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CHAPTER 1L

GENERAL CONSIDERATIONS AND OVERVIEW

1. Introduction

This thesis deals with structural transitions of colloidal suspensions and the
related rheological phenomena. We will focus our interest on concentrated colloidal
suspensions. These systems are highly viscoelastic materials showing a number of flow
phenomena not yet clearly understood.

This study originated as a followup of previous work by Boersma [1], that was
focused on shear thickening and flow blockage of concentrated colloidal dispersions.
The theoretical and experimental results of that work indicate an intimate connection
between the dispersion microstructure and the macroscopic transport properties.

While the rheology of low volume fraction suspensions can be understood
analytically by the hydrodynamics of a small number of particles it is a hopeless task
to apply these techniques to very concentrated dispersions. A more appropriate
approach is to focus on the global structures formed by the colloidal particles and to
study their long time scale behaviour. In particular, transitions between structures are
accompanied by a dramatic change in the transport properties.

With this idea in mind the approach in this thesis will be to study equilibrium and
non-equilibrium structural transitions of colloidal suspensions and discuss the related
rheological phenomena. Experimental investigations will be carried out on one of
these transitions in concentrated colloidal suspersions, by means of rheological and
light scattering techniques.

In this chapter we will introduce the terminology that will be used throughout the
book. The appropriate terms are emphasized by italic letters. Further we will give a

short overview of the main ideas and some results of this work.
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Structures

The thermodynamic system we will study is an assembly of colloidal particles
dispersed in a medium without particle exchange (canonical ensemble). The rheology
of such a colloidal suspension can be understood from the transport properties of
structures formed by the colloidal particles. By a structure we understand the
arrangements of the colloidal particles as distributed over space and time. The order
of a structure can be characterized by its symmetry properties, i.e. the set of allowed
symmetry operations that transforms the system into itself.

Depending on the magnitude of an applied shear perturbation we classify the
structures in equilibrium and non-equilibrium structures. The first type is found in a
colloidal suspension in equilibrium, while its transport properties can be determined
from the stress response to small shear perturbations. The second type of structures

occurs as a result of large shear perturbations.

Equilibrium Structures in Soft Sphere Suspensions

We will confine our considerations to soft sphere suspensions, which consist of
particles with a repulsive interaction potential U(r) that decreases with U(r) ~r1?
while 1<x=<12 {2]. While the interaction potential of hard spheres originates from a
hard core repulsion (Born repulsion), soft sphere particles have a ‘“long range"
interaction.

The equilibrium structure is, amongst others, a function of the three variables:
the temperature T, the volume fraction ¢ of the particles, and the Debye screening
parameter kp Travelling through the space of the state variables a variety of
structures appear together with a wide variation in the transport properties.

We restrict our considerations essentially to electrically stabilised colloidal
suspensions, with an interaction potential composed of a Coulomb repulsion and a

van der Waals attraction, as described by the standard DLVO-theory [3],[4]. In most
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cases use was made of the repulsive interaction potential as derived from the DLVO-
theory using the superposition approximation. The characteristic two particle
interaction potential of electrically stabilized colloidal particles consists of a secondary
minimum followed by a Coulomb barrier and a primary minimum formed by the van
der Waals attraction.

The equilibrium phase diagram of soft sphere suspensions will be analyzed in this
thesis in chapter I3 An approximation of the interaction potential between
electrically stabilized colloidal particles as introduced by Victor & Hansen [5] will be
combined with a perturbation approach as developed by Gast et. al. [6]. The
dependence of the transition lines in the «-® phase diagram will be calculated for a
number of interaction potentials.

The electrostatic stabilization leads to a rather complex phase diagram
schematically depicted in Figure 1, for the condition of constant temperature. We will
use the nomenclature for the different phases introduced by Pusey [7]. Colloidal
particles at low salt concentrations are known to form a bcc-crystal structure, where
the colloidal particles are arranged in a bec-lattice [7],[8],[9],[10].

On increasing the salt concentration the bcc-crystal becomes unstable and is
converted either into a fcc-crystal structure [11],[12] at high volumefractions, or at low
volumefractions into a colloidal fluid phase [14]. The latter phase consists of freely
moving hard-sphere-like colloidal particles (Brownian particles) distributed at
random.

The colloidal fluid phase at intermediate volume fractions becomes unstable with
increasing salt concentrations and separates into a colloidal gas and a colloidal liquid
phase due to a flocculation into the secondary minimum [5]. The freely moving
colloidal particles can form flocculation clusters when they collide. These flocculated,
disordered clusters (colloidal gel) form the colloidal liquid phase. This phase differs
from the fluid phase by the presence of an infinite percolation cluster built up of the
colloidal particles dispersed in the medium. Due to this cluster the colloidal fluid has

a non-zero elastic modulus. This phase can also be viewed as a less compact colloidal
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glass, because a glass is an amorphous state formed here by the colloidal particles in
the medium.

A further increase of the salt concentration lets the particles coagulate into the
primary minimum, when the Coulomb barrier disappears.

Starting from the fluid phase on increasing the volume fraction a transition into a
colloidal fec-crystal occurs [131,[15],[16],[17]. For this first order transition the
coexistenice lines are drawn in Figure 1.

A further increase of the volume fraction leads to an increase of the relaxation
times of internal fluctuations. Recent theories [18],[19],[20] and computer simulations
have suggested that an assembly of hard spheres, when compressed rapidly enough to
bypass crystallisation forms a merastable glass structure at $,=0.58 [7]. Beyond this
volume fraction of hard spheres only a closed packed crystal can survive up to the

maximum volume fraction of &,=0.74.
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Figure 1 Schematic phase diagram of electrically stabilized colloidal suspensions.
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Transport Processes and Structures

Let us consider a colloidal suspension under an external perturbation at a time
scale 7.. As a response, internal transport processes occur at a time scale 7, by e.g.
diffusion, convection etc. These processes can be classified into three groups (Fig.2)
according to the ratio De=r/7,, known as the Deborah number, with 7, the
characteristic relaxation time of the structure and the experimental time scale 7, :

1. De»1; ie. the internal transport processes of these structures are on a
macroscopic time scale if compared to 7. The structure will instantaneously follow
the applied perturbation on the time scale of the measurement, without relaxation
into the unperturbed structure. The internal relaxational transport and the resulting
dissipation can be neglected to a large extent and the suspension behaves essentially
as an elastic solid. A colloidal crystal structure behaves in that way.

2. De<1; i.e. the internal transport processes occur at a microscopic time scale if
compared with the time scale of the measurement. The suspension relaxes quasi-
instantaneously into the unperturbed state and dissipates the applied perturbation
energy into heat. This viscous response occurs with the colloidal fluid structure.

3. De = 1, i.e. the time scale of the internal transport processes are of the order
of the time scale of the shear perturbation. On this mesoscopic time scale the
transport processes are strongly influenced by the nature and the amount of the
perturbation; a viscoelastic response will occur. Characteristic structures at this
mesoscopic time scale are thermal and entropic fluctuations like e.g. the Brownian

motion of the colloidal particles , fractal clusters (flocs), critical fluctuations etc.
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Figure 2 Equilibrium and non-equilibrium structures as a function of the magnitude
of the shear perturbation and the Deborah number De.

The Rheology of the Equilibrium Structures

A viscous structure (De# 1) in the phase diagram is the colloidal fluid (gas)
phase. A great number of authors have studied the transport properties of this phase,
which can be treated by the motion of hard sphere particles. They usually employed
hydrodynamic methods [21],]22],]23],[24]. The interaction of soft spheres in the fluid
phase can be simplified by an effective hard sphere diameter for which one may apply
the results by Einstein [25] and Batchelor & Green [26], who calculated the increase
of the viscosity with the volume fraction [27],[28],]29],[30]. The mechanisms of
transport processes in the fluid phase have been investigated also using colloidal
hydrodynamic methods for both equal {31],[32] and unequal spheres [33],[34]. These
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methods have been applied to the periodic colloidal crystal phase as well [35],[36].

The colloidal crystal and glass structures behave viscoelasticlly. The usual
approach with these materials is to generate a phenomenological equation of state by
combining the viscous and elastic responses in a rather simple way [37]. Such
equations have no direct relation to the microscopic structure and we will therefore
follow the other path of relating the microscopic transport processes to the
corresponding  internal structures; a similar approach was successful in the
description of polymers [38],{39].

The fcc- and bee-crystals can essentially be characterized as elastic solids. The
rheology of these structures have been described by studying the deformation of a
periodic assembly of colloidal particles on a macroscopic time scale [40],[41],[42]

The colloidal liquid phase is a viscoelastic, disordered glass containing an infinite
network of flocculated colloidal particles. The transport processes of these aggregated
structures are determined by the disruption of the network and the formation and
break up of clusters (flocs) on a mesoscopic time scale [43], [44], [45], [46].

Near the transition regions of the equilibrinm phases long scale fluctuations occur
with transport processes on a mesoscopic timescale. A phase transition is
accompanied by a softening of the thermodynamic potential leading to a pronounced
increase of long scale fluctuations. These "critical” fluctuations having long relaxation
times ("critical slowing down"), are of a universal nature and have been studied e.g. in

connection with binary fluids [47], nematic liquid crystals [48] and polymers [39].
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Structural Transitions

In this thesis we will focus our attention on the rheology near structural transitions
between the equilibrium phases of soft sphere suspensions. We will employ methods
developed in the statistical mechanics of structural phase transitions in solids [49].
The advantage of using these methods here is that a direct relation between the
variation of the microscopic structure and the rheological properties can be
established. Both can be measured independently and compared with the theoretical
outcome.

A structural ftransition is characterized by a change of the global spatial
arrangement of the colloidal particles. It can be characterized as a change of the
degree of order within a suspension, the magnitude of which can be described by a
so-called order parameter. All structural transitions are accompanied by a change of
the symmetry properties, therefore denoted as symmetry breaking transitions (Chapter
11.2). Three structoral transitions exist in the equilibrium phase diagram of soft sphere
suspensions (Figure.1):

L. the order-disorder transition from a crystal into a fluid,
IL. the order-disorder transition from a crystal into a liquid and
IIL the order-order transition from an fcc lattice into a bec lattice.
The flocculation transition in which the fluid separates into a liquid and a gas

phase, is not a structural transition because the global structure remains disordered.

Landau Theory

Our interest lies in the rheological properties of systems close to structural
transitions. For that purpose we introduce, in chapter I1.2, the basic relationships of
the Landau theory of symmetry breaking, first and second order phase transitions. In
the Landau theory the degree of order of a structure is described by an order
parameter g with the property of being non-zero in the ordered phase (low symmetry
phase) and zero in the disordered phase (high symmetry phase) for the case of a

order-disorder transition.
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7
F(q) /

Figure 3 Landau free energy as a function of the order parameter ¢ before (a>0)
at («=0) and after the transition (a<0).

For small magnitudes of the order parameter q, close to a second order transition,
the thermodynamic potential F(q) can be expressed as a fourth order Taylor
expansion in the order parameter ¢ as displayed schematically in Figure 3 for
different values of the second order Taylor coefficient «. For positive o the
suspension is in the disordered phase (e.g. fluid phase) because the equilibrium value
of the order parameter q, is 0 and for negative « it is in the ordered phase (crystal
phase), while the minimum of the potential is at go0. The thermodynamic potential
softens approaching the transition, i.e. the slope at g,=0 goes to zero. The transition
occurs at o=0 accompanied by pronounced critical fluctuations. The parameter
o, characterizing the distance to the transition, can be expanded in a function of the
state variables of the form a=ag($-®,)+a(T-T,)+a(C-C,), where the index tr
denotes the transitional values of the state variables.

The transport properties of a suspension near a symmetry breaking transition are
dominated by the critical fluctuations, as described by the time dependent Ginzburg-
Landau theory of phase transitions [50].



1. Introduction 10

Rheology at a Structural Transition

The rheology is controlled by the internal transport properties determined by the
thermal fluctuations of the equilibrium structure, The fluctuations grow, when a phase
transition is approached. These critical fluctuations will strongly influence the
transport processes near a transition. The critical slowing down due to the critical
fluctuations leads to transport processes on a mesoscopic time scale and therefore to

fluctuation-corrected transport coefficients.

G! G"

A

low high

symmetry ‘ symmetry
phase phase

A

....... “uu—rxﬁ“[ ‘k‘“ﬂnm*m

Figure 4 The storage modulus G’ and the loss modulus G" as a function of the
parameter o characterizing the distance to the transition.
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The transport of the mass, energy and momentum as determined by the
conservation laws can be considered as the slow modes of a system, i.e. the slowly
varying parameters determining the transport properties of the system. Close to a
symmetry breaking transition another slow mode appears: the order parameter mode,
ie. the diffusive transport of the entropic fluctuations.

A coupling arises between the momentum mode and the order parameter mode
near the transition. In this thesis the coupling will be introduced in chapter IL4 by
making use of a mode coupling model introduced by Levanyuk [51].

According to the model developed here the storage modulus G” will exhibit a
minimum and the loss modulus G" will have a maximum at a structural transition, as
the result of the critical fluctuations (Fig.4). A consequence of this result in the
hydrodynamic limit is that the viscosity will increase at a transition and is expected to
be of the form n~ (®-®,)"" while the elastic modulus rises with G ~ (®-®,)"” near the

transition.
Static Shear Melting Transition

Quasistatically applying a large shear perturbation on a colloidal crystal will
change the equilibrium structure as discussed in chapter IL5. A colloidal crystal is not
stable against an externally applied shear strain u, and will melt into a disordered
structure. This shear-induced transition of a colloidal crystal will be denoted as sratic
shear melting transition, because it occurs under a statically applied shear strain.

The rheology of this shear-induced structural transition [52],[53] is essentially
given in Fig.4, while o is now interpreted as a~ugu,© with a critical shear strain
u,'®. Experimental results indicated [54], that a concentrated colloidal crystal can
sustain a critical shear strain up to u,“= 0.05 before it becomes unstable.
Continuous-shear experiments reveal this transition by a slight discontinuity in the
transport parameters at very small shear rates known from computer simulations [55]

and from rheo-optical experiments [56],[57].
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Shear Induced Order Transition

Unlike equilibrium structures, shear induced non-equilibrium structures occur only
when the time scale of the perturbation is of the order of the characteristic relaxation
time scale, because those structures are formed by the perturbation itself.

A non-equilibrium transition induced by increasing the shear rate has been
observed in numerical simulations of molecular liquids [58],[2], and was observed in
experimental investigations of soft sphere suspensions [59],[60]. It involves the
formation of hexagonally close packed (hep) layered particle structures oriented
parallel to the direction of motion by the shear gradient, here denoted as the shear

induced order transition.

Dynamic Shear Melting Transition

The most striking non-equilibrium fransition is the disappearance of the hep-

layered structure at even higher shear rates accompanied by a dramatic increase of
the viscosity (shear thickening). This transition is denoted here as the dynamic shear
melting transition indicating the fact that this melting of a periodic structure occurs
only at a non-zero shear rate. The dynamic shear melting transition can be described
by a resonance between the periodic excitations of the sheared colloidal crystal and
the eigen modes of the viscoelastic material. We will derive a theory that allows the
calculation of the critical shear rate of this transition.
Based on assumptions made in [62],[63], we apply a two fluid model, where the
colloidal suspension is treated as a viscoelastic medium. A critical shear rate 4.
independent of the system size will be derived of the form 4.~ G,/y, where G, is the
elastic modulus and n is the viscosity of a sheared colloidal suspension.

As an illustration the critical shear rates of Hoffman’s [64] and Boersma's [1]
experiments are predicted with the present model. A single unknown quantity will be

used as a fit parameter.
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Viscosity of a Sheared Colloidal Suspension

The experimental results on the viscosity of sheared colloidal systems are
described in Chapter I1.7. They can be summarized as describing the dependence of
the viscosity on the shear rate. Agreement on the viscosity-shear rate dependence of
soft sphere colloidal suspensions has been found by a great number of investigators
both experimentally [65],[66},[671,[68],[69], and by computer simulations
{701,[551,1711,[72}. Its characteristic form is schematically displayed in Fig. 5. Together
with an experimentally accessible measure for the order parameter OP,, [69] indicates

the presence of a oriented hexagonal structure in the sample as can be probed by
scattering techniques in the velocity direction.

log(m) poly hexagonal closed  ©  global
' c;ystl;allmcg packed layers, : disordered
structure © strings i structure (glass
ehacs) (glass)

OP -
60

- -

-

colloidal:™~ ~~.

crystal | ‘\__éf' \\\
y m Y [+] Y .
static shear shear induced dynamic log(v)
melting order shear melting

Figure 5. Qualitative dependence of the viscosity of a sheared suspension on the
shear rate together with the value of the parameter OP, indicating a periodic

structure.
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At small stresses the system responds as a deformed colloidal crystal. Beyond a
critical stress (a corresponding shear rate 4,) the equilibrium ordered structure is
thermodynamically unstable against the shear perturbation and melts. The value of
OP,, decreases. This transition is accompanied by a downward jump in the stress
tensor [73]. Passing this static shear melting transition the structure changes into a
disordered structure. On increasing the shear rate, the shear induced order transition
is approached at +,. This non-equilibrium transition is accompanied by the formation
of sliding hep layers pointing in the flow direction, where OP, increases again.
Experimental and numerical investigations [701,|72},{74] established that the ordered
structure decreases the dissipation and therefore the viscosity.

At high shear rates the dynamic shear melting transition caused by an acoustic
resonance is accompanied by a viscosity increase and the disappearance of the global
ordered structure at 4. and the value of OP, vanishes. Far beyond of the
resonance region at very high shear rates the layered crystal structure probably oceurs

again.

Rheo-optical Experiments on Soft Sphere Suspensions

Since the investigations of Hoffman [59] a great deal of rheo-optical experiments
were performed to determine simultaneously the microstructural transitions and the
corresponding rheological variations [60],{73],{741,{75]). In this thesis we focus our
attention on the static shear melting transition under dynamic shear perturbations,
where a colloidal crystal melts into a disordered structure if the applied shear strain
exceeds a critical value.

For that purpose a rheo-optical setup has been built to study simultaneously the
microstructure and the rheological properties of colloidal suspensions under shear.
The experimental results are reported in chapter II1.7. They indicate qualitative
agreement beween the expected theoretical transport properties with the obtained
experimental data. Especially the expected decrease of the elastic modulus as a result

of the critical fluctuations could be observed.
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Conventions
In the entire book we will denote the i-th vector element by x; and a matrix
element by x,, while we use only the indices ik or 1. The Einstein convention is
applied, i.e. a summation has to be performed over indices occurring twice in a
product (e.g. xx; = x’+ x,°+ x;,° ). The entire vector is written as x, while a matrix

(tensor) has the form x.

A complex number is written by using j=-1.

Definition of the Fourier transform

We introduce a Fourier transform by:

datkw)=[ " [~ 8 d rdt )

and the reverse Fourier transform:

R S 3
e [ e 58k w)d* ke @
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CHAPTER IL

THEORY

2. Theoretical Background on Structural Transitions

2.1 Introduction

Chapter I1.2. summarizes the theoretical background for readers, who are not familiar
with structural transitions. Colloidal suspensions of soft spheres show a variety of transitions
as indicated in the equilibrium phase diagram (Fig.1).

A non-structural phase transition is for example a gas-liquid transition, in which
a parameter {e.g. the density) undergoes a change at the critical temperature, whereas
the microscopic structure does not change [1] with regard to the symmetry properties. The
characteristic property of structural transitions is, that they always involve a change
{"breaking") of the symmetry properties of the systern. In this thesis we will focus our attention
on structural transitions, at which a change in the symmetry properties of the stationary
microscopic structure of the particles takes place [2].

A structural transition in a colloidal suspension occurs, when the spatial configuration
of the colloidal particles changes from one equilibrium phase to another. These transitions
can be either of an order-order type as in the bee-fee transition or of an order-disorder
type; e.g. the crystal-liquid transition.

A symmetry breaking transition in colloidal suspensions can be induced in two ways;
either by travelling through the equilibrium phase diagram, varying the state variables such
as the temperature T, the salt concentration C or the volume fraction &,
or by applying a perturbation, such as a shear deformation. The first case
is treated in Chapter IL4 and the latter in Chapter IL5.

The evolution of a system with energy exchange with the surrounding
but with a constant number of particles is determined by a thermodynamic
potential. We will consider the colloidal suspension as incompressible

and take therefore the Helmholtz free energy as the appropriate potential.
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In this thesis we focus our attention on the transport properties
occuring at structural transitions. The transport properties of a
suspension are given by a set of hydrodynamic equations corresponding
to the conservation laws of mass, momentum and energy. They can be written
as a product of a derivative of the thermodynamic potential and a constant
transport parameter [3]. The transport parameter can be obtained from a time dependent
correlation function (Green-Kubo equation) of the slightly disturbed equilibrium structure
[41,[5].

Approaching a transition in the equilibrium phase diagram the thermodynamic potential
softens and critical fluctuations appear, leading to a coupling between the linearized
hydrodynamic equations and thus to fluctuation corrected transport parameters. Although
the thermodynamic potential can be calculated from a perturbation theory in the (Chapter
I1.3), it is not in an analytic form applicable to investigate the transport properties near
a phase transition. Instead we will use a qualitative form of the thermodynamic potential.

Fortunately the change of the free energy of a system of identical particles is known
on approaching a phase transition. The free energy of such a transition can be written
as an expansion of an order parameter characterizing the transition, as has been studied
firstby Landau [2]. The time dependent Ginzburg-Landau (Kaladnikov) theory [6] includes
the dynamic behaviour of the order parameter using fluctuating hydrodynamic equations
[7]. The application range of this mean field theory is given by the Ginzburg-criterion [7],
taking into account the influence of fluctuations on the transition. Depending on the spatial
dimensions and the range of the interaction forces it states that the Landau theory is generally
only qualitatively applicable but can give quantitatively correct results in four dimensions,
or in three dimensions in the case of long range forces [2] between the particles. A specific
extension of the Landau theory, the renormalization group theory, delivers correct solutions
also for three dimensions [8]. In our studies we will confine ourselves to the Ginzburg-Landau
theory.
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2.2 General Considerations on Structural Transitions and the Landau Theory

Symmetry Properties

We define a probability density o(r,T,®,..) where pd’ris the probability of finding
a particle in the elementary volume d’r. To characterize a change in configuration we introduce
the symmetry of a system, defined by a set of geometrical transformations s; (translations,
rotations, reflections ete.), which leave the equilibrium density o{(z,T,%®,..) invariant. The
equilibrium density corresponds to the minimum of the variational free energy F(o(r),T....)
with respect to p(z,1,8,..).

Let the symmetry operation s; be an element of the group g, if:

Syp(r;,T,@a--):P(S,-,pr,‘b,--) =p(rpT,®,..)=p(r,.,T,¢,..) 3

i.e. the equilibrium density p(r,T,®,..) is invariant against all elements of g,. We denote
the corresponding phase as the high symmetry phase. The group g, can be a continuous
group (as in a fluid), an infinite discrete group (as in a crystal) or a finite group (if the
crystal symmetry can be reduced to a point symmetry).

The phase transition is defined as the point where the number of allowed symmetry
operations of the system is changed abruptly. This phenomenon is called symmetry breaking,
because the symmetry of the system is lowered, when some symmetry operations disappear
having passed the transition, at the transition values (T,,C,,®,....). The phase with a lower
number of allowed symmetry operations is called the low symmetry phase. Such asymmetry
breaking transition occurs for example in going from a liquid (high symmetry phase) to
a crystal (low symmetry phase). Beyond the transition point the intensity of density waves
with the periodicity of the crystal gradually rises with increasing distance to the transition
point up to an amplitude corresponding to the fully evolved crystal structure.

On going from the high symmetry phase to the low symmetry phase, the equilibrium

density in the low symmetry phase close to the structural phase transition can be written
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as
p(D)=p,+5p() )

where p,=p(1,T,,C,,®,,..) is the density at the transition and 8p(r) is the density increment
not invariant under the action of all elements of the group g, but only of a subgroup g,
of g, {g, is the low symmetry group). An example of a symmetry breaking transition is
given in Appendix A introducing some concepts of the group theory.

We will write the demnsity increment 8p(r;) as a linear combination of orthogonal,

normalized functions ¥®, (r), where n indicates the various irreducible sets involved:

3p.T,)=Y, A (T4, EL @) &)

and their amplitudes A, ®, while k runs over the set of the functions ¥®_ (r).

Within a specific irreducible representation the functions ¥®(r) will transform
into one another under all transformations of the group g,. The matrices of the transformations
form the representation of the group g, -and the functions ¥*.(r) are the basis of this
representation (Appendix A). One can always select these functions in such a way that
they split into a number of sets containing as few functions as possible, each set of functions
being transformed into itself under all transformations of the group. The transformation
matrices of the functions contained in each set form the irreducible representation of the
group g;.

A structural transition is characterized by the appearance and disappearance of
one or several irreducible sets. At the structural transition considered here, only by accident
more than one irreducible set will change at the same critical value. Thus focusing on
only one irreducible set, we can omit the sum over n in equation (5). Each of the basic
functions of a irreducible set of a space group can be written as a periodic function of
r. We define ¥, (1) as:

g, ¢ G0t (6)

where j*= -1 and G(k) are the reciprocal lattice vectors [1},[2]. -
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Ginzburg- Landau Free Energy

The basic idea of the Landau theory is to consider the free energy as a function
of the structural alteration [2]. For that purpose we write the free energy as a function

of the density

Flp@)=F(p,+1, ¥ () D

Note that throughout this book we will interpret F as the free energy per unit volume.
Having defined the functions ¥,(r) and keeping their form fixed at the transition, the
equilibrium value of the free energy can be found by a variation of F with respect to A
Close to the symmetry breaking transition, 3p is small and F(p) can be expanded in a Taylor

expansion in ép

F(3p)=F (p, )+ (T,®,.) dp+a(T,D.) (3p)+O((8p)*) ®

or with equation () as

F(8p)=F(p )+ (T, )M ¥ )+ (T @I AT, +O((A, 2 )) @

We assume that ¥, have fixed values at the transition and write the A, as

Ag=q*e, (10)

while q is a scalar and is called the order parameter of the transition; e, is a unit vector

in the space of the chosen irreducible representation.
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Combining (5), (6) and (10) we arrive at the final form of the density increment:

3p(D)=gY, €™ an

where k runs over the reciprocal lattice vectors G(k) of the irreducible representation.
The sum describes the density wave of the reciprocal lattice and q is its amplitude.
The equilibrium value of the order parameter  can be obtained by minimization

of the free energy with respect to q.

dF
— =0 (12)
( 9% )1‘,@, .

and we obtain

«"+ag,=0 13)

For the high symmetry phase we demand that q=0 and therefore o =0. Thus the
first relevant term in the expansion of the free energy is of the second order. Additionally
we demand that the free energy has a minimum and therefore a>0. Thus o > 0 corresponds
to q=0, i.e. the high symmetry phase.

For «a<0 ie. the low symmetry phase it is necessary to expand F up to higher
order in q. A third order expression does not lead to a stable equilibrium state and thus

the free energy will be supplemented by a fourth order term,

F(g)=F,+2q2-5 g3+ Y g4 14
@ 0t 4 X *7e a4)

where we assume v>0; otherwise we have to take into account higher order terms in g
to find a minimum of the free energy. We will confine our theory to positive equilibrium

values of the order parameter and thus demand {=0.
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Order Parameter of 2 Second Order Transition

A special case of equation (14) is {=0. In this situation the free energy takes the

form
Fig)=F.+% g2+ Y g4 15
@ 0+2q +4q )

By means of the equilibrium condition (12} we obtain the order parameter in the low

symmetry phase {a«<0) to be

1
- f% 16)

Since « is a function of the temperature, volume fraction etc, we require the coefficient
a(T,¢,.) to satisfy the condition of(Ty )y ,(®, )1,.)=0 at the transition values of the temperature
volume fraction etc..

Because o(T,$,..) is small close to the transition, we can expand «(T,®,..) as a function
of the temperature T, volumefraction  etc. around the transition coordinates; ¢ can be

written as
a(1,9,.)=0 T-T )y +6g(®-D ) + .. (17)

where oy, g are positive constants.

The absence of a jump in the order parameter and the infinite correlation length
at the transition value «, =0 is in the literature referred to as a second order transition.
Thus while {=0 corresponds to a second order phase transition, the condition >0 will

be shown to describe a first order transition.



2. Theoretical Backeround on Structural Transitions 31

Order Parameter of a First Order Phase Transition
The case >0 of the free energy (14) leads to the characteristic properties of a first
order phase transition, such as a jump in the order parameter and the coexistence of two

phases, which implies the possibility of metastability.

The equilibrium values can be obtained from equation (12) leading to three solutions:

qOQ"'O
L |(L) e » |
Q™3 Nl2v) v (as)

Lo|(£Y.e
2v \N\2v) v

< o> f2v
f e a=l2f2v
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-
o < =0
('

0

0
q —

Figure 6 The Helmholtz free energy for different values of .

The stability of the solutions of equation (14) depends on the second derivatives

of the free energy with respect to the order parameter. The solution q=qg,=0 represents
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the high symmetry phase, whereas q=qg, > 0 is the low symmetry phase. The high symmetry
phase is thermodynamically stable when « = ay, = /4. The low symmetry phase is stable
when o < oy =0; in that case g =qg,. The coexistence region is bounded by o and ay (Fig.6).
The value of the order parameter depends on the history of the system. The system
stays in the high symmetry phase (g if a» 0. Decreasing o down to a,, the system jumps
from the high symmetry phase at gy, =0 to the low symmetry phase at g, #0. At negative
a the system is in the low symmetry phase and jumps back into the high symmetry phase
at a=ay, on increasing o. Thus the system exhibits a hysteresis between ag = o = ay.
Two minima at equal values of the free energy appear at a=ac. The value of o can
be determined from F(qge) =F(qu) =0 and thus
20 19)

<oy
For second order transitions the hysteresis disappears and the transition occurs at «=0.
Free Energy Density
The contributions of spatial fluctuations to the free energy have been neglected

up to now. In order to take them into account we have to introduce a local free energy
density f{1):

= 43
F=[ &r fir) (20)
The free energy density takes the form

ok 2, %0028 ooy Y () 21
fD=f, 2(’\"q(z)) 2q(a',) 3q(z)+4q(z) 7 21

where we introduced a space dependent order parameter density q(r) and a term A(grad(q(r)))>
The latter term takes into account homogeneous fluctuations, i.e. fluctuations on a length

scale large compared to the length scale of the crystal lattice [2].
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Validity of the Landau Theory

The validity of this approach is determined by the influence of the fluctuations on
the transition, as given by the Ginzburg criterion [2]. It indicates that the Landau theory
describes the transition quantitatively correct for a D-dimensional space with D =D, but
that is at least qualitatively correct for dimensions of the system D <D,. The universality
hypothesis claims that the critical dimension D, of the transition depends on the range
of the interaction, The Landau theory is quantitatively valid for interaction forces decreasing

slower than F(r) ~r® with 8<3/2 (D=3). Thus the critical dimension is

D .=2D (22)

[8]. Because the screened Coulomb potential as used in our model is of the form e7/1,
the Landau theory will be only gualitatively applicable to electrically stabilized colloidal

suspensions.
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Appendix A

Example of a symmetry breaking [1]

In this Appendix we describe some concepts of the group theory concerning the
symmetry breaking. Let us consider a crystalline substance in which a phase transition
is assumed to take place at a given temperature and pressure (T,,p, ). The unit cell of phase
1 is shown in Figure 7. Phase 2 differs from phase 1 by the fact that the centre particle
is displaced by the vector g. Thus phase 1 is characterized by g =0, while phase 2 has
a non-zero value of g. The configuration of particles in phase 1 is unchanged by a set of

rotations and reflections with respect to the centre of a cell.

R S
. o

i M/‘/”’” — 5,

5’(}’
Figure 7 Unit cell of a phasel with vector g=0 and phase2 with g=0.




2. Theoretical Background on Structural Transitions 35

Phase 1 is left invariant by:
- fourfold (= /2) rotations around the z- axis
- reflections about planes é,, 8, or 8,, perpendicular to the coordinate axes y or
z or to the diagonals of the square basis of the unit cell

- inversion I about the centre of the cell

The product of any two of these geometrical transformations also leaves the structure
unchanged. The corresponding set of symmetry transformations that leaves the structure
invariant is called the high symmetry group g, which contains 16 elements ( the crystallographic
label is 4/mm or D).

The set of transformations leaving phase 2 invariant is the group g,, which depends
on the direction of the displacement of g. If g is associated for example to a displacement
q, along the z direction g=(0,0,q,); g; contains the fourfold rotations around z as well as
the reflections &, ,8,,8,, in planes containing the z direction. It does not include other elements
of g, such as the inversion I or the reflection 3, . In this case the low symmetry group g,
is a subgroup of g, containing 8 clements ( C,,).

Table A-1 indicates the way in which g=(q, , g, ,q, ) transforms under the action

of the generators of g, .

Table A-1
gﬁ C4 Oy I
Uy “Gx ~Qx
“Ox 9y Gy
4. ¢ q. -,

We note that q, is transformed into itself or into its opposite. If we consider the
direction g, as a vector space we can see that this vector space is invariant by the transformations
belonging to g,. However the direction q, does not constitute an invariant vector space

since elements of g, can transform g, into q, . The vector space constituted by the directions
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{Q. . 4,) is invariant by g .
The entire set {q, , 4, ,q,} constitutes a 3- dimensional vector space invarant by

goand contains smaller spaces {q,.{q,, q, )) which also possess the property of invariance
by g, . We characterize this situation by saying that {(q, , q, ,q,) is a reducible invariant
space with respect to gg, while (q,) and (4, , q,) are irreducible invariant spaces with respect
to g . It is well known that if & vector space is invariant under a linear transformation
belonging to gy, this transformation can be represented by a matrix indicating the action
of that element of g, on the basic vectors of the space. The Table A-2 shows the matrices

representing the generators of gy.

Table A-2
Bs Cs T 1 |
(6, 9, ) 01 0 100 1400
-1 00 010 0-10
001 001 0 0 -1
(9.4 ) 0-1 10 100
10 01 0 -1
(q‘!.) 1 1 -1

The set of all matrices of agroup g, constitute a representation of g, in the vector
space involved. The two sets of matrices for the spaces {g,} and (g, , q,) constitute an
irreducible representation of g4, since the corresponding spaces are irreducible invariant
spaces by g, . The order parameter of the considered symmetry breaking transition coincide
either with {q.) or (q,, q,) belonging to the different basic symmetry properties but not
with the entire set (g, , q, ,q.)-

The basic idea of the Landau theory is to consider this order parameter as a variational
degree of freedom of the system , and o note that the equilibrium value can be determined
by minimizing the variatonal free energy F(T,p, q, .4, ,q.) with respect to the components
of g.
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We expand the free energy up to second degree terms in g :
F(Tp.g)=F(Tpy+a{Tp),+b{TP)ag, (A.L)

Considering the reflections &,. §,, §, of g, each § reverses the corresponding component
g; and leaves unchanged the two other components. The action of these transformations
shows that the linear term is absent in the Taylor expansion since F only depends on the
" internal” state of the svstem, and not on its absolute origntation. That is, F must be invarian
under all geometrical transformations of the group g, .

Because (n,) and (q, . g, ) are linearly independent, F can be written as;

& 2( T.p)
2

[+
F(Tpa)=F(Tp)+ @) 54 (Aa2)



2. Theoretical Background on ctural Transitions 38

Literature

(1]
Toledano,J.C. and P. Toledano, Landau Theory of Phase Transitions (World Scientific
1987).

(2]
Landaun,.D. and E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)
(Vol.5) Part 1.

3]
de Groot,S.R. and P. Mazur, Non-equilibriumn Thermodynamics (North- Holland
Publishing Company, 1962)

4]
Kadanoff, L.P. and P.C. Martin, "Hydrodynamic equations and correlation functions,”
Annals of Phys. 24, 419-469 (1963).

[5]
Hansen, J.P. and ILR. McDonald Theory of Simple Liquids (Academic Press 1986).

[6]
Hohenberg,P.C. and B.I. Halperin, "Theory of Dynamical Critical Phenomena,”
Rev. Mod. Phys. 49, 435-479 (1977).

[7]
Ma,S.K., Modern Theory of Critical Phenomena (W.A. Benjamin, Inc., Massachusetts,
1976).

(8]
Binney,J.J., N.J. Dowrick, AJ. Fisher and M.E.J. Newman, The Theory of Critical
Phenomena (Clarendon Press, Oxford, 1992).



3. The Equilibrium Phase Diagram of Suspensions of Electr, Stab. Coll, Particles

3. The Equitibrium Phase Diagram of Suspensions of Electrically
Stabilised Colloidal Particles

3.1 Introduction

Colloidal particles may repel each other, either electrostatically (by electric
charges on their surfaces} or sterically {(by polymers attached te their surfaces and
pratruding inte the continuons phase). The effective interaction petential, due to
double lavers surrounding the colloidal particles in an electrolyte solution, can be
represented by a screened Coulombic potential. For the spherical particles
investigated here we will use a Debye interaction potential. Thus the pressnt
treatment neglects deviations from the Boltzman-distribution (with electrostatic
interaction between point charges as sole energy term) of the ions arcund the
particles, e.g. by hydrated ions on the surface or chamisorption.

The Couvlomb potential can be progressively screened at constant surface
potential by subsequent addition of elecirolyte and under these conditions the van der
Waals attraction becomes important. The resulting interaction potential can be
described by the standard DLVO theory [1][2L[3]. A “primary" minimum of the
potential close to the particle surface may be separated from a "secondary” minimum
at larger distances by a Coulombic barrier as depicted in Figure 8.

Dilute suspensions form a random distribution of electrostatically stabilized
colleidal particles ("fluid phase”). However, ai higher velume fractions a colicidal
crystal may be more favourable . Twe ordered crystal phases, a body centred cubic
lattice (bec) and a face centred cubie lattice (fec) have been found in a number of
experimental [4},[5],[6] and theoretical [7],[B),[9} investigations. The bec crystal was
only found at very low ionic strengths, The transition line between them has been
calcolated by using a density functional approach [10],[111{12].

Victor & Hansen [13] theoretically predicted that on increasing the ionic

strength a reversible 'liquid-vapour’ spinodal decomposition appears into a flocculated
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phase ("liquid") and a low density phase of non-flocculated particles {"vapour"). This
flocculation takes place into the secondary minimum. It is reversible and occurs as
long as irreversible coagulation is prevented by a Coulomb barrier.

The limitation of the approach by Victor & Hansen however is that they
calculated the spinodal lines of the liquid-vapour transition disregarding the presence
of the colloid crystal phase. Including the crystal phase allows to determine the phase
diagram also at high volume fractions and low Debye screening parameters. Our
approach can lead to qualitatively different results if compared to that of Victor &
Hansen. The expected liquid-vapour spinodal decomposition disappears for example
for low attractive forces.Their analysis was confined to a first order perturbation
approach.

The objective of this paper is to improve the approximations made by Victor &
Hansen. For that purpose we start from the interaction potential introduced by Victor
& Hansen [13] for electrostatically stabilized colloidal particles, which consists of a
superposition of a repulsive hard sphere potential and an attractive perturbation.
Using this interaction potential we apply a second order perturbation approach to
determine the free energy of the colloidal fluid and the crystal phase based on
statistical thermodynamics as developed originally by Gast et. al. [14]. The latter
approach was originally developed for predicting the phase diagram of non-aqueous,
collpidal suspensions in the presence of non-adsorbing polymers. By comparing the
free energies of the fluid and the crystal phase, the coordinates of the coexistence
lines in the phase diagram can be determined. Employing a numerical scheme we will
calculate the coexistence lines as a function of the salt concentration for different

temperatures, surface potentials and particle sizes.



32 Theory

Interaction Potential

We consider a suspension of N charged, monodisperse, colloidal spheres. The
spheres are surrcunded by counter ions and additional electrolyte forming an
electrical double layer around them. The total DLVO-potential energy U(r) is the sum
of the electric repulsion of the double layers and the van der Waals attraction

berween two collvidal particles:

U=0n+0,0n (23)

where r is the centre to centre distance between the colloidal particles.
in the linear superposition approximation the electrostatic term can be

calculated from the Poisson Boltzman theory {1}, [15] o be:

2
0 ()~ lﬁnezerag[ksr Irmh( j?:’ ; ]T expl xi{r agl ad
& B

where ¥, is the surface potential of a colloidal particle, o, is its diameter, ¢ is the
permittiviry of vacoum, ¢, is the relative diglectric constant of the solvent, e, is the
elementary charge, ky is Bollzmann's constant, T is the temperature and =, is the
"Debye screening length’ of the ions.

The "Debye screening parameter’ &, can be writien as;
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X 28{3232{: {25}
\1 €kl

where C is the added salt concentration of a z:z electrolyte based on the liquid

voiume.
For not oo large surface potentials {less than ¥;=25 mV) , the hyperbolic

tangent in (24) can be lincarized and the potential reduces o

Ugry-rege,oga P00 26)
r

This dimensionless Coulomb potential, scaled by the thermal energy k, T, takes the

form

Ug;),fgmwym en

where we introduced x=1/g; as the reduced centre-to-centre distance, x= k0, is the

reduced Debye reciprocal length and

2
- zregefagqfa 28)
kg
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The van der Waals attraction energy between spherical particles is of the form

(13]
U, @)-- 44D (29)
12
where A is Hamaker’s constant and
hey-—— v Lo m|1-L (30)
x-1 x? x?
Thus the total potential scaled by the thermal energy becomes:
1 exp{-k(x-1)) h(x)
Uxy=— | T,————=-T,—= a1
@7 ( R x 412

with T,=A/(ks). The interaction potential may exhibit a positive maximum at x> 1
and has a secondary minimum at x, where x,>x, (Fig.8).

The secondary mimimum in U(x) becomes more pronounced either on
increasing the van der Waals attraction or on screening the Coulomb repulsion by
increasing the concentration of salt. This leads to flocculation into the secondary
minimum, if the thermal energy is the only energy of motion of the dispersed

particles. Coagulation into the primary minimum will be prevented as long as the



Coulomb barrier Ufx,,} is substantially targer than the thermal energy k,T. Victor &

Hansen assumed, somewhat arbitrarily, that the suspension is charge-stabilized if

v, >3 32)

e

Their resnlts with respect to the phase dizgram of such suspensions are rather

insensitive to the precise value of the assumed potential barrier.

Figure B The total two-particles interaction potential (solid line) U(x)/k,T scaled by the
thermal energy as a function of the centre-to-cenire distance x.

U, i3 the repulsive coniribution to the potential and 1, is the attractive perturbation.



In order to caleniate the thermodynamic properties of charge-stabilized

colloidal particles, we make use of the perturbstion theory developed by Gast et al.
{14] based on a hard sphere reference state, For that purpose the total potential is

transformed into an effective hard sphere part and an attractive perturbation,

Separation of the Pofential

According to Weeks et al. [16] the total potential is atiractive for large

distances and repulsive for small distances. This can be written as:

V=Y &)+ W (33)

while U, and W are:

Ujx)=o 45 o
U @=Ux)-Ux ) ; x0<x, 34)
L xy=0 1 XX,
and
Wx)=U(x,) HE S &
(35)
Wix)=U{x) ; X,

Following Victor & Hansen Uglx<x,) in Bq.{34) is replaced by a hard sphere
potential provided the condition Eq. (32} is satisfied. This is jusified, because the

high Coulomb barrier will practically speaking prevent particles from getiing as close



as x,, and coagulation is negligible,
A system of particles interacting by the purely repulsive potential Ug(x)
constitutes the reference system, while the attractive component W(x} will be looked

upon as 4 perturbation,
The Effective Hard Sphere Diameter

Weeks et. al, neglected the repulsion at distances x,<x<x, However, the
potential Ll{x) gives an extra contribution to the effective hard sphere potential of
the particles, According to Victor & Hansen, the properties of the reference svstem
with the interaction Ugx) can be related o those of an ’equivalent’ fluid ¢ontaining
hard spheres of diameter o. For that purpose they caleulated the Barker-Henderson
parameter 3 [17], which is given by S= o/g, Its value can be derived from a
functional Taylor expansion of the Helmholtz free energy in powers of the difference
between the Boltzmann factors associated with the reference system (e ) and the

equivalent hard-sphere fluid. The leading term in this expansion iy
S=—:~w.xM+ L o1 -expl - Ug(x))dz (36)
o .

Because 821, the volume fraction of the particles in the equivalent hard sphere

system ¢ will be larger than the true volume fraction $% =8¢" with
3
g0 P % 37

where p= N/V is the number density,
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Perturbation Theory

The basic idea of the permrbation approach is to write the poteniial energy of

4 2-particle system as the sum of two terms

Uix)=Upgsx)+ U 2} (38)

in which Uy, (x) is the potential energy of the unpermrbed effective hard sphere
reference system. According to Victor & Hansen [13] the two particle interaction

potential can be written as;

UHs(x) =0 M x<S

(39)
Um(x) =(} 3 x28
Up(x) is the attractive perturbation potential. This has the form:
U (x3=0 2 x<8
U fn=Uix,) } Ssrex @a0)
T -k{x-1))} T, 5
8P(x)=§¥{$}m§{ L p{:{s }}m ‘*1;’:}] D Xex

This potential is shown in Figure 8. Note that the attractive potential is kept constant
in the region SEx<n,.

According 1o Zwanzig {18} and Barker and Henderson {i7] the Helmholtz free
energy of a thermodynamic system of pariicles with an attractive two particle
interaction potential can be written as 4 perturbation expansion in 1/k,T (high
temperature expansion). Because the high temperature case is equivalent to the hard

sphere system, the expansion of the Helmholiz free energy including the second order
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takes the form:

¥

_Pioe -
N T m: :r zf UpOystrtimrdr (“55}3;&3?]; (Upr)gslrytnr *dr (41

where Fy is the free energy of the undisturbed hard sphere system and gy 15 the hard
sphere pair distribution function. This equation is valid for both for colloidal fluids
and colloidal crystals. The free energy as a function of the effective diameter is
derived in Appendix B.

The thermodynamic relations between the Helmboltz free energy, the (iibbs

free energy G and the osmotic pressure p are given by

mﬁmw@{ﬁ] (42)
ksT OplkgT)
and
P_.pG pF (43
kT kT &

Note that the sereened Coulomb interaction potential is also a function of the density.
The intersection of the curves of the Gibbs free energies of the colloidal fluid and the
crystal phase determings the coexistence pressure and thus the coexistence densities of

these phases.
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3.3 Numerical Procedure

The volume fraction dependent Barker-Henderson parameter S is obtained by
numerical integration of equation (36). All numerical integrations are carried out by
a Runge-Kutta procedure as described in [19].

After rescaling the distance r with the effective hard sphere diameter & we
arrive at an alternative form of the interaction potential (see Appendix B). For the
numerical integration of the contributions to the Helmholtz free energy of the crystal
and the fluid phase (B.S), the equations of state and the correlation functions of the
hard sphere reference system for both the fluid and the crystal phase were taken as
summarized in reference [14].

The Gibbs free energies are obtained by numerical differentiation of (41)
according to (42). The intersection of the fluid and the solid Gibbs free energies
G/(kT) as plotted versus the pressure determines the coexistence pressure p' of the
transition,

Substituting the pressure p’ in equation (43) gives the coexistence densities of
the fluid and the solid phases. Plotting thc coexisting volume fractions for varying
salt concentrations maps out the phase diagram. The independent parameter set of a
given particle-solvent system consists of the surface potential, the particle diameter,
the temperature, the dielectric constant of the solvent, the Hamaker constant and the
concentration of added electrolyte. These parameters are combined into three
independent parameters that dctermine the phase diagram: T,, Ty and «. To test the
proper functioning of the computer program one of the phase diagrams as calculated

by Gast et al. [14] was evaluated. It well reproduced their original result.
3.4 Results and Discussion

A number of phase diagrams has been calculated for eleetrically stabilized
particles in water as a function of the Debye screening parameter x. In order to
compare our formalism with the results of Victor & Hansen [13] we have chosen

similar parameters of T, and Ty, as summarized in Tables 1 and 2. These Tables also
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also give the corresponding values of the surface potential and the Hamaker constant,
We restricted our calculations 1o polystyrene particles with 2 dlameter oy= lum,

dispersed in water (¢, =80.37) surrounded by monovalent ions,

80000 102
85000 20
FOO0) 208
15000 216
Table 3.1
T, /K A0 T
1800 25
3500 48
4000 55
4500 6.2
Table 3.2

In Figure 9 the phase diagram of 2 latex suspension with T,=40(00 K and
Te=70000 K is displayed. For low salt concentrations the fluid-crystal transition starts

at the origin.
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Figure 9 The phase diagram of electrically stabilized colloidal particles for
the parameter values Ty=60000 K and T,= 1800 K.
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Figure 10 The phase diagram of electrically stabilized colloidal particles for
the parameter vatues Ty =70000 K and T,= 4000 K.



The coexistence lines rise monotonically in the volume fraction with increasing
screening by increasing «. The further increase of the screening lets the transition
finally occur at almost the values of the fee-fluid transition of hard spheres ($%q,=
049 $°,4=054). This result is in agreement with the theoretical [15] and
experimental [20],[21],[22] investigations.

On increasing the screening x further, the fluid becomes unstable against
flocculation. It decomposes iato a liquid (flocculated structure} and a vapour phase,
At #"= 047, x=66 we arrive at a triple point, where the liquid, gas and solid
{crystal} phases are in thermodynamic equilibrium. The spinodal decomposition into a
flocculated Hquid and a gas phase as predicted by us is shifted by nearly a factor two
to lower values of the Debye screening length x if compared with the results of Victor
& Hansen on the basis of their first order perturbation theory. This deviation can be
ascribed to main differences between our approach and that of Victor & Hansen: (i)
we acknowledge the occurrence of a crystal phase and (i} pur perturbation approach
is of second order.

In Figure 10 the attractive and repulsive forces were decreased applving the
parameter set T,=1800 K and T, =60000. Disregarding the crystal phase the approach
by Victor & Hansen expected for this parameter set a phase separation mto a liguid
and a gas phase, However the liquid phase, made up of aggregated colloidal particles,
disappears and a phase separation takes place into a fluid and a crystal phase. Similar
results have been obtained recently by Mederos & Navascues [23], while they applied
a density functional theory, In agreewment with our investigations they found that the
Liquid phase will only appear in the case of fairly large attractive potential. Tejero et
ak. [24], [25] systematically investigated colloidal suspensions with a double-Yukawa
pair potential, and found that the liquid phase occurs only for long range attractive
forces and disappears for intermediate-runge attractions,

To study the influsnce of the attractive and repulsive forces of the interaction

potential on the phase diagram, the parameters T, and T, were varied.
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Figure 11 The phasé diagram of elect. stabilized colleidal particles for the paramelter
values T, =70000 K and (a) T,= 4500 K, (b) T,= 4000 K and (¢} T,= 3500 K .
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Figure 12 The phase diagram of electrically stabilized colloidal particles for the parameter
values T,=4000 K and (a) T,= 75000 K, (b) T,= 70000 K and {c} Tr= 65000 K .
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Figure 11 shows the dependence of the phase diagram on the attractive forces.
Keeping To=70000, the value of T, was varied: T, =4300, (a} T, =4000 (b) and T,
=3500 (¢). On increasing the attraction the critical point also shifts to slightly lower
values of ¥, while the triple point shifts to slightly larger values of . On increasing
the attraction the fluid-crystal coexistence region broadens. This is in agreement with
caleulations of other investigators [14], {25] with interaction potentials using a
constant effective diameter and varying attractive potentials.

In Figure 12 the attractive forces are kept constant at T,=4000 and the
repulsive interaction was varied: Tp=75000 (a), T,=70000 (b) and Ty=65000 (c). On
increasing the repulsion Ty the critical and triple poimts shift to larger values of & and
will coincide eventually. With increasing repulsion the liquid phase becomes less
pronounced. The fluid-crystal coexistence lnes shift to lower values of the volume
fraction on increasing the repulsion, because the effective diameter of the colloidal

particles is increased,

3.5 Conclusion

In order to calculate the phase diagram of elecirically stabilized colloidal
suspensions we applied a second order pertwrbztion theory {14] in the attractive
perturbation potential. For that purpose we approdmate the two particle interaction
potential by a repulsive effective hard sphere potential and a attractive perturbation
potential according to Victor & Hansen [13]. The numerical calculations showed that
for not too large surface potentials a flocculation transition into 3 colloidal fluid occur
accomparied by the appearance of a friple point, where the floid, crystal angd liquid
{flocculated structures) phases are in equilibrium. Applying a higher order
perturbation approach than that used by Victor & Hansen [13] and taking imo
aceount the possibility of the occurrence of a crystal phase leads to a shift of the
prediction of the critical point to lower values of the Debye screening parameter. For

small attractive forces the liquid phase disappears.
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Appendix B

Scaled Helmholtz Free Energy

The centre-to centre distance of two colluidal particles can be scaled by the effective

hard sphere dianieter:

Rl T % (B.1)

The toral potential, scaled by the thermal energy kT, can be written us a function of

the scaled distance R as:

UR)=U, (R +UR) B.2)
where
U, {Ry=os , R<1
s B.3)

Us(R)=0 ; Rl



3. The Eguilibrigm Phase Diagram of Suspensions of Electr, Stab. Coll, Particles 56

and the perturbation polential takes the form

UR)=0 : R<l
UnR)=U(R,) : 1sR<R

U Ry 7{ exp(~ x(R ) _ TA[ 1,1 +2u{h£m | ReR,
127 B2 R?

(B4)

with R_=x,/8.
The second order perturbation Helmhotltz free energy (41) can, with r= Ro,
dr = sdR and the density p=(6$)/{r0), be written as

L 2 dp = . .
TN =20 [ v R, (ROR fmwﬁa( ap]ﬁgkgfl (UpR)f2,s(ORYMR  (BS)
with
(ie.) R S
Phus ' 5 Vs B.6)

while £ is the hard sphere function of state.
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4. The Rheology of Equilibrinm Colloidal Suspensions Close to Structural

Transitions

4.1 Introduction

Stabilized colloidal suspensions show a variety of phases, like e.g. a colloidal
fluid (disordered, non-flocculated), a colloidal liquid (disordered, flocculated) and a
colloidal crystal phase. The physical state of a suspension is governed by the
competition between electrostatic, steric and van der Waals forces. These phases have
different symmetry properties concerning the arrangement of the colloidal particles.
The symmetry is determined by the set of symmetry operations {translations,
rotations, reflections etc.), which leave the density distribution of the colloidal
particles invariant. When studying a phase transition the phase with the higher
number of allowed symmetry operations is denoted as the high symmetry phase and
the other as the low symmetry phase. A disordered phase like the fluid or the liquid
phase can be transformed into itself by an infinite number of transformations (we
restrict ourselfs here to time averaged distribution functions). Therefore in the case of
an order-disorder transition the disordered phase is the high symmetry phase, while
the crystal phase is the low symmetry phase. The degree of symmetry will be
captured in the ’order parameter’ to be defined below. Three different symmetry
breaking transitions exist, at which the symmetry properties change according to the
phase transition involved. According to the schematic equilibrium phase diagram
(Figure 1) [1], we distinguish:
I. the fluid-crystal transition
IL. the liquid-crystal transition
HI. the fee-bece transition.

In all cases the first phase is the high symmetry phase and the latter the low

symmetry phase. While 1. and IL are order-disorder transitions is III. an order-order
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transition. It follows from the equilibrium phase diagram, that these transitions are of
first order (Chapter 3). The difference in the solid volume fraction between the
crystalline and the disordered states is however relatively small. The colloidal
suspension is therefore treated here as incompressible, while we confine our
treatment to the behaviour of transversal shear waves through the suspension.

A quantitative satisfactory statistical theory for the long time dymamics of such
first order transitions has, to the knowledge of the present authors, not yet been
developed. The description of the dynamics of first order transitions in colloidal
suspensions by a Cahn-Hillard like theory has been suggested by Dhont et.al. [2]; this
treatment however is restricted to the very first stages of the phase separation from
an initial fluid state into a ligunid state.

A symmetry breaking (structural) transition can be described qualitatively by
the Landau theory of phase transitions [3],[4]. The basic idea of the Landau theory is
to comnsider the free energy of a system as a function of the structural alteration at the
transition. The dimensionless order parameter describing a symmetry breaking
transition in a colloidal suspension is chosen to be the amplitude of the density wave
characterizing the colloidal lattice.

In this paper we focus our attention on a description of the rheological
behaviour of a colloidal suspension near a structural transition. We will start with
establishing a general model in analogy to the approach of Levanyuk [5] and we will
analyze the frequency dependent transport parameters G’ and G", while the system is
supposed to be sufficiently close to equilibrium. By ’sufficiently close’ we mean that
the perturbations are small enough for the equilibrium structure to persist. In
Chapter 5 the case of a symmetry breaking transition induced by an externally applied
static perturbation will be cbnsidered.

The dynamic behaviour of a suspension of colloidal particles on a long time
scale can be described by slow modes. A mode is defined here as a time dependent
parameter characterizing the transport in the suspension, which is treated as a
viscoelastic continnum, both in the ordered and in the disordered phases. Close to a
transition the dynamics of the suspension are determined by two slow modes [6],[71,{8]

given by the transport equations of the momentum and of the order parameter. It is
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known that the order parameter mode influences all other slow modes close to a
phase transition because its relaxation time goes to infinity (critical slowing down [9}}.
The coupling between the slow modes determines the properties of the transport

parameters near the transition.

4.2 Theory

In order to include the coupling between the two slow modes we will construct
a free energy density near a symmetry breaking transition. It consists of a reference
free energy density, a contribution from the order parameter and two terms related to
the strain:
- a contribution from the elastic energy

- a contribution from the coupling between the order parameter and the strain.

The Free Energy and the Equilibrium Values of the Order Parameter

We introduce an order parameter q that is associated with the amplitude of
the density wave and with the wavelength of the colloidal lattice. The order
parameter is zero in the high symmetry phase and becomes positive in the low
symmetry phase. The free energy of the transition is given by the standard Ginzburg-
Landau free energy, which can be written for a first order structural phase transition
[4:

Flg)=F,+%g2-£43: Y g4 44
@=Fp+5a"-397+ 44 (44)
where o« and » are free parameters. Here F is taken per unit volume. The

values of v and ¢ are assumed positive. The Ginzburg criterion [3]

states that this theory fails at the transition. Thus this model will



only be applicable close to but not 100 close to the transition.

The deformation w of & body is given by the spatial derivation
of the displacement X. For an arbitrary deformation the components of the

deformation tensor w <an be calculated by:

ax,
Wy = — (45)
it drk
The strain tensor y is of the form
w%ﬂw@ (46)

The contribution of the sirzin to the free energy can generally be given by the
product of the square of the tensor y {1,t) with the corresponding elastic modulus G,
We will confine our cemsiderations here to simple shear, i which u=1/2{w, +w,).
The contribution to the free energy of a mechanically deformed system is thus G,/2
v’ Taking into account the elastic epergy, the following expression for the free

energy of a mechanically deformed system is obtained:

F(u,q)=Fa+%ql-—§-q3% ‘*%uz “n
It this expression no coupling between q aud u has been assumed as yet.

We cannot neglect however the coupling betweern the slow modes of the order
parameter and the momentum close (o the transition. We will write the contribution
of this coupling to the free energy as an expansion of F up to the second order in the
order parameter q and the strain u, with the free parameter ~. Terms of uneven order

{e.g. linear terms) of the order parameter have no average conpribution to the
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transport equation of the momentum znd are thus omitted. The first non-negligible
term is of second order in g and linear in the strain. Taking only this lowest order

into account we obtain

Flu.g)=Fy+ 2 = gq sY gt 2+%~)«a2 (48)
while v is the coupling parameter. This simple generzlization of the free energy
couples  the relaxation processes of the order parameter and of the elastic
deformation field (mode coupling) and will lead to an elastic modulus and a dynamic
shear viscosity corrected for the order parsmeter fluctuations.

Equation {48) describes qualitatively a first order phase trarnsition, of which g
is the corresponding order parameter. This can be illusirated by determining the
equilibriem values qg of the order parameter by miniruzing the Helmholtz fiee energy

with respect to the order parameter q:

aFy _ 2, va v =
] == g reg ={) {49
[ an" q9-(q y4g

Focusing our attention to the case u=0, leads 0!

™
S LY =
qut’"z“;“ (“ig}: v {500
LN TR
¢ 2v (2\:]

Whereas (g, always represents a maximum in ¥, the other minimum is either at g or
4en, depending on the value of w.

The solution g=qu,=0 represents the high symmetry phase, whereas =y >0
is the low symmetry phase. The high symmetry phase is thermodynamically stable
when o> ¥/4rv. The low symmetry phase is stable when o <(; in that case g=qy,. The
coexistence region is bounded by e=0 and o= /4 (Fig6).

Our calculations on the rheology of collowal suspensions are restricted 10
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systems not too close to the coexistence region. In that case the value of the terms
containing { in Eq. (48) can be considered to be small as compared to the term
containing ». For ¢=0 the first order transition simplifies to a second order transition.

With a second order transition we can exactly expand o up to the first order as
a function of the free state variables volume fraction & of the dispersed solid
particles, the salt concentration C and the temperature T around their ’transition’
values [3],[4]:

@(@,C.N=ao(P-P,)rc+4(C-Clg 1+a fT-T,)g ¢ (51)

The transition values are denoted by a subscript tr. In the case of a first order
transition considered here the transitional values of ®, C and T depend on the way
the phase transition is approached. Starting at the low (high) symmetry phase the high
(low) symmetry coexistence line defines the transition value. The coexistence values
are known from the equilibrium phase diagram, as derived e.g. for electrically

stabilized colloidal particles in Chapter 3,
The Helmholtz Free Energy Density

In order to take into account space and time dependent variations in the

system we define a free energy density f{q(r,t),u(z,t)) by writing :
21 3
Flgun=_ [, d°r Rac)ues) (52)

while the integration is taken over the entire space of the system V.
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The free energy density can be written similar to (48) as:

PO ) %%(W@r»hgq%,t)—gq%z,t)%q‘(z,r)
(53)

G
+3'2-u(z,t)q L) +7°u %))

where X is a positive parameter. The term A/2 (vq(r,t))* accounts for the contribution
of homogeneous space-dependent order parameter fluctuations to the free energy [3].
These fluctuations occur on length scales much larger than the colloidal distances.

We further assume that the time and space dependent order parameter q(r,t)
and the strain u(r,t) are composed of a constant value and small time and space
dependent deviations du(z,t) and 8q(x,t) around the equilibrium values u, and gy :

u(r,t)=uy+ du(r,t) (54)

q(r,0)=q,+8q(r,1)

We confine our study here to the case ug=0, i.e. the system will be disturbed
by small strain deviations du(r,t) only. The case wu,#0 leads to a shear induced
symmetry breaking transition, that will be discussed in Chapter 5.

Substituting (54) into (53) and taking into account only terms up to the second
order in du(r,t) and 8q(r,t) we obtain:

o 2 3. vV 4
Rog,00fy+2a5- a3 +3a;
‘f('rcho-quzw“vqé’)c“>q+(%-f:tzo+%w1§)5f12

(55)
+—Z—6u6q2+%q026u

G,
+7“6u2+yq06u6q+%(vaq)2

The terms of the order du(r,t) and 8q(rt) disappear, because the system is in a
minimum of the thermodynamic potential. The Helmholtz free energy density

depends on the value of g, and «. For the high symmetry phase (q,=0) we arrive at:
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ﬂﬁq.ﬁu)=fo+—2)l(Vq)2+%a liqzwt-;-G0 6u2+-;-y6q26u (56)

and for the low symmetry phase {qo=0) we get:

ﬂ&q,éu)=f;+%(Vq)2+%(—2a+€,’q0) 6q2+%60 6u2+2yq0§qéu+%ybq25u 7
with
5 =fo+§q§-§q3 % (58)

Having derived the free energy density for the high and the low symmetry
phase we will now describe the influence of the fluctuations of the order parameter
on the transport parameters. The two slow modes describing the dynamics of the
system are given by a Langevin equation for the relaxation transport of the order

parameter [7]

08q __ 1 8f(8q,0u) +8(Zat) 59
o x oq X

and by the momentum conservation law

0 azﬁx_;:i 5](561,514) +1’]06ﬁ 60
2 oz ou

while p is the density of the suspension and 6X, is a displacement deviation in x-
direction. 5, is the viscosity of the suspension far from the transition, which is
different for the high and the low symmetry phase. The Langevin term g(r,t) is a
fluctuating term (*white noise’) obeying the fluctuation-dissipation theorem for the

correlation function:
(@HBE tN=23k,To(t-t Y8 (r-1) (61)

while x is a damping parameter. In Equation (60) the influence of thermal

fluctuations on the strain relaxation process has been neglected, because the order
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parameter fluctuations predominantly determine the behaviour of the system close to
a phase transition.

Generally speaking the transport coefficients G, and 7%, are frequency
dependent both in the high and in the low symmetry phase. The transport coefficients
depend on the interparticle interaction determined a.o. by the relaxation process of
the electric double layer of the colloidal particles. Close to a phase transition however
the low frequency critical fluctuations determine the transport processes (critical
slowing down). Therefore close to the transition only the low frequency values
G(2=0) and »(2=0) of the high and low symmetry phase are important, denoted as
G, and 7, These values of the transport coefficients are valid under conditions far
removed from the phase transition, and will be specified later for the high and the
low symmetry phase. Close to a transition they are modified by the presence of
fluctuations. To describe this phenomenon we will study the propagation of shear

waves for a viscoelastic medium with strong fluctuations [11].

Transport Equations Near a Symmetry Breaking Transition

Substituting the free energy of the high (56) and the low (57) symmetry phase
into equations (59) and (60) we get a set of coupled differential equations that
depend on «. These equations of the order parameter mode and the momentum
mode are given,

for the high symmetry phase q,=0, by:

x84 +adqg+ydq(r,f)du-AVPoq=g (62)

00X -2 (G du+Ly8q2+nbi) (63)
(74 2

and for the low symmetry phase q,=qg, by:
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x04+(-20+{g)dq+2yq,Bu+ydqdu-AVPdq=g (64)
v _ 8 1 2 .
PaXJ-E(Goﬁu-P-z-y&q +2yq,0q+nd4) (65)

To find a solution for the order parameter equations (64) and (62) we expand

8q in a series

3q(r,n=3q°r,0)+3q (dur,H)+O(d4%) (66)

where 8q° is the solution of the uncoupled set of the equations (62)-(65), that means
that terms in 8q du are omitted. In analogy to Levanyuk [5] we will only consider
first order corrections. Note that by using a more sophisticated treatment of a similar
problem Ma [7] obtained higher order correction terms to transport parameters.

The solution of 8q' can be determined by means of a Green function h,(r,t):

8q'(dur)=-y f h (t-t'r-r)8q ' L Hdu(t’ rHdt'd*’ (67)

Now we derive a solution for the ég-perturbed momentum equation. Here we
will consider only the high symmetry case ¢,=0. The low symmetry case can be
treated in a similar way (Appendix D).

To proceed, Equation (66) is substituted into (63). In order to find the
correction of the transport coefficients G, and 5, with respect to the perturbation in
8q we take into account only terms up to the first order in 8u. Because we are not
interested in the entire solution of the latter equation but only in the fluctuation-
corrected transport coefficients G and 5 we omit the v-independent inhomogeneity of

the latter equation, and end up with:

08X (1) -2(G,Bulr,) +n di
& (68)

~v*8q°@) [y (1~t,2-r)8q ¢ L 0u(t' . dt 'd*r =0

We consider a sinusoidal deformation wave in the system with frequency @ and
wave vector K=(0,0,k,):
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BX, =Ue TE O (69)

while (K)* =KK is the scalar product of the vectors. By averaging over the

fluctuations in 8q and dividing by

Ue 7K 1258 (7

we obtain a dispersion relation in K()

-p P +(K(G,jhn,~ K00 =0 (71)
with
JER) =2 [Iyft-t'2-£)8q 0309 % £ e PEE O Dy 2)

This integral takes into account the influence of the critical fluctuations oo the
propagation of shear waves through a suspension near a phase transition. The value of
the integral is essentially determined by the correlation function of the order
parameter, which increases on approaching the transition. The explicit ealculation of
the integral JXEAD for the high symmetry phase i3 performed in Appendix €. The
calculation of this integral for the low symmetry phase is given in Appendix D} in view
of its lengthy character. It turns out that the dependence of KE.{} on K can be
neglected if zbs(K’ )& £ , where ¢ is the correlation length of the order parameter
fluctuations. This condition is wvalid if the system is not too close (9 the phase
transition. Therefore we study here only systems outside the coexistence region.
Under this condition Equation {72) can be sclved both for the high and the low
symenetry phase by writing:

JUQLK~0)=KQ)=J (D) +i1, () 3

From inspection of (71) and (73} it is evident that in the high symmeury phase the

fluctuation corrected elastic storage modulus aud foss modulus tzke the form:

G ;H(Q) =G o g, {0) (74)
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G () =Cn T, (Q) (78)

where Gy, and ny are the undisturbed values of the elastic modulus and the viscosity
of the high symmetry phase. In Appendix C 15 been derived that the function J for the
high symmetry phase can be written as {C.16),(C.17):

2/2my i, Th | (o 4202
g, (@ 2B kT [ 00« 76)
x4 ¥ a2

Jm(ﬂ)zMJl (ffifﬁ]dm- ;'i} a7

& 2

while their low synunetry equivalents {index L) Appendix D (I2.35)) and (DX36.) take
the form:

i

J, D =(-2a +{g ¥y
() =(-2a +{g)4vq; i 2a ria

78
2 kT - - 2 -~
. yantyik,Ta (~2a+3qy) éxm?}{ 2a+{gy
xR Al 4% ) A
and
J(=y4y2g} 1
Q320+ (gl

f (7%

4k,T wiy?al
y 41

1]{(2exlgr y202) -26+{g, | -2a+{g,
\E l a2 432 2A A
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{n approaching a symmetry breaking tramsition, Gela), n{a) and the correction term
J(Q,a) are functions of the distance o to the transition (see Eq. (51)). In a not too
wide range outside the coexistence region the reference values G, and %, can be
viewed as  independent of o. Under such conditions the behaviour of the transport
coefficients iz displayed in Fig. 13, where we have chosen the same G, and 9, for
the high and the low symmetry phase, which is not necessarily the case.

The theory is not valid at and very close 1o the transition, However, the trend
in the curve of the storage modulus G'{w) at fixed frequency suggests a minimum at
the transition (a=0) , whereas for the loss modulus G'(a) 8l a fixed frequency a
maximum is expected at the transition due to the critical fluctuations. For the
trausport parameters, in the low symmetry phase o is replaced by -20+{g; thus the

parameters are asymmetric with regard to the transition point.

Gi,Gl!

<

1 /‘j G
ow high

symmetry ‘ g +
ymmetry .
phase phase G
z&
M \NM
0 [+

Figure 13 G’ and G" of a suspension as a function of the distance to the transition «
occuring at a={), in arbitrary units.
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log frequency

Figure 14 The storage modulus G of a colloidal suspension having a nen-zero clastic
modulus, as a function of the frequency with |z | < |og| <] es].
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Figure 15 The loss modulus G* of a colloidal suspension having a non-zero elastic
modulus, as a function of the frequency with o] < |oni < lo].
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As an {llustration Fig 14 and Fig 1S display how of & and G" vary with the
applied frequency @, for different valoes of the parameter «. All curves of G attain
the value G, at high  and decrease with decreasing 9. The slope of the G'({1) curve
increases on approaching the phase transition {decreasing «). The height of the
maximum of G* at «=0 depends on the relaxation time r=x/a of deviations of 8¢
from its equilibrinm valne. The maxdmom in (G rises and shifts to larger time scales
{smaller frequencies) on approaching the transition, due to the phenomenon of the
critical slowing down. At high frequencies the influence of the critical fluctuations can
be ignored.

In the hydrodynamic limit, with |K|-»0 and -0 [12], equations {76}, {77),
(78) and (79) reduce to more simple expressions. These results in the hydrodynamic
limit are applicable to quasi-statically applied shear deformations. In other words the
hydrodynamic limit is comparable to the low shear rate limit 0. For the high
symmetry phase we get

6@ =e}=Gm-g3yﬁkB:r\J A (80)
| &

1,2 3
n(@ =0)=n,,9+fm“"‘mﬁ(&]* (81)

8 &
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and for the low symmoetry phase:

2 32 8.2
e o —— k [T { }
G{0a=0=G,, d ay 33{” ;{0

4yt BT i B3
v 8 | -2a+lg,

n{f1=0)=n,,-

Mote that the model is not applicable close to the transition region. We therefore
consider suspensions only far away from the coexistence region, ie. that abs{a) » >
fap. In that case the f-correction in the Equations (82) and (83} can be neglected.

4.3 Discossion

We will compare the model presented here with experimental data taken from
the literature. The parameter e {see Eq. (51)) can be considered as the distance to
the transition in the phase diagram. We will confine our discussion to suspens.ons
outside the coexistence region i.e. | {qy| €, because with the approximations made
this model is not appiicable tos close to the transiion. A symmetry breaking
trapsition can occur by varying either of the three independent state variables; the
temperature T, the volume fraction 9, and the salt concentration C, which is related

to the chemical potential. Each of the possibilities will be discussed scparately below.

Phase Transition hy Change in Volume Fraction

The parameter o can be written as a function of the volume fraction of the
dispersed particles, when keeping the temperature and the salt coneentration constant
(51x

a=&g(P, Py, (84)

with s> 0 and @, is the high symmetry coexistence volume fraction at the structural
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transition,
1. The fluid-crysial transition

The high symmetry phase formed by the colloidal fluid is converted into the
low symmetry phase of a colloidal fce or bee erystal on increasing the volume fraction,
%, is given by the equilibrium phase diagram of soft spheres. This transition
(Kirkwood-Adler transition) was first observed in computer simulations of hard
spheres. Note that the change from a colloidal crystal into a disordered structure
(glass) with further increasing volume fractions at $=0.6 (Fig.1) is due to the freezing
of density-fluctnations and can be viewed as a dynamic transition [1],[13] not

manageable within the present model.
low shear rafe viscosity
The expectation based on our theory is, that the shear viscosity in the

hydradynamic limit becomes infinite on approaching the fluid-crystal transition from

the low symmetry phase (i.e. the crystal phase) and has the form
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N ~(¢ __@n‘)—l.ﬁ (85)

This equation results from introducing (84) into (83). Note that n can not be
measured by steady staie technigues in the low symmetry phase because this phase is
crystaflins.

The viscosity decreases on going into the fluid phase. Aithcugh very close to
the transition 2 similar dependence in the fluid phase can be expected as in the
crystal phase, the model applied is not valid in the fluid phase far away from the
transition, because the low frequency elastic modulus of the fluid phase is zero. Gy in
the fluid phase cannot be taken 1o be zero in this theory, because this would bring us
inte conflict with the starting point of the model. However by going away from the
tramsition any non-zero value of the elastic modulus in the finid phase ailows the
application of the presented model.

The increase of the low shear viscosity near the symmeiry breaking transition
on going frem a colloidal fluid into a colloidal crystal was investigated by Allain etal
[15] with Laudox particles in water. They were able to scale all acquired measurements

for different salt concentrations on a master curve of the form

n=nl- g@;)“‘ (86
with &,=053+0.03 and K=19£0.1. Note however that the values of K and $, are
very sensitive to measuring errors which are easily made near 4,. The fact that the
coexistence volume fraction ¥, is close to the expected value of the hard sphere
coexistence  (¥,=0.54) confirms our approach of a structural transition. The
agreement between (86) and (85) is reasonable because we would expect K to be
K=13 according to Equation (85). Buscall etal. [14] investigated electrically
stabilized polystyrene particles in water and obtained 2 similar value for K viz.1.99,

Note the similarity between eguation (85) and the Krisger-Dougherty-equation

[18], which is claimed to be a fairly good description of the viscosity of a suspension
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of a hard spheres:

~Inl4,
n-n, [1(%] " )
8

with @,=0.64 the maximum theoretical random packing fraction and the intrinsic
viscosity [#]=2.5, which gives an exponent 1.6. Although the phenomenon of an
infinite increase of the viscosity is not a structural transition it incidentally gives an

exponent that is close to the value derived for this model (85).
storage modulus of the crystal phase

In the low symmetry phase (crystal) far from the transition the elastic modulus

is G= Gy, On approaching the transition (& drops according to Eq. (82):
G'(Q-0)-G,-R@-2 )% (88)

while R is an appropriate constant.

When considering a wide range of ¢ the dependence of the elastic modulus G,
(®) on the volume fraction can no longer be neglected . From the interaction energy
U between colloidal particles Buscall et.al. [17] determined the value of the low

frequency elastic modulus

12U (89)
M aq?
where d= 2a+h is the centre to centre distance between the particles and
20N 90)
32 "

while N, is the number of the next nearest neighbours and &, the maximum volume
fraction of the suspension. The values of T and M depend on the crystal structure and
are 1=0.833, M=22a(0.74/%)"” for an fcc-crystal and I=0.5, M=2a(0.68/®)"” for a
bec-crystal. While the pair interaction potential was taken independent of the volume

fraction by Buscall et. al. {17}, Russel and Benzing [18] improved this approach by
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calculating a self consistent interaction potential. They found good agreement
between experiments on colloidal crystals and Equation (89) over a wide range of ¢
values. Only close to the crystal-fluid transition the experimental G’ drops sharply
[18],[14] in accordance with our model. The results of Lindsay & Chaikin [19] confirm

the results reported by Buscall et. al.
loss modulus of the crystal phase

The theoretical expectation is that the low frequency loss modulus G"

decreases with increasing volume fractions according to (83) as:
G(Q-0)~-G"  +R(®-® )" (C2Y)

Dynamic shear measurements on electrically stabilized colloidal particles were
performed by the group of Tadros and coworkers [22]-[25]. However not enough data

close to the transition are available to compare their results with the present model.
frequency dependence

Experimental data on the frequency dependence of dispersions of soft
polystyrene particles in water are shown e.g. in Figure 1 of [25]. G’ increases with the
frequency, while the loss modulus G" slightly decreases, in qualitative accordance with

our model for conditions not too close to the phase transition.

I1. The liquid-crystal transition

Concentrated dispersions are expected to exhibit a transition from a colloidal
crystal into an aggregated structure (colloidal liquid) due to attractive forces into the
secondary minimum of the interaction potential. The symmetry properties change by
decreasing the volume fraction at a coexistence value $, At this flocculation
transition the expected dependence of G’ and G" on ¢ is of the form shown in Figure

13. Here the high symmetry phase is a colloidal liquid structure while a colloidal
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crystal is the low symmetry phase. No experimental investigations of this transition in

soft spheres suspensions are available.

III. The bec-fee-transition

The expected variation of the transport properties of an order-order transition
between two colloidal crystals is of the form displayed in Figure 13. No experimental
data exists for the changes on passing the phase transition between the two forms of

colloidal crystals.
Phase Transition by a Change of the Electrolyte Concentration

Another option to move around in the equilibrium phase diagram is by keeping
the volume fraction and the temperature constant and varying the salt concentration

in the suspension. In this case « can be written as
=0 (C-C)rq 92)

with C, the coexistence salt concentration from the high into the low symmetry phase

and o:>0.

1. The fluid-crystal transition

A colloidal crystal is formed by decreasing the salt concentration in a soft
sphere suspension starting from the colloidal fluid phase. This is known as the
Kirkwood-Adler transition for particles with an effective volume fraction equal to that

of the hard sphere freezing volume fraction [27],[28].
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low shear rate viscosity

The dependence of the low shear viscosity on the salt concentration in the
crystal phase (low symmetry phase) near a structural transition according to our

model has the form
n~(C -C,,_)'u 93)

obtained by introducing (92) into (83). The low shear viscosity dependence in the
crystal phase cannot be measured because of the presence of a yield stress. In the
liquid phase (high symmetry phase) a number of authors investigated the low shear
viscosity.

Lindsay & Chaikin [19] were able to measure the low shear viscosity of low
volume fractions colloidal crystals. As can be seen e.g. from Figure 7 of ref. [19] the
low shear viscosity becomes infinite on approaching the fluid-crystal transition due to
a change in the salt concentration. This divergence was interpreted as the occurrence
of a yield stress.

A similar result has been obtained earlier by Okano & Mitaku [26] and Mitaku
et.al. [29]. The divergence in the viscosity could be fitted fairly well by using a
modified Brinkman formula [30]

n=n,(1-99)2° (94)

while @’ is called the "relative volume fraction”

o-00+E) 05)
xa

&y is the Debye parameter and § a constant of the order unity.

This result was improved by Mitaky et. al. [31] and by Ohtsuki [32]. Both
authors explained the viscosity increase as the result of the disorder-order transition
from a colloidal fluid into a colloidal crystal. Although our model is strictly speaking
not valid in the low symmetry phase, we were able to fit the results of Ohtsuki [32]
with equation (93) quite satisfactorily, as can be seen in Figure 16. This supports the

use of the statistical theory presented here in the case of the fluid-crystal transition.
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Figure 16 Experimental viscosity data obtained by Ohtsuki [32] for a latex suspension.
The fit of Equation (93) to this data is quite satisfactory.

storage modulus of the crystal phase

The elastic modulus of the crystal phase is theoretically expected (82) to be of
the form:

G'(Q-0)~G,,-R(C-C,)™%S (96)

with an appropriate constant R.

The experimental evidence is that a change in salt concentration has a
pronounced influence on the elastic modulus. Such a transition has been investigated
by a number of authors e.g. Buscall et.al. [14], Lindsay & Chaikin [19] and Mitaku
et. al. [29]. The elastic modulus G;,(C) far from the transition can be obtained from
equation (89); together with the self consistent field model of the interaction potential
by Russel & Benzing [18]. The latter theory agrees well with experiments of Russel &
Benzing [20], except for conditions close to the fluid-crystal transition. Our

fluctuation-corrected elastic modulus (96) will only lead to appreciable deviations
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from the dynamic behaviour as predicted by these authors under conditions that are
very close to the transition. However the number of data reported by Russel &
Benzing near the transition does not allow a reliable fit of equation (96) to their

data.
loss modulus of the crystal phase

The loss modulus of the crystal phase at low frequencies is expected to

increase at the coexistence salt concentration according to (82)
G(Q-0)~G " +R(C,-O)"? 97

The only available dynamic measurements are those by Mitaku et. al. [29].
These were carried out in the high frequency limit (40 kHz) and are not comparable

with the calculated low frequency transport properties of the present model.

IL_The liguid-crystal transition

Another symmetry breaking transition occurs for concentrated dispersions,
when the salt concentration is increased and the structure changes into an aggregated
glass structure (flocculated structure) as a result of the van der Waals attraction. The
model] predicts a variation of the transport coefficients G’ and G" as indicated in
Figure 13 with a minimum of the storage modulus and a maximum of the loss
modulus at the coexistence salt concentration C, of the liquid-crystal transition.

Unfortunately no experimental investigations are available for electrostatically
stabilized spheres. However, our model is also applicable to nearly hard spheres, e¢.g.
colloidal particles that are stabilized sterically with long "hairs’ (long polymers),
provided they form single crystals.

Sterically stabilized polystyrene particles were investigated by Tadros et. al.
[23]. In Figure S of ref. [23] his results are presented of dynamic shear measurements
as a function of the salt concentration. With increasing salt concentrations at relatively

low values the colloidal crystal structure is converted inte an aggregated structure
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(colloidal liquid). At the critical flocculation concentration (CFC) a minimum of G’
can be found in accordance with our model. G" is expected to have a maximum, but a
minimum has been observed, However the phase angle shows a maximum at the
coexistence salt concentration C,. The phase transition may be shifted by a
deformation. This implies that during an oscillation the viscoelastic properties may
change if the amplitude is not small enough (Chapter 5). In other words, the linear
viscoelastic region is reduced considerably near a phase transition. Tadros et. al. did
not specify the applied amplitude. The amplitude used by these authors near the
transition may not have been small enough to be in the linear viscoelastic region. This

may have disturbed the trend in G".

II1. The bee-fee transition

No experimental rheological data concerning the bee-fee transition by varying

the salt concentration are known.
Phase Transition by a Change in the Temperature

Symmetry breaking transitions are expected to occur as a result of a variation

of the temperature with

= T-T, )¢ (98)

We confine our discussion to the fact that the predicted rheological behaviour
close to a symmetry breaking transition resembles the dependencies of the volume
fraction and salt concentration discussed above.

Unfortunately very little is known about the melting of colloidal crystals by
heating. Schaefer & Ackerson [33] reported a melting transition in crystalline
suspensions of polystyrene particles and Williams et. al. [34] investigated the melting
transition as a function of the salt concentration and established an equation for
T C). Tadros [23] investigated the dynamic rheological properties of sterically

stabilized polystyrene particles. The results indicate that for the chosen salt
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conceniration irreversible alternations appear. The experimental results are not

sufficiently specific to compare them with the theoretical model.

4.4 Conclusion

The model presented here is based on an extension of the Landau theory of
phase trapsitions and takes into account the effects of the critical fluctuations on the
rheological properties of colloidal suspensions near symmetry breaking transitions.
The storage modulus is expected to have a minimum and the loss modulus a
maximum at the transition. The model is applicable if the system is not too close to
structural transitions in colloidal suspensions induced by varying the state variables,
such as the temperature, salt concentration or the volume fraction of the solid
particles. Its predictions agree qualitatively with the available experimental data near

fluid-crystal and liquid-crystal transitions.
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Appendix C

The Integral J(K.)

Here we will perform in this appendix the integral J(K,Q) (72) for qo=0:

JEQ) =Y [ (e -1 q°(e),q° Ve TEE0 0D gop gy €D

This integral can be transformed with

t-t'=t r-r'=R (€2)
into
JE,Q)=y* [ (3, RYg ). - Rot-oNe™ ¥ 2ddR (€C3)

This is a Fourier transform over R and r of the product of the Green function and
the correlation function. A product in real space becomes a convolution integral in
Fourier space. Therefore we need the Fourier transform of the Green function and
the correlation function.

Fourier transform of the correlation function

The Fourier transform of the order parameter equation to order q° is:

-jwxg %k w)+ g’k w)+ A (£)*q (k w)=g(k w) (c4
and thus
q°(k,w)=—§“—"°l— (C.5)
—joy e +Ak?

With the fluctuation- dissipation theorem in the Fourier space :

(g(k, Mgk, Q%) =2k, To (k+k)3(Q+Q) (C.6)

the correlation function in q° is:
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! 25k, TO(k+EH8(w +
{ qO(k,w)’qo&I’Ql))- { g&rm)’g(k—:wl)) - XXg (k+kHd(w 0’ €1
(e AE@) o (@ A@)-jox)  (a+AEP ro’?
Fourier Transform of the Green Function
The Green function h,(z,t) is defined by
oh,(r.¢
e )+ah,(z,t)—w%1(x,t)=6(z,t) (C8)
Performing a Fourier transform we obtain
1
hkw)=—— (C.9
T A@Pra-jox }
Convolution integral
With this results equation {C.1) can be written as:
k TdQ'd’K’
I il (©.10)

(OEN +ap?+Q" MK -KP+a Q' -Q)x)

Under the condition that we confine our treatment to long wavelength deformations
we can approximate K=0.
13y 7
JO.0)-J) -y xk,T[ did K (C.11)
(MK +ay +Q A KD +a (@' -Q)y)

Performing the integration over & using Jordans Lemma by calculating the residues
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of the upper half of the complex plane we obtain:
1
@ +AK) )0+ AE) %

J(n)=2n2y2k3rf0”d1<’ (KN
Separating the integral in real and imaginary part we find
J()=J, () /()
with

2KNdK’
= 4o+ AKH)+ Q%

S (@) =ny%k,T[”

K"dK'

2.2
S ()=-= Y kg Tx‘of»m(‘;(a +)"Kﬂ)2+02 2)(01+3.Kﬂ)

Performing the integration over K’ we obtain for the real part:

3.2
31(0)=MJ\(£+X292]-£

xQ A7 422 ) A

and for the imaginary part:

~4k,T 11:3')«2}{2 1
L) 5 2" 2
A 4A 22

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)
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Appendix D

Low Symmetry Phase

Here we study the perturbation approach for the low symmetry phase g,=qq;.
The set of modecoupling equations (64) and (65) are:

x84, +(-2a +{g8q(r,1) +2yqdu(r,t) +y3q(r,H0u(r,0 - AV 8q(r,0) =g(1,1) (D.L)
péf,(z,t)=§Z(Goau@,z)+—;-vaqcz,t)2 2740595+ Bu(,)) 0.2,

Again we find the solution of the orderparameter equation by a series expansion in
og(x,t).

3q(r,=8q° ) +dq W, +... (D.3.)

with 8q” - the uncouled equation in 8q and 8q' taking into account the first
contribution in du (modecoupling) as disturbance of 8q°.
Thus & q(r,t) can be written as:

8q(r,)=8q°H-v f (2gy+8q Oy (r-r -t You(r/,tYd*r 'dt’ (D4.)

Substituting 8q in (D.2.) while taking into account first order terms in du and &g’
we obtain
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ﬁwﬂaigécmf;géw%&%w%&q‘}@ (24, + 84 Dholr-r -0l hdr )

(D.5)
4219, [ 2+ 3¢ Lt Whofr-1 -1 You(r’thdr dt'))
We rearrange the equation in orders of dg°(z,t):
f}=péfx+§z~»{*Gﬁéf:-nﬁﬁxé%éf@; ff;z{ygj,rz*;&a(ggz’;d%*’dzf
2 Oppt 4 ; P Y {I3.6.)
+272, [ (3 Xty +Sq N lr-L - YBulrl e )+

'!’fféqﬁ(f,f) 5t (- -t sl hdPr 'dty

Equation (D.6.) is an Operator equation to 0. 1. and 2. order in 5¢°(g,t) and can be
written as:

Lau=0 (D.7.)
with

L=l +L +L, (D38
and thus

Lygusp 3%%3%{"Gﬁéﬁ—qéézi*éﬁq;ff;g{;—ﬁ,z*z’)én{i,;f‘)éﬁr"d:‘“} (03.)

Liaum»gz;(z»&qc [0g %t Y+ B Wiy r-r't -t oulele V') (D.10)
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Ldu=2 0 [80 08 e e o' -t Youir e Y (D-11)

First we study the general operator equation
(Ly+el; +€211)u =g (D.12.)

with g small.
We try to find an equation of the average strainfield <u> were the 0. order
operator determine the meanfield ug by:

by=Ly'g (D.13.)
We obtain
Lyu=g-eLu-e'Lu
u=Ly'g-eLy ' Liu-€'ly 'Ly (D.14.)
u=uy-Ly (L, -€’L)u

and can find the solution of the selfconsistent equation by means of successive
approximations.
The first approximation is u= u,, thus

w=tig-Ly (€L, -€* L),

(D.15.)
t=tg-€Ly 'L ,-€*Ly ' Lty
and substitution in u
u=uy-Ly (€L, -€*L)uy-Ly (€L, ~€*L )uy) (D.16.)

u=uy-ely ' Lug-€?Ly Lug+Ly (€L, -€* L)L \(eL, -€’L,)u,
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Rearranging in orders of ¢ we obtain

u=tig-ely 'Ly -€"Ly Lug+etly 'L Ly 'Lg+...
u=itgely Litg+€*(Ly 'Liky 'L, ~Lg L
w=iiy-€lg Lt +€le (L Ly L~Lu,

By averaging both sides of the equation

()=, -ely (L ug+e? Ly AL Ly L1 Du,

and express u, in terms of <u> by

=) +edg KL,

We can substitute this resalt in the latier equation for <u>:

sy~ ML el ML lug) e L (L Ly L)L velg L huy)

=ty e ML M+ 2Ly (L)L L Y€ Lo L L 'L Ya) €Ly LYt
W)=ty -elg (L Yah €Ly (L, Lg LY~ pLg L )~L 000

By applying L; on <u> we obtain:

Liut=g-elL XabveH(L Ly L3~ Mg (L)L)

gl rell ) ve( -, Ly L)L)y L+ DY

It is known that in most cases we can set <L, > =0 and thus

(D17}

(D.18.)

(B.19.)

(D.20.)

(D.2L)
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gl re (L Ly L +L o) (D.22.)
Back to our initial conditions g=0, e=1 and u=58: we arrive at
O=(Lyre(~{L L LY=L NNbu (D23

were L is the inverse operator of L, which can be written by means of a
Greenfunction H{x,t) as:

L du= f Hiz-r't-theu/ thd e’ (D24

Now we can write the explicite equation of the average strainfield using the
incompressibility condition:

mp(af)+§£(m60<au>~qo{aa)

»ayigy (Rt - Youl e Var de +v* [ 34°08 Wyt -1 -t Ydute 3(’325)

“4‘?3? ‘{&2{!“&, ~tSH (- e Y ;zz(__rwtﬁ ¢
(89°(D+34 L N8 Lt M+ g e "N Sulr ™ i de Vs ‘dlr e

Neglecting the last integral because it is small (at least if v is small) and taking the
average over Sg(gt) ¢

0= §€6Xj~m{(} Qurengdm-aviqs [y -rle-tdut s Yar 'dt’
(D26

¥ [543t Wy -ttt Kou(e ot dr d

Considering a monocromatic strain wave we obtain a similar dispersion relation to

(71)



ructural Transitions 95

PO+ K¥(Gy i 0ngJ(K.Q)=0 .27,

with

JCK, )=y} e -r' - e BE 2D g3y gy
(D28.)

S f -tV og ir,nde s f)‘\,ei(ﬂz-;ﬁ*ﬁ(:—;’); oo

The solution of the second integral is known from appendix F {C.16) ,(C.17)
except that the Green function hy{r.t) has to be substituted by hy(r,t) and the first
integral is the Fourlertransform of hy{r.t).

Fouriertransform of the Green function h.(1.1

The Greenfunction h, (5,t) is defined by

()
&t

1 +{~2a +{g IO+ AV =5(r0) {D.29.)

and in the Fourierspace
—jQyh, (K ) +(-2a +{g (K )+ AK (K ()1 {D.30.)

Thus we find for hy(K.0):

i
(K.)= (D.31.)
& ~fxO+(-2a+{g)+AK*
The result of the first integral is:
KK, Q)=4y’q} L ®32)

iy +(-2a +{g )+ AK*

Separating the integral in a reel and a imaginary part for K=0 we obtain
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1
1,00.0)=(-2a)y%g¢

(D.33)
Oy +(-2a+{gy)f
1
L{0,Q)=x04dy%g, D.34,
2(0,0)=x Gy Vi 2arta) (D.34)
Resulis;
Using the fact that in the second integral of (ID.23} is the same as in
Appendix C, we finally obtain for the low symmetry phase:
the real part:
I @)=(-2e+{gMvigd s
23 +(-2a+{ge
(DAs)
2y2¢%,Tr% | | (<20 +{q P w20 (-2a+(g,)
+ +
20 i 42t A
the fiaginary part
i
AR =xQay' gy
" P @ (204 g
(D35

_dkgT xsgiﬁ{ 1 (ugaﬁ'{qs}?*ngi*{—Za'ri:;g}}_ (-2a+{g,)
10 Iz A2 42?2 A \j 3
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5. A Theory for the Melting of Colloidal Crystals Induced by Static Shear

5.1 Introduction

A number of authors discussed theoretically the thermodynamic stability of
colloidal crystals against steady-state shear perturbations. Ramaswamy & Renn [1]
treated this shear induced melting transition as an extension of the equilibrium
melting by using a generalized Hansen-Verlet criterion to the non-equilibrium- case of
a sheared colloidal crystal. With this concept they calculated a shift in the fluid-crystal
coexistence curve. Bagchi & Thirumalai [2] applied a non-equilibrium generalization
of the density functional theory of freezing under shear to colloidal suspensions. They
constructed a free energy functional taking into account the effect of shear. Their
results confirmed the results of Ramaswamy & Renn: if in the absence of shear the
system is at the coexistence curve, then in the presence of shear it will be in the fluid
phase. The shift AC. of the salt concentration under coexistence conditions has been
determined for small shear rates ¥ to be AC.~-y%. This qualitative picture has also
been found in a molecular dynamics simulation of soft sphere particles reported by
Stevens et. al. [3]. These models, however, do not permit of calculating rheological
parameters (storage and loss moduli).

In this paper a model is presented to describe the shear melting transition of
colloidal crystals under an applied constant shear strain (¥=0). It is based on an
extension of the derivation in Chapter 4, in which the melting of a colloidal crystal is
treated as a symmetry breaking transition. The basic idea of the present chapter is
that the application of a critical shear strain on a colloidal crystal close to a symmetry
breaking transition will change its free energy thereby leading to an instability, thus
changing the symmetry properties of the system. This shear induced symmetry

breaking will be treated here by using the model equations of Chapter 4, while we
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include a constant shear, in order to obtain the variation of the transpori parameters

as reflected in the viscoelastic properties close to the transition.

5.2 Theory
The Heimheliz Free Energy Close to the Phase Transition

Starting point of the present model is a generalized local Helmholiz free
enerpy density f{g,u) of a colloidal suspension close to a symmetry breaking transition

as introduced in Chapier 4

¢

AGEHHED rfy%Wg{zs}}%ng&;}mggsﬁ,ﬁ%q‘@,:}

9
+l§~a<z,ﬂq%z,s}~r%u%c,s}

In this equation the positional and time dependent free energy density f is a function
of the local order parameter q(r,t) and of the local strain u{z1). We will confine our
considerations here to simple shear, in which u={w,+w_}/2, while the deformation

w of a body is given by the spatial derivation of the displacement vector X:

w2 (100)
=%

The contribution to the free energy density of a mechanically deformed system is thus
G./2 u(r,1F with an elastic modulus G, which is assumed to be isotropic.

The degree of symmetry will be captured in the "order parameter’ g. The phase
with the higher number of zllowed symmetry operations is denoted as the high
symmetry phase and the other as the low symmetry phase. Disordered phases such as
the fluid or the liquid phase can be transformed into iiself by an infinite number of
transformations, as long as we restrier ourselves to time-average distribution functions.
Therefore in the case of an order-disorder transition the disordered phase is the high
symmetry phase, while the crystal phase is the Jow symmeiry phase. The order
parameter q{gt) is associated here with the change of the amplitude of the density
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wave in the incompressible colloidal c¢rystal (low symmetry phase} during the

transition. The term {w(Lt))* takes into account the contribution of homogensous
{(i.e. long ranged), space-dependent order parameter fluctuations to the free energy.
The expansion of the order parameter up to the fourth order on the right hand side
represents the Landau free energy close to a first order equilibrium phase transition,
where &, ¢ and v are positive parameters while o is positive in the high symmetry
phase and negative in the low symmetry phase [4]. This can be illustraied by
determining the equilibrivme values of the order parameter ly minimizing the
Helmhboltz free energy density T with respect to the order parameter , while the
term.in Eq. (99) containing the (Vq(r,t)® has no influence on the average value of the
order parameter angd is thus neglected. The stability of the solutions depends on the
second derivative of the free energy with respect to . Whereas (g and G, represent

minima of the free energy, g i a maxinom,

(%5] =aq~{q1+vq3+yuqm0 {161}

The equilibrium values of the order parameter ¢, are:
=0

& g gw_w*{u
Joy . *’\ (?2““:} e {162}

fwgw‘}?-a*¥g
{21»'; v

"92’5%'*\
The sclotion g=0 represems the high svmmetry phase, whereas g#0
corresponds to the low symmetry phase. The system is in the high symmetry phase
Go=0 if w+yu>(0. At negative o++yu the system §s in the low symmetry phase
G #0. The coexistence region is given by the values oy, =(*/4v-yu, where the high
symrnetry phase becomes unstable and g =-yu, where the low symmetry is the only
possible state. Our calenlations on the rtheology of colloidal suspensions are restricted
to systems not teo close to the coexistence region. In this case the parameter ¢ is
considered 1o be small compared to «. For =0 a second order transition takes place.

The term 1/2 + u{rt) q(r,t)’, [5] is a simple generalization of the free energy
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and couples the relaxation processes of the order parameter and the elastic
deformation fleld (mode coupling). It will lead to an elastic modulus and a shear
viscosity both corrected for the influence of fluctuations.

We will write the time and space dependent order parameter g{r,t) and the
strain field u(r,t) as the sum of the equilibrium values and small space and time
dependent variations:

u(rty=uy+dulr b (103)

q(n0)=q,+39(r,?)

For reasons of brevity we will not always indicate the dependence of du and éq on [
and t. Inserting {103) into {99} and taking into account only terms up te the second

order in 5u and éq we arrive at:

G,
ﬁﬁq,ﬁu)=j§3+§q§~§ 32as Lugd s
gy~ 045 a3 b (g Tvad+ Tusg®
{164)

+%§56q2+(§.q§ Gl )iu
G,
+7°5u2+yqeaaaq+%(vaq)‘*

The terms lingar in du and dg disappear, because the system is in a minimum of the
thermodynamic potential. Note that in difference to the model discussed in Chapter 4
is that we take into account 2 constant quasi statically applied external shear strain
el

The Helmholtz free energy density depends on the value of gy In the high

symmelry phase, with >0 and qu=0, it can be written as:

Rogdu)=f +~;’~(*§?§q)2+§{a +yiig) aq%%se 51424-;—1 8gsu (105)

with
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G,
'f+— Oy (106)
ot
The free energy density in the low symmetry phase with a+{gy<0 and g,#0

becomes after substitution of the q,° term by the solution of Equation (101):

fdq,0u)= o’%(vaq)’%(-zmcwzw aq%%Go du?
{107)

+yq06q6u+%yﬁq25u

where we used
[+ v 2
RforSa; —%qo;qa‘ +Luoag+ Gy’ (108)

The break of the symmetry leading to a tramsition occurs when the sign of

o +u, changes. This takes place at the transitional value of the external strain

wO= el (199

We assume that +yu, imparts a positive contribution to the free energy. This means
that a change in the sign and thus a symmetry breaking transition can only occur for
negative values of a+ {qy, i.e. in the low symmetry phase (colloidal crystal).

A colloidal crystal in equilibrium has a mimimum in the thermodynamic
patential F(q) at a non-zero order parameter q. Applying a strain u, on the crystal
(low symmetry phase) increases the thermodynamic potential but the structure
remains stable for strains u,<u®. For strains u,>u™® the crystal phase is
thermodynamically unstable and turns back into the high symmetry phase of a
disordered structure with a zero-valued order parameter. This is a shear induced
instability, where the order parameter turns back to the value of the high symmetry
phase q=0 at u,>u'®. The value of the critical strain has been estimated e.g. for

electrically stabilized colloidal particles in a hexagonal layered structure by Boersma

(6].
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The Viscoelastic Properties Close to a Phase Transition

Having derived the free energy density for the high and the low symmetry phase we
are now able to describe the influence of the fluctuations of the order parameter on
the transport parameters G, and #,. The two siow modes describing the dwnamics of

the system are given by the transport equations of the order parameter

3bg_ 1 8fibg,3u) &) (110)
a x &g X

and the momentum

F8X, [ BABGE,BHrY)
P & Bz &u

1,0 l't{z;t)} {111

where gr,t) is a fluctuating term with white noise obeying the fluctuation-dissipation

theorem :
(glr.)elr 1 N=2xk, TH(-tY8(r - (112)

while x is a damping coefficient. Generally speaking the transport coefficients G, and
1, are frequency dependent both in the high and in the low symmetry phase. The
transport coefficients depend on the interparticle interaction determined a. 0. by the
relaxation process of the electric double laver of the collpidal particles. Close to &
phase transition however the low frequency critical fluctuations determine the
transport processes {critical slowing down}. Therefore close to the transition only the
low frequency values G(0=0} and p{{=0) of the high and low symmetry phase are
important, denoted as G, and », These values of the transport coefficients are valid
under conditions far removed from the phase transition, and will be specified later for
the high and the low symmetry phase. Close to a transition they are modified by the
presence of fluctuations.

The equations (105) and (1¢7) bave exactly the same form as the model free
energy density in Chapter 4, except for the shifts of the reference free energies f,

and of « by the value yu, The transport parameters in the presence of small periodic
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perturbations in u(r,t) and Sq(r.t) can be calculated by the same procedure as in the
previous chapter. Applying a shear perturbation by a controlled quasi-static strain uy,
the model indicates that a colloidal crystal is thermodynamically unstable against a
quasi-statically applied shear strain uy>u,', where u™ is given by equation (109),

The expected storage and loss moduli are given by {Chapter 4}
G ’K{ﬁ} =Gﬂo_Jm{£}) {113
G Q)= 0m gy ~J (1) (114)

where Gyg and ny are the undisturbed values of the elastic modulns and the viscosity

of the high symmetry phase (index H), where I, and J,, are given by:

3,2
Ly 2 anJ vl o ey w9

i A 4)* A

-4k T n? “Ag[ 2 201 geyu,| [atva, (116)
I €)= 2ty 4 {“"Y:o) LAT07 ST | 8TV
L L a2 A )

while their low symmetry equivalents {index 1.) takes the form:;
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1
P+ (-2a+2yu,+ g’

I, (O)=4(-26+2yuy+ (g, ) v gl

117

2203, TA | | (2a+2vu, g f 5L (-2a+2yu,+{g)

" +
x4 e 432 A
and
1
J Q) =3 0dyq——

= " (20 2y, {g)?

(1'%8)

4k, T 11:3\;13.2[ 1| (a2 {g)® b 2a+2yuyrlg, | 2a+2vug+{q,
- i + + -
@ 1y2 A ax? A R J

The transport properties of a colloidal suspension of a shear induced
symmetry breaking transition can be determined by applying a constant strain u; and
superimposing on it a small deformation with a low frequency . This permirs io
determine the storage modulus G'(@1) and loss modulus G"(Q).

Because the position of the system in the equilibrium phase diagram in the
absence of the strain has not changed, the occurrence of a shear induced transition
can be viewed a3 a shift of the equilibrium transition lines due to the applied shear
strain. The phase with the lower free energy is the disordered fluid phase, with & non-
zero elastic modulus denoted here as a plass. Applying a shear strain on a colloidal
crystal, it will break into pieces of smaller crystals delivering a global disordered
structure with a non-zero ¢lastic medulus.

Starting with a colloidal crystal (G, nep). the storage modulus decreases and

has a minimum 3t the critical strain g™

, while the loss modulus G* has 4 maximom
there. The high symmetry phase is a suspension with the transport parameters Gy, 9w
of the glass phase. This behaviour as shown in Figure 17 is the result of the critical
fluctuations and the destruction of the colloidal crystal. The model equations for the

transporl paramelers are not correct at the critical strain u,®

. Le. at the transition,
because the approximations made in ihe previous chapter are not applicable to this

region. Therefore we consider only cases outside the coexistence region with a# {(s.
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The model presented here is therefore restricted for strain deformations not too close

to the transition.

GI’G"

low ,r’f high v
symmetry
phase symmetry

G"

Figure 17 The storage modulus G’ and the loss modulus G" as a function of the applied
shear strain uy in relative units.

The frequency dependence of G’() and G"(1) can be seen in the Figures 18
and 19. G'(Q) increases with the frequency Q. The loss modulus G"(R) depends on
the applied strain u, On increasing the strain the maximum in the loss modulus shifts

to lower frequency values by approaching the transition.
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Figure 18 Frequency dependence of the siorage modulus G' in refative uaits for
applied shear strains up, while approsching a transition with [u,} < juy| < foyf,
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Figure 19 Frequency dependence of the loss modulus G" in relative units for appiied
shear strains u,, while approaching a wansition with lu, ] < Ju,| < |u].
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Applying a quasi-static {(f0) sinuseidal deformation with an amplitude U,

the response of the suspension will be non-harmonic. This c¢an be indicated by

calculating the siress as a function of a strain u,, with the form:

u, = Ugcos(€ 0

{119)

We applied the equations of G (113) and G" (114), while neglecting the coexistence

region by setting {=0. Figure 20 displays the resulting stresses determined for a

number of relative amplitudes; the latter are the strain amplitudes U, scaled by the

critical strain u with Q0. It indicates the occurrence of a noanlinear response

(higher harmonics).
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Figure 20 Stress response on a applied cosine shear strain {-+) for a number of relative

amplitudes Uy v, for one period in time.




5.3 Discussien

As expected from the theories of Bagehi & Thirumalai [2] and Ramaswamy &
Renn [1] a shear sirain perturbation can induce a symmetry breaking iransition. The
static shear melting transition in uspensions is accompanied by non-linearities in the
transport properties, which ¢an be detected easily in concentrated dispersions.

In order to analyze dynamic moduli of a strained colloidal crystal a very small
oscillation with frequency { should be superimposed on a constanf strain u, However
no such experimental data are available. A number of authors [91[10] performed
dynamic measurements on colloidal suspensions with varying amplitude but without a
constant strain v, On rising the amplitude first they found a constant elastic modulus.
Beyond a crisica! strain they found an increase in (. From the model we expect 2
decrease of the storage modulus due to the disappearance of the colloidal crystal at
high volume fractions followed by an increase as the result of the iransition into a
disordered structure (Fig.17) that takes place at a critical strain u,™ (109).

Miller et. al. [9] studied solid propellants and observed a eritical strain
amplitude U,® at the minimum of the elastic modulus of U= 10%. This result is
consistent with the generalized density functional theory of Bagehi & Thirumalai (2],
These authors calculated a maximal critical strain of US%(C) =35% above which any
bee-crystal disappears and a liquid-Tike structure occurs.

The dependence of the transport parameters on the strain provides a non-
linear response on a sinusoidally applied strain (Fig. 20). In this figure a ’relative
amplitudes’, is employed defined as the strain amplitude U, scaled by the critical
strain u,", The appearance of these higher harmonics has been found by Miller et al.
9] and Boersma et. al. [10] while performing dynamic testings. Under these
conditions the linear response is lost and care has to be taken in the interpretation of
the results. However in the range of small frequencies (Q;-0) the measurements are
primarily given by (3’. Therefore we consider here only the low frequency storage
modulus,

Matsumotu & Okubo [11] investigated dilute polystyrene suspensions ($=10.1)
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and estimated the decrease of the elastic moduhus for small deformations and low

frequencies to be G ~{Uyy'™, where our model soggests G ~(ug™ in the
hydrodynamic limit.

Using scattering techniques a characteristic transition from a crystal structure
into a disordered structure can be expected at the static shear melting transition for
small deformations, visible by a transition from Bragg-peaks of the colloidal crystal
into a Debye-ring indicating a globally disordered structure for increasing strains.
Static light scattering technmiques have been applied by Ackerson [12] and Ackerson &
Pusey [13] on nearly hard spheres of sterically stabilized PMMA-particles in
tetralin/decalin mixtures. They found that a shear Ug=1 at {I=1Hz orients the
crystal structure of a dispersion with an absolute volume fraction #=048 and
transforms the system into oscillating fec-twin structures, where the {1,1,1) planes are
parallel to the cell walls. At a strain amplitude U,=4 hexagonal planes were formed
indicating a non-equilibrium structure.

Another light scattering investigation on soft sphere suspensions of silica
particles in toluene/ethanol was perforined by Yan ct.al. [14]. Similar results as in the
almost hard sphere case were obtained. After applying strain amplitudes (Ug=~1}) the
initially poly-crystalline strocture changes imo feciwin  structures; at  larger
amplitudes reorganization inte a structure of close packed layers takes place. The
transition from fec-twins to sliding layers shifts to lower strain amplitudes at bigher
volume fractions,

Boersma etal [I10] investigated concentrated silics  suspensions in
water/glycerol mixtures and found critical strain amplitudes for small frequencies of
the order U= 5-10%. At high frequencies the critical shear strain shifts 1o smaller
values on increasing the frequency, while the product of U0 is a constant. The
latter result suggests that the mcrease of the modulus occurs at a constant shear rate
if we assume that the typical shear rate in an oscillatory measurement can be
approximated by y=U8 [15].

We interpret the constant critical shear sirain at low frequencies as reflecting
the shear melting transition. The critical strain at higher frequencies is imerpreted by
the present authors as another instability deneted as dynamic shear melting. which is

treated in Chapter 6. This instability is due to an acoustic resonance of the sheared
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colloidal crystal and occurs at a constant critical shear rate. It is accompanied by an
pronounced increase of the viscosity,

The experimental evidence of the static shear melting transition under
continuous shear bas already been found by using light scatiering techniques by
Pieranski [16] and Ackerson & Clark [17] on dilute colloidal crystals and in numerical
simulations ez by Hess [I8], for small shear rates. The accompanied rheological
properties have been investigated first by Chen et al. [191,[20] in a polystyrene laiex
suspension. Using  smali-angle neutron scatiering they found the disappearance of
the Bragg-peaks accompanied with a jump of the measured stress at very small shear
rates, This jump is probably related to an increase in the elastic modulus during the
transition into a disordered structure. Numerical simulations indicaie a slight increase
of the viscosity at this transition (Fig.7 of ref [211).

In order to investigate the a shear induced tramsition, in Chapter 7, rheo-
optical experiments are described. It will be reported that qualitatively the
dependence of the viscoelastic properties has heen obtained as predieted from this
model, accompanied with the expected change of the structure as determined by statie
light scattering .

5.4 Conclusion

A model is presented predicting rheological parameters (G and G"). It is
based on a Landau theory of structural transitions, which predicts a shear induced
symmetry breaking transition. The equilibrium colloidal crystal becomes unstable
under an applied strain and is expecied (0 change into a disordered colicidal glass
structure. The model allows the qualitative evaluation of the transport parameters
close to such a structural transition. The storage moduolus is expected to have a
minimum and the Ioss modolus a maximum at the critical strain, Experimental results
presented in Chapter & qualitatively confirm the predicted dependence of the

{ransport parameters.
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6. Shear Thickening 35 a Consegoence of an Acoustic Resonance in Sheared

Colloidal Crystals

6.1 Introduction

Under the application of a simple shear flow  applied on a colloidal
suspension the particles, having a soft interaction potential, may arrange themselves
into a long ranged, crystalline structure of hexagonal layers sliding over each other.
The existence of this non-equilibrium ordered state will be the starting point of our
treatment. Experimental investigations [1],[2)[3L{4] indicate that this struciure
disappears with increasing shear rates. This disappearance is accompanied by a
pronounced increase of the viscosity denoted as shear thickening. We will develop a
model based on the assumption that this destruction of the periodic structure is due
to the occurrence of an acoustic resonance within the sheared Iattice.

Damped acoustic shear waves travel through a viscoelastic continunm as shown
first by Joanny [5] and later by Pleranskd [6], A sheared crysial undergoes a periodic
variation of the elastic modulus in the shear gradient direction. Harrowell & Fixman
{71 demonstrated that this periodic variation amplifies long wave length transverse
modes. By using an extension of the Lindemann criterion [8] they could predict an
instability of the sheared colloidal ¢rystal due to an acoustic resonance mecharnism.
Ronis & Kahn [9] improved the approach of Harrowell & Fixman, They anaiyzed the
mucroscopic equations of motion of & dilute colloidal crystal under shear and studied
the dependence of the acoustic resonance on the system size.

In difference to the previous authors, we will apply a two “mediem’ model,
where both media are considered as infinite viscoelastic continua, which are coupled
with each other. One medium is an elastic colloidal crystal, built up of monodisperse
solid particles dispersed in the viscous solvent. The shear is applied on the viscous

solvent and is transmitted to the particles. The other medium contains all viscous
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contributions. Similar models have been used by other investigators in concentrated
polymer solutions and gels [10] and in dilute colloidal crystals [11]. Taking into
account the periodic variation of the elastic modulus in the sheared suspension, an
acoustic resonance occur. This phenomenon is accompanied with shear thickening.
The model presented here allows the calculation of the critical shear rate 4., that

will be compared with experimental results.

6.2 Theory

The Hydrodynamic Model

Starting point of our model is a two medium model, where one medium is
treated as a Newtonian fluid with an effective viscosity # and density p,. The shear
induced colloidal crystal is regarded as the other medium. It is an elastic continuum
with a density p, and an elastic modulus G. The effective viscosity 9 corresponds to
the suspension with a volume fraction ¢ of the dry colloidal particles. In our approach
we thus suppose that all viscous effects are taken into account by the viscous medium
with the viscosity 5. This includes e.g. the viscous damping of movements of the
colloidal crystal due to the hydrodynamic interaction between the colloidal particles.
We will apply a phenomenological equation, that describes the viscosity increase of a

suspension with the volume fraction, consisting of hard spheres dispersed in a solvent
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with a viscosity 7,.

Furthermore we assume that under the influence of a simple shear flow a
spatial distribution of monodisperse particles in hexagonally close packed (hcp) layers
occurs with the close packed array of particles pointed along e,, the mean flow
direction. The layers are orthogonal to and periodic in the e,-direction (shear gradient

direction). The applied simple shear flow

00 1
v00 of (120)
00 0

allows the hexagonal planes to slip freely over each other, as discussed e.g. in [1},{12].
The motion of the colloidal particles causes the elastic properties of the sheared
colloidal crystal in the e-direction to vary periodically in time and space. The time-
periodicity is determined by the externally applied {macroscopic) shear rate v, We

define the shear modulus G(t) of the sheared colloidal crystal as the tensor:

10 0
G(1=Gl0 1 0 (121)
0 0 1-ecos(Tyy)

while G is the isotropic elastic modulus of the undisturbed two dimensional hep-
crystal and e is a small valued parameter that describes the modulation of the elastic
modulus. The parameter T’ depends on the direction of the shear and the structure of
the lattice [9]. For a simple shear in a ortho-rhombic lattice the value of T' is given
by TI'=2rg,/g, with the lattice constants g, and g, in x and z -direction. The shear

rate can be scaled by
1= (122)

In this work we are interested in the effects of deviations from a uniform shear
field. As such, we introduce a displacement field du for the colloidal particles and a

velocity deviation field dv for the viscous medium:
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u=vyt+du (123)
and
y=vp+hy (124)

The interaction between the elastic crystal and the viscous continuum is treated
as an effective local friction force proportional to the difference between velocities of
the particles of the colloidal crystal and the viscous medium.

Under these assumptions the linearized coupled equations of motion have the

form
(h@m%‘vﬂz o®-E(5v,81) (125)
PDp, Fou =Y g®+E(5v.84) (126)

o

while ¢ ® and ¢® are the viscous medium and the crystal stress tensor, respectively.

The medium-crystal coupling vector Z takes the form:
E-§(D)(31i-8v) 27

while £(®) is an increasing function of the volume fraction.
On hydrodynamic length and time scales, i.e. neglecting the diffusive motion of
the colloidal particles, the coupling between the velocities of the colloidal crystal and

the solvent is very strong. Following Lindsay & Chaikin [11] we confine our
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investigation to the limit of strong coupling. The essential physics of the strong

coupling is when the solvent velocity approaches the velocity of the colloidal crystal
Su=dy (128)

In this limit the coupled set of the equations of motion reduces to a single

formula:

Fu (129)

p=(1-®)p,+®p,

(130)
g-g9+g®
The stress tensor term in Equation (129) becomes
Y g=G®)VP3u+nVdu (131)

while n is the high shear viscosity of the suspension, corresponding to a layered hcp

structure.

The Acoustic Resonance

To investigate Equation (129), we introduce a spatial Fourier transform of the

deformation field:

Akd=[su(r.ne *td*r (132)

where A(kt) is the time and wave number dependent amplitude of local
displacements of a volume element from its initial position. Inserting (132) in (129)
we obtain

According to Equation (121) the modulus G(t) is periodic in time. Therefore
Equation (133) is a Mathieu equation [14]. Equation (133) can be solved for small
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aA(t)

+k*G(HA®=0 (133)

azA(t)
ot?

values of the parameter e defined in Eq. (121} as a Taylor expansion of the amplitude

in factors of e:
A®=A90) +ed V() +O(ed) (134

Using this expansion in (133), the zeroth order in ¢ leads to a damped wave equation

in the unsheared system:

(0), )
azAat A% oy aA_(z)

+k%c*4 9 =0 (135)

where the coefficient b is given by

p=1 (136)
p
and the sound velocity ¢ of the suspension is given by:
2-G (137)

P

Equation (135) can be solved by writing the zeroth-order amplitnde as a damped

wave
A9)-40% 7 (138)
Substitution of Equation (138) in (135) gives a dispersion relation in p
pz_bk2p+c2k2:0 (139)

Here p is either real, describing an overdamped creeping motion

bk* | b%* 140
Pio- . oK, - c%k? (140)

or complex, related to damped propagating waves, with
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Pip=dtj@ (141)
while
2
P
2
(142)

w= q':zii'cz--—-——bzk4
4

Now we will investigate contributions to A(k,t) originating from first order
perturbations in e. Because the G, and G, moduli are assumed to be constant, the
transverse modes in e, and e, are always damped waves. However in Equation (133)

we get a contribution in the z-direction from the first order in ¢ of the form

340w

&2

+k%b k2P AL O =c KA (e T re P)cos(iD) (143)

a4 ()
or
where we have chosen a linear combination of (138) with the solutions (140) and

(142). This formula can be solved by means of a Laplace transform as performed in
the Appendix E.
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For damped propagating waves with p,, given by (141) the amplitude of the
first order becomes infinite at a specific, externally applied shear rate. For this

instability the amplitudes in the e,direction become
A0(t,0)=240¢ cos(w1)

24 z(O)C,zkze -8t
@*+0)({-40?)

Azm(t)= [2wcos(yH)(wecos(wi)+dsin{w)) ~ysin(yH)(dcos{(wf) - wsin{w )]

(144)

The first order amplitude has a singularity, as known from the theory of

Mathieu equations [14], at a critical value of the shear rate equal to 2w with

Ty () =20(k)=2 l c2k2-§.’f§f (145)

for a wave with wave number k. The dependence of the scaled critical shear rate on k
is displayed in Figure 21, for a PVC/DOP suspension with I'=1. For practical systems
the range of possible values of wave numbers k is limited on the one band by the

system size and on the other hand by the root in Equation (145).
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Figure 21 The critical shear rate as a function of the wave vector amplitude k for a PVC-
DOP suspension ($=0.45).
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The singularity of the amplitude A,(k,t) describing propagating acoustic shear
waves is essentially a resonance effect. Unclear at the first sight is however, which
wave number k, out from the range of possible wave number k dominates this
instability. From dimension analysis of the argument under the root in (145) we know

that the size of the wave vector can be written as
o2 146

while we regard a, as a free dimensionless parameter. Below we will estimate the
value of this unknown parameter from experiments.
Using (146) and (122) the critical shear rate Equation (145) turns into
. % 71
=914 g% (147)
Ye T 0 "

where I' and a, are dimensionless constants and the characteristic relaxation time 7

is given by

F%: (148)
[

Qs

Note that for a suspension with a constant elastic modulus the instability takes

place at a constant critical shear stress:

6©=gy/4-q? _ag% (149)
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Excess Dissipation

We will consider here the relative increase in dissipation due to an increase of
the amplitude of the first order in e. The average rate of energy dissipation of a

wave with amplitude A, in z-direction of angular frequency « is given by [15]

2n
E%(0)=> [ ¢ FH(00) (o)t (150)

with the dissipative force density component
F®=kn4 (r,0) (151)

given by the second term of equation (133).
The relative increase of the dissipation due to the contribution of the wave

amplitude of the first order in e can approximately be evaluated from

2%
@ AW, .
AE%(,0)~ L;A‘ Grora s2)
J 4P v 0y
The time derivatives of the amplitudes are
AL(t,0)=-24¢ ¥ (sin(wt)o +5cos(w)
240k %c%e b (153)

A%0,9)=- (cos(Y)(3 ¥ cos(wr) + wsin(w(262-12 +20?)

(1-407)(8%+0?)

~ysin(y2)((8- w¥cos(wt) -28 wsin(w)))




6. Shear Thickening as a Conseq. of an Acous. Res. in Sheared Coll. Crystals 127

Substituting the latter equations into (152) and using » from (145) we arrive at:
S
M(¥o-1*

The extra dissipation leads to an increase of the viscosity of the sheared system, which

AEZG.3)~ (154)

therefore has a maximum when the external shear rate -y, is equal to the critical shear
rate 4. This acoustic resonance instability is thus accompanied with an increase of
the viscosity (dilatancy).

Note that the critical shear rate for shear thickening defined here differs from
that generally employed in discussions of the shear rate dependence of the viscosity.
The latter critical shear rate is determined from the point where the viscosity
increases, whereas in the sense of a resonance the critical shear rate corresponds to

the maximum of the viscosity.
Estimation of the Free Parameter

To estimate the free parameter a, of Equation (146) we will study two
examples and predict the critical shear rates: (i) of a suspension of PVC-particles
dispersed in DOP as investigated by Hoffman [16] and (ii) of a suspension of glass
particles in glycerol/water as investigated by Boersma et al, [4].

In order to evaluate the critical shear rate using (147) we have to determine
the elastic modulus and the viscosity of the sheared suspension. We neglect, as a first
approximation, the shear rate dependence of G of the colloidal crystal, which leads to

the assumption:
G(1)=G(y=0) (155)
For estimating the critical shear rate we assume an ordering of the particles as in a 2-

dimensional hcp lattice. Two particles in successive layers have, on closest passage, in

the direction of the shear gradient the same interparticle distance as two adjacent
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particles within a layer. The volume fraction dependent elastic modulus of a 2-

dimensional hep crystal can now be approximated by [17]

()= LNn(@ym@pVER | (156)
2 ot a? "o
5 o

where x is the interparticle centre to centre distance scaled by gy=2a, where a is the
particle radius., Here the number N of next nearest neighbours per unit cell is taken

as N=8. The number density n of the particles at volume fraction ® obeys the

formula
/]
O)=— 157
n(®) Ve (157)
while
V°=§na3 (158)

is the volume of a particle. The distance h between the surfaces of two nearest

neighbours in a hexagonally layered structure [18] is

1
h(<I>)=( §na’ ]3 2 (159)
3/30

The two particle interaction potential is assumed to be given by the Poisson-
Boltzmann theory as a screened Coulomb potential in the linear superposition

approximation [19],[20}:
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l6nee o e,¥ -k(x-1))
Ux,x)=— 00 o*o|| exp{-x(x 160
R s EE .

We define a scaled Debye reciprocal length « through «=x,0, where

2
. 2N6CZ 260 (161)
b €€ kT

The second spatial derivative of the interaction potential is given by

FPUEx) _ B exp(-xx-D)(*x? +2xx+2)
03 ax? og %3

(162)

We will use a phenomenological equation, that describes the viscosity increase
of a hard sphere suspension with the volume fraction. The influence of the temporary
formation of clusters of colloidal particles on the viscosity of the sheared colloidal
suspension has been determined by Campbell and Forgacs [13], applying a percolation

theory. They established an equation for the low shear suspension viscosity 7,

o, -d
7 w(®)=nc{erp{——h2——’i)—l} (163)
lo 0,,~®

for volume fractions >, . The parameter @, is the percolation threshold, which is
independent of the underlying structure ($,=0.16), and &,, =7/3v3=0.605 is the
maximum packing fraction of a hexagonally layered structure;n, is the viscosity of the
solvent fluid.

In our analysis we need the viscosity n of the suspension in the high shear rate
limit, undisturbed by the resonance. In order to obtain the viscosity » we introduce an

unknown coefficient £, independent of the volume fraction by:
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N(P)=1,(P)%, (164)
while 7, is given by Equation (163). We can write Equation (147) in the form

G(?) (165)

@

while we have reduced the unknown parameters to a single fitting parameter £, which
is given by Eq. (147)

4, 3
E=—2y/d-a] (166}
Tg,
With the equations above the critical shear rates can be evaluated as a
function of the volume fraction. We use the following set of data [16], [4] summarized
in Table 6.1:

Table 6.1. (i) PVC in DOP (ii) Glass in
Glycerol/Water
relative dielectric 52 48.65

constant of the solvent ¢,

radius of the particles a 0.625 10° m 12 10%m

surface voltage of the 90 10° V 7510° V

particles ¥,

temperature T 298 K 293K
valency of the ions z 1 1

density of the solvent p, | 981 kg/m® 1000 kg/m’
density of the particles p, | 1400 kg/m’ 2530 kg/m’
solvent viscosity 7, 0.054 Pas 0.14 Pas

salt concentration C 0.00167 mol/m* 0.01 mol/m*
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The salt concentration of the PVC in DOP suspension is an estimation from Figure 9

of ref, [26] for the used surface potential

(i) PVC in DOP

The shear rates at the maxima of the viscosity measurements (critical shear

rates’) on a PVC latex by Hoffman [16] are summarized in Table 6.2;

volume fraction & critical shear rale 4. critical shear rate 4.
[1/s] [1/s]
theory experiment [16]

0.45 400 440

0.47 380 390

049 303 )0

.51 186 180

0.53 72 70

0.55 11 18

0.57 0.1 =i

Table 6.2

By choosing the parameter £ =4 we fitted cur model to the experimental value
of the critical shear rate of the lowest volume fraction (highest critical shear rate}.
For the other volume fraciions we obiain a quite good agreement. Deviations accur
for very high volume fractions. Here the critical shear rate is very small and the
strong coupling limit is not valid. This is because the movement of the particles and

the solvent can be different for small shear rates. The dependence of the critical
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shear rate on the volume fraction is shown in Figure 21 for the used set of data. At
small volume fractions the critical shear rate is small but it increases with increasing
volume fraction, At small volume fractions the viscosity is almost consiant, thus here
the variation in the critical shear rate originates mainly from the increase of the
elastic modulus according to (156). The critical shear rate reaches a maximum at &,
and thereafier decreases with inereasing volume fraction, because in this region the
viscosity increases faster than the elastic modulus does. The acoustic resonance can
occur only for $<&,, because the viscosity of the sheared hep-layered
structurebecomes infimite at &,

With the same set of parameters the dependence of the critical shear rate bas
been determined as a function of the salt concentration at constant volume fraction
$ =043 and is shown in Figure 21, The viscosity was assumed independent of the salt
concentration and thus the critical shear rate is determined completely by the
dependence of the elastic modulus on the salt concentration. The elastic modulus
increases in the crystal phase with decreasing salt concentration and therefore the
critical shear rate increases. The maximum in the critical shear rate with increasing
salt concentration is due to the competition of the decreasing exponent factor with the
increasing polynomial factor in the second derivative of the imteraction potential
(162).

Anotber characteristic dependence of the critical shear rate is on the particle
diameter o, As can be seen from Figure 21 the critical shear rate increases
dramatically for small particle sizes 2t constant volume fraciion ¢=045 and salt

concentration C=0,00167 mol/m’,
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Figure 22 Comparision of the critical shear rate by theory and by experiment (PVC-
DOP suspensions {16]).
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Figure 23 Model prediction of the dependence of the critical shear rate on the salt
concentration {$=0.45, a=0.625 um}.
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Figure 24 The model prediction of the critical shear rate of a $=0.45 suspension i
displayed as a function of the panicle size.

‘With decrzasing particle size at constant volume fraction and salt concentration the

clastic modulus increases, because « decreases i Equation (162).
{if} Glass in Glucerol [Water (86.1% w/w)

Applying the same formalism developed above, the critical shear rate can be
evaluated while we set the free parameter £=4. The experimental values of the
critical shear rate have been obtained from the maximum of the viscosity in reference

[4]. The results are summarized in Fable 6.3.
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volume fraction & critical shear rate ¥, critical shear rate 4.
(1/s] [1/]
theory experiment [4]

05 77 = 108

0.54 40 30

0.55 18 10

0.57 0.4 ]

(.585 ¢4 10* 2

Table 6.3

The agreement between the experimental and theoretical data is reasopable. Note
that the maximum of the lowest viscosity versus shear rate curve was difficult to
determine because the variation in the viscosity is rather small. Also the range of
volume fractions is smaller than with Heffmans experiments, As with the PVC/DOP
suspension the critical shear rates deviates from the expected value for high values of
the volume fraction, presumably because the stroag coupling assumption is not
justified any more. Thai the agreement between experiment and theory is less thun
with the PVC/DOP systern may also be due to the larger polydispersity of the glass
particle size as compared with that af the PVC particles,

6.3 Discussion
Comparison with Experiments
The application of light, x-rav and neutroa scattering techniques allows the

simuitaneous investigation of the microstructure and the transport properties, as first
utilized by Hoffman [1] with a PV(C latex in DOP. He established the conpection
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between an order-disorder transition and the variation of the transport properties.
Ackerson found similar transitions in dilute dispersions [12]. Starting at high shear
rates and going down to lower values he denoted the transition from a disordered
structure into a sheared layer structure as transition 1. Decreasing the shear rate
further, a transition into a polycrystalline (disordered) structure occurs. Here the
layered structure becomes unstable. He denoted this as transition II. In our
interpretation the equilibrium state of a colloidal crystal is unstable against a shear
perturbation and forms a disordered structure at a critical shear strain as discussed in
Chapter 5. On increasing the shear rate, a shear induced order transition takes place
{Chapter 6), which is similar to the transition Il as denoted by Ackerson, but passed
in the opposite direction. The transition I however is the instability, where the
hexagonai planes disappear due to an acoustic resonance.

When the relaxation time of the suspension in the equilibrium colloidal crystal
is large at high volume fractions and high Peclet numbers the non-equilihrium
layered structure seems to be frozen when the perturbation starts with high shear
rates as shown in an experiment carried out by Yan & Dhont [21].

The shear thickening as well as the shear melting tramsition in colloidal
suspension has been the interest of a great number of authors. Before the work of
Hoffman [1] shear thickening was considered as a rheological phenomenon and
mainly treated in a phenomenological manner as summarized in the review article by
Barnes [3].

Originally shear thickening was described as ’dilatancy’, implying an increase of
the volume under a continuous shear deformation. Note that although normal forces
are neglected in the model presented here they are expected to occur, since the
resonance appears in the shear gradient direction only.

Decreasing the absolute value of the surface charge and the concentration of
the counter ions by varying the pH value, Laun [22] obtained the expected shift of the
critical shear rate of dilatancy to lower values for decreasing repulsive forces (smaller
elastic modulus) by investigating a concentrated polystyrene latex dispersion. In the
same publication the temperature dependence of a suspension of polystyrene particies

in diethyleneglycol /formamide has been studied. It was found that the critical shear
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rate shifts to lower values for decreasing temperatures. A similar result has been
obtained by Boersma et al. [4] from a polystyrene in water/glycerol suspension. These
results are in agreement with the model, since the increase of the viscosity with
decreasing temperatures shifts according to equation {147) the critical shear rate to
Iower values. The critical shear stress is expected to be rather independent of the
temperature ageording to Equation {149), because the elastic modulus varies only
slightly with the temperature.

With the same argument we can understand the effect of solvents of different
viscasity on shear thickening, Figure 11 of reference [3] and Figure 9 of [4] confirm
Equation {149} that for equal elastic moduli the transition takes place at a constant
5tress.

The increase of the critical shear rate for decreasing particle sizes, as shown by
Barnes [3], is partially due to the increase of the elastic modulus with decreasing
particle diameter according fo a decrease in the scaled Debye parameter « in
Equatien {162}, Also the liguid viscosities of the suspensions with larger particles are
usually larger. Note that our model iz developed under the assumption of
monodisperse particles. A polydisperse distribution has been found experimentally to
correspond with a less pronounced increase of the viscosity. In the approach here a
possible explanation for this phenomenen is that the density variations become less
well periodic in the sheared colloidal crystal and the resonance sffects are reduced.

Chow & Zukoski [24] introduced a relation 4.~ G/, similar to (147). But they
used the solvent viscosity n, instead of the suspension viscosity y. The latter
assumption leads to a systematic deviation of the results for the crrical shear rate
from the volume fraction (see e.g. table 1V of ref. [25]}.

Experimental results on the system size dependence of the critical shear rate
of shear thickening obtained by Chen & Zukoski [24] show that it is important
especially at high volume fractions. They found that the critical shear rate decreases
with decreasing  system sizes, In our model the system size becomes limiting, when
the corresponding wavelength k,, is greater than the wavelength k, of the dominant
deformation wave of the sheared suspension. The experimentaily found dependence

can only occur when k, is on the right side of the maximum of the (k) dependence



shown in Figure 21, However the experimental investigations by Chen & Zukoski [24]

show that the critical shear rate is independent of the system size for practical systems

(> Imm).
Comparison with Other Models

Other explanations for shear thickening i colloidal suspensions have been
given by Hoffman [26], Ackerson & Clark |2] and Boersma et. al. [18]. The basic idea
of Hoffman is that a shear stress couple acting on a doublet of particles in a sheared
crystal is the reason for the insiability. Recall that when shear is applied to a
suspension, shear induces a transition to a layered structure, which means that the
flow field stabilizes this layered hep structure (28], Thus the shear stress stabilizes the
ordered structure and from considering particles in one hep-laver only, an instability
cannot be derived. In the model presented here the reason for the nstability comes
from the periadic modulation of the modulus in the flow gradient direction, leading
to a resonance between the modulation frequency and the eigen frequency of
propagating acoustic shear waves,

An increase of the local oscillations coming from the acoustic resonance can
lead to a structural transition with a formation of clusters (flow blockuge), when the
forces acting on a colloidal particle are of the order of the repulsive stabilization as
assumed by Boersma et. al. In this ease the critical shear rate of shear thickeaing is
ruted by Boersma’s equation {4),[29] with the critical shear rate

¥
. 2ree Yo (167)

6xnga’ 2

Mote that the acoustic resonance can be expected to cause an instability even
in very dilute suspensions accompanied by a global disordering and an alteration of
the dynamic properties, Such phenomena have heen ohserved by Lindsay & Chaikio
[11]. The attempt by Chow & Zukoski [25] 1o expand Boersma's approach 1o dilute

suspensians, by rreating a maximum of the crideal shear rates at a specific volume
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fraction &, evolves in the model presented here in 2 natural way (Fig. 22).

64 Conclusions

The model presented here explains shear thickening of sheared colloidal suspensions
as the occurrence of an acoustic resonance. The resonance is the result of the periodie
modulation of the elastic modulus in a shear colloidal crystal structore. Applying the
hydrodynamic equation of the colloidal suspension the critical shear rate, where a
maximum in the viscosity o¢eurs, can be derived. A good agreement with experimental
results for high critical shear rates could be found. For low critical shear rates the

used approximations have to be improved.
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Appendix E

In order to solve Equation (143) we introduce the standard Laplace iransform
A(s)=L (A}

Als)= fe “A{De dt (E.1)

and the reverse transform

1 posym
Aty = Als)e” E.2
O A s ED

where 85 is a positive constant.

Choosing the initial conditions as
AD(E=0)=A Ve=0)=0 (E-3)

the Laplace transform of Equation (143) becomes
r
22 .
B9 1 s, N (E.4)

A== 2 2
s*-blk*s+c7k {{s‘rpl)“w (s+p,)2+4

where we used the relation
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L{e Feos{on)-—2F (E.5)
{(s+py+w?

The reverse Laplace transform of (E.4) contains the sum of all residua s, of A%(y)
with Re(s) <{. The poles s, of A"(5) are at
S =-p -J¥
5= Py Y
P (5.6)
83= =y JY

5¢=-pytJY

The reverse Laplace transform of {E.4) has thus the form

AWy =024 {ﬁ}ﬁq [A (1}(5«:}{3435}13‘1“: (E.7)
Using {E.4) and (E.6) in (E.7) we obtain the ume dependent first order amplitude

e Pp,-p)eosi9-1sin(1) e P, peos(i)+¥sn(I) | (g
JACEE AT Y PV (D, -0

AW(e)=cA iﬂ{

In the case of damped propagating waves p, and p, are given by (141} and the

amplitude turns into

AV 22

AW LR E
@+ 03 -40?)

[2eacos(y (i{wcos{w i) + bsin(wi)} - ysind ¥ beos(w!) - wsin{w )]

(£.9)
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CHAPTER HL

EXPERIMENT

7. Rheology and Rheo-optics of Concenirated Colloidal Suspensions

7.1 Introduction

In order to facilitate the interpretation of experimental data, this paper starts with
summarizing a number of theoretical findings. Colloidal suspensions have, depending on
the inter-particle interaction and the volume fraction of the dispersed particles, a colloidal
crystal, fluid or liquid (flocculated) structure (Chapter 33, In chapter 4 we discussed the
mutual influence of structurai phase transitions and rheological properties of colloidal
suspensions, The model presented there concerns the stability of colleidal crystals formed
as an equilibrium phase in concentrated soft sphere colloidal suspensions. The underlying
assumption is that a colloidal crystal may become unstable under the action of a static
shear strain. This assumption is alse based on theoretical [1] and experimental {2),]3] evidence.
This effect has been interpreted {Chapter 3) as a shear induced phase transition and the
gualitative behavicur of the dynamic rheological properties was derived.

To test the applicability of that madel dynamic shear measurements were petformed
on three different systems of colloidal suspensions. Additionally rheo-optical investigations
on one of the suspensions were made o confirm the idea that a shear strain can desiroy
a colloidal crystal. Therefore static light scattering was applied to determine the microscopic
structure of a strained concentrated suspension

The model in Chapter 5 is not applicable under steady shear conditions. Therefore
another theoretical model has been developed in Chapter 6, that predicis the oceurence
of shear thickening under steady shear. The latter model is based on the idea that asheared
colloidal suspension forms a layered structure, in which the periodic modulation of the

elastic modulus induces an acoustic resonance. This effect will lead to an increase of the
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dissipation and therefore to a viscosity increase (shear thickening). The model predicts
the shear rate, at which the maximum of the viscosity can be found, denoted in this paper
as the critical shear rate (which is not related to critical effects close to a phase transition).
Steady-state shear measurements were performed on concentrated colloidal suspensions

to compare the model predictions of the critical shear rate with the experiments,

7.2. Experimenial

Waterials

Rheological measuremnents were performed on suspensions of
~ Polymethylmethacryiate (PMMA) particles in silicon oil
- Polyvinyichloride {PVC) particles in dioctylphtalate (DOP)
- Glass particles in a glycerol/water {86.1/13.9 m/m) ruixture

The silicon oil was ocbtained from Aldeoch Chemical Co. Lid. with
a density p= 1050 kg/m’ and a viscosity =0.15 Pa.s. Dioctylphtalate {DOP) (Fluka AG)
was used as supplied. The density is p =983 kg/m’ and the viscosity is n=10.054 Pas, Glycerol
(Merk, reinst) was used as supplied. It was mixed with twice-distilled water vielding 2 86.1/13.9
mass/mass mixture with a density of 1224 kg/m’ and a viscosity of 0.14 Pas. All values

are obtained at constant temperature T= 293 K
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Dispersion samples were prepared by mixing by hand while adding the particles
to the liquid until the correct volume fraction ® was reached. Then the samples were stirred
mechanically until no separate aggregates could be seen by eye. The characteristic properties

of the suspensions are summarized in Table 7.1,

Table 7.1 Charactenstics of the suspensions.

particle particle -puoiential salt
density diameter in in mV concentration
in kg/m’ am in mol/m’
PMMA/ 1190 0.16+0.06 35410
Silicon: (il
PVC/DOP 1390 1254008 40%10 0.01
Glass/Glycero | 2330 24+12 75+10 0.035
L/ Water

The particle sizes were determined with a Coulter Counter ZM 256, {-potentials
werg measured with a Malvern Zetasizer 3, all densities were mneasured with a pycnometer
and the conductivities were measared with a Philips PW 9505 conducivity tester. The concentration
of electrolyte in the liguid was estimated by comparison of the conductivity of the supernatant
of a suspension with conductivities of solutions of K with known concentrations.

The PMMA particles were obtained from Réhm GmbH as an agueous dispersion.
They were dried and redispersed in silicon oil. The PV particles were supplied by Hoffiman
[41,[6] {prepared by standard emulsion polymerization procedures and dried). We dispersed
them in DOP. Note that experimental investigations by Gérnitz & Zecha [7] indicate that
the stabilization of the particles in PVC/DOP suspensions are not only determined by
electrostatic forces but by steric interactions as well. In addition they found that the PVC
particles can change their size due to the DOP.

CGilass particles were obtained from Potters Baliotind (soda lime glass). They where
washed twice with concentrated nitric acid and then washed with twice distilled water unul

the pH hecame constant at 8.3, Washing was performed by centrifugation, decanting the
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liquid and resuspending the solid in a fresh liquid. After washing, the particles were dried
in a vacaum oven at 423 K.

The PVC/DOP suspension employed here (£=0.57) has been chosen for the
rheo-optical study, because the rheological measurements indicate the presence of a
colloidal crystal at small strains. Additionally the refractive index of the PVC particles
(n=1.54) and of the DOP (n=1.486) are close to eaech other and the size of the

particles are of the order of the wavelength of the light employed.

Eguipment

Rhecological Equipment

Rheological measursments were carried out with a Weissenberg Rheogoniometer
{TA Instruments} and a Rheometrics RFS 130. Cone and plate geometries {4°) were applied
with a diameter of 2 em and 4 em respectively. After the measuring system was filled
the gap was set, while applying a small oscillation (0.01 rad, 0.1 rad/s) on the plate for
about 5 min. With this standard procedure the equilibration of the suspension is expected
1o be accelerated (see below)leading to a reproducible starting point of all measurements.
The measurements were performed at room temperalure (295 K} The rheometar was
able to automatically carry out dynamic as well as steady state measurement procedures.
The dynamic procedures are frequency sweeps (varving frequency at constant strain) and
amplitnde sweeps (varying strain amplitudes at constant frequency} while the tirne dependence
of the input and cutputsignal could be monitored (time dependence). The strain amplitude
could be increased or decreased in steps, denoted as ’up’ and “down’ measurements respectively.

Dynamic and steady state experiments were carried out on three quite different

systems of colloidal suspensions.
Rheo-optical Setup

The geometries for studying the theology of high volume fraction dispersions are plate-plate,
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cone-plate, concentric cylinder (Couette) and a tapered Couette geometry [S]. A cone-plate
geometry has the disadvantage that a slight mismatch of the refractive indices between
the suspension and the cone leads to the occurrence of a second beam. In a coaxial cylinder
geometry the path length of the light beam through the sample is fixed but we preferred
an adjustable path length. Although a tapered Couette geometry may fulfit this condition,
we have chosen the design of a plate-plate geometry because the construction was more

simple, despite the occurrence of a radius dependent deformation.

plate-
— plate

geomefry
beamstop

B
’_ﬁv CCD
beam- Lt / \

splitter glass plates

mirror \

lens A
suspension

e -

laser rheometer

Figure 25 Plate-plate rheo-optical setup.

Inorder to prevent shear force driven diffusion of particles that may lead to changes
in local volume fractions [9], we only applied a few droplets of suspension. The gap was
only filled near the optical beam, so as to assure that the strain amplitude variation over
the sample did not vary by more than 15% and the rest of the gap was empty. The simulianeously
obtained rheological signal is not quantitatively correct any more, but only indicative [10).

We used the Weissenberg (TA Instruments) rheometer to obtain rheological data of quantitative
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accuracy.

An experimental setup was built and mounted on a Sengamo R18 Weissenberg
Rhengoniometer R15, o determine sinmiltaneously the rheclogical properties and the diffraction
pattern of a colloidal suspension. The setup is shown in Figure 25. A colloidal suspension
was introeduced between two glass plates (n=1.5168) mounted on & Sangamo Weissenberg
Rheogomiometer. The light source was a 10 mW He-Ne-laser (Lambda Physics) with a
wave length of 632.8 nm. The laser beam has its focus between the two glass plates and
is adjusted by a system of mirrors and beam splitters on 2 suitable position between the
glass plates. Note that it is possible 10 operate in forward as well as in back scattering.
A diffraction pattern appears at the air-giass interface, which acts as a sereen. This pattern
has been observed by means of a beam splitter and a CCD-camera (HCS Vision MAX5
with 630*490 pixel). The incident beam was directed perpendicular to the plass plates,
adjusted by aligning the reflections of all parts of the optical system. The incident beam
was dimaned by a beam stop in front of the camera. A digital pictare obtained by the camera
was sent to a frame grabber {Datacube Maxvision AT-1), working with a frequency of
25 Hz per frame and having 3 image stores with 512*512%8 bit. It was possible to apply
real time transformations on the picture {e.g. convelntion). The chosen standurd measurement
procedure was to average over 12 pictures (temporal filier).

After the rtheometer was filled the gap was adjusted while a sall periodic oscillation
was applied (0.1 rad, 0.252 rad/s, 5 min), with a gap of 10 pm. During this procedure Bragg

peaks appeared indicating a colloidal crystal with a preferential orientation.

7.4. Results
Rheological Measurements
(i} glass in glycerol fwarer

We will first consider a glass/glycerol /water suspension (¥ =0.58). In Figure 26

the dependence of the storage modulus G and the phase angle on the appiied shear strain
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as obtained with the RFS 130 is shown. The colloidal suspension is rather viscous for small
strains showing a high phase angle, and arelatively small elastic modulus. The phase angle
decreases with increasing shear strains, while the elastic modulus increases, indicating a

progressively elastic character.

G'Pa]
]

phase angle

glass 58 % in
glycerol/water

1
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Figure 26 The storage modulus and the phase angle for increasing strains of a glass/
glycerol/water suspension ($=0.58) at 1 rad/s.
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Figure 27 The storage modulus and the phase angle as a function of the frequency

for varying values of the strain amplitude of a glass/glycerol/water suspension
($=0.58).
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The frequency dependence of the rheological properties for various values as a
function of the applied strain was investigated and summarized in Figure 27. The storage
modulus and the phase angle are displayed, while the oscillatory strain amplitude was varied
from 0.1 to 0.5. For shortness sake the oscillatory strain amplitude will be indicated as
strain. The experimental results indicate that for small frequencies the suspension has viscous
properties with a high phase angle and a low elastic modulus. At increasing frequencies
the suspension behaves more elastically, with an increasing elastic modulus and a decreasing
phase angle. The elastic properties are more pronounced for higher shear strains, as expected
from the strain dependence.

The dependence of the viscosity on the shear rate is shown in Figure 28. After a
slight decrease in the viscosity for small shear rates the suspension shows a pronounced

shear thickening behaviour and reaches a maximum in the viscosity at about 10 s™.

100 5
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Figure 28 The steady state viscosity of a glass/glycerol/water suspension
($=0.58) as a function of the shear rate.



7. Rheology and Rheo-optics of Concentrated Colloidal Suspensions 154

1E 4 Serrrrey,
1000
£
- 1 '
& 00 s =%
10 T PMMA in silicon oil
i ' angular frequency=0.6 rad/s
1 } t b t
0 0.05 0.1 0.15 0.2
strain
85
75 ¢

PMMA in silicon oil
o angular frequency=0.6 rad/s

45 - ' |
0 0.05 0.1 0.15 0.2

strain

Figure 29 The storage modulus and the phase angle as a function of the strain at a
constant angular frequency of 0.1 Hz for PMMA/Silicon Oil suspensions at four
volume fractions. The arrows indicate the position of the minima.
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(if) PMMA in silicon oil

The dependence of the storage modulus G’ and the phase angle & on the applied
shear strain has been investigated with PMMA /silicon oil suspensions for a number of
different volume fractions (Figure 29). The dynamic shear properties were measured while
decreasing the amplitude starting at a strain=0.2, using a constant angular frequency of
0.1 rad/s.

The value of the storage modulus decreases with decreasing volume fraction. On
varying the applied strain a minimum in the storage modulus has been found, that is indicated
by a arrows in Figure 29. It shifts to higher strain values and seems to broaden with decreasing
volume fraction. The ®=0.60 system also has a second minimum at a much larger strain.
The phase angle decreases with increasing volume fraction at small strain values. However
with increasing strain this trend becomes less pronounced. After a slight decrease, the phase
angle increases with the strain at high volume fractions.

In Figure 30 the frequency dependencies of the PMMA /silicon oil suspensions
at four volume fractions are shown for a strain of 0.2. The elastic moduli increase with
increasing angular frequency and volume fraction. A maximum of the phase angle has

been detected, which shifts to values of higher frequencies for increasing volume fractions.
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Figure 30 The storage modulus and the phase angle as a function of the angular
frequency for various PMMA /silicon oil suspensions at a constant strain.
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(ifi) PVC in DOP

The evolution of the stress response fo a sinusoidal strain was investigated for the
PVC in DOP suspension with a volume fraction of 37%. The result is displayed in Figure
31 for four different values of the relative shear amplitnde, which is defined as the ratio
of the actual amplitude U, and the critical amplitude U, (Uy® =08 with this sample,
as assessed from Fig.32}. At a relative amplitude > 1 the output signai becomes very complex,
but shows a qualitatively similar dependence as the calculated inharmonic signal in Figure
0.
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Figure 31 The stress response (squares} of a PVC/DOP suspension on a harmonic
strain {circles) for four different relative amplitudes.
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Figure 32 The elasic modulus and the phase angle for increasing (up) and
decreasing (down) strains of an PVC/DOP suspension (£=0.57).
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Figure 33 The storage modulus and the phase angle of a PYC/DOP
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The dynamic rheological behaviour of a PYVC/DOP suspension {$#=0.57} is shown in
Figure 32 for increasing (up) and decreasing (down) strains. A very pronounced minimuam
in the storage modulus and 4 maximum in the phase angle were found. The minimum
in G is slightly broader for decreasing strains as compared to increasing strains.

InFigure 33 the frequency dependence of the dynamic properties of the PYC/DOP
suspension is presented for the lower sirains (Ug<0.5). The storage modulus G’ decreases
with increasing strain, and increases with increasing angular frequency. The phase angle
behaves differently in that it increase with increasing strain, The differences due to sirain
seem to disappear at high frequencies.

The dependence of the viscosity on the shear rate s given in Figure 34, After a
gradual decrease for small shear rates the viscosity shows a pronommced increase with increasing

shear rate. The viscosity has 2 maximum at a shear rate of 657,
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Figure 34 The shear rate dependent viscosity of a PYC/DOP suspension ($=0.57).
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Rheo-optical Measurements

From the rheological measuremnents we expected a pronounced shear induced tramsition
in the PVC/DOP suspension (¢ =0.57). This suspension was analyzed in more detail using
the rheo-optical setup. Both the rheological parameters and the optical diffraction patierns
were analyzed, while applying various constant strains going from small to large deformations
{"up”} and back again ("down"}.

A number of representative diffraction patterns for the various applied shear
strains are presented in Figure 34. On increasing ihe strain essentially the same sequence
of pictures was found in the reverse order. The patierns F-A were taken while stepwise
decreasing the strain amplitude. The corresponding rheological properties are shown in
Figure 35, The patterns were taken perpendicular to the glass plates in the shear gradient
direction, while the shear oscillation movements were from left to right and vice versa,
Note that these pictures are integrations of the whole oseillation period, thus an average
of all deformations.

The diffraction patterns A, B and C are taken at small applied shear strains, They
consists of Bragg peaks arranged in two circles around the central beam that is dimmed
by a beam stop. The first order Bragg peaks [orm a hexagooal arrangement with a background
Debye ring, indicating an imperfect periodic lattice formed by the colloidal particles. The
Bragg peaks of the second order ring are partially smeared out and it is therefore difficult
to pinpoint their location.

The experimental results indicate that an ariented colloidal crystal was formed during
the filking procedure. On increasing the strain the Bragg peaks and thas the colloidal crystal
disappear as can be seen on the patiern D, E and F. In the transition region however (pattern
D ard E) the colloidal particles form an intermediate structure which suggests the arrangement
of chains of colleidal particles that form an optical gnd in the flow direction [3]. This is

reflected in two bright Bragg peaks in the upper and lower part of the scattering paitern.
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Figure 35 Rheo-optical scattered patterns for a number of different strains as indicated

by the capitals in Figure 36.
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Figure 36 Dependence of the elastic modulus and the order parameter OPy on the
strain for increasing (up) and decreasing (down} strains in a PVC/DOP suspension,
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In the presence of crystalline structures, colloidal suspensions are expected to exhibit Bragg
scattering, provided there is an appropriate opacity of the sample. Several researchers
[41.[5] have published rheo-optical static light scattering results of suspensions, usually under
steady-shear rate conditions. In order to characterize the degree of long-range crientational
order in a sheared suspension Chow & Zukoski [5] introduced an order parameter OP,,
by writing for the scattered intensity I{6,) of the first order scattering ring (in the velocity /vorticity
plane):

(168)

(1(091(6.,+§) (%)
0] =EN

k=1 ]1

max

where the 8, is the angle measured from the velocity axis. The average intensity is given
by 1/N [ZI(6,)] and I, is the maximum intensity of all I{f,) measured. We will take this
parameter to discuss the connections between the theoretical model and the experimental
results.

In Figure 36 are displayed the elastic modulus of the suspension together with the value
of the order parametcr OPy, both for increasing and decreasing strains. The experimental
investigations show that close to the minimum in G’ the Bragg peaks disappear as indicated
by a decreasing OPg value. While in the measurement with a decreasing amplitude {down)
the minimum in G’ shows a coincidence with the disappearance of the Bragg peaks. In
the "up" measurement there is a difference between the position of the minimum in G’

and that of the decrease of OPg,
7.5. Discussion

We have chosen three different systems of colloidal suspensions, with quite different

rheological properties. We expect therefore different structures to be responsible for their
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rheology. Here we will compare the experimentai results with the theoretical model of
the in Chapters 3-6.

The glass/glycerol/water suspension with =38% as shown in Figure 26 has a
rather constant and small elastic modulus for small strains that gradually increases with
increasing strains. The phase angle is however very high. From this resalt the theoretically
expected strain dependence, with @ minimum in G, cannot be confirmed. At first sight
one would expect that the equilibrium phase is a colloidal crystal. It is however known,
that such a crystal phase cannot occur for polydisperse colloidal systems. The rheological
properties for small strains indicate a highly viscous concentrated glass-like structure.

The dependence of the viscosity en the shear rate is shown in Figure 28. From this
the critical shear rate of this suspension at the maximum viscosity can be determined to
be e 10 5. The minimum in the viscosity of the glass/glycerol/water suspension can
be obtained from Figure 28 o be n~8 Pas. The elastic modulus of the colloidal crystal
in equilibrium as derived from Figure 28 in the high frequency limit for small strains is
G2 Pa. The theoretical prediction of the critical shear rate, according o 4.=4 Gy/n
is therefore 4= 15", while the experimental maximum is at .= 10¢", This discrepancy
is theugh not to be serious singe the model in chapter 6 was derived on the basis of monodisperse
particles but the glass particles have a relatively broad size distribution leading to deviations
from the expected theoretical result,

The storage modulus of the PMMA /silicon oil suspension in Fig. 29 shows a minimum
for low volume fractions. The storage modoli in these suspensions are significantly higher
than in the glass/ glycerol /water suspension, while the phase angles are lower, Our interpretation
is therefore that a coiloidal crystal is present at $mall strains for the volume fractions
$ =049 and $=0.57. On increasing the strain the structure changes into a colloidal glass
(Chapter 5), a disordered structure of colloidal particles with a non-zero elastic modulus.
The misimum disappears for the higher volume fractions $=0.58 and $=0.6. Apparently
these highly concentrated suspensions form a colloidal glass structure during preparation
and are not able to form a colipidal ceystal within an experimentally accessible timescale.

Fig. 29 suggests that the wransitional strain, at the minimum in (', decreases with
increasing volume fractions. On the other band the model in Chapter 3 prediets that the
distance to the transition into a colloidal fluid increases with inereasing volume fraction.

Thus an increase of the critical strain could be expected to be accompanied by a decrease
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of the internal relaxation time on increasing volume fraction. The occurrence of the colloidal
glass not taken into account in the model in Chapter 5 may be responsible for the qualitative
difference. The frequency dependence of G’ (Fig.30) at the higher volume tractions ($=0.58,
& =0.6) differ from that at the lower volume fractions ($=0.49, =0.57). The latter show
the expected increase of the elastic modulus for increasing frequencies, approaching the
value of a modulus independent of the frequency. The phase angle indicates that the relaxation
time at the lower volume fractions is relatively high compared to the values found at high
volume fractions.

Continuous shear experiments have been carried out indicating a yield stress of
the samples. However no shear thickening of these suspensions could be detected within
the measuring range of the rheometers employed.

A very pronounced transition could be found in the measurements for PVC/DOP
with =057 (Fig. 32) with a minimum in G’ and a maximum in the phase angle as qualitatively
expected from the model in Chapter 4. Note however that this experiment is not exactly
conforming to the theoretical requirements, in which a very small oscillating amplitude
is superimposed on a static deformation. The critical shear strain found from the minimum
in G" in Fig. 32 is at Uy“=0.8. A similar result has been found for slightly flocculated
ferric-oxide suspensions by Kanai & Amari [11], but with critical strains between 0.1 and
1. The reason for this strain-thickening’ in a flocculated suspension is at present not clearly
understood. However the results by Kanai & Amari can be interpreted by means of a shear
induced transition, when we assume that their preshear procedure has led to a stable colloidal
crystal-like structure, which is being broken up by increasing strains.

The fact that the minimum in G’ for the "down™ measurement is different compared
to the "up” measurement indicates the existence of netastable states. This is supporting
evidence for the existence of a first order character of the transition.

In Fig. 31 on approaching the transition in the stress signal a contribution twice
the frequency of the strain signal is shown to be theoretically expected. This effect is not
pronounced in the experimental results. However the minimum of G’ is not a very sharp
at the transition. This is in difference to the assumtions in the theoretical calculations.

The frequency dependence of Fig. 33 indicates, that on increasing the frequency
a frequency independent storage modulus is approached as expected fromn the modei in
Chapter 5.
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Figure 34 presents a continuous shear measurement of the PYC/ DOP suspension.
After a shear thinning region, shear thickening oecurs with its maximum at Je=635" A
calculation of the critical shear rate can be performed. When we estimale the elastic modulus
from Figure 32 to be Gy 2000 Pa and estimate the viscosity from its minimum in Figure
34 to be =~ 1400 Pas, we obtain t0 4. =5.7 5" which is in good agreement with the experimental
value.

1t is evident, that the size and the size distribution of the dispersed particles determine
the structural and rheological properties of a suspension. The PVC particles have a narrow
size distribution, allowing the formation of a long range colloidal crystal. Increasing the
spread of the size distribution inhibits the crystal formation. The size distribution of the
PMMA particles is comparable with that of the glass particles, leading to a similar rheological
behaviour for high volume fractions. The PMMA particles are small compared to the
PV or glass particles leading t¢ a relatively high elastic modulus for smail strains.

The fact that for the suspension with small particles no shear thickening could be
found can, in the sense of the model in Chapter 6, be explained by the ahsence of a periodically
layered structure. This can either be due to an increased Brownian metion of the particles
{condition of the strong coupling is lost), or i the fact that the high elastic modulus prevents
the particles from forming a layered structure.

The rheo-optical investigations allow the simultaneous determination of the imegral
rhealogical properties and the local microscopical structure. For small strains the Bragg
peaks indicate a colloidal crystal for the case of a PYC/DOP suspension. This colloidal
crystal is stable against small oscillations. From the equilibrium phase diagram a colloidal
fee-crystal can be expected {Chapter 3). According to the model in Chapter 5 the collaidal
crystal is expected to melt under the influence of an applied shear strain. The colloidal
crysial changes into a disordered glass structure. The resulis of Fig, 35 and Fig. 36 are
in agreement with this idea.

The order parameter QFy, indicating the presence of a long range periodic order,
decreases close to the critical sirain, and the Bragg peaks disappear. The transitional strain
values indicating the microstructural changes, can also be obtained from the point of a
rapid increase of the value of OPy, The transitional values as obtained from the measurement
with increasing and decreasing sirain {up and down), derived from the order parameter

(P, can be interpreted as a hysteresis effect. The glass structure can be metastable in
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the transition region in accordance with the first order character of this structaral transition.
Additionally, in the transition region two prenounced Bragg peaks remain visible,
indicating the occurance of a string-like structure. This string struciure is not present in
the equilibrium phase diagram and will therefore be interpreted as a shear induced non-equilibrium
structure, It is not incuded in the simple thermodynarmic model in Chapter 6. The occurrence
of this structure can be understood from the formation of a non-equilibrium structure by
oscillations with a frequency which is of the order of the relaxation tume of the ¢ritical
fluctuations. A similar siructure has been obtained e.g. by Yan and Dhont [3]. The occurence
of this strocture will Iead 10 deviations of the expected rheological properties near the

iransifion from the theoretical model

1.6. Conclusions

The dynamic shear properties of glass in glycerol/water, PMMA in silicon oil and
PYCin DOP suspensions has been investigated at volume fractions (.48 <4< 0.6, The broad
size distributions of the ghass and PMMA particles prevents the occurrence of a colioidal
crystal at high volume fractions; instead a colloida! disordered glass structure is formed.
While the suspension with a crystalline structure shows a minirmem in the slastic modulus
with increasing strain, this dependence is absent in the colloidal glass structure. The expenimental
investigations suggest that the statistical model (Chapter 3) of 4 shear induced transition
indeed allows the interpretation of the obtained results. This model is based on the assumption
that a colleidal crystal becomes unstable under an externally applied shear strain. This
instability is accompanied by the oveurrence of a minimum in (7 at the eritical strain, where
the global structure changes. The narrow size distribution of the PVC particles aliows
the investigation of the colloidal crystal by rheo-optical tectmigues and the simultanegus
deternrination of the storage and the loss moduli. Rheo-optival investigations confirm the
idea that a shear strain can induce a structural transition in concentrated coltoidal suspensions.
On increasing the applied shear strain the initially existing Bragg peaks disappear and
a Debye ring appears indicating a globally disordered structure at the critical strain. At
the transition however deviations are found which indicate a string-like structure,

At continuous shear only the suspensions with large colleidai particles show shear

thickening. The model of an acoustic resonance jnstability in sheared colloidal suspensions



{Chapter 6) provides a critical shear rate, A good agreement between the calculated and

measured critical shear rate has been found.
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CHAPTER IV.
CONCLUSIONS

A number of theoretical and experimental investigations have been carried out in
this thesis on colloidal suspensions. The work was focused however on the rheology of
electrically stabilized concentrated suspensions. The equilibrium structure determines
the rheological properties under stoall shear perturbations. In order to determine the
equlibrium structure the phase diagram of electrically stabilized suspensions has been
calculated, by means of a statistical theory. Based on this perturbation theory the
stability regions of a colloidal fluid, erystal and a liquid phase have been obtained in
the volume fraction-Debye parameter phase diagram. The liquid phase corresponds to
a flocculated structure. The shift of the coexistence lines for varicus interaction
potentials shows, that the lguid phase is not present for small attractive forces, On
increasing the attraction, a critical and a triple point occure accompanied with a Hquid
phase. Increasing the repulsive force leads to a shift of the critical and triple points
amd also to a shift of the coexistence lines to lower values due to an increased
effective diameter.

Whereas the transport properties of equilibrium phases is given by the
corresponding structures, close to the coexistence lines critical fluctuations may play
an essential role. This is because ¢ritieal fluctuations rule the transport processes near
phase transitions. We are interested in the rheology of structures close to structural
phase transitions. Therefore a model was derved based on the Landau theory of
phase transitions. It is based on the idea that close to a structural transition the free
energy ¢an be determined by studying the change of the symmetry properties at the
transition. This thermodynamic model allows the caleulation of the dynamic shear
properties near a transition by applying a mode coupling theory,

According to this model a decrease of the storage modulus and an increase of the
loss modulus are expected on approaching the phase transition, while the modulus of
both phases is non-zero (e.g. crystal-liguid transition). The model does not aliow 2

quantitative determination of the storage and the less moduli. However in the
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hydrodynamic limit close to the transition a characteristic increase of the viscosity of
the form 5~ ($-&, )'° and of the elasic mudulus G~ ($-®, )" as a function of the
volume fraction bas been derived. Comparing this thearetical findings with
experimental resulis from the literature indicate that the transitional effects influence
the rheological properties. A qualitative and sometimes semi-quantitative agreement
between the model and the experimental data could be found.

From a thermodynamic point of view the transition lines of the equilibrium phase
diagram are unstable against external perturbations. This has been shown eg. by
nummerical sirmulations under an applied shear strain, A generalization of the model
describing the rheology near a phase structural fransition derived in this thesis allows
the interpretation of this shift of the phase lines as & shear induced transition.
According to this idea a static shear sirain can break up a colloidal crystal
accompanied by a similar variation of the rheological properties as in the case of a
undisturbed transition. A minimum of the elastic mudaius and a madmum of the
phase angle a1 the critical shear strain is expected.

Concerning this static shear induced transition various experimental investigations
have been carried out on three diffrent types of suspensions, a glass in glycerol /waier
suspension, PMMA in Silicon oil suspensions and a PYC in DOP suspension, While
the first two suspensions were characterized by @ rather broad size distribution, the
latter was monodisperse. For the polydisperse glass in glycerol/water suspension no
colloidal crystal phase is expected and no indication of a shear induced transition
could be found. However a very pronounced transition in the rheological properties
could he observed for the PVC in DOP suspension with a mininmm in G’ and a
maximum in the phase angle at the transiion. On this sample rheo-optical
investigations were performed.

For investigating changes in the structure of a suspensions, 4 rheo-optical setup
was bailt. 7t consists of a transparent plate-plate geometry mounted on a Sangamo
R18 Weissenberg Rheogoniometer. Static lipht scattering was performed on the PVC
in DOP sample perpendicular to the flow direction. For small strains Bragg peaks
were abtained, indicating the presence of a colloidal crystal structure. This crystal
structure disappears on increasing the strain, and a Debye-ring aceured. The vanishing

of the Bragg peaks was accompanied by a decrease of the elastic modulus and an
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increase of the phase angle. This experimental result agrees with the model
assumtions, that on increasing the strain on a colloidal crystal, the latter changes into
a disordered structure accomparted by critical flutuanons,

Another model was developed concerning a2 continouus shear experiment. A
continous shear ¢an induce a non-equilibrium ordered structure, as known from
numerical simulations. This continous sheared structure consists of hexaponally close
packed layers in the shear gradient direction slipping over each other. This process
causes a periodic variation of the elastic modulus perpendicular to the flow direction,
Studying the corresponding hydrodynamic equations, an acoustic resonance effect has
been established. A maximum of the viscosity cccures (shear thickening) at a critical
shear rate given by 4,.= £G/w, where £ i3 a constant, G the elastic modulus of the
sheared two- dimensional hexagonal crystal and g the viscosity of the suspension, The
compatision with experiments indicates that f{=4. Although the glass in
glycerol/water suspension deviate from the predicted value, for the PVC/DOP
suspension a good agreement between the theoretical and the experimental resulis

could be obtained.
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SUMMARY

Structural Transitions and the Rheology of Soft Sphere Suspensions

In this thesis theoretical and experimental investigations are presented devoted
to the rheological properties of concentrated colloidal suspensions. The theoretical
approach is based on three basic ideas:

1. The rheology of colleidal suspensions at equilibrium close to a phase
transition is changed by the presence of critical fluctuations.

2. The equilibrium structure of a colloidal crystal is upstable against
perturbations by shear. This instability can be viewed as a shear induced structural
transition.

3. A continously sheared suspension forms a non-equilibrium periodic structure
with a periodic variation of the shear modulus in the shear gradient direction. This
modulation leads to a flow instability which can be described as an acoustic resonance
accompanied by an increase of the viscosity (shear thickening).

First a perturabtion approach was developed to calculate the equlibrium phase
diagram of electrically stabilized colloidal suspensions.

Applying a Landau theory with a suitable expression for the free emergy
together with a mode-coupling dynamics to the structural transition, the shear
properties of concentrated suspensions were determined in a qualitive sense. A
comparision between the predicted rheological behaviour and the experimental
investigations indicates a good agreement.

This concept has been developed further to the region of high shear
deformations. With the model of a shear induced structural transition, established in
this thesis, the strain dependent rheological properties of a colloidal crystal have been
given qualitatively.

Based on the assumption that a continous shear induces a periodic modulation
of the elastic modulus, a hydrodynamic model for the rheology has been developed.

This model predicts an acoustic resonance leading to an increase of the viscosity of
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the sheared suspension when resonance conditions are approached. This increase
corresponds to shear thickening in concentrated suspensions. Good agreement
between the calculated critical shear rate and the experimental data has been found.

The experimental part of this thesis focuses mainly on the shear induced
structural transition. A rheo-optical setup has been developed to simultaneously
determine the rheological and the microstructural properties of a sheared suspension.
The shear induced structural transition and its influence on the rheological properties

has been confirmed by experiments.
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SAMENVATTING

Structurele Overgangen en de Reologie van Zacht Bol Suspensies

In dit proefschrift worden theoretische en experimentele gegevens
gepresenteerd op het gebied van de reologische eigenschappen van geconcentreerde
colloidale suspensies. De theoretische aanpak is gebaseerd op de volgende
basisgedachten:

1) In de buurt van een fasenovergang verandert de reologie van een colloidale
suspensie in evenwicht sterk ten gevolge van kritische fluctuaties.

2) De evenwichtsstructuur van een colloidaal kristal is niet stabiel onder
kleine afschuifstromingen. Deze instabiliteit kan beschouwd worden als een door
afschuifstroming geinduceerde, structurele overgang.

3) Een suspensiec onder continue afschuiving vormt een niet-
evenwichtsstructuur, met periodieke veranderingen van de shear modulus in de
richting van de afschuifsnelheidsgradient. Deze modulaties leiden tot een instabiliteit
van de stroming die het best beschreven kan worden als een akoestische resonantie
die leidt tot een toename van de viscositeit ('shear thickening’).

Het wordt het evenwichtsfasendiagram voor een electrostatisch gestabiliseerde
colloidale suspensie berekend. Door de Landau theory, met een geschikt gekozen
uitdrukking voor de vrije energie, te combineren met ’mode-coupling dynamics’ voor
de structurele overgangen konden de afschuifeigenschappen van geconcentreerde
suspensies kwalitatief bepaald worden. Er bestond redelijke overeenstemming tussen
het voorspelde reologische gedrag en experimentele gegevens. Met het model van
door afschuifstroming geinduceerde fasenovergangen, ontwikkeld in dit proefschrift,
konden de snelheidsafhankelijke reologische eigenschappen kwalitatief bepaald
worden.

Uitgaande van de aanname dat een continue afschuifstroming gepaard kan

gaan met periodicke modulaties van de elastisiteitsmodulus werd een
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hydrodynamische model voor de reologie opgesteld. Dit model voorspelt akoestische
resonantie, die tot een toename van de viscositeit leidt als de
resonantieomstandigheden bereikt worden. Deze toename komt overeen met “shear
thickening’ in geconcentreerde suspensies. Er is goede overeenstemming gevonden
tussen de berekende, kritische afschuifsnetheid en de experimentele gegevens.

Het experimentele gedeelte van dit proefschrift is vooral gericht op de door
afschuifstroming geinduceerde structurele overgangen. Een reo-optische opstelling is
ontwikkeld om gelijktijdig zowel de reologie als de microstructuur van een suspensie
onder afschuifcondities te kunnen bestuderen. De experimenten bevestigen de door
afschuifstroming geinduceerde structurele overgang en zijn invloed op de reologische

eigenschappen.
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SYMBOLS

Roman symbols

Hamaker’s constant
deformation amplitude vector
zero order amplitude vector
first order amplitude vector
particle radius

free dimensionless parameter
coefficient

damping coefficient

salt concentration
transitional salt concentration
sound velocity

dimension of the system
Deborah number

critical dimension

centre to centre distance between particles
surface element

volume element

g

%%apgcopovwg “l;%l}[}}

E% dissipated energy

e Eulers number

e unit vector in x,y,z-direction

€ electron charge

F free energy

F, free energy at the transition

Fus hard sphere free energy

o dissipative force

f free energy density

fo,fo free energy density independent of the order parameter
G Gibbs free energy

(€] elastic shear modulus tensor

Gy isotropic elastic shear modulus

G’ storage modulus

Gy high symmetry storage modulus

G" loss modulus

G"y high symmetry loss modulus

Guo elastic modulus of the high symmetry phase
Gy, elastic modulus of the low symmetry phase
Bus hard sphere correlation function

g group of high symmetry operations

g group of low symmetry operations

g(r,t) fluctuating term

H() Green function

distance between the surfaces of the particles
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h, Green function

I constant

J(k,Q) perturbation integral

) correction of the high symmetry storage modulus
Jw correction of the high symmetry loss modulus

I correction of the low symmetry storage modulus

I correction of the low symmetry loss modulus

j complex number

K wave vector

kK wave vector

ks Boltzmans constant

ko specific wave vector

L Operator

M constant

N number of particles

N, number of next nearest neighbors

N, Avogadro number

n mumber density

OPy, order parameter

P pressure

Pe Peclet number

PuP: solutions of a dispersion relation

Q phase wave vector

Q, surface charge

g order parameter; i.e. amplitude of the reciprocal lattice density wave
q displacement vector as the order parameter in Appendix A
o equilibrium value of the order parameter (2. order)
QoosGo1,G02 equilibrium value of the order parameter (1. order)
R constant

Lr distance vector

S Barker Henderson parameter

s symmetry transformation matrix

T temperature

T, temperature parameter

Tk temperature parameter

T, transitional temperature

t,t time

U interaction energy

u amplitude vector

Ugs two particle hard sphere interaction energy

U, two particle attractive perturbation energy

U, amplitude of a periodic deformation

U@ critical shear strain amplitude

u strain tensor

1, critical shear strain

U external shear strain

v velocity vector

vy simple shear flow velocity
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W, repulsive potential

W, attractive potential

w deformation tensor

X displacement vector

X reduced center to center distance

Xp distance to the maximum of the interaction potential

X distance to the secondary minimum of the interaction potential

Zys hard sphere function of state

z valency of the ions

Greek symbols

(44
«
o
Qg Oy, Oy gy
Qg

ooy X1, N

67

Mo
Mo
Uit
s
e

distance to the transition

free parameter

free parameter

transitional value of o

transitional values of « of a first order transition
constant

parameter

coupling constant

shear rate (scaled)

shear rate (macroscopic)

critical shear rate

phase angle

reflections about the xy,z planes

Kronecker symbol {§,=1 if i=k else §;,=0}
Dirac é-function

small parameter

velocity variation

wave vector dependent perturbation

space dependent perturbation

wave vector dependent order parameter correlation function
space and time dependent order parameter perturbation
undisturbed order parameter

disturbed order parameter up to the first order
density increment

small parameter

relative dielectric constant

dielectric constant of vacuum

positive free parameter in the free energy
viscosity of the suspension

parameter in Casson’s equation

low shear viscosity of the high symmetry phase
low shear viscosity of the low symmetry phase
fow shear viscosity

viscosity of the solvent

isotropic shear viscosity
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[7] intrinsic viscosity

0 angle between Bragg peaks

K reduced Debye reciprocal length

Kp Debye reciprocal screening length

Ko Debye reciprocal screening lenght of a dilute sample
A free parameter

A components of the irreducible set

v free parameter in the free energy

g coupling term

4 free parameter

& Stokes factor

£, correction parameter for the high shear viscosity
T 3.1415...

i density of the suspension

I density of the viscous medium

02 density of the elastic medium

Dy density at the transition

o effective particle diameter

g stress tensor

Iy viscous medium stress tensor

& elastic medium stress tensor

o, parameter in Casson’s equation

o© critical shear stress

a5 particle diameter

T relaxation time

7. time scale of the experiment

T, internal relaxation time

v free parameter

¢ absolute volume fraction

9° relative volume fraction

. transitional volume fraction

o, maximal random packing fraction
By maximal volume fraction of hexagonal closed packed layers
®, maximal volume fraction

3, perculation threshold volume fraction
X damping coefficient

¥, irreducible set element

¥, surface potential

Yo dimensionless parameter

Q frequency

Q externally applyed frequency

W frequency

Subscripts

ik,1 pertains vector index

ik pertains to matrix
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10.

Stellingen
behorende bij de proefschrift van
J. Kaldasch

Shear thickening kan beschouwd worden als een Poincaré-catastrofe; zodra
interactie tussen de deeltjes optreedt, wordt de ongestoorde beweging van
de colloidale deeltjes verhinderd door resonantie.

Sturing van shear thickening van geconcentreerde dispersies is mogelijk
door aanleggen van een magnetisch veld op ’zachte’ deeltjes met een kiein
magnetisch moment. Het biedt interessante, technische mogelijkheden
voor de toepassing in mechanische dempings- en koppelingssystemen.

Omdat shear thickening een verschijnsel is dat het kollektief gedrag van
een groot aantal deeltjes beschrijft, is de golf-beschrijving zoals in dit
proefschrift voor het eerst gepleegd is beter van toepassing dan de
deeltjes-beschrijving.

De enige voorwaarde voor een akoestische resonantie zijn het bestaan van
monodisperse deeltjes die tijdens afschuiving een peroidiek rooster
vormen. Dit verschijsel zou sich dus ook voor kunnen doen in vloeibare
kristallen en zelf in molekulere materialen zoals water.

Het fluctuatie-dissipatie theorema eist dat stationaire processen constante
transport eigenschappen bezitten. De studie van de reologie van
geconcentreerd suspensies met shear athankelijke transport parameters is
daarom eigenlijk een studie van de overgangen in zo’n systeem.

The shear induced order transition in colloidal suspensions can be viewed
as a non-equilibrium structural transition.

Wissenschaftliche Arbeit is ein schopferischer ProzeB3, der in der Suche
nach neuen Kombinationen von Relationen im Zusammenhang mit einem
Problem besteht. Es dauert seine Zeit bis man den Sinn oder Unsinn
dieser neuen Beziehungen erkennt.

Kritische fluctuaties in de samenleving van mensen leiden tot een intensief
gewaarworden van hun leven.

Het is eigenlijk al te laat, als zich in de samenleving een meerderheid voor
een verandering aftekent.

Een van de meest fundamentele bronnen van onrecht in onze
maatschappij, de werkloosheid, kan niet overwonnen worden zolang men
arbeid fiscaal belast. Alleen indien men zich van deze koppeling ontdoet
en in plaats daarvan belastingvoordelen verbindt aan ecologisch
verantwoorde produktiekringlopen, kan zich een maatschappij in harmonie
van mens en natuur ontwikkelen.



11.  Het feit dat de Nederlandse politie niet optreedt tegen fietsendieven, is,
één van de belangrijkste redenen achter de mislukte terugdringing van het
aantal fietsendiefstallen.





