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Chapter I 

Introduetion 

This thesis is about blood pressure. Not the blood pressure that is read by a cuff and 
a stethoscope from your upper arm, but the blood pressure that represents the dynamic 
process of heart contraction (systole) and relaxation (diastole) and the ejection of blood in 
the arterial system. The continuously rising and falling pressure thus generated contains 
diagnostic information for example about your age, the condition of your heart, the state 
of your arterial system, the state of the baroreflex system that controls your blood pressure 
day in, day out, during your life. 

When you are ill and on the operating table or in an intensive care unit this blood 
pressure is so important that it is often justified to measure it invasively. This is clone 
by bringing into your arterial bloodstream a thin plastic tube filled with slightly salted 
and sweetened water, connected at the other end to an dectronie manometer. More often 
than not, however, there is an extreme interest in your blood pressure but no sufficient 
justification to penetrate your skin and place the cannula. Until some 10 years ago nothing 
could be clone about this dilemma but near that time a device became available that allows 
the noninvasive measurement of this blood pressure at the finger, the Finapres. 

The availability of this device has created new possibilities for new research about 
blood pressure, its shape, its dynamics, its control, and its variability. At first this 
research was mainly methodological. Doctors had to become familiar with the device and 
the pressures it measured, with the accuracy of the measurements and withits limitations. 
An important number of studies, therefore, appeared on the comparison of blood pressure 
measured invasively at the upper arm and noninvasively at the finger. Accurate and 
reliable invasive recordings ~ere necessary, but proved not easy to obtain . In this thesis 
we will develop, in Chapter III, a method based on the application of artificial neural 
networks to judge and to monitor a certain aspect of invasive blood pressure recording, 
its degree of linear distortion of the waveforms. From the studies, it appeared that arterial 
pressure at the finger differed in waveform and slightly in level from arterial pressure in 
the upper arm so they could not be compared directly. In Chapter IV of this thesis, we 
will study these differences between finger and brachial artery pressures, model them, and 
then apply inverse models to remove the differences. 

From the blood pressure recordings, it is possible to extract on a beat-to-beat basis 
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certain parameters of diagnostic importance such as the systolic pressure as the highest 
pressure reached in each heart beat, the diastolic or lowest pressure, the heart rate, even 
the stroke volume of the left ventricle, the amount of blood that the heart presses into 
the arteries at each beat. Such parameterscan now be extracted from the finger pressure 
record with increased accuracy, using the inverse models. 

It has also become possible to challenge a subjeet's blood pressure, to record the 
responses to the challenge, and to diagnose aspects of blood pressure control such as the 
ability to redress with speed and effectiveness the evoked blood pressure changes and to 
stabilize blood pressure. An electric power plant has the similar task to stabilize the 
electric voltage in your home but it solves this problem quite differently. It has also 
been demonstrated that it is possible to record the blood pressure responses to physical 
stress such as when a person exercises on a bicycle. Mental stress, such as occurs during 
the defence of a PhD Thesis, or while lecturing to students, or reading aloud, or taking 
logical decisions, sametimes dramatically affects blood pressure control and this is now 
being recorded by numerous experimental psychologists providing new insight. This field 
of research we have left to the experts. 

However, the shape of the blood pressure waveform in rest is interesting also. It 
has been known fora long time that these pulsations change with the increasing age of a 
subject. It has been speculated that these changes had to do with the aging of the arterial 
vessels which lose much of their elasticity with age. In Chapter V we shall use neural nets 
to detect the subtie changes in the arterial pulse with age, recorded at the finger. The 
changes in the waveform during the aging process can be attributed largely to the age of 
a subject, but not entirely. Some subjects will appear to have young wavefarms for their 
age and some will appear with rather older waveforms. This differentiation seems absent 
below 30 years of age. 

No longer is the recording of blood pressure limited to occasional numbers extracted 
from phenomena under an upper arm cuff, but the shape and the changes of the blood 
pressure wave can be recorded continuously and under the application of some new tech­
niques partially developed in this thesis with increasing reliability, for as long as is neces­
sary. This possibility we have used in this thesis to develop new techniques of hopefully 
diagnostic importance. Of course, we have only scratched the surface. 



Chapter 11 

Artificial Neural Networks 

This chapter is a general introduetion to the subject of artificial neural networks (further 
called neural nets) which we use in some of the following chapters. We will describe the 
various types, their properties, and their suitability for certain tasks. One particular type, 
the multilayer feedforward neural net is described in more detail, since it was the network 
we selected for our purposes. 

1 General description 

Neural nets are networks of artificial "neurons". These neurons are linked with connee­
tions which have a certain intensity multiplier, called "weight", The weight determines 
the amount of effect that one neuron has to the one it is connected with. 

A neuron receives input signals via the input connections (Fig. ILl). The input signals 
are summed and put to the transfer function of the neuron. The transfer function can be 
a linear function, but it is usually a nonlinear threshold or half bell-shaped, which passes 
information only if the input reaches a certain range of values. The output of the transfer 
function is forwarded to the input of further neurons through subsequent connections. 
There is also an extra input to the neuron called "bias", The bias is used to shift the 
position of the threshold function along the input-axis. 

There is a schematic representation of a simple neural net in Fig 11.2, The neurons are 
organized into layers. When all the neurons of one layer are connected withall the neurons 
of the next layer, then this neural net is called fully connected. Neurons of the input layer 
have only one input and fan their information out to the neurons of the intermediate 
so called hidden layer. Neurons of the output layer are presenting the resultant output of 
the neural net to the user. 

The essential feature of neural nets is their learning property. Example inputs are iter­
atively fed to the neural nets, together with the desired outputs to adjust the connections 
between the neuron layers. The way this adjustment is doneis treated later. 

Neural nets can detect relationships between the input variables implicitly and gen­
erate rules that control these relationships. Once these internal adjustments are well 
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Inputs 

Figure 11.1: A schematic representation of a neuron, where x0 , x1, Xn-l are the inputs to 
the neuron coming from the outputs of other neurons, w0 , w1 , Wn-l are the weights of the 
connections between the current neuron and the corresponding to the inputs neurons, bias 
is the bias of the neuron, L: stands for the weighted summation of the inputs : L:?;J w;x;, 
and f is the transfer lunetion of the neuron. 

learned, training stops, and the neural net is ready to provide answers to learned or novel 
inputs. Withnovel inputs, we mean inputs that do not belong to the examples used for 
training the net, but are still within the range that the training examples covered. This 
ability of the neural nets to respond correctly even to novel inputs is called generalization. 
More is mentioned laterinsection 5.1 of this chapter. 

In many cases, weights do not change after training, though neural nets exist that 
continue to adjust to changing conditions thus responding more effectively in situations 
that differ from those on which they were trained. 

2 Different types of neural nets 

The differentiation between the various types of neural nets rests on the 1) topology of a 
neural net - that is the way the connections between neurons are arranged, and on the 
2) learning algorithm used to adjust the connections between the neurons to achieve the 
desired behavior [l]. This results in many different networks, each suitable for certain 
applications. 

2.1 Topology 

Topologically, neural netscan be divided in the two categoriesof feedforward and recurrent 
neural nets. 

Feedforward neural nets. In this topology information flows only from the input layer. 
via zero or more hidden layers to the output layer (Fig. 11.3, left panel). There is no 
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Figure 11.2: . The circles represent the neurons and are connected to the other neurons 
in the net with solid lines. 

feedback. There are also no connections between neurons of the same layer. Feedfor­
ward neural nets perform static mappings between inputs and outputs, meaning that 
application of a given input always produces the same output. 

Recurrent neural nets. In this topology conneet i ons between neurons of the same layer 
or with previous layers are also present, in addition to the connections described in the 
feedforward neural nets. Information flows from input to output and back (Fig. II.3, right 
panel). Recurrent (feedback) neural nets can perform dynamic mappings between input 
and output vectors, where the output produced depends upon remembered previous, as 
well as current inputs and/or outputs. 

2.2 Learning algorithms 

Learning can be considered as an optimization process, as a" search" in a multidimensional 
parameter (weight) space, fora solution which optimizes a desired behavior [2]. There are 
two main categories of learning algorithms: supervised learning and unsnpervised learning. 

Supervised Learning. During training the inputs are presented to the net together 
with their desired outputs, which are compared with the actual outputs. The weights are 
adjusted to minimize the difference between the desired and actual output. Inputs and 
desired outputs are applied to the neural net repeatedly until no further improvements 
are obtained. 
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Output 
Layer 

Hidden !I Layer 

flow flow 
of of 

Input 
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Figure II.3: Schematic representation of a feedforward neural net where information 
fiows only in one direction from input to output (left panel} and a recurrent neural net 
where information fiows in both directions (right panel). 

An exarnple of supervised learning is the backpropagation algorithm (3], which is 
performed on multilayered feedforward neural nets. These neural nets will be further 
called backpropagation trained neural nets. During the training with the backpropagation 
algorithm, the actual output of the neural net is compared with the desired one each 
time, and the weights are changed to reduce the difference between the actual and the 
desired output. Input information is always propagated forward to the output of the 
neural net (feedforward topology). It is the error between the desired and the actual 
output that is propagated backwarcis to adjust the weights. This has given the name to 
this learning algorithm (backpropagation algorithm). Details are given later in section 4 
of this chapter. 

Unsupervised Learning. Only the input signals are fed to the neural net. The weights 
are now adjusted so as similar inputs produce similar outputs. Similarity is based upon 
some distance measure. The learning algorithm thus adjusts the connections among the 
neurons on the basis of the input patterns. The weights and the outputs of the neural 
net tend to converge to values that capture the statistica! regularities of the input data. 

3 Applications of neural nets 

. 3.1 Why use neural nets 

Neural nets are good for dealing with situations that cannot easily be described by sets of 
rules or formulae [4]. It is not necessary to develop modelsof behavior or rules of detection, 
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because the training algorithm does that for us. No a priori assumptions are necessary 
about the underlying statistics of the data [5]. With neural nets, it is possible to reveal 
patterns that are hidden in the data which cannot easily be found by statistica! methods 
without knowing the details of the mechanisms governing a process. An algorithm to 
solve the problem, which could be difficult or even impossible to develop, especially in 
cases when the problem is not well understood, is not necessary. This non-algorithmic 
nature of neural computing differentiates it from statistica! analysis methods [6, 7]. 

Even for very complex neural nets, reai-time performance can be achieved by chip 
implementation and p~rallel information processing [8]. Such implementations are low­
cost and can be added to existing systems to imprave their performance. 

Neural nets should not be used when existing mathematica! techniques or algorithms 
offer a solution, since much time and effort is often spent to choose the proper kind 
of neural net for the problem, to choose an optima) configuration, and to assembie the 
examples set to train the nets. This data set should be chosen carefully to represent 
the whole domain of the problem (more details in section 5 of this chapter). In our 
experience, working with neural nets is time consuming, but especially satisfying results 
can be achieved. 

3.2 Where to use neural nets 

Neural nets are widely used in the field of pattem recognition and pattern classification. 
They are able not only to recognize a pattern, but also to associate a pattem with a 
diagnostic class (classification). Applications include character recognition (e.g. recogni­
tion of handwritten digits) [9], image recognition, speech analysis and recognition, speech 
synthesis and text to speech conversion [10], classification ofradar signals [11, 12, 13], func­
tion approximation, image compression, or searching large databases for specific knowl­
edge [14]. Refenes and coworkers [15] use neural nets as alternative to classica! statistica} 
techniques for stock performance modeling, and show that neural nets can do better than 
multiple linear regression. The smooth interpolation properties of the neural nets allow 
them to fit better models to the data and to generalize significantly better. 

An extended bibliography is available to define the type of neural net suitable for 
an application, though it is not always clear which is the best topology and the best 
learning algorithm. One of the most used learning algorithms is backpropagation. Fields 
of primary application of backpropagation trained neural nets are pattern recognition and 
classification, and function approximation[4]. It has been proved that this type of net is 
capable of approximating any continuous multivariate function of the input data to any 
desired degree of accuracy [16, 17, 18]. In applications where the relationships between the 
variables are nonlinear and high-order correlations are involved, backpropagation trained 
neural nets have produced accurate results. 

Major problem with neural nets is that they are unable to explain their conclusions. 
This is due to the many distributed weights and nonlinear thresholds, whose detailed 
effects can only he understood in the simplest of cases. Neural nets are thus limited to 



8 Cbapter II. Artificial Neural Networks 

interpreting patterns where no explanation or justification for selecting a condusion is 
necessary [19]. 

3.3 Application of neural nets in the medica! area 

In rnedicine, neural nets have been used predorninantly for pattem matching and computer 
aided diagnosis [20] - [27]. Traditional rnethods have not been very successful, since 
biologica! signals are characterized by substantial variability, caused either by spontaneous 
internal (reflex) rnechanisrns or by external stimuli. Here neural nets have been more 
successful. 

Miller et al. [28] present a cornprehensive review of applications of neural networks 
in the area of medica! irnaging and signal processing. They conclude that neural nets 
repreaent a major advance in this field, that the backpropagation trained neural net has 
been used in most of the applications, and that, however, there are still basic problerns 
to be addressed, such as collecting and classifying suflident training and testing data, 
choosing a valid data presentation strategy, choosing an appropriate network architecture, 
and irnplernenting the networkon a sufficiently powerful computer systern to achieve net 
convergence in reasonable time. Sorne of these problerns are addressed later in this chapter 
(see section 5). 

In particular, backpropagation trained neural nets have proved successful in rnany 
classification tasks, including biornedical signal classification and diagnosis [29] - [34]. 
Nekovei and Sun [29] detect vascular structures in angiograrns, and dernonstrate that 
neural nets outperforrn both the classic rnethod based on maximurn likelihood estirnation 
and the modern rnethod based on iterative ternary classification. Guo et al. [33] report 
superior results in cornparison with the Bayes classifier to classify valve sounds to detect 
spontaneous degeneration of prosthetic heart valves. Kennedy et al. [34] dernonstrate 
that neural nets are suitable to analyze clinical data in relation to the diagnosis of acute 
myocardlal infarction, and results are superior to those obtained with linear discriminant 
analysis. 

4 Backpropagation trained neural nets 

A typical multilayer feedforward neural net has an input layer, an output layer and at 
least one hidden hiyer. Theoretically, there is no limit on the number of hidden layers but 
in practice there are only one or two hidden layers. The neurons of one layer are usually 
fully connected with the neurons of the succeeding layer. 

The neural net has to learn to produce the right output for a certain input. A set 
of input patterns is required for the learning procedure. The desired output has to be 
presented together with the corresponding input. 

In more detail, the training algorithm acts as follows: An input pattem p is presented 
to the neurons of the input layer of the neural net. This pattem is transmitted via the 
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weights to the neurons of a hidden layer. The output of each neuron in a hidden layer is 
transformed by a transfer function, j, usually a sigmoid or hyperbolic tangent function: 

(II.l) 

OpJ = f(lpj) (II.2) 

where lpj is the weighted sum of the inputs Xp;, Wji is the weight from neuron i of the 
previous layer to neuron j, Opj is the output of the neuron j after pattemp is applied, bJ 
is the bias for neuron j, and f is the transfer function. 

After the actual values of the output neurons have been calculated, the pattem error 
is calculated as in the following equation [3]: 

1 M 
2 L (dpk- Opk)

2 

k=l 

(II.3) 

where dpk is the desired output for pattem p at the output neuron k, Opk is the actual 
output at this neuron for this certain pattem, and M is the number of output neurons. 
The overall error on the whole set of patterns is simply the sum, across patterns, of the 
pattem error. 

The backpropagation algorithm, as defined in [3], is an algorithm that uses a gradient 
descent method to adjust the weights between the neurons so that the error between the 
desired output and the output signa! of the network is minimized. The gradient descent 
method acts on an energy surface, where the dimension of this energy surface equals the 
number of the weights in the network and the "energy" is the overall error on the set of 
patterns. The gradient descent method explores the slope of this multidimensional error 
surface near the current error, to estimate the direction to the location of minimal error. 
A step is taken in this direction, by adjusting the weights, after which the procedure is 
repeated. 

The derivative of the error measure with respect toeach weight is proportional to the 
weight change with negative constant of proportionality: 

Updating of the weights is being done according to the formula: 

llpwj; = a* Ópj *Op; 

and for the biases, where Op; = 1: 

{II.4) 

(II.5) 

{11.6) 

where a is the learning coefficient, and Opj is the error signa! for neuron j. The error signa! 
for an output neuron is calculated from the difference between the actual and the desired 
output for this neuron: 

(II. 7) 
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where f' is the derivative of the transfer fundion with respect to the weighted sum I of 
the inputs of a neuron. 

The error signa! for a hidden neuron j depends on the error signals of the neurons in 
the next higher layer which neuron j is connected to and the weights of those neurons: 

dpj fj(Ipj) * E dpk * Wkj (1!.8) 
k 

Explanation why the error signals can be calculated by the equations II.7 and II.8 can 
be found in [3]. The previous steps of the learning algorithm are repeated until the error 
becomes smaller than a predetermined value, or until a certain number of iterations. Once 
the training of the neural net stops, the weights for the training set have been optimized 
and remain constant and a test set may be applied. During this phase, the output is 
calculated via the equations ILl, and 11.2. 

The updating of the weights can he clone either after each pattem is presented to 
the neural net (on-line), or after several patterns have been presented to the neural net 
(batch). This number ofpatterns, called "epoch", can correspond either to the whole set 
of patterns, or to a subset. When the batch way of updating weights is used, the error 
derivatives are averagedover the epoch, the weight adjustment is clone toward reducing 
the overall error function, and this may lead to a more accurate estimate of the overall 
gradient and smoother convergence. On the other hand, the on-line method introduces a 
randomization to the weight steps that may help to avoid being trapped in local minima. 
No conclusive evidence has been presented to prefer either alternative [35]. 

4.1 Transfer Functions 

The most common transfer function used with backpropagation trained neural nets is the 
sigmoid transfer function. The sigmoid is a continuous monotonic mapping of the input 
variable, x, onto the value f(x) between zero and one: 

(IL9) 

It can be considered a smooth version of a [0,1] step function. One important advantage 
of this function is that its derivative which is needed for the calculation of the error signals 
in the equations 11.7, and 11.8, is easily calculated: 

!'(x)= f(x) * (1- f(x)) (ILlO) 

Another transfer fundion also used is the hyperbalie tangent which is a bipolar version of 
the sigmoid function: 

(II.ll) 

It can be considered a smooth version of a [-1,1] step function. The derivative of this 
transfer fundion can also be expressed in terms of the transfer fundion itself: 

J'(x) = 1 (f(x)) 2 (II.12) 



4. trained neural nets 11 

The shape of the sigmoid and the hyperbolic tangent transfer functions is shown in 
Fig. II.4. 

In most cases, it has been found that the exact shape of the sigmoidal transfer function 
has little effect on the performance of the neural net, though it can have great impact on 
speed [36]. 

1 

-5 5 

-1 

Figure 11.4: Transfer functions used in the backpropagation algorithm. The function on 
the left is the sigmoid transfer function, and the one on the right is the hyperbolic tangent 
transfer function. 

4.2 Variations on the standard algorithm 

Learning with the backpropagation algorithm is quite slow. The error surface is usually 
harsh with a lot of flat or extremely steep surfaces but not much in between [37]. The 
size of the change of the weights depends on the learning coefficient of the learning rule. 
A large value of the learning coefficient would lead to faster convergence (larger steps on 
the error surface towards the minimum), but might cause oscillations during the search, 
bouncing between two opposite si des of a steep valley of the error surf ace, without reaching 
the bottorn - minimum. On the other hand, too small a value would slow convergence 
and would prevent the system from making reasonable progress across an almost long flat 
surface. 

One way to solve this problem is to include a momenturn term [3] in the learning rule : 

(IL13) 

where J.! is the momenturn term, L\pWj;(n + 1) is the current delta weight, and L\pWji(n) is 
the previous delta weight. It smoothes high frequency fluctuations of the error surface in 
the weight-space and it improves the speed of convergence by augmenting weight changes 
when consecutive changes have the same sign (that means that the weight changes are 
moving towards the right direction in the weight space), and by damping when they have 
different signs. 

This variation was used for training the neural nets described in chapter Ill. 
There is no automatic way to choose the proper values of the learning coefficient and 

the momentum. The selection is frequently empirica! [3, 38]. It depends very much on 
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the problem, but also on the training set size, on the hidden layer size, etc. An unlucky 
choice can cause slow convergence or can stop learning too early. The neural net can also 
be trapped in some local minimum and give a solution that is not close to the best one. 

Another variation of the learning rule, which was used in the study described in 
chapter IV, has been developed by Vogl et al. [39]. They introduce a variabie learning 
rate depending on the local topography: if a weight adjustment results in reduced error, 
then the learning rate increases (a = a * incr with in er > 1 ), otherwise if a weight 
adjustment results in an error more than a few percent over the previous value, then 
the learning rate decreases (a = a* deer with deer < 1), the weights do not change, 
momenturn becomes zero and the step is repeated. Only after the network takes a useful 
step, that means a step that reduces the total error, then the momenturn gets again a 
non-zero value. 

The rationale behind this variation is that error surfaces have different properties 
along different regions. To take the right steps as the weights vary, the learning coefficient 
needs to change accordingly. As long as the surface is rather uniform and the descent 
is relatively smooth, then the momenturn term helps convergence. If, however, a step 
results in a decrease of the performance of the system, then that means that a change is 
necessary in the direction of the optimization, and prior experience (incorporated in the 
term in momentum) will be more misteading than beneficia!. 

There exist more techniques that aim at speeding up backpropagation learning. Details 
can be found in the conesponding references [38], [40]- [50], but the literature lacks 
extensive comparative research in the performance of these methods [40]. 

Initialization of weights. The learning should be repeated starting with different 
initialization weights to avoid assuming a local minimum to be the correct global one. 
Backpropagation is sensitive to initial weights. In practice, the weights are normally 
initialized to small random values [3]. This is because large weights tend to prematurely 
saturate processing neurons in a neural net and make them insensitive to the learning 
process [51]. 

Nguyen and Widrow [52] have formulated a method of initialization of the weights and 
biases of the neural nets that leads to a decrease in necessary training time. They consider 
that each hidden neuron is responsible for approximating only a smal! part of the desired 
function, and the complete approximation of the desired function is formed by summing 
the outputs of the hidden neurons, which are piece-wise linear approximations to the 
desired function. Linearity is considered, because the sigmoid function is approximately 
linear for inputs between 0 and 1. The weights need to move in such a way that the 
region of interest is divided into small intervals. So the initial weights of the hidden layer 
are being set so that each hidden neuron is assigned its own interval at the beginning 
of the training. The network is trained as before. Nguyen and Widrow have used this 
method to initialize weights over different training problems and they report that they 
have managed to improve the learning speed in every case. 
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5 Practical Considerations 

There are numerous neural network algorithms present in the literature. To choose a 
suitable type we based ourselves upon the nature of the problem, and on the success of a 
certain type of neural net in previous similar applications. 

This resulted in our choosing the backpropagation algorithm to train multilayer feecl­
forward neural nets. lt can be used both for classification (see Chapter 111) or continuous 
mapping (see Chapter V). In both studies, sufficient training data was available for per­
forming supervised learning. However, much time and computing power was required: 

• to assembie training and testing data sets, 
• to size the network, 
• to find good learning coefficients, momentum, 
• to select proper nonlinear functions, and 
• to obtain optimal input representations. 

To these processes there is little guidance available in literature. As a result, time 
consuming training has to be repeated over and over again. 

5.1 Training and testing data sets 

The performance of a neural net depends strongly on the patterns used for training, which 
should therefore be selected very carefully. The training set should be representative, in 
the sense of containing all the different variants of patterns that characterize the problem 
to solve [53]. The set should be completeandrepresent the entire domain of the problem, 
or a suboptimal solution might result. A trained neural net can only be 'as good and 
complete as the data used to train it. Extrapolation is usually not indicated. When we 
tried (in Chapter V) to train neural nets to estimate age from blood pressure wavefarms 
of subjects ranging in age from 25 to 65 years, the performance deteriorated significantly 
on subjects younger or older than the ones in the training set. The neural nets showed a 
preferenee for outputs in the range 25 to 65 years and tended to over- and underestimate, 
respectively, the ages of the younger and older subjects. 

The desired outputs in the training sets can either be obtained subjectively, based, 
for example, on the judgement of human experts, or objectively. Since human experts 
often do not agree amongst themselves, are hesitant, uncertain, or insensitive, training a 
neural net and evaluating its performance can be severely compromised. In section 3 of 
chapter 111, we show how human experts scored on the detection of damping in arterial 
pressure waveforms. Their score was not significantly different from a chance scoring, 
whereas the neural net, that was trained on objective data, performed significantly better 
than random. 
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5.2 Network size 

The number of the hidden layers and the number of neurons in each layer may have a 
significant influence on the performance of the neural net. The optima! number of hidden 
neurons has to be approached by trial and error but depends on the complexity of the 
problem, and the diversity and size of the training set. A small number of neurons may 
lead to underfitting and may fail to represent a complex problem. On the other hand, too 
many neurons in a layer slows training and requires a large size training set to generalize 
well on novel inputs. A neural net with too many neurons may recognize all individual 
inputs thus losing the ability to make generalizations. Such nets may act as a look-up 
table giving correct answers only on the training data but producing large errors at novel 
inputs. 

Detailed discussions of these aspects with theoretica! and practical results can be found 
in [54, 55]. 

5.3 Sealing of data sets 

Sealing of the data sets is not really necessary for training backpropagation trained neural 
nets, but it is usually a good approach sirree large input values can result in saturation 
of the transfer function. Saturation impedes the adjustment of the weights. Often, in 
practice, input data is normalized to the range 0 to 1 or -1 to 1, when the transfer 
function used is the sigmoid or the hyperbolic tangent, respectively. 

5.4 Input representation 

A proper representation of the input data should include the information critica! for a 
successful application of the neural nets. This may result in many input nodes, that 
require long training time. Preprocessing of the input data is then advantageous to 
extract a smal! set of essential features. This procedure should be used with care, sirree 
underlying relationships may be unknown and important information may have been 
discarded leading to suboptimal performance. 

5.5 Software implementations of neural nets 

Neural nets can be implemented in hardware or software. Hardware implementations 
allow network training to be carried out fast, but there is little flexibility in choosing the 
network architecture and the learning algorithm. Software implementations, on the other 
hand, are flexible, but training times are long and large computer facilities are required. 
There are different software packages available. In our studies, the following packages 
were used to develop our neural nets: 

NeuralWorks is a powerful neural network development tooi capable of generating a broad 
array of common network types. lts user-friendly graphical interface in combination 
with its very good documentation makes it relatively easy to use. 
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SNNS - Stuttgart Neural Network Simulator is a luxurious simulator which supports 
many network topologies and learning algorithms, but is difficult to get acquainted 
with. The documentation is not very helpful. 

MATLAB NeuralNetwork Tooibox is a great colledion of MATLAB fundions for the 
design, and training of neural nets, accompanied with excellent documentation. It 
supports a wide range of network architectmes with virtually unlimited numbers of 
neurons and interconnections (up to operating system constraints ). All the algo­
rithms and implementations are available to the users for understanding as well as 
for trying out alternative ideas and creating new functions. The preprocessing of 
the data sets and the postprocessing of the outputs of the neural nets is also very 
easy in this environment. 

6 Condusion 

The development of the neural nets has come to a point where methods are available to 
do special things not easily, or not at all, possible in other ways. However, theoretica! 
support and practical experience is limited often requiring atrialand error approach. If 
time is taken to explore the many possibilities, results can be obtained that have not been 
achieved with other methods. Two cases will be described in chapters lil and V. With 
faster computers trial and training will become easier and special purpose hardware is 
under development at various places including this university. 
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waveforms 

1 Catheter-manometer system damped blood pres­
sures detected by neural nets 
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Abstract 

Degraded catheter-manometer systems cause distartion of blood pressure waveforms, often tead­
ing to erroneously resonant or damped waveforms, requiring waveform quality controL We have 
tried multilayer perceptron back-propagation trained neural nets of varying architecture to de­
t€ct damping on sets of normal and artificially damped brachial arterial pressure waves. A 
second order digital simulation of a catheter-manometer system was used to cause waveform 
distortion. Each beat in the waveforms is represented by an 11 parameter input vector. From a 
group of normotensive or (borderline) hypertensive subjects, pressure waves are used to statis­
tically test and train the neural nets. For each patient and category 5-10 waves are available. 
The best neural nets correctly dassified about 75-85% of the individual beats as either adequate 
or damped. Using a single majority vote classification per subject per damped or adequate situ­
ation, the best neural nets correctly classify at least 16 of the 18 situations in nine test subjects 
(binomial P=O.OOl). More importantly, these neural nets can always detect damping before 
clinically relevant parameters such as systolic pressure and computed stroke volume are reduced 
by more than 2%. Neural nets seem remarkably well adapted to solving such subtie problems as 
detecting a slight damping of arterial pressure waves before it affects wavefarms to a clinically 
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relevant degree. 

Keywords 

Arterial pressure monitoring, Artificial neural nets, Back-propagation, Catheter-manometer sys­
tems, Damped pressure waves, Quality controL 

1.1 Introduetion 

To diagnose apatient's hemadynamie state, invasive arterial pressures are routinely roea­
sured via cannulae, liquid-filled tubing systems and external pressure transducers. The 
limited dynamic performance of such systems alters the waveforms. Wavefarm alteration 
for well maintained, continuously flushed systems with prop.er damping is usually accept­
able dinically although regular testing is always required. If systems become degraded, 
however, pressure wavefarms may become distorted toa clinically significant degree, lead­
ing to errors in derived parameters such as systolic and diastolic pressure levels. Degra­
dation is not an occasional event but often occurs. It may be caused by tiny air bubbles 
developing gradually over time, by kinking of connecting tubes, and by clotting and fibrin 
deposits at the tip of the cannula. 

Subsequent distortions are of two kinds: 
(i) resonance, causing wavefarm oscillations and systolic overshoot. 
(ii) damping, causing slower rising pulsations with systolic underestimation and, in severe 
cases, diastolic over-estimation. 

Resonance is often quite easily detected by inspeetion of the waveform. To detect 
dam ping, however, a merelook at the wavefarm will not usually be sufficiently informative. 
For example, wavefarms that do not have clear dicrotic notches may lead a critica! observer 
tothink that the recording system is overdamped; however, such wavefarms mayalso be 
physiological since peripheral pressure waves become distorted due to transmission and 
reflection of the pressure pulse over peripheral arteries. 

Furthermore, in catheterization and experimental laboratories, the monitoring and 
maintenance of the quality of the wavefarms should not require continuous attention from 
the staff who have other matters to attend to. Since an immediate response to damping is 
considered important and deterioration of a system in situ tends to develop gradually, an 
automated damping detection and alerting system is desirable. A quick fiush may then 
correct the damping. 

Artificial neural networks (neural nets), can be considered digital filters with nonlinear, 
fuzzy decision making properties. They are good for dealing with situations that cannot 
easily bedescribed by a set of rules or formulae [1]. lnstead, neural nets are trained by 
presenting them with examples. Supervised learning, in addition, presents the neural nets 
with desired outputs for each training input example. In our case adequate and damped 
pressure wavefarms are required for this purpose but are simple to obtain. We decided, 
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therefore, to apply neural nets to the problem of detecting damped, in this study brachial, 
arterial pressure waves. 

1.2 Methods 

Subjects 

Brachial arterial pressure waves were used to train and test the neural nets. Data was 
collected from 25 subjects, ranging in age from 22 to 65 years, recorded for other pur­
poses and published elsewhere [2, 3]. Seven subjects were normotensive volunteers and 
eighteen were (borderline) hypertensive patients. Eleven of the patients were taking anti­
hypertensive medication. This data set provided us with high and low blood pressures, old 
and young subjects and blood pressure measurements through carefully checked hardware. 
The study protocol for the normotensive volunteers was approved by the Ethica! Commit­
tee of the Erasmus University Hospita!, and for the hypertensive patients by the Medica! 
Ethics Committee of the Academie Medical Centre of the University of Amsterdam. 

Measurements 

The way of recording intrabrachial pressure has been previously described [3]. Briefly, all 
subjects were resting supine during cannulation and measurement. After local anaesthesia 
with a 2% lidocain solution, a cannula1 is inserted with the Seldinger technique into the 
brachial artery of the non-dominant arm. The cannula is connected to a Gould-Statham 
P23 IQ for the voluuteer group and toa Hewlett-Packard 1290A transducer for the patient 
group. The transducer is strapped to the mid upper arm at heart level. A 10 cm section 
of polyethylene tubing is used to conneet the cannula and transducer, and a continuous 
flush system is installed. The resonance frequency of each of these systems is checked 
in vivo with the fast flush method [4] and after measurements in the laboratory. The in 
vivo measurements range from 11Hz with adequate damping to 50Hz underdamped, but 

1Tra.venol Quick Ca.th, Nll3, 20 gauge, 11 cm Teflon 
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still adequate, response in individual cases. These waveforms are considered as clinically 
acceptable, as adequate recording systems are used and their performance tested and 
monitored during the sessions. 

The pressure signals are recorded2 and digitized off-line at 100 Hz sample rate and 
33.25 Pa (0.25 mmHg) resolution. Waveform sample files of about 10 s duration are thus 
obtained for each subject, spanning at least one but usually two full respiratory cycles. 

Data processing 

Gardner classified catheter-manometer systems as optima!, adequate, resonant or damped 
according to the natura! frequency and damping ratio pair of a system (Fig. III.l) [4]. 
We have adopted this classification but called a system adequate if it was either in the 
optima! or the adequate region. The original waveforms are accepted as a set of adequate 
waveforms. Next, these waveforms are artificially distorted using asecond-order !ow-pass 
digital simulation3 of a catheter-manometer system with selectable natural frequency, 
f", and damping ratio, (. Second-order systems are a good approximation of catheter­
manometer system behavior [5]. 

To obtain a first set of damped waveforms, the original waveforms are sent through 

wJeLL·.r"'-:""'u FM Instrumentation recorder 
3CATH program, available from TNO 
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Table 111.1: 11 derived signa[ parameters used as input vector to neural nets. Instants 
within a beat are measured relative to the starting upstroke instant; diastatic pressure is 
taken at the starting upstroke and thus has no associated delay. 

number symbol meaning 

l Ps systolic pressure 

2 T. instant of Ps 
3 Pd diastolic pressure 

4 Pp pulse pressure (p. - Pd) 
5 fH heart rate 

6 P+ maximum positive systolic slope 

7 P+ pressure level at P+ 
8 instant of P+ 
9 P- maximum negative systolic slope 

10 P- pressure level at P-
11 T_ instant of 

filters with an arbitrarily chosen frequency and damping ratio pair, taken from the region 
marked 'damped' in Gardner's diagram. A second set of damped waveforms is obtained by 
sending the original waveforms through filters with a fixed frequency of 10 Hz and damping 
ratio 1.2. These two damped sets are pooled. To balance the filtering, a second set of 
adequate waveforms is obtained by sending the original waveforms through filters with 
arbitrarily chosen frequency and damping ratio taken from the regions marked 'adequate' 
or 'optimal'. Both adequate sets arealso pooled. 

For input to the neural nets, we have decided not to use entire waveforms but to 
parameterize each heart beat [6]. Parameters were obtained with the BEATFAST pro­
gram [7]. This program filters the input signal with a low-pass filter [8] cutting off at 
17Hz, being 60 dB down at 50Hz. Next, it identifies for each beat (Fig. III.2) the instant 
of the beginning of the systolic upstroke as the reference for timing within a beat; systolic 
pressure as the maximum pressure in systole; diastolic pressure as the minimum pressure 
in diastole just before the starting up stroke; true integrated mean pressure; the instant of 
the dicrotic notch; and a relative measure of stroke volume via simulation of a nonlinear, 
time-variant model of arterial input impedance [9]. A first derivative signal computa­
tion is added to BEATFAST for this study as the difference between pressure samples 
20 ms apart. Maximum and minimum first derivative values in systole and their instants 
relative to starting upstroke are detected and output. A further program NNPARAM 
adds the pressure levels belonging to the maximum derivative instants, computes instan­
taneous heart rate from the pulse interval and prepares this 11-dimensional beat derived 
parameter vector (Table III.l) for input to the neural nets. 
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Two subject selections are prepared, one for training the neural nets, and one for 
assessing trained performance. The subjects are ordered according to age first and then 
alphabetically according to last name. A random number souree then produces numbers 
from 1 to 25 until nine different subjects are selected. This became the test selection not to 
be used for any other purpose. The remaining subjects formed the training selection. This 
process is repeated twice to obtain two further selections to verify results obtained with 
the first selection. Each selection is tested for randomness at significanee level a = 0.05 
by the runs test [10], and passed. The first training selection contains input and desired 
output data of 564 beats (282 adequate, 282 damped). The first test selection contains 
data of 196 beats (98 adequate and 98 damped). The other selections had similar numbers. 

Neural nets 

Back-propagation trained neural nets have been well stuclied (11] and many successful 
applications have been reported. We therefore concentrate on multi-layer perceptron 
back-propagation trained architectures. As a development tool, NeuralWorks Professional 
II/PLUS4 was selected. This software supports several variants of back-propagation al­
gorithms. 

Our neural nets consist of an input layer of 11 nodes equal to the size of the input 
vector of parameters (Table III.l), an intermediate or hidden layer of various numbers of 
nodes, and an output layer of two nodes. All neural nets are fully connected with weights 
initially randomized in the range from -0.1 to 0.1. Each node in the bidden and output 
layer consists of a summing junction and a nonlinear transfer function, suitably biased. 
Using Kolmogorov's heuristic, the upper limit for nodes in the hidden layer NH is taken 
as 2N + 1 = 23, with N = 11 the number of input nodes. The lower limit for nodes in 
the hidden layer is taken as the number of output nodes NH = 2 [12, 13, 1]. 

The sigmoid and the hyperbalie tangent transfer functions are used to transfarm the 
weighted sum of the inputs of a node. The sigmoid is a continuous monotonic mapping 
of the summed input I onto a value T between zero and one: T 1/{1 + e-1

). It can be 
considered a smooth version of a [0,1] step function. The hyperbalie tangent is a bipolar 
version of the sigmoid function: T = (e1 - e-1)f(e1 + e-1). It can he considered a smooth 
version of a [ -1,1] step function. As the sigmoid transfer function gave uniformly inferior 
results in this case, it is not discussed further in this paper. 

Input and desired output data veetors are scaled before presentation to the network. 
Each parameter is independently scaled. Minimum and maximum values are computed 
for the combined data of the training and test selections. The values are then linearly 
mapped toa scale from -1 to 1. During training, the correct outputfora beat of a given 
dampingclassis to he 1 forthenode corresponding to the beat's class, and 0 for the other 
node. Thus, the desired output was (1, 0) for an adequate beat and (0, 1) fora damped 
beat. These desired outputs are similarly scaled. 

The back-propagation algorithm is used to train the neural nets, and both single beat 

4Neura!Ware, Inc., Pittsburgh,Pennsylvania, USA 
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learning and batebed input learning are tried (see Neural\Vare Manual). The neural nets 
are trained with a number of random order presentations of the training selection until 
no further improvement in classification can be obtained. Batebed input learning usually 
provides faster learning. 

Performance evaluation 

During testing, the network is considered to have correctly classified a beat if the output 
node with the greatest activation is associated with the beat's class [14]. Counts are 
made of the correctly and incorrectly classified beats and converted to percentages. As 
the waveforms per subject do not vary significantly, a majority vote per subject is also 
taken to obtain statistics for significanee testing. 1f the majority of the beats of a subject 
are classified correctly, they are counted as a correctly classified situation and counted as 
one result (one degree offreedom). 

In addition to evaluating performance in terms of classification error, performance 
is evaluated in terms of reduction in the clinically relevant systolic pressure and stroke 
volume. For corresponding damped and adequate beats, we compute the reductions in 
these parameters and averaged the reductions over all beats per subject. This results in 
two numbers per subject, one for each clinical parameter, for comparison with the neural 
net's output. A quality factor Q is defined as the output value of the node that should 
have a high value when waveforms are adequate. 

Statistica! significanee of classification 

If a neural net has no effect, then 50% of the classifications, on average, would be correct 
due to chance. To test if a percentage correct classification is significantly different from a 
chance classification, we use the binomial distribution. The size of the test selection (i.e. 
9) is taken such that it would allow a smooth grading of probabilities (see Table D, [10]) 
concurrent with as large as possible a training selection. After taking a majority vote 
of the network's output over all· beats of a subject in a category, the classification is 
considered correct if this output corresponds to the desired output. 

Useful dimensionality of input vector 

An 11 parameter vector is used as input to the neural nets. However, parameterscan be 
interdependent. In the case that interdependence is significant, a more limited choice of 
parameters reduces the size of the input vector and network complexity. The dimension­
ality of the input vector is estimated by studying the neural network's trained weights, 
by multiple regression and by principal component analysis. 
- Network weights: from the best network, we compute mean and standard deviations 
of the absolute values of the weights from each input parameter, and mark the mean 
weights greater than half the maximum mean weight. In addition, the number of times a 
single weight to any of the hidden nocles is greater than a level is counted, in order to get 
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an impression of the distri bution of weights. Low weights from a scaled input parameter 
point to a lesser degree of importance of that parameter to the neural net. 
- Multiple regression (15]: for each of the 16 subjects of the training selection, the 
average parameter vector of two situations is considered, one adequate and one damped, 
and linear correlations computed between parameters. In the case that two parameters 
appear highly correlated, one can be eliminated. Multiple linear regression is computed 
between the 11 beat-derived parameters as the independent variables and damping ratio ( 
as the dependent or predicted variable. Then, one by one, the parameters are eliminated 
that contribute least to the total varianee explained. 
- Principal components [16, 17]: after normalization for zero mean and unit variance, 
the individual parameter veetors of the training selection are projected onto their set of 
eigenveetors (18]. Only those eigenveetors are retained that corresponded to the principal 
eigenvalues of the set. If only a few of the eigenveetors contain the majority of the variance, 
then the useful dimensionality of the data is reduced. 

1.3 Results 

For each subject, the position of the natura! frequency damping ratio pair is entered in 
Gardner's diagram (Fig. II1.1). For the adequate waveforms, natural frequencies range 
from 13 to 24 Hz with mean (SD) of 19.6 (3.2) Hz and damping ratios from 0.2 to 0.5 
with mean 0.37 (0.1). For the first damped set, natural frequencies range from 8 to 13Hz 
with mean of 10.6 (1.8) Hz and damping ratios range from 0.75 to 1.26 with mean 1.0 
(0.13). The second damped set is filtered with a frequency of 10 Hz and damping ratio 
of 1.2. 

Damped / adequate classification 

Table III.2 presents the result of classifying beats into the damped and adequate categories 
for 2 to 23 nocles in the hidden layer. The bipolar hyperbolic tangent transfer funetion 
and batched learning are used. Average performance on the training selection var i es from 
82.5 to 90.5%; on the test selection it varies from 75.5 to 86.5%. For the best neural net 
on the test selection, by a majority vote, we obtain one false classification out of 18, which 
is significantly different from a random result (P=0.0005). 

The best results (Table III.2) seem to favor either a very small number of hidden 
nodes, about equal to the number of output nodes, or an intermediate number of hidden 
nocles about equal the number of input nodes. On the test selection alone, a very good 
and simple network appears to be the one with three hidden nodes. There is no clear 
overall winner. 

Training and testing are repeated with the two other selections and two, three, and 
four hidden nodes. The results are presented in Table III.3. There is little difference 
between the selections. The network with three hidden nocles performs best. 
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Table 111.2: Results of classifying damped and adequate waveforms. Bipolar transfer 
function and batched learning used in a network with 11 input nodes and 2 output nodes; 
N H number of nodes in the hidden layer; CA percentage of wavefarms correctly 
classified as adequate from the pool of adequate waveforms; remainder were incorrectly 
classified as damped; CD :::: percentage of wavefarms correctly classified as damped from 
the pool of damped waveforms, with remainder incorrectly classified as adequate; avg. 
= average of CA and CD which, since we have equal numbers of adequate and damped 
waveforms, represents the accuracy of the classifier; ca and cd = corresponding numbers 
obtained per subject by majority vote; P probability that a result could have been obtained 
by chance. 

NH first train first test majority 

selection selection vote 

CA CD avg CA CD avg ca cd p 

2 82 90 86.0 76 83 79.5 8 8 0.001 

3 92 85 88.5 85 86 85.5 9 8 0.0005 

4 90 91 90.5 68 88 78.0 6 8 0.015 

5 70 95 82.5 81 86 83.5 6 8 0.015 

6 76 95 85.5 69 95 82.0 7 8 0.004 

7 78 94 86.0 66 92 79.0 6 8 0.015 

8 86 94 90.0 68 86 77.0 6 8 0.015 

9 89 90 89.5 79 84 81.5 7 8 0.004 

10 88 88 88.0 76 75 75.5 8 6 0.015 

11 86 93 89.5 83 89 86.0 7 8 0.004 

12 78 95 86.5 79 91 85.0 7 8 0.004 

13 92 87 89.5 88 85 86.5 8 8 0.001 

14 77 91 84.0 80 90 85.0 7 8 0.004 

15 85 90 87.5 82 90 86.0 7 8 0.004 

16 81 88 84.5 83 81 82.0 8 8 0.001 

17 74 94 84.0 77 87 82.0 6 8 0.015 

18 88 86 87.0 83 82 82.5 8 8 0.001 

19 79 90 84.5 77 88 82.5 7 8 0.004 

20 80 89 84.5 81 87 84.0 7 8 0.004 

21 85 93 89.0 67 93 80.0 6 8 0.015 

22 86 93 89.5 68 91 79.51 7 8 0.004 

23 72 94 83.0 72 90 81.0 7 8 0.004 
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Table 111.3: Results of classifying the waveforms into damped and adequate. This table 
is simi.lar to Table III.2 but shows the three test selection results for comparison. 

NH Waveforms Majority vote 

CA CD avg ca cd p 

2 76 83 79.5 8 8 0.001 

3 85 86 85.5 9 8 0.0005 

4 68 88 78.0 6 8 0.015 

2 90 63 76.5 9 7 0.001 

3 88 67 77.5 8 8 0.001 

4 89 64 76.5 9 7 0.001 

2 65 83 74.0 6 8 0.015 

3 91 60 75.5 9 7 0.001 

4 58 86 72.0 6 9 0.004 

Error in clinically relevant parameters 

We have stuclied systolic pressure and stroke volume reduction due to damping versus the 
network's average quality factor per subject for all the neural nets developed. For the 
configuration with three hidden nodes, bipolar hyperbalie tangent transfer function and 
batched learning, the first test selectien's results are shown in Fig. III.3. By inspection, 
this configuration appeared to be an overall optimal one for this criterion. As it also 
belongs to the four best neural nets in terms of classification error, this network is further 
called the 'best network'. As shown, a high quality factor means negligible parameter 
reduction without exception. A low quality factor means slight to significant parameter 
value reduction. A quality factor of 0.5 seems to delimit these regions. The upper left 
and bottorn right areas in Fig. 111.3 are nearly empty, as desired. 

Dimensionality of input data 

For the best network, the network's weights, their average absolute value and standard 
deviation are listed in Table III.4. Weights range from -4.6 to +4.4. Absolute averages 
range from 0.47 to 3.67. The six weights with absolute values greater than 1.8 are marked. 
The smallest weights are associated with bias and parameter T.. All weights except for 
T, assume a value greater than one at least once. The six largest average weights assume 
values greater than three at least once. Apparently, only one input parameter can be 
omitted (T.) and input dimensionality is 10. 

Omitting this least important input parameter, a networkis trained on the first train-
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Figure 111.3: Quality factor determined by best neural net (with three hidden nodes) and 
average percentage systolic pressure and stroke volume reduction per subject and situation; 
high quality implies little waveform distortion; two outlier points with a/most zero quality, 
yet a/most without pressure and stroke volume degradation, upon inspeetion represent 
truly damped waveforms but of such full rounded systolic shape that damping hardly affects 
clinical parameters; i.e. damping is detected correctly and in a clinical situation a warning 
should have been issued. 

ing selection with ten input nodes, three hidden nocles and two output nodes. Batebed 
learning is used. Average performance on the test selection is 85.5%, with a correct 
adequate classification performance of 82% and a correct damped performance of 89%, 
similar to the network with 11 input nodes. 

Multiple regression: strong correlations with r > 0.9 and P < 0.002, are found 
between Pd and P+, between Pd and p., between Pd and p_, between p. and P+, between 
p8 and p_, between p. and p11 , and between P+ and P-· In other words, all of the pressure 
levels in a beat show strong correlation to the extent that two pressure levels, for example 
Pd and p., seem a reasonable representation. Correlation between the pressure deriva­
tives and the relative timing information is not so strong. This suggests an approximate 
dimensionality of the input data of eight. 

Prediction of the damping ratio ( of the simulated catheter-manometer systems with 
multiple linear regression, using 11 beat derived parameters, explained only 69% of the 
varianee in(. Reducing the number of input variables tothebest eight in order (.p+, P+, 
T+, p_, pP, /H, p., and Ta) reduces the explained varianee to 67%. Removing the last 
two parameters in the list results in the best six parameters and an explained varianee 
of 61%. Removing one more parameter fn from the input vector reduces the explained 
varianee substantially, to 38%. This suggests an input dimensionality of between six and 
eight. 

Using the six best input parameters, a network was trained with six input nodes, three 
hidden nocles and two output nodes. Batched learning is used. Average performance on 
the test selection is 84.5%, with a correct adequate classification performance of 81% and 
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Table 111.4: Weights of the network with three nodes in the hidden layer. First three 
numeric columns network weights to the three hidden nodes; their absolute values are 
averaged in the next two columns; average values greater than half the maximum average 
are marked by (~);last two columns indicate with x how often absolute weight is greater 
than 1 or 3, respectively. 

w w w mean SD /W/ /W/ /W/ 
to Hl to H2 to H3 >1.8 >1 >3 

bias -0.587 0.825 0.031 0.48 0.4 

Ps -0.355 0.581 1.886 0.94 0.8 x 
0.761 0.419 -0.239 0.47 0.3 

Pd 1.019 -3.726 -0.869 1.87 1.6 ~ x x x 

PP -1.162 4.198 3.738 3.03 1.6 ~ x x x x x 
/H -3.444 -0.729 1.691 1.95 1.4 ~ x x x 

P+ 2.130 -4.224 -4.642 3.67 1.3 ~ x x x x x 

P+ 0.364 -1.954 -1.213 1.18 0.8 x x 
T+ -1.825 4.430 1.139 2.46 1.7 ~ x x x x 
p_ -0.625 2.300 0.557 1.16 1.0 x 

P- 0.744 0.615 1.884 1.08 0.7 x 
T_ 2.190 3.606 -0.312 2.04 1.7 ~ x x x 

a correct damped performance of 88%, slightly worse than the best neural nets on the full 
input vector. 
- Principal components: this analysis produces eigenvalues as listed in Table III.5. 
Using the criterion of Jain and Dubes that 95% of the varianee should be retained in the 
new space (19], the useful dimensionality is reduced to five; retaining 99% of the varianee 
requires a seven-dimensional transformed vector. 

When we use a five-dimensional transformed input vector to train a network with five 
input nodes, three hidden nocles and two output nodes, we obtain an average performance 
on the first training selection of 83%, with a correct adequate classification performance 
of 72% and a correct damped performance of 94%. 

1.4 Discussion 

For a recording system of human blood pressure waves Frank considered as adequate a 
frequency response of at least 30 Hz [20]. This corresponds to the ability to record the 
tenth harmonie of a pressure wave at a heart rate of 180 beat/minor 3 Hz. Such high 
heart rates are not commonly encountered clinically, and peripheral pressure waves in 
particular do not always contain the tenth harmonie to such an amplitude that it affects 
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axis Eigenvalue % varianee 

1 6.2794 57.08 

2 

3 

4 

5 

6 
7 

8 

9 

10 
ll 

2.6126 

0.9669 

0.5247 

0.2622 

0.2273 

0.0694 

0.0522 

0.0033 

0.0019 

0.0001 

80.84 

89.63 

94.40 

96.78 

98.85 

99.48 

99.95 

99.98 

99.99 

100.00 
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Table 111.5: Results of princi­
pal component analysis. Eigenval­
ues listed in order of importance; 
largest Eigenvalue explains the 
greatest amount of variance; per­
centage of the varianee explained 
is the cumulative total varianee 
explained; at least the last three 
and at most the last six principal 
components are redundant. 

clinically relevant waveform parameters such as systolic pressure. Such considerations 
have led to a definition of areas of clinically acceptable natural frequencies and damping 
ratios [4]. 

In testing catheter-manometer system response, the more obvious choice is to test the 
system itself by applying some test waveform. The fast flush valve can be a component 
of such a system [4]. However, these systems are not automatic, require a non-obvious 
flush response detection and computation, and are sub-optimal in detecting damping. In 
our classification experiment, we use naturally occurring pressure waveforms of unknown 
shape and frequency content for input, and Gardner's criteria for (artificially) damped 
reproduetion of waveforms. This is an indirect approach, as certain natural frequency 
and damping ratio pairs have different effects on different waveforms and their derived 
parameters. As we use a waveform parameter vector to estimate dam ping, this creates an 
uncertainty in the classification. As a result, the performance of the neural nets in terms 
of error in clinically relevant parameters is better than in terms of classification error. 
It is the result in terms of error in the clinical parameters that is the most relevant for 
quality controL 

Clinical applicability 

For monitoring in the operating room or the intensive care unit, it is systolic, diastolic 
pressure, and mean pressure and computed stroke volume that are probably the most 
clinically relevant parameters. However, in these clinical areas, radial arterial pressure 
is typically monitored and only occasionally is brachial pressure used. The neural nets 
we developed work on radial pressures but have not been trained on such waveforms and 
consequently are sub-optimal for this application. In internal medicine and cardiology, 
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brachial artery pressure is predominantly used for research, 24 h blood pressure moni­
toring, exercise stress testing, diagnosis of the autonomie nervous system, detecting cuff 
hypertension, and in the catheterization laboratory. We have developed our neural nets 
forthese human applications with the samerelevant clinical parameters. Of these, systolic 
pressure and computed stroke volume are affected most by damping. 

We have used waveforms obtained from a variety of volunteer subjects and patients, 
with a wide range of ages and blood pressures. The clinically obtained waveforms are 
obtained with well maintained systems and can serve as adequate reference waveforms. 
The artificial damping applied to the adequate waveforms has the same effect on wave­
forma as actual damping of a catheter-manometer system. The artificially damped wave­
forma can therefore serve as clinically damped waveforms, with the added advantage that 
the damping charaderistics are precisely known. Damped waveforma can also occur for 
(pat ho-)physiological reasons. We expect that they will be detected as damped by our 
neural net. However, in our system, we do not reject damped waveforms but just attach 
a label and place a suggestion on the screen to flush the system. When a flush does not 
cure the damping, the observer at least has better assurance that the damped waveforms 
are (pat ho-)physiologic. 

Between clinical measurement systems, and for any system over time, a large scatter 
is found in the natura! frequencies and damping ratios measured in situ by the fast flush 
method. This is the reason we selected a series of different pairs of natural frequencies and 
damping ratios to produce half of the adequate and all the artificially damped waveforms. 
Some of the pairs hardly provide any damping, some give more substantial damping, 
as might have occurred in a clinical environment. As a result, some of the individual 
waveform classifications are unavoidably incorrect, i.e. in cases when the ( slight) damping 
inflicted was insuftkient to have an effect on the waveforms. However, in termsof detecting 
clinically relevant effects such as systolic pressure deterioration, the neural nets perform 
better, as shown in Fig. 111.3. Given a quality factor greater than 0.5, waveform errors 
are less than 2% and clinically unimportant. 

Our optima! neural net with three nocles in the hidden layer has been implemented in 
the MODELFLO program of the FAST-mf system [7]. This program is an on-line version 
of BEATFAST. MODELFLO displays the quality factor on-line in real time on inexpensive 
personal computers. Programming the neural net requires an extra 40 multiplications and 
three function computations for each heart beat, which does not slow down the program 
visibly. 

Parameter veetors or waveforms 

The selection of input parameters to the neural nets may seem rather arbitrary. Indeed, 
other parameters or the entire waveform might have been chosen for input. Using en­
tire waveforma presents the problem of sealing the time axis, as beats of widely varying 
duration are normaL However, sealing the time axis has consequences for the steepness 
of the waveforms. In addition, a much larger number of input nocles is then required or 
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waveform detail is lost. Parameterization, on the other hand, requires pre-computation of 
the needed parameters, which implies the preserree of a program that can recognize beats 
in a continuous presentation of samples. We have previously developed such a program [7] 
making the route via the parameters feasible. 

The choice of input parameters was that used by Johnson et al. (6]. This set includes 
pulse rate, pressure level and pressure slope parameters. For the latter, simple first 
derivative peak values do not suffice, as on waveforms of equal quality a pulse pressure 
of 200 mmHg has five times the slope of a pulse of 40 mmHg amplitude. Therefore, 
pulse pressure and the relative instants of the peak derivatives and the pressure levels at 
which they occur were included in the set. All parameters are systolic. In arterial diastole, 
pressure slowly decreases, a process that usually can be foliowed even by slowly responding 
systems. In systole, the fastest changes occur and, to detect damping, attention should 
focus on parameters in this period. Ofthe 11 parameters, only one (T.) seems redundant to 
the neural net. Three or more are redundant if some degradation in detection performance 
is traded for a network of reduced complexity. We were not prepared to make this trade­
off. 

Johnson et al. developed an artificial neural network to predict the natural frequency 
and the damping ratio of the measurement system from parameterized pressure wave­
forma. The prediction accuracy is high enough to provide some useful alerting capabilities 
for damped and resonant artifacts. In our study, we focus on the detection of damping as 
the more difficult to detect and subtie problem. Resonance may affect systolic pressure 
as much as or more than damping, but is usually more easily detected visually and by 
computer. The stroke volume computation is usually little affected by resonance and 
much more by damping because the pulse systolic area is integrated for stroke volume. 
Damping has a tendency to develop gradually and can remain undetected for long periods. 

Quality factor 

We found it difficult to explain to clinicians the importance of natural frequency and 
damping ratio without the use of Gardner's diagram and showing the current position 
of these parameters. Even then, the scatter in the neural network's estimation of these 
parameters (not discussed here) was considered confusing at times. Waveform quality 
factor, on the other hand, was a concept more easily accepted. Using the quality factor, 
the absence of damping is quite reliably presented as a quality factor greater than 0.5 
and no systolic pressure reduction, although a quality factor less than 0.5 does not always 
result in systolic pressure reduction, depending on waveform shape. 

Neural nets 

The neural network approach offers such advantages as to make it the method of choice 
in many application areas. Learning is a most attractive feature of neural nets. With it, 
neural nets learn to perform certain tasks by being trained with examples. It is not nec­
essary to develop modelsof behavior or rules of detection. No assumptions are necessary 
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about the underlying statistics of the data, except range for sealing purposes. On the 
other hand, to work with neural nets, it is necessary that a designer develops a database 
of training patterns and experiments with network architectures and training methods. 
Compared to somewhat similar approaches as multiple regression and principal compo­
nents, it is our impression that, by drawing multiple intermediate nonlinear conclusions 
in the hidden layer, neural nets do a better job by extrading more from the input infor­
mation. The disadvantage is a greater computational burden and more experimentation 
in the design stage. 

1.5 Condusion 

We conclude that neural netscan classify brachial arterial pressure waveforms as adequate 
or damped from parameterized data, and can append a waveform quality label which 
translates directly either into absence or probably preserree of degradation of clinically 
relevant parameters. The best neural nets do this reliably, continuously, and easily in real 
time. 

2 Damped blood pressure wavefarms detected dur-. . 1ng exerc1se 

We demonstrated in the previous section that neural nets can detect subtie changes in 
waveform as occur when brachial arterial pressure recordings suffer instrumental damping, 
even though waveforms show substantial differences between subjects. We then wondered 
if a neural net could do the same when waveform differences occurred within subjects, for 
example during physical exercise, where large increases in blood pressure, heart rate and 
vasomotor tone are involved [2, 21]. 

2.1 Methods 

Subjects and Measurements 

Data were collected from 7 healthy normotensive male volunteers aged 22 to 40 years 
(mean age 30 years), recorded for other purposes and publisbed elsewhere ([2], chapter 
III.3 in [21 ]). The study protocol was approved by the Ethics Committee of the University 
Hospita! Dijkzigt in Rotterdam. 
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The exercise was performed on a bicycle ergometer with the subject in sitting position. 
Aftera pre-exercise phase of one minute, the load was increased in steps of 20W /min until 
exhaustion. The subjects then remained quiet in the sitting position on the ergometer for 
another 3 minutes, while blood pressure recording continued. Table III.6a lists the ages 
of the subjects and the maximal exercise level for each individual. 

Intrabrachial pressure was recorded in supine position. The non dominant arm was 
used for cannulation. After local anesthesia with a 2% lidocaine solution, a Traverrol Quick 
Cath, Nll3, 20 gauge, 11 cm long Teflon cannula was inserted into the brachial artery 
with the Seldinger technique and was connected to a Gould-Statham P23 ID transducer 

Table 111.6: a) Age of subjects and maximum exercise load (in watts) b) Training 
Testing Combinations. TRA, T RB, T Re, and T RD are the different training sets and 
TEA, TEB, TEe, and TED are the different testing sets. Each set includes the data of 
those subjects that are marked with x in its column. 

a) b) 

Set A Set B Set C Set D 

# Age Load TRA TEA TRB TEB TRe TEe TRD TED 

1 22 300 x x x x 

2 28 260 x x x x 

3 28 300 x x x x 

4 30 200 x x x x 

5 30 300 x x x x 

6 36 320 x x x x 

7 40 280 x x x x 

by means of a 10 cm long polyethylene tube. The transducer was strapped to the mid 
upper arm, approximately at heart level. A continuous :Rush system was installed. The 
resonance frequency ranged from 17 to 50 Hz, the damping ratio from 0.2 to 0.5. The 
pressure signal was recorded on a four channel Hewlett-Packard FM lnstrumentation 
recorder. The tape recorded signa! was digitized at 100 Hz sample rate and 33.25 Pa 
(0.25 mmHg) resolution. 

Data processing 

Epochs of 10 seconds were extracted each minute, from one-minute before exercise until 3 
minutes post exercise, free of motion artifacts. These epochs were accepted as adequate. 
Next, the recordings were artificially distorted using the second order low pass digital 
simulation of a catheter-manometer system with selectable natural frequency, fn, and 
damping ratio, ( (see section 1.2 of this chapter). 
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Table 111.7: 11 derived signal parameters used as input vector to neural nets. /nstants 
within a beat are measured relative to the starting upstroke instant; diastolic pressure is 
taken at the starting upstroke and thus has no associated delay 

number symbol meaning 

1 Ps systolic pressure 

2 T. instant of Ps 
3 Pd diastolic pressure 

4 PP pulse pressure (p. - Pd) 

5 fH heart rate 

6 P+ maximum positive systolic slope 

7 P+ pressure level at P+ 
8 T+ instant of P+ 
9 .P- maximum negative systolic slope 

10 P- pressure level at P-
11 T_ instant of 

To obtain the inputs to the neural nets, we employed a preprocessor to extract key 
features from the waveforms. Table III. 7 presents the features that were extracted from 
the waveforms. The way they have been extracted is mentioned in detail in the previous 
section. 

The parameterized set contained data of 4164 waveforms- 2082 of which were adequate 
and 2082 were damped. Because of the small number of subjects included, the data set 
of the 7 subjects was divided into 4 training/testing set combinations [22]. The data 
of 2 subjects formed the testing set and the data of the remaining 5 subjects formed 
the training set. The sets were mutually exclusive. Neural nets were trained using the 
data of one training set and the trained performance was tested using the correspondent 
testing set. The procedure was repeated 3 more times. Table III.6b lists the different 
training/testing sets. In this way, the waveforms of each patient are used as testing 
waveforms for one of the networks. 

Neural nets 

NeuralWorks Professional II/PLUS (NeuralWare, Inc. Pittsburgh PA) was selected for 
training and testing the neural nets. 

Multilayer feedforward neural nets were used. They consistedof an input layer of 11 
nocles equal to the number of the input parameters, a hidden layer of various numbers of 
nodes, and an output layer of one node. All neural nets were fully connected with weights 
initially randomized in the range from -0.1 to 0.1. The hyperbolic tangent transfer function 
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was used as transfer function of the nocles in the bidden and the output layer, since it 
produced the best results as reported in section 1 of this chapter. 

All input data, before presenting them to the neural nets, were normalized to the range 
-1 to 1. The range -1 to 1 was chosen, because the hyperbolic tangent function was used 
as transfer function. The sealing was necessary since high values of the data could lead 
to saturation of some processing units. Sealing was clone off-line using a pre-processing 
facility of NeuralWorks. Each parameter was scaled independently. lts minimum value 
was transformed to -1 and its maximum value was transformed to 1. The values in 
between were transformed linearly in the region (-1, 1). The minimum and maximum 
values of the parameters were determined on the whole data set. The output data were 
also normalized to range 0 to 1. 

The back propagation algorithm with a momenturn term was used for training (see 
section 4 of chapter II). The neural nets were trained with a number of random order 
presentations of the training selection of up to 104 iterations. To check how the perfor­
mance on both the training and testing sets is improving during learning, the weights of 
the network were saved every 5000 iterations. Different numbers of bidden nocles were 
used varying from 3 to 10. 

Back propagation is known to be sensitive to the initia! values of weights [23]. On the 
way to find the global minimum in the weight space, being trapped in a local minimum 
can occur. To avoid this, for each different combination of bidden nocles and training 
duration, training and testing was repeated 5 times with a different set of initia! values 
of weights for each training session, to average over variations in performance because of 
the different initia! weights. Batch learning was used. 

During training, the correct output for a beat of the adequate class was to be 1, and 
for a beat of the damped class it was to be 0. The aim was to adapt the values of the 
weights of the networks so that they performed well also for waveforms which did not 
belong to the training set. 

Evaluating performance 

The output of the network was distributed between 0 and 1 with a value which was 
showing the closeness of the input waveform to the adequate waveform. The network, 
initially, was considered to have correctly classified an adequate beat if the output node 
had an output greater than 0.5, and correctly classified a damped beat if the output node 
had an output less .than 0.5. Thus for each answer we get from the classifier's output 
node four possible alternativesexist [24]: true damped ( td) when the system correctly 
detects a damped waveform, false damped (fd) - when the system fails to detect an 
adequate waveform, true adequate (ta)- when the system correctly detects an adequate 
waveform, and false adequate (fa) when the system fails to detect a damped waveform. 
To evaluate the trained performance of the different neural nets on the testing set, the 
following percentages have been calculated: 
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AC ::::: (td + ta)/N * 100 (III.l) 

FD :::; fd/(ta + fd) * 100 (III.2) 

FA fa/(td +fa)* 100 (III.3) 

SE tdf(td +fa)* 100 (III.4) 

SP taf(ta + fd) * 100 (III.5) 

where N is the total number of adequate and damped waveforms, FD is the percentage 
of waveforms incorrectly classified as damped from the pool of adequate waveforms, FA 
is the percentage of waveforms incorrectly classified as adequate from the pool of damped 
waveforms, SE is sensitivity - percentage of waveforms correctly classified as damped 
from the pool of damped waveforms, SP is specificity percentage of waveforms correctly 
classified as adequate from the pool of adequate waveforms and AC is accuracy of the 
detection. It reflects the percentage of the correct classifications and the percentage of 
the error rate is 100 - accuracy. 

Table 111.8: Results of classifying the wave-
forms into damped and adequate. The bipolar 
transfer function and batched learning were 

AC FD FA SE SP used in a network with 11 input nodes and 

3 73.3 28.3 25.1 74.9 71.7 1 output node. NH is the number of nodes 

4 73.1 28.6 25.2 74.8 71.4 in the hidden layer. AC represents the accu-

5 75.9 24.6 23.6 76.4 75.4 
racy of the classifier. FD represents the per-
centage of wavefarms which were incorrectly 

6 76.9 25.0 21.3 78.7 75.0 classified as damped, and FA represents the 
7 74.2 26.9 24.7 75.3 73.1 percentage of wavefarms incorrectly classified 

8 74.6 28.1 22.7 77.3 71.9 as adequate. SE represents the sensitivity of 

9 74.5 26.8 24.2 75.8 73.2 the classifier (the percentage of wavefarms 

10 74.4 26.7 24.5 75.5 73.3 
correctly classified as damped of the pool of 
damped waveforms). SP represents the speci-
ficity of the classifier (the percentage of wave-
forms correctly classified as adequate of the 
pool of adequate waveforms). 

To obtain an overall estimate of the performance, the average network performance 
over the 4 training/testing set pairs was calculated [25]. Network performance on each 
of the 4 training/testing sets was computed as the average performance of 5 separately 
trained networks (wîth different weight initializations). 

As another way to measure the performance of the trained neural nets, we use the 
Receiver Operating Charaderistic (ROC) curves [24, 26]. The percentage of damped 
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Table III.9: Error rate of testing set 
·A (I' EA) for the different initialization 
weights. 

Run Error 

1 0.195 

2 0.198 

3 0.189 

4 0.206 

5 0.186 

Mean 0.195 

Std 0.008 

Table III.lO: Average error rate for the 
different testing sets. The error rate for 
each testing set is the average of the error 
rates of the networks trained with different 
initialization weights. 

Test Set Error 

TEA 0.195 

TEB 0.366 

TEe 0.183 

TEv 0.180 

wavefarms which are correctly classified as damped (SE) is plotted versus the percentage 
of adequate waveforms which are incorrectly classified as damped (FD) for different values 
of threshold (0.01, 0.05, 0.1 up to 0.9 with a step of O.ül, 0.95, and 0.99). We repeat the 
procedure for different number of hidden nodes, resulting in 5 ROC curves corresponding 
to 4,5,6,7, and 8 hidden nodes. The area under each ROC curve is calculated using the 
trapezoidal rule. 

2.2 Results 

Table III.8 presents the average results on the four testing sets after the networks have 
been trained for 104 iterations. 

As we can see from Table HL8, different numbers of nocles in the hidden layer do not 
seem to have a significant effect on the accuracy of the dassifier. Only the neural net 
with 6 nocles in the hidden layer performs slightly better than the other ones. 

The initia! weights do not have much effect on the network training process. The 
maximum variability of the error rate is 0.008 for testing set A TE A (Table liL 9). 

Testing set B (T EB) gives an error rate around 0.37, whereas the other three testing 
sets give an error rate around 0.19 (Table III.lO). 

Subject 3 (see TEA and T Ev in Table III.6) is included twice in a testing set. The per­
formance of the two neural nets, trained on partly different waveforms, on the waveforms 
of this subject is not significantly different. TA equals 0.94, and TD equals 0.60, when 
the weights of the neural net trained on TRA are applied on the waveforms of subject 3, 
and TA equals 0.95, and TD equals 0.56, when the weights of the neural net trained on 
T Re are applied on subject 3. 

In Fig. III.4, the ROC curves for different number of hiclclen nocles are plottecl ( 4 to 8 
hidden nocles ). The performance of the network is affectecl by the value of the threshold. 
As the threshold becomes higher, the number of correctly dassifiecl clampecl waveforms 
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Figure 111.4: Receiver Operating Characteristic (ROG) curves and their areas for dif-
ferent number of hidden nodes (NH)· • the threshold is equal to 0.5. 

increases, however, the number of adequate waveforms incorrectly classified as damped 
also increases. On the other hand, the number of false damped waveforma and the number 
of true damped waveforma will become lower as the threshold becomes lower. The area 
under each ROC curve is given in Fig. III.4. The neural net with the 6 nocles in the hidden 
layer seems to be the best one, since the area under its ROC curve is the largest. The 
dashed line drawn along the major diagonal where the true damped and false damped 
ratios are equal represents a random detection of waveforms. A system could achieve this 
performance simply by chance. 

2.3 Discussion 

We have developed a software technique for detecting the distortion due to instrumental 
waveform damping with which we may monitor the reliability of the intra-arterial mea­
surements. Damping is a phenomenon that develops gradually, and it is difficult to be 
detected. It can remain undetected for long periods, affecting the waveforms and their 
clinically relevant parameters. 

We have adopted the neural network technique for the detection of damping in catheter­
manometer system intra-arterial waveforms. Neural nets are being used widely for mon­
itoring the quality of invasively registered arterial pressure waveforms [27, 6, 28]. 

When a given blood pressure waveform is damped, it is not easy to detect because 
of the large variability of the arterial waveforms. Klee and coworkers [29] tried to detect 
damping using the curvature technique. They define as curvature "the ratio of fundions 
of the first and second derivatives" which "has inherent normalizing features that make 
it less sensitive to the differences among wave forms". According to their results, the 
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curvature technique could effectively discriminate between the moderately damped signals 
and the control group, but was not able to distinguish the signals with minute amounts of 
distortion. The quantitative value of the curvature index (summing the curvature at all 
points on a pulse beat) allows one to optimize discrimination between clean and distorted 
signals. 

Pike and Mustard [28] have trained a neural network to discard corrupted arterial pres­
sure waveforms. The waveforms that they use to train and test the network are classified 
manually by the authors according to their own judgement. Moreover, the waveforms 
have strong artifacts which can he detected with a merelook at the waveform, which is 
not the case with the detection of slight damping. They use clinical information about 
the patîent as wellas inspeetion of the entire 15 sec signa! tradng in order todetermine 
the correct label on each peak. They feed the network with subjective information. The 
neural net cannot do better than what it is taught to. lt will simply produce what the 
clinicians see. When we asked human observers to classify the waveforms we have been 
using totest the traîned neural net, they did not perform better than the neural net. On 
the contrary, the results were not significantly different than random. Details are to he 
found in section 3 of this chapter. 

Many of our beats belong into a zone between the two classes: adequate and damped 
waveforms. This makes the classification more difficult, and it obviously decreases the 
accuracy of our nets. Some of the waveform classifications are unavoidably incorrect, 
for example, when the slight damping imposed is not su:fflcient to have an effect on the 
waveforms. 

The neural nets we have described in the previous section are suitable for blood pres­
sure waveforms that have a heart rate not higher than 100 beats/min. The waveforms we 
are trying to classify in this study, are coming from subjects that reach heart rates of 200 
beats/min. 

The adequate waveforms have been recorded through carefully checked hardware. Still 
at high heart rates the nets detect damped waveforms when in fact there is no added damp­
ing. It seems that the undam ped blood pressure pul se at the high heart ra te changes shape 
physiologically as if it were damped by a catheter-manometer system. The diagram of 
Gardner [4] is valid only for operating room and intensive care unit, and not for recording 
waveforms of subjects during exercise, where the heart rates increase substantially and 
reach 200 beats/min. 

We have tried different number of nocles in the hidden layer. It does not seem to affect 
the performance of the classifier much. We have not tried a large number, si nee a network 
with too many nocles in the hidden layer leads to mernorization of the individual data 
rather than generalization. It will learn to fit the training set well but it will not work 
well at other data. According to Hanson and Pratt [30], when there are too many hidden 
nodes, "then the underlying feature relations determining the output surface and category 
separation are arbitrary, more complex than necessary, and may result in anomalous 
generalizations". We have used the method of ROC curves analysis, which is recognized 
as objective and comprehensive way [26] to evaluate performances independent of decision 
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biases. 
Unfortunately, there is no technology available todetermine which is the best network 

topology and the appropriate learning parameters. Thus networks have to be designed 
by trial and error [31], which is a time consuming and heavily computational task. 

The data sets we have used to assess the performance of the different neural nets came 
from different subjects with a large range of blood pressures and heart rates. During 
bicycle exercise, the heart rate and the blood pressure increase threefold. There is a large 
variability of blood pressure and heart rate within subjects. 

2.4 Condusion 

We have demonstrated the feasibility of neural nets in classifying catheter-manometer 
system arterial pressure waveforms to adequate and damped during physical exercise 
when large increases in blood pressure and heart rate are involved. 

3 Damped blood pressure waveforms detected by 
experts; a comparison of performances 

3.1 Introduetion 

In many cases of neural network engineering an artificial neural net is designed to mirnic a 
certain facility of a human expert. In partienlar the recognition of waveforms or features 
of waveforms is often desired by a neural net. Since human experts at times do not agree 
amongst themselves, or are hesitant, or uncertain, or not able to detect subtleties, training 
a neural net and evaluating its performance is no easy task. 

In the case of the detection of damping in brachial arterial pressure waves this was not 
a problem since we could start from well recorded waveforms and apply known amounts 
of damping for the network to detect. Examples of adequate and damped brachial artery 
waveforms that were used to train and test the networks are shown in Fig. III.5. There was 
never an uncertainty, neither in the training nor in the testing phase of the performance 
required from the network. Having thus successfully trained a neural net it occurred to 
us to a posteriori compare the network performance to the expert performance and to 
investigate how well a human observer could detect damping. 
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Figure 111.5: Examples of adequate (solid fine) and damped (dotted fine) brachial artery 
waveforms (slightly damped waveform in the up per panel, more damped in the lower panel). 
All the jour waveforms were correctly classified by the best neural net, described in section 
1 of this chapter. 

3.2 Methods 

We prepared two sets of waveform epochs presenting on a clear amplitude and time scale 
( an example is shown in Fig. 11!.6, as exactly presented to the experts) several brachial 
artery pulsations. One set consistedof 18 adequate (undamped) pulsation epochs coming 
from nine subjects in the test set of section 1 of this chapter. The other set consisted of 
exactly the same epochs but with the pulsations more or less damped according to the 
protocol of section 1 of this chapter. All epochs received a random number that was used 
for later scoring. The sets were shuffied and offered as a group to the experts. 

Twelve experts were asked to do the rating. They were recruited from a group of 
experienced clinicians, physiologists, and medica! physicists. They were told that half of 
the waves were damped. A time limit was not imposed. 



46 

P (mmHg) 

200 

150 

100 

50 

Chapter lil. Veteetion of damped blood pressure waveforms 

0+>~~~~~~~~~ .. ~~~~~~~~~~· 
0.0 1.0 2.0 

Time (sec) 

3.0 4.0 

Figure 111.6: An example of brachial artery wave that was shown to the human experts. 
Only 9 of the 11 experts detected that the above waveform was damped. 

3.3 Results 

We made a table presenting the scoring of the truly damped wave as damped by the 
eleven experts. One expert, a physiologist, discovered that the waveforms were paired. 
He paired the waveforms, and placed them on a glass plate illuminated from bebind. This 
facilitated the detection of damping to such a degree that his score was perfect. He was, 
however, excluded from this analysis. 

Of the remaining 11 experts all except expert 2, a clinician, indeed declared 18 waves 
as damped. Expert 2 scored only 6 waves as damped, of which 4 were correctly identified. 
The results of the scoring of the truly damped waveforms are shown in Table III.11. The 
subject waveforms are listed vertically according to age. Of each subject the two epochs 
are separately shown. The experts are listed horizontally in the order they performed 
the rating. Only experts 5 (14 out of 18 waveforms) and 10 (13 out of 18 waveforms) 
scored-slightly-better than purely by chance. Expert 5 worked together with another 
person for several hours making various measurements on the waveforms. Expert 10 had 
observed arterial pulsations for over 30 years and was possibly the most experienced. He 
was also aware of the fact that rise time of the pulse wave is a most important parameter 
to use to detect damping. Ris scoring took about 10 minutes. On average the eleven 

. experts scored 10 out of 18 damped waveforms correct, which is not significantly different 
from a chance scoring. The neural net scored 17 of the 18 damped waveforms correctly 
as damped. 
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3.4 Discussion 

If we had been dependent on human observers to train our neural nets, we would have to 
have the wavefarms damped much more severely than we actually did, to allow human 
experts to achieve a good, non random, score. Since as it was shown in the previous 
section, already slight damping causes loss in systolic pressure and stroke volume compu­
tation accuracy, the usefulness of the resulting much less sensitive neural net would have 
been less useful clinically, although probably as good as a human expert. 

Table 111.11: Damped waveforms being detected by expert human observers. (fn, () = 
natura/ frequency, damping ratio pairs used to distort the pressure waves; x indicates 
which damped waves were correctly detected as damped by a certain observer; TD = num­
ber of human observers who correctly detected the certain waveform of a subject; Correct 
= number of waveforms that each human observer correctly detected as damped. 

A ge (/n, () 1 2 3 4 5 6 7 8 9 10 11 TD 

22 (13, 0.90) x x 2 

22 (10, 1.20) x x x x 4 

30 ( 8, 0.94) x x x x x x 6 

30 (10, 1.20) x x x x 4 

34 ( 8, 1.15) x x x x x 5 

34 (10, 1.20) x x x x x 5 

36 ( 8, 1.26) x x x x x x x 7 

36 (10, 1.20) x x x 3 

40 (10, 0.99) x x x x 4 

40 (10, 1.20) x x x x x x 6 

40 (10, 0.90) x x x x x x x x x x 10 

40 (10, 1.20) x x x x x x x x 8 

52 (10, 1.10) x x x x x x x x x 9 

52 (10, 1.20) x x x x x x x x x x 10 

52 (10, 1.15) x x x x x x x x x x x 11 

52 (10, 1.20) x x x x x x x x x x x 11 

I 

65 (12, 1.0) x x 2 

65 (10, 1.2) x x x 3 

Correct 9 4 10 10 14 10 9 12 9 13 10 110 

This observation is in tune with what we can often observe in clinical monitoring of 
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intraarterial pressure waves in the environment of an operating room or intensive care. 
It was reported [32] previously that damping of intraarterial waves could be detected 
quite early in the case that the arterial wave was superposed on a wavefarm recorded 
noninvasively on a finger of the same hand. Finger pressure recording does not usually 
suffer from instrumental damping and is therefore quite suited for this purpose. However, 
just ha.ving to maintain another instrument in the operating room to be able to visually 
detect the damping state of another instrument cannot be considered practical. Thus, 
a neural net algorithm such as developed in section 1 of this chapter, but adapted for 
radial artery pulsations, could prove a more useful solution for this persistent problem, in 
partienlar also since it outperfarms human experts. 
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Abstract 

Objective: To model the pulse wave distartion and pressure decrement occurring between 
brachial and finger arteries. Distartion reversion and decrement correction were also our aims. 
Methods: Brachial artery pressure was reearcled intra-arterial!y and finger pressure was 
reearcled non-invasively by the Finapres technique in 53 adult human subjects. Mean pressure 
was subtracted from each pressure wavefarm and Fourier analysis applied to the pulsations. 
A distartion model was estimated for each subject and averaged over the group. The average 
inverse model was applied to the full finger pressure waveform. The pressure decrement wás 
modelled by multiple regression on finger systolic and diastolic levels. Results: Wavefarm 
distartion could he described by a genera!, frequency dependent model having a resonance at 
7.3 Hz. The general inverse model has an anti-resananee at this frequency. It converts finger to 
brachial pulsations thereby reducing average wavefarm distartion from 9.7 (s.d. 3.2) mmHg per 
sample for the finger pulse to 3.7 (1.7) mmHg for the converted pulse. Systolic and diastolic level 
differences between finger and brachial arterial pressures changed from -4 (15) and -8 (11) to 
+8 (14) and +8 (12) mmHg, respectively, after inverse modelling, with pulse pressures correct 
on average. The pressure decrement model reduced bath the mean and the standard deviation of 
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systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Dia.Stolic differences were thus 
reduced most. Conclusion: Brachial to finger pulse wave distartion due to wave reflection 
in arteries is almast identical in all subjects and can be modelled by a single resonance. The 
pressure decrement due to flow in arteries is greatest for high putse pressures superimposed on 
low means. 

Keywords 

Finapres, Brachial-to-finger modelling, Wavefarm distortion, Blood pressure, Human. 

1 Introduetion 

The brachial artery is aften the clinical site for intra-arterial and for non-invasive Riva­
Rocci cuff blood pressure measurements. For several years it has been possible for contin­
uous finger arterial pressure wavefarms to be reearcled non-invasively. This has been used 
to follow changes in blood pressure in response to various stressors [1, 2, 3, 4, 5, 6] and 
during the course of the 24-h day [7] in persons in whom insertion of anarterial cannula 
is not accepted as ethical. However, for physiologic reasans (pulse wave refiection and 
pressure gradient due to flow), pressure pulsations in the finger differ in shape from and 
are depressed in level compared to those reearcled in the brachial artery. 

Therefore, since non-invasive arterial blood pressure has become feasible [8, 9], pub­
lications have appeared camparing finger arterial systolic, diastolic and mean pressure 
levels to levels reearcled intra-arterially in the brachial or radial artery. Earlier studies 
concentrated on level camparisans sampled at various periadie intervals [10, 11, 5], while 
later studies compared beat-ta-beat values [12, 2, 3, 13]. As a next step we decided to 
study the differences in the wavefarms reearcled in the brachial artery and at the finger, 
with the aim to find a distartion model and then to inverse-model the finger to the brachial 
pressure pulsations. 

A previous study described pressure pulse propagation in the arterial system from the 
aorta to the radial artery and stated that application of a generalized filter could remave 
wavefarm distartion [14]. Since finger diastolic and mean pressure are clearly below intra­
arterial [2], due toa pressure gradient in the arteries of the arm and hand and decrements 
that appeared todependon the activity level of the subject [7] we suspected that wavefarm 
distartion to the finger might also depend on pressure gradient, mean pressure, heart rate 
and subject age. 
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2 Methods 

2.1 Subjects 

Pressure recordinga were available from 4 previous studies [12, 1, 15, 13], chosen for our 
purpose because they cover a wide range of ages, blood pressures and conditions of the 
circulation. Study [15] provided pressures of 18 (suspectedly borderline) hypertensive 
patients aged 25-65 years. Eleven of the patients were on anti-hypertensive medication. 
Study [1] provided the pressures of 7 healthy resting voluuteer subjects, aged 22-40 years. 
Studies [12] and [13] provided pressures of 28 subjects aged 52-83 years, 15 of whom 
were healthy elderly subjects, 13 suffered from therapy-resistant hypertension and 7 addi~ 
tionally from arteriosclerotic vascular disease. The original studies were approved by the 
respective ethica! committees. Informed consent was obtained from all voluuteer subjects 
and all patients prior to entering the protocol. 

Table IV.l: Summary of patient and model characteristics. The parameters K, / 1, and 
D refer to the forward model Eq. {IV. I). SDD the standard deviation of the differences 
with the brachial reference waveform in mmHg per sample; 'original' refers to the original 
finger pulse, 'individual' to the individual inverse model, and 'genera[' to the general 
inverse model. 

Unit Mean s.d. 

A ge yr 54 15 

HR 68 11 50 95 

K 0.84 0.09 0.63 0.98 

fi Hz 7.34 1.34 4.26 10.58 

D 0.36 0.16 0.07 0.83 

Original SDD mmHg 9.7 3.2 3.6 19.3 

lndividual SDD mmHg 1.8 0.8 0.6 4.0 

General SDD 3.7 1.7 1.1 9.3 

2.2 Pressure measurements 

The non-dominant arm was used for cannulation. After local anaesthesia with a 1% li­
docain solution, a Travenol Quick Cath, N1113, 20 gauge, 11 cm long Teflon cannula 
was inserted into the brachial artery. The cannula was connected through a short section 
of tubing to a fluid-filled pressure transducer installed with a continuous fl.ush system 
and strapped to the mid-upper arm at heart level. The resonance frequency of these 
systems was checked with the fast fl.ush or the tap method [16]. It ranged from 11 Hz 
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with 0.7 damping to 50 Hz underdamped and in all cases except one was at least "ade­
quate" [16] in that instrumental resonance was well above physiological and well above 
the range where coherence between both blood pressure waveforms is significant. In the 
one case with resonance at 11 Hz it was "borderline" according to Gardner [16] due to a 
high damping factor which reduces instrumental oscillations. Pressure channel sensitivity 
(statie accuracy) was checked against a well-maintained mercury manometer and against 
the Finapres. Differences were always less than 2 mmHg over the 0-300 mmHg range. 
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Figure IV.l: Three panels showing from above arterial pressure pulsations in a 22-, an 
83- and a 40-year-old subject, the latter with a varying baseline. The dotted lines are 
bmchial, the solid lines finger pressure. 

TNO Finapres Model 5 devices and finger cuffs were used for the finger pressure 
recordings. A properly sized cuff (see Finapres manual) was wrapped around the middle 
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or index finger mid-phalanx of the ipsilateral hand, and supported at heart level. Using 
the ipsilateral hand may cause errors if the morè proximal cannula partly blocks the radial 
artery [17]. However, in the studies whose results we used the much larger brachial artery 
was cannulated. No signs of damped brachial waves [18], or signs of blocking such as slow 
rising finger pressure pulses, could be detected. _ 

2.3 Signal processing 

The brachial and finger pressure signals were fed through identical Krohn-Hite Model3750 
40 dB/decade low pass filters at 30 Hz -3 dB cut-off. A computer system digitized the 
simultaneous pressure signals with a resolution of 0.1 mmHg at a rate of 200 Hz. Next, 
the records were digitally filtered with a Hamming ( -1 -5 -5 +20 +70 +98 +70 +20 -5 
-5 -1) low pass filter, which is -3 dB at 35 Hz. Every other sample was then deleted to 
have signals sampledat 100 Hz. 

Epochs of approximately 10 s duration were selected from the recordings having an 
integer number of beats and an almost flat baseline. Selected epochs began and ended 
just before the beginning of a brachial upstroke, lasted on average 9 (s.d. 1.5) s, and 
contained n=10 (s.d. 2), range 4-16 beats. Any slight remairring pressure differences 
between beginning and end of the records were linearly subtracted. This gave signal 
epochs ready f9r discrete Fourier analysis without further windowing. 

2.4 Model identification 

After subtraction of the mean pressure to obtain just the pulses Fourier analysis was 
used to establish each individual's and the geometrie average "forward" (brachial to fin­
ger artery) complex frequency transfer function. We used MATLAB (The Math Works, 
Inc., South Natick, MA, USA) for this purpose. The amplitude transfer fundions were 
suggestive of the existence of a resonance near 7 or 8 Hz and subsequent return to unity 
transfer at higher frequencies. 

A model transfer function having suchresponse is: 

H(f) K (1 +ij/ fo) 2 

1 + 2iD f I !I - (!I !I) 2 (IV.1) 

with i the imaginary unit. This model is equivalenttoa gain, K, asecond-order aperiodic 
high emphasis section at frequency Jo, foliowed by a second-order underdamped low pass 
section at resonance frequency fll with damping D < 1. The transfer function was forced 
to unity transfer at high frequencies by linking Jo and f 1 by the equation: 

(IV.2) 

This avoided overtight fitting of the model to the high~frequency section of the response 
where coherence between brachial and finger pressure speetral componentsis low. Using 
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Figure IV.2: The upper panel shows the group average brachial pressure amplitude spec­
tra and standard error bars (mmHg). The middle panel shows the average coherence 
between the brachial and finger pressure spectra and standard error bars. The botlom 
panel presents the measured geometrie-average amplitude transfer function (circles) and 
the average model transfer function (drawn curve). The dotsin vertical arrangement in­
dicate the position of the individual model transfer functions. Note that some of the scales 
are logarithmic. Measured data start at a frequency of 0.5 Hz which was present in all 
subjects. Model data start at 0.1 Hz. 

MATLAB, the complex model was least-squares-fitted toeach subjeet's complex transfer 
function. 

The fit program was free to change the relative delay of the two epochs per subject to 
obtain a best fit. Thus 3 model parameters were estimated: gain K, resonance frequency 
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JI, and damping D. 
The model parameters obtained for each subject were entered into a table together 

with mean finger pressure, heart rate and age, and multiple regressions computed to verify 
interdependencies. A general model for the group was computed by taking the average of 
each model parameter. The result is the general forward model. 

2.5 Inverse modelling 

An inverse model amplifies the signal at frequencies where the forward model attenuates 
and vice versa. Each individual's own inverse modeland the general inverse model for the 
group were applied to the finger pulses. The original finger pulse and the inverse-modelled 
finger pulse were compared to the corresponding brachial pulse and the standard deviation 
of the differences (SDD) obtained for the optimal delay. This provided a measure for the 
precision of brachial pulse approximation. 

2.6 Level correction 

Equally, the full finger pressure (without mean pressure subtracted) was inverse-modelled 
with the general inverse model to approach full brachial artery pressure. The remaining 
differences in systolic, diastolic and mean levels between finger and brachial, and be­
tween the inverse modelled finger and brachial pressures were computed. This provided 
a measure of the accuracy of the pressure level recovery by the inverse model. For the 
entire group we then checked if the level differences depended on measures obtainable 
non-invasively, such as finger pressure levels, heart rate, or age, by computing multiple 
regressions. When significant, we corrected the inverse modelled finger pressure levels by 
the value of the regression equation and recomputed level differences mean and standard 
deviation. 

2. 7 Random subgroups 

Using the entire group for model analysis and inverse modeHing provides for the best 
signal to noise ratio but does not allow the verification of selection effects. Therefore, 
5 different random selections of 23-29 subjects and their complementary groups of 30-
24 subjects were constructed. General distortion models for each of 10 subgroups were 
computed and compared to the general model for the entire group. Furthermore, the 
level differences multiple regressions for the 10 subgroups were computed and applied as 
a correction to their complementary group and the results compared. 

3 Results 

Some typical blood pressure records are shown in Fig. IV.l. Finger diastolic and mean 
levels are generally below intrabrachial; systolic levels tend to be at or above intrabrachial 
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Figure IV.3: Comparison of the brachial pulse wave (solid curve) with (dotted), from 
above, the original finger pressure, and the inverse-modelled finger pressure for the in­
dividual and the general model in an 83-year old subject. Mean pressure was subtracted 
first. 

pressures. At the finger, young sub jects (top traces) tend to show a strong in i ti al sys­
tolic peak and a deeper falling dicrotic notch. Oscillations are more pronounced in the 
finger than in the brachial pressure. Older subjects (middle traces) tend to show two 
systolic peaks of approximately equal height. Baseline changes in intrabrachial pressure 
are tracked well by Finapres ( bottorn traces). 

3.1 Waveform distortion model 

Group average results of the speetral analyses are shown in Fig. IV.2. The amplitude 
spectrum for brachial pressure (upper panel) is high near thefundamental frequency of 
approximately 1 Hz. Towards higher frequencies the amplitude decreases quickly to below 
0.1 mmHg at 10 Hz, or by a factor of 50 per decade of frequency. 

Coherence between the brachial and finger pulsation spectra (middle panel) is near 1 
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up toabout 10Hz. Above 10Hz coherence drops gradually to remain above 0.5 to 50 Hz. 
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Figure IV.4: Histograms of the standard deviation of the differences (SDD) with the 
brachial pulsations of, from above, the original finger pressure, and the inverse-modelled 
finger pressure for the individual and the group average models in the 53 subjects of the 
study. 

The geometrie average forward amplitude transfer as a function of frequency (bottom 
panel) is shown together with the average forward model transfer function. Both transfers 
follow the same trace over the entire frequency range. Low frequencies are attenuated in 
the finger. Frequencies near the resonance peak at 7 Hz are amplified. The transfer func­
tion crosses unity level near 2 Hz. At high frequencies the model transfer function returns 
to unity slightly quicker than the computed forward transfer function since coherence is 
low at these frequencies and a tight fit not attempted. Individual transfer functions differ 
from the average, as can be observed in the figure, but not wildly so, as can he judged 
from the model statistics in Table IV.l. The model gain K has 10% standard deviation, 
the resonance frequency f 1 has 18%, and the damping coefficient D has 45% standard 
deviation. 

Various random selectionsof subjects from the pool of 53 and the remairring compie-
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Table IV.2: Pressure levels and level differences {mmHg). 

Mean s.d. Range Mean s.d. Range 

Brachial 

Systolic 169 33 95 245 

Diastolic 89 17 46- 127 

Mean 120 22 62- 174 

Pul se 80 23 41 145 

Original finger Fin-Bra 

Systolic 165 30 89 241 -4 15 -37- 28 

Diastol ie 81 17 40- 128 -8 11 -33- 18 

Mean 107 21 53 164 -13 11 -37 14 

Pulse 84 24 49- 178 4 13 -31 33 

Inverse-modelled Inv-Bra 

Systolic 177 34 93-252 8 14 -24 38 
Di astolie 97 21 48- 155 8 12 -18 - 36 

Mean 128 25 63- 194 8 12 -18 - 35 

Pulse 80 25 44 166 0 9 -23 22 

& Level corrected Cor-Bra 

Systolic 169 33 96- 261 0 13 -32- 31 

Diastolic 89 14 52 128 0 8 -19 20 

Mean 119 21 66- 168 -1 9 -23- 19 

Pulse 80 25 44 166 0 9 -23 22 

mentary groups each had model parameter averages nearly equal to those in Table IV.1 
and no random selection showed significant differences ( P >0.05). No evidence of selection 
e:ffects, therefore, is apparent. 

3.2 Dependendes of model coefficients 

Of the subject data, pulse pressure regressed significantly on age ( correlation coefficient 
r=0.62; P <0.001). Of the model coefficients, K did not regress on any other parame­
ter. Resonance frequency, f 1 , (r=0.48; P <0.001) and damping wefficient, D, (r=0.41; 
P <0.01) regressed significantly on mean finger pressure. Taking the regression into ac­
count the standard deviation of ft decreased slightly from 18 to 16%. The standard 
deviation of D did not decrease appreciably after regression correction. 
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Figure IV.5: Demonstration of the process of inverse modelling and level correction on 
a waveform of a 53-year old subject. The original finger pressure (top panel) is distorted 
with respect to brachial (solid curve), and lower in level. After general inverse modelling 
(middle panel} the waveforms are nearly identical, but the level is still different. Level 
correction (bottom panel) shifts the waveform down by 7 mmHg in this case, after which it 
is nearly correct. The delay between waveforms was not modelled and, thus, not corrected, 
explaining the unchanged delays in the finger derived waveforms. 

3.3 Inverse distortion model 

The degree of pulse wave distortion removal can be judged from Fig. IV.3. The standard 
deviation of the differences (SDD) is reduced most by the individual inverse model (Ta­
ble IV.l). Application of the general inverse model, since it is only correct on average, 
delivers lessexact results. Still, most of the waveform distortion is removed by the general 
inverse model. Histogramsof the SDD are shown in Fig. IV.4. 

The general inverse model when applied to the full finger pressure waveform does the 
sameconversion of the pulses, but in addition mean pressure is amplified by the model's 
inverse K-factor, which moves the pressure curve upwards. The systolic, diastolic, mean 
and pulse pressures in the brachial artery, at the finger, and at the finger after inverse 
modeHing are shown in the first 3 panels of Table IV.2. Since mean pressure in the finger, 
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on average, is 90% of intrabrachial, but the inverse K-factor amplifies mean pressure by 
1.19, the inverse-modelled mean pressure is higher than brachial, on average by 7%. 
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Figure IV.6: Systolic (AS) and diastolic (AD) level differences between brachial and 
finger (left panels) and between brachial and inverse modelled and corrected (right panels) 
finger pressures. The large squares indicate 95% confidence intervals, the centered solid 
squares the group average values. 

3.4 Level correction 

After application of the general inverse model pulse pressures were correct on average. The 
remairring differences of diastolic pressure with brachial, Apv, (Table IV.2, third panel: 
Inv-Bra) regressed significantly on inverse-modelled finger systolic (ps) and diastolic 
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(pv) pressure (r=0.73, P <0.001), and slightly less well on mean and pulse pressure. 
The differences in mean pressure also regressed on systolic and diastolic pressure (r=0.66, 
P <0.001) although less closely. The differences in systolic pressure and pulse pressure did 
not correlate well. A level correction was applied to the inverse-modelled finger pressures 
using the regression model for the diastolic differences on inverse-modelled systolic and 
diastolic pressures: 

t:..pv = -13.3- 0.194ps + 0.574pv (IV.3) 

Subtracting t:..pv, for each subject, from the systolic, diastolic and mean levels reduced 
both the mean and the standard deviation of the differences (Table IV.2, bottorn panel). 

The two-step process of inverse rnadelling and level correction is demonstrated in 
Fig. IV.5. Bland-Altman plots of the differences in systolic and diastolic pressure befare 
and after correction are presented in Fig. IV.6. Impravement is greatest for diastolic 
pressure. 

The 10 random selections from the 53 subjects on average provided very similar level 
correction effects (systolic 0.2 (s.d. 2), diastolic 0.4 (2), mean -0.2 (2) mmHg) and re­
ductions in standard deviation (systolic to 13, diastolic to 8, mean to 9 mmHg) on their 
complementary selections, suggesting the absence of selection effects. 

4 Discussion 

We found models for the distartion and level decrement of the pulse wave between the 
brachial artery and the finger. Similar studies [14, 19, 20] have appeared before, but 
the present one is the first on brachial to finger pressure and the first also to consider 
level depression. A two-step approach was used. First we modelled brachial to finger 
pulse wavefarm distartion by a frequency-dependent equation (Eqs.IV.l andiV.2), then 
we modelled the remairring level differences between the two sites with a multiple regres­
sion equation (Eq.IV.3). Correction was clone in the same two-step procedure. Major 
reductions in distartion and level decrement were obtained this way. 

Finger pressure wavefarms and levels are less familiar to clinicians than brachial or 
radial pressures. Radial artery pressures are used principally in surgery and intensive care 
situations. Here, monitoring changes in blood pressure levels is often more important 
than absolute accuracy. Brachial artery pressures are used frequently for diagnosis in 
the practice of internal medicine and cardiology. The accuracy of systolic and diastolic 
levels is of primary importance. To correct the differences of finger with intra-brachial 
pressures, both the pulse pressure and the mean pressure levels must be correct, which 
requires application of both our modelled effects. 

Some authors mention the possibility of obtaining an estimate of arterial compliance 
from inspeetion of the aortic pressure wave, in particular the late systolic augmentation 
of the pulsation [19]. Some authors stress that such changes are age-related [21]. The 
present inverse model (from finger to brachial artery) does not allow for such inspeetion 
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of waveforms with clarity but would require extension of the inverse model to aortic 
pressures. 

4.1 Waveform distortion 

Finger pressure is quite similar to ràdial artery pulsations [22, 20], whereas brachial pul­
sations appear as less resonant (Fig. IV .I). Using Fourier transformation, we determined 
individuallinear forward transfer functions descrihing the waveform distortion that occurs 
when pulses travel in the arterial system between brachial and finger artery. Regardless 
of the individual differences in pulse shape, one major resonance near 7 Hz stood out 
(Fig IV.2). Since the model is linear, and since the finger pulses after individual inverse 
~odelling approach the brachial pulse so closely (Table IV.l and Figs. IV.3 and IV.4), 
this shows that pressure pulse propagation in the arm arterial system can be understood 
as a linear process. This confirms in humans earlier findings in animals [23], even for 
pulse pressures as high as 145 mmHg in the brachial artery (Table IV.2). 

The resonance frequency depends most on the lengthof the arterial section considered. 
Karamanoglu, et aL [14], measured between aorta and radial artery, and detected a res­
onance near 4 Hz. We measured the shorter section between brachial artery and finger, 
and found a resonance near 7 Hz. Triedman and Saul (20] measured the even shorter 
section between radial artery and finger in children, and found a resonance near 10 Hz. 
Consiclering the arterial section as an organ pipe closedat the distal end (with reflection 
coefficient almost equal to 1 [23]), the shortest pipe indeed produces the highest tone. 

Surprisingly, even the general inverse model provided a good approximation of the 
brachial from the finger pulse, although individual resonance frequency and damping 
showed substantial scatter and regressed significantly on meah blood pressure. An expla­
nation is that at low frequencies the individual forward transfer fundions are similar. It is 
at the lower frequencies that the harmonies in the finger pressure spectrum are strongest 
(Fig. IV.2) and thus have most influence on the shape of the pulse. What happens at 
higher frequencies has a lesser effect. 

Karamanoglu et al. [14] stated recently that a generalized transfer fundion can be 
used to estimate central from peripheral pressure under different conditions in adult hu­
mans. It is not obvious, a priori, that Karamanoglu's conclusions remain valid for an 
acral site such as the finger since the small size of the peripheral arteries leading to the 
finger cause a pressure gradient due to flow, which dampens the pulse. We did find a 
significant pressure dependency of the model resonance frequency (!I) and damping (D) 
coefficients. However, application of general inverse roodels with the model coefficients 
individually adapted applying the regression of each coefficient on mean pressure led to 
only insignificant individual and no changes on average in inverse modeHing accuracy. 
This supports Karamanoglu's condusion for transmission of pulses as far peripherally as 
the finger arteries. 
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4.2 Pressure levels 

Finger pressures are not only distorted, but diastolic and mean pressures are depressed 
in level compared to brachial artery pressure. A notable pressure gradient in the arterial 
system exists caused by flow in the smaller resistive arteries. On applying the inverse 
model such mean level depressions on average are overcompensated, indicating that mean 
pressure is less affected by the resistance to flow than pulse pressure. The extra damping 
for pulsations at low frequencies could well be caused by the compliance of the small 
branches of the arterial system. 

Thus, application of the general inverse model-although demonstrated earlier to im­
prove tracking of blood pressure changes [24]-did not improve the accuracy of the es­
timation of systolic, diastolic and mean levels of brachial pressure by the finger even 
though pulse pressures were now correct on average (Table IV.2, bottorn panels). The 
underestimation of brachial diastolic and mean levels by finger pressure turned into an 
overestimation of 8 mmHg for all levels. This overestimation could have been removed 
simply by subtrading 8 mmHg from all pressure levels but that would not have reduced 
the standard deviation of the differences. Correction by application of a multiple regres­
sion model, however, did reduce standard deviation. Diastolic pressure accuracy now 
meets AAMI criteria [25], but systolic does not. We applied the diastolic level correc­
tion since its regression equation showed the highest correlation and since diastolic levels 
showed the largest relative differences (8% for systolic versus 14% for diastolic, computed 
from Table IV.2) and needed correction most. After level correction relative differences 
distributed more equally at 8 and 9%, respectively. 

This level correction shifts the waveform in an upwards direction when large pulsations 
are superimposed on a low diastolic pressure. Such large pulsations tend to indicate a 
large stroke volume and cardiac output, and a low diastolic pressure in addition indicates a 
low peripheral resistance and a high peripheral flow which would cause a high peripheral 
pressure decrement. The opposite situation of a small pulse superimposed on a high 
diastolic pressure we have often observed to occur in cold fingers under a supposedly high 
sympathetic tone and a generally low peripheral flow state [5]. Since a high aortic flow 
does not necessarily indicate a high peripheral flow in the arm and hand, the model is 
imperfect and the level shift correction helps but provides no perfect remedy. 

We tested our general inverse model under experiment al conditions of vasoconstriction 
and exercise to exertion that extrapolated to higher and lower heart rates and to higher 
blood pressures [24]. The inverse model not only produced more central blood pressure 
wavefarms from non-invasive finger pressures, but changes in systolic blood pressure were 
followed with greater accuracy. To track systolic pressures in exercise stress testing and for 
the computation ofbaroreflex sensitivity, application of this model appeared essential [24]. 

Having pulse pressures correct on average after inverse modelling, it should suffice to 
calibrate just one of its levels (systolic, diastolic or mean) to the conesponding brachial 
level to have the entire waveform corrected. This was tried in another study [26]. Best 
results, clearly within AAMI criteria [25] for all levels, were obtained by adjusting inverse-
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modelled finger systolic pressure toa return-to-flow systolic level detected with a Finapres 
mounted distal to the upper arm cuff. But extra equipment is needed for this important 
correction. 

5 Conclusion 

A simple, single resonance model describes waveform distortion in the arm arterial sys­
tem between the brachial artery and the finger. A general inverse model converts non­
invasively recorded finger prèssure waveforms to brachial pulsations with precision inde­
pendent of resting pressure, heart rate or age. A regression-based level correction pro­
cedure models the dependenee of the pressure gradient on flow to further reduce group 
mean differences and standard deviations without taking an extra measurement. 
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Appendix 

Speetral Analysis 

Speetral analysis is the signa! processing method that characterizes the frequency content 
of a measured signal. The basic motivation for developing and applying the frequency 

. analysis tools is to provide a mathematica! and pictorial representation for the frequency 
components that are contained in any given signal. The Fourier transform is at the 
foundation of speetral analysis. lt is the mathematica! metbod to relate a time varying 
signa! to the frequency-domain representation. 

Fourier transformation and inverse Fourier transformation are defined by the following 
pair of equations : 

and 

X(f) = J.: x(t)e-i2
"''

1dt 

x(t) = J.: X(f)ei
2
"''

1
df 

respectively, where t represents time, f represents frequency, and x( t) is the varying versus 
time signal. 

lt is shown by Fourier analysis that all reasonable (in a mathematica! sense) waveforms 
can be represented mathematically as the summation of a number of sinusoidal waveforms, 
each with a specific amplitude and phase at its specific frequency [27]. Thus any waveform 
can be alternatively represented by a plot of amplitude versus frequency together with a 
plot of phase versus frequency. These plots are known as amplitude and phase spectra and 
provide a complementary way of representing the waveform, which more clearly reveals 
information about the frequency content of the waveform. They have a high value for the 
frequencies that are present to the waveform, and a low value for those frequencies that are 
not present in the waveform. The observed shapes of the spectra are often helpful in the 
understanding and interpretation of the waveforms. Amplitude and phase spectra often 
provide more useful information than the waveforms. The frequencies of the sinusoidal 
frequency components are harmonically related to each other, i.e. each is an integral 
multiple of the first harmonie frequency, f, where 

f = 1/Tp 

where TP is the repetition period of the waveform. 
In practice, the Fourier components of data are obtained by digital computation. 

A transform for use with discrete/sampled data, known as the discrete Fourier trans­
form (DFT) is available, and is defined as follows [28]: Consicier a finite sequence of 
numbers Xn = x0 ,xt,x2, ... ,xN_ 1• The DFT of this sequence is denoted by Xm = 
Xo, XI, Xz, ... , XN-1 and is defined by 

N-1 

X - 'X' -i(27r/N)mn - 0 1 2 , N 1 m - L...t Xn€ 1 m - , 1 1 ••• , - , 

n=O 
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and the inverse DFT is defined by 

N-1 

1/N 'V X i(27r/N)nm 0 1 2 N L...J me ,n= '' , ... , 1. 
m=O 

The DFT Xm is the complex valued discrete density (scaled by N) of sine wave com­
ponents contained in the sequence Xn. The frequencies of the sine waves are 0, 1/N, 
2/N, ... ,(N-1)/N. 

The inverse DFT is used to carry out transformation from the frequency to the time 
domain. 

A large number of multiplications and additions are required for the calculation of 
the discrete Fourier transform. The fast Fourier transform (FFT) is an algorithm for 
computing this transform which eliminates most of the repeated complex multiplications 
in the Fourier transform, so its execution time is much shorter, in particular on large 
and/or multidimensional data. But in order to apply FFT, the signal must have a length 
equal to a power of 2, and thus zero padding or interpolation is necessary. When speed 
is not a problem, then discrete Fourier analysis is applied. 

Systems, models and transfer functions. A system can be viewed as a "black box" 
wh~re a signal is applied to its input, and a response results at its output. An example 
of such a system is the arterial system. To undertake an in-depth study of a system, it 
is very useful to have a model of the system, an assumed relationship among the signals. 
Models may be conceptual, physical or mathematica! [29]. A mathematica[ (or analytica~ 
model consists of a collection of equations descrihing the relationships between the signals 
appearing in the system, and it is usually an idealized representation of the system. The 
model should he simple, but also accurate .. One way to develop a mathematica! model is 
based on experimentation. Input and output signals from the system are recorded and 
subjected to data analysis in order to infer a model. One type of mathematica! model is 
the transfer fundion, an input/output representation descrihing the relationship among 
the input and output signals of the system. The transfer fundion of a system can he 
determined from knowledge of the response y(t) to an input signal x(t). It should be 
stressed that this result is valid only if the given system is (piecewise) linear. Thus, 
linearity is an important property of a system. In practice, a given nonlinear system is 
often approximated by a linear system so that analytica! techniques for linear systems 
can be applied [30]. 

When a system with a transfer fundion H(f) is excited with an input signal that has 
a spectrum X(j), the output of the system has the spectrum Y(f) X(f)H(f). The 
output signalisthen determined from its spectrum via the inverse Fourier transform [31]. 

Coherence. The coherence between two signals is the degree of accuracy with which 
the two signals can be related to each other by a linear transformation. The coherence 
function expresses the amount of linear coupling between two signals in the frequency 
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domain. The coherence function can be viewed as the (frequency dependent) correlation 
coefficient between the input and output sequences. If this coefficient is 1 at a certain 
frequency, then there is perfect correlation between input and output at that frequency. 
There is consequently no noise interfering at that frequency [32]. 

The modulus or amplitude function (ratio between output and input signa!) in the 
frequency domain is camparabie to the regression coefficient in a linear regression equation 
in the time domain. If the explained varianee in a linear regression is low there is a poor 
linear relationship between the two variables. In such a case the regression coefficient 
becomes unreliable and it is not worthwhile computing this coefficient. The same holds 
for the frequency domain, where if the coherence between two signals in a certain frequency 
region is low, the amplitude function becomes unreliable. 

Least-squares Method. System identification is the process of determining the char­
acteristics of the unknown system, H(f), by a set of measurements performed on the 
system. The methad of least-squares is a technique for performing system identification. 
In this methad we postulate a model for the system and determine the parameters of 
the model that minimize, in the least-squares sense, the error between the actual system 
response and the response of the model. 

Resynthesis of a signal. A transfer function derived from a model, as mentioned 
previously, can be used to resynthesize a signa!, Xt. from another one, x2• This procedure 
involves the following steps: 
1/ The signa! x 2 is transformed into the frequency domain by use of a Fourier transform; 
2/ With the use of the transfer function, the amplitude of each harmonie of the signa! x 2 

is divided by the amplitude of the transfer function, and the phase of the transfer function 
is subtracted from the phase of the signa! x 2 ; 

3/ this modified spectrum is transformed back into the time domain by use of an inverse 
Fourier transform. 

Practical Considerations. Due to periadie nature of the pulsatile hèart beat signals 
harmonies at the pulse rate are dominant. However, due to fluctuations in beat duration 
and pulse amplitude the side bands of the dominant harmonies are substantial, filling the 
intermediate harmonies. Using about 10 s epochs thus produces a finer spaeed spectrum 
and improved signal-to-noise ratio, compared to single beat analysis. 

There is no phase response fitted, since the fit program is free to change the relative 
delay between brachial and finger wavefarm due to pulse wave propagation to obtain least 
errors between the wavefarms and thus the model does not correct for delay. 

The phase shift between Fourier components depends on delay, causing a linear phase 
shift with frequency. The delay information is not considered relevant, since it can never 
he made up for in real-time. 
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Abstract 

Objective: To estimate a person's age from arterial pressure wavefarms as a test of published 
aging wavefarm catalogs. Methods: The pressure wavefarms of 106 subjects, reearcled in earlier 
studies, were used. Aartic wavefarms reconstructed from finger pressure were also tested. The 
group included healthy children, adults and elderly persons, (suspected borderline) hypertensives 
and subjects with additional cardiovascular disease. Measured under Iabaratory conditions in 
supine or semi-reclining position, employing a TNO Finapres, heart rates were between 49 and 
99 BPM, and systolic, diastolic and pulse pressures between 83 and 239, 40 and 128, and 33 
and 171 mmHg, respectively. The wavefarms of 65 subjects aged 8 to 83 years formed the 
training selection, the wavefarms of the other 41 subjects aged 9 to 75 years the test selection. 
Artificial neural networks of different layout estimated age. Results: Best results were obtained 
if the first 0.5 s of the once differentiated pressure pulse was presented to the neural net. Mean 
difference between estimated and calendar age in the test selection was -1 (SD 8) years and 
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the correlation coefficient wa.s 0.92. There wa.s no clear difference in accuracy between any of 
the healthy or patient groups, or between the use of finger or reconstructed aortic waveforms. 
Conclusions: An individual's age can be estimated from the finger arterial pressure waveform 
using an artificial neural net. However, some subjects with 'young' or 'old' waveforms for their 
age received a lower or higher estimated age. This suggests that an 'arterial' age was estimated 
which does not deviate far from calendar age. 

Keywords 

Human age estimation, Finger pressure waveforms, Arterial waveform aging, Artificial neural 
nets, Reconstructed aortic pressure, Arterial age. 

1.1 Introduetion 

Catalogs of human arterial pressure waveforms have been published [1] showing radial, 
carotid, and femoral waveforms averagedover a number of subjectsperage decade (further 
called KeUy's catalogs ). A clear change in the waveforms with increasing age is evident. 
We wondered if the reverse process of estimating a person's age from the arterial pulse 
would be possible on an individual person's basis. We call a person's true recorded age 
the 'calendar' age, and age estimated from an arterial waveform 'estimated' age. If such 
an estimate can be made. to, say, within one year we consider that es ti mate perfect and 
would have demonstrated that cardiova.scular aging is a process progressing linearly with 
calendar age, which process is precisely reflected in the arterial pressure pulse. If the 
estimate is essentially random either the age estimation technique is unsatisfactory or 
arterial aging is not present, and nothing has been demonstrated. If an age estimation 
technique would have an acceptable degree of imprecision but with clear outliers present, 
underlying causes for the outliers could be looked for. We could expect a subjeet's age to 
deviate from calendar age based on hypertension, vasoactive agents, or vascular disease 
since these factors might all affect the pressure pulse. 

With the availability of Finapres [2, 3], the noninvasive measurement of arterial pres­
sure waves in humans has become feasible from 6 years of age up. With increasing 
experience in finger pressure monitoring, we found that visual age estimation from the 
finger pressure waveform is possible and reasonably accurate. As a first approach, we 
tried a multiple regression prediction based on arterial systolic, diastolic, mean and pulse 
pressure levels and heart rate. This age estimation worked to some extent on the (train) 
selection of persons on which the pressures and multiple regression equations were ob­
tained, but it did not work well on a different (test) selection. Thus, in view of Kelly's 
aging waveforms and the failure of the pressure level approach, we concluded that the 
principal information is not in the pressure levels with sufficient clarity. It could then 
only be present in the shape of the pressure wave. 

Since we had good experience with the application of so-called "artificial neural net­
works" (neural nets) in detecting subtie differences in waveform [4], we decided to develop 
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Table V.l: Statistics of common parameters. Age in years. Heart rate (HR) in beats per 
minute. Finger systolic, diastolic, mean and pulse pressures in mmHg. Note that heart 
rate ranges over a factor 2, blood pressure levels over a factor 3, pulse pressure over a 
factor 5. 

All persons Train selection Test selection 

N(femalelmale) 106 (48 1 58) 65 (28 1 37) 41 (2o 1 21) 

Mean Range Mean Range Mean Range 

Age 46 8 83 47 8- 83 45 9- 75 

HR 70 49 99 70 49 99 69 50-95 

Systolic 153 83 239 154 89 239 152 83- 221 

Diastolic 75 40 128 76 40 126 74 40- 128 

Mean 100 53- 164 101 53- 164 98 53 162 

Pul se 78 33- 171 78 33- 171 78 44 125 

a neural net technique to estimate a person's age from finger arterial pressure waveforms. 

1.2 Methods 

Subjects 

Finger pressure waveforms from 106 persons, ranging in age from 8 to 83 years, were 
available from previous studies using Finapres. They spanned the range from healthy 
volunteers of various age ranges [5, 6, 7], to (borderline) hypertensive patients [8] with 
or without anti-hypertensive medication, to patients with additional arterial vascular 
disease [9], and were considered representative for the population on which finger arterial 
pressure measurements are used. 

Study [5] provided the pressures of 17 healthy children aged 8 to 16 years. Study [6] 
provided 6 healthy volunteers, aged 28 to 40 years. Study [7] provided 14 healthy elderly 
subjects aged 72 to 83 years. Study (8] provided the pressures of 33 (suspectedly border­
line) hypertensive patients aged 25 to 65 years. Study [9] provided 13 patients aged 52 to 
79 years with vascular disease, of which 11 had therapy resistant hypertension. Finally, 
an unpublished study provided 23 healthy subjects aged 21 to 65 years whose waveforms 
were recorded to compare oscillometric, Riva-RocciiKorotkoff and finger pressures (BP 
study). In this group, medication was not used on a regular basis. 

The published studies requiring invasive instrumentation in volunteer subjects and 
patients were approved by the respective Ethics Committees, and all participants of the 
clinical studies had given their prior informed consent. The BP study involved only 
15 min duration noninvasive blood pressure measurements in supine position for which 
nonsmoking medical doctors, medical trainees, nurses and medical physicists volunteered. 
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Table V.l lists the principal subject characteristics. 
The subjects were in a supine or semi-reclining position during the measurements. In 

the publisbed studies all subjects except the children had an intrabrachial artery line. The 
children's recordings were taken before an intravenous line was inserted. All measurements 
were made in airconditioned rooms maintained at 22 degrees C. Except for the BP study 
which was carried out at arbitrary moments during the day, the measurements were made 
in the morning at least one hour after a light breakfast without coffee or tea. All subjects 
were asked to refrain from smoking and alcohol consumption for the 24 hours before the 
measurements began. The majority of the subjects were nonsmokers. 

Network Age 

xo= 

Scaled ] D.p/ D.t 

0 10 

Input Nocles 

Z211 
I 

' ' 

Output 
Layer 

Hidden 
Layer 

Input 
Layer 

I tX29 

3.'28 ~ '' 
', '* MP '* HR : : : : : : 

27 

Figure V.l: Layout of neural net 3. The information flow is upwards. At the bottorn 
is the input wave, which is a differentiated finger pressure putse beginning just before the 
upstroke in the arterial pulse. The waveform is sampled at the dots and each sample value 
is fed to the input node just above it, 27 samples spanning 0.54 s in all. A bias value 
is added at the left, and heart rate and mean arterial pressure of the pulse are added at 
the right. The input samples are fed through line connections to the artificial neurons 
in the 'hidden layer' (hidden in the sense that they are not approached directly from the 
outside) multiplied by a numeric factor different in each fine. The 10 hidden neurons 
increase their output when a certain threshold is exceeded. Their output is fed through 
simi/ar line connections to one final neuron which, at its output at the top, presents a 
value proportional to age. 
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Measurements 

Finger arterial pressure was measured at the index or middle finger of the dominant 
arm with a TNO Finapres, model 4 or similar model 5. These devices are the non­
commercial prototype of the Ohmeda Model 2300 Finapres. They measure blood pressure 
by means of the arterial volume damp method of Perláz [2, 3], and the Physiocal criteria 
of Wesseling [10]. Waveform recording started when a stabie finger pressure was obtained, 
usually after two or three minutes [11]. Finger pressure signals were recorded on a Hewlett­
Packard (California, USA) Model 3964A FM Instrumentation Recorder and digitized off­
line, or they were digitized on-line directly into a personal computer. In both situations 
sample rate was 100 Hz and sampling resolution was 0.25 mmHg. Epochs free from 
artifact, of about 10 s duration, were selected for each person to span at least one but 
usually two or three full respiratory cycles. Sections with arrhythmias were avoided. 

Neural nets 

Artificial neural networks have a certain primitive similarity to networks of neurons. Sev­
eral neural nets were investigated (see technica! details in Appendix of this chapter). The 
artificial neural net giving best results in our study is shown in Fig. V.l. The signa! to be 
analyzed, here the first derivative of a pressure pulse plus mean pressure and heart rate, is 
offered to the net on its 29 input nocles at the bottom. From there it passes through line 
connections, which implement multiplication factors or "weights", to artificial "neurons". 
Neurons sum their inputs and provide an output through a nonlinear threshold function. 
The threshold function is biased, and the bias can be optimized for best results. At the 
top of the neural net an output signa! is generated by a final neuron representing an 
estimation of the person's age, which we rounded to the nearest year. 

To use a network for age estimation, its weights and biases must be properly adjusted 
first. The process to do the adjustments is called "training". Training is clone by present­
ing to the net a subset of the available persons' waveforms, observing the estimated age 
and comparing it with the labelled calendar age. Using the discrepancy, the weights and 
biases are adjusted until a better output is obtained. For these adjustments formalized 
(so-called back propagation) algorithms are available. The process is repeated until a 
certain (usually large) number of presentations, comparisons and adjustments has been 
clone. Then, the network is "tested". 

Testing is clone by presenting to the net the remairring persons' waveforms, not used 
for training, and rating the net's performance. To quantitate performance we use the 
coefficient of correlation between calendar and estimated age. Training is continued on 
the train selection of persons and performance tested again on the test selection of persons 
until no further improvement on the test selection can be achieved. The test selection 
data is thus used only as a criterion to stop training on the train selection. 
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Figure V.2: Frequency responses of the filters used to transfarm finger to aortic wave­
farms. The filter response with the shallow dip near 8 Hz transfarms from finger to brachial 
artery, the filter response dipping near 4 Hz transfarms from brachial artery to aortic root. 
The deep dipping response ( dashed line) is the combined response. 

Data processing 

The selected blood pressure waveform epochs were segmented into beats using the BEAT­
PAST program [12]. It identifies for each beat the instant of the beginning of the upstroke, 
the systolic, diastolic and mean pressure levels, pulse interval and heart rate. A total of 
1282 beats were extracted, approximately 12 per subject. Each beat was labelled with 
the calendar agè. 

Neural net 1: Having hypothesized that the age information is in the waveform, 
we presented one entire arterial pulse to the neural net. Since an arterial pulsation of 
typically 1 s duration is represented by 100 samples, this leads to neural nets with a large 
number of inputs and thus weights. The greater the number of weights the more training 
is needed. lt is thus advantageous to limit the number of data presented toa neural net. 
We based our data reduction on the frequency content of arterial waveforms. According 
toFrank [13], the highest frequency that is present in a 180 BPM human arterial pulseis 
30Hz, in a 100 BPM waveform (the highest recorded) notmore than 15Hz. According to 
the sampling theorem of Nyquist and Shannon, we canthen limit the number of samples 
on a waveform to approximately 30, thus reducing the number of samples presented and 
the number of input nocles from 100 to 30 or by a factor 3. To allow for beats of long 
duration, the neural net could accept beats of maximally 1.8 s duration. The number of 
neurons in the bidden (middle) layer was varied. The best net had 25 neurons. 

Neural net 2: The higher frequencies determine the fine pattem in the waveforms. 
They are smal! in amplitude and thus difficult to detect. lt is possible to selectively em-
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phasize the high frequency waveform components by differentiating the waveform. Sub­
sampling this differentiated wavefarm by taking every other sample, reduced the number 
of inputs by a factor 2. By taking the derivative, only the pressure changes between 
consecutive sampled values are retained and information on mean pressure is lost. Mean 
pressure, therefore, is separately presented to the neural net. The maximal duration of 
beats was limited to 1.2 s, and 25 hidden neuronsproved optimal. 

Neural net 3: Finally, we reasoned that most of the waveform information is in 
the systolic portion since the diastolic portion simply approaches an exponential decay. 
Thus we took a fixed 540 ms portion of the initia! part of the differentiated waveform and 
presented that, subsampledas before, toa third neural net having only 27 input nodes. In 
this case, both mean pressure and heart rate information are lost and therefore separately 
input to two further nodes, numbered 28 and 29 (Fig. V.1, bottorn right). Ten hidden 
neurons gave the best age estimates. 

Reconstructed aortic waveforms 

The arterial pulseis generated by the heart's pulsatile output into the aorta. The pulse 
is next passed through the arm arterial system to the finger, where we measure it. The 
peripheral arterial system behaves like a catheter-manometer system with a primary res­
onance frequency near 4 Hz (14, 15, 16]. Such a low frequency resonance distorts the 
peripheral pulse waveform which is why aortic and radial or finger pressure wavefarms do 
not look alike. It was shown in recent years that aortic pulses can be reconstructed from 
radial ones [14, 16] and brachial pulses from finger ones [17]. We decided to use such fil­
ters, because they provide a clearer pressure wave to an observer, and for the same reason 
perhaps also to a neural net, by removing the resonances from the finger pulsations. 

We reconstructed aortic from finger pulses in two stages. In a first stage, we used the 
model and filter published by Gizdulich et al. [17] to reconstruct brachial waves. The 
transformation from brachial to aortic wavefarms is next clone with an unpublished filter 
simHar to that of Karamanoglu and colleagues [14]. The frequency response of our filters 
is shown in Fig. V.2. The finger to brachial filter amplifies frequencies to 2.5 Hz and 
attenuates above 2.5 Hz, with an antiresonance at 8 Hz. The brachial to aorta filter 
has an antiresonance at 4.2 Hz. Both filter responses return to near unity transfer at 
high frequencies. Their combined response is also shown in Fig. V.2. Aortic wavefarms 
reconstructed from finger pressure wavefarms were only used in differentiated form and 
applied to the third type neural net with 29 inputs. 

Composition of the train and the test selection 

For training and testing, two subject selections were prepared from the pool of 106 subjects 
as shown in the age histograms of Fig. V.3. It appeared important to prevent the net 
from developing preferences for certain age ranges by providing it with an age-balanced 
train selection. Per decade, therefore, we selected persons randomly from the pool until 
an almost uniform age distribution was obtained (Fig. V.3b). In view of the number of 
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weights to be estimated the number of subjects in the train selection had to maximized. 
The remairring persons were used as the test selection. The resulting test selection has a 
tri-modal distribution (Fig. V.3c) allowing testing of the neural nets at low, intermediate 
and high age. Thus, 65 persons are in the train selection and 41 in the test selection 
(Table V.1). 
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Figure V.3: Histograms of the distribution of subject age. The top panel (a) is the 
histogram of all 106 subjects. The bottorn left panel {b} represents the train selection of 
65 subjects, and the bottorn right panel {c) the test selection of 41 subjects. ft appeared 
important to train the neural nets with an equal number of subjects in each decade. The 
remaining test selection is tri-modal. 
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Figure V.4: A selection of finger and reconstructed aartic wavefarms of eight subjects 
that received an estimated age identical to calendar age. It shows changes in the wavefarms 
with age similar to those presented by l(elly et al., but presenled here as individual, not 
group averaged per decade waveforms. 

Statistics 

For each person the age estimates of the waveforms in a record were averaged. For the 
train and the test selection separately, each person's estimated age was plotted versus the 
calendar age and mean differences, standard deviations and correlations were computed 
and tested for significance. This was repeated for the three neural nets and the finger 
waveforms and for the third neural net and the reconstructed aorta waveforms. 
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We checked the significanee of the correlation between the calendar age and the es­
timated age with Student's paired t-test. The accuracy of the age prediction is defined 
as the mean difierence between the estimated age and the calendar age. The precision 
is defined as the standard deviation of that ditierence. Accuracies are compared using 
Student's paired t-test. Precisions are compared with Fisher's F-test for varianee ratios. 
The estimated to calendar age ditierences grouped for the various studies were tested for 
significant ditierences by the Kruskal-Wallis one-way nonparametrie and the parametrie 
ANOVA. When both were significant, Peritz's F-test was used to compare results between 
the various studies. A P<0.05 is considered statistically significant. 

Table V. 2: Results of neural net age estimatîons. A ge in years is given as mean (SD). All 
correlation coefficients between estimated and calendar age have P<0.001, all differences 
from zero are notsignificant (at P=0.05). 

Train selection Test selection 

Calendar age 47 (22) 45 (20) 

Neural net 1 age 47 (22) 44 (19) 

Ditierence (Estim-Calend) 0 (4) -1 (9) 

Correlation coefficient 0.98 0.90 

Neural net 2 age 47 (22) 44 (19) 

Ditierence (Estim-Calend) 0 (3) -2 (9) 

Correlation coefficient 0.99 0.91 

:\feural net 3 age (finger) 47 (22) 44 (19) 

Difference (Estim-Calend) 0 (5) -1 (8) 

Correlation coefficient 0.98 0.92 

:\feural net 3 age (aorta) 47 (21) 46 (19) 

Ditierence (Estim-Calend) 0 (6) 0 (8) 

Correlation coefficient 0.96 0.92 

1.3 Results 

Fig. V.4 presents typical pressure waveforms of subjects in which the age estimated on 
finger pressure by neural net 3 was identical to calendar age. The finger waveforms in 
the left panel show an initia! high upstroke at all ages. The secondary systolic peak is 
low in relative amplitude for young, but high for older persons. The diastolic section 
is relatively uneventful with a broader and more pronounced early diastolic anacrotic 
wave in the young. The reconstructed aortic pulsations in the right panel show an initia! 
systolic upstroke much less pronounced than in the finger waveforms. A late systolic 
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augmentation which follows advances in relative timing and increases amplitude with 
increasing age. An early diastolic anacrotic wave is seen only in young persons. A sharp 
dicrotic notch representing the high frequency components of aortic valve ciosure is not 
present in the reconstructed aortic waveform. 

When these waveforms are compared with the ones in Keily's catalogs, clearly, in­
dividual waveforms differ substantially from a group mean waveform in amplitude and 
shape although the general features can be recognized. The neural nets have the task of 
estimating age in the light_of such inter-individual differences. 
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Figure V.5: Scattergmms of network estimated versus calendar age obtained with neural 
net 3. Each subject is represented by a star symbol. In the left panels the results obtained 
on the train selection, in the right panels the test selection. Top panels obtained for finger 
pressures, bottam panels for reconstructed aartic pressures. A line of identity is also 
shown. 
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Performance of the neural nets 

Table V.2lists the results obtained with the three neural nets. Neural net 1 and 2 showed 
excellent performance on the train selection but their performance on the test selection 
degraded substantially. Neural net 3 showed a more balanced performance on the two 
selections. Mean error is not significantly different from zero (t-test) but the standard 
deviations for the finger waveforms only of both selections differ significantly (F-test ). 
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Figure V.6: Bland-Altman-like plots of the same estimated minus calendar age versus 
calendar age (not the usual mean of both ages). In the left panels are the results obtained 
nn the train selection, in the right panels the test selection. Top panels for finger pressures, 
bottorn panels for reconstructed aortic pressures. The dashes represent the 95% confidence 
limits. Mean error is a/most zero. 

Somepersons had an estimated age lower, others higher than their calendar age. To 
check if finger and reconstructed aorta waveforms agreed on this deviation in direction 
and magnitude, we computed the correlation between the age differences of finger and 
aorta estirnated age to calendar age. For the train and the test selection, respectively, 
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this correlation was 0. 75 and and 0.62. Expressed in terms of explained varianee the 
waveforms agreed for 55 and 40% of the variance. Thus, approximately half of the varianee 
is unexplained. 

Fig. V.5 is a scattergram of the estimated versus the calendar ages for neural net 3. 
Fig. V.6 is a Bland-Altman-like diagram of this information, with calendar age on the 
horizontal axis. With the exception of one outlier, estimated age remains within 17 years 
of calendar age. 

Performance per subject group 

In Fig. V.7 and Table V.3, we show the results of the age estimations per published study 
(see Methods) for the finger waveforms. The train and the test selections are pooled for 
this purpose. The healthy volunteers of study [6] received a relatively high estimated age 
and differed significantly from the healthy elderly group [7] whose ages were underesti­
mated on average. Noother between group difference was significant. A clear outlier is 
present in study [9]. This person in the test selection has a calendar age of 60 but an 
estimated age of only 37. His waveform and the waveform of a person with a calendar 
and an estimated age of 62 and 63, respectively, are plotted in Fig. V.8. By comparison, 
it appears that the outlier waveform is truly of a 'young' appearance, in termsof KeUy's 
catalogs, with virtual absence of a secondary late systolic peak. The subj"ect (No 12 in 
Table 1 of [9]) is the only one from that group of patients with hypertension and cardiovas­
cular disease whohad normal intraarterial blood pressures (118/64 mmHg). He did not 
differ from the group in other aspects including vascular düiease (ischemie cerebrovascular 
accident) and medication prescribed (ACE inhibitor, Calcium entry blocker, diuretic). 

1.4 Discussion 

We have automated the estimation of an individual's age from finger pressure waveforms 
recorded noninvasively with a Finapres device by training neural nets for the purpose. 
Age could be estimated with a standard deviation of approximately 8 years over an age 
range from 9 to 75 years (test selection) and without systematic error. Arterial pressure 
waveforms, therefore, clearly reflect subject age, even on an individual basis, even to a 
mathematica! estimator. The accuracy of age estimation is not within one year and not 
random, but a definite and limited biological scatter between estimated and calendar age 
is present, including some apparent outliers. 

Generality of results 

We consider this estimation procedure to be quite rugged and general, since we did not 
limit our selections to healthy, normotensive persons without the use of drugs. Healthy 
subjects and patients were both included. Heart rates varied over a 1:2 range, from 49 to 
99 BPM, blood pressure levels ranged 1:3 and pulse pressures ranged 1:5. Female and male 
subjects were represented about equally (Table V.1). Drugs taken by somepersons were 
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of the anti-hypertensive type and included ACE inhibitors, alpha-l and beta blockers, 
Calcium entry blockers, diuretics, methyldopa and long acting nitrates [9], but did not 
have any apparent effect on the accuracy of the age estimation. No person complained of 
pain during the session. Arrhythmic beats were excluded from the wavefarm sets selected. 
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Figure V. 7: Scattergmms for each of the subject groups of the published studies sepa­
rately, and for the BP group. SubJ'ects from the train and the test selection are combined. 
From left to right, from top to bottam are shown the subjects from De Jong et al [5}, Idema 
et al {6], BP study, Van Mantfrans et al {8}, Bos et al {9}, and Rongen et al {7}. 
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However, all subjects were awake and resting and measurement conditions were stan­
dardized. It cannot be decided on the results presented that the estimation will work as 
well when measurement circumstances would differ substantially. 

Earlier efforts at age estimation with neural nets 

Neural nets were used in an earlier study [18] to classify persons into three age categories: 
the third, fifth or seventh decade, basedon radial artery plethysmographic (not pressure) 
waveforms. Persons were normotensive and five harmonies of the Fourier spectrum (not 
the time course) of the pulses were used as input. Into these age groups, separated by 
20 years, 86% of the subjects were correctly classified. If we also accept a ±10 year error 
limit, the present method correctly classifies 91% of the subjects in the train selection 
and 82% in the test selection. Thus, we obtained a similar score on a population with a 
wider range of blood pressures, heart rates, arterial condition and age. 

Comparison of finger and aorta waveforms 

Results obtained with the neural nets on the finger and reconstructed aorta waveforms are 
not significantly different (Table V.2, bottorn panels, and Fig. V.5 and V.6). Apparently, 
although the aorta waveforms tend to show a clearer picture to a human observer, the 
waveform resonances in the finger pressure do not confuse the properly trained neural net. 
The preserree of the oscillations does not provide a better age estimation either. 

Thus, the transmission of the pulsein the arm arteries to the finger provides no further 
clue to the age of a person. This is in agreement with the findingsof Gizdulich et al. [17], 
that the model of pulse transmission from brachial to finger artery is not dependent on 
age. It also agrees with the observations of Karamonoglu et al. [14] and Chen [16] et al. 
that a single generalized filter may reconstruct the aortic pulse from the radial pulse for 
all adult ages. 

Causes for waveform changes with age 

Young cardiovascularly healthy subjects typically show an aortic pressure waveform which 
is flat in systole and has a secondary anacrotic waveearlyin diastole (Fig. V.4, top right 
traces and more clearly in [1]). For older adults (Fig. V.4, bottorn right traces), the 
secondary anacrotic wave moves forward in time with respect to the initia! upstroke 
causing an aortic pressure with a late systolic augmentation and pressure falling after 
the incisura in an almost exponential fashion [19]. The secondary wave is a peripheral 
reflection of the primary systolic wave and its relative timing depends on the velocity 
with which pressure waves travel in the aorta and greater arteries. The amplitude of the 
reflected wave depends on the height of the peripheral resistance and on damping of the 
wave while travelling in the aorta. 

With increasing age aortic wave velocity increases subsequent to stiffening of the aortic 
wall [19, 20]. A high velocity causes the reflected wave to already returnearlyin systole 
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Table V.3: Age stafistics per subgroup. Studies .ldema: adult healthy, BP study: adult 
healthy, De Jong: healthy children, Van Montfrans: (suspected borderline) hypertensive, 
Bos: hypertension and cardiovascular disease, Rongen: aged healthy subjects. N is num­
ber of subjects in the group; mean difference between estimated and calendar age; varianee 
(SIJ2) of difference. The groups are ordered according mean difference. The only signifi­
cant difference (P<0.05) is between the top and the bottom group. 

N mean dif varianee 

Idema et al [6] 6 4.9 23 
BP study 23 1.9 49 
De Jong et al [5] 17 0.3 17 
Van Montfrans et al [8] 33 -0.9 36 
Bos et al [9] 13 -2.5 46 
Rongen èt al [7] 14 -3.6 24 

thus modifying the systolic pulsein a way thatis characteristic for the age of a subject [21]. 
According to Langewouters [22], aortic mechanica! properties change almost exclu­

sively with age. Although severe atherosclerosis compared to moderate tends to result 
in an aorta with slightly smaller Young's modulus of elasticity, this is cömpensated by a 
greater cross-section, resU:lting in equal compliance and no significant difference in wave 
velocity. Since lipid deposits and calcified plaques have little mechanica! strength, cer­
tainly negligible compared to collagen fibers, this can be understood. Hypertension does 
not accelerate aortic aging [20]. Pulse wave velocity, however, linearly increases from an 
approximate 5 m/s at 30 to 14 m/s at 90 years of age. 

Vaso-active substances 

In the past, it was demonstrated [23, 24, 25, 26, 27] that the administration of nitro­
glycerin, Calcium antagonists and ACE inhibitors affect pulsatility index, the amplitude 
of the refiected wave and systolic augmentation. This would have the effect of the pres­
sure pulse looking 'younger' referring to Keily's catalogs, and might affect age estimation. 
Some of our patients did indeed use these drugs [9], but the accuracy of their estimated 
ages did not degrade. Apparently, either the neural nets are not misled by such waveform 
changes or the wàvefórm changes were only small. It is not known which information in 
the waveforms is used by the neural nets to estimate age, although the neural nets are 
exactly described in their algorithms. This is because of the large number of network 
weights and the nonlinear elements in the neurons, which make processing opaque. Our 
nets, having been trained with waveforms affected insome cases by vasoactive drugs but 
not in other cases, might have underemphasized the amplitude of the secondary wave or 
systolic augmentation and might have emphasized the relative timing of the secondary 
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wave with respect to the primary wave. This would explain the absence of a sensitivity 
for vasoactive drugs used. 
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Figure V.8: Fingerblood pressure waveform of a 60 year old man with a 37 year young 
waveform (solid line) and of a 62 year old man with waveform corresponding to his age 
(dashed fine). Note the low late systolic pulse amplitude typical for the young in the 
60 year old subject. 

The possible meaning of pressure pulse estimated age 

The way we trained the neural nets was to estimate a subjeet's calendar age from a periph­
eral arterial pressure waveform. However, by looking at the arterial pressure waveforms 
of outlier subjects, it appears that our neural nets really estimate an 'arterial' age. If 
pulse shape is determined principally by aortic mechanical properties, as we argued and 
as supported in [28], an estimate of 'arterial' rather than calendar age is obtained. Arte­
rial age, however, is probably determined principally by the calendar age of the subject, 
as suggested by the results of Langewouters [20] and others. In support of this finding 
argues that age was estimated with similar accuracy in young and old subjects, female or 
male, withor without hypertension, withor without cardiovascular disease, and withor 
without antihypertensive medication. Still, subjects with clearly 'young' waveforms for 
their age received a relative low age and vice versa. The causes of these differences in 
waveshape need to he determined. 

The degree of certainty with which this deviating arterial age can be established de­
pends on the inherent inaccuracies of this method. For the category of persons in this 
study, using finger pressure waveforms in combination with our neural net, we estimate 
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the inherent inaccuracy at ±5 years. This is based on the correspondences and differ­
ences between fingerand aortic estimated ages (Table V.2). We found that the difference 
between estimated and calendar age had a standard deviation between 5 and 8 years and 
thus a varianee between 25 and 65. The finger and aorta trained neural nets agreed for 
approximately 50% of the varianee leaving the other 50% unexplained. This results in an 
unexplained standard deviation of between 3 and 6 years, which we summarize to 5 years. 
A deviating arterial age is then detectable with 95% certainty when it differs more than 
10 years from calendar age. 

1.5 Conclusions 

An artificial neural network can estimate the age of a persou from the first derivative of 
its finger blood pressure waveform, mean pressure and heart rate. A large range of ages, 
blood pressures and resting heart rates, hypertension, vascular disease, and the use of 
vaso-active medication seem to pose no difficulty to the method. However, all subjects 
were measured under controlled circumstances, did not complain of pain, and arrhythmic 
beats were excluded from analysis. This work also confirms the conclusions of Avolio 
et aL [21], Kelly et al. [1] and O'Rourke et aL [28] of typical age-dependent changes in 
the arterial pulse, although it remains unknown exactly which aspects of the pressure 
waveforms are evaluated by the neural nets. 

2 Is neural net estimated age stabie during the 24 
hour day? 

2.1 Introduetion 

In the previous section, we trained neural nets to estimate subject age from 10 s epochs 
of finger arterial pressure waveforms. It appeared that neural nets could do this rather 
reliably on the basis of finger or reconstructed aorta waveforms. However, some subjects 
were outliers in the sense that they had too high or too low estimated age compared to 
their calendar age. We speculated that such deviations had to do with so-called 'arterial 
age', ad hoc defined asthespeed with which the aorta- principally aged. At the same 
time, we realized that certain vasoactive drugs such as nitroglycerin can alter the pressure 
and the waveform in the aorta and, subsequently, in the finger. lt is possible that such 
changes in blood pressure and waveform affect the neural net estimated age, although 
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evidence in our subject base suggested that this was not the case. 
During the 24 hour day blood pressure levels and pulse waveform change due to bouts 

of exercise or due to siesta or sleep. We had available the 24 hour waveforms of 24 
subjects, which included 8 normotensive voluuteer subjects and 16 hypertensive patients 
recorded partially at the Academie Medical Centre of the University of Amsterdam and at 
the University Hospitalof Milan, Italy [29]. The patient recordings were performed with 
the simultaneous purpose to establish a proper blood pressure diagnosis and to compare 
noninvasive finger pressure with intrabrachial artery pressure during the 24 hour day, 
and were thus made with great care. During all recording sessions a strict protocol was 
foliowed with planned and well-timed actlvities and rest periods. These recordings seemed 
an ideal base to investigate the question of circadian stability of neural net estimated age. 

Table V.4: Group statistics. Age in years, heart rate {HR) in beats per minute, systolic, 
mean, diastolic and pulse pressures in mmHg. 

Mean Range 

A ge 36 19 58 
HR 75 52 105 
Systolic 137 109 172 
Di astolie 74 55 102 
Mean 93 70 129 
Pul se 62 45 81 

2.2 Methods 

Subjects 

Of the 24 subjects of the study [29] two could not be used due to large periods of missing 
data for various instrumental reasons. Of the remairring 22 subjects we selected, simply 
to reduce the amount of work, at random 5 normotensive volunteers aged 19 to 32 years, 
and 7 hypertensive patients aged 20 to 58 years. Of the hypertensive patients selected 
one received anti-hypertensive combination therapy, the other received monotherapy, but 
treatment was discontinuedat least two weeks before the measurement. Compared to our 
original database this represents a narrow age range and a small number but our first aim 
was to investigate stability of the age estimation. The original study was approved by 
the ethica] committees at both hospitals and prior informed consent was obtained from 
all voluuteer subjects and patients. Table V.4lists some of their principal characteristics. 

Subjects were hospitalized during the recordings but were free to engage in the usual 
activities of in-patients not confined tó bed. Recordings started at 13:00 hrs. An afternoon 
siesta was taken from 14:00 to 15:30 hrs, followed by 30 minutes of recreative cycling on 
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Table V.5: Galendar age (Age) and neural net estimated age using finger pressure wave-
forms each half hour averaged during the 24 hour (24h}, the day (day}, the night (nit}, 
the morning (mor}, and during the siesta (sie}, and their differences, D24h (Age-24h}, 
Dday (Age-day}, Dnit (Age-nit}, Dmor (Age-mor}, and Dsie (Age-sie) . . 

Nr nit mor sie D24h Dnit Dmor Dsie 

1 41 55 56 54 63 61 14 15 13 22 20 

2 58 47 45 51 42 50 -11 -13 -7 -16 -8 

3 43 38 36 43 29 49 -5 -7 0 -14 6 

4 42 37 36 39 31 40 -5 -6 -3 -11 -2 

5 55 44 45 44 43 37 -11 -10 -11 -12 -18 

6 32 25 25 26 27 29 -7 -7 -6 -5 -3 

7 19 33 33 33 37 32 14 14 14 18 13 

8 22 18 18 19 15 18 -4 -4 -3 -7 -4 

9 26 26 28 22 32 26 0 2 -4 6 0 

10 21 34 35 32 34 36 13 14 11 13 15 

11 20 30 33 23 34 39 10 13 3 14 19 

12 51 44 42 47 46 51 -7 -9 -4 -5 0 

Mean 36 36 36 36 36 39 0 0 0 0 3 

SD 14 10 10 12 12 12 10 11 8 14 12 

a bicycle ergometer set to 50 W at 50 to 60 RPM. The subjects stayed in bed from 22:00 
to 06:00 hours. Two periods of outside walk were scheduled in the morning from 10:00 to 
10:30 and from 11:00 to 11:30 hrs. 

Measurements 

Pressures were recorded with a combination of noninvasive finger arterial pressure with 
Portapres and intrabrachial artery pressures with an Oxford device. Portapres is the 
portable, battery operated version of Finapres. It has an internal 4-channel analog tape 
recorder of which one channel was used for flutter compensation, one for recording hydro­
static height and two channels for recording finger and brachial pressures. For the present 
analysis we only used the finger pressure tracings. After every 30 min the recording of 
finger pressure was switched from one finger to a neighboring finger of the same hand 
to avoid discomfort and to relieve venous congestion of the finger tip. The hand was 
protected from the environment when walking outside in the cold. The arm was carried 
in a mitella to avoid undue movementsof the measurement arm, although a hydrastatic 
height correction system was in place to measure and compensate for such height changes 
as are caused by hand movements. At regular times during the recording the quality of 
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the blood pressure signals was inspected. 

Table V.6: Galendar age and neural net estimated age using reconstructed aorta pressure 
waveforms, and their differences. 

Nr A ge 24h day nit mor s1e D24h Dday Dnit Dmor Dsie 

1 41 54 56 50 61 61 13 15 9 20 20 

2 58 51 48 55 48 47 -7 -10 -3 -10 -11 

3 43 37 36 37 30 49 -6 -7 -6 -13 6 

4 42 40 39 41 35 46 -2 -3 -1 -7 4 

5 55 48 49 47 45 38 -7 -6 -8 -10 -17 

6 32 25 26 22 26 29 -7 -6 -10 -6 -3 

7 19 26 27 24 27 23 7 8 5 8 4 

8 22 18 20 14 16 21 -4 -2 -8 -6 -1 

9 26 24 27 19 22 26 -2 1 -7 -4 0 

10 21 29 29 29 28 32 8 8 8 7 11 

11 20 28 30 23 34 33 8 10 3 14 13 

12 51 57 56 59 61 60 6 5 8 10 9 

Mean 36 36 37 35 36 39 1 1 -1 0 3 

SD 14 13 12 15 15 14 7 8 7 11 10 

Data processing 

Epochs of 10 seconds of good quality recordings were extractedeach half hour, free from 
arrhythmias and artifact. This resulted in 48 epochs per subject. 

The finger pressures were filtered to aortic waveforms as before and finger and recon-
structed aortic waveforms were segmented into beats using the BEATFAST program [12]. 
Their first derivative waveform was computed and the first 540ms of each beat together 
with heart rate and mean pressure were presented to the already trained finger and aorta 
neural nets described in the previous section. For the beats of each epoch a mean age was 
computed and used for evaluation. 

Statistics 

For each person the 48 age estimates for each waveform type were averaged over the 24 
hour period and compared to calendar age. This process was additionally carried out 
separately for the day from 13:00 to 22:00 hrs and from 06:00 to 13:00 hrs of the next day, 
for the night from 22:00 to 06:00 hrs, for the morning from 06:00 to 10:00 hrs, and for 
the siesta from 14:00 to 15:30 hrs. Estimated ages for the various periods were compared 
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to calendar age and to the 24 houraverage estimated age using a two-way ANOVA. The 
rnorning period was separately considered since in these hours a disproportionately large 
number of cardiovascular accidents occur in a population which rnight be due to waveforrn 
and blood pressure level changes. 

Significanee of the correlation between the calendar age and the estirnated mean ages 
were checked with Student's paired t-test. 
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2.3 Results 
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Figure V.9: Scattergmms of ca/endar ver­
sus finger estimated (upper left panel), and 
versus reconstructed aorta estimate age (up­
per right panel} for the 24 hour period, and 
between finger and reconstructed aorta esti­
maled a ge (lower panel). 

In Table V.5 we present the estirnated ages per subject for the various periods using finger 
pressure and the finger pressure neural net. Mean differences between calendar age and 
estimated age remain within one year except for the siesta period when the estimated age 
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is three higher than calendar age. This difference is not significant. In fact, a two-way 
ANOVA reveals no significant ditierences between columns. 

Table V.6 lists similar data for the ages estimated from reconstructed aorta waveforms 
and the aorta neural net. Again, no difference between columns is significant. 

Table V. 7 presents all the correlations between calendar age and neural net estimated 
ages for the various periods. The correlation between morning and calendar age for the 
:finger pressure is the only non significant one. Generally, correlations are higher for 
reconstructed aorta than for finger pressures. Correlations between estimated ages for 
the va.rious periods are much higher than between any estimated and calendar age. In 
other words, the neural net estimated ages are consistently higher or lower than calendar 
age, regardless the period they were taken from. 

This is further exemplified by Fig. V.9 which shows in three panels the scattergrams 
of calendar versus finger estimated, and versus reconstructed aorta estimated age for the 
24 hour period, and between finger and reconstructed aorta estimated age. The latter 
has the highest correlation of 0.93, compared to 0.73 for the :first and 0.86 for the second 
comparison. 

Table V. 7: Gorre/ation coefficients between calendar age (A ge) and neural net estimated 
age during the 24h, the day, the night {nit), the morning {mor), and the siesta {sie). The 
lower left triangle numbers are for finger, the upper right triangle for reconstructed aorta 
pressure waveforms. 

a ge 24h day nit mor s1e 

a ge .86 .83 .89 .72 .73 

24h .73 .99 .99 .96 .91 

day .66 .99 .96 .97 .90 

nit .82 .96 .91 .92 .89 

mor .48 .90 .94 .78 .88 

s1e .63 .92 .89 .89 .81 

a ge 24h day nit mor s1e 

2.4 Discussion 

Wetook samples of the finger pressure waveforms of 12 subjects every half hour during 
the 24 hours they were recorded with Portapres for another purpose. The subjects dif­
fered from the selection in the previous study. The techniques used were the same as in 
the previous study for the best neural net {neural net 3), but the neural nets were not 
retrained. Yet the results were comparable. This suggests once more the robustness of 
the neural net and its ability to generalize, as often claimed in the literature [30] and as 
mentioned in section 1 of chapter 11 of this thesis. 
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We averaged the resultant ag,e estimates obtained each half hour over varîous periods 
during the day and over the full 24 hours. We were not able to demonstrate any signifi­
cant dîfferences in the estimated ages over any perîod, and no significant difference was 
found between estimated and calendar age. More importantly, differences in estimated 
age between periods of the day were much smaller than between the subjects. This is re­
markable since substantial day-night changes in blood pressure and rest-exercise changes 
in heart rate and cardiac output were present. 

2.5 Conclusions 

It appears that neural nets estimate an age, which we suggested to call 'arterial' age, 
quite independent from the state the subject is in. We could thus not refute the concept 
suggested in the previous section that neural netsindeed estimate a subjeet's arterial age, 
even though the exact meaning of this concept is not entirely clear. This arterial age may 
deviate (moderately) from calendar age and the deviation remains nearly constant during 
a 24 hour day under the conditions of this study. 
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Appendix 

Neural nets. MATLAB Neural Network Tooibox (The MathWorks, Massachusetts, 
MA) was seiected, as a development tool for the neurai nets of the age estimation study. 

Neural net 1 (see section 1.2, chapter V) : these neurai nets consisted of a 60 node 
input layer for the variabie Iength beats. The input vaiues were normalized to a range of 
0.05-0.95 (which corresponds to the 40-300 mmHg range). The normalized values were 
piaced in the beginning of a 60 element array and unused places for any particular heart 
beat were filled with minimal values. 

Neural net 2 (see section 1.2, chapter V) : these neural nets also consistedof a 60 node 
input Iayer. The input values (samples of the derivative waveforms) were normaiized to 
the range 0.05-0.95 (which corresponds to the -1400 4600 mmHgfsec range). The 
number of derivative values per beat was variabie and a 60 elements array was used. The 
empty positions were set to 0.05. Mean Pressure (also included as input to the net) was 
normalized to the range 0.05-0.95 (corresponding to the 40-300 mmHg). 

Neural net 3 (see section 1.2, chapter V) : The fixed Iength derivative waveform was 
presented to 27 nodes. Both heart rate and mean pressure ( also included as input to the 
net) were normalized to the range 0.05-0.95, corresponding to 40-300 beats/min and 
to 40-300mmHg, respectively. 

All neurai nets were fully connected, i.e. all connections were present with finite 
weights. For initiaiization of the weights and biases, Nguyen and Widrow initial conditions 
( described in section 4.2 of chapter 11) were used. The backpropagation algorithm was 
used to train the neural nets with momenturn and adaptive learning rate (details in section 
4.2 of chapter II). The sigmoid noniinear function was used in the intermediate and output 
Iayers. 
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Summary 

The objective of this thesis is to assess qualities of arterial pressure waveforms using 
speetral analysis and artificial neural networks. We investigated such diverse aspects as 
instrumental waveform damping, physiological distortion of peripheral arterial pressure 
waveforms, and the estimation of human age from arterial pressure pulsations. 

Damping. Catheter-manometer systems are routinely used to measure intra-arterial 
pressure. During blood pressure monitoring, instrumental waveform damping often de­
velops very gradually over time. It affects the form of the arterial pulse recorded, its 
upper-systolic-pressure level, as well as other derived parameters such as computed 
stroke volume. Thus monitoring a patient may become compromised without warning. 
In Chapter II/.1, wetried to provide an early warning of the development of instrumental 
waveform damping before damping affects monitoring quality to a clinically significant 
degree. Artificial neural networks of varying architecture have been developed to detect 
degradation in dynamic performance. The networks were trained by the back propa­
gation algorithm on sets of brachial arterial pressure waveforms obtained from a group 
of normotensive or (borderline) hypertensive sub jects. For each patient and category 
5-10 waves were available. A second order digital simulation of a catheter-manometer 
system was used to cause a known amount of waveform damping, varying from slight to 
moderate. Each beat in the waveforms was represented by an 11 parameter vector repre­
senting various pressure levels, instants of events and rates of change on the waveforms. 
The best design neural nets correctly classified about 75-85% of the individual beats as 
either adequate or damped. Using a single majority vote classification per subject per 
damped or adequate situation, the best neural nets correctly classify at least 16 of the 18 
situations in nine test subjects (binomial P=O.OOl). More importantly, these neural nets 
detected damping before clinically relevant parameters such as systolic pressure and com­
puted stroke volume were reduced by more than 2%. Neural nets seem remarkably well 
adapted to solving such subtie problems as detecting slight damping of arterial pressure 
waves before it affects waveforms to a clinically relevant degree. The best neural nets do 
this reliably, continuously, and easily in real time. 

In Chapter /I/.2, we demonstrate the feasibility of neural nets to classify catheter-ma­
nometer system arterial pressure waveforms to adequate and dampedeven during physical 
exercise when large increases in blood pressure and heart rate occur. Physical exercise 
is used, for example, in the revalidation of heart patients where adequate monitoring of 
ECG and blood pressure is necessary. 

In Chapter /I/.3, finally, we compare the performance of experts and neural nets in de­
tecting waveform damping. It appears that neural nets easily outperfarm human experts. 
Human expert observers detected only quite severely damped waveforms. However, since 
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slight damping already causes significant degradation of systolic pressure and stroke vol­
ume computation accuracy, human experts are too slow. This does not take into account 
that it can hardly be asked of an expert to perform the dull task of detecting damping, 
and in addition quickly retires from such repetitive tasks. We conclude that the developed 
neural nets could prove useful clinically. 

Physiological distortion. Brachial artery pressure is used for diagnosis in the prac­
tice of internal medicine and cardiology. Recently, Finapres has become a well-accepted 
method to measure arterial pressure continuously in a noninvasi ve manner. However, 
blood pressure levels and pulse measured at the finger differ from those measured intra­
brachially. We applied Fourier analysis and modelled the brachial to finger pulse wave 
distortion and pressure decrement ( Chapter IV). Brachial artery pressure was recorded 
intra-arterially and simultaneous finger pressure was recorded non-invasively by Finapres 
in 53 adult human subjects. Mean pressure was subtracted from each pressure waveform 
and Fourier analysis applied to the pulsations. A distortion model was estimated for each 
subject and averagedover the group. This average inverse model was applied to the full 
finger pressure waveform to correct the distortion. The remaining pressure level difference 
was modelled by multiple regression on finger systolic and diastolic levels. It appeared 
that wavefarm distartion could be described by a genera!, frequency dependent model 
having a resonance at 7.3 Hz. The general inverse model has an anti-resananee at this 
frequency. It converts finger to brachial pulsations, thereby reducing average wavefarm 
distartion from 9. 7 ( s.d. 3.2) romlig per sample for the finger pulse to 3. 7 ( 1. 7) mmHg for 
the converted pulse. Systolic and diastolic level differences between finger and brachial 
arterial pressures changed from -4 (15) and -8 (11) to +8 (14) and +8 (12) mmHg, 
respectively, after inverse waveform modelling, with pulse pressures correct on average. 
The pressure decrement model next reduced both the mean and the standard deviation 
of systolic and diastolic level differences to 0 (13) and 0 (8) mmHg. Diastolic differences 
were reduced most. Thus, we are able to reconstruct brachial pulse waveforms from fin­
ger waveforms that closely resembie invasive intrabrachial blood pressure registrations, 
satisfying a clinical need. 

Age estimation. During life, the shape of the arterial pulse shows charaderistic 
changes, and catalogs have been formed showing group mean arterial pulsations per age­
decade. These changes differ between central and peripheral waveforms. We investigated 
if the inverse process of estimating age from the pressure pulse was also possible. We 
further required this to be done on àn individual, not a group mean, basis. We trained 
multilayer perceptrou artificial neural networks with the back propagation algorithm to 
develop age estimator models. We used the pressure wavefarms of 65 subjects aged 8 to 83 
years of varying clinical condition ( Chapter V.l). Once trained, the network's performance 
was tested on the wavefarms of another 41 subjects aged 9 to 75 years. Patients were 
measured under laboratory conditions in supine or semi-reclining position. Blood pressure 
was recorded employing a TNO Model 4 or 5 Finapres on the dominant hand. Most of 
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the adult subjects had arterial invasive instrumentation. Best results were obtained if 
the first 0.5 s of the once differentiated pressure pulse was presented to the neural net. 
Differences between estimated and calendar age for the subjects in the test selection were 
-1 (SD 8) years on average and correlation between estimated and calendar age was 0.92. 
Seven of the 41 test subjects had an estimated age differing more than 10 years from 
calendar age. A large range of ages, blood pressures and resting heart rates, the preserree 
of hypertension and vascular disease, and the use of vaso-active drugs seemed to pose 
no difficulty to the method. There was little difference in accuracy between any of the 
healthy and patient groups. Thus, the changes in the waveform during the aging process 
could he attributed largely to the age of a subject, but not entirely. Some subjects appear 
to have young waveforms fortheirage and some appear with rather older waveforms. This 
differentiation seems absent below 30 years of age. 

Blood pressure waveforms and levels differ substantially during the day and the night. 
If we estimated age, the network age should be constant during the 24 hour day. In 
Chapter V.2, we investigate the diurnal stability of the estimated age. The 24 hour 
recording of blood pressure with a TNO Model 1 Portapres device took place during a 
strict protocol including well timed bouts of exercise, walking outside the hospita!, siesta 
and sleep. We were not able to demonstrate any significant differences in the estimated 
ages over any period, and no significant difference was found between estimated and 
calendar age in this new group, using the neural net developed earlier without change. 
More importantly, differences within a subject in estimated age between periods of the day 
were much smaller than between the subjects. This is remarkable since substantial day­
night changes in blood pressure and rest-exercise changes in heart rate and cardiac output 
were present. It appears, therefore, that neural nets estimate an age, which we suggest 
to call arterial age, quite independent from the state the subject is in. This arterial age 
may deviate ( moderately) from cal en dar age, and the deviation remains nearly constant 
during a 24 hour day under the conditions of this study. 

Conclusion. Neural nets appear able to detect subtie changes in arterial pressure 
waveform and, subject to training, can attach meaning to such changes. The detection 
of instrumental damping has an obvious clinical application. The detection of human 
arterial age, as yet, does not have an immediate clinical application but new research on 
the basis of this technique has been started. Presently attracting most intense clinical 
attention is the possibility to record continuous brachial artery pressure at a finger with 
Finapres by inverse waveform filtering and level correction. 



Samenvatting 

In dit proefschrift wordt over het onderzoek gerapporteerd naar zekere eigenschap~ 
pen of kwaliteiten van arteriële bloeddrukcurven, ook wel golfvorm, polsgolf of drukpols 
genoemd. Hierbij wordt voornamelijk gebruikt gemaakt van twee technieken: spectrale 
analyse en kunstmatige neurale netwerken. We onderzoeken de mogelijkheid om golfvorm­
demping te detecteren zoals die veroorzaakt kan worden door inadequate meetinstrumen­
ten. We onderzoeken de vervorming van perifere arteriële drukcurven door fysiologische 
oorzaken met het doel voor deze vervorming te corrigeren. Tenslotte onderzoeken we of 
de leeftijd van een persoon tot uitdrukking komt in zijn (v/m) arteriële drukpulsaties en 
in hoeverre deze leeftijd met een goed geoefend neuraal netwerk geschat kan worden. 

Demping. Catheter-manometer systemen worden routinematig ingezet om de arteriële 
druk bij patiënten te meten. Bij deze bloeddrukbewaking treedt instrumentele golfvorm­
demping op die zich vaak zeer geleidelijk, bijna onmerkbaar, in de tijd ontwikkelt. Dit 
beïnvloedt de vorm van de gemeten arteriële puls, en daarmee de bovendruk (systoli­
sche druk), en andere afgeleide parameters zoals het berekende slagvolume. De gemeten 
bloeddruk kan hierdoor fout, veelal te laag, zijn zonder waarschuwing. In hoofdstuk ///.1 
is geprobeerd om een vroegtijdig waarschuwingssignaal te genereren voor het ontstaan 
van instrumentele golfvorm-demping, voordat demping de bloeddruk zover vervormt dat 
het klinisch relevant en dus gevaarlijk wordt. 

Kunstmatige neurale netten van verschillende architecturen zijn ontwikkeld om deze 
afname in de dynamische prestatie van het catheter-manometer systeem vroegtijdig te 
detecteren. De neurale netten werden getraind door middel van het zogenaamde 'back 
propagation' algoritme. Wij gebruikten hiervoor verzamelingen van brachiale arteriële 
bloeddrukcurven verkregen bij patiënten met normale of met een licht verhoogde bloed­
druk. Van elke patiënt waren 5 tot 10 pulsaties beschikbaar. Een digitale simulatie van 
een catheter-manometer systeem is gebruikt om in exact doseerbare en bekende grootte 
een golfvorm-demping aan te brengen, variërend van gering tot middelmatig. Elke slag 
in de golfvormen werd daarna gerepresenteerd door een elf-dimensionale parameter vec­
tor, die de verscheidene drukniveaus, tijdstippen van gebeurtenissen, en snelheden van 
verandering van de golfvormen bevat. 

Het beste neurale net dat we ontwikkelde classificeerde 75% tot 85% van de individu­
ele slagen correct hetzij als gedempt of ongedempt. Dit net classificeerde bovendien met 
een 'bij meerderheid van stemmen' algoritme waarbij alle golfpatronen van een patiënt 
betrokken worden, 16 van de 18 situaties bij de negen patiënten correct. Dat is statistisch 
significant veel beter dan een beslissing op basis van het opwerpen van een muntstuk 
(P<O.OOI). Nog belangrijker is de overweging dat deze neurale netten in staat blijken 
demping te detecteren nog voordat klinische relevante bloeddrukparameters zoals systo-
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lische druk en berekend slagvolume echt zijn aangetast. 
Neurale netten zijn blijkbaar zeer geschikt voor het detecteren van geringe demping 

van arteriële bloeddrukcurven voordat de golfvormen tot een klinisch relevant niveau zijn 
beïnvloed. Ons beste net doet dit betrouwbaar, continu en in real time. 

In hoofdstuk II/.2 worden arteriële bloeddrukcurven die verkregen zijn tijdens licha­
melijke inspanning met succes geklassificeerd als gedempt of ongedempt. Dit is belangrijk 
en lastiger omdat hierbij grote toenamen in bloeddruk en hartslag optreden. Lichamelijke 
inspanning wordt bijvoorbeeld gebruikt in de revalidatie van hartpatienten waarbij een 
adequate bewaking van ECG en bloeddruk nodig is. 

In hoofdstuk III.3 tenslotte worden de prestaties van menselijke experts en neurale 
netten in het detecteren van golfvorm-demping met elkaar vergeleken. Het blijkt dat neu­
rale netten beter presteren dan menselijke experts. Menselijke experts blijken nauwelijks 
in staat zwak gedempte golfvormen te herkennen. Omdat geringe demping al een klinisch 
significante onderschatting van systolische drukniveaus en berekend slagvolume kan ver­
oorzaken, is de menselijke expert daardoor meestal te laat. Wij vinden dit opmerkelijk 
omdat meestal de menselijk expert patronen veel beter herkent dan een machine of com­
puter algoritme. En daarbij hebben we nog niet eens rekening gehouden met het feit dat 
het van een expert nauwelijks gevraagd kan worden om de geestdodende taak van het 
continu bewaken van een drukgolfvorm op het optreden van demping uit te voeren. We 
concluderen uit dit alles dat de ontwikkelde neurale netten klinisch toepasbaar zijn. 

Fysiologische vervorming. De bloeddruk aan de bovenarm gemeten, de brachiale 
arteriële druk, wordt gebruikt voor diagnoses in de Inwendige Geneeskunde en de Car­
diologie. Finapres is recentelijk een geaccepteerde methode geworden om arteriële druk 
continu en onbloedig te meten. De gemeten bloeddrukniveaus en bloeddrukpulsaties aan 
de vinger gemeten verschillen echter van die in de brachiale slagader. Door middel van 
Fourier analyses hebben we deze verschillen tussen de brachiale en vinger polsgolf gemo­
delleerd (hoofdstuk IV). 

Bij 53 volwassen proefpersonen werd de brachiale arteriële druk bloedig gemeten en 
tegelijkertijd de vingerdruk onbloedig door middel van de Finapres. De gemiddelde druk 
werd afgetrokken van elke drukgolfvorm en Fourier analyses werden toegepast op de pul­
saties. Een vervormingsmodel werd geschat voor elk proefpersoon en daarna werd een 
gemiddeld model berekend voor de groep. Vervolgens werd een model berekend dat exact 
de omgekeerde lineaire vervorming geeft. Dit inverse model werd toegepast op de volledige 
vingerdruk met het doel de vervorming te corrigeren. Het overgebleven drukniveauverschil 
werd gemodelleerd via multipele regressie analyse. 

Het blijkt dat golfvervorming beschreven kan worden door een algemeen, frequentie af­
hankelijk model met een resonantie bij 7.3 Hz. Het inverse model heeft een anti-resonantie 
bij deze frequentie. Het converteert vinger naar brachiale pulsaties waarbij de gemiddelde 
golfvervorming gereduceerd wordt van 9. 7 (SD 3.2) mmHg per genomen monster op de 
vinger golfvorm naar 3.7 (1.7) mmHg voor de geconverteerde puls. Door toepassing van 
het inverse model wordt de normale drukonderschatting aan de vinger veranderd in een 
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overschatting als volgt: de systolische niveauverschillen veranderen van -4 (SD 15) naar 
+8 (14) en de diastolische verschillen van -8 (ll) naar +8 (12) mmHg. Het multipele 
regressie model reduceerde daarna zowel de gemiddelden als de standaard deviaties van 
de verschillen tot 0 (13) en 0 (8) mmHg. Diastolische verschillen blijken het sterkste 
verminderd. 

We zijn dus in staat om uit de vingerdruk brachiale golfvormen te reconstrueren die 
sterk lijken op de intra-brachiale bloeddruk. Daarbij wordt aan een klinische behoefte 
tegemoet gekomen. 

Leeftijdsschatting. De arteriële polsgolf vertoont karakteristieke veranderingen met 
het ouder worden. Geoefende waarnemers zijn dan ook in staat aan de hand van de 
polsgolf de leeftijdscategorie van een persoon in te schatten. In het verleden zijn er zelfs 
catalogi van gemiddelde polsgolven samengesteld per decade van tien jaar ouderdom waar­
uit de gemiddelde veroudering van de polsgolf duidelijk blijkt. We wilden onderzoeken of 
het inverse proces van leeftijdsschatting aan de hand van de polsgolf door een computer 
kon worden uitgevoerd. Verder wilden we dit doen op individuele basis. 

We trainden daartoe kunstmatige neurale netten met behulp van het back propaga­
tion algoritme om modellen voor het schatten van de leeftijd te ontwikkelen (hoofdstuk 
V.l). We gebruikten de drukgolfvormen van 65 proefpersonen in de leeftijd van 8 tot 
83 jaar waarbij zowel gezonde personen als patiënten met hypertensie en cardiovasculaire 
aandoeningen werden geïncludeerd. Na de training werd het net getest met behulp van 
de golfvormen van 41 andere proefpersonen variërend in leeftijd van 9 tot 75 jaar met ove­
rigens een vergelijkbare verdeling van gezond of ziek, vrouw of man. Alle metingen zijn 
verricht onder laboratorium omstandigheden in liggende houding. De bloeddruk werd 
geregistreerd aan de dominante hand waarbij gebruik werd gemaakt van een Finapres 
model 4 of 5 van TNO. 

De beste resultaten werden verkregen als de eerste 0.5 seconden van de gedifferentieerde 
polsgolf werd aangeboden aan het neurale net. Verschillen tussen de geschatte en de 
werkelijke leeftijd van de proefpersonen in de test groep bedroegen gemiddeld -1 (SD 8) 
jaar. De correlatiecoefficient tussen de geschatte en de werkelijke leeftijd bedroeg 0.92. 
Een groot verschil in leeftijd, bloeddruk en hartslag, hypertensie of vaatlijden, en het 
gebruik van vaso-actieve medicatie lijken de nauwkeurigheid van de leeftijdsschatting niet 
te beïnvloeden. Sommige proefpersonen blijken voor hun leeftijd jonge golfvormen te 
hebben terwijl anderen juist oude golfvormen blijken te hebben. Deze verschillen lijken 
afwezig te zijn bij personen jonger dan 30 jaar. 

De golfvormen en de hoogte van de bloeddruk verschillende gedurende de dag en de 
nacht maar de leeftijd van de persoon blijft (vrijwel) gelijk. In hoofdstuk V.2, onderzoeken 
we de stabiliteit van de geschatte leeftijd gedurende de 24-uurs dag. 

De 24-uurs registratie van de bloeddruk met een Portapres Model 1 draagbare bloed­
drukmeter van TNO vond plaats volgens een streng protocol met ondermeer vaste perio­
den van fietsergometrie, wandelen buiten het ziekenhuis, middagdut en slaap. 

We bleken niet in staat significante verschillen in geschatte leeftijden over enige pe-
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riode gedurende de dag aan te tonen. Ook werd er geen significant verschil gevonden 
tussen geschatte en werkelijke leeftijd in deze nieuwe groep. Nog belangrijker was dat 
verschillen in geschatte leeftijd voor verschillende perioden van de dag per proefpersoon 
kleiner waren dan verschillen tussen proefpersonen. Dit is opmerkelijk omdat er aanzien­
lijke veranderingen optraden in bloeddruk voor dag en nacht en in hartslag en cardiac 
output voor rust- en inspanningsperioden. 

Hieruit blijkt dat neurale netten een leeftijd schatten-die we arteriële leeftijd zouden 
willen noemen-die nagenoeg onafhankelijk is van de toestand waarin de persoon verkeert. 
Deze arteriële leeftijd kan (gemiddeld) afwijken van de werkelijke leeftijd maar de afwijking 
is vrijwel constant gedurende de 24 uur die een dag telt. 

Conclusie. Neurale netten blijken in staat te zijn om subtiele veranderingen in de 
vorm van de arteriële drukgolf te detecteren en, indien goed geoefend, deze veranderin­
gen te kunnen waarderen.· Het detecteren van insrumentele demping heeft een duidelijke 
klinische toepassing. Het detecteren van de ouderdom van de menselijke arteriën heeft 
nog geen direkte klinische toepassing, maar nieuw onderzoek naar deze techniek is reeds 
aangevangen. Op dit moment is de aandacht van klinici vooral gericht op de nu gerea­
liseerde mogelijkheid om met Finapres continu de brachiale arteriedruk aan de vinger te 
registreren. Dit met behulp van inverse filtering van de golfvorm en na hoogte correctie. 
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1. 

Artificial neural networks are possibly ten orders of magnitude more simple than 
networks of neurons. They are simply no comparison. 

2. 

The arterial pulse is the same nowhere: it distorts and degrades travelling in 
the arterial system. 

3. 

Relying on human experts impedes the training of artificial neural networks. 

this dissertation, chapter JIJ 

4. 

A person is as old as his pulse. 

this dissertation, chapter V 

5. 

A person's age is stabie during the 24 hour day although his blood pressure is 
not. 

this dissertation, chapter V 

6. 

The human arm arterial system to the finger does nat show its age. 

this dissertation, chapter V 

7. 

Arteries are akin to organ pipes. The shorter length produces the higher tone. 

this dissertation, chapter IV 



8. 

Special measures are needed for thermodilution cardiac output estimation to 
achieve clinical reliability, which could receive clinical recognition. 

9. 

J.R.C. Jansen - The tkermodilution metkod for the clinical assessment 
of cardiac output, Intensive Care Med, 21:691-697, 1995 

Both in secure communications protocols and in artificial neural nets back prop­
agation is a most useful idea. 

10. 

Taking risks comes before luck. 

11. 

In a male predominant environment as the faculty of Electrical Engineering in 
Eindhoven, the requirement that for early or late access to the workplace two 
persons of the same sex need to be present, is next to impossible to obey for the 
female minority. What's wrong with the opposite sex? 

12. 

If you were to say to the grown-ups: 'I sawa beautiful house made of rosy brick, 
with geraniums in the windows and doves on the roof', they would not be able 
to get any idea of that house at all. You would have to say to them : 'I saw a 
house that cost $20,000'. Then they would exdaim : 'Oh, what a pretty house 
that is!'. 

Antoine de Saint-Exupery The Little Prince 

Eindhoven, July 3, 1997 




