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1. Introduetion 

CHAPTERI. 

GENERAL CONSIDERATIONS AND OVERVIEW 

1. Introduetion 

This thesis deals with structural transitions of colloidal suspensions and the 

related rheological phenomena. We will focus our interest on concentrated colloidal 

suspensions. These systems are highly viscoelastic materials showing a number of flow 

phenomena not yet clearly understood. 

This study originated as a followup of previous work by Boersma [1), that was 

focused on shear thickening and flow blockage of concentrated colloidal dispersions. 

The theoretica! and experimental results of that work indicate an intimate conneetion 

between the dispersion microstructure and the macroscopie transport properties. 

While the rheology of low volume fraction suspensions can be understood 

analytically by the hydrodynamics of a small number of particles it is a hopeless task 

to apply these techniques to very concentrated dispersions. A more appropriate 

approach is to focus on the global structures formed by the colloidal particles and to 

study their long time scale behaviour. In particular, transitions between structures are 

accompanied by a dramatic change in the transport properties. 

With this idea in mind the approach in this thesis will be to study equilibrium and 

non-equilibrium structural transitions of colloidal suspensions and discuss the related 

rheological phenomena. Experimental investigations will be carried out on one of 

these transitions in concentrated colloidal suspersions, by means of rheological and 

light scattering techniques. 

In this chapter we will introduce the terminology that will be used throughout the 

book. The appropriate terms are emphasized by italic letters. Further we will give a 

short overview of the main ideas and some results of this work. 
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Structures 

The thermadynamie system we will study is an assembly of colloidal particles 

dispersed in a medium without partiele exchange (canonical ensemble). The rheology 

of such a colloidal suspension can be understood from the transport properties of 

structures formed by the colloidal particles. By a structure we onderstand the 

arrangements of the colloidal particles as distributed over space and time. The order 

of a structure can be characterized by its symmetry properties, i.e. the set of allowed 

symmetry operations that transfarms the system into itself. 

Depending on the magnitude of an applied shear perturbation we classify the 

structures in equilibrium and non-equilibrium structures. The first type is found in a 

colloidal suspension in equilibrium, while its transport properties can be determined 

from the stress response to small shear perturbations. The second type of structures 

occurs as a result of large shear perturbations. 

Equilibrium Structures in Soft Sphere Suspensions 

We will confine our considerations to soft sphere suspensions, which consist of 

particles with a repulsive interaction potential U ( r) that decreases with U ( r) r X, 

while 1 =:;x=::;; 12 [2]. While the interaction potential of hard spheres originates from a 

hard core repulsion (Born repulsion), soft sphere particles have a "long range" 

interaction. 

The equilibrium structure is, amongst others, a function of the three variables: 

the temperature T, the volume fraction .P of the particles, and the Debye screening 

parameter Kn. Travelling through the space of the state variables a variety of 

structures appear tagether with a wide variation in the transport properties. 

We restriet our considerations essentially to electrically stabilised colloidal 

suspensions, with an interaction potendal composed of a Coulomb repulsion and a 

van der Waals attraction, as described by the standard DLVO-theory [3],[4]. In most 
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cases use was made of the repulsive interaction potential as derived from the DLVO­

theory using the superposition approximation. The characteristic two partiele 

interaction potential of electrically stabilized colloidal particles consists of a secondary 

minimum foliowed by a Coulomb harrier and a primary minimum formed by the van 

der Waals attraction. 

The equilibrium phase diagram of soft sphere suspensions will be analyzed in this 

thesis in chapter 11.3 An approximation of the interaction potential between 

electrically stabilized colloidal particles as introduced by Victor & Hansen [5] will be 

combined with a perturbation approach as developed by Gast et. al. [6]. The 

dependenee of the transition lines in the K-<1> phase diagram will be calculated for a 

number of interaction potentials. 

The electrastatic stabilization leads to a rather complex phase diagram 

schematically depicted in Figure 1, for the condition of constant temperature. We will 

use the nomendature for the different phases introduced by Pusey [7]. Colloidal 

particles at low salt concentrations are known to form a bcc-crystal structure, where 

the colloidal particles are arranged in a bcc-lattice [7],[8],[9],[10]. 

On increasing the salt concentration the bcc-crystal becomes unstable and is 

converted either into a fcc-crystal structure [11],[12] at high volumefractions, or at low 

volumefractions into a colloidal fluid phase [14]. The latter phase consists of freely 

moving hard-sphere-like colloidal particles (Brownian particles) distributed at 

random. 

The colloidal fluid phase at intermediate volume fractions becomes unstable with 

increasing salt concentrations and separates into a colloidal gas and a colloidal liquid 

phase due to a flocculation into the secondary minimum [5]. The freely moving 

colloidal particles can form flocculation clusters when they collide. These flocculated, 

disordered clusters ( colloidal gel) form the colloidal liquid phase. This phase differs 

from the fluid phase by the presence of an infinite percolation cluster built up of the 

colloidal particles dispersed in the medium. Due to this cluster the colloidal fluid has 

a non-zero elastic modulus. This phase can also be viewed as a less compact colloidal 



glass, because a glass is an amorphous state formed bere by the colloidal particles in 

the medium. 

A further increase of the salt concentration Iets the particles coagulate into the 

primary minimum, when the Coulomb harrier disappears. 

Starting from the fluid phase on increasing the volume fraction a transition into a 

colloidal fcc-crystal occurs [13],[15],[16],[17]. For this first order transition the 

coexistence lines are drawn in Figure 1. 

A further increase of the volume fraction leads to an increase of the relaxation 

times of internal fluctuations. Recent theories [18],[19],[20] and computer simulations 

have suggested that an assembly of hard spheres, when compressed rapidly enough to 

bypass crystallisation forms a metastable glass structure at iflg""0.58 [7]. Beyond this 

volume fraction of hard spheres only a closed packed crystal can survive up to the 

maximum volume fraction of iflm=0.74. 

closed acked ~~çl sphere crystal 
glass 

fluid 
·~~ 

vapour ~,~,~~ 
------ ------~··--' 

salt concentration 

Figure 1 Schematic phase diagram of electrically stabilized colloidal suspensions. 



Transport Processes and Structures 

Let us consider a colloidal suspension under an external perturbation at a time 

scale "·· As a response, intemal transport processes occur at a time scale r, by e.g. 

diffusion, convection etc. These processes can be classified into three groups (Fig.2) 

according to the ratio De= rr/re , known as the Deborah number, with r, the 

characteristic relaxation time of the structure and the experimental time scale Te : 

1. De> 1; i.e. the internal transport processes of these structures are on a 

macroscopie time scale if compared to r •. The structure will instantaneously follow 

the applied perturbation on the time scale of the measurement, without relaxation 

into the unperturbed structure. The internal relaxational transport and the resulting 

dissipation can be neglected to a large extent and the suspension behaves essentially 

as an elastic solid. A colloidal crystal structure behaves in that way. 

2. De .:g 1; i.e. the internal transport processes occur at a microscopie time scale if 

compared with the time scale of the measurement. The suspension relaxes quasi­

instantaneously into the unperturbed state and dissipates the applied perturbation 

energy into heat. This viscous response occurs with the colloidal fluid structure. 

3. De ""' 1; i.e. the time scale of the internal transport processes are of the order 

of the time scale of the shear perturbation. On this mesoscopic time scale the 

transport processes are strongly influenced by the nature and the amount of the 

perturbation; a viscoelastic response will occur. Characteristic structures at this 

mesoscopic time scale are thermal and entropie fluctuations like e.g. the Brownian 

motion of the colloidal particles , fractal dusters (flocs), critical fluctuations etc. 
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Figure 2 Equilibrium and non-equilibrium structures as a function of the magnitude 
of the shear perturbation and the Deborah number De. 

The Rheology of the Equilibrium Structures 

A viscous structure (De~ 1) in the phase diagram is the colloidal fluid (gas) 

phase. A great number of authors have studied the transport properties of this phase, 

which can be treated by the motion of hard sphere particles. They usually employed 

hydrodynamic methods [21],[22],[23],[24]. The interaction of soft spheres in the fluid 

phase can he simplified by an effective hard sphere diameter for which one may apply 

the results by Einstein [25] and Batchelor & Green [26], who calculated the increase 

of the viscosity with the volume fraction [27],[28],[29],[30]. The mechanisms of 

transport processes in the fluid phase have been investigated also using colloidal 

hydrodynamic methods for both equal [31],[32] and unequal spheres [33],[34]. These 



methods have been applied to the periadie colloidal c:rystal phase as well [35],[36]. 

The colloidal c:rystal and glass structures behave viscoelasticlly. The usual 

approach with these matcrials is to generate a phenomenological equation of state by 

combining the viscous and elastic responses in a rather simple way [37]. Such 

equations have no direct relation to the microscopie structure and we will therefore 

follow the other path of relating the microscopie transport processes to the 

conesponding internat structures; a similar approach was successful in the 

description of polymers [38],[39]. 

The fee- and bcc-crystals can essentially be characterized as elastic solids. The 

rheology of these structures have been described by studying the deformation of a 

periadie assembly of colloidal particles on a macroscopie time scale [40],[41],[42]. 

The colloidal liquid phase is a viscoelastic, disordered glass containing an infinite 

network of flocculated colloidal particles. The transport processes of these aggregated 

structures are determined by the disroption of the network and the formation and 

break up of clusters (flocs) on a mesoscopic time scale [43], [44], [45], [46]. 

Near the transition regions of the equilibrium phases long scale fluctuations occur 

with transport processes on a mesoscopic timescale. A phase transition is 

accompanied by a softelling of the thermadynamie potential leading to a pronounced 

increase of long scale fluctuations. These "critica!" fluctuations having long relaxation 

times ("critica! slowing down"), are of a universa! nature and have been studied e.g. in 

conneetion with bina:ry fluids [47], nematic liquid crystals [48] and polymers [39]. 



Structural Transitions 

In this thesis we will focus our attention on the rheology near structural transitions 

between the equilibrium phases of soft sphere suspensions. We will employ methods 

developed in the statistica! mechanics of structural phase transitions in solids [49]. 

The advantage of using these methods here is that a direct relation between the 

variation of the microscopie structure and the rheological properties can be 

established. Bath can be measured independently and compared with the theoretica} 

outcome. 

A structural transition is characterized by a change of the global spatial 

arrangement of the colloidal particles. It can be characterized as a change of the 

degree of order within a suspension, the magnitude of which can be described by a 

so-called order parameter. All structural transitions are accompanied by a change of 

the symmetry properties, therefore denoted as symmetry breaking transitions (Chapter 

ll.2). Three structural transitionsexist in the equilibrium phase diagram of soft sphere 

suspensions (Figure.l): 

I. the order-disorder transition from a crystal into a fluid, 

II. the order-disorder transition from a crystal into a liquid and 

Ill. the order-order transition from an fee lattice into a bcc lattice. 

The flocculation transition in which the fluid separates into a liquid and a gas 

phase, is not a structural transition because the global structure remains disordered. 

Landau Theory 

Our interest lies in the rheological properties of systerns close to structural 

transitions. For that purpose we introduce, in chapter 11.2, the basic relationships of 

the Landau theory of symmetry breaking, first and second order phase transitions. In 

the Landau theory the degree of order of a structure is described by an order 

parameter q with the property of being non-zero in the ordered phase (low symmetry 

phase) and zero in the disordered phase (high symmetry phase) for the case of a 

order-disorder transition. 



. -q / 

a<O~// 
(low 
symmell'y 
phase) 

.... ------:71 
F(q) I I I 

I I 

Figure 3 Landau free energy as a function of the order parameter q before (a> 0) 
at (a.=O) and after the transition (a<O). 

For small magnitudes of the order parameter q, close to a second order transition, 

the thermadynamie potential F( q) can be expressed as a fourth order Taylor 

expansion in the order parameter q as displayed schematically in Figure 3 for 

different values of the second order Taylor coefficient a. For positive a the 

suspension is in the disordered phase (e.g. fluid phase) because the equilibrium value 

of the order parameter q0 is 0 and for negative a it is in the ordered phase ( crystal 

phase ), while the minimum of the potential is at q0 -;r= 0. The thermadynamie potential 

softens approaching the transition, i.e. the slope at q0 =0 goes to zero. The transition 

occurs at a 0 accompanied by pronounced critica! jluctuations. The parameter 

a, characterizing the distance to the transition, can be expanded in a function of the 

state variables of the form a= a."'(tl>-tl>tr)+aT(T-Ttr)+ac(C-Ctr), where the index tr 

denotes the transitional values of the state variables. 

The transport properties of a suspension near a symmetry breaking transition are 

dominated by the critica! fluctuations, as described by the time dependent Ginzburg­

Landau theory of phase transitions [50]. 
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Rheology at a Strnctural Transition 

The rheology is controlled by the internal transport properties deternrined by the 

thermal fluctuations of the equilibrium structure. The fluctuations grow, when a phase 

transition is approached. These critical fluctuations will strongly influence the 

transport processes near a transition. The critical slowing down due to the critical 

fluctuations leads to transport processes on a mesoscopic time scale and therefore to 

fluctuation-corrected transport coefficients. 

G' 

low 
symmetry 
phase 

0 

high 
symmetry 
phase 

G" 

Figure 4 The storage modulus G' and the loss modulus G" as a function of the 
parameter ex characterizing the distance to the transition. 



The transport of the mass, energy and momenturn as determined by the 

conservation laws can he considered as the slow modes of a system, i.e. the slowly 

varying parameters determining the transport properties of the system. Close to a 

syrnmetry breaking transition another slow mode appears: the order parameter mode, 

i.e. the diffusive transport of the entropie fluctuations. 

A coupling arises between the momenturn mode and the order parameter mode 

near the transition. In this thesis the coupling will be introduced in chapter II.4 by 

making use of a mode coupZing model introduced by Levanyuk [51]. 

According to the model developed bere the starage modulus G' will exhibit a 

minimum and the loss modulus G" will have a maximum at a structural transition, as 

the result of the critica! fluctuations (Fig.4). A consequence of this result in the 

hydrodynamic limit is that the viscosity will increase at a transition and is expected to 

be of the form 71- ( ~-~tr)-1.5 while the elastic modulus rises with G- ( ~-~tryos near the 

transition. 

Static Shear Melting Transition 

Quasistatically applying a large shear perturbation on a colloidal crystal will 

change the equilibrium structure as discussed in chapter 11.5. A colloidal crystal is not 

stabie against an externally applied shear strain u0 and will melt into a disordered 

structure. This shear-induced transition of a colloidal crystal will be denoted as static 

shear melting transition, because it occurs under a statically applied shear strain. 

The rheology of this shear-induced structural transition [52],[53] is essentially 

given in Fig.4, while 01 is now interpreted as a-u0-Uo<CJ with a critica! shear strain 

Uo<CJ. Experimental results indicated [54], that a concentrated colloidal crystal can 

sustain a critical shear strain up to u0<CJ""' 0.05 befare it becomes unstable. 

Continuous-shear experiments reveal this transition by a slight discontinuity in the 

transport parameters at very smal! shear rates known from computer simuiadons [55] 

and from rheo-optical experiments [56],[57]. 
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Shear lnduced Order Transition 

Unlike equilibrium structures, shear induced non-equilibrium structures occur only 

when tbe time scale of the perturbation is of the order of the characteristic relaxation 

time scale, because those structures are formed by the perturbation itself. 

A non-equilibrium transition induced by increasing the shear rate bas been 

observed in numerical simulations of molecular liquids [58],[2], and was observed in 

experimental investigations of soft sphere suspensions [59],[60]. It involves the 

formation of hexagonally close packed (hcp) layered partiele structures oriented 

parallel to the direction of motion by the shear gradient, bere denoted as the shear 

induced order transition. 

Dynamic Shear Melting Transition 

The most striking non-equilibrium transition is the disappearance of the hcp­

layered structure at even higher shear rates accompanied by a dramatic increase of 

the viscosity (shear thiekening). Thîs transition is denoted bere as the dynamic shear 

melting transition indicatîng the fact that this melting of a periadie structure occurs 

only at a non-zero shear rate. The dynamic shear melting transition can be described 

by a resonance between the periadie excitations of the sheared colloidal crystal and 

the eigen modes of the viscoelastic materiaL We will derive a theory that allows the 

calculation of the critica! shear rate of this transition. 

Based on assumptions made in [62],[63], we apply a two fluid model, where the 

colloidal suspension is treated as a viscoelastie medium. A critica! shear rate i'c 

independent of the system size will be derived of the farm i'c-Go/'1/, where G0 is the 

elastîc modulus and 11 is the viscosity of a sheared colloidal suspension. 

As an illustration the critica! shear rates of Hoffman's [64] and Boersma's [1] 

experiments are predicted with the present modeL A single unknown quantity will be 

used as a fit parameter. 



Viscosity of a Sheared Colloidal Suspension 

The experimental results on the viscosity of sheared colloidal systems are 

described in Chapter III.7. They can be summarized as descrihing the dependenee of 

the viscosity on the shear rate. Agreement on the viscosity-shear rate dependenee of 

soft sphere colloidal suspensions has been found by a great number of investigators 

both experimentally [65],[66],[67],[68],[69], and by computer simulations 

[70],[55],[71],[72]. lts characteristic form is schematically displayed in Fig. 5. Tagether 

with an experimentally accessible measure for the order parameter OP m [69] indicates 

the presence of a oriented hexagonal structure in the sample as can be probed by 

scattering techniques in the velocity direction. 

log{tJ) 

OP 
60 

... .. 
' ' ' ' \ 

\ 
\ 
\ 

Ym 
static shear 
melting 

hexagonal closed 
packed layers, 
strings 

; 
; 

I 
I 

I 
I 

I 
I 
I 
I 

.,. .. ,.. ~--
"' , 

shear induced 
order 

global 
disordered 
structure (glass) 

\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

' ' ' .. ........ ,, 

dynamic Y c log(y) 

shear melting 

Figure 5. Qualitative dependenee of the viscosity of a sheared suspension on the 
shear rate tagether with the value of the parameter OP 60 indicating a periadie 
structure. 
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At small stresses the system responds as a deformed colloidal crystal. Beyond a 

critical stress (a corresponding shear rate i'm) the equilibrium ordered structure is 

thermodynamically unstable against the shear perturbation and melts. The value of 

OP60 decreases. This transition is accompanied by a downward jump in the stress 

tensor [73]. Passing this static shear melting transition the structure changes into a 

disordered structure. On increasing the shear rate, the shear induced order transition 

is approached at i'o· This non-equilibrium transition is accompanied by the formation 

of sliding hcp layers pointing in the flow direction, where OP60 increases again. 

Experimental and numerical investigations [70],[72],[74] established that the ordered 

structure decreases the dissipation and therefore the viscosity. 

At high shear rates the dynarnic shear melting transition caused by an acoustic 

resonance is accompanied by a viscosity increase and the disappearance of the global 

ordered structure at i'c and the value of OP60 vanishes. Far beyoud of the 

resonance region at very high shear rates the layered crystal structure probably occurs 

again. 

Rheo-optical Experiments on Soft Sphere Suspensions 

Sirree the investigations of Hoffman [59] a great deal of rheo-optical experiments 

were performed to deterrnine simultaneously the rnicrostructural transitions and the 

corresponding rheological variations [60],[73],[74],[75]. In this thesis we focus our 

attention on the static shear melting transition under dynamic shear perturbations, 

where a colloidal crystal melts into a disordered structure if the applied shear strain 

exceeds a critica! value. 

For that purpose a rheo-optical setup bas been built to study simultaneously the 

rnicrostructure and the rheological properties of colloidal suspensions under shear. 

The experimental results are reported in chapter IIL7. They indicate qualitative 

agreement beween the expected theoretical transport properties with the obtained 

experimental data. Especially the expected decrease of the elastic modulus as a result 

of the critica! fluctuations could be observed. 
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Conventions 

In the entire hook we will denote the i-th vector element by X; and a matrix 

element by ~. while we use only the indices i,k or I. The Einstein convention is 

applied, i.e. a summation has to be performed over indices occurring twice in a 

product (e.g. XrX; = x/+ x2
2 + x/ ). The entire vector is written as !!, while a matrix 

(tensor) has the form ~. 

A complex number is written by using j2 = -1. 

Definition of the Fourier transfonn 

We introduce a Fourier transform by: 

(1) 

and the reverse Fomier transform: 

(2) 
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CHAPTER 11. 

THEORY 

2. Theoretical Background on Structural Transitions 

2.1 Introduetion 

Chapter Il.2. summarizes the theoretica! background for readers, who are not familiar 

with structural transitions. Colloidal suspensions of soft spheres show a variety of transitions 

as indicated in the equilibrium phase diagram (Fig.l). 

A non-structural phase transition is for example a gas-liquid transition, in which 

a parameter (e.g. the density) undergoes a change at the critical temperature, whereas 

the microscopie structure does not change [ 1] with regard to the symmetry properties. The 

characteristic property of structural transitions is, that they always involve a change 

(''breaking") of the symmetry properties of the system. In this thesis we will focus our attention 

on structural transitions, at which a change in the symmetry properties of the stationary 

microscopie structure of the particles takes place [2]. 

A structural transition in a colloidal suspension occurs, when the spatial contiguration 

of the colloidal particles changes from one equilibrium phase to another. These transitions 

can be either of an order-order type as in the bcc-fcc transition or of an order-disorder 

type; e.g. the crystal-liquid transition. 

Asymmetry breaking transition in colloidal suspensionscan be induced in two ways; 

either by travelling through the equilibrium phase diagram, varying the state variables such 

as the temperature T, the salt concentration C or the volume fraction <1>, 

or by applying a perturbation, such as a shear deformation. The first case 

is treated in Chapter 11.4 and the latter in Chapter II.5. 

The evolution of a system with energy exchange with the surroundîng 

but with a constant number of particles is determined by a thermodynamic 

potentiaL We will consicter the colloidal suspension as incompressible 

and take therefore the Helrnholtz free energy as the appropriate potential. 
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In this thesis we focus our attention on the transport properties 

accuring at structural transitions. The transport properties of a 

suspension are given by a set of hydrodynamic equations corresponding 

to the conservation laws of mass, momenturn and energy. They can be written 

as a product of a derivative of the thermadynamie potential and a constant 

transport parameter [3]. The transport parameter can be obtained from a time dependent 

correlation function (Green-Kubo equation) of the slightly disturbed equilibrium structure 

[ 4],[5]. 

Approaching a transition in the equilibrium phase diagram the thermadynamie potenrial 

softens and critica! fluctuations appear, leading to a coupling between the linearized 

hydrodynamic equations and thus to fluctuation corrected transport parameters. Although 

the thermadynamie potential can be calculated from a perturbation theory in the ( Chapter 

II.3), it is not in an analytic form applicable to investigate the transport properties near 

a phase transition. Instead we will use a qualitative form of the thermadynamie potential. 

F ortunately the change of the free energy of a system of identical particles is known 

on approaching a phase transition. The free energy of such a transition can be written 

as an expansion of an order parameter characterizing the transition, as has been studied 

first by Landau [2]. The time dependent Ginzburg-Landau (Kaladnikov) theory [6] includes 

the dynarnic behaviour of the order parameter using fluctuating hydrodynarnic equations 

[7]. The application range of this mean field theory is given by the Ginzburg-criterion [7], 

taking into account the influence of fluctuations on the transition. Depending on the spatial 

dimensions and the range of the interaction forces it states that the Landau theory is generally 

only qualitatively applicable but can give quantitatively correct results in four dimensions, 

or in three dimensions in the case of long range forces [2] between the particles. A specific 

extension of the Landau theory, the renormalization group theory, delivers correct solutions 

also for three dimensions [8]. In our studies we will confine ourselves to the Ginzburg-Landau 

theory. 
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2.2 General Considerations on Structural Transitions and the Landau Theory 

Symmetry Properties 

We de fine a probability density p(r,T,cl', .. ) where pd3r is the probability of finding 

a partiele in the elementary volume d3r. To characterize a change in configuration we introduce 

the symmetry of a system, defined by a set of geometrical transformations sü ( translations, 

rotations, reflections etc.), which leave the equilibrium density p(r,T,cl', .. ) invariant. The 

equilibrium density corresponds to theminimumofthe variationalfree energy F(p(r),T, ... ) 

with respect to p(r,T,cl', .. ). 

Let the symmetry operation sii be an element of the group &> if: 

(3) 

i.e. the equilibrium density p(r,T,cl', .. ) is invariant against allelementsof g0 • We denote 

the corresponding phase as the high symmetry phase. The group g0 can be a continuons 

group (as in a fluid), an infinite discrete group (as in a crystal) or a finite group (if the 

crystal symmetry can be reduced to a point symmetry). 

The phase transition is defined as the point where the number of allowed symmetry 

operations of the system is changed abruptly. This phenomenon is called symmetry breaking, 

because the symmetry of the system is lowered, when some symmetry operations disappear 

having passed the transition, at the transition valnes (Ttr,C~ncl'w ... ). The phase with a lower 

number of allowed symmetry operadons is called the low symmetry phase. Such a symmetry 

breaking transition occurs for example in going from a liquid (high symmetry phase) to 

a crystal (low symmetry phase ). Beyoud the transition point the intensity of density waves 

with the periodicity of the crystal gradually rises with increasing distance to the transition 

point up to an amplitude corresponding to the fully evolved crystal structure. 

On going from the high symmetry phase to the low symmetry phase, the equilibrium 

density in the low symmetry phase close to the structural phase transition can be written 
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as 

(4) 

where P~r=p(r,T~r>C~r><l>,w.) is the density at the transitionand öp(r) is the density increment 

not invariant under tpe action of all elements of the group go, but only of a subgroup g1 

of & (g1 is the low symmetry group). An example of a symmetry breaking transition is 

given in Appendix A introducing some conceptsof the group theory. 

We will write the density increment öp(ri) as a linear combination of orthogonal, 

normalized functions if(nll< (!), where n indicates the various irreducible sets involved: 

(5) 

and their amplitudes Àl<(n)' while k runs over thesetof the functions if(•>l< (r). 

Within a specific irreducible representation the functions if(nl~<:(I) will transform 

into one another under all transformations of the group g1• Thematrices of the transformations 

form the representation of the group g1 . and the functions if<n>~<:(rJ are the basis of this 

representation (Appendix A). One can always select these functions in such a way that 

they split into a number of sets containing as few functions as possible, each set of functions 

being transformed into itself under all transformatlans of the group. The transformation 

matrices of the functions contained in each set form the irreducible representation of the 

group g1• 

A structural transition is characterized by the appearance and disappearance of 

one or several irreducible sets. At the structural transition considered bere, only by accident 

more than one irreducible set will change at the same critical value. Thus focusing on 

only one irreducible set, we can omit the sumover n in equation (5). Each of the basic 

functions of a irreducible set of a space group can be written as a periodic function of 

r. We define '~'~< (r) as: 

(6) 

where Y = -1 and G(k) are the reciprocallattice veetors [1 ],[2]. 
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Ginzburg- Landau Free Energy 

The basic idea of the Landau theory is to consicter the free energy as a function 

of the structural alteration [2]. For that purpose we write the free energy as a tunetion 

of the density 

(7) 

Note that tbraughout this book we willinterpret F as the free energy per unit volume. 

Having defined the functions 'lrk(I) and keeping their form fixed at the transition, the 

equilibrium value of the free energy can be found by a variation of F with respect to Àk. 

Close to the syrnmetry breaking transition, op is smalland F(p) can be expanded in a Taylor 

expansion in op 

(8) 

or with equation (5) as 

(9) 

We assume that 'lrk have fixed values at the transition and write the Àk as 

(10) 

while q is a scalar and is called the order parameter of the transition; ek is a unit vector 

in the space of the chosen irreducible representation. 
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CombiDing (5), (6) and (10) we arrive at the final form of the density increment: 

(11) 

where k runs over the redprocal lattice veetors G(k) of the irreducible representation. 

The sum describes the density wave of the redprocal lattice and q is its amplitude. 

The equilibrium value of the order parameter q can be obtained by minimization 

of the free energy with respect to q. 

(:t.~ .... -0 
(12) 

and we obtain 

(13) 

For the high symmetry phase we demand that q = 0 and therefore a·= 0. Thus the 

first relevant term in the expansion of the free energy is of the second order. Additionally 

we de mand that the free energy bas a minimum and therefore a> 0. Thus a> 0 corresponds 

to q = 0, i.e. the high symmetry phase. 

For a<O i.e. the low symmetry phase it is necessary to expand F up to higher 

order in q. A third order expression does not lead to a stabie equilibrium state and thus 

the free energy will be supplemented by a fourth order term. 

(14) 

where we assume v > 0; otherwise we have to take into account higher order terms in q 

to find a minimum of the free energy. We will confine our theory to positive equilibrium 

valnes of the order parameter and thus demand r~ 0. 
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Order Parameter of a Second Order Transition 

A special case of equation (14) is .\=0. In this situation the free energy takes the 

forrn 

(15) 

By means of the equilibrium condition (12) we obtain the order parameter in the low 

symmetry phase (ex< 0) to be 

(16) 

Since ex is a function of the temperature, volume fraction etc, we require the coefficient 

cx(T,</>, .. ) to satisfy the condition cx((Tb:)t ,(cl>b: h, .. )=O at the transition values of the temperature 

volume fraction etc .. 

Because cx(T,cl>, .. ) is small close to the transition, we can expand cx(T,cl>, .. ) as a function 

of the temperature T, volumefraction cl> etc. around the transition coordinates; ex can be 

written as 

(17) 

where cxn cx\1> are positive constants. 

The absence of a jump in the order parameter and the infinite correlation length 

at the transition value cxu = 0 is in the literature referred to as a second order transition. 

Thus while .\= 0 corresponds to a second order phase transition, the condition .\> 0 will 

be shown to describe a first order transition. 
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Order Parameter of a First Order Phase Transition 

The case r> 0 of the free energy ( 14) leads to the characteristic properties of a first 

order phase transition, such as a jump in the order parameter and the coexistence of two 

phases, which implies the possibility of metastability. 

The equilibrium values can be obtained from equation ( 12) leading to three solutions: 

i -0 
11 
::::1 

r:r -L.I.. 

0 

q -> 

Figure 6 The Helmholtz free energy for different values of ~. 

(18) 

The stability of the solutions of equation (14) depends on the second derivatives 

of the free energy with respect to the order parameter. The solution q =q00 =0 represents 
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the high symmetry phase, whereas q = q01 > 0 is the low symmetry phase. The high symmetry 

phase is thermodynamically stable when a;;:..: a 01 = f /4v. The low symmetry phase is stabie 

when a< a 00 = 0; in that case q = q01• The coexistence region is bounded by a 00 and a 01 (Fig.6). 

The value of the order parameter depends on the history of the system. The system 

stays in the high symmetry phase q00 if a>- 0. Decreasing a down to a 01 the system jumps 

from the high symmetryphase at q00 =0 to the low symmetry phase at q01 ;t:O. At negative 

a the system is in the low symmetry phase and jumps back into the high symmetry phase 

at a =a00 on increasing a. Thus the system exhibits a hysteresis between a 01 ;;:..: a;;:..: a 00• 

Two minima at equal valnes of the free energy appear at a= ac. The value of ac can 

be determined from F(q00)=F(q01)=0 and thus 

2{2 
«c=-

9v 
(19) 

Forsecondorder transitions the hysteresis disappears and the transition occurs at a =0. 

Free Energy Density 

The contributions of spatial fluctuations to the free energy have been neglected 

up. to now. In order to take them into account we have to introduce alocal free energy 

density f(r): 

(20) 

The free energy density takes the form 

(21) 

where we introduced a space dependent order parameter density q(r) and a term À(grad( q(r)) f 
The latter term takes into account homogeneons fluctuations, i.e. fluctuations on a length 

scale large compared to the length scale of the crystallattice [2]. 
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Validity of the Landau Theory 

The validity of this approach is deterrnined by the influence of the fluctuations on 

the transition, as given by the Ginzburg criterion [2]. lt indicates that the Landau theory 

describes the transition quantitatively correctfora D-dimensional space with D;;;:: De but 

that is at least qualitatively correct for dimensions of the system D <De. The universality 

hypothesis claims that the critical dirneusion De of the transition depends on the range 

of the interaction. The Landau theory is quantitatively valid for interaction forces decreasing 

slower than F(r)-r·(l:lDJ with {3<3/2 (D=3). Thus the critica! dirneusion is 

3 D =-D 
c 2 

(22) 

[8]. Because the screened Coulomb potential as used in our model is of the form e·'jr, 

the Landau theory will be only qualitatively applicable to electrically stabilized colloidal 

suspensions. 
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Appendix A 

Example of a symmetry breaking [1] 

In this Appendix we describe some concepts of the group theo:ry coneenling the 

symmet:ry breaking. Let us consider a c:rystalline substance in which a phase transition 

is assumed to take place at a given temperature and pressure (T..-,p..-). The unitcellof phase 

1 is shown in Figure 7. Phase 2 differs from phase 1 by the fact that the centre partiele 

is displaced by the vector Q. Thus phase 1 is characterized by !l = 0, while phase 2 has 

a non-zero value of !l· The configuration of particles in phase 1 is unchanged by a set of 

rotations and reflections with respect to the centre of a cell. 

z 

l)z 

axy 
Figure 7 Unitcellof a pbase1 with vector Q=O and phase2 with Q>éO. 
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Phase 1 is left invariant by: 

- fourfold ( 1r /2) rotations around the z- axis 

- reflections about planes óy, Óz or óxy perpendicular to the coordinate axes y or 

z or to the diagonals of the square basis of the unit cell 

- inversion I about the centre of the cell 

The product of any two of these geometrical transformations also leaves the structure 

unchanged. The corresponding set of symmetry transformations that leaves the structure 

invariant is called the high symmetry group go which contains 16 elements ( the crystallographic 

label is 4/mm or D4h)· 

The set of transformadons leaving phase 2 invariant is the group g1, which depends 

on the direction of the displacement of Q. If Q is associated for example to a displacement 

qz along the z direction Q = (O,O,qz); g1 contains the fourfold rotadons around z as well as 

the reflections ó. AAY in planes containing the z direction. lt does not include other elements 

of go such as the inversion I or the reflection óz . In this case the low symmetry group g1 

is a subgroup of go containing 8 elements ( c4v)· 

Table A-1 indicates the way in which Q=(q., qy ,qz) transforms under the action 

of the generators of g0 • 

Table A-1 

~ c4 (}x I 

~ qy -q. -qx 

qy -~ qy I -qy 

q. qz q, I -q. 

We note that q. is transformed into itself or into its opposite. If we consider the 

direction q. as a vector space we can see that thi'i vector space is invariant by the transformations 

betonging to ~· However the direction qx does not constitute an invariant vector space 

since elements of~ can transform q. into ~. The vector space constituted by the directions 
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( q, , q,) is invariant by g" • 

The entire set (q,, q, ,qJ constitutes a 3· dimensional vector space invariant by 

g" and contains smaller spaces (q,, (q,, q, )) which also possess the property of invariance 

by g". We characterize this situation by saying that (q,, q, ,qJ is a redoeibie invariant 

space with respect to g", while (qJ and (q,, q,) are irreducible invariant spaces >Vith respect 

to g" . It is wel! known that if a vector space is invariant under a linear transformation 

betonging to g", this transformation can be represented by a matrix indicating the action 

of that element of g" on the basic veetors of the space. The Table A-2 shows thematrices 

repcesenting the generators of g" • 

Table A-2 

g" c, "· I 

(q, ' q, ,q, ) 01 0 -1 0 0 -1 0 0 
' -I 0 0 0 1 0 0 -1 0 

0 0 1 0 0 1 0 0 -1 

(q., q,) 0 -1 -1 0 -I 0 

I 0 0 1 0 -1 

(q,) I 1 -1 

The set of all matrices of a group g0 constitute a representation of g" in the vector 

space involved. The two sets of matrices forthespaces (qJ and (q,, q,) constitute an 

irreducible representation of g", si nee the corresponding spaces are irreducible invariant 

spaces by g". The order parameter of the considered symmetry breaking transition coincide 

either with (qJ or (q,, q,) belonging to the different basic symmetry properties but not 

with the entire set (q, , q, ,qJ. 

The basic idea of the Landau theory is to consider this order parameter as a variational 

degree of freedom of the system, and to note that the equilibrium value can be determined 

by miniruizing the variational free energy F(T,p, q, ,q, ,qJ with respect to the componeots 

of q. 
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We expand the free energy up to second degree terms in ll : 

(A.I.) 

Considering the reflections óy, Óv ó,. of go- each 61 reverses the conesponding component 

q, and leaves unchanged the two other components. The action of these rransformations 

shows that the linear term is absent in the Taylor expansion since F only depends on the 

"internal" state of the system, lll!d not on its absolute orientation. That is, F must be invariant 

under all geornetrical transformations of the group g., . 

Because ( qJ and ( q, , q,. ) are linearly independent, F can be written as: 

a,(T,p) 2 ,_ «1 2 
F(T,p,q)=F0(T,p)+-

2
-(q, +qyJ+zq' (A.2.) 
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3. The Equilibrium Phase Diagram of Suspensions of Eleetrically 

Stabilised Colloidal Particles 

3.1 Introduetion 

Colloidal particles may repel each other, either electrostatically (by electric 

charges on their surfaces) or sterically (by polymers attached to !heir surfaces and 

protruding into the continuons phase ). The effective interaction potential, due to 

double layers surrounding the colloidal particles in an electrolyte solution, can be 

represented by a screened Coulombic potentiaL For the spherical particles 

investigated here we \Vill use a Debye interaction potential Thus the present 

treatment neglects deviations from the Boltzman-distribution (with electrastatic 

interaction between point charges as sole energy term) of the ions around the 

partiel es, e.g. by hydraled ions on the surface or chemisorption. 

The Coulomb potential can be progressively screened at constant surface 

potential by subsequent addition of electrolyte and under these condilions the van der 

Waals attraction becomes important. The resulting interaction potential can be 

described by the standard DLVO theory [1],[2],[3]. A "primary" minimum of the 

potential close to the partiele surface may be separated from a "secondary" minimum 

at larger distauces by a Coulombic barrier as depicted in Figure 8. 

Dilute suspensions form a random distribution of electrostatically stabilized 

colloidal particles ("!luid phase"). However, at higher volume fractions a colloidal 

crystal may be more favourable . Two ordered crystal phases, a body centred cubic 

lattice (bcc) and a face centred cubic lattice (fee) have been found in a number of 

experimental [4},[5],[6] and theoretica! [7},[8],[9] investigations. The bcc crystal was 

only found at very low ionic strengths. The tranûtion line between them has been 

calculated by using a density functional approach [10],[11],[12]. 

Victor & Hansen [13] theoretically predicted that on increasing the ionic 

strength a reversible 'liquid-vapour' spinodal decomposition appears into a floceulated 
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phase ("liquid") and a low density phase of non-flocculated particles ("vapour"). This 

flocculation takes place into the secondary minimum. It is reversible and occurs as 

long as irreversible coagulation is prevenled by a Coulomb barrier. 

The limitation of the approach by Victor & Hansen however is that they 

calculated the spinoctal lines of the liquid-vapour transition disregarding the presence 

of the colloid crystal phase. Including the crystal phase allows to delermine the phase 

diagram also at high volume Iraelions and low Debye screening parameters. Our 

approach can lead to qualitatively different results if compared to that of Victor & 

Hansen. The expected liquid-vapour spinoctal decomposition disappears for example 

for low attractive forces.Their analysis was confined to a first order perturbation 

approach. 

The objective of this paper is to improve the approximations made by Victor & 

Hansen. For that purpose we start from the interaction potential introduced by Victor 

& Hansen [13] for electrostatically stabilized colloidal particles, which consists of a 

superposition of a repulsive hard sphere potential and an attractive perturbation. 

Using this interaction potential we apply a second order perturbation approach to 

determine the free energy of the colloidal fluid and the crystal phase based on 

statistica! thermodynamics as developed originally by Gast et. al. [14]. The latter 

approach was originally developed for predicting the phase diagram of non-aqueous, 

colloidal suspensions in the presence of non-adsarhing polymers. By camparing the 

free energies of the fluid and the crystal phase, the coordinates of the coexistence 

lines in the phase diagram can be determined. Employing a numerical scheme we will 

calculate the coexistence lines as a function of the salt concentration for different 

temperatures, surface potentials and partiele sizes. 
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3.2 Theory 

Interaction Potential 

We consider a suspension of N charged, monodisperse, colloidal spheres. The 

spheres are surrounded by counter ions and additional electrolyte forming an 

electrical double layer around them. The total DLVO-potential energy Û(r) is the sum 

of the electric repulsion of the double layers and the van der Waals attraction 

between two colloidal particles: 

where r is the centre to centre distance between the colloidal particles. 

In the linear superposition approximation the electrostatic term can be 

calculated frorn the Poisson Boltzman theory [1], [15] to be: 

(24) 

where Y0 is the surface potendal of a colloidal particle, <10 js its diameter, t:0 is the 

pcrmittivüy of vacuum, er is rhe relative dieledric constant of the solvent, e0 is the 

elementary charge, k8 is Bohzmann's constant, T is the temperature and x:0·
1 is the 

'Debye screening length' of tbc ions. 

The 'Debye screening parameter' <o. can be written as: 
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"o= (25) 

where C is the added salt concentration of a z:z electrolyte based on the liquid 

volume. 

For nat too large surface potentials (less than '1'0 ~25 mV) , the hyperbalie 

tangent in (24) can be linearized and the potential reduces to 

(26) 

This dimensionless Coulomb potential, scaled by the thermal energy k,;r, takes the 

form 

TR exp( ->:(x-1)) 
UJ_x)= 

T x 
(27) 

where we introduced x=r/a0 as the reduced centre-to-centre distance, "~<0a, is the 

reduced Debye reciprocal length and 

(28) 
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The van der Waals attraction energy between spherical particles is of the farm 

[13] 

U (x)=_ Ah(x) 
A 12 

(29) 

where A is Hamaker's constant and 

I I ~ I) h(x)=--+-+2 1--
x2-1 x 2 x 2 

(30) 

Thus the tata! potential scaled by the thermal energy becomes: 

U(x)=_!_ (T exp{-<(x-1)) T h(x)) 
T R x A 12 

(31) 

with TA =A/{kB)· The interaction potential may exhibit a positive maximum at x"> I 

and has a secondary minimum at x,., where x.,>x"' (Fig.8). 

The secondary minimum in U(x) becomes more pronounced either on 

increasing the van der Waals attraction or on screening the Coulomb repulsion by 

increasing the concentration of salt. This leads to flocculation imo the secondary 

minimum, if the thermal energy is the only energy of motion of the dispersed 

particles. Coagulation into the primary minimum will be prevented as long as the 



3. The Equilibrium Phase Diagram of Suwensjons of Electr. Slab. Col!. Particles 44 

Coulomb harrier U(xM) is substantially larger than the thermal energy kaT. Victor & 

Hansen assumed1 sornewhat arbitrarily, that the suspension is charge-stabilizcd if 

ur~ )>lOT 
"'" T R 

Their results v.ith respect to the phase diagram of such suspensions are rather 

insensitive to the precise value of the assumed potentlal harrier. 

j •• / 
/ L •.•••.•••••••.••• ·· 

····· ... 

u 

(32) 

Figure 8 The tata! two-particles interaction potential (solid line) U(x)/kuT scaled by the 
thermal energy a'\ a functlon of the centre-to-centre distance x. 

U, is the repulsive contribution to the potential and u. is the attractive perturbation. 
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In order to calculate the thermadynamie properties of charge-stabilized 

colloidal particles, we make use of the perturbation theory developed by Gast et al. 

[14) based on a hard sphere reference state. For that purpose the total potential is 

transformed into an effecth•e hard sphere part and an attractive perturbation. 

Separation of the Potential 

According to Weeks et aL [16) the total potential is attractive for large 

distances and repulsive for small distances. This can be written as: 

while U0 and W are: 

and 

W(x)oU(xm) 

W(x)oU(x) 

(33) 

(34) 

; .t<.xlll 
(35) 

Following Victor & Hansen U0(x<xM) in Eq.(34) is replaced by a hard sphere 

potential provided rhe condition Eq. (32) is satisfied. This is jusrified, because the 

high Coulomb harrier will practically speaking prevent particles from getting as close 
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as xM and coagulation is negligible. 

A system of particles interacting by the purely repulsive potential U0(x) 

constitutes the reference system, while the attractive component W(x) will be looked 

upon as a perturbation. 

The Effective Hard Sphere Diameter 

Weeks et. al. negleeled the repulsion at distances xM<x<xm. However, the 

potential U0(x) gives an extra contribution to the effective hard sphere potential of 

the particles. According to Victor & Hansen, the properties of the reference system 

with the interaction Uo(x) can be related to those of an 'equivalent' fluid containing 

hard spheres of diameter ~- For that purpose they calculated the Barker-Henderson 

parameter S [17], which is given by s~ lf/ffo- lts value can be derived from a 

functional Taylor expansion of the Helmholtz free energy in powers of the difference 

between the Boltzmann factors associated with !he referenee system ( e·"o ) and the 

equivalent hard-spbere fluid. The leading term in this expansion is: 

(36) 

Because S;;, 1, the volume fraction of the particles in the equivalent hard sphere 

system <I> will he larger than the truc volume fraction <1>
0

: <I>=S3
<1>

0 with 

(37) 

where p = N/V is the number density. 



3. The Egujljbdum Phase Diagram of Suspensions of Electr. Stab. Coll. Particles 47 

Perturbation Theory 

The basic idea of the perturbation approach is to write the potential energy of 

a 2-particle system as the sum of two terms 

(38) 

in which UHS (x) is the potential energy of tbc unperturt>ed effective hard sphere 

relerenee system. According to Victor & Hansen [13] the two partiele interaction 

potential can be written as; 

U/fs(x)~~ ; x<S 

U /fS(x) =0 ; X'>S 

U,(x) is the attractive perturbation potentiaL This has the form: 

U,.(x)=O 

U,.(x)=U(,tm) 

; .t<S 

(39) 

(40) 

This potential is shown in Figure 8. Note that the attractive potential is kept constant 

in the region Ssx<Xm. 

According to Zwanzig [18] and Barker and Henderson [17] the Helmholtz free 

energy of a thermodynamic system of particles with an attractive two partiele 

interaction potential can be written as a perturt>ation expansion in 1/k6 T (high 

temperature expansion). Because the high temperature case is equivalent to the hard 

sphere system, the expansion of the Helntholtz free energy including the second order 
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takes the form: 

where FHs is the free energy of the undisturbed hard sphere system and gw; is the hard 

sphere pair distribution tunction. This equation is valid for both for colloldal fluids 

and colloldal crystals. Tbe free energy as a tunetion of the effective diameter is 

derived in Appendix B. 

Tbe thermadynamie relallons between the Helmholtz free energy, the Gibbs 

free energy G and the osmotic pressure p are given by 

G éJ ( F' 
/eBT" iJp :BTJ 

p,T 

and 

(42) 

(43) 

Note that the screened Coulomb interaction potentlal is also a tunetion of the density. 

The intersection of the curves of the Gibbs free energies of the colloldal fluid and the 

crystal phase delermines the coexistence pressure and thus the coexistence densities of 

these phases. 
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3.3 Numerical Procedure 

The volume fraction dependent Barker-Henderson parameter S is obtained by 

numerical integration of equation (36). All numerical integrations are carried out by 

a Runge-Kutta procedure as described in [19]. 

After rescaling the distance r with the effective hard sphere diameter a we 

arrive at an alternative form of the interaction potential (see Appendix B). For the 

numerical integration of the contributions to the Helmholtz free energy of the crystal 

and the fluid phase (B.5), the equations of state and the correlation functions of the 

hard sphere reference system for both the fluid and the crystal phase were taken as 

summarized in reference [14]. 

The Gibbs free energies are obtained by numerical differentiation of (41) 

according to (42). The intersection of thc !luid and the solid Gibbs free energies 

G/(k8T) as plotted versus the pressure determines the coexistence pressure p' of the 

transition. 

Substituting the pressure p' in equation (43) gives the coexistence densities of 

the fluid and the solid phases. Platting thc coexisting volume fractions for varying 

salt concentrations maps out the phase diagram. The independent parameter set of a 

given partiele-solvent system consists of the surface potential, the partiele diameter, 

the temperature, the dielectric constant of the solvent, the Hamaker constant and the 

concentration of added electrolyte. These parameters are combined into three 

independent parameters that dctermine the phase diagram: TA>TR and K. To test thc 

proper functioning of the computer program one of the phase diagrams as calculated 

by Gast et al. [14] was evaluated. It well reproduced their original result. 

3.4 Results and Discussion 

A number of phase diagrams has been calculated for electrically stabilized 

particles in water as a function of the Debye screening parameter "· In order to 

campare our formalism with the results of Victor & Hansen [13] we have chosen 

similar parameters of T, and T 10 as summarized in Tables 1 and 2. These Tables also 
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also give the corresponding values of the surface potential and the Hamaker constant. 

We restricted our ca1cu1ations to polystyrene particles with a diameter a0 = l,um, 

dispersed in water (<,=80.37) surrounded by monovalent ions. 

T,/K 'lr0 /mV 

60000 19.2 

65000 20 
r 

70000 20.8 

75000 21.6 

Table 3.1 

T, A /10 20 J 

1800 2.5 

3500 4.9 

4000 5.5 

4500 6.2 

Table 3.2 

In Figure 9 the phase diagram of a latex suspension with TA =4000 K and 

T.=70000 Kis displayed. For low salt concentrations the fluid-crystal transition starts 

at the origin. 
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Figure 9 Tbe phase diagram of electrically stabilized colloida! particles for 
the parameter val u es TR ~ 60000 K and TA= 1800 K. 

crystal 

0.4 

fluid 
0.2 

0 
20 40 60 K 

Figure 10 Tbe pbase diagram of electrically stabilized col!oidal particles for 
the parameter values T.=70000 K and TA= 4000 K. 
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The coexistence lines rise monotonicaUy in the volume fraction wüh increasing 

screening by increasing •· Tbc further increase of the screening !ets rhe transition 

finally occur at almost the values of the fcc-fluid transition of hard spheres (<1>00,~= 

0.49 <1> 0.,..=0.54). 'This result is in agreement with the theoretica! [15] and 

experimental (20],[21 ],(22] investigations. 

On increasing the screening • further, the fluid becomes unstable against 

flocculation. It decomposes into a liquid (flocculated strucrure) and a vapour phase. 

At <~>•= 0.47, •=66 we arrive at a triple point, where the liquid, gas and solid 

(crystal) pbases are in thermodynamic equilibrium.The spinoclal decomposition into a 

flocculated liquid and a gas phase as prediered by us is shifted by nearly a factor two 

to lower values of the Debye screening length • if compared with the results of Victor 

& Hansen on the basis of their first order perturbation theory. This deviation can be 

ascribed lo main differences between our approach and that of Victor & Hansen: (i) 

we aeknowledge the occurrence of a crystal phase and (ii) our perturbation approach 

is of second order. 

In Figure 10 the attractive and repulsive farces were decreased applying the 

parameter set TA=1800 K and T.=60000. Disregarding the crystal phase the approach 

by Victor & Hansen expected for this parameter set a phase separation into a liquid 

aod a gas phase. However the liquid phase, made up of aggregate<l colloidal particles, 

disappears and a phase separation takes place into a fluid and a crystal phase. Similar 

results have been obtained recently by Mederos & Navascues [23], while they applied 

a density functional theory. In agreement with our investigations they found that the 

liquid phase wil! only appear in the case of fairly large attractive potential. Tejero et. 

al. [24], [25] systematically investigated colloidal suspensions with a double-Yukawa 

pair potential, and found that tbe liquid phase occurs only for long range attractive 

farces and disappears for intermediate-range attractions, 

To study the influence of the attractive and repulsive forces of the interaction 

potential on the phase diagram, the parameters TA and T. were varied. 
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Figure 11 The phase diagram of elect. stabilized colloidal particles for the parameter 
values T.=70000 K and (a) TA= 4500 K, (b} TA= 4000 K and (c) TA= 3500 K. 
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Figure U The phase diagram of electrically stabilized colloidal particles for the parameter 
values TA =4000 K and (a} T.= 75000 K, (b} T.= 70000 K and (c} T.= 65000 K. 
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Figure 11 shows the dependenee of the phase diagram on the attractive farces. 

Keeping T,=70000, the value of T, was varied: T, =4500, (a) T, ~4000 (b) and T. 

=3500 (c). On increasing tbe attraction the critica! point also shifts to slightly lower 

values of <!>, while tbc triple point shifts to slightly larger valnes of <!>. On increasing 

the attraction the fluid·crystal coexistence region broadens. This is in agreement with 

calculations of other investigators [14], [25] with interaction potentials using a 

constant effective diameter and varying attractive potentials. 

In Figure 12 the attractive farces are kept constant at TA =4000 and the 

repulsive interaction was varied: T,=75000 (a), T,=70000 (b) and T,=65000 (c). On 

increasing the repulsion T, the critica! and triple points shift to larger valnes of K and 

will coincide eventually. With increasing repulsion the liquid phase becomes less 

pronounced. The fluid-crystal coexistence lines shift to lower values of the volume 

fraction on increasing the repulsion, because the effective diameter of the colloidal 

particles is increased. 

3.5 Condusion 

In order to calculate the phase diagram of electrically stabilized colloidal 

suspensions we applied a secoud order perturbation theory [14) in the attractive 

perturbation potential. For that purpose we approximate the two partiele interaction 

potential by a repulsive effective hard sphere potenrial and a attractive perturbation 

potential aecording to Victor & Bansen [13]. The numerical calculations showed that 

for not too large surface potentials a flocculation transition into a eolloidal fluid oeeur 

acxompanied by the appearance of a triple point, where the fluid, crystal and liquid 

(flocculated structures) phases are in equilibrium. Applying a higher order 

perturbation approach than that used by Victor & Bansen [13] and tak.ing imo 

account the possibility of the occurrence of a crystal phase leads to a shift of the 

predietien of the critica! point to lower values of the Debye screening parameter. For 

small attractive farces the liquid phase disappears. 
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Appendix B 

Scaled Helmholtz Free Energy 

The centre-to centre distance of two colloidal particles can be scaled by the effective 

hard sphere diameter: 

(B.l) 

The total potential, scaled by the therm al energy k8 Tl can be written as a function of 

the scaled distance R as: 

(8,2) 

where 

; R<I 
(B.3) 
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and the perturbation potential takes tbe forrn 

Uf.K)=O 

Up(K) •U(Rm) 

; R<l 

Up(R)=.!_(T exp(-I((R- 1))_ T"(-1-+_!_+2,jl+-1 )J') 
1t_ R R 12 R2-I R' -, R2 

with Rm =x,JS. 

(B.4) 

Thesecondorder perturbation Helmholtz free energy (41) can, with r= Ru, 

dr = udR and the density p=(6if!)/(1ru), be wntten as 

with 

(ap) kT=·---=~­
ap HS B z +\\'> azHS 

HS elf> 

while Z..s is the hard sphere function of state. 

(B.6) 
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4. The Rheology of Equilibrium Colloidal Suspensions Close to Structural 

Transitions 

4.1 Introduetion 

Stabilized colloidal suspensions sbow a variety of phases, like e.g. a colloidal 

fluid ( disordered, non-flocculated), a colloidal liquid ( disordered, flocculated) and a 

colloidal crystal phase. The physical state of a suspension is governed by the 

competition between electrostatic, steric and van der Waals forces. These phases have 

different symmetry properties concerning the arrangement of the colloidal particles. 

The symmetry is determined by the set of symmetry operations (translations, 

rotations, reflections etc.), which leave the density distribution of the colloidal 

particles invariant. When studying a phase transition the phase with the higher 

number of allowed symmetry operations is denoted as the high symmetry phase and 

the other as the low symmetry phase. A disordered phase like the fluid or the liquid 

phase can be transformed into itself by an infinite number of transformations (we 

restriet ourselfs bere to time averaged distribution functions). Therefore in the case of 

an order-disorder transition the disordered phase is the high syrnmetry phase, while 

the crystal phase is the low symmetry phase. Tbe degree of symmetry will be 

captured in the 'order parameter' to be defined below. Three different symmetry 

breaking transitions exist, at which the symmetry properties change according to the 

phase transition involved. According to the schematic equilibrium phase diagram 

(Figure 1) [1], we distinguish: 

I. the fluid-crystal transition 

11. the liquid-crystal transition 

III. the fcc-bcc transition. 

In all cases the first phase is the high symmetry phase and the latter the low 

symmetry phase. While I. and 11. are order-disorder transitions is 111. an order-order 
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transition. It follows from the equilibrium phase diagram, that these transitions are of 

first order (Chapter 3). The difference in the solid volume fraction between the 

crystalline and the disordered states is however relatively small. The colloidal 

suspension is therefore treated bere as incompressible, while we confine our 

treatment to the behaviour of transversal shear waves through the suspension. 

A quantitative satisfactory statistica! theory for the long time dynarnics of such 

first order transitions has, to the knowledge of the present authors, not yet been 

developed. The description of the dynarnics of first order transitions in colloidal 

suspensions by a Cahn-Hillard like theory bas been suggested by Dhont et.al. [2]; this 

treatment however is restricted to the very first stages of the phase separation from 

an initial fluid state into a liquid state. 

A symmetry breaking (structural) transition can be described qualitatively by 

the Landau theory of phase transitions [3],[4]. The basic idea of the Landau theory is 

to consider the free energy of a system as a function of the structural alteration at the 

transition. The dimensionless order parameter descrihing a symmetry breaking 

transition in a colloidal suspension is chosen to be the amplitude of the density wave 

characterizing the colloidal lattice. 

In this paper we focus our attention on a description of the rheological 

hehaviour of a colloidal suspension near a structural transition. We will start with 

estahlishing a general model in analogy to the approach of Levanyuk [5) and we will 

analyze the frequency dependent transport parameters G' and G", while the system is 

supposed to be sufficiently close to equilibrium. By 'sufficiently close' we mean that 

the perturbations are small enough for the equilibrium structure to persist. In 

Chapter 5 the case of a symmetry breaking transition induced by an externally applied 

static perturbation will be considered. 

The dynarnic behaviour of a suspension of colloidal particles on a long time 

scale can be described by slow modes. A mode is defined bere as a time dependent 

parameter characterizing the transport in the suspension, which is treated as a 

viscoelastic continuum, both in the ordered and in the disordered phases. Close to a 

transition the dynamics of the suspension are deterrnined by two slow modes [6],[7],[8] 

given by the transport equations of the momenturn and of the order parameter. It is 
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known that the order parameter mode influences all other slow modes close to a 

phase transition because its relaxation time goes to infinity (critica! slowing down [9]). 

The coupling between the slow modes deterrnines the properties of the transport 

parameters near the transition. 

4.2 Theory 

In order to include the coupling between the two slow modes we will construct 

a free energy density near a symmetry breaking transition. It consists of a reference 

free energy density, a contribution from the order parameter and two terms related to 

the strain: 

- a contribution from the elastic energy 

- a contribution from the coupling between the order parameter and the strain. 

The Free Energy and the Equilibrium Valnes of the Order Parameter 

We introduce an order parameter q that is associated with the amplitude of 

the density wave and with the wavelength of the colloidal lattice. Ine order 

parameter is zero in the high symmetry phase and becomes positive in the low 

symmetry phase. The free energy of the transition is given by the standard Ginzburg­

Landau free energy, which can be written for a first order structural phase transition 

[4]: 

(44) 

where 01 and v are free parameters. Here F is taken per unit volume. The 

values of u and ! are assumed positive. The Ginzburg criterion [3] 

states that this theory fails at the transition. Thus this model will 
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only be applicable close to but nol too close to the transîtîon. 

The deformation w of a body is given by the spatial derivation 

of the displacement X. For an arbitrary deformation the components of the 

deformation tensor .il( can be calculated by: 

The strain tensor l\ is of the farm 

1 
u=-'~•1!'!! - 2"" -

(45) 

(46) 

The contribution of the strain to the free energy can generally be given by !he 

product of tbe square of tbe tensor !!. (r,t) with the conesponding elastic modulus G0• 

We will confine our considerations bere to simple shear, in which u= l/2(w"+wu)· 

The contribution to the free energy of a mechanically deformed system is thus G0/2 

u'. Taking into account the elastic energy, tbe following expression for the free 

energy of a mechanically deformed systern is obtained: 

(47) 

In this expression no coupling between q and u bas been assumed as yet. 

We cannot negle<:t however the coupling between the slow modes of the order 

parameter and the momenturn close to the transition. We wiJl write the contribution 

of this coupling to the free energy as an expansion of F up to the second order in tbe 

order parameter q and the strain u, with the free parameter 'Y· Terms of uneven order 

(e.g. linear terms) of the order parameter have no average contribution to the 
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transport equation of the momenturn and are thus omitted. The first non-negligible 

term is of second order in q and linear in the strain. Taking only this lowest order 

into account we obtain 

(48) 

while "' is the coupling parameter. This simple generalization of the free energy 

couples the relaJ<ation processes of the order parameter and of the elastie 

deformation field (mode coupling) and will lead to an elastic modulus and a dynamic 

sbear viscosity corrected for the order parameter fluctuations. 

Equation (48) describes qualitatively a first order phase transition, of which q 

is the corresponding order parameter. Tbis can be illustrated by determining the 

equilibrium values q0 of the order parameter by miniruizing the Helmholtz free energy 

wîth respect to the order parameter q: 

(49) 

Focusing our attention to the case u=O, leads to: 

(50) 

q ~-L~( ç ),--'! 02 2v 2v v 

Whereas q01 always represents a maximum in F1 the other minimum is either at q00 or 

q02, depending on the value of a. 

Tbc solution q =q00=0 represents tbe high symmetry phase, whereas q =q01 > 0 

is the low symmetry phase. The high symmetry phase is therrnodyoamically stabie 

when a> f/4v. The low symmetry phase is stabie when a<O; in that case q=q0,. The 

coexistence region is bounded by a=O and a~f/4v (Fig.6). 

Our calculations on the rheology of colloldal suspensions are restricted to 
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systems not too close to the coexistence region. In that case the value of the terms 

containing r in Eq. ( 48) can be considered to be small as compared to the term 

containing v. For r=O the first order transition simplifies to a second order transition. 

With a second order transition we can exactly expand a up to the first order as 

a function of the free state variables volume fraction 4> of the dispersed solid 

particles, the salt concentration C and the temperature T around their 'transition' 

values [3],[4 ]: 

(51) 

The transition values are denoted by a subscript tr. In the case of a first order 

transition considered bere the transitional values of 4>, C and T depend on the way 

the phase transition is approached. Startingat the low (high) symmetry phase the high 

(low) symmetry coexistence line defines the transition value. The coexistence values 

are known from the equilibrium phase diagram, as derived e.g. for electrically 

stabilized colloidal particles in Chapter 3. 

The Helmholtz Free Energy Density 

In order to take into account space and time dependent variations in the 

system we define a free energy density f(q(.r,t),u(r,t)) by writing : 

F(q,u,t) =.!.J d 3r ftq(!,t),u(r,t)) 
V V 

while the integration is taken over the entire space of the system V. 

(52) 
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The free energy density can be written similar to (48) as: 

j{q(!,t),u(!,t)) =/0 +~(Vq(r,t))2 + ~ q2(l:,t) -iq 3(!,t)+~q 4(r,t) 

G 
+1u(r,t)q2(r,t) + 

2
° u 2(r,t) 

(53) 

where À is a positive parameter. The term X/2 (vq(r,tW accounts for the contribution 

of homogeneons space-dependent order parameter fluctuations to the free energy [3]. 

These fluctuations occur on length scales much larger than the colloidal distances. 

We further assume that the time and space dependent order parameter q(r,t) 

and the strain u(r,t) are composed of a constant value and small time and space 

dependent deviations ou(r,t) and ()q(r,t) around the equilibrium values u0 and q0 : 

u(!,t) =u0 +öu(r,t) 

q(r,t) =% +öq(r,t) 
(54) 

We confine our study here to the case Uo=O, i.e. the system will be disturbed 

by small strain deviations öu(r,t) only. The case Uo;;éO leads to a shear induced 

symmetry break:ing transition, that will be discussed in Chapter 5. 

Substituting (54) into (53) and tak:ing into account only terrns up to the second 

order in ou(r,t) and ()q(r,t) we obtain: 

«2(3V4 
j{öq,öu)=fo +-Qo --Qo +-Qo 

2 3 4 

+l.öuöq 2 +1..qgöu 
2 2 

G l 
+~öu2 +yQoÖUÖq+-(Vöqi 

2 2 

(55) 

The terros of the order öu(r,t) and öq(r,t) disappear, because the system is in a 

minimum of the thermadynamie potential. The Helmholtz free energy density 

depends on the value of q0 and a. For the high symrnetry phase (q0 =0) we arrive at: 
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(56) 

and for the low symmetry phase (q0 ~0) we get: 

(57) 

with 

(58) 

Having derived the free energy density for the high and the low symmetry 

phase we will now describe the influence of the fluctuations of the order parameter 

on the transport parameters. The two slow modes descrihing the dynamics of the 

system are given by a Langevin equation for the relaxation transport of the order 

parameter [7] 

àöq 
àt 

1 öj{öq,öu) g(r,t) 
-- +--
x öq x 

and by the momenturn conservation law 

era x"'_ a ( öJ{öq,öu) lt ·) p---- +1') 0uu 
at 2 az au 

(59) 

(60) 

while p is the density of the suspension and öX" is a displacement deviation in x­

direction. 17o is the viscosity of the suspension far from the transition, which is 

different for the high and the low symmetry phase. The Langevin term g(r,t) is a 

fluctuating term ('white noise') obeying the fluctuation-dissipation theorem for the 

correlation function: 

(61) 

while x is a damping parameter. In Equation (60) the influence of thermal 

fluctuations on the strain relaxation process bas been neglected, because the order 
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parameter fluctuations predorninantly deterrnine the behaviour of the system close to 

a phase transition. 

Generally speaking the transport coefficients G0 and 1/o are frequency 

dependent both in the high and in the low symmetry phase. The transport coefficients 

depend on the interpartiele interaction deterrnined a.o. by the relaxation process of 

the electric double layer of the colloidal particles. Close to a phase transition however 

the low frequency cri ti cal fluctuations de termine the transport processes (critica! 

slowing down). Therefore close to the transition only the low frequency values 

G(O=O) and 11(0=0) of the high and low symmetry phase are important, denoted as 

G0 and 1/o· These values of the transport coefficients are valid under conditions far 

removed from the phase transition, and will be specified later for the high and the 

low symmetry phase. Close to a transition they are modified by the presence of 

fluctuations. To describe this phenomenon we will study the propagation of shear 

waves for a viscoelastic medium withstrong fluctuations [11]. 

Transport Equations Near a Symmetry Breaking Transition 

Substituting the free energy of the high (56) and the low (57) symmetry phase 

into equations (59) and (60) we get a set of coupled differential equations that 

depend on a. These equations of the order parameter mode and the momenturn 

mode are given, 

for the high symmetry phase q0 =0, by: 

(62) 

.. a 1 2 
p öX =-(G0öu+-yöq +1] ÖÜ) 

x az 2 
(63) 

and for the low symmetry phase q0 = q02> by: 
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(64) 

(65) 

To find a solution for the order parameter equations (64) and (62) we expand 

oq in a series 

(66) 

where oq0 is the solution of the uncoupled set of the equations (62)-(65), that means 

that terms in oq ou are omitted. In analogy to Levanyuk [5] we will only consider 

first order corrections. Note that by using a more sophisticated treatment of a similar 

problem Ma [7] obtained higher order correction terms to transport parameters. 

The solution of oq1 can be determined by means of a Green function h1(r,t): 

(67) 

Now we derive a solution for the aq-perturbed momenturn equation. Here we 

will consider only the high symmetry case q0 =0. The low symmetry case can be 

treated in a similar way (Appendix D). 

To proceed, Equation (66) is substituted into (63). In order to find the 

correction of the transport coefficients G0 and 1Jo with respect to the perturbation in 

öq we take into account only terms up to the first order in ou. Because we are not 

interested in the entire solution of the latter equation but only in the fluctuation­

corrected transport coefficients G and 1J we ornit the u-independent inhomogeneity of 

the latter equation, and end up with: 

.. a 
pöX_/.r,t)- az(G0öu(r,t)+11 0öu 

(68) 

-y2öq0(r,t) J h1(t-t
1,c-L.')öq0(t 1.r!)öu(t1 ,r_')dt 1d3r')=O 

We consider a sinusoidal deformation wave in the system with frequency n and 

wave vector K=(O,O,~): 
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(69) 

while (K)2 = !;Ç.!;Ç is !he scalar product of the vectors. By averaging over the 

fluctuations in óq and dividing by 

(70) 

we obtain a dispersion relation in I;Ç(O) 

(71) 

with 

(72) 

This inlegral takes into account the influence of the critica) fluctuations on the 

propagation of shear waves through a suspension near a phase transition. The value of 

tbe inlegral is essentially determined by rhe correlation function of the order 

parameter, which increases on approaching the transition. The explicit calculation of 

tbe inlegral J(K.O) for the high symmetry phase is performed in Appendix C. The 

calculation of Ibis inlegral for the low symmetry phase is given in Appendix D in view 

of its lenglhy character. It turns out that tbe dependenee of J(KO) on K can be 

negleeled if abs(K' ) ll> I; , where ~ is the correlation length of the order parameter 

fluctuations. Tilis condition is valid if the system is not too close to the phase 

transition. Therefore we study here only systems outside the coexistence region. 

Under this condition Equation (72) can be solved bath for the high and the low 

symrnetry phase by writing: 

J( O,K ·0) EJ( 0) =J1 ( 0 )+j/2( 0) (73) 

From inspeetion of (71) and (73) it is evident that in the high symmetry phase the 

fluctuation correcled elastic starage modulus and loss modulus take the form: 

(74) 
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(75) 

where G 80 and ~Ho are the undisturbed values of the elastic modulus and the viscosity 

of the high symmetry phase. In Appendix C is been derived that the function J for the 

high symrnetry phase can be written as (C16),(C.17}: 

{76) 

~~ .. 
2 x2~;) a H)' - -+-- +-- -

2 ',;.2 4!.1 2:\ Á 

(77) 

while their low symrnetry equivalents (index L) Appendix D (D.35.) and (D.36.) take 

the farm: 

(78) 

(
(-2a+Çqo)1 .x,nz)• (-2a+ÇqoJ 

Á 1 4!.2 ' À 

and 

(7?) 
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On approacbing a symmetry breaking transition, G0(a), ~0(a) and the correction term 

J(O,a) are functions of the distance a to the transition (see Eq. (51)). In a not too 

wide range outside tbe coexistence region the reference values 0 0 and ~0 can be 

viewed as independent of a. Under such conditions the behaviour of !he transport 

coefficients is displayed in Fig. 13, wbere we have chosen the same 0 0 and ~o for 

the high and the low symmetry phase, which is not necessarily the case. 

The theory is not valid at and very close to the transition. However, the trend 

in the curve of the Slorage modulus G'(a) at fiXed frequency suggests a minimum at 

the transition (a=O) , whereas for the loss modulus G"(a) at a [[J(ed frequency a 

maximum is expected at the transition due to the critica! fluctuations. For the 

transport parameters, in the low symmetry phase a is replaced by -2or+ j"q0 thus the 

parameters are asymmetrie with regard to the transition point. 

G' G" 

~ 
' 

/ ~ 

low 
/high 

G' 

symmetry ... 
phase 

symmetry G" 
phase 

' • \...____ __....) 

0 

Figure 13 G' and G" of a suspension as a function of the distance to the transition " 
accuring at "'= 0, in arbitrary units. 
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G' f 
t 

log frequency 

Figure 14 The slorage modulus G' of a colloidal suspension having a non-zero elastic 
modulus, a.s a function of the frequency with I ad< I a, I <I a,l. 

G" 
-~- ~- -~~;[ 

--a:z 

log frequency 

Figul1l 15 The loss modulus G" of a colloidal suspension having a non-zero elastic 
modulus, a.s a function of the frequency with I a,j < I a2 1 < I er, 1. 
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As an illustration Fig.14 and Fig.15 display how of G' and G" vary with the 

applied frequency 0. for different va!ues of the parameter a. All curves of G' attain 

the value G0 at high 0 and deercase with decreasing 0. The slope of the G'(O) curve 

increases on approaching the phase transition (decreasing a). The height of the 

maximum of G" at a~G depends on the relaxation time T=x/a of deviations of óq 

from its equilibrium value. The maximum in G" rises and shifts to !arger time sca!es 

(smaller frequencies) on approaching the transition, due to the phenomenon of the 

crHical slowing down. At high frequencies the influence of the crükal fluctuations can 

be ignored. 

In the hydrodynamic limit, with IKI-+0 and o-o [12], equations (76), (77), 

(78) and (79) reduce to more simple expressions. These results in the hydrodynamic 

limit are applicable to quasi-statically applied shear deformations. In other worcts the 

hydrodynamic limit is romparabie to the low shear rate limit y-.ü. For the high 

symmetry phase we get: 

(80) 

(81) 
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and for tbe low symmetl)' pbase: 

(82) 

{0 -0)- 4XY Y • X 1. 2 2 ~
12

kT )' '1 - -'1 ---+ 
l1J v 8 -2a+(q

0 

(83) 

Note tbat the model is not applicable close to the transition region. We tberefore 

consider suspensions only far away from the coexistence region, i.e. that abs(a) > > 

j'q,. In that case the r-correction in the Equations (82) and (83) cao be neglected. 

4.3 Discussion 

We wil! compare !he model presenled bere witb experimental data taken from 

the literature. Tbe parameter a (sec Eq. (51)) can be considered as the distance to 

the transition in the phase diagram. We will confine our discussion to suspens;ons 

outside the coexistence region i.e. Irq, I <!ia, because with the approximations made 

this model is not applicable too close to the transition. A symmetl)' breaking 

transition can occur by vlll)'ing either of the three independent state variables; the 

temperature T, the volume fraction ~' and the salt concentration C, which is related 

to tbe chemica! potential. Each of the possibilities will be discussed separately below. 

Phase Transition by Change in Volume Fraction 

Tbe parameter a can be written as a function of the volume fraction of the 

dispersed partides, when keeping the temperature and the salt concentration constant 

(51): 

(84) 

with "'•"0 and .P" is the high symmetl)' coexistence volume fraction at the structural 
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transitîon. 

I. The fluid~crystal transition 

The high symmetry phase forrned by the colloidal fiuid is converled into the 

low symmetry phase of a colloidal fee or bcc crystal on increasing the volume fraction. 

<P, is given by the equilibrium phase diagram of soft spheres. This transition 

{Kirkwood-Adler transition) was first observed in computer simulations of hard 

spheres. Note that the change from a colleidal crystal into a disordered structure 

(glass) with further increasing volume fractions at <P~0.6 (Fig.l) is due to the freezing 

of density-fiuctuations and can be viewed as a dynamic transition [1],[13] oot 

manageable within the present modeL 

/ow shear rate viscosity 

The expectation based on our theory is, that the shear viscosity in the 

hydrodynamic limit becomes infinite on approaching the fluid-crystal transition from 

the low symmetry phase (i.e. the crystal phase) and has the farm 
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(85) 

This equation results from inlroducing (84) into (83). Note that ~ can nol be 

measured by steady state techniques in the low syrnrnetry phase because this phase is 

crystalline. 

The viscosity deercases on going into the fluid phase, Although very close to 

the transition a similar dependenee in the fluid phase can be expected as in the 

crystal phase, the model applied is not valid in the Huid phase far away from the 

transition, because the low frequency elastic modulus of the fluid phase is zero. G0 in 

the fluid phase cannot be taken to be zero in this theory, because this would bring us 

into conflict with the starting point of the model. However by going away from the 

transition any non-zero value of the elastic modulus in the fluid phase allows the 

application of the presenled model. 

The increase of the low shear viscosity near the synunetry breaking transition 

on going from a colloidal fluid into a colloidal crystal was investigated by Allaio et.al. 

[15] with Ludox particles in water. They were a bie to scale all acquired measuremems 

for different salt concentratioru on a master curve of the forrn 

(86) 

with 4>.,;0.53±0.03 and K; 1.9±0.1. 'lote however that the values of K and <P., are 

very sensitive to measuring errors which are easily made near <!>.,. The fact that the 

coexistence volume fraction 4>., is close to the expected value of the hard sphere 

coexistence (4>.,;0,54) confirms our approach of a structural transition. The 

agreement between (86) and (85) is rea.sonable because we would expect K to be 

K; 1.5 according to Equation (85)- Buscall et.aL [14] investigated electrically 

stabilized polyslyl'ene particles in water and obtained a similar value for K viz. 1.~9. 

Nnte the similarity berween equation (85) and the Krieger-Dougherty-equation 

[ 16], which is claimed to be a fairly good description of the viscosity of a suspension 
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of a hard spheres: 

(87) 

with <I>g 0.64 the maximum theoretica! random packing fraction and the intrinsic 

viscosity [71] =2.5, which gives an exponent 1.6. Although the phenomenon of an 

infinite increase of the viscosity is not a structural transition it incidentally gives an 

exponent that is close to the value derived for this model (85). 

storage modulus of the crystal phase 

In the low symmetry phase ( crystal) far from the transition the elastic modulus 

is G= GLO. On approaching the transition G' drops according to Eq. (82): 

(88) 

while R is an appropriate constant. 

When consirlering a wide range of <I> the dependenee of the elastic modulus G0 

(<I>) on the volume fraction can no long er be neglected . From the interaction energy 

U between colloidal particles BuseaU et.al. [17] determined the value of the low 

frequency elastic modulus 

where d = 2a + h is the centre to centre distance between the particles and 

3 1=-ib fl1 
32 m"n 

(89) 

(90) 

while Nn is the number of the next nearest neighbours and <I>m the maximum volume 

fraction of the suspension. The values of I and M depend on the crystal structure and 

are 1=0.833, M=2a(0.74/<I>)113 for an fcc-crystal and I 0.5, M=2a(0.68/<~>r'3 for a 

bcc-crystal. While the pair interaction potential was taken independent of the volume 

fraction by Buscall et. al. [17], Russel and Benzing [18] improved this approach by 



4. The Rheology of Equilibrium Colloidal Suspensions Close to Structural Transitions 80 

calculating a self consistent interaction potential. They found good agreement 

between experiments on colloidal crystals and Equation (89) over a wide range of <P 

values. Only close to the crystal-fluid transition the experimental G' drops sharply 

[18],[14] in accordance with our model. The results of Lindsay & Chaikin [19] confirm 

the results reported by BuseaU et. al. 

loss modulus of the crystal phase 

The theoretica] expectation is that the low frequency loss modulus G" 

decreases with increasing volume fractions according to (83) as: 

(91) 

Dynamic shear measurements on electrically stabilized colloidal particles were 

performed by the group of Tadros and coworkers [22]-[25]. However not enough data 

close to the transition are available to campare their results with the present model. 

frequency dependenee 

Experimental data on the frequency dependenee of dispersions of soft 

polystyrene particles in water are shown e.g. in Figure 1 of [25]. G' increases with the 

frequency, while the loss modulus G" slightly decreases, in qualitative accordance with 

our model for conditions not too close to the phase transition. 

II. The liquid-czystal transition 

Concentrated dispersions are expected to exhibit a transition from a colloidal 

crystal into an aggregated structure ( colloidal liquid) due to attractive forces into the 

secondary minimum of the interaction potential. The symmetry properties change by 

decreasing the volume fraction at a coexistence value <Ptr. At this flocculation 

transition tbe expected dependenee of G' and G" on <P is of the form shown in Figure 

13. Here the high symmetry phase is a colloidal liquid structure while a colloidal 
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crystal is the low symmetry phase. No experimental investigations of this transition in 

soft spheres suspensions are available. 

III. The bee-fcc-transition 

The expected variation of the transport properties of an order-order transition 

between two colloidal crystals is of the form displayed in Figure 13. No experimental 

data exists for the changes on passing the phase transition between the two forrns of 

colloidal crystals. 

Phase Transition by a Change of the Electrolyte Concentration 

Another option to move around in the equilibrium phase diagram is by keeping 

the volume fraction and the temperature constant and varying the salt concentration 

in the suspension. In this case a can be written as 

(92) 

with 4 the coexistence salt concentration from the high into the low symmetry phase 

and etc>O. 

I. The fluid-crystal transition 

A colloidal crystal is formed by decreasing the salt concentration in a soft 

sphere suspension starting from the colloidal fluid phase. This is known as the 

Kirkwood-Adler transition for particles with an effective volume fraction equal to that 

of the hard sphere freezing volume fraction [27],[28]. 
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low shear rate viscosity 

The dependenee of the low shear viscosity on the salt concentration in the 

crystal phase (Iow sym.metry phase) near a structural transition according to our 

model bas the form 

(93) 

obtained by introducing (92) into (83). The low shear viscosity dependenee in the 

crystal phase cannot be measured because of the presence of a yield stress. In the 

liquid phase (high sym.metry phase) a number of authors investigated the low shear 

viscosity. 

Lindsay & Chaikin [19] were able to measure the low shear viscosity of low 

volume fractions colloidal crystals. As can be seen e.g. from Figure 7 of ref. [19] the 

low shear viscosity becomes infinite on approaching the fluid-crystal transition due to 

a change in the salt concentration. This divergence was interpreted as the occurrence 

of a yield stress. 

A similar result has been obtained earlier by Okano & Mitaku [26] and Mitaku 

et.al. [29]. The divergence in the viscosity could be fitted fairly well by using a 

modified Brinkman formula [30] 

(94) 

while .P' is called the "relative volume fraction" 

(95) 

Kn is the Debye parameter and {:J' a constant of the order unity. 

This result was irnproved by Mitaku et. al. [31] and by Ohtsuki [32]. Both 

authors explained the viscosity increase as the result of the disorder-order transition 

from a colloidal fluid into a colloidal crystal. Although our model is strictly speaking 

not valid in the low symmetry phase, we were able to fit the results of Ohtsuki [32] 

with equation (93) quite satisfactorily, as can beseen in Figure 16. This supports the 

use of the statistkal theory presented bere in the case of the fluid-crystal transition. 
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Figure 16 Experimental viscosity data obtained by Ohtsuki [32] for a latex suspension. 
The fit of Equation (93) to this data is quite satisfactory. 

starage modulus of the crystal phase 

The elastic modulus of the crystal phase is theoretically expected (82) to be of 

the form: 

(96) 

with an appropriate constant R. 

The experimental evidence is that a change in salt concentration bas a 

pronounced influence on the elastic modulus. Such a transition bas been investigated 

by a number of authors e.g. BuseaU et.al. [14], Lindsay & Chaikin [19] and Mitaku 

et. al. [29]. The elastic modulus GLO(C) far from the transition can be obtained from 

equation (89); together with the self consistent field model of the interaction potential 

by Russel & Benzing [18]. The latter theory agrees well with experiments of Russel & 

Benzing [20], except for conditions close to the fluid-crystal transition. Our 

fluctuation-corrected elastic modulus (96) will only lead to appreciable deviations 
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from the dynarnic behaviour as predicted by these authors under conditions that are 

very close to the transition. However the number of data reported by Russel & 

Benzing near the transition does not allow a reliable fit of equation (96) to their 

data. 

loss modulus of the crystal phase 

The loss modulus of the crystal phase at low frequencies is expected to 

increase at the coexistence salt concentration according to (82) 

The only available dynarnic measurements are those by Mitaku et. aL [29]. 

(97) 

These were carried out in the high frequency limit (40kHz) and are not comparable 

with the calculated low frequency transport properties of the present modeL 

II. The lig_uid-ccystal transition 

Another symmetry breaking transition occurs for concentrated dispersions, 

when the salt concentration is increased and the structure changes into an aggregated 

glass structure (flocculated structure) as aresult of the van der Waals attraction. The 

model prediets a variation of the transport coefficients G' and G" as indicated in 

Figure 13 with a minimum of the storage modulus and a maximum of the loss 

modulus at the coexistence salt concentradon C.,. of the liquid-crystal transition. 

Unfortunately no experimental investigations are available for electrostatically 

stabilized spheres. However, our model is also applicable to nearly hard spheres, e.g. 

colloidal particles that are stabilized sterically with long 'hairs' (long polymers), 

provided they form single crystals. 

Sterically stabilized polystyrene particles were investigated by Tadros et. al. 

[23]. In Figure 5 of ref. [23] his results arepresentedof dynamic shear measurements 

as a function of the salt concentration. With increasing salt concentrations at relatively 

low valnes the colloidal crystal structure is converted into an aggregated structure 
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(colloidalliquid). At the critica! flocculatîon concentration (CFC) a minimum of G' 

can be found in accordance with our model. G" is expected to have a maximum, but a 

minimum bas been observed. However the phase angle shows a maximum at the 

coexistence salt concentration 4. The phase transition may be shifted by a 

deformation. This implies that during an oscillation the viscoelastic properties may 

change if the amplitude is not small enough (Chapter 5). In other words, tbe linear 

viscoelastic region is reduced considerably near a phase transition. Tadros et. aL did 

not specify the applied amplitude. The amplitude used by these authors near the 

transition may not have been small enough to be in the linear viscoelastic region. This 

may have distorbed the trend in G". 

HL The bcc-fcc transition 

No experimental rheological data concerning the bcc-fcc transition by varying 

the salt concentration are known. 

Phase Transition by a Change in the Temperature 

Symmetry breaking transitions are expected to occur as a result of a variation 

of the temperature with 

a. =a..JT-Ttr)III,C (98) 

We confine our discussion to the fact that the predicted rheological behaviour 

close to a symmetry breaking transition resembles the dependendes of the volume 

fraction and salt concentration discussed above. 

Unfortunately very little is known about the melting of colloidal crystals by 

heating. Schaefer & Ackerson [33] reported a melting transition in crystalline 

suspensions of polystyrene particles and WilHams et. al. [34] investigated the melting 

transition as a function of the salt concentration and established an equation for 

T,,>t{C). Tadros [23] investigated the dynamic rheological properties of sterically 

stabilized polystyrene particles. The results indicate that for the chosen salt 
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concentration irreversible alternations appear. The experimental resuJts are not 

sufficiently specific to compare them with the theoretica! model. 

4.4 Coneinsion 

The model presented bere is based on an extension of the Landau theory of 

phase transitions and takes into account the effects of the critical fluctuations on the 

rheological properties of colloidal suspensions near symmetry breaking transitions. 

The storage modulus is expected to have a minimum and the loss modulus a 

maximum at the transition. The model is applicable if the system is not too close to 

structural transitions in colloidal suspensions induced by varying the state variables, 

such as the temperature, salt concentration or the volume fraction of the solid 

particles. lts predictions agree qualitatively with the available experimental data near 

fluid-crystal and liquid-crystal transitions. 
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Appendix C 

The lntegral J (K,O) 

Here we will perform in this appendix the integral J(K;,O) (72) for q0 =0: 

This integral can be transformed with 

t-t'=• r.-r'=R 

into 

(C.l) 

(C.2) 

(C.3) 

This is a Fourier transform over R and T of the product of the Green function and 
the correlation function. A product in real space becomes a convolution integral in 
Fourier space. Therefore we need the Fourier transform of the Green function and 
the correlation function. 

Fourier transform of the correlation tunetion 

The Fourier transform of the order parameter equation to order q0 is: 

-jw X,q 0(k,w) +«q0(k,W )+ À(k_)2q0(k,c.u )=g(k.,w) 

and thus 

With the fluctuation- dissipation theorem in the Fourier space : 

the correlation function in q0 is: 

(C.4) 

(C.S) 

(C.6) 
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2X,kBT()(fs.+fDÖ( (A) +(A)) 

(a +i.(ky)z+(A)zx.z 

Fourier Transform of the Green Function 

The Green function h1(r,t) is defined by 

oh (r,t) x.-1- +ah1(!,t)- i. Vh1(r,t)""ö(!,t) 
at 

Perlorming a Foutier transfarm we obtain 

1 hl(k,(A)) 
i.(kf+a -j(A)x 

Convolution integral 

With this results equation (C.l) can be written as: 

xk;I'd01d3K 1 

J(j(,Q)=y2J---:------·····-------
((J.(K.Y +a)2+0' 2X.2)(J.{K: -Ki+a -j(O' -O)x) 

(C.7) 

(C.S) 

(C.9) 

(C.lO) 

Under the condition that we confine our treatment to long wavelength deformations 
we can approximate K = 0. 

(C.ll) 

Perlorming the integration over 0' using Jordans Lemma by calculating the residues 
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of the upper half of the complex plane we obtain: 

J(0)=21t2y2t rr~dK' aö2 I 
B Jo (2((PÀ(JÖ 2)+j0;()(1X+À(K_') 2) 

Separating the integral in real and imaginary part we find 

J(O)=J1(0)+jJ2(0) 

with 

Performing the integration over K' we obtain for the real part: 

and for the imaginary part: 

-4k T 1t3y2À2( 1 
J2( 0) _ _:;B:_____;._ 

xo 2 

(C.l2) 

(C.13) 

(C.l4) 

(C.lS) 

(C.16) 

(C.17) 
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Appendix D 

Low Symmetry Phase 

Here we study the perturbation approach for the low symmetry phase q0 = q01 • 

The set of modecoupling equations ( 64) and ( 65) are: 

xöq(r,t)+( -2" +(qo)öq(r,t)+2yq0öu(l:,t) +yöq(r,t)öu(r,t)- À Vlöq(r,t)=g(r,t) (D.l.) 

(D.2.) 

Again we find the solution of the orderparameter equation by a series expansion in 
oq(r,t). 

öq(r,t) =öq 0(l:,t) +öq 1(u,r,t) + ... 

with oq0 
- the uncouled equation in oq and oq1 taking into account the first 

contribution in ou (modecoupling) as disturbance of oq0
• 

Thus o q(r,t) can be written as: 

(D.3.) 

(D.4.) 

Substituting oq in (D.2.) while taking into account first order terrus in ou and oq0 

we obtain 
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O=pöX, + ~ ( -G0öu-fl0/iû+y2f>q 0(!,t) J<2q0 +f>q0{L,t'J)h,(l:-r.',t-t'}óu((",t')d 3r1dt'l 

We rearrange the equation in orders of óq0(r.t): 

O=póX, + ~ ( -G0öu-TJ0óu+4y'q; fh,(l:-r!_,t-t'lóu(r.',t')d 3r1dt 1 

+ 2y2q0J ( öq 0(L,r 'J + óq0(l:,t))h,(r-r_',t-t')6u{L,t')d3r1 dt') + 

y 2 J óq 0(l:,t) óq 0(r.',t ')h,(l:-r!.,t -t'löu(r.',t ')d'r 1 dt ') 

(D.S.) 

(D.6.) 

Equation (0.6.) is an Operator equation to 0. 1. and 2. order in 5q0(r,t) and can be 
written as: 

Löu:O (D.7.) 

with 

(D.ll.) 

and thus 

(0.9.) 

(0.10.) 
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L,öu= ! (y2 J öq0(L,t)öq 0(L'_,t ')h,(L-L,t-t')öu{L'_,t ')d'r'dt') (D.ll.) 

First we study the general operator equation 

(D.I2.) 

with e smal!. 
We try to find an equation of the average strainfield <u> were the 0. order 

operator detennine the meanfield u0 by: 

-1 
uo=L" g 

We obtain 

LoU=g-eL1u-e2Lzu 

u= L"-1g -eL"-1 L1 u -é z."-• I., u 

u=u0 -I,;
1(eL1-e2I.,)u 

and can find the salution of the selfconsistent equation by means of successive 
approximations. 

The first approximation is u= u0 , thus 

and substitution in u 

(D.IJ.) 

(D.14.) 

(D.lS.) 

(D.16.) 
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Rearranging in orders of • we obtain 

By averaging both sides of the equation 

and express u0 in terms of <u> by 

We can substitute this result in the latter equation for <u>: 

(u)= u
0 
-eL;; 1 {L1)((u) + El-ó 1(L1 )u.,) +e2 z.;; 1 ((L,L;; 'L1) -(L)l ((u) +eL;; 

1
{L1 )u.,l 

(u)=u
0 

-eLo-'(L,XJ.)+e2Lo-1(L
1
)L;;'(L,XJ.)+éLo-1\L

1
4;1L

1
M)-e2L;;1(L2XJJ.) 

(u)=u0 -eL;;'(L,XJ.) +e2 Ló 1 ((L14;1 
L 1)-{L1)L"-'(L,HL,l)(u) 

By applying lo on <u> we obtain: 

L
0
(u)=g -e(L, XJJ.) + e'((L, L;; 1 L1)-(L1)4; '(L,) -<L))(u) 

g=(Ló +e(L
1
)+<2( -{L14;1 L 1)+(L1)L"-1(L1)+\L,))'fi,) 

It is known that in most cases we can set < L, > =0 and thus 

(D.17.) 

(D.l8.) 

(D.l9.) 

(D.20.) 

(D.21.) 
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Back to our initia! condinons g=O, c=l and u=llu we arrive at 

were L·'· is the inverse operator of lo , which can be written by means of a 
Greentunetion H(r,t) as: 

Now we cao write the explicite equation of the average strainfield using tbe 
incompressibility condition: 

O=p(óX)+_<J_( -G0(öu)-~ 0(óu) az 

(0.22.) 

(0.23.) 

(0.24.) 

+4y2q; J h,<r-l!,t-t')(óu(L,t'))d3r 1dt 1 +y 2 J llq 0{r,r)öq 0{L,r')h2(r-r.'.,t-t ')(ö u(L,t ))d 3r 1 dt 1 

(0.25.) 

-4qiy •j h,<r-r.'.,t -t)H(L -r 11 ,t 1-t''lV L_h,<r.'!.-r 111,t 11-t '"J 

(öq 0(r,t) +öq 0(!:!,t'))( óq "{r.'.:,t 11) +óq 0{C,r11))(óu{C,r 11))dr' dt 11 dt "'dr 1 dr '1 dr 11') 

Neglecting the last inlegral because it is small (at least if -y is small) and taking the 
average over 6q(r,t) : 

O=p(öX)-! ( G0(1l u)+f10(öû) -4y2qi J 11,(!:-r.'.,t-t )(llu(r.'.,r '))d'r 1 dt1 

-y' J öq 0(r,t)öq 0!L,r )11,{!:-r.'.,r -r ')(llu(L,r '))d3r 1 dt) 

(D.26.) 

Considering a monocroruatic strain wave we obtain a simHar dispersion relatîon to 
(71) 
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(D.27.) 

with 

Ji.K, Cl) =4y2q; I h"(J;-r.!.,t -t ')eJW.<-dJ•O(t-r)) d 3r 1 dt 1 

(D.:Z.8.) 

+y 'I h"(l:-r!.,r -t')(oq 0(J;,t)o q 0{r!,t 'J)ei(K~-d!·o<•-• 11 d'r 1 dt' 

The salution of !he seeond inlegral is known from appendix F (C.16) ,(C. I 7) 
except that the Green function h1(!:,t) bas to be substituted by h2(r,t) and the first 
inlegral is the Fouriertransfonn of b,(r,t). 

F011riertransform of the Green function h2ll.J}. 

The Greenflmction h2 (r,l) is defined by 

ah"(l:,t) 
x-at-+( -2a •Cqo)h"(o)+J. if'h"(U)=o(l:,t) (D.l!l.) 

and in the Fomierspace 

-jOxh"(K,O)+( -2a +{qo)h"I.K,Cl)+ J.K'h"I.K,Cl)= 1 (D.30.) 

Thus we find for h2.(K,O): 

(D.31.) 

The result of the frrst inlegral is: 

(D.32.) 

Separaling lhe inlegral in a reel and a i maginary part for K = 0 we obtain 



4, The Rheology of EQuilibrium Colloidal Suspensions Close to Structural Transi!ions 96 

Results: 

Using tne fact that in the second integral of (D.28,) is the same as in 
Appendix C, we finally obtain for the low symmetry phase: 

tne real part: 

the imaginary part 

(-2a,+{q")2 x'o' (-2a,+{q") ~ (-2a+{q")} 
---"'-+--+ ) -

À2 4À2 À À 

(0.33.) 

(0.34.) 

(0.35.) 

(0.36.) 
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5. A Theory for the Melting of Colloidal Crystals Induced by Static Shear 

5.1 Introduetion 

A number of authors discussed theoretically the thermadynamie stability of 

colloidal crystals against steady-state shear perturbations. Ramaswamy & Renn [1] 

treated this shear induced melting transition as an extension of the equilibrium 

melting by using a generalized Hansen-Verlet criterion to the non-equiJibdum· case of 

a sheared colloidal crystal. With this concept they calculated a shift in the fluid-crystal 

coexistence curve. Bagchi & Thirumalai [2] applied a non-equilibrium generalization 

of the density functional theory of freezing under shear to colloidal suspensions. They 

constructed a free energy functional taking into account the effect of shear. Their 

results confirmed the results of Ramaswamy & Renn: if in the absence of shear the 

system is at the eoeristenee curve, then in the presence of shear it will be in the fluid 

phase. The shift aCe of the salt concentration under eoeristenee conditions bas been 

determined for smal! shear rates r to be ll.Cc- -)". Th is qualitative picture has also 

been found in a molecular dynamics simulation of soft sphere particles reported by 

Stevens et. al. [3]. These models, however, do not permit of calculating rheological 

parameters (storage and loss moduli). 

In this paper a model is presenled to describe the shear melting transition of 

colloidal crystals under an applied constant shear strain ()'=0). It is based on an 

extension of the derivation in Chapter 4, in which the melting of a colloidal crystal is 

treated as a symmetry breaking transition. The basic idea of the present chapter is 

that the application of a critica! shear strain on a colloidal crystal close to a symmetry 

breaking transition will change its free energy thereby leading to an instability, thus 

changing the synrmetry properties of the system. This shear induced symmetry 

breaking will be treated here by using the model equations of Chapter 4, while we 
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include a constant shear, in order to obtain the varlation of the transport parameters 

as reflected in the viscoelastic properties close to tbe transition. 

5.2 Theory 

The Helmholtz Free Energy Close to the Phase Transition 

Starting point of !he present model is a generalized Jocal Helmholtz free 

energy density f(q,u) of a colloidal suspension closetoa symmetry breaking transition 

as introduced in Chapter 4: 

(99) 

In this equation the positional and time dependent free energy density f is a function 

of the Jocal order parameter q(r,t) and of the Jocal strain u(r,t). We wil! confine oor 

considerations here to simple shear, in which u~(w.,+wu)/2, while the deformation 

w of a body is given by the spatial derivation of the displacement vector 2),: 

(100) 

The contribution to the free energy density of a mechanically deformed system is thus 

G,/2 u(r,t)' with an elastic modulus G,, which is assumed to be isotropic. 

The degree of symmetry will be captured in the 'order parameter' q. The phase 

witb the higher number of allowed symmetry operations is denoted as the high 

symmetry phase and the other as the low symmetry phase. Disordered phases such as 

the fluid or the Jiquid phase can he transformed into itself by an infinite number of 

transformations, as long as we restriet ourselves to time~average distribution functions. 

Therefore in the case of an order-disorder transition the disordered phase is the high 

symmetry phase, while the erystal phase is tbe low symmetry phase. The order 

parameter q(Lt) is associated here with the change of the amplitude of the density 
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wave in the incompressible collo i dal crystal (low symmetry phase) during the 

transition. The term ("'!(r,t))2 takes into account the contribution of homogeneons 

(i.e. loog ranged), space-dependent order parameter fluctuations to the free energy. 

The expansion of the order parameter up to the fourth order on the right hand side 

represents the Landau free energy close to a first order equilibrium phase transition, 

where À, ! and v are positive parameters while a is positive in the high symmetry 

phase and negative in the low symmetry phase [4]. This can be illustrated by 

determining the equilibrium values of the order parameter by minimizing the 

Helmholtz free energy density f with respect to the order parameter q, while the 

term.in Eq. (99) containing the (Vq(r,t)2 bas no influence on the average value of the 

order parameter and is thus negleeted.The stability of the solutions depends on the 

second derivative of the free energy with respect to q. Whereas q00 and q01 represent 

minima of the free energy, q02 is a maximum. 

The equilibrium values of the order parameter q0 are: 

q ~.l..+ 
01 2\1 

(1411} 

(102} 

The solution q =0 represems the high symmetry phase. whereas q ,.<0 

corresponds to the low symmetry phase. The system is in the high symmetry phase 

q00 =0 if "+-yu>O. At negative a+'Yu the eystem is in the low symmetry phase 

q0, ,.< 0. The coexistence region is given by the val u es "Ol f / 4v-'Yu, where the high 

symmetry phase becomes unstable and a 00 =--yu, where the low symmetry is the only 

possible state. Our calculations on the rheology of colloidal suspensions are restricted 

to systems not too close to the eoeristenee region. [n thL' case the parameter 1 is 

eonsidered to be smal! compared to a. For 1=0 a second order traruition takes place. 

The term 1/2 'Y u(r,t) q(r,t}', [5] is a simpte generalization of the free ener!.'Y 
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and couples the relaxation processes of the order parameter and the elastic 

deformation field (mode coupling). lt will lead to an elastic modulus and a shear 

viscosity bath corrected for the influence of fluctuations. 

We wil! write the time and space dependent order parameter q(r,t) and the 

strain field u(r,t) as the sum of the equilibrium values and smal! space and time 

dependent variations: 

u(r,t) ""o +öu(r,t) 

q(r,t)=% +öq(r,t) 
(103) 

For reasous of brevity we wil! not always indicate the dependenee of óu and liq on r 

and t. Inserting (103) into (99) and taking into account only terms up to the secoud 

order in áu and óq we arrive at: 

a, 2 \ lV • 1 2 Go 2 
f{öq,öu)=fo•2qo -3qo 4qo +2Ucflo '2"<> + 

+(«q0 - Çqg +vqg +y Ucfi.Jllq+( ~ -Çq. +ivqg +.Iu.Jöq 2 
2 2 2 

+l.äuóq2 +( .Iqg +GoU.iJáu 
2 2 

G 4 .----'! ö u 2 +y q0öuáq+-(Vöq)2 

2 2 

(104) 

The terms linear in óu and öq disappear, because the system is in a minimum of the 

thermodynamic potential. Note that in difference to the model discussed in Chapter 4 

is that we take into account a constant quasi statically applied external shear strain 

Uo"' 0. 

The Helmholtz free energy density depends on !he value of qo- ln the high 

symmetry phase, with a> 0 and q,=O, it can oe written as: 

(105) 

with 
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(106) 

The free energy density in the low symmetry phase with a+ No<Ü and q,r'O 

becomes after substitution of the q0
2 term by the salution of Equation (101): 

(107) 

where we used 

(108) 

The break of the symmetry leading to a transition occurs when the sign of 

a+ ')'Uo changes. This takes place at the transitional value of the external strain 

(109) 

We assume that ')'Uo imparts a positive contribution to the free energy. This means 

that a change in the sign and thus a symmetry breaking transition can only occur for 

negative values of a+ rq,, i.e. in the low symmetry phase (colloidal crystal). 

A colloidal crystal in equilibrium has a minimum in the thermodynamk 

potential F(q) at a non-zero order parameter q. Applying a strain u0 on the crystal 

(low symmetry phase) increases the thermadynamie potential but the structure 

remains stabie for strains u0 <u<C). For strains u0 > u(C) the CI)'Stal phase is 

thermodynantically unstable and turns back into the high symmetry phase of a 

disordered structure with a zero-valued order parameter. This is a shear induced 

instability, where the order parameter turns back to the value of the high symmetry 

phase q=O at u0 >u(0
. The value of the çritical strain has been estimared e.g. for 

electrically stabilized colloidal particles in a hexagonal layered structure by Boersma 

(6]. 
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The Visroelastic Properties Close to a Phase Transition 

Having derived the free energy density for the high and the low symmetry phase we 

are now able to describe the influence of the fluctuations of the order parameter on 

the transport parameters G0 and ~o· The two slow modes describing the dynamics of 

the system are given by the transport equations of the order parameter 

aóq ~ 1 öj(öq,óu) g(!,l) 
-~~ +--

at x ()q x 
(110) 

and the momenturn 

ii'öxx a [ óf(öq{r,t),öu{r,t)) . ) 
p--"- +fJ01lu(r.t) 

at2 8z öu 
(Hl) 

where g(r,,t) is a fluctuating term with white noise obeying the fluctuation-dissipation 

theorem: 

(g(r,t),g(r1,t ~)"2Xks111(t-t~ó (r-r~ (112) 

while x is a damping coefficient. Generally speaking the transport coefficients G0 and 

~0 are frequency dependent both in the high and in the low symmetry phase. The 

transport coefficients depend on the interpartiele interaction determined a. o. by the 

relaxation process of the electric double layer of the colloldal particles. Close to a 

phase transition however the low frequency critica! fluctuations determine the 

transport processes (critica! slowing down). Therefore close to the transition only the 

low frequency values G(O=O) and ~(0~0) of the high and low symmetry phase are 

important, denoted as G0 and ~ •. These values of the transport coefficients are valid 

under conditions far removed from the phase transition, and wil! be specified later for 

the high and the low symmetry phase. Close to a transition they are modified by the 

presence of fluctuations. 

The equations (105) and (107) have exactly the same forrn as the model free 

energy density in Chapter 4, exçept for the shifts of the referen<e free energies f, f' 

and of a by the value -yu0• The transport parameters in the preserree of small periadie 
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perturbations in öu(J:,t) and öq(r,t) can be calculated by rhe same procedure as in the 

previous chapter. Applying a shear perturbation by a controlled quasi-stalie strain u~ 

the model indicates that a colloidal crystal is thermodynamically unstable against a 

quasi-statically applied shear strain u0 >u,'L>, where u."" is given by equation (109). 

The expected storage and loss moduli are given by (Chapter 4): 

(113) 

(114) 

where G,., and ~"' are the undisturbed values of the elastic modulus and the viscosity 

of the high symmetry phase (index H), where J" and J" are given by: 

(ll5) 

(116) 

while their low synunetry equivalents (index L) takes the form: 
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(117) 

and 

( -2(1 +2yuo +{qJ2 + x202 + -2a +2yuo +{q·]-
>.2 4}.' À 

The transport properties of a colloidal suspension of a shear induced 

symmetry breaking transition can be determined by applying a constant strain u0 and 

superimposing on it a smal! deformation with a low frequency ll This permits to 

delermine the slorage modulus G'(!l) and loss modulus G"(!J). 

Because the position of the system in the equilibrium phase diagram in the 

absence of the srrain has not changed, the occurrence of a shear induced transition 

can be viewed as a shift of the equilibrium transition lines due to the applied shear 

strain. The phase with the lower free energy is the disordered fluid phase, with a non· 

zero elastic modulus denoted bere as a glass. Applying a shear strain on a colloidal 

crystal, it will break into pieces of smaller crystals delivering a global disordered 

structure with a nonvzero elastic modulus. 

Starting with a colloidal crystal (G,~ ~r.0), the slorage modulus deercases and 

bas a minimum at the critica! strain u0(c\ while the toss modulus G" has a ma.'>imum 

there. The high symmetry phase is a suspension with !he transport parameters G11o, ~110 

of the glass phase. This behaviour as sh0\\11 in Figure 17 is the result of the critica! 

fluctuations and the destruction of the colloidal crystal. The model equations for the 

transport parameters are not correct at the critica( strain Uo<Cî, i.e. at the transltion, 

because the approximations made in the previous chapter are not applicable to this 

region. Therefore we consider only cases outside the coexistence region with al!> lq0. 
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The model presented bere is therefore restricted for strain deformatlons not toa close 

to the transition. 

G'G" 
' 

low 
symmetry 
phase 

". 

,../ 
;·high 

symmetry 
phase 

G' 

-·-
G" 

Figure 17 The starage modulus G' and the loss modulus G" as a function of the applied 
shear strain Uo in relative units. 

The frequency dependenee of G'(O) and G"(O) can be seen in the Figures 18 

and 19. G'(O) increases with the frequency n. The loss modulus G"(O) depends on 

the applied strain u~ On increasing the strain the maximum in the loss modulus shifts 

to lower frequency values by approaching the transition. 
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G' 

log frequency 
Figure 18 Frequency dependenee of !he storage modulus G · in relative units for 
applied shear strains u0, while approaching a transition with I u11 < I u, I < Iu, 1. 

G" ·--u 
3 

-·-u 
2 

log frequency 

Figure 19 Frequency dependenee of the loss modulus G" in relative units for applied 
sbear st ra ins u0, whi!e approaching a transition with I u11 < I u, I < I u3 1. 
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Applying a quasi-static (!l~) sinusoidal deformation with an amplitude U, 

the response of the suspension will be non-harmonie. This can be indicated by 

calculating the stress as a function of a suain u" with the form: 

(119) 

We applied the equations of G' (113) and G" (114), while neglccting the coexistenee 

region by setting j=O. Figure 20 displays the resulting stresses determined for a 

number of relative amplitudes; the latter are the strain amplitudes U, scaled by the 

critical strain ul;'f with 00-o. lt îndicates the occurrence of a nonlinear response 

(higher harmonies). 
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Figure 20 Stress response on a applied eosine shear str•in (!l-.{l) for a number of relative 
amplitudes U Ju.'"' for one period in time. 
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5.3 Discussion 

As expected from the theories of Bagebi & Thirumalai [2] and Ramaswamy & 

Renn [I] a shear strain perturbation can induce a symmetry breaking transition. The 

static shear rnelting transition in uspensions is accornpanied by non-linearities in the 

transport properties, which can be detected easily in concentraled dispersions. 

In order to analyze dynamic moduli of a strained colloidal crystal a very small 

asciilation with frequency IJ should be superimposed on a constant strain u0. However 

no such experimental data are available. A number of authors [9],[10] performed 

dynarnic measurements on colloidal suspensions with varying amplitude but without a 

constant strain u0• On rising the amplitude first they found a constant elastic modulus. 

Beyond a critica! strain they found an increase in G'. From the model we expect a 

deercase of the starage modulus due to the disappearance of tbc colloidal crystal at 

high volume fractions foliowed by an increase as the result of the transition into a 

disordered structure (Fig.l7) that takes place at a critica! strain uo"" (109). 

Milier et. aL (9] studled solid propelianis and observed a critica! strain 

amplitude U0'0 at the minimum of the elastic modulus of U0'Cl ~ 10%. This result is 

consistent with the generalized density functional theory of Bagebi & Thirumalai [2]. 

These authors calculated a maximal critica! strain of U0""'(C) ~ 35% above which any 

bcc-crystal dîsappears and a liquid-like structure occurs. 

The dependenee of the transport parameters on the strain provides a non­

linear response on a sinusoidally applied strain (Fig. 20). In this tigure a 'relative 

amplitudes', is ernployed defined as the strain amplitude U0 scaled by the critica! 

strain u0'Cl. The appearance of these higher harmonies has been found by Milier et. aL 

[9] and Boersma et. aL [10] while performing dynamic testings. Under these 

conditions the linear response is lost and care has to be taken in the interpretation of 

the results. However in the range of small frequencies (00.,.()) the measurements are 

primarily given by G'. Therefore we consicter here only the low frequency starage 

modulus. 

Matsumotu & Okuho [11] investigated dilute polystyrene suspensions (<P=O.l) 
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and estimated the deercase of the elastic modulus for small deformations and low 

frequencies to be G' -(U,}.t.", where our model suggests G'- (u0}-"' in the 

hydrodynamic limit. 

Using scattering techniques a characteristic transition from a crystai structure 

into a disordered structure can he expected at the static shear melting transition for 

small deforrnations, visible by a transition from Bragg·peaks of the colloldal crystal 

into a Debye-ring indicating a globally disordered structure for increasing strains. 

Static light scattering techniques have been applied by Ackerson [12] and Ackerson & 

Pusey [13] on nearly hard spheres of sterically stabilized PMMA-particles in 

tetralin/decalin mixtures. They found that a shear U,=l at O=lHz orients the 

crystal structure of a dispersion with an absolute volume fraction 4> = 0.48 and 

transforms the system into oscillating fee·twin structures, where the (1,1,1) planes are 

parallel to the cell walls. At a strain amplitude U0=4 hexagonal planes were formed 

indicating a non-equilibrium structure. 

Another light scattering investigation on soft sphere suspenstans of silica 

particles in toluene/ethanol was performed by Yan et.al. [14]. Similar results as in the 

almost hard sphere case we re obtained. After applying strain amplitudes (Uo~ 1) the 

initially poly·crystalline structure changes into fcc-twin structures; al larger 

amplitudes reorganization imo a structure of close packed layers takes place. The 

transition from fcc·twins to sliding layers shifts to lower strain amplitudes at higher 

volume fractlons. 

Boersma et.al. [HJ] investigated concentrated silica suspensions in 

water/glycerol mixtures and found critica! strain amplitudes for small frequencies of 

the order U0'C) = 5· JO%. At high frequencies the critical shear strain shifts to smaller 

valnes on increasing the frequency, while the product of U0''"n is a constant. The 

latter result suggests that the increase of the modulus occurs at a constant shear rate 

if we assume that the typkal shear rate in an oscillatory measurement can be 

approximated by i-= Uo11 [15] . 

We interpret the constant critica! shear strain at low frequenties as reflecting 

the shear melting transition. The critical strain at higher frequencies is jnterpreted by 

the present authors as another instability denoted as dynamic shear melting. which is 

treated in Chapter 6. This instability is due to an acoustie resonance of the sheared 
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colloidal crystal and occurs at a constant critica! shear rate. It is accompanied by an 

pronounced iocrcase of the viscosity. 

The experirnental evidence of the static shear melting transition under 

continuous shear bas already been found by using light scattering techniques by 

Pieransld [16] and Ackerson & Clark [17] on dilute colloidal crystals and in numerical 

simulations e.g. by Hess [18], for smal! shear rates. The accompanied rheological 

properties have been investigated first by Chen et. aL [19],[20] in a polystyrene latex 

suspension. Using small-angle neutron scattering they found the disappearance of 

the Bragg·peaks accompanied with a jump of the measured stress at very small shear 

rates. This jump is probably related to an increase in the elastic modulus during the 

transition into a disordered structure. Numerical simulations indicate a slight increase 

of the viscosity at this transition (Fig.7 of ref [21]). 

In order to investigate the a shear induced transition, in Chapter 7, rheo­

optical experiments are described. It will be reported that qualitatively the 

dependenee of the viscoelastic properties has been obtained as predieted from this 

model, accompanied with the expected change of the structure as determined by static 

light scattering . 

5.4 Coneinsion 

A model is presenled predicting rheological parameters (G' and G"). lt is 

based on a Landau theory of structural transitions, which prediets a shear induced 

symmetry breaking transition. The equilibrium colloidal crystal bocomes unstable 

under an applied strain and is expected to change into a disordered colloidal glass 

structure. The model allows the qualilalive evaluation of the transport parameters 

close to such a structural transition. The starage modulus is expected to have a 

minimum and the loss modulus a maximum at the critica! strain. Expertmental results 

presented in Chapter 8 qualitatively confirm the predicted dependenee of the 

transport parameters. 
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6. Shear Thickening as a Consequence of an Acoustic Resonance in Sheared 

Colloldal Crystals 

6.1 Introduetion 

Under the application of a simple shear flow applied on a colloidal 

suspension the particles, having a soft interaction potentiaJ, may arrange themselves 

into a long ranged, crystalline structure of hexagonal layers sliding over each other, 

The existence of this non-equilibrium ordered state will be the starting point of our 

treatment. Experimental investigations [1],[2],[3],[4] indieate that this strueture 

disappears with increasing shear rates. This disappearance is accompanied by a 

pronounced increase of the viscosity denoted as shear thickening. We will develop a 

model based on the assumption that this destruction of the pedodie structure is due 

to the occurrence of an acoustîc resonance within the sheared lattice. 

Damped acoustic shear waves travel through a viscoelastic continuurn as shown 

first by Joanny [5] and later by Pieranski [6]. A sheared crystal undergoes a periadie 

varlation of the elastic modulus in the shear gradient direetion. Harrowell & Fixman 

[7] demonstraled that this periadie variation amplifies long wave length transverse 

modes. By using an extension of the Lindemann criterion [8] they eould prediet an 

instability of the sheared colloidal erystal due to an acoustic resonance mechanism. 

Ronis & Kahn [9] improved the approach of Harrowell & Fixman. They analyzed the 

macroscopie equations of motion of a dilute colloidal crystal under shear and studied 

the dependenee of the acoustic resonance on the system size. 

In difference to the previous authors, we wil! apply a two 'medium' model, 

where both media are considered as infinite viscoelastic continua, which are coupled 

with each other. One medium is an elastic colloidal crystal, built up of monodisperse 

solid particles dispersed in the viseaus solvent. The shear is applied on the viscous 

solvent and is transrnitted to the particles. The other medium contains all viscous 
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contributions. Sirnilar models have been used by other investigators in concentrated 

polyrner solutions and gels [10] and in dilute colloidal crystals [11]. Taking into 

account the perioctic variation of the elastic modulus in the sheared suspension, an 

acoustic resonance occur. This phenornenon is accornpanied with shear thickening. 

The model presented here allows the calculation of the critica} shear rate irc, that 

will be cornpared with experirnental results. 

6.2 Theory 

The Hydrodynamic Model 

Starting point of our model is a two medium model, where one medium is 

treated as a Newtonian fluid with an effective viscosity 11 and density p 1• The shear 

induced colloidal crystal is regarded as the other medium. It is an elastic continuurn 

with a density P2> and an elastic modulus G. The effective viscosity 11 corresponds to 

the suspension with a volume fraction 4> of the dry colloidal particles. In our approach 

we thus suppose that all viscous effects are taken into account by the viscous medium 

with the viscosity 11· This includes e.g. the viscous damping of rnovements of the 

colloidal crystal due to the hydrodynarnic interaction between the colloidal particles. 

We will apply a phenornenological equation, that describes the viscosity increase of a 

suspension with the volurne fraction, consisting of hard spheres dispersed in a solvent 
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with a viscosity 17o· 

Furthermore we assume that under the intlucnee of a simple shear flow a 

spatial dis tribution of monodisperse particles in hexagonally close packed (hcp) layers 

occurs with the close packed array of particles pointed along e., the mean flow 

direction. The layers are orthogonal to and periodic in the ez-direction (shear gradient 

direction). The applied simple shear flow 

[

0 0 Yo} 
Yn= 0 0 0 r 

0 0 0 

(120) 

allows the hexagonal planes to slip freely over each other, as discussed e.g. in [1],[12]. 

The motion of the colloidal particles causes the elastic properties of the sheared 

colloidal crystal in the ez-direction to vary periodically in time and space. The time­

periodicity is deterrnined by the externally applied (macroscopie) shear rate ')t0. We 

define the shear modulus G(t) of the sheared colloidal crystal as the tensor: 

11 0 0 l 
.Q(t)= 0 1 0 

0 0 1 -€COS(I'y of) 

(121) 

while G is the isotropie elastic modulus of the undisturbed two dimensional hcp­

crystal and E is a small valued parameter that describes the modulation of the elastic 

modulus. The parameter r depends on the direction of the shear and the structure of 

the lattice [9]. For a simple shear in a ortho-rhombic lattice the value of r is given 

by r=21rgz/g"' with the lattice constauts gx and gz in x and z -direction. The shear 

rate can be scaled by 

(122) 

In this work we are interested in the effects of deviations from a uniform shear 

field. As such, we introduce a displacement field ful for the colloidal particles and a 

velocity deviation field öv for the viscous medium: 
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(123) 

and 

(124) 

The interaction between the elastic crystal and the viscous continuurn is treated 

as an effective local friction force proportional to the difference between veloeities of 

the particles of the colloidal crystal and the viscous medium. 

Under these assumptions the linearized coupled equations of motion have the 

form 

(125) 

(126) 

while g <Il and sfl are the viscous medium and the crystal stress tensor, respectively. 

The medium-crystal coupling vector ;g takes the form: 

(127) 

while H 4>) is an increasing function of the volume fraction. 

On hydrodynamic length and time scales, i.e. neglecting the diffusive motion of 

the colloidal particles, the coupling between the veloeities of the colloidal crystal and 

the solvent is very strong. Following Lindsay & Chaikin [11] we confine our 
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investigation to the limit of strong coupling. The essential physics of the strong 

coupling is when the solvent velocity approaches the velocity of the colloidal crystal 

(128) 

In this limit the coupled set of the equations of motion reduces to a single 

formula: 

ifh 
p--='Sl Q 

at;2 -

with 

The stress tensor term in Equation (129) becomes 

(129) 

(130) 

(131) 

while 11 is the high shear viscosity of the suspension, conesponding to a layered hcp 

structure. 

The Acoustic Resonance 

To investigate Equation (129), we introduce a spatial Fourier transfarm of the 

deforruation field: 

(132) 

where A(k,t) is the time and wave number dependent amplitude of local 

displacements of a volume element from its initial position. Inserting (132) in (129) 

we obtain 

According to Equation (121) the modulus G(t) is periodic in time. Therefore 

Equation (133) is a Mathieu equation [14]. Equation (133) can be solved for small 
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(133) 

valnes of the parameterE defined in Eq. (121) as a Taylor expansion of the amplitude 

in factors of E: 

(134) 

Using this expansion in (133), the zeroth order in E leads to a damped wave equation 

in the unsheared system: 

where the coefficient b is given by 

b=.!!. 
p 

and the sound velocity c of the suspension is given by: 

G 
p 

(135) 

(136) 

(137) 

Equation (135) can be solved by writing the zeroth-order amplitude as a damped 

wave 

A (O>(t) =A (O>e -pt (138) 

Substitution of Equation (138) in (135) gives a dispersion relation in p 

(139) 

Here p is either real, descrihing an overdamped creeping motion 

(140) 

or complex, related to damped propagating waves, with 
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(141) 

while 

(142) 

w= 

Now we will investigate contributions to A(k,t) originating from first order 

perturbations in E. Because the Gx and Gy moduli are assumed to be constant, the 

transverse modes in ex and ey are always darnped waves. However in Equation (133) 

we get a contribution in the z-direction from the first order in E of the form 

(143) 

where we have chosen a linear combination of (138) with the solutions (140) and 

(142). This formula can be solved by means of a Laplace transfarm as performed in 

the Appendix E. 
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For damped propagating waves with p1,2 given by (141) the amplitude of the 

first order becomes infinite at a specific, externally applied shear rate. For this 

instability the amplitudes in the e,-direction become 

2A <O>c2k2e-r.e 
J: [2wcos(yt)( wcos( wt)+ösin( wt))-ysin( yt)(öcos( wt)- wsin(wt))] 

( ö 2 + w2)( y2 -4w2) 

(144) 

The first order amplitude bas a singularity, as known from the theory of 

Mathieu equations [14], at a critica! value of the shear rate equal to 2w with 

(145) 

for a wave with wave number k. The dependenee of the scaled critica) shear rate on k 

is displayed in Figure 21, for a PVC/DOP suspension with r = 1. For practical systems 

the range of possible values of wave numbers k is limited on the one hand by the 

system size and on the other hand by the root in Equation (145). 
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Figure 21 The critical shear rate as a function of the wave vector amplitude k fora PVC­
DOP suspension (cJ.>=0.45). 
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The singularity of the amplitude A.,(k,t) descrihing propagating acoustic shear 

waves is essentially a resonance effect. Unclear at the first sight is however, which 

wave number ko out from the range of possible wave number k dominates this 

instability. From dimension analysis of the argument under the root in (145) we know 

that the size of the wave vector can be written as 

(146) 

while we regard 3.Q as a free dimensionless parameter. Below we will estîmate the 

value of this unknown parameter from experiments. 

Using (146) and (122) the critica} shear rate Equation (145) turns into 

(147) 

where r and 3.Q are dimensionless constants and the characteristic relaxation time r 

is given by 

't (148) 

Note that for a suspension with a constant elastic modulus the instability takes 

place at a constant critical shear stress: 

(149) 
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Excess Dissipation 

We will consider bere the relative increase in dissipation due to an increase of 

the amplitude of the first order in t:. The average rate of energy dissipation of a 

wave with amplitude A. in z-direction of angular frequency w is given by [15] 

(150) 

with the dissipative force density component 

(151) 

given by the second term of equation (133). 

The relative increase of the dissipation due to the contribution of the wave 

amplitude of the first order in f can approximately be evaluated from 

(152) 

The time derivatives of the amplitudes are 

2A (O)k2c2e -at Ái1>(t,w,y)= z (cos(yt)(öy2cos(wt)+wsin(wt)(2ö2-y2+2w2)) <153) 
(y2-4w2)(ö2+w2) 

-ysin( yt)(( ö2-w2)cos( wt)-2ö wsin( wt))) 
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Substituting the latter equations into (152) and using w from (145) we arrive at: 

(154) 

The extra dissipation leads to an increase of the viscosity of the sheared system, which 

therefore bas a maximum when the external shear rate )'0 is equal to the critica! shear 

rate i'c· This acoustic resonance instability is thus accompanied with an increase of 

the viscosity ( dilatancy). 

Note that the critical shear rate for shear thickening defined bere differs from 

that generally employed in discussions of the shear rate dependenee of the viscosity. 

The latter critica! shear rate is determined from the point where the viscosity 

increases, whereas in the sense of a resonance the critica! shear rate corresponds to 

the maximum of the viscosity. 

Estimation of the Free Parameter 

To estimate the free parameter ao of Equation (146) we will study two 

examples and predict the critica! shear rates: (i) of a suspension of PVC-particles 

dispersed in DOP as investigated by Hoffman [16] and (ii) of a suspension of glass 

particles in glycerol/water as investigated by Boersma et al. [4]. 

In order to evaluate the critical shear rate using (147) we have to determine 

the elastic modulus and the viscosity of the sheared suspension. We neglect, as a first 

approximation, the shear rate dependenee of G of the colloidal crystal, which leads to 

the assumption: 

G(y)zG(y =0) (155) 

For estimating the critica] shear rate we assume an ordering of the particles as in a 2-

dimensional hcp lattice. Two particles in successive layers have, on dosest passage, in 

the direction of the shear gradient the same interpartiele distance as two adjacent 
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particles within a layer. The volume fraction dependent elastic modulus of a 2-

dimensional hcp crystal can now be approximated by [17] 

(156) 

where x is the interpartiele centre to centre distance scaled by a0 = 2a, where a is the 

partiele radius. Here the number N of next nearest neighbours per unit cell is taken 

as N = 8. The number density n of the particles at volume fraction cp obeys the 

formula 

(157) 

while 

(158) 

is the volume of a particle. The distance h between the surfaces of two nearest 

neighbours in a hexagonally layered structure [18] is 

(159) 

The two partiele interaction potential is assumed to be given by the Poisson­

Boltzmann theory as a sereerred Coulomb potential in the linear superposition 

approximation [19],[20]: 
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We define a scaled Debye reciprocallength K through K = KoUo. where 

'K = D 

The second spatial derivative of the interaction potential is given by 

2 ~2 oo lJ,.I, 

129 

(160) 

(161) 

(162) 

We will use a phenomenological equation, that describes the viscosity increase 

of a hard sphere suspension with the volume fraction. The influence of the temporary 

formation of clusters of colloidal particles on the viscosity of the sheared colloidal 

suspension has been determined by CampbeU and Forgacs [13], applying a percolation 

theory. They established an equation for the low shear suspension viscosity '11Iow: 

(163) 

for volume fractions <I>> <I> P • The parameter <I> P is the percolation threshold, which is 

independent of the underlying st meture (<I> P = 0.16), and <I>bcp = 1r j3V'3 = 0.605 is the 

maximum packing fraction of a hexagonally layered structure;110 is the viscosity of the 

solvent fluid. 

In our analysis we need the viscosity 11 of the suspension in the high shear rate 

limit, undisturbed by the resonance. In order to obtain the viscosity '11 we introduce an 

unknown coefficient ~0 independent of the volume fraction by: 
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(164) 

while 7Jtaw is given by Equation (163). We can write Equation (147) in the form 

(165) 

while we have reduced the unknown parameters to a single fitting parameter ~, which 

is given by Eq. (147) 

(166) 

With the equations above the critica] shear rates can be evaluated as a 

function of the volume fraction. We use the following set of data [16], [4] summarized 

in Table 6.1: 

Table 6.1. (i) PVC in DOP (ii) Glass in 

Glycerol/Water 

relative dielectric 5.2 48.65 

constant of the solvent E, 

radius of the particles a 0.625 w-6 m 1.2 10-<> m 

surface voltage of the 90 w-3 v 75 w-3 v 
particles '11 0 

temperature T 298 K 293 K 
i 

i 

valency of the ions z 1 1 i 

density of the solvent Po 981 kg/m3 1000 kg/m3 I 

i 

density of the particles p1 1400 kg/m3 2530 kg/m3 

solvent viscosity 7Jo 0.054 Pas 0.14 Pa.s 

i salt concentration C 0.00167 molfm3 0.01 mol/m3 
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The salt concentration of !he PVC in DOP suspension is an estimation from Figure 9 

of ref. [26] for the used surface potential. 

(i) PVC in DOP 

The shear rates at the maxima of the viscosity measurements ('critica! shear 

rates') on a PVC latex by Hoffman [16] are summarized in Table 6.2: 

volume fraction <!> critica] shear rale 'Yc critica! shear rate ..Yc 

[1/s] [1/s) 

I 
theory experiment [16] 

0.45 400 400 

0.47 380 390 

0.49 303 300 

0.51 186 180 

0.53 72 70 

0.55 11 18 

0.57 0.1 ~4 

i 
able 6.2 

By choosing the parameter ~=4 we fitted our rnadelta the experimental value 

of the critica! shear rate of the lewest volume fraction (highest critica! shear rate). 

For the other volume fractions we obtain a quite good agreement. Deviations occur 

for very high volume fractions. Here the critica! shear rate is very small and the 

streng coupling limit is not valid. This is because the movement of the particles and 

the solvent can be different for smal! shear rates. The dependenee of the critica! 
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shear rate on the volume fraction is shown in Figure 21 for the used set of data. At 

smal] volume fractions the critical shear rate is small but it increases with increaslng 

volume fraction. At smal! volume fractions the viscosity is almost constant. thus here 

the varlation in the critica! shear rate originates mainly from the increase of tbe 

elastic modulus according to (156). The critica] shear rate reaches a maximum at il>m 

and thereafter deercases with increasing volume fraction, because in this region the 

viscosity increases faster than the elastic modulus does. The acoustic resonance can 

occur only fot il><il>"''' because the viscosity of tbe sbeared hcp-layered 

structurebecomes infinite at <P".,. 

With the same set of parameters the dependenee of the critica! shear rate has 

been determined as a tunetion of the salt concentration at constant voJume fraction 

ii>=0.45 and is shown in Figure 21. The viscosity was assumed independent of the salt 

concentration and thus the critica! shear rate is deterrnined completely by the 

dependenee of the elastic modulus on the salt concentration. The elastic modulus 

increa.ses in the crystaJ phase with decreasing salt concentration and therefore the 

critical shear rate increases. The maximum in the critlcal shear rate with increasing 

salt concentratien is due to the competition of the decreasing exponent factor with the 

increasing polynomial factor in the second derivative of the interaction potential 

(162). 

Another characteristic dependenee of the critica! shear rate is on the partiele 

diameter O"O< As can be seen from Figure 21 the crîtical shear rate increases 

dramatically fot small partiele sizes at constant volume fraction i!>; 0.45 and salt 

concentration C=0.00167 mol/m'. 
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Figure 22 Cumparision of the critica! shear rate by theory and by experiment (PVC­
DOP suspensions [ 16]). 
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Figure 23 Model prediction of the dependenee of the critica! shear rate on the salt 
concentratien (<1>=0.45, a=0.625 pm). 
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Figure 24 The model predierion of the critica! shear rate of a <!> =0. 45 suspension is 
displayed as a function of the partiele sire. 

With decreasing partide size at constant volume fraction and sah concentration !he 

elastîc modulus increases, because K decreases in Equation (162). 

(ii) Glassin Glycerol/Water (86.1% wfw) 

Applying !he same formalism developed above, the critica! shear rate can be 

evaluated while we set the free parameter ~ =4. The experimental values of the 

critical shear rate have been obtained from the maximum of the viscosity in reference 

[4]. The results are summarized in Table 6.3. 
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volume fraction <!> critica( shear rate i'c critical shear rate i'c 

[1/s] [l/s] 

theory experiment [4] : 

0.5 77 =100 

0.54 40 30 

0.55 18 10 

0.57 0.4 8 

0.585 0.4 104 2 

Tab!e 6.3 

Tbe agreement between the experimental and theoretica! data is reasonable. Note 

that the maximum of the lowest viscosity versus shear rate curve was difficult to 

deterrnine because the variation in the viscosity is rather smalL Also the range of 

volume fractions is smaller than with HolTmans experirnents. As with the PVC/DOP 

suspension the critica! sbear rates deviates from the expected value for high valnes of 

the volume fraction, presurnably because the strong coupling assumption is not 

justified any more. Tbat the agreement between experiment and tbeory is less than 

with tbe PVC/DOP system may also be due to the larger polydispersity of the glass 

partiele size as compared witb that of the PVC particles. 

6.3 Discussion 

Comparison with Expedments 

Tbe application of light, x-ray and neutron scattering techniques alloi''S the 

simu ltaneous investigation of the microstructure and the transport properties, as first 

utilized by Hoffman [IJ with a PVC latex in DOP. He established the conneetion 
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between an order-disorder transition and the variation of the transport properties. 

Ackerson found similar transitions in dilute dispersions [12). Starting at high shear 

rates and going down to lower values he denoted the transition from a disordered 

structure into a sheared layer structure as transition I. Decreasing the shear rate 

further, a transition into a polycrystalline (disordered) structure occurs. Here the 

layered structure becomes unstable. He denoted this as transition 11. In our 

interpretation the equilibrium state of a colloidal crystal is unstable against a shear 

perturbation and farms a disordered strucmre at a critical shear strain as discussed in 

Chapter 5. On increasing the shear rate, a shear induced order transition takes place 

(Chapter 6), which is similar to the transition 11 as denoted by Ackerson, but passed 

in the opposite direction. The transition I however is the instability, where the 

hexagonal planes disappear due to an acoustic resonance. 

When the relaxation time of the suspension in the equilibrium colloidal crystal 

is large at high volume fractions and high Peelet numbers tbe non-equilibrium 

layered structure seems to be frozen when the perturbation starts with high shear 

rates as shown in an experiment carried out by Yan & Dhont [21). 

The sbear tbickening as weil as tbe sbear melting transition in colloidal 

suspension bas been the interest of a great number of autbors. Befare tbe work of 

Hoffman [1) shear thickening was considered as a rheological phenomenon and 

mainly treated in a phenomenological manner as summarized in the review anicle by 

Barnes [3]. 

Originally shear thickening was described as 'dilatancy', implying an increase of 

tbe volume under a continuous sbear deformation. Note that although normal farces 

are neglected in the model presented bere tbey are expected to occur, since tbe 

resonance appears in tbe shear gradient direction only. 

Decreasing tbe absolute value of the surface charge and the concentration of 

the counter ions by varying the pH value, Laun [22) abtairred the expected shift of the 

critica! sbear ra te of dilatancy to lower values for decreasing repulsive farces (smaller 

elastic modulus) by investigating a concentrated polystyrene latex dispersion. In Lhe 

same pubHeation the temperature dependenee of a suspension of polystyrene particles 

in diethyleneglycol/formantide bas been studied. It was found that the critica! shear 
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rate shif(s to lower values for decreasing temperatures. A similar result bas been 

obtained by Boersma et. aL [4] from a polystyrene in waterfglycerol suspension. These 

results are in agreement with the model, since the increase of the viscosity with 

decreasing temperatures shifts according to equation (147) the critica) shear rate to 

lower values. The critica! shear stress is expected to be rather independent of the 

temperature according to Equation (149), because !he elastic modulus varies only 

slightly with the temperature. 

With the same argument we can understand the effect of solvents of different 

viscosity on shear thickening. Figure 11 of reierenee [3] and Figure 9 of [4] confirm 

Equation (149) that for equal elastic moduli the transition takes place at a constant 

stress. 

The increase of the critica! shear rate for decreasing partiele sizes, as shown by 

Barnes [3], is partially due to the increase of the elastic modulus with decreasing 

partiele diameter according to a deercase in the scaled Debye parameter K in 

Equation (162). Also the liquid viscosities of the suspensions with larger particles are 

usually Iarger. Note that our model is developed under the assumption of 

monodisperse particles. A polydisperse distribution has been found experimentally to 

correspond with a less pronounced increase of the viscosity. In the approach bere a 

possible explanation for this phenomenon is that the density variations become less 

well periadie in the sheared colloidal crystal and the resonance effects are reduced. 

Chow & Zukoski [24) introduced arelation .Yc-Gho simllar to (147). But they 

used the solvent viscosity ry 0 inslead of the suspension viscosity ry. The latter 

assumption leads to a systematic deviation of the results for the critica! shear rate 

from the volume fraction (see e.g. table IV of ref. [25]). 

Experimental results on the system size dependenee of the critica! shear rate 

of shear thickening obtained by Chen & Zukoski [24] show that it is important 

especially at high volume fractions. They found that the critica! shear rate deercases 

with decreasing system sizes. In our model the system size becomes Jimiting, when 

the corresponding wavelength k", is greater than the wavelength k0 of the dominant 

deformation wave of the sheared suspension. The experimentally found dependenee 

can only occur when k, is on the right side of the maximum of the 'fc(k) dependenee 
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shown in Figure 21. However the experimental investigations by Cben & Zukoski [24J 

show tbat the critica! sbear rate is independent of the system size for practical systerns 

(>lmm). 

Comparison with Other Models 

Otber explanations for shear tbickening in colloldal suspensions have been 

given by Hoffman [26], Ackerson & Clark [2] and Boersma et. al. [18]. The basic idea 

of Hoffman is that a shear stress couple acting on a doublet of particles in a sheared 

crystal is the reason for the instability. Reeall that when shear is applied to a 

suspension, shear induces a transition to a layered structure, which means tbat the 

flow field stahilizes Ibis layered hcp structure [28]. Thus the shear stress stahilizes the 

ordered sirneture and frorn consirlering particles in one hcp-layer only, an instability 

cannot he derived. In the model presented bere the reason for the instability comes 

from the periodic modulation of !he modulus in the flow gradient direction, teading 

to a resonance between the modolation frequency and tbc eigen frequency of 

propagating acoustic shear waves. 

An increase of the local oscillations coming from the acoustic resonance can 

lead to a structural transition with a formation of clusters (flow blockage), when the 

forces acting on a colloidal partiele are of tbe order of the repulsive stabilization as 

assumed by Boersrna et. al. In this case the critica! shear rate of shear thickening is 

ruled by Boersma's equation [4],[29] with tbe critica! shear rate 

(167) 

Note that the acoustic resonance can be expected to cause an instability even 

in very dilute suspensions accompanied by a global disordering and an alteration of 

the dynamic proporties. Sucb phenomena have been observed by Lindsay & Chaikin 

[11}. The attempt by Cbow & Zukoski [25]to expand Boersma's approach to dilute 

suspensions, by creating a maximum of the critical shear rates at a specific volume 
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fractioo <I>~, evolves in the model presenled here in a natura! way (Fig. 22). 

6.4 Conclusions 

The model presented here explains shear thickening of sheared colloldal suspensions 

as the occurrence of an açoustic resonance. The resonance is the result of the periadie 

modulation of the elastic modulus in a shear colloldal crystal structure. Applying the 

hydrodynamic equation of the colloîdal suspension the critica! shear rate, wbere a 

maximum in the viscosity occurs, can be derived. A good agreement with experimental 

results for high crîtîcal shear rates could be found. For low critica! shear rates the 

used approximations have to be improved. 
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Appendix E 

In order to solve Equation (143) we introduce the standard Laplace transform 

A(s)=L (A): 

and the reverse transform 

A{t)=-1- r.,•i•A{s)e"ds 
2njhs-J• 

where os is a positive constant. 

Choosing the initia[ conditions as 

A ('l(t=O)=À (ll(t=O)=O 

the Laptace transform of Equation {143) becomes 

where we used the relation 

(E.l) 

(E.2) 

(E.3) 

(E.4) 
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(E.S) 

The reverse Laplace transfarm of (E.4) contains the sum of all residua s1 of A"'(s1) 

with Re(s,) <0" The po les s, of A"'(s,) are at 

s, =-p, -jy 

-p,+jy 

s,=-p,-jy 

The reverse Laplace transform of (E.4) has thus the form 

(E.6) 

(E.7) 

Using (E.4) and (E.6) in (E7) we obtain the time dependent first order amplitude 

A <'l(t)=c'k'A t•{e -p,t((p, -p,)cos(yt)-ysin(yt)) e -p,<((p,-p,)cos(yt)+ysin(yt))j (E.8) 

p,(t'+(p, -p;J'J p,(y'+(p,-pz)"J 

In the case of damped propagating waves p1 and p1 are given by (J4J) and the 

amplitude turns into 

(E.9) 
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CHAPTER 111. 

EXPERIMENT 

7. Rheology and Rheo-optks of Concentraled Col!oidal Suspensions 

7.1 Introduelion 

In order to facilitate the interpretation of experimental data, this paper starts with 

summarizing a number of theoretica! findings. Colloidal suspensions have, deponding on 

the inter-partiele interaction and the volume fraction of the dispersed particles, a colloidal 

crystal, !luid or liquid (flocculated) structure (Chapter 3). In chapter 4 we discussed the 

mutual influence of structural pha>e transitions and rheological properties of colloidal 

suspensions, The model presented there concerns the stability of colloidal crystals formed 

as an equilibrium phase in concentrared soft sphere colloidal suspensions. The underlying 

assumption is that a colloidal crystal may become unstable under the action of a static 

shear strain.llris assumptionis also basedon theoretica! [l]and experimental [2],[3] evidence. 

This effect bas been interprered (Chapter 5) as a shear induced phase transition and the 

qualitative behaviour of the dynamic rheological properties was derived. 

Totest the applicability of that model dynamic shear measurements were perfonned 

on three different systems of colloidal suspensions. Additionally rheo-optical investigations 

on one of the suspensions were made to confirrn the idea that a shear strain can desuoy 

a colloldal crystal. Therefore static light scattering was applied todetermine the microscopie 

structure of a strained concentrated suspension. 

The model in Chapter 5 is not applicable under steady shear conditions. Therefore 

another theoretica! model has been developed in Chapter 6, that prediets the aceurenee 

of shear thickening under steady shear. The latter model is basedon the idea that a sheared 

colloidal suspension forms a layered structure, in which the periadie modulation of rhe 

e!astic modulus induces an acoustic resonance. This effect wiJllead to aniocrcase of the 
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dissipation and therefore to a viscosity increase (shear thickening). The model prediets 

the shear ra te, at which the maximum of the viscosity can be fou nd, denoted in this paper 

as the critica! shear rate (which is not related to critica! effects closetoa phase transition). 

Steady-state shear measurements were performed on concentraled colloidal suspensions 

to campare the model predictions of the critica! shear rate with the experiments. 

7 :1.. Experimenlal 

Matcrials 

Rheological measurements were performed on suspensions of 

• Polymethylrnethacrylate (PMMA) particles in silicon oil 

· Polyvinylchloride (PVC) particles in dioctylphtalate (DOP) 

· Glass particles in a glycerol/water (86. 1/13.9 m/m) mixture 

The silicon oil was obtained from Aldrich Chemica! Co. Ltd. with 

a density p= 1050 kg/m' and a viscosity ~ =0.15 Pa.s. Dioctylphtalate (DOP) (Fluka AG) 

was used as supplied. The density is p=985 kgfm' and the visrosity is ~ =0.054 Pa,s, Glycerol 

(Merk, reinst) was used as supplied. It was mixed with twiee-distilled water yielding a 86.1/13.9 

massfmass mixture with a densîty of 1224 kg/m' and a viscosity of 0.14 Pa.s. All values 

are obtaîned at constant temperature T = 293 K. 
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Dispersion samples were prepared by mixing by hand while adding the particles 

to the liquid untilthe correct volume fraction <!>was reached. Then the samples we re stirred 

mechanically until no separate aggregates could be seen by eye. The characteristic properties 

of the suspensions are surnmarized in Table 7.1. 

Table 7.1 Characteristics of the suspensions. 

partiele partiele f-polenlial salt 

density diameter in inmV concentration 

in kgjm' J'ffi in mol/m' 

PMMA/ 1190 0.16±0.06 ·35±10 

Silicon Oil 

PVC/DOP 1390 1.25±0.08 -90± 10 0.01 

Glass/Giycero 2530 2.4± 1.2 -75±10 0.05 

I/Water 

The partiele sizes were detennined with a Coulter Counter ZM 256, f-potentials 

were measured with a Malvern Zetasizer 3, aH demities were measured with a pycnometer 

and the conductivitics were measured Mth a Philips PW 9505 conductivicy tester. The roncentrarion 

of electrolyte in the liquid was estimated by romparisou of the conductivicy of the supernatant 

of a suspension with conductlvities of solutions of KC! with koown concentrations. 

The PMMA particles were obtained from Röhm GmbH as an aqueous dispersion. 

They were dried and redispersed in silicon oil. The PVC particles were supplied by Hoffman 

[4],[6] (prepared by sumdard emulsion polymerization procedures and <.lried). We dispersed 

them in DOP. Note that experimental investigations by Görnitz & Zecha [7] indicate that 

the stabilization of the particles in PVC/DOP suspensions are not only determined by 

electrostalk forees hut by steric interactlans as well.ln actdition they found that the PVC 

particles can change their size due to the DOP. 

Glass particles wereobtained frorn Potters Ballotint (soda I i me glass). They where 

washed twice wlth concentraled nitric acid and then wasbed wlth twice distilled water until 

the pH becarne constant at 8.3. Washing was performed by centrifugation, decanting the 
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liquid and resuspending the solid in a fresh liquid. Af ter washing, the particles we re dried 

in a vacuum oven at 423 K. 

The PVC/DOP suspension employed here (<1>=0.57) has been chosen for the 

rheo-optical study, because the rheological measurements indicate the presence of a 

colloidal crystal at small strains. Additionally the refractive index of the PVC particles 

(n=1.54) and of the DOP (n=1.486) are close to eaeh other and the size of the 

particles are of the order of the wavelength of the light employed. 

Equipment 

Rheological Equipmenl 

Rheological measurements were carried out with a Weissenberg Rheogoniometer 

(TA lnstruments) and a Rheometrics RFS 130. Cone and plate geometries ( 4 ") were applied 

with a diameter of 2 cm and 4 cm respectively. After the measuring system was filled 

the gap was set, while applying a small oscillation (0.01 rad, 0.1 rad/s) on the plate for 

about 5 min. With this standard procedure the equilibration of the suspension is expected 

to he accelerated (see below)·leading toa reproducible starting point of all measurements. 

The measurements were performed at room temperature (295 K}. The rheometer was 

able to automatically carry out dynamic as wellas steady state measurement procedures. 

The dynamic procedures are frequency sweeps (varying frequency at constant strain) and 

amplitude sweeps (varying strain amplitudes at constant frequency) while !he time dependenee 

ofthe input and output signa! could be monitored (time depende nee). The strain amplitude 

could be increased or decreased in steps, denoted as 'up' and 'down' mea.;;urements respectîvety. 

Dynamic and steady state experiments were carried out on three quite different 

systems of colloîdal suspensions. 

Rheo·optical Setup 

The geometries for studying !he rheology of high volume fraction dispersions are plate-plate, 
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cone-plate, concenttic cylinder (Couette) and a tapered Couette geometry [5]. A cone-plate 

geometry has the disadvantage that a slight mismatch of the refractive indices between 

the suspension and the cone leads to the occurrence of a second beam. In a coaxial cylinder 

geometry the path lengthof the light beam through the sample is fixed but we preterred 

an adjustable pa tb length. Although a tapered Couette geometry may fulfil this condition, 

we have chosen the design of a plate-plate geometry because the construction was more 

simple, despite the occurrence of a radius dependent deformation. 
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Fignre 25 Plate-plate rheo-optical setup. 

In order to prevent shear force driven ditfusion of particles that may lead to changes 

in local volume fractions [9], we only applied a few dropiets of suspension. The gap was 

only filled near the optical beam, so as to assure that the strain amplitude variation over 

the sample did not vary by more than 15% and the rest of tbe gap was empty. The simultaneously 

obtained rheological signa! is not quantitatively correct any more, but only indicative [10]. 

We used the Weissenberg (TAinstruments) rheometer to obtain rheological data of quantitative 
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accuracy. 

An experimental setup was builtand mounted on a Sangamo R18 Weissenberg 

Rheogoniometer RIS, todetermine simultaneotL<Iy the rheological properties and the di.ffraction 

pattem of a colloidal sus pension. The setup is shown :in Figure 25. A colloidal suspension 

was introduced between two glass plates (n = 1.5168) mounted on a Sangamo Welssenberg 

Rheogonîometer. The light souree wa< a 10 mW He-Ne-laser (Lambda Physics) with a 

wave length of 632.8 nm. Tbe laser beam has its focus between the two glass plates and 

is adjusted by a system of rnirrors and beam splitters on a suitable position between the 

glass plates. Note that it is possible to operate in forward as well as in back scattering. 

A diffraction pattem appears at the air-glass interface, which acts as a screen. Th is pattem 

has been observed by means of a beam splitter and a CCD-camera (HCS Vision MXS 

with 630'490 pixel). The incident beam was directed perpendicular to the glass plates, 

adjusted by aligning the reflections of all parts of the optica! system. The incident beam 

was dimmed by a beam stop in front of the camera. A digital picture obta:ined by the camera 

was senttoa frame grabber (Datacube Maxvision AT· I), working with a frequency of 

25Hz per frame and having 3 image stores with 512'512'8 bit. It was possible to apply 

real time transforrnations on the pierure (e.g. convolution). The chosen standard measurement 

procedure was to average over 12 pictures (tempora! filter). 

After the rheometer wa• filled the gap was adjusted while a smal! periadie asciilation 

was applîed (0.1 rad, 0.252 rad/s, 5 m:in), with a gap of 10 l'm. During this procedure Bragg 

peaks appeared indicating a colloidal crystal with a preferentlal orientation. 

7 .4. Results 

Rheological Measurements 

(i) glass in glyceroljwater 

We will first consicter a glassjglycerol/water suspension (<1>=0.58). In Figure 26 

the dependenee of the starage modulus G' and the phase angle on the applied shear strain 
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as obtained with the RFS 130 is shown. The colloidal suspension is rather viscous for small 

strains showinga high phase angle, and a relatively smallelastic modulus. The phase angle 

decreases with increasing shear strains, while the elastic modulus increases, indicating a 

progressively elastic character. 
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~ ()J -~ 80 ~ b 
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70 1 
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0 0.2 0.4 
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Figure 26 The storage modulus and the phase angle for increasing strains of a glass/ 
glycerol/water suspension (<ll=0.58) at 1 rad/s. 
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Figure 27 The starage modulus and the phase angle as a function of the frequency 
for varying values of the strain amplitude of a glassjglycerolfwater suspension 
(4>=0.58). 
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The frequency dependenee of the rheological properties for various values as a 

funetion of the applied strain was investigated and summarized in Figure 27. The storage 

modulus and the phase angle are displayed, while the oscillatory strain amplitude was varied 

from 0.1 to 0.5. For shortness sake the oscillatory strain amplitude will be indieated as 

strain. The experimental results indieate that for small frequencies the suspension has viseous 

properties with a high phase angle and a low elastie modulus. At inereasing frequencies 

the suspension behaves more elastieally, with an inereasing elastie modulus and a deereasing 

phase angle. The elastie properties are more pronormeed for higher shear strains, as expeeted 

from the strain dependenee. 

The dependenee of the viseosity on the shear rate is shown in Figure 28. After a 

slight deerease in the viseosity for small shear rates the suspension shows a pronouneed 

shear thiekening behaviour and reaehes a maximum in the viseosity at about 10 s-1
. 
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100 

Figure 28 The steady state viseosity of a glass/glyeeroljwater suspension 
( .P = 0.58) as a funetion of the shear ra te. 
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Figure 29 The storage modulus and the phase angle as a function of the strain at a 
constant angular frequency of 0.1 Hz for PMMA/Silicon Oil suspensions at four 
volume fractions. The arrows indicate the position of the minima. 
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(ii) PMMA in silicon oil 

The dependenee of the storage modulus G' and the phase angle i5 on the applied 

shear strain has been investigated with PMMA/silicon oil suspensions for a number of 

different volume fractions (Figure 29). The dynamic shear properties were measured while 

decreasing the amplitude starting at a strain = 0.2, using a constant angular frequency of 

0.1 rad/s. 

The value of the storage modulus decreases with decreasing volume fraction. On 

varying the applied strain a minimum in the storage modulus has been found, that is indicated 

by a arrows in Figure 29. It shifts to higherstrain values and seems to broaden with decreasing 

volume fraction. The <I>= 0.60 system also has a second minimum at a much larger strain. 

The phase angle decreases with increasing volume fraction at small strain values. However 

with increasing strain this trend becomes less pronounced. After a slight decrease, the phase 

angle increases with the strain at high volume fractions. 

In Figure 30 the frequency dependendes of the PMMA/silicon oil suspensions 

at four volume fractions are shown for a strain of 0.2. The elastic moduli increase with 

increasing angular frequency and volume fraction. A maximum of the phase angle has 

been detected, which shifts to values of higher frequencies for increasing volume fractions. 
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(iii) PVC in DOP 

The evolution of the stress response to a sinusoidal strain was investigated for the 

PVC in DOP suspension with a volume Ir action of 57%. The result is displayed in Figure 

31 for four different values of the relative shear amplitude, which is defined as the ratio 

of the actual amplitude U,1 and the critica! amplitude U,"" (U0'" =0.8 with this sample, 

as assessed from Fig32). At a relative amplitude >I the output signa! beenmes very complex, 

but shows a qualitatively similar dependenee as the calculated inharmonic signa! in Figure 

20. 

:, ~:-"·~~/]. :, f\~\--~l 
.. : -w]·.: L -\~._;; ~ 

0 2 4 6 0 2 4 6 
time time 

ttme time 

Figure 31 The stress response (squares) of a PVC/DOP suspension on a harmonie 
strain (cirdes) for four different relative amplitudes. 
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The dynamic rheological bebaviour of a PVC/DOP suspension (<1>=0.57) is shown in 

Figure 32 for increasing (up) and decreasing (down) strains. A very pronounced minimum 

in the slorage modulus and a maximum in tbe phase angle were found. The minimum 

in G' is slightly broader for decreasing strains as compared to increasing strains. 

InFigure 33 the frequencydependence ofthe dynamic properties ofthe PVC/DOP 

suspension is presenled for the lower strains (U0 <0.5). The slorage modulus G' deercases 

with increasing strain, and increases with increasing angular frequency. The pbase angle 

behaves differently in tb at it increase with increasing strain. The differences due tostrain 

seem to disappear at high frequencies. 

The dependenee of the viscosity on the shear rate is given in Figure 34. After a 

gradual decrease for smal! shear rates the visoosily shows a ptonounred increase with increasing 

shear rate. The viscosity bas a maximum at a shear rate of 6 s·'. 
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Figure 34 The shear ra te dependent viscosity of a PVC/DOP suspension (<!> ~0.57). 
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Rheo-optical Measurernents 

From the rheological measurements we expected a pronounced shear induced transition 

in the PVC/DOP suspension (<I> =0.57). This suspension was analyzed in more detail using 

the rheo-optical setup. Both the rheological parameters and the optica! diffraction patterns 

were analyzed, while applying various constant strains going from small to large deformations 

("up") and back again ("down"). 

A number of representative diffraction patterns for the various applied shear 

strains are presented in Figure 34. On increasing the strain essentially the same sequence 

of pktures was found in the reverse order. The patterns F-A were taken while stepwise 

decreasing the strain amplitude. The corresponding rheological properties are shown in 

Figure 35. The patterns were taken perpendicular to the glass plates in the shear gradient 

direction, while the shear oscîllation movements were from left to right and vice versa 

Note that these pictures are integrations of the whole oscillation period, thus an average 

of all deformations. 

The diffractîon patterns A, BandCare taken at smal! applied shear strains. They 

consists of Bragg peaks arranged in two circles around the central beam that is dimmed 

hy a beam stop. The first order Bragg peaks forma hexagonal arrangement with a background 

Debye ring, indicating an imperfect periadie lattice formed by the collo i dal particles. The 

Bragg peaks of thesecondorder ring are partially smeared out and it is therefore difficult 

to pinpoint their location. 

TI1e experimental results indicate that an oriented colloidal crystal was fonned during 

the filling procedure. On increasing the strain the Bragg peaks and thus tbe colloidal Cl)<stal 

disappear as can beseen on the pattem D, E and F. In the transition region however (pattem 

D and E) the colloidal particles form an intermediale structure which suggests the arrangement 

of ebains of colloidal particles that form an optica! gnd in the flow direction [3]. This is 

reflected in two bright Bragg peaks intheupper and lower part of the scattering pattern. 
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Figure 35 Rheo-optical scattered patterns for a number of different strains as indicated 

by the capitals in Figure 36. 
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In the presence of crystalline structures, colloidal suspensions are expected to exhibit Bragg 

scattering, provided there is an appropriate opacity of the sample. Several researchers 

[4],[5] have publisbed rheo-optical static light scattering results of suspensions, usually under 

steady-shear rate conditions. In order to characterize the degree of long-range orientational 

order in a sheared suspension Chow & Zukoski [SJ introducedan order parameter OP 60 

by writing for the scattered intensity I(OJ of the fust order scattering ring (in the velocity /vorticity 

plane): 

(168) 

where the Ok is the angle measured from the velocity axis. The average intensity is given 

by 1/N [E,I(O,)] and I=, is the maximum intensity of all I(O,) measured. We wil! take this 

parameter to discuss the connections between the theoretica! modeland the experimental 

results. 

In Figure 36 are displayed theelastic modulus of the suspension together with the value 

of the order parameter OP 60 bath for increasing and decreasing strains. The experimental 

investigations show that close to the minimum in G' the Braggpeaks disappear as indicated 

by a decreasing OP 60 value. While in the measurement with a decreasing amplitude (down) 

the minimum in G' shows a coincidence with the disappearance of the Bragg peaks. In 

the "up" measurement there is a difference between the position of the miillmum in G' 

and that of the decrease of OP60. 

7.5. Discussion 

We have chosen three different systems of colloidal suspensions, wtth quite different 

rheological properties. We expect therefore different structures to be responsible fortheir 
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rheology. Here we will compare the experimental results with the theoretica! model of 

the in Chapters 3-6. 

The glass/glyceroljwater suspension with <1>=58% as shown in Figure 26 has a 

rather constant and smallelastic modulus for small strains that gradually increases with 

increasing strains. The phase angle is however very high. Fr om this result the theoretically 

expected strain dependence, with a minimum in G', caooot be confirmcd. At first sight 

one wou!d expect that the equilibrium phase is a colloidal crystal. lt is however known, 

that such a crystal phase cannot occur for polydisperse colloidal systems. The rheological 

properties for small strains indicate a highly viscous concentraled glass-like structure. 

The dependenee of the viscosity on the shear rate is shown in Figure 28. F rom this 

the critica! shear rate of this suspension at the maximurn viscosity can be determined to 

be i'c"" 10 s-'. The minimum in the viscosity of the glassjglycerol/water suspension can 

be obtained from Figure 28 to be ~ ~8 Pa.s. Theelastic modulus of the colloidal crystal 

in equilibrium as derived from Figure 28 in the high frequency limit for smal! strains is 

G0 n 2 Pa. The theoretica! predietien of the critica! shear ra te, according to i'c~4 00/~, 

is therefore i'c""' 1 s·1
, while the experimental maximum is at i'c= 10s"1

• ThJs discrepancy 

is though not to be serious since the model in chxpter 6 was derived on the basis of monodisperse 

particles but the glass particles have a relatively broad size distribution leading to deviations 

from the expected theoretica! result. 

The storage modulus ofthe PMMA/silicon oil suspension in Fig. 29 shows a minimum 

for low volume fractions. The storage moduli in these suspensions are significantly higher 

than in the glas,jglycerolfwater suspension, while the phase angles are lower. Our interpretation 

is therefore that a colloidal crystal is present at smal! strains for the volume fractions 

<1>=0.49 and <1>=0.57. On increasing the strain the structure changesintoa colloidal glass 

(Chapter 5), a disordered structure of colloidal particles with a non-zero elastic modulus. 

The minimum disappears for the higher volurne traelions <!> =0.58 and <!> = 0.6. Apparently 

these highly concentraled suspensions farm a colloidal glass structure during prepara ti on 

and are not able to forma colloidal crystal within an experimentally accessible timescale. 

Fig. 29 suggests that the uansitional strain, althe minimum in G'. deercases with 

increasing volume fractions. On the other hand the model in Chapter 5 prediets that the 

distance to the transition into a colloidal fluid increases with increasing volurne fraction. 

Thns an increase of the critica! strain could be expected to be accompanied by a deercase 
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of the intemal relaxation time on increasing volume fraction. The occurrence of the colloidaJ 

glass not taken into account in the model in Chapter 5 may be responsible for the qualilalive 

difference. The frequency dependenee of G' (Fig.30) at the higher volume fractions (<I>= 0.58, 

<1>=0.6) differ from that at the lower volume fractions (<1>=0.49, <1>=0.57). The latter show 

the expected increase of theelastic modulus for increasing frequencies, approaching the 

value of a modulus independent of the frequency. The phase angle indicates that the relaxation 

time at the lower volume fractions is relatively high compared to the values found at high 

volume fractions. 

Continuous shear experiments have been carried out indicating a yield stress of 

the samples. However no shear thickening of these suspensions could be detected within 

the measuring range of the rheometers employed. 

A very pronounced transition could be found in the measurements for PVC/DOP 

with <I> =0.57 (Fig. 32) with a minimum in G' and a maximum in the phase angle as qualitalively 

expected from the model in Chapter 4. Note however that this experiment is not exactly 

conforming to the theoretica} requirements, in which a very small asciilating amplitude 

is superimposed on a static deformation. The cri ti cal shear strain found from the minimum 

in G' in Fig. 32 is at U0'q=0.8. A similar result bas been found for slightly flocculated 

ferric-oxide suspensions by Kanai & Amari [11], but with critica! strains between 0.1 and 

1. The reason for this 'strain·thickening' in a flocculated suspension is at present nat clearly 

understood. However the results by Kanai & Amari can be interpreted by means of a shear 

induced transition, when we assume that their preshear procedure has led to a stable colloidal 

crystal-like structure, which is being broken up by increasing strains. 

The fact that the minimum in G' for the "down" measurement is different compared 

to the "up" measurement indicates the existence of metastabJe states. This is supporting 

evidence for the existence of a first order character of the transition. 

In Fig. 31 on approaching the transition in the stress signal a contribution twice 

the frequency of the strain signal is shown to be theoretically expected. This effect is nat 

pronounced in the experimental results. However the minimum of G' is nat a very sharp 

at the transition. This is in difference to the assumtions in the theoretica! calculations. 

The frequency dependenee of Fig. 33 indicates, that on increa1ing the frequency 

a frequency independent slorage modulus is approached as expected from Lhe model in 

Chapter 5. 
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Figure 34 presents acontinuous shear measurement ofthe PVC/ DOP suspension. 

Aftera shear tb inning region, shear thkkening occurs with its maximum at 'Yc z6 s·'. A 

calculation of the critica! shear rate can be performed. When we estimate the elastic modulus 

from Figure 32 to be G0 • 2000 Pa and estimate the visoosity from its minimum in Figure 

34 to be ~z 1400Pa.s, we obtain to .Yc•5.7 s·' which is ingoed agreement ;vith !he experimental 

value. 

lt is eviden~ that tbc size and !he size distri bution of the dispersed particles de termine 

the structurat and rheological properties of a suspens ion. The PVC particles have a narrow 

size distribution, allowing the formation of a long range colloidal crystaL Increasing the 

spread of the size distribution inhibits the crystal formation. The size distribution of the 

PMMA particles is oomparabie with that of the glass particles, leading to a similar rheological 

behaviour for high volume fractions. The PMMA particles are small compared to the 

PVC or glass particles leading to a relatively high elastic modulus for small strains. 

The fact that for the suspension with small particles no shear thickening could be 

found can, in the sense of the model in Chapter 6, he explained by the absence of a periodically 

laycred structure. Th is can either be due to an increa>ed Brownian motion of the particles 

( condition of the strong coupling is lost), or tothefact that the highelastic modulus prevents 

the particles from forming a layered structure. 

Therheo-optical investigations allow thesimultaneousdetermination of the imegral 

rheological properties and the local microscopical structure. For small strains the Bragg 

peaks indicate a colloidal crystal for the case of a PVC/DOP suspension. 1bis colloldal 

CI)'Stal is stabie against smal! oscillations. From the equilibrium phase diagram a colloidal 

fcc-crystal can be eÀ-pected (Chapter 3). According to the modelin Chapter 5 the colloidal 

crystal is expected to melt under the influence of an applied shear strain. The colloidal 

crystal changes into a disordered glass structure. The results of Fig. 35 and Fig. 36 are 

Jn agreement with this idea. 

The order parameter OP"" indicating the presence of a long range periadie order, 

deercases close to the critica! s1rain, and the Bragg peaks disappeaL The transitional strain 

values indkating the microstructural changes, can also be obtained from the point of a 

rapid increa>e of tbe value of 0 P 00• The transitional va! u es as obtained from t he measurement 

with increasing and decreasing strain (up and down), derived from the order parameter 

OP 60 can be interprered as a hysteresis effect. The glass structure can be metastable in 
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the transition region in accordance with the fitst order character of this structural transit ion. 

Additionally, in the transition region two pronoorreed Bragg peaks remain visible, 

indicating the accurance of a string-like structure. This string structure is not present in 

the equilibrium phase diagram and v.ill therefure be inteipreted as a shear induced non-equilibriwn 

strncture. lt is not included in the simp Ie thennodynamic model in Chapter 6. The accureenee 

of this structure can be understood from the formation of a non-equilibrium strncture by 

oscillations with a frequency which is of the order of the relaxation time of the critica} 

fluctuations. A similar structure bas been obtained e.g. by Yan and Dhont (3]. The aceurenee 

of this structure will lead to deviations of the expected rheological properties near the 

transition from the theoretica! model. 

7.6. Conclusions 

The dynamic shear properties of glassin glycerol/water, PMMA in silicon oil and 

PVC in DOP suspensions has been investigated at volume fractions 0.48 <<I>< 0.6. The broad 

size distributions of the glass and PMMA particles prevents the occurrence of a colloidal 

crystal at high volume fractions; instead a colloidal disordered glass structure is formed. 

While the suspension with a crystalline structure shows a minimum in theelastic modulus 

with increasing strain, this dependenee is absent in the coiloidal glass structure. 'The experimental 

investigations suggest that the statistica! model (Chapter 5) of a shear induced transition 

indeed allows the interpretation of the obtained results. This model is basedon the assumption 

that a colloidal crystal becomes unstable under an externally applied shear strain. This 

instability is accompanied by the occurrence of a minimum in G' at the critica! strain, where 

the global structure changes. The narrow size distribution of the PVC particles allows 

the investigation of the colloidal crystal by rheo-optical techniques and the simultaneous 

determination of the storage and the loss moduli. Rheo-optical investigations confirm the 

idea that a shear strain can induce a strocrural transition in concentraled colloidal suspensions. 

On increasing the applied sbear strain the initially existing Bragg peaks disappear and 

a Debye ring appears indicating a globally disordered structure at the critica! strain. At 

the transition however devîatîons are found which indicate a string~Iike structure. 

At contirmous shear only the suspensions with large colloidal particles show shear 

thickening. The model of an acoustic resonance instability in sheared colloidal suspensions 
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(Chapter 6) provides a critica! shear rate. A good agreement between the calculated and 

measured critica! shear rate has been found. 
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CHAPTER IV. 

CONCLUSIONS 

A number of theoretica! and experimental investigations have been carried out in 

this thesis on colloidal suspensions. The work was focused however on the rheology of 

electrically stabilized concentraled suspensions. The equilibrium structure delermines 

the rheological properties under small shear perturbations. In order to determine the 

equlibrium structure the phase diagram of electrically stabilized suspensions bas been 

calculated, by means of a statistica! theory. Based on this perturbation theory the 

stability regioru of a colloidal !luid, crystal and a liquid phase have been obtained in 

the volume fraction-Debye parameter phase diagram. The liquid phase corresponds to 

a flocculated structure. The shift of the coexistence lines for various interaction 

potentials shows, that the liquid phase is not present for small attractive farces. On 

increasing the attraction, a critica! and a triple point neeure accompanied with a liquid 

phase. lncreasing the repulsive force leads to a shift of the critica! and triple points 

and also to a shift of the coexistence lines to lower values due to an increased 

effective diameter. 

Whereas the transport properties of equilibrium phases is given by the 

corresponding structures, close to the coexistence lines critical fluctuations may pJay 

an essenHal role. This is because critical fluctuations rule the transpon processes near 

phase transitions. We are inte.rested in the rhcology of structures close 10 structural 

phase transitions. Therefore a model was derived hased on the Landau theory of 

phase transitions. It is based on the idea that close to a structural transition the free 

ener&'Y can be determined by studying the change of the symmetry properties at the 

transition. This thermadynamie model allows the calculation of the dynamic shear 

properties near a transition by applying a mode coupting theory. 

According to this model a deercase of the starage modulus and an increase of the 

loss modulus are expected on approaching the phase transition, while the modulus of 

both phases is non-zero (e.g. erystal-liquid transition). The model does not allow a 

quantitative determination of the starage and the loss moduli. However in the 
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hydrodynamic limit close to the transition a characteristic increase of the viscosity of 

the form ~-(<f>·<I>. )'15 aud of the elasic mudulus G-(<I>-<1>. t0
·
5 as a function of the 

volume fraction has been derived. Camparing this theoretica! findings with 

experimental results from the literature indicate that the transitional effects influence 

the rheological properties. A qualilalive and somelimes semi-quantitative agreement 

between the model and the experimental data could be found. 

From a thermadynamie point of view the transition Jines of the equilibrium phase 

diagram are unstable against external perturbations. This has been shown e.g. by 

numerkal simulations under an applied shear strain. A generalization of the model 

descrihing the rheology near a phase structural transition derived in this thesis allows 

the interpretation of this shift of the phase lines as a shear indoeed transition. 

According to this idea a static shear strain can break up a colloidal crystal 

accompanied by a similar varlation of the rheological properties as in the case of a 

undisturbed transition. A minimum of the elastic mudulus and a maximum of the 

phase angle at the critica! shear strain is expected. 

Coneerning this static shear induced transition various experimental investigations 

have been carried out on three diffrent types of suspensions, a glass in glycerol/water 

suspension, PMMA in Silicon oil suspensions and a PVC in DOP suspension. While 

the first two suspensions were characterized by a rather broad size distribution, the 

latter was monodisperse. For the polydisperse glass in glycerol/water suspension no 

colloldal crystal phase is expected and no indicalion of a shear induced transition 

could be found. However a very pronounced transition in the rheological properties 

could be observed for the PVC in DOP suspension with a minimum in G' and a 

maximum in the phase angle at the transition. On this sample rheo-optical 

investigations were performed. 

For investigating changes in the structure of a suspensions, a rheo-optical setup 

was built Jt consists of a transparent plate-plate geometry mounted on a Sangamo 

RIS Weissenberg Rheogoniometer. Static light scattering was performed on the PVC 

in DOP sample perpendicular to !he flow direction. For small strains Bragg peaks 

were obtained, indicating the presence of a colloidal crystal structure. This crystal 

structure disappears on increasing the strain. and a Debye-ring occured. The varrishing 

of the Bragg peaks was accompanied by a decrease of the elastic modulus and an 
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increase of the phase angle. This experimental result agrees with the model 

assumtions1 tbat on increasing the slrain on a co1loidal crystal~ the latter changes into 

a disordered structure accompanied by critica! flutuations. 

Another model was developed concerning a continouus shear experiment. A 

continous sbear can induce a non-equilibrium ordered structure, as known from 

numerical simulations. This continous sheared structure consists of hexagonally dose 

packed layers in the shear gradient direction slipping over each other. This process 

causes a periadie variation of the elastic modulus perpendicular to the flow direction. 

Studying the corresponding hydrodynarnic equations, an acoustic resonance effect has 

been established. A maximum of the viscosity occures (shear thickening) at a critica! 

shear rate given by i',= ~G/11, where Ç is a constant, G the elastîc modulus of the 

sheared two- dimensional hexagonal C!)'Stal and 11 the viscosity of the suspension, The 

comparision with experiments indicates that ~ =4. Although the glass in 

glyceroljwater suspension deviate from the predietod value, tor the PVC/DOP 

suspension a good agreement between the theoretica! and the experimental resuhs 

could be obtained. 
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SUMMARY 

Structural Transitions and the Rheology of Soft Sphere Suspensions 

In this thesis theoretica! and experimental investigations are presented devoted 

to the rheological properties of concentrated colloidal suspensions. The theoretica! 

approach is based on three basic ideas: 

1. The rheology of colloidal suspensions at equilibrium close to a phase 

transition is changed by the presence of critical fluctuations. 

2. The equilibrium structure of a colloidal crystal is unstable against 

perturbations by shear. This instability can be viewed as a shear induced structural 

transition. 

3. A continously sheared suspension forms a non-equilibrium periodic structure 

with a periadie variation of the shear modulus in the shear gradient direction. This 

modulation leads to a flow instability which can be described as an acoustic resonance 

accompanied by an increase of the viscosity (shear thickening). 

First a perturabtion approach was developed to calculate the equlibrium phase 

diagram of electrically stabilized colloidal suspensions. 

Applying a Landau theory with a suitable expression for the free energy 

together with a mode-coupling dynamics to the structural transition, the shear 

properties of concentrated suspensions were determined in a qualitive sense. A 

comparision between the predicted rheological behaviour and the experimental 

investigations indicates a good agreement. 

This concept has been developed further to the region of high shear 

deformations. With the model of a shear induced structural transition, established in 

this thesis, the strain dependent rheological properties of a colloidal crystal have been 

given qualitatively. 

Based on the assumption that a continous shear induces a periadie modulation 

of the elastic modulus, a hydrodynarnic model for the rheology has been developed. 

This model prediets an acoustic resonance leading to an increase of the viscosity of 
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the sheared suspension when resonance conditions are approached. This increase 

corresponds to shear thickening in concentrated suspensions. Good agreement 

between the calculated critical shear rate and the experimental data has been found. 

The experimental part of this thesis focuses mainly on the shear induced 

structural transition. A rheo-optical setup has been developed to simultaneously 

determine the rheological and the microstructural properties of a sheared suspension. 

The shear induced structural transition and its influence on the rheological properties 

bas been confirmed by experiments. 
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SAMENVATriNG 

Structurele Overgangen en de Reologie van Zacht Bol Suspensies 

In dit proefschrift worden theoretische en experimentele gegevens 

gepresenteerd op het gebied van de reologische eigenschappen van geconcentreerde 

colloïdale suspensies. De theoretische aanpak is gebaseerd op de volgende 

basisgedachten: 

1) In de buurt van een fasenovergang verandert de reologie van een colloïdale 

suspensie in evenwicht sterk ten gevolge van kritische fluctuaties. 

2) De evenwichtsstructuur van een colloïdaal kristal is niet stabiel onder 

kleine afschuifstromingen. Deze instabiliteit kan beschouwd worden als een door 

afschuifstroming geïnduceerde, structurele overgang. 

3) Een suspensie onder continue afschuiving vormt een niet­

evenwichtsstructuur, met periodieke veranderingen van de shear modulus in de 

richting van de afschuifsnelheidsgradient. Deze modulaties leiden tot een instabiliteit 

van de stroming die het best beschreven kan worden als een akoestische resonantie 

die leidt tot een toename van de viscositeit ('shear thickening'). 

Het wordt het evenwichtsfasendiagram voor een electrastatisch gestabiliseerde 

colloïdale suspensie berekend. Door de Landau theory, met een geschikt gekozen 

uitdrukking voor de vrije energie, te combineren met 'mode-coupling dynamics' voor 

de structurele overgangen konden de afschuifeigenschappen van geconcentreerde 

suspensies kwalitatief bepaald worden. Er bestond redelijke overeenstemming tussen 

het voorspelde reologische gedrag en experimentele gegevens. Met het model van 

door afschuifstroming geïnduceerde fasenovergangen, ontwikkeld in dit proefschrift, 

konden de snelheidsafhankelijke reologische eigenschappen kwalitatief bepaald 

worden. 

Uitgaande van de aanname dat een continue afschuifstroming gepaard kan 

gaan met periodieke modulaties van de elastisiteitsmodulus werd een 



hydrodynamische model voor de reologie opgesteld. Dit model voorspelt akoestische 

resonantie, die tot een toename van de viscositeit leidt als de 

resonantieomstandigheden bereikt worden. Deze toename komt overeen met 'shear 

thickening' in geconcentreerde suspensies. Er is goede overeenstemming gevonden 

tussen de berekende, kritische afschuifsnelheid en de experimentele gegevens. 

Het experimentele gedeelte van dit proefschrift is vooral gericht op de door 

afschuifstroming geïnduceerde structurele overgangen. Een reo-optische opstelling is 

ontwikkeld om gelijktijdig zowel de reologie als de microstructuur van een suspensie 

onder afschuifcondities te kunnen bestuderen. De experimenten bevestigen de door 

afschuifstroming geïnduceerde structurele overgang en zijn invloed op de reologische 

eigenschappen. 
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Roman symbols 

A 
A 
A(O) 

A(t> 

a 
~ 
B 
b 
c 
Cu: 
c 
D 
De 
De 
d 
dA 
dV 
Edis 

FHs 
pdis 

f 
fo,fo' 
G 
G 
Go 
G' 
G'H 
G" 
G"H 
GHo 
GLO 
gHS 

go 
gl 
g(ri,t) 
H(t) 
h 

Hamaker's constant 
deformation amplitude vector 
zero order amplitude vector 
first order amplitude vector 
partiele radius 
free dimensionless parameter 
coefficient 
damping coefficient 
salt concentration 
transitional salt concentration 
sound velocity 
dimension of the system 
Deborah number 
critical dimension 
centre to centre distance between particles 
surface element 
volume element 
dissipated energy 
Bulers number 
unit vector in x,y,z-direction 
electron charge 
free energy 
free energy at the transition 
hard sphere free energy 
dissipative force 
free energy density 
free energy density independent of the order parameter 
Gibbs free energy 
elastic shear modulus tensor 
isotropie elastic shear modulus 
storage modulus 
high symmetry storage modulus 
loss modulus 
high symmetry loss modulus 
elastic modulus of the high symmetry phase 
elastic modulus of the low symmetry phase 
hard sphere correlation function 
group of high symmetry operations 
group of low symmetry operations 
fluctuating term 
Green function 
distance between the surfaces of the particles 
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h, 
I 
J(k,O) 
JHI 

JH2 
Ju 
JL2 

j 
K 
k,k' 
kB 
ko 
L 
M 
N 
Nn 
N. 
n 
OP60 

p 
Pe 
p,,p2 
Q 
Oo 
q 
.Q 
qo 
qOO,qOI,q02 
R 
r,r' 
s 
~ 

T 
TA 
TR 
Ttr 
t,t' 
u 
u 
UHS 
up 
Uo 
Uo(q 

u 
~(q 

Uo 
y 

Vo 

Green tunetion 
constant 
perturbation integral 
correction of the high symmetry storage modulus 
correction of the high symmetry loss modulus 
correction of the low symmetry storage modulus 
correction of the low symmetry loss modulus 
complex number 
wave vector 
wave vector 
Boltzmans constant 
specific wave vector 
Operator 
constant 
number of particles 
number of next nearest neighbors 
Avogadro number 
number density 
order parameter 
pressure 
Peelet number 
solutions of a dispersion relation 
phase wave vector 
surface charge 
order parameter; i.e. amplitude of the reciprocal lattice density wave 
displacement vector as the order parameter in Appendix A 
equilibrium value of the order parameter (2. order) 
equilibrium value of the order parameter (1. order) 
constant 
distance vector 
Barker Hendersou parameter 
symmetry transformation matrix 
temperature 
temperature parameter 
temperature parameter 
transitional temperature 
time 
interaction energy 
amplitude vector 
two partiele hard sphere interaction energy 
two partiele attractive perturbation energy 
amplitude of a periodic deformation 
critical shear strain amplitude 
strain tensor 
critica} shear strain 
extemal shear strain 
velocity vector 
simple shear flow velocity 



Symbols 

Wo 
wl 
~ 
x 
x 
XM 

x", 

~s 
z 

repulsive potential 
attractive potential 
deformation tensor 
displacement vector 
reduced center to center distance 
distance to the maximum of the interaction potential 
distance to the secondary minimum of the interaction potential 
hard sphere function of state 
valency of the ions 

Greek symbols 

. 
0! 

O!o.O!nO!c,O!~ 

O!tr 

O!oo, O!oJ> 0!02 

{3' 
r 
'Y 
i' 
i'o 
i'c 
ó 
ox,óy,Óz 
óîk 
ó(t) 
ós 
óv 
óh(k) 
óh(r) 
(óq(k)2

) 

óq(r,t) 
oqo 
óql 
op 
€ 

distance to the transition 
free parameter 
free parameter 
transitional value of a 
transitional values of a of a first order transition 
constant 
parameter 
coupling constant 
shear rate (scaled) 
shear rate (macroscopie) 
crideal shear rate 
phase angle 
reflections about the x,y,z planes 
KroneekeT symbol { Oik 1 if i= k else Oik = Ü} 
Dirac ó-function 
small parameter 
velocity variation 
wave vector dependent perturbation 
space dependent perturbation 
wave vector dependent order parameter correlation function 
space and time dependent order parameter perturbation 
undisturbed order parameter 
disturbed order parameter up to the first order 
density increment 
small parameter 
relative dielectric constant 
dielectrie constant of vacuum 
positive free parameter in the free energy 
viscosity of the suspension 
parameter in Casson's equation 
low shear viscosity of the high symmetry phase 
low shear viscosity of the low symmetry phase 
low shear viscosity 
viscosity of the solvent 
isotropie shear viscosity 
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[ 11] intrinsic viscosity 
()t. angle between Bragg peaks 
K reduced Debye redprocal length 
Ko Debye redprocal screening length 
Ko Debye redprocal screening lenght of a dilute sample 
À. free parameter 
X" components of the irreducible set 
" free parameter in the free energy 
Z coupling term 
~ free parameter 
~s Stokes factor 
~0 correction parameter for the high shear viscosity 
'Ir 3.1415 ... 
p density of the suspension 
p1 density of the viseaus medium 
p2 density of the elastic medium 
Ptt density at the transition 
u effective partiele diameter 
g stress tensor 
u1 viseaus medium stress tensor 
j elastic medium stress tensor 
uc parameter inCasson's equation 
cf..C! critical shear stress 
u0 partiele diameter 
r relaxation time 
re time scale of the experiment 
r, internal relaxation time 
v free parameter 
<I> absolute volume fraction 
<1>

0 relative volume fraction 
<~>tr transitional volume fraction 
<I>g maximal random packing fraction 
<I>hcp maximal volume fraction of hexagonal elosed packed layers 
<~>m maximal volume fraction 
<I>P perculation threshold volume fraction 
x damping coefficient 
'~'t. irredudble set element 
'Ir o surface potential 
1/lo dimensionless parameter 
0 frequency 
00 extemally applyed frequency 
w frequency 

Subscripts 

i,k,l pertains vector index 
ik pertains to matrix 
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Stellingen 
behorende bij de proefschrift van 

J. Kaldasch 

1. Shear thickening kan beschouwd worden als een Poincaré-catastrofe; zodra 
interactie tussen de deeltjes optreedt, wordt de ongestoorde beweging van 
de colloïdale deeltjes verhinderd door resonantie. 

2. Sturing van shear thickening van geconcentreerde dispersies is mogelijk 
door aanleggen van een magnetisch veld op 'zachte' deeltjes met een klein 
magnetisch moment. Het biedt interessante, technische mogelijkheden 
voor de toepassing in mechanische dempings- en koppelingssystemen. 

3. Omdat shear thickening een verschijnsel is dat het kollektief gedrag van 
een groot aantal deeltjes beschrijft, is de golf-beschrijving zoals in dit 
proefschrift voor het eerst gepleegd is beter van toepassing dan de 
deeltjes-beschrijving. 

4. De enige voorwaarde voor een akoestische resonantie zijn het bestaan van 
monodisperse deeltjes die tijdens afschuiving een peroidiek rooster 
vormen. Dit verschijsel zou sich dus ook voor kunnen doen in vloeibare 
kristallen en zelf in malekulere materialen zoals water. 

5. Het fluctuatie-dissipatie theorema eist dat stationaire processen constante 
transport eigenschappen bezitten. De studie van de reologie van 
geconcentreerd suspensies met shear afhankelijke transport parameters is 
daarom eigenlijk een studie van de overgangen in zo'n systeem. 

6. The shear induced order transition in colloidal suspensions can be viewed 
as a non-equilibrium structural transition. 

7. Wissenschaftliche Arbeit is ein schöpferischer ProzeB, der in der Suche 
nach neuen Kombinationen von Relationen im Zusammenhang mit einem 
Problem besteht. Es dauert seine Zeit bis man den Sinn oder Unsinn 
dieser neuen Beziehungen erkennt. 

8. Kritische fluctuaties in de samenleving van mensen leiden tot een intensief 
gewaarworden van hun leven. 

9. Het is eigenlijk al te laat, als zich in de samenleving een meerderheid voor 
een verandering aftekent. 

10. Een van de meest fundamentele bronnen van onrecht in onze 
maatschappij, de werkloosheid, kan niet overwonnen worden zolang men 
arbeid fiscaal belast. Alleen indien men zich van deze koppeling ontdoet 
en in plaats daarvan belastingvoordelen verbindt aan ecologisch 
verantwoorde produktiekringlopen, kan zich een maatschappij in harmonie 
van mens en natuur ontwikkelen. 



11. Het feit dat de Nederlandse politie niet optreedt tegen fietsendieven, is, 
één van de belangrijkste redenen achter de mislukte terugdringing van het 
aantal fietsendiefstallen. 




