scale contributions, it can be expected
that the correlation time is smaller than the Lagrangian correlation time. This is shown in Fig. 6,
where the temporal correlation functions of δu∗

x are plotted for the four different Stokes numbers
together with the temporal correlation function of vx for St = 1. All results are for Reτ = 950 and for
particles with initial position y+ = 60. The correlation time of the particle velocity is indeed much
larger than that of the subfilter forcing term. Moreover, similar as observed for the PDF, the temporal
correlation function hardly depends on Stokes number. We also studied other velocity components
and other flow conditions and observed the temporal correlation to be quite independent of the
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FIG. 4. RMS of δu∗
y as a function of y+ for St = 1; solid: Reτ = 950, dashed: Reτ = 395, and dashed-dotted: Reτ = 150.
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FIG. 5. PDF of δu∗
y at y+ = 60 and St = 1; solid: Reτ = 950, dashed: Reτ = 395, and dashed-dotted: Reτ = 150.

particular velocity component that is studied and independent of the particular Reynolds number
that is adopted.

Simulation of particle dispersion in LES of high-Reynolds turbulent flow requires explicit
stochastic velocity differences to be included in the particle equations of motion. This modeling
step allows to enrich the dynamics of the dispersed phase and restore the statistical properties that
would be lost if the particles were transported by the spatially filtered LES flow field. Using DNS
of high-Reynolds turbulent channel flow we inferred, a priori, statistical properties of the “ideal
forcing” that should be adopted in order to retain the same dispersive properties in LES, as would
arise in fully resolved DNS. We focused on the PDF of the stochastic velocity differences as well
as the temporal correlation of these velocity differences. These show little or no dependence on the
Reynolds number and particle inertia, when normalized by the RMS of the velocity differences and
evaluated at the same distance from the wall, measured in wall units, respectively. Retaining these
properties is essential when developing a proper “stand-alone” stochastic forcing model. Next to
the PDF and time-correlation of the forcing, also the spatial correlation between u and δu∗ needs
attention. The spatial correlation has its own dependence on the distance to the wall, reflecting the
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FIG. 6. Temporal correlation function of δu∗
x as a function of t+ at y+ = 60 and Reτ = 950; solid: St = 1, dashed: St = 5,

dashed-dotted: St = 25, dotted: St = 0.2, thin solid line: temporal correlation function of vx for St = 1.
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different regimes of near-wall turbulence and the corresponding variations in the spatial coherency
in the flow.
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