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Abstract 
A frequency domain system identification procedure for MIMO-systems is 
presented that yields a model with a bounded unstructured model error. 

The disturbances on the input and output of the process are assumed to 
be bounded in the frequency domain, which implies that there exist bounding 
functions for the absolute value of the discrete Fourier transform of the noise 
signals. 

First the identification of a SISO-process is considered with an additive 
or multiplicative model error structure. We derive uncertainty regions for the 
process dynamics and find an optimal model by H 00-fitting. 

Subsequently the identification method is extended to MIMO systems and 
various model error structures are considered, like additive model error, input 
and output multiplicative model error, reverse type model errors and coprime 
factor model errors. All these model error structures fit into a basic scheme 
with coprime factors. 

We show that for a fixed model the true model error can be expressed as 
a function of a known matrix G(z) and an unknown diagonal matrix Qt(z). 
This matrix G( z) is built up from known information, such as the model, the 
model error structure, the measured data and the noise bounding functions. 
The diagonal matrix Qt(z) stands for the true scaled noise, which is unknown, 
but is assumed to be inside the unit ball. 

An upper bound for the largest singular value of the model error is derived. 
We make use of the theory of structured singular values (p.-analysis) and of 
the so-called Redheffer star-products. The upper bounds for the model error 
are minimized in some norm-sense (H00 , H2 or a combination). 

The choice of a linear parametrization leads to a convex optimization prob­
lem and the algorithms are robustly convergent. 

Finally a case study is presented, where a laboratory process, consisiting 
of some connected water vessels, with 2 inputs and 2 outputs is identified and 
model with a bound on the model error is derived. 
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Introduction 

System identification is an approximate modelling technique, using measured 
data. The models that are derived applying these system identification tech­
niques are used in a wide field of applications, such as control design (e.g. 
industrial processes), diagnosis (e.g. medical science) and prediction (e.g. 
weather forcast). 
In this thesis we are especially interested in the first application, control de­
sign. To be more specific, we wish to find an approximate model that is suited 
for Hoo robust control design. 
Recently techniques were developed to derive controllers that ensure robust 
performance. This means that the true plant will be stabilized and specified 
signal levels will be achieved, in the presence of plant uncertainties (Doyle et 
al. [12], [13]). A mathemetically convenient way to formalize the problem of 
robust control is to describe the system by a nominal model with a model error 
that is bounded in H 00-sense. Bounds for these model errors, structured or 
unstructured, can be found by modelling the true plant. If physical modelling 
is not accurate enough (or even impossible), we can apply system identifica­
tion to find better models with sufficiently small error bounds. 
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4 INTRODUCTION 

Most identification methods are based on the minimization of measures of 
residuals, error-signals like input error, output error or equation error (Eykhoff 
[16], Ljung [39]). The models can be parametrized in various ways, like 
impulse response models, difference equation models or state space models. 
The parameters are optimized by means of some estimation method (e.g. least 
squares). 

y u 

Figure I .1: Conventional set up 

The conventional set up of figure 1.1 has some drawbacks. Disturbances 
and noise signals are generally assumed to be Gaussian distributed and white, 
or coloured by some filter. Further they are assumed not to be correlated 
with the input signal. These assumptions are often violated. Furthermore, all 
disturbances are encaptured in an artificial signal € acting on the output of the 
system. No distinction is made between different sources of disturbances, like 
sensor noise, actuator noise or process disturbances. Also the true process is 
often assumed to be an element of a model set In practice this will usually 
not be the case, so that model errors and disturbance signals are minimized 
together. For that reason it is very hard to find bounds for the model errors. 

Over the past years a lot of work has been done, in order to overcome the 
drawbacks of conventional identification, and to derive bounds for the model 
error. Of course there are many possible starting points, which all have their 
own advantages and drawbacks. Goodwin and Salgado [24], Gevers [20] and 
Zhu [68] have a stochastical setting, leading to so called 1-u or 3-u bounds on 
the model error. Others have a deterministic approach, either with bounded 
noise in the time domain (Wahlberg and Ljung [66], Helmicki et al. [30]), 
or with bounded noise in the frequency domain (LaMaire et al. [35], Gu and 
Khargonekar [26], Van den Boom et al. [60], [59], [56], [57], [58]). 
It is our strong belief that any model identification method should come with 
explicit descriptions of the accuracy of the model. In this thesis we look for 
an identification procedure that not only gives a nominal model, but also gives 
a minimum upper bound for the model error. 

In this chapter we give the problem statement for the work in this thesis. 
First, however, we will give some basic theoretical background for discrete 
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time systems, we discuss the notion of model error and we take a short look at 
robust control theory. The section 1.1 to 1.3 can be seen as a presentation of 
the definitions and notions that have to be known apriori before the problem 
statement can be· given. Readers that are familiar with the concepts of sections 
1.1 to 1.3 can proceed with section 1.4. 

1.1 Linear time invariant systems 
In this section we will consider some basic notions and definitions from sys­
tem theory of discrete time systems. Frequency signals will be denoted as 
z(z), time signals will be denoted with a bar, iil{k), except for where the 
interpretation is clear from the context 

Consider the complex plane: Throughout this thesis 

The unit circle will be denoted as C. 
The closed unit disk will be denoted as V. 

Consider a time vector signal iil{k), k = -oo, ... ,oo, 

The space JL2 ( -oo, oo) : The space JL2( -oo, oo) is the space of all real vec­
tor valued signals m(k), k = -oo, ... ,oo, for which 

00 

L: iil(klm(k) < oo (1.1) 
lo=-oo . 

In this thesis we will consider time vector signals iil( k) to be an element of 
l£2( -oo, oo ). 
The subset of signals in JL2 ( -oo, oo) that are zero for all k < 0, is denoted as 
JL2 [0, oo ). The subset of signals in 1L2 ( -oo, oo) that are zero for all k > 0, 
is denoted as JL2 ( oo, 0]. The subset of signals in 1L2( -oo, oo) that are zero 
for all k < 0 and all k > M, is denoted as JL2[0, M]. 

The z-transformation: Consider a time signal iil(k) E JL2(-oo,oo). The 
z-transform a:( z) of the signal iil{ k) is defined as 

00 

a:{z) = L; m(k)z-k for z E C (1.2) 
k=-oo 
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Consider the Markov parameters p(k), k = 0, ... , oo of a linear time invariant 
causal system. 

The support of a Markov chain : The support of p( k) is the smallest inter­
vaJ [O,l] such that p(k) = o, for all k ~ [o,n 

The length of a Markov chain : Let [0, l] be the support of a Markov chain. 
the length of the Markov chain is then the number l - 1. 

Transfer function : For Markov parameters p( k) we can compute the z­
transform 

00 

P(z) = Ep(k)z-lc for z E C (1.3) 
lc=O 

The function P( z) is called the transfer function of the system. 

Consider the following function spaces: 

The space RIP : The space RIP is the space of all real rational proper 
matrices P(z). 

The space RILoo : The space RILoo is the subspace of RIP, consiting of all 
elements P(z) of RIP, that have no poles on the unit circle. 

The space RIH00 : The space RIHoo is the subspace of RlL00 , consiting of all 
elements P( z) of RlL00, that have all poles inside the unit disk. 

The elements of RIP describe all finite dimensional linear time invariant causal 
sampled systems. In this thesis we will consider all systems to be an element 
of the set RIP. 

Let u(k) E JL2(-oo,oo) be the input vector signal and y(k) E 
JL2 ( -oo, oo) be the output vector signal of a system with its transfer function 
in RIHoo with p inputs and q outputs. The input and output relation of this 
system can be given by a difference equation: 

y(k) + A1y(k- 1) + · · · + A,.y(k- n) = 

= B0u(k) + B1u(k -1) + · · · + Bmu(k- m) 

where ~ are p x q real matrices, Bi are p x p real matrices and m ~ n. 
We introduce the backward shift operator r by putting 
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Ty(k) = y(k -1) 

so that 

(I + AtT + • • • + A..Tn )y(k) :;:: 

= (Bo + BtT + ··· + BmTm)u(k) 

or 

A(T)y(k) = B(T)u(k) 

where A(T) =I + A1T + · · · + AnTn 
and B(T) = Bo + BtT + ... +. BmTm. 

7 

Let the z-transform of u(k) be given by u(z) and let the z-transform of 
y(k) be given by y(z), then 

A(z)y(z) = B(z)u(z) 

where A(z) = (I + A1z-1 + · · · + Anz-n) 
and B(z) = ( Bo + Btz-l + · · · + Bmz-m ). 

If A(z) is invertible we can define: P(z) = A-1(z)B(z) and we get 

y(z) = P(z) u(z) 

If A(T) is invertible we can define P(T) = A-1(T)B(T). 
When we will use the symbolic notation 

y(k) = A(Tt1 B(-r) u(k) = P(-r) u(k) 

we mean that A(-r)y(k) = B(T)u(k) and y(z) = P(z)u(z). 

Matrix norm : Let X be a complex valued matrix. The matrix norm of X 
is defined as the largest singular value of that matrix: 

del 
!lXII = O'rnaz(X) (1.4) 

The infinity norm : The infinity norm of the matrix function X(z) E RlLoo 
is defined as 

dttf 
IIX(z)lloo = max IIX(z)ll 

~ec 
(1.5) 
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where IIX(z)ll denotes the matrix norm. 

The two norm: The two norm of the matrix function X ( z) E RlLoo is defined 
as 

(1.6) 

where IIX(eiw)ll denotes the matrix norm. 
Note that this two-norm differs from the H2-norm that is often used in 
robust control theory (Doyle et al. [13]). 

Norm error bounds for truncated system : Consider the Markov parame­
ters p(k), k = 0, ... , oo of a linear time invariant causal system with 
transfer function P(z). Define a truncated system with Markov param­
eters 

_ (k) = { p(k), for k=O, ... ,l 
PT 0 for k2::l+1 

and let PT( z) be the corresponding transfer function. 
Further let the 'tail' of the Markov chain of p(k) be bounded with 

00 

E 11 p(k) 11 $ E~ 
lc=l+l 

Then we can give a bound for the matrix-norm of ( P(z)- PT(z)) for 
all z E C as follows: 

00 l 

11 P(z) - PT(z) 11 = 11 Eii(k)z-lc Eii(k)z-lc 11 = 
lc=O k=O 

00 00 

11 E p(k)z-'"11 < E 11 ii(k) 11 < E~ 
lc=l+l lc=l+l 

With this matrix-norm bound we can derive a bound for the infinity 
norm 

11 P(z) - PT(z) lloo = sup 11 P(z) - PT(z) 11 < c:~ 
.zEC 

and a bound for two norm as well: 
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The discrete Fourier transform : Let z( k) be a time signal with k in the 
time interval k = 0, ... , 2N- 1. The discrete Fourier transform is then 
defined as 

2N-l 

x(z) = E z(k)z-" with 
.:i2!::a 

z = e 2N , n = 0, ... , 2N- 1 (1.7) 
le=O 

It is clear that, if the signal z( k) = 0 for k < 0 and k ~ 2N, and if the 
domain of the definition of (1. 7) is extended so as to include the unit 
circle, the discrete Fourier transform is equal to the z-transform. 

Set of observation frequencies : We define the set of observation frequen­
cies 

and so we consider samples in the frequency domain at equi-interval 
points on the unit circle. 

The infinity norm for sampled frequency domain : Given 0, the infinity 
norm of the matrix function X ( z) for the sampled frequency domain 
is defined as 

tkf 
IIX(z)il .. oc = max IIX(z.)ll 

.ztED 
(1.8) 

where IIX(z.)ll denotes the matrix norm. 

The two norm for sampled frequency domain : Given 0, the two norm of 
the matrix function X(z) for the sampled frequency domain is defined 
as 

(1.9) 

where IIX(z.)ll denotes the matrix norm. 
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The ordinary infinity-norm and the infinity-norm for the sampled frequency 
domain are closely related. Define a weighting filter 

N 

Wn(z) L 6(z- zn) with Zn E 0 t z E C 
n=l 

where 6( z) denotes the Kronecker delta. 
Then 

IIWn(z) X(z)lloo = max IIWn(z) X(z)ll = 
zEC 

= max IIX(Zi)ll 
z;EO 

= IIX{z)ll.oo (1.10) 

We see that if X ( z) is a smooth function and if N is large, then the ordinary 
infinity-norm and the infinity-norm for the sampled frequency domain are 
nearly equal. Let X(z) be in RlL00 • Then IIX(z)ll will be a continuous 
function over the unit circle and we can give the following results: 

lim IIX(z)ll.,oo = IIX(z)llco N-+oo 

and 

lim IIX(z)lld = IIX(z)ll2 N-+oo 

We will now summarize some basic concepts of algebra and functional 
analysis that are used in literature. 

Inner or all-pass functions: A matrix function H(z) is called an inner or 
all-pass function if H(z) E Rllloo and H*(z) H(z) = I for all z E C. 

Coinner functions: A matrix function H(z) is called a coinner function if 
H(z) E Rllloo and H(z) H*(z) = I for all z E C. 

Outer or minimum-phase functions: A matrix function H(z) is called an 
outer or minimum-phase function if H(z) is in Rllloo and has full rank 
for all lzl ~ 1. 

Unimodular functions: A square matrix function H(z) is called a unimod­
ular function in RlH00 if H-1(z) exists and H(z) and H-1(z) are both 
in RlH00 • 

Right coprime factorization: The pair N(z), M(z) is called a right coprime 
factorization over Rllloo of the system P(z) E RIP if 



1.1 LINEAR TIME INVARIANT SYSTEMS 11 

1. P(z) = N(z) M-1(z) 

2. N(z) E RHoo and M(z) E RHoo 

3. there exist two matrices X(z) E RJ/100 and Y(z) E RJ/100 such 
that X(z) N(z) + Y(z) M(z) =I. 

Left coprime factorization: The pair N{z), M(z) is called a left coprime 
factorization over RJ/100 of the system P( z) E RJP if 

1. P(z) = M-1(z)N(z) 

2. N(z) E RJ/100 and M(z) E RHoo 

3. there exist two matrices X(z) E RJ/100 and Y(z) E RJ/100 such 
that N(z)X(z) + M(z) Y(z) =I. 

Normalized coprime factorization: 
A right coprime factorization P{z) = N(z) M-1(z) is called normalized 
if N*(z)N(z) + M*(z)M(z) =I. 
A left coprime factorization P(z) M-1 (z) N(z) is called normalized 
if N(z)N*(z) + M(z)M*(z) =I. 
Here * denotes complex conjugate. 

Internal stability (Francis [18]): 
Consider the feedback system in figure 1.2 where P(z) E RJP and 
K(z) E RJP. The feedback system is said to be internally stable if the 
four transfer matrices from v1 and t12 to u1 and u2 are all stable. 

Vt + U 

Figure 1.2: Feedback system 

Stability criterion (Vidyasagar [62], Vidyasagar et al. [64]): 
Consider the Feedback system of figure 1.2. Let P( z) = 
.M-1(z)N(z) = N(z) M-1(z) be a left and a right coprime factor­
ization of a process, and let K(z) = M01(z)Nc(z) = Nc(z) M01(z) 
be a left and a right coprime factorization of a controller. Then the 
following statements are equivalent: 
(1). The closed loop of P(z) and K(z) is internally stable. 
(2). Nc(z)N(z) + Mc(z)M(z) is unimodular. 
(3). N(z)Nc(z) + M(z)Mc(z) is unimodular. 
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1.2 Model error structures 
When modelling an industrial process, either on the basis of physical laws, 
or by system identification, we will never be able to find an exact description 
of this process. There will always be a discrepancy between the true process 
Pt(z) and its model P(z). This model error ~(z) can be thought of as an un­
known transfer function that indicates the difference between the true process 
and the model. The model error may have various kinds of structures. In this 
section some model error structures will be considered. Throughout, P and 
~ are supposed to have proper dimensions. 

Additive model error (see figure 1.3): 
The most common form to represent uncertainty in a model is the additive 
model error structure (Doyle & Stein [15], Cruz et al. [7], Freudenberg et 
al. [19]). Here the uncertainty ~(z) is thought to be additive to the nominal 
model P(z), so that the true process is described by 

Pt(z) = P(z) + ~(z) 

The corresponding configuration is given in figure 1.3 

y u 

Figure 1.3: Additive model error structure 

Another easy way to represent model errors is using a multiplicative model 
error representation (Doyle & Stein [15], Cruz et al. [7], Freudenberg et al. 
[19]). In the multivariable case we will have to distinguish between input and 
output multiplicative model errors. 

Input multiplicative model error (see figure 1.4): 
In this model error representation the uncertainty is thought to be multiplica­
tive on the input of the nominal model, so 

Pt(z) = P(z) (I + ~(z)) 
The configuration will be as in figure 1.4. 
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'U 

Figure 1.4: Input multiplicative model error structure 

Output multiplicative model error (see figure 1.5): 
In this model error representation the uncertainty is thought to be multiplicative 
on the output of the nominal model, so 

Pt(z) = (I + A(z)) P(z) 

The configuration will be as in figure 1.5. 

y 

Figure 1.5: Output multiplicative model error structure 

In control theory there has been a lot of effort in studying stability with addi­
tive and multiplicative model error structures. However, in the literature one 
generally assumes that the nominal model P(z) and the true process .Pt(z) 
have the same number of unstable poles. If this condition can not be guar­
anteed, we can use other representations, which have an uncertainty model in 
a feedback loop (Postlethwaite and Foo [48],[49], Lunze [40]). For this kind 
of representation the unstable-pole-condition is replaced by the condition that 
the nominal model P(z) and the true process Pt(z) have the same number of 
finite zeros outside the unit disk. We discuss this type of model errors next. 

Reverse additive model error (see figure 1.6): 
We can represent the uncertainty of the model as a feedback over the nominal 
model, so 

Pt(z) = P(z) (I + A{z) P(z) t 1 

as in the configuration of figure 1.6: 
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y u 

Figure 1.6: Reverse additive model error structure 

Input reverse multiplicative model error (see figure 1.7): 
In this model error representation the uncertainty is thought to be represented 
as a feedback, multiplicative on the input of the nominal model, so 

Pt(z) = P(z) (I + A(z) )-1 

The configuration will be as in figure 1. 7. 

u 

Figure 1.7: Input reverse multiplicative model error structure 

Output reverse multiplicative model error (see figure 1.8): 
In this model error representation the uncertainty is thought to represented as 
a feedback, multiplicative on the output of the nominal model, so 

Pt(z) = (I + A(z) )-1 P(z) 

The configuration will be as in figure 1.8. 

y 

Figure 1.8: Output reverse multiplicative model error structure 

While studying stability with the reverse kind of model errors, we need 
the additional assumption that the number of zeros, outside the unit disk of 
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the model and the perturbed plant are equal. If we do not like the condition 
concerning the number of zeros and poles outside the unit disk, or if we 
do not have enough information about it, we can make use of a different 
kind of model error structure, the coprime factor model error structure. This 
uncertainty representation starts from a coprime factorization of the plant as 
well as from the true process, and defines the model error as the difference 
between the coprime factors of the model and the coprime factors of the 
true plant (Vidyasagar & Kimura [63], McFarlane [43], Glover & McFarlane 
[22]). Of course, in the MIMO-case we can distinguish left and coprime 
factorizations: 

Left coprime factor model error (see figure 1.9): 
In this model error representation we choose a left coprime factorization of 
the plant P(z) = M(z)-1 N(z) and the true process Pt(z) = Mt(z)-1 Nt(z) 
and define the coprime factor model errors as the difference: 

~N(z) = Nt(z) - N(z) 
~M(z) = Mt(z) - M(z) 

The matrices ~N(z) and ~M(z) will both be in RHoo because N(z),M(z), 
Nt(z) and Mt(z) all are in RH00 • This results in: 

Pt(z) = ( M(z) + ~M(z) )-1( N(z) + ~N(z)) 
We can represent this by the configuration as in figure 1.9 

y 

- + 

Figure 1.9: Left coprime factor model error 

Right coprime factor model error (see figure 1.10): 
In this model error representation we choose a right coprime factorization of 
the plant P(z) = N(z)M(z)-1 and the true process Pt(z) = Nt(z)Mt(z)-1 

and define the coprime factor model errors as the difference: 

~N(z) = Nt(z) - N(z) 
~M(z) = Mt(z) M(z) 
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The matrices .6.N(z) and .6.M(z) will both be in RHoo because N(z),M(z), 
Nt(z) and Me(z) all are in RlH00 • This results in: 

Pt(z) = ( N(z) + .6.N(z) )( M(z) + .6.M(z) )-1 

We can represent this by the configuration as in figure 1.10 

y 
+ 

Figure 1.10: Right coprime factor model error 

u 

Of course many other configurations can be thought of, but the model error 
structures as mentioned above are the most important model error descriptions 
for unstructured model errors, used in the literature. A common assumption in 
literature is that .6.(z) should be in the RlLoo space. In this thesis we restrict 
ourselves to model errors .6.( z) that are in the Rllloo space, so they are stable. 
We will comment on that at the end of chapter 5. 

1.3 Robust Control 
In this section we will discuss robust control theory very briefly. Consider 
the configuration of figure 1.11, where a plant P(z) is in closed loop with 
a controller K(z). Plant P(z) and controller K(z) may be multivariable 
systems. r( k) is the reference tracking signal, u( k) is the plant input signal 
and y(k) is the plant output signal. The plant input and output signals are 
perturbed by the disturbance signals d(k) and e(k) respectively. 

y 

e 

I 
I 

P I 
I 

la 
1 u I 

I 
K 11--a:-c>++_r_ 

I 

Figure 1.11: Plant and controller in closed loop 

For this set up we define the sensitivity function as: 
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S(z) = {I + P(z) K(z))-1 

Performance of a closed loop system can be specified in different ways. One 
might be interested in optimal tracking or in minimum control power dissipa­
tion. The nominal performance of a closed loop system is the performance in 
the case of exact modelling, so Pt(z) = P(z) in figure 1.1.11. 

Another issue is that of the robust stability of the closed loop. Suppose, we 
have a set P, with Pt(z) E P. Then the configuration of figure 1.11 is called 
robustly stable for the set P if it is stable for all P(z) E P. A controller K(z) 
is called a robustly stabilizing controller for the set P if K ( z) stabilizes all 
P(z) E P. 

Finally, if we want to achieve robust performance, we like to achieve 
a specified performance level in the presence of perturbations. We will now 
consider these three topics in more detail: 

Nominal performance: 
We consider the set up of figure 1.11 where Pt( z) P( z ). If we are interested 
in optimal signal tracking we want the difference (y - r) to be small with 
respect to the reference signal r. We know that 

y(z)- r(z) = a:(z) = (I - P(z) K(z) S(z) )r(z) = S(z)r(z) 

Therefore, we are interested in getting the sensitivity function smaller than a 
pre-specified level W.(z) (W.(z) is unimodular in RJH00 ), and we can write 
(for the SISO-case): 

11 S(z) 11 :S 11 W.(z) 11 for all z 

This is the same as 

If we are interested in a limited control power dissipation in the closed 
loop system, we want to achieve a small control signal u(z) with respect to 
the reference signal r( z ). From figure 1.11 we see that 

u(z) = K(z)S(z)r(z) 

and so we can search for a controller that makes K(z) S(z) smaller than a 
specified level W~c. (W~c .. (z) is unimodular in R/H00). We can write (for the 
SISO-case): 

11 K(z) S(z) 11 :::; 11 W,u(z) 11 for all z 

This leads to the condition 
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We see that the two performance requirements can be expressed by the 
conditions 

11 Wpt(z) S(z) lloo $ 1 and 11 Wp2(z) K(z) S(z) !loo $ 1 

where in this case WP1(z) = w.-1(z) and Wp2(z) = W,,;:1 (z). If the per­
formance levels for tracking and limited control power have to be achieved 
simultaneously, the conditions can be combined as: 

11 [ WP~~1)(~(~~1(z) ] lloo::::; 1 (1.11) 

Consider figure 1.12 

Figure 1.12: Feedback loop with weighting filters 

For the configuration of figure 1.12 we can derive 

[ : ] = [ ~] S[I P] [ ~ ] 

and 

[ ~ ] = [ ~] S[I P] [ ~ ] 

By introducing the weighting filters Wp1(z), WP2(z), Wp3(z) and Wp4(z) (all 
unimodular in R./H00 ) , we can define performance requirements in terms of the 
transfers from the weighted exciting signals r, d, e to the weighted measured 
signals fi, i and u. We get a more general condition, that is also applicable 
to the MIMO-case: 
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(1.12) 

We can achieve all kinds of other performance requirements by choosing apro­
priate weighting filters, and finding a controller K(z) such that the condition 
as in (1.11) will hold. The choice of another kind of set up will also lead to 
a condition as in (1.11). This will be the case when we consider the perfor­
mance of a closed loop configuration, where the reference signal affects the 
closed loop after the control operation. 

Robust stability: 
In the previous section we introduced various kinds of model error structures. 
For all these model error structures the true process can be written in the 
following form (Lunze [40], McFarlane [43]): 

Pt = r22 + r21 ~t (I - ru ~t)-1 r12 ~ .1"u( r, ~t) 
where the matrix r reflects both the nominal model as well as the model 
error structure. r will be called the structure matrix of the model and is 
partitioned as 

r 

and ~t(z) is the true model error. The notation .1"u(T,~t) is called an upper 
linear fractional transformation. 

r---------------------, I I 

I 
I 

r 

I 
I 
I 
I 

!Pt 
I 
I 
I 
I 
I 

I I 

~---------------------~ 

Figure 1.13: True model as an upper linear fractional transformation 

As examples we can give r for 

An additive model error : r = [ ~ ~ ] 
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An input reverse multiplicative model error : r [ -I I] 
-P p 

A left coprime factor model error: 

Now suppose we know that the H00-norm of the true model error .O.t{z) 
is bounded by some constant e: · 

Then we know that the true process is in the set of systems 

P = {P(z) E RIP I F(z) = F .. (r{z),.O.(z)} with II.O.(z) lloo ~ e} 
where r depends on the chosen model error structure. 
The nominal model P( z) is given by 

P(z) = F .. (r(z),O) = r22{z) 

We can now consider the closed loop of F(z) E P(z) with some controller 
K(z) as in figure 1.14 

r·--------------------, 
I I 

' ' I I 

' ' I I _ 

: :p 
I I 
I I 
I I 
I I 
I I 
I t 
I I 
I I 
I I 
L. -~ 

Figure 1.14: Nominal model with model error and feedback controller 

For this configuration, McFarlane ([43]) gives the following theorem: 

Theorem 1: 
K(z) stabilizes P~(z) ~ F .. ( r(z), .O.(z)) for all II.O.{z) I loo < c if and 
only if 
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1. K(z) stabilizes the nominal model P(z) = .1"u(r(z),O). 

2. 11 ru + r12 K (I - r22 K )-1 r21 !loo $ t:-
1 

[] 

(The proof is in [43]). 

Condition 2 of this theorem can always be rewritten as a condition: 

11 [ ";l :;r
2 

'] [ ~ ] S[J P] [ ";
3 :;r4 ] IL $1 (1.13) 

for an appropriate choice of weighting filters Wr1(z), Wr2(z), Wr3 (z) and 
Wr4(z) (all unimodular in RJ/l00). 

Robust Performance: 
If we have to ensure a specified performance level in the presence of model 
uncertainty we want to achieve robust performance. We will only focus on a 
special case of robust performance, namely the case of a SISO-system where 
we have a nominal performance condition 

11 Wp(z) S(z) lloo $ 1 

and a robust stability condition 

11 Wr(z) K(z) S(z) lloo $ 1 

for an additive model error structure .6.( z) E RJ£00 such that 

11 wr-1(z) .6.(z) !loo $ 1 

Doyle et al. ([12]) show that in that case a necessary and sufficient condition 
for robust performance will be: 

11 I Wp(z) S(z) I + I W,.(z) K(z) S(z) llloo $ 1 

So if this condition is satisfied, we will have satisfied the performance condi­
tion even for the perturbed process. 



22 INTRODUCTION 

1.4 Motivation and problem statement 
In this section the problem statement will be constructed by considering the 
following aspects: 

Models with bounded model error : Inaccuracy in modeling industrial 
processes causes problems in controller design. Controllers may desta­
bilize the true process or do not meet the performance specifications. 
If bounds are available on the magnitudes of the model error, recently 
developed techniques for robust control design show that for an (inac­
curate) nominal model controllers can be designed that ensure stability 
and performance. 

A new identification method : As was already mentioned, conventional 
identifiaction methods only give a model without bounds on the magni­
tudes of the model error. New identification techniques must be devel­
oped to derive these bounds. 

Limited number of assumptions on true process: The only assumption 
that will be made about the true process is that it is linear time invariant 
finite dimensional and proper (so Pt(z) E RIP). No further assumptions 
will be made about the structure or the order of the process. 

Better disturbance descriptions : If we want to derive bounds on the model 
error we will have to realize that this bound is partly due to disturbances 
and partly due to undermodelling. Therefore all disturbances are inves­
tigated separately and more intensively. Disturbances caused by the 
sensors and the actuators will be examined separately and uncertainty 
in the dynamics of the actuator will be modelled. Disturbances will be 
assumed to be bounded in the frequency domain by a known weighting 
function. 

A worst case approach leading to a min-max problem: In the noiseless 
case we will be able to give an exact description of the true process, 
and in the case of undermodelling this leads to an exact description of 
the difference between the model and the true process. In the presence 
of input and output disturbances we are only able to derive a set of 
estimations of the true process. For every model we can derive a guar­
anteed upper bound for the model error by considering the worst case 
estimation of the true process. We can minimize the upper bound of the 
model error by choosing the model that gives a minimum worst case 
model error. This will lead to a min-max optimization problem. 
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A deterministic setting : The identification will be placed in a detenninistic 
setting. Disturbances are assumed to be bounded by a known weighting 
function in the frequency domain. The fact that only a bounding function 
is required means that exact knowledge about colouring of the noise is 
not necessary. The identification will be done in the frequency domain. 
We aim at minimum bounds for the model error in the frequency domain. 
It is very convenient to work in one domain, where both the noise 
bounding filters and the optimization criterion are defined. 

MIMO·systems and different model error structures: Most industrial 
processes are multivariable. We like to find identification methods that 
are applicable to MIMO processes. In section 1.3 the necessity of vari­
ous model error structures was mentioned. For all structures we like to 
be able to find bounds on the model error. 

It is clear that the requirements are very different from those of the conven­
tional identification methodologies. We are not looking for the best estimate 
of the model in a probabilistic sense. Instead we look for the model that mini­
mizes the worst case estimate of the model error. The new approach proceeds 
along the following lines: 

1. We collect measured data from input and output signals, in a finite time 
interval k = 1, ... , 2N. This results in the data set { u(k), y(k) }. 

2. We have apriori knowledge about bounds on the disturbances, additive 
on the input and output signals. Disturbance bounds will be specified 
in the frequency domain. 

3. We choose a model set P with parametrized models P(6,z) and param-
eter vectors 9 E 9, i.e. P { P(9,z} E RIP 19 E 9 }, where 9 is a 
set. 

4. We choose a structure for our model error ~(P(9,z), H(z)). 

5. We choose a detenninistic model error criterion J(~). typically a nonn. 

6. We have a stabilizing controller K ( z) E RIP for the true process Pt( z ). 

A very important notion we use in this thesis will be that of the set of unfal­
sified systems P. This set is defined as the set of all systems P(z) E RIP that 
do not falsify the data set and the noise bounds. Of course the true process 
will be an element of this set. 

We will consider the model error criterion J ( ~( P( 9, z), P( z))) for all 

elements P(z) in P and (} E e. Since Pt(z) E P, the worst-case (so largest) 
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model error criterion will always be worse (larger) than the criterion for the 
true process: 

'>~6 E e, maxJ(A(P(O,z),F(z))) ~ J(A(P(O,z),Pt(z))) 
PeP 

In this way we can derive an upper bound for the model error criterion of the 
true process. 

Figure 1.15: Visualization of optimizing a worst case model error 

We can visualize the concept of minimizing the worst case model error in 
figure 1.15. We consider the model error between models in the model set P 
and systems in the set of unfalsified systems P. For simplicity we take the 
euclidian distance for J(A(P, P) ). So in the figure we consider the distance 

between points in the set P and points in the set P. We look for a model P 
in P with a minimum worst case distance with respect to a system in the set 
P. Clearly in this figure the optimal model will be P0 and the corresponding 
worst case system in· the set P will be P0 • 

Motivated by the foregoing, we can fonnulate the problem statement for the 
work in this thesis as follows: 
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Problem statement: 

Given a model set P and the set of unfalsified systems P, 
determined by the data and a priori knowledge of the signal 

errors. Find a model P E P that minimizes the maximum 
model error criterion J(~), over all model errors ~(P, P) (so 
within the adopted model error structure) between that model 

P and the worst-case system PEP. 
Formally, we wish to find a model Popt E P that satisfies 

Popt = arg inf sup J(~(P,P)) 
PeP PeP . 

This gives us an explicit model error bound 

1.5 Organization of the thesis 
A brief description will be given of what is contained in this thesis: 
The succesion of the chapters is represented by figure 1.16. 

The thesis consists of four main parts: 

25 

A. Preliminaries : In this part the problem area is explored, and important 
concepts are studied. 

B. Formalization : In this part the original problem is formalized and trans­
formed into an optimization problem, that is numerically solvable. 

C. Optimization : In this part the optimization itself is considered and the 
evaluation of the final model is discussed. 

D. Evaluation : The proposed methods are evaluated by a case study,. re­
sulting in some conclusions and remarks. 
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PART A: Preliminaries: 
In chapter 2 some practical considerations are done and preliminary steps for 
the identification are discussed. A detailed experimental set up will be intro­
duced, that can be reduced to a basic experimental set up. The disturbance 
signals will be characterized in terms of noise sets and frequency domain 
bounding functions will be defined. Finally, we discuss the transformation 
of the measured data from the time domain into the frequency domain. We 
will consider the errors that may occur, if we do not set up the experiments 
properly. 

Chapter 3 gives a first attempt to derive model error bounds. For reasons of 
simplicity we restrict ourselves to the identification of a SISO-system with 
an additive or a multiplicative model error structure. Uncertainty regions are 
derived for the process dynamics in the complex plane, and an upper bound 
for the model error by H00-fitting of the model is minimized. The chapter 
concludes with a simulation study. 

In chapter 4 we discuss how experiments should be set up if we want to 
identify multivariable systems. 

In chapter 5 we look at various kinds of model error structures. We will show 
how these model error structures fit in a basic scheme with coprime factor 
models. 

PART B: Formalization: 
In chapter 6 the results of chapter 1 to 5 are combined. We show, that for a 
fixed model the true model error can be expressed systematicaly as a function 
of the model error structure, the chosen model ,the measured data, the noise 
bounding functions and some unknown scaled true noise matrix. 

In chapter 7 bounds are derived for a general model error, using knowledge 
of the noise sets. 

In chapter 8 we will consider the parametrization of the model, and its relation 
to optimality and optimization techniques. 

PART C: Optimization: 
In chapter 9 the optimization of the model in the case of a linear parametriza­
tion will be considered. We will show that this leads to a convex optimization 
problem. 
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Chapter 10 treats the evaluation of the models. 

PART D: Evaluation: 
In chapter 11 we will consider a case study. The identification of a multi­
variable laboratory process (a water vessel process) will be done. A linear 
parametrization (chapter 9) will be used and minimum model error bounds 
will be derived. 

Conclusions and remarks are given in chapter 12. 
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Figure 1.16: Succession of the chapters of this thesis 



Practical 
considerations 

2.1 Introduction 
In this chapter we will consider some preliminaries for the identification and 
we will make some practical considerations before we go on with a theoretical 
analysis. We start with a detailed set up where most disturbance sources are 
discussed. Disturbances caused by the sensors and actuators will be examined 
separately and uncertainty in the dynamics of the actuator will be modelled 
(Van den Boom et al. [59]). Next. this detailed set up will be reduced to a 
basic set up~ The identification will be placed in a deterministic setting and the 
noise and disturbance signals will be assumed to be bounded in the frequency 
domain by a known bounding function. The fact that only a bounding function 
is required means that exact knowledge about colouring of the disturbance 
signals is not necessary. We will consider the transform from the time domain 
into the frequency domain and the errors that can occur. 

29 
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2.2 Plant environment 
In this section we consider the industrial environment in which a plant is 
usually situated. Figure 2.1 gives a block scheme with 5 components: Plant, 
acturator, controller, input sensor and output sensor. 

Ym + ro 

Figure 2.1: Plant with actuator, sensors and controller 

The plant under study may be a multi-input multi-output system. The 
signal vector Upkmt will be the true physical input signal and allows us to 
control the plant. The physical output signal of the plant, in which we are 
interested is the signal vector Yplant· The signal vectors Ypla.nt and Upltmt 

are measured by sensors, devices that transform measured physical quantities 
into electrical signals. They are used to measure quantities like temperature, 
pressure, displacement and others. The actuator transform the electrical signal 
into a physical signal. 

The plant: We assume the plant to be a linear time-invariant finite dimen­
sional system. We will call this system the true process and we denote 
its transfer function by Pt(z). In practice, the plant may show some 
smooth non-linear behaviour or the dynamics may change in time. The 
part of the output signal that is caused by non-linear or time-varying 
behaviour, is seen as a part of the process disturbance. Consider figure 
2.2 

The true process Pt(z) is excited by the input signal Uplant• resulting in 
an output signal Yt· This signal Yt will be denoted as the true output 
signal. It is the part of the output signal Yplant• that is due to convolution 
of the input signal 'f.Lplont and the impulse response of the linear time­
invariant true process Pt( z ): 
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r·······---------, 
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~----------------~ 

Figure 22: Detailed description of the plant 

The part of the physical output signal Yp~.ant that is not explained by 
the true output signal Yt is denoted by the signal e,.. It represents the 
process disturbance and error-signals due to non-linear and time varying 
behaviour. 
The true process Pt(z) is the system that we will focus on. The trans­
fer function Pt(z) is unknown and in this thesis we consider a system 
identification method that yields a nominal model for the plant with 
minimum bounds on the model error. 

Actuator : The input signal up~.11nt is generated by an actuator. The input Ua 

of the actuator is known, because the reference signal and the output 
signal of the controller are available. 

~----------·-----~ I 
I 
I 

: ea 
I 
I 

'Upl.ant : 

Figure 2 3: Detailed description of the actuator 

The actuator can show a lot of dynamics within the bandwidth of the 
process. Usually the actuator can be studied in advance, and we can 
model it as a linear time-invariant system with a transfer function P11(z). 
If there is some uncertainty in this actuator model P11(z), we can rep­
resent this uncertainty in some model error structure, e.g. an additive 
uncertainty description as in figure 2.3. with an additive uncertainty 
6.11(z). An actuator disturbance signal ea may act on the output of the 
actuator. If the actuator is very fast and its dynamics can mostly be 
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neglected compared to the process dynamics, the transfer functions of 
Pa and Aa will become constant matrices. 

Input and output sensors: For the input and output sensors we can use the 
same modelling as for the actuator. 

• • : C.t 
• • 

ttm: 

I 
I 
I 
I 

: 'UpLmt 

I 
I : {., 
• 
I 

Ym: 

I I 

~----------------~ 

Figure 2.4: Detailed description of the sensors 

For the input sensor transfer we have a linear time-invariant model P n 
with the possibillity for an additive uncertainty A'", for the output sensor 
transfer we have a linear time-invariant model P 110 with the possibillity 
for an additive uncertainty A.0 • Finally we contribute the additive mea­
surement noise signals emi and emo, resulting in the measured input 
signal ttm and the measured output signal Ym· 

Controller : The process is stabilized by a controller K.(z). In the case of a 
stable process this controller may be K.(z) = 0. 

Reference signal : The closed loop is excited by a reference signal r 0 • Note 
that the reference signal affects the closed loop after the control op­
eration. If this is not actually the case, we can easily transform it to 
the scheme of figure 2.1 because the controller and reference signal are 
known: the reference signal then is filtered by K.(z) or a part of it. 

The set up, as presented here has the advantage that sensor and actuators 
are not necessarily incorporated in the plant. They are involved in the scheme 
as separate components and all error sources have their proper place. The 
choice of such a detailed set up will have some consequences. We will have 
to obtain more information about the noise and disturbances than in the con­
ventional stochastic identification methods, where a data set { ttm ( k), Ym ( k)} 
is sufficient Sensors and actuators will have to be examined separately to de­
termine the characteristics of the disturbances and to find the actuator transfer 
with its uncertainty. 

A nice way to describe the noise and disturbance signals is by using norm­
bounded sets, as will be discussed in section 2.4 . 
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2.3 Experimental set up 

In the previous section a detailed experimental set up was given. Parts of this 
detailed concept will now be reduced to a so called basic set up, as given 
in figure 2.5. This basic set up will be used in this thesis for the theoretical 
analysis and the identification method. 

Figure 2.5: Basic experimental set up 

The process Pt(z) is excited by a disturbed input signal ttt(k), resulting 
in an output signal Yt( k ). These signals are measured in the input signal u( k) 
and output signal y(k), with 

ut(k) tt(k) + dt(k) 
Yt(k) = y(k)- et(k) 
Yt(k) = Pt(r)ttt(k) 

The true process Pt(z) is assumed to be linear time-invariant. The true noise 
signals dt(k) and et(k) are unknown, but will be assumed to belong to a 
certain class (this will be discussed in the following section). 

The signals in the set up of figure 2.1 can be translated into the signals in 
the basic set up of figure 2.5, using the detailed descriptions of the components 
as in the figures 2.2, 2.3 and 2.4. 

About the output disturbance signal et : 
The measurement of the true output Yt(k) is the signal y(k). From figure 2.2 
and figure 2.4 we can derive 

Ym = P liO Yt + ( P,.o + A,.o) eP + AliO Yt + e .. o 

If the transfer function P.o is unimodular we can define 

y = P;;,t Yrn 
~ = (I+ P,.-;,1 AliO)eP + P,.-;,1 Aii0Yt + P.-;,1 e.o 

The signal et(k) is not known, but is assumed to belong to a certain set E. 
We now define the set 

Y = { ii(k) E IL2[0,2N- 1] 1 jj(k) = y(k) - e(k), e(k) E E} 
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So Yt(k) is in the set Y. 
Van den Boom et al. [59] show how Y can be found for an infinity-norm 
bounded set E. 

About the input disturbance signal dt : 
The true input signal Ut = Uptant is generated by the actuator, and with figure 
2.3 we derive 

and from figure 2.4 we see that the measurement of this input signal is equal 
to 

The interpretation of the input noise signal dt( k) depends on the question, 
which signal measurements are available, either um(k) or ua(k), or both. 

(1). Consider the case, where we only have the actuator input signal u 0 {k) 
available. We see from figure 2.3 that we can define 

U = PaUa 

dta ~aUa +ea 

The signal dta(k) is not known, but is assumed to belong to a certain set 
Da. We now define a set 

Ua = { iia(k) E JL2[0,2N- 1] I ila{k) = u(k) + da(k)' d..(k) E Da} 

So ttt(k) is in the set Ua. 

(2). Next consider the case where we only have the input measurement signal 
ttm(k) available. If we assume the transfer function Pili to be unimodular, we 
derive: 

P-1 
U = .i Um 

lit. = -P;i.1 ~nUt - (I+ P;i.1 ~.i)e.i 

The signal dt,.(k) is not known, but is assumed to belong to a certain set fi •. 
We now define a set 

0. = { u.(k) E JL2[0,2N- 1] 1 u.(k) u(k) + J.(k), J.(k) E fi.} 
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So ut(k) is in the set iJ ... 

(3). In the final case we have available the actuator signal Ua( k) as well 
as the measurement signal t~m(k). We know that ut(k) is in the intersection 
of the sets Ua and iJ .. , defined by the set iJ = Ua n iJ ... If we choose some 
fixed signal u( k) then we can define the set 

fi = { d(k) E L2[0t2N- 1] I d(k) = u(k) - u(k) t u(k) E (J} 

We know that Ut(k) is in the set (J and dt(k) = Ut(k)- u(k) is in the set fi. 
For the fixed signal u( k) we can make various choices. We can either choose 
u(k) = P,.i1(r) t~m(k) or u(k) = Pa(r)ua(k) or some interpolation between 
these two signals. If we fit the signal u( k) in 'the center' of the set iJ we are 
sure that the set fi is 'centered' around zero. This can be a nice feature if 
we want to describe the set fi in terms of norm-bounded sets, as will become 
clear in the next section. Van den Boom et al. [59] describe the set fi for 
infinity-norm bounded sets. 

2.4 Assumptions on the disturbances 
In an industrial environment many disturbance sources can be recognized. 
They can be modelled in two distinct ways: 

Stochastic disturbance : The disturbance is assumed to have a stochastic 
character and it can be described by a probability density function. This 
description can be very accurate if, for example, we consider noise due 
to natural processes, e.g. thermal noise, nuclear radiation noise. 

Deterministic disturbance: The disturbance is assumed to be fully deter­
mined by some non-stochastic cause. The causing signal may or may 
not be known. As an example we consider quantization errors (due to 
AD and DA converters), errors due to non-linearities in the sensors and 
actuators (like dead-zone in DC-motors, hysteresis) and errors with an 
oscillating character (like 50Hz interference of a power supply, fluctu­
ations in a flow due to a periodic pump). 

The choice of how to characterize the disturbance highly depends on the 
purpose of the identification. If we want a model of our process that is best in 
some probability sense, we can use a stochastic description of the disturbance. 
If we want to derive hard bounds on the model error, it is not convenient to 
choose a stochastic characterization of the disturbance, especially if we are 
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not sure that the noise signals will indeed satisfy the stochastic assumptions. 
In that case we can better use a deterministic description of the noise. 

Suppose the z-transforms of the measured time signals u(k), y(k) and the 
true noise signals dt{ k ), ~( k) are given by the spectra u( z ), y( z) and dt( z ), 
et( z) respectively. In the SISO-case, we can calculate the true process Pt( z) 
by dividing the true output signal Yt(z) by the true input signal u.e(z), leading 
to: 

Pt(z) = Yt(z) = y(z)- ~(z) 
u.e(z) u(z) + dt(z) 

An estimator for the true process is given by: 

P(z) = y(z)- ~(z) 
u(z) + d(z) 

where d( z) and e( z) are in the sets D and E. It is clear that, if we do 
not assume the magnitude of the signals dt(z) and et(z) to be bounded, the 
estimate P(z) for a specific z E C can take any value in the complex plane, 
so that whatever model error is considered, it will be unbounded. 

Considering this, a straightforward way of characterizing the disturbance 
is to assume the z-transforms of the noise signals to be bounded: 

where Wd(z) and We(z) are supposed to be known bounding functions (figure 
2.6). 

ldt(z)l 

llog(z)l -

Figure 2.6: True noise signal and bounding function 

Now we can define two noise sets D and E: 

D = { d(k) E JL2[0,2N- 1] lld(z)l $ !Wd(z)l , for z E C} 
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E = { e(k) E JL2[0,2N- 1] lle(z)l $.IW .. (z)l ' for z E c} 

It is clear that dt(z) E D and t!t(z) E E. 

Finally we have to make a few remarks: 

37 

• We only use an upper bound for the z-transform of the disturbance, so 
we do not need to know the colouring of the noise exactly. 

• The energy of the disturbance signals that are considered, depends on 
the length of the observation interval (2N). Consequently the functions 
Wa(z) and W,.(z) will depend on the number N. 

• If we have chosen for modelling the noise using Gaussian distributions, 
there is, strictly speaking, no upper bound on the z-transform of noise 
signal. However, in practice we can use a confidence interval for the 
magnitude in the frequency domain as a bound for the noise (e.g. 30'­
bound, or if we need a very secure bound we can take a 60'-bound). 

2.5 Signals and systems in the frequency 
domain 

Signals in the frequency domain : 
Experimental data is obtained by collecting a finite number of samples at 
t = kT from the reference signal r( k ), the input signal u( k) and the resulting 
output signal y(k). So the data {r(k), u(k), y(k)}, k = 0, .. , 2N- 1, is given 
in the time-domain. However, we would like to derive bounds on the model 
error in the frequency domain. Therefore the identification will be done in 
the frequency domain. 
For the transformation from the discrete time domain into the frequency do­
main we would like to use the z-transform. The z-transform however, is 
defined for time signals of infinite length, where as our signals are only given 
in the observation interval k = 0, .. , 2N - 1. If we pad the signals r( k ), u( k) 
and y(k) with zeros fork< 0 and k;:::: 2N, we can compute the z-transform. 
However, this can be a source of transformation errors, if the signals are not 
really zero outside the observation interval. We like to keep these errors as 
small as possible. To achieve this we have to design a suitable reference 
signal r(k). Furthermore we have to make careful choices for the sampling 
timeT and the length of the observation interval 2N. 
We consider the set up in figure 2.7 
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y r 

Figure 2.7: Experimental set up 

First the noiseless case ( dt; = 0 and et = 0 ) : 

Yt(k) = Pt(T)(I + K(T)Pt(T))- 1r(k) 
Ut(k) =(I+ K(-r)Pt(-r))-1r(k) 

Assume that ws is the bandwidth of the original continuous time system 
P ct(iw) and that we have chosen a sampling time T « w';,. Further, let 
l = max(lbl2), where 11 is the length of the impulse response h1 (k) of 
Pt(z)(I + K(z)Pt(z))-1 and 12 is the length of the impulse response h2(k) of 
(I +K(z)Pt(z))-1• It is a well-known fact that systems with a finite bandwidth 
as well as a finite impulse response length do not exist. In practice, however, 
we can determine ws in such a way that the magnitudes of the transfer function 
Pct(jw) of the system is attenuated sufficient enough for higher frequencies 
(w > ws) and we can determine l in such a way that the impulse response 
will be approximately zero for k > l. Then we choose the length of the 
observation interval 2N » l. 

We make a reference signal with r(k) = 0 for k < 0 and r{k) = 0 
for k ~ 2N- l, so the z-transform of r(k) will be exact. By choosing 
this reference signal we make sure that in the noiseless case u( k) = 0 and 
y(k) = 0 for k < 0 and for k ~ 2N, so that the z-transform does not 
introduce any errors (figure 2.8). 

If noise is present, the signals dt;(k) and et(k) will introduce errors at the 
begin and at the end of the observation interval. In. the configuration of figure 
2.8 the signals u(k) and y(k) can be derived: 

where 

y(k) = S1(-r)Pt(T)r(k) + St(T)Pt(T)dt;(k) + St(T}et(k) 

u(k) = S2(-r)r(k) + S2(-r)K(-r)Pt(T)dt;(k) + S2(-r}K(-r)~(k) 

St(-r) = (I+ Pt(r)K(T))-1 

S2(-r) (I+ K(-r)Pt(-r))-1 
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r(k) 

u(k) 

y(k) 

0 2N-l 2N 

Figure 2.8: Observation interval for signals r(k), u(k) and y(k) 

Now define 

h1 ( k) is the impulse response of 51 ( z )Pt( z) 
h2 ( k) is the impulse response of 51 ( z) 
ha(k) is the impulse response of S2(z)K(z)Pt(z) 
h4 (k) is the impulse response of S2 (z)K(z) 

with length l1 

with length l2 
with length la 
with length l4 

The input and output signal at time t = kT with k 2: 0 are partly due to the 
noise signals at time t = kT with k ~ 0. We denote these parts of y( k) and 
u(k) by Yt.(k) and ut.(k) respectively, and we derive 

lt 12 

Yt.(k) = L ht(n) dt(k- n) + L h2(n) et(k- n) 
n=lc 

b t .. 
ut.(k) = 2: ha(n) dt(k- n) + 2: h4(n) et(k- n) 

In an analogous way, the noise signals at timet= (2N +k)T with k ~ 0 have 
a response in the input and output signals at timet= (2N + k)T with k 2:: 0. 
We denote these parts of y(k) and u(k) by Ye(k) and u.,(k) respectively, and 
we derive 

~ ~ 

Ye(2N + k) = 2: ht(n) dt(2N + k- n) + 2: h2(n) ee(2N + k- n) 
n=lc n=lo 
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b ~ 

U 11(2N + k) = L: ha(n) dt(2N + k- n) + L: h4(n) ~(2N + k- n) 
n=lc 

So that the errors in z-transform for the input and output signal become: 

mA!(l1.b) 

~(z) L: (Y&(k) z-lc + Ye(2N + k) z-(2N+Ic)) , z E C 
lc=l 

-(1$,~) 

e.,.(z) = L: ( ut,(k) z-lc + u,(2N + k) z-(2N+Ic)) , z E C 
lc=l 

With some additional a priori knowledge we could compute an upper bound 
for these errors. However we will assume that the noise will not be too big 
and that N » l, so that the error in the z-transforms of u(k) and y(k) due to 
dt(k) and ee(k) will be negligible. 

The assumptions about the length of impulse response of the various trans­
fers can always be verified afterwards. See chapter 11. We substitute the final 
model P(z) for the true process Pt(z) and determine the lengths lh l2, 13 and 
14• Of course this check will only be valid if the final model is close enough 
to the true process. 

Systems in the frequency domain : 

• We are interested in bounds on the model error 6(z) in some model 
error structure. In this thesis we will derive an upper bound for the 
matrix norm of the model error at specific frequencies: 

ll6(za) 11 :S "'t(zi) where Zi E 0 

However, the goal of the work is to find an upper bound for the contin­
uous frequency domain: 

ll6(z) 11 :S "Yc(z) for all z E C 

Now let the impulse response of 6( z) be denoted by htl. ( k ), k 0, .. , oo. 
If we can guarantee that htl.(k) = 0 for k > ltl. where ltl. « N, then 
we know that 6(z) will be a smooth function over 6(Zi), Zi E n. If 
we define a smooth interpolated function "'tc(z) for "Y(zi) it is clear that 
exist a very small 'IJ ~ 0 such that 
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11 A(z) 11 :5 "Yc(z) + 7'J for all z E C 

This phenomenon can be explained by the duality of frequency domain 
and time domain. If we sample a continuous time signal with a sam­
pling frequency that is much larger than the bandwidth, then a smooth 
interpolation of the sampled signal will return the original continuous 
time signal very accurately. In the same way, if we sample a continu­
ous frequency response in 2N points over the unit circle, where 2N is 
much larger than the length of the corresponding impulse response, then 
a smooth interpolation of the sampled frequency response will return the 
original continuous frequency response very accurately. 

• In the case of an additive model error structure the finite length constraint 
on the model error impulse response h6 (k) = 0 fork > l6 , l6 « N 
can be translated in a constraint on the impulse response ht( k) of the 
true process and the impulse response h(k) of the model: A sufficient 
condition for 

ho.(k) = 0 for k > lo., lo. « N 

is the condition 

ht(k) = 0 and h(k) = 0 for k > lo. where lo. « N 

For the other model error structures equivalent conditions on a smooth 
interpolation can be derived. 

• If we have a bound on the tail of the impulse response of the model 
error, we can find bounds on errors in the infinity-norm and two-norm 
(see section 1.1). If we have the assumption 

00 

2: 11 ho.(k) 11 :::; €o. 
k=l.t~. 

then the errors in the infinity-norm and the two-norm, caused by ne­
glecting the tail are always smaller than this value €6 . 

So, even if the impulse response of the model error is not exactly zero 
for k > l6 , but the tail contribution of the impulse responses is small 
enough, we can neglected the error for practical use. 
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Resuming : When we choose the length 2N of the observation interval for 
the measurements, we will have to satisfy 

where 

l1 « 2N 
l2 « 2N 
lb.« 2N 

l1 is the length of the impulse response 

ht(k) of Pt(z)(J + K(z)Pt(z))-1 

12 is the length of the impulse response 

lb. is the length of the impulse response 

In chapter 10 we will discuss how to get an indication whether the assumptions 
on the length of the impulse responses are realistic or not. 



Identification of 
SISO-systems 

3.1 Introduction 
In this chapter an exploratory study will be done to get some insight into the 
identification techniques, which result in a bound on the model error. For 
simplicity we will restrict ourselves to SISO-systems, and we will only con­
sider an additive and a multiplicative model error structure. 

Consider the set up of figure 3.1 where a SISO linear time-invariant 'true' 
process Pt(z) is excited by an unknown true input signal Ut(z) that results in 
an unknown true output signal Yt( z ). The true input and output signals are 
perturbed by additive noise, dt{z) and 4(z) respectively. 

We have a dataset { u( z) , y( z) } with z E C and we have descriptions of 
two sets for the noise signals in the frequency domain: 

D = { d(k) E JL2[0,2N 1] liJ(z)l SIWJ(z)l, z E C} 

E = { e(k) E JL2[0,2N- 1] lle(z)l $ IW.,(z)l' z E c} 

43 
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Figure 3.1: Basic experimental set up with additive model error 

and we assume that dt(z) E D and et(z) E E. 

Now we concentrate on two problems, the additive model error optimiza­
tion problem and the multiplicative model error optimization problem: 

Additive model error optimization problem: 
Find a model P(z) in a given model set P such that the H 00-nonn of the 
weighted additive model error 

A,.,t(z) = Pt(z) - P(z) 

is minimized, so: 

inf 11 W6(z) A...,t(z) I loo 
PeP 

for some given weighting filter W6 (z). 
To make sure that the additive model error is stable, we assume that the true 
process Pt(z) and the model P(z) are stable. 
Because of the disturbance signals d( z) and e( z ), we will not be able to deter­
mine the true process Pt(z) exactly and thus we cannot compute the H 00-nonn 
of the model error. We will show that with the use of the noise sets D and E 
we are able to calculate an upper bound for the H 00-nonn of the model error. 
Instead of minimizing the H 00-nonn itself we will minimize the upper bound 
for the H 00-nonn of the model error. 

Multiplicative model error optimization problem: 
Find a model P(z) in a given model set P such that the H 00-nonn of the 
weighted multiplicative model error 

Am,t(z) = ( Pt(z) 

is minimized, so: 

inf 11 W6{z) Am,t(z) lloo 
PeP 
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To make sure that the multiplicative model error is stable, we assume that the 
true process Pt( z) and the model P( z) are both stable and minimum-phase. 
In the same way as in the additive model error case, we will minimize an 
upper bound for the H00-norm of the model error, in stead of minimizing the 
H00-norm itself. 

The first step in the identification procedure is to derive uncertainty regions 
for the system dynamics in the complex frequency plane. The second step 
will be to find an approximate model that is optimal in the sense that the upper 
bound for the weighted additive model error or the weighted multiplicative 
model error is minimized. 

3.2 Derivation of uncertainty regions 
From figure 3.1 we can easily see that 

Ut(z) = u(z) + dt(z) and Yt(z) = y(z) - et(z) 

However, we do not know the signals dt(z) and ~(z), we only know that they 
belong to fi and E respectively. Therefore we define the following sets: 

iJ = { il(k) E JL2[0,2N -1] I il(z) = u(z) + d(z) , cl E fi, z E C} 
Y={il(k) E1L2[0,2N 1] lti(z)=y(z)-e(z), eEE, zEC} 

For all it E iJ we have 

lil(z) - u(z)l ~ IWa(z)l , z E C 

and for all y E Y we have 

lti(z) - y(z)l ~ IW.,(z)l , z E C 

Note that Ut E ir and Yt E Y. 

Now we like to have an estimate for the true process: 

Pt(z) = Yt(z) / ttt{z) 

Therefore we define the following set: 
The set of unfalsified systems is the set with systems P E RIP. that do not 
falsify the measured data and the noise bounds. So we consider the functions 
P(z) y(z)/il(z) for all il(z) E iJ and y(z) E Y (where we assume that 
il( z) =f. 0, for all z E C). This means that we deal with a persistently exciting 
input Ut(z) and a sufficiently small input noise signal d(z). Note that the true 
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process Pt(z) is an element of the set P. 

Remark: From now on in this section we will consider all signals and func­
tions for a specific frequency. Therefore we will use a simplified notation (i.e. 
11 in stead of 11(z), jj in stead of jj(z)). Now the sets D, E, Y and U will be 
restricted to one disk in the complex plane for that specific frequency. 

To derive a representation of the set P we will need an auxilary set X with 
signals i = 11-1 for all 11 E U. 

Theorem 3.1: 
Suppose U is the set of signals 11 satisfying I 11-u I :::;: IWdl• where we assume 
I 'U I > I Wdl > 0. 
Then the set X with signals i = 11-1 for all 11 E U is given by the disk: 

X = { i I I i - 'U~ w • I :::;: uu* - d d 
0 

The proof of this theorem is in appendix A 1. 

This means that the set X is represented by a disk in the complex plane, 
like the sets U and Y. For an easier notation we use: 

deJ 
a: = 

uu* 

u* 
and we get 

In figure 3.2 the sets iJ, Y and X are shown in the complex plane for 
one frequency sample. As an example we can take d and e as white Gaus­
sian noises and let the bound be given by the 3u-bound (see section 2.4). 
One thousand realizations of these disturbances have been presented by points 
in figure 3.2. In that way the point density indicates the probability of the 
expected signal values. Note that the point density in the set X is not con­
centrated around the center a:, but around a point, that is closer to the origin. 
This specific point is u-1• 

So we now have the sets Y and X as 

y = { jj = y( 1 + ayef<~>), 0:::;: 4> < 21r, 0:::;: ay :::;: '~i' } 
x = { i =a:( 1 + a..e-1"'), o:::;: 1/J < 21r, o:::;: a..:::;: 17uj1 

} 
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Re··> 

Figure 3.2: The sets iT, Y, X and Pin the complex plane. 

We can derive a representation for the set P with transfer functions P by 
multiplying all elements ii E Y with all elements i E X. This results in 

P = { P = ya:( 1 + aye-14>)( 1 + aue'V'), 

IWel !Wt~l o::::; ~ < 211', o::::; t{J < 211', o::::; ay :::;!Yf, o ::::; au ::::; Tuf } 

This is a region which typically is shaped like a bean, as will be analysed by 
means of figure 3.4. The next step will be to calculate a boundary function 
for the region. 

First note that P( ay, au, ~~ 1/J) for specific values of ay, au, ~ and 1/J will 
only be a boundary point if ii( ay, ~) and ii.( a.., 1/J) are also both boundary 
points. So we have to fix 

de/ IWel 
ay=r =!Yf 

and we obtain 

and 

so the problem reduces into finding the boundary function of the function 
h(~, t{J) = ( 1 + re-'4>)( 1 + sei"'). 
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Theorem 3.2: 
Let r and s be real constants with 0 < r < 1 and 0 < s < 1. 
The boundary of the region with points h( </J, ,P) = ( 1 + rei~~>)( 1 + se'"'). 
where 0 ~ <P < 211", 0 ~ ,P < 211", is given by the function: 

2 
·.p r 2i1/J h,(,P) = 1 + s e1 + 2( e - 1) + 

+ r ~ ..j'--r-2-s-in_2_,P_+_2_s_cos __ 'f/J_+_1_+_s_2 

where 0 ~ ,P < 211". D 

The proof of this theorem is given in appendix A2. 

The boundary of region P becomes: A( ,P) = y :c h,( ,P ). 
In figure 3.2 the region P is given. Also shown in the figure is the result of 
the 1000 original random realizations of d and e, concentrated around yfu. 

The boundary function J\( ,P) is not a nice function to work with. Therefore 
we will try to derive a disk in the complex plane that encloses the region P. 

A simple circular bound (not the smallest) for the set P can be derived 
very easily. 
Define: 

Pet = y:c and 

rcl = I p I ( IWdl IWel IWdWel) 
cl lul + IYI + luyl 

= I Pet I ( r + 8 + rs ) 

Then the following will hold for all </J, ,P, a, and au 

IY :c ( 1 + a,ei<~>)( 1 + cruel"') - y :c I = 

So an enclosing set Pet 2 P with elements Pc1 can be given as: 

P cl = { Pet = Pet + a., e}', 0 ~ (J < 211", 0 ~ Oc ~ r cl } 

The set Pc1 will enclose the set P very tightly as long as 
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IWal IWel 
~ = s < 1 and lYf = r « 1 

If these values increase then the enclosing will be less tight 
This 'simple' enclosing set is easy to calculate and will be satisfactory in 

most cases. If this enclosing set is too conservative, we will have to find the 
smallest circular enclosing set P c2 for the set P. In other words, we like to 
find the smallest enclosing circle for the set P. 

Before we derive this smallest enclosing circle we will consider a special 
point on the boundary, namely the point where Im{h(<P,t#)) reaches its max­
imum value. 
Because that point is a boundary point, we know from appendix A2 that the 
following will hold: 

8h(<P,?#) = 8h(<P,?#) C "th C. ER aq, 8t# o. Wl o 

In the case of a maximum of Im( h( q,, t/J)) the vectors in Fig.A.l (Appendix 
A2) will be parallel to the real axis, and so: 

oh(</>,1/J) E R and 
aq, 

leading to 

Im ( oh~t/J)) = r cos <P + r8 cos( 4> + t/J) = 0 and 

Im (oh~ tP)) = 8 cos tP + r8 cos( 4> + tP) = 0 

This results in the condition 

r cos 4> = 8 cos t/J = -r8 cos( 4> + t/J) 

Suppose ( </>o, t/J0 ) satisfies the condition and let it be the solution correspond­
ing to the maximum. Then, because of the symmetry around the real axis, 
( -</>o, -t/J0 ) is the solution corresponding to the minimum. Define: 

eo = Re( h( </>o, t/Jo)) E 1R and Po = Im{ h( </>o, t/Jo)) E R 

then we can formulate the following theorem: 

Theorem 3.3: 
Let <J>o, 1/Jo, eo and p0 be defined as above. 
Then 
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1. The circle, with centre point eo and radius p0 , is the smallest enclosing 
circle of h( 4>, 1/J ). 

· 2. An enclosing set Pc2 2 P with elements Pc: can be given as: 

where Pc2 yx eo and rc2 = jyzj Po. 

D 

The proof of the first part of the theorem is in appendix A3. The second 
part is obvious with the result of the first part. 

Re··> 

Figure 3.3: The sets P, p cl and p c2 

In figure 3.3 the set P from figure 3.2 is given with its enclosing sets P cl 
and Pc~· It is clear that the results of the random realizations do not lead to 
a clustering around the centre of the region (Pc1 or Pc2). Consequently in 
expectation, the centre of the region is not necessarily close to the real system 
transfer for the specific frequency. 

In figure 3.4 the bounding function P,( 1/J) is given for different values of 
rand s (where we fixed y = 1 and u = 1), together with the enclosing circles 
Pet+ rctei' and Pc2 + rc2ei'. 
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1J · · · t· · · · · · ·· · · · · · · ~ ···~;;_,....~ !..-.-----..s ,. ·"" 

.... I ........... i>:-o.....~=r=-""'·-.-~12~---···· 
.] 

Figure 3.4: The sets P ( ---) , Pc1 (---) 
for various r and 8 : 

Left upper: r = 0.5, 8 = 0.5. 
Right upper: r = 0.8, 8 = 0.5. 
Left lower: r = 0.5, 8 = 0.8. 
Right lower: r = 0.8, 8 = 0.8. 

3.3 Optimal H00-fitting 
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and Pc2 ( · · ·) 

So far we only derived uncertainty regions for the true process. In this section 
we will look for an optimal nominal model that fits in the uncertainty regions, 
and we will consider the optimization of a parametric model in the sense that 
it minimizes the upper bound of the H00-norm of the weighted additive model 
error or the weighted multiplicative model error. 

We define a model set P with the models P( 8, z ), where 8 E 9 is a vector 
with the model parameters. Of course we can choose many different types of 
models like ARMA, state space models, minimum polynomial models etc. 

When we are interested in additive model errors we define a set of all 
candidate model errors 

Beca~se H(z) E P we note that the true model error aa,t{z) will be in this 
set ..4 a· In fact we would like to minimize the H00-norm of the true model 



52 IDENTIFICATION OF SISO-SYSTEMS 

error <IIA.,t(z)lloo) over all admissible models in the model set P. However 
in the presence of input and output noise we can only give an upper bound: 

inf ll.6.a,t(z)lloo S inf sup ll~a(z)lloo = inf sup IIF(z) - P(z)Jioo 
PeP PeP PeP PeP PeP 

The McMillan degree of the model P( fJ, z) is usually fixed, whereas the set P 
contains high order systems. So, in a sense, we solve a parametrized model 
approximation problem. 

When we are interested in multiplicative model errors we define a set of 
all candidate model errors 

- { - - P( z) - P( z) - - } ..4 m = .6.m(z) E RHoo J.6.m(z) = P(z) , PEP, PEP 

Beca!:lse Pt(z) E P we note that the true model error .6.m,t(z) will be in this 
set ..4 m· Again, in the presence of input and output noise we can give an 
upper bound: 

inf ll.6.m,t{z)lloo S inf sup lliim(z)lloo = inf sup 11 F(z~{ ~(z) lloo 
PeP PeP PeP PeP PeP z 

To emphasize specific frequency ranges we can introduce a (stable and 
minimum phase) weighting filter W~(z) and we can minimize the H00-norm 
of the weighted model error: 

or 

inf IIW~(z).6.a,t(z)lloo S inf sup IIW~(z)iia(z)lloo -
PeP PeP PeP 

= inf sup IIW~(z)(P(z) - P(z))lloo 
PeP PeP 

= inf sup IIW~(z)( F(z)P-1(z) 1 )lloo 
PeP PeP 

Now the problem of deducing upper bounds of the model error is reduced 
to a min-max problem, but with the use of the approximate set P., (either Pc1 
or P.,2) we can write: 
For the additive model error: 
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inf sup IIW4(z){P(z) - P(z)}ll .... ~ 
PeP PeP 

inf sup IIIW4(z)I·IFc(z) - P(z)llloo = 
PeP :P.eP. 

inf IIIW4(z)j (IPc(z) - P(z)i + rc(z)) lloo 
PeP 

For the multiplicative model error: 

inf sup IIW4(z)( F(z)P-1(z) - 1 )!loo < 
PeP PeP 

inf sup IIIW4(z)l·l Fc(z) p-1(z) - 1 llloo = 
PeP P.eP. 

inf IIIW4(z)l (lPc(z) p-1(z) - 1 I+ rc(z) IP-1(z)l ) lloo 
PeP 
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Then we define the upper bound of the model error for a model with parameter 
vector 8 and for a frequency z E C as 

"Ya,maz(8,z) = IPc(z) - P(8,z) I +rc(z) 
"Ym,maz(8,z) = IPc(z)P- 1(8,z) - 11 + rc:(z) IP-1(8,z)l 

Now the final problem we like to solve becomes: 
For the additive model error: 

inf IIIW4(z)l (IPc(z)- P(8,z)l +rc(z)) lloo = 
tJe8 

inf 11 W4(z)"Ya,maz(8,z) lloo 
tJe8 

For the multiplicative model error: 
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inf 11 WA(z)"Ym,ma.e(9,z) lloo 
9e8 

IDENTIFICATION OP SISO-SYSTEMS 

The problem turns out to be the minimization of the B 00-norm of a func­
tion WA(z) "Ya,ma.e(8, z) or WA(z) "Ym,ma.e(B, z) over all admissible 9. Here we 
find the major drawback of using an B 00-norm, namely that the cost-criteria 
W A ( z ha,maz ( 8, z) and W A ( z) "Ym,ma.e( 8, z) are not differentiable. This means 
that we can not directly use a gradient method to search for the minimum. 
We can solve the problem by using methods which do not need a gradient, 
e.g. simplex methods. The problem, however, with these methods is that 
convergence is not guaranteed if the initial value of 8 is far from the optimal 
value. In that case we can use estimations from preliminary identifications as 
initial values. 

3.4 Simulation example 
In this section we present a simulation example. 
A second order simulation model 

z2 1.1 z + 0.24 
Pt = 

z2 - 1.6z + 0.68 

in a configuration of figure 3.1 is excited by an input signal u(k) and we 
measure the output y(k). A Bode-plot of Pt(e3"') is given in figure 3.5. 

Input signal u(k) is generated for 1024 samples and approximately has a 
flat spectrum I u(z) I RJ 30. Care has been taken that -4 :5 u(k) ::;: 4 and 
that u(k) = 0 for k 1, .. , 100 and k = 924, .. , 1024. (fhe length of 
the impulse response is less than 100 samples, see remarks in section 2.4). 
The control input and measured output signal are corrupted by additive white 
Gaussian noise d( k) respectively e( k ). Wd( z) and W .. ( z) are the 3u-bounds in 
the frequency domain, and so they are constants. This results in the following 
values for the noise to signal ratios: 

and lW .. I 
!y(z)i ::;: 0.16 

We do a simulation experiment and obtain a data-set { u(k) , y(k) }. For 
these noise-levels and for this choice of control signal u(k) the errors due 
to the z-transform of u(k) and y(k) are negligible. The computations for 
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frequency --> 

Figure 3.5: Bode plot of true process Pt( ~) 

the model error bounds will only be done on a limited number of frequency· 
points z. on the unit circle. We choose a frequency set 0 = { z1 , Z2, .. zN} with 
z = e!"'• where wi = i1r /512, i = 1, .. 512. 
For all frequencies z. we calculate Pc(z.) and rc(z.), using the simple circular 
bounds 0 1, and we get the regions as in figure 3.6. 

We will first consider an additive model error structure and so we must 
optimize the function 

"'(opt = inf 11 WA(z)"Ya,-(8,z) lloo 
se8 

where the weighting filter is chosen W 4 ( z) = 1 . 

In a first run we choose as a model set P all first order functions 

P( z) = 82 z + fis 
z + fit 

so Pt( z) is not in the model set P . 

~ find an o~W 0• ~ [ :: ] = [ -HE ] where ~. ~ 0.936. 

In figure 3.7 the plots of the true process Pt(z), the optimal model P(z) 
and the region centre points Pc(z) are given in the complex plane. 
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Re--> 
Figure 3.6: Uncertainty regions in the complex plane. 

Now we define three functions: 

ia,maz(O,z) 

ia,med(O,z) = 
I Pc(z)- P(O, z) I+ rc(z) 

I Pc(z) P(O,z) I 
"Ya,min(O,z) - max( 0, I Pc(z)- P(O,z) 1- rc(z)) 

3 

The function "Ya ma:~~( 0, z) gives an upper bound for the model error, the func­
tion "Ya,min( 0, z ), is the minimum distance between P( z) and P( z) and so gives 
a lower bound. The; function ia,med( 0, z) gives the distance of P( z) to the 
centre of the regionP(z) and is centered between the upper and lower bounds. 
In figure 3.8 the functions ia,maa:(O,z), ia,mea(O,z), ia,min(O,z) and the true 
model error I ~.t(z) I are plotted for the estimated model. In this example the 
lower bound "Ya,min( 0, z) is for nearly all frequencies larger than zero, which 
indicates, that the nominal model, that is found, cannot describe the system 
accurately. Note that these 'estimates "Ya,maz• "Ya,med and ia,min can always be 
calculated and be used for defining a weighting filter W A in a next iteration. 
If we want a better model for higher frequencies we choose a filter that will 
emphasize the error in the higher frequencies, so W A ( z) is large for higher 
frequencies, and will be small for the lower frequencies. Therefore we define 
a highpass filter as a weighting filter 

WA(z) = z + 0.16 
z + 0.7 
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-- [ :1: l For this choice of weighting filter we find 8apt : 

where "Yapt = 1.031. 

In figure 3.7 and figure 3.8 give the results for the estimated model. Compar­
ing the curves of the unweighted case in figure 3.8 with the weighted case in 
figure 3.9 we can see that the model error decreased very much for the higher 
frequencies, with the cost of a small increase at the lower frequencies. 

If we want a better model for the lower frequencies we can choose a lowpass 
filter as a weighting filter 

WA(z) = z + 0.7 
z + 0.16 

For this choice of weighting filter we find Bopt -- [ (}:1: l 
where "YtJPt = 1.165. 

In figure 3.7 and figure 3.10 give the results for the estimated model. It 
is clear that the model did not improve very much for the lower frequencies, 
on the other hand it got much worse for the higher frequencies. We conclude 
that approximating the true process by a low order model is much more dif­
ficult for the lower frequencies than for the higher frequencies. 

In a second run we choose as a model set P all second order functions 

P(z) = Oaz
2 + 84z + 8s 

z2 + 81 z + 82 

so now Pt(z) is in the model set P, and as a weighting filter W.1(z) = 1 . 

81 -1.589 
62 0.679 

We find an optimal 8apt = 8a 1.021 where "Yapt - 0.536. 
84 -1.116 
Os 0.259 

Figure 3.7 and figure 3.11 give the results for the estimated model. The 
lower bound "Ya,min( 6, z) in this example is exactly zero, which indicates, that 
the found nominal model might indeed describe the system exactly. 

In a third run we choose as a model set Pall third order functions 
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64 z3 + 6sz2 + 6ez + 81 
P(z) = z3 + 61z2 + 62z + 8a 

so Pt(z) is in the model set P, and as a weighting filter W4(z) 1 . 

61 -1.610 
82 0.703 
6a -0.0101 

We find an optimal 6opt = ()4 = 1.038 where "Yopt = 
6r, -1.157 
66 0.261 
61 0.0063 

0.535. 

Figure 3.7 and figure 3.12 give the results for the estimated model. Also in 
this case the lower bound "Ya,min(6, z) in this example is exactly zero. How­
ever, the upper bound for the model error is not decreased much, so it looks 
as if a second order model will satisfy in this case (as could be expected). 
The parameters 63 and 67 are both nearly zero, resulting in a nearly pole-zero 
cancellation at z = 0. 

Finally we consider a multiplicative model error structure and we optimize 
the function 

""fopt = inf 11 W4(z)"Ym,ma~t(8,z) lloo 
Be8 

where we choose a low pass filter as weighting filter 

W4(z) = (z + 0.16)2 
(z - 0.5)2 

As a model set we choose a second order model 

63 z2 + 64 z + 65 
P( z) = z2 + 81 z + 62 

and we find the optimal 6opt 

"Yopt = 1.285 

= 

-1.629 
0.702 
0.985 

-1.122 
0.266 

where 

In figure 3.7 and figure 3.13 give the results for the estimated model, where 
we defined the three functions: 

"Ym,ma:c(6,z) = 1Pc(z)P-1(8,z) -11+rc(z)IP-1(6,z)l 

"Ym,med(8,z) = 1Pc(z)P-1(6,z) - ll 
"Ym,min(6, z) = max ( 0 1 IPc(z) p-1(6, z) -11 - rc(z) I p-1(6, z) I) 
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Again, the function "Ym,,_.,(9,z) gives an upper bound for the model error, 
the function 'Ym,min( 9, z) gives a lower bound, and the function 'Ym,met~( 9, z) 
is centered between these bounds. 

3.5 Conclusions 

In this section we considered the identification of SISO-systems in terms of a 
minimum additive and multiplicative error bound. We calculated uncertainty 
regions and fitted the model in H00-norm sense. We have to make sure that 
the signal-to-noise ratio is sufficiently small, otherwise the model error bounds 
will become very large, or the proposed method will even fail. 

Minimum, maximum and medium errors give an indication about the adap­
tation of the weighting filter W 4 ( z) in a next iteration step, and whether the 
model could represent the system. 

With respect to the choice for an additive or a multiplicative model error 
structure, we like to make a remark: An additive model error can easily be 
transformed into a multiplicative model error, and vice versa, by choosing 
Aa(z) = P(z) Am(z), where P(z) is the nominal model. So by choosing 
WA,m = WA,a P(z) we get: 

However, a minimization with a multiplicative error structure we will gener­
ally give another optimal model P( z) than if we minimize with an additive 
model error structure. 

The model error bounds are computed on a finite number of frequencies. 
However, true process Pt and the considered models P had all an impulse 
response with length smaller than 100 samples. We can use a simple interpo­
lation technique to find a bound over all z E C. 
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0 0.5 1.5 2 2.5 

Re--> 

Figure 3.7: Pt(z), P(z) and various models Pc(z) in the complex plane: 

a : Additive model error: 
1st order model without weighting. 

b : Additive model error: 
1st order model with weighting on higher frequencies. 

c : Additive model error: 
1st order model with weighting on lower frequencies. 

d : Additive model error: 
2nd order model without weighting. 

e : Additive model error: 
3rd order model without weighting. 

f : Multiplicative model error: 
2nd order model with weighting on lower frequencies. 
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0.5 1.5 

frequency --> 
2 

61 

2.5 3 

Figure 3.8: True additive model error with bounds (1st order, no weight) 
At{-),"'(......,(---), "YtMd(• • ·), "Ymin(- • -). 

0.5 1.5 

frequency --> 

2 3 

Figure 3.9: True additive model error with bounds (1st order, high freq. 
weight) At(-),;......,(---), imed(· • ·), imin (- ·-). 

Figure 3.10: True additive model error with bounds (1st order low freq. 
weight) At (-) , ;......, ( ---) inoed ( · • ·) imin (- ·-) · 
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0.5 1.5 

frequency --> 
2 2.5 

Figure 3.11: True additive model error with bounds (2nd order) 
at(-), -r-(---), and-rme<~(· ··). 

3 

0.6r-----r----.-----r-----,c-----r----.--, 

0.5 1.5 

frequency --> 
2 2.5 

Figure 3.12: True additive model error with bounds (3rd order) 
at(-), 'Ymo:e (---), and 'Ymed ( ••• ). 

3 

0.6 ..... " .••••• ".j-••••• ., ••••.••••••.•• ··~· .• 

0.5 1.5 

frequency --> 
2 2.5 3 

Figure 3.13: True multiplicative model error with bounds (2nd order) 
at(-), ..,_ (---), and 'Ymed ( ••• ). 



Multivariable 
systems 

4.1 Introduction 

In the previous chapter an identification procedure was presented for SISO­
systems that resulted in a nominal model with bounds on the additive or 
multiplicative model error. In practice, however, most industrial processes are 
multivariable systems with various input and output signals. In this chapter 
we will discuss how to set up experiments for the identification of MIMO­
systems. 

__ Y ___ e~1~.---Y_t;---P.-t~~u_t __ ~!~ u 

Figure 4.1: M/MO experimental set up 

63 
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In figure 4.1, the process Pt(z), with p inputs and q outputs, is excited by a 
true input signal ut(z), resulting in a true output signal Yt(z). These signals 
ttt(z) and Yt(z) are corrupted by dt(z) and et(z) respectively and measured in 
the input signal u( z) and output signal y( z ), with 

ut(z) u(z) + dt(z) 
Yt(z) = y(z)- et(z) 
Yt(z) Pt(z)ut(z) 

So u(z), ttt(z) and dt(z) are p x 1 vectors, y(z), Yt(z) and et{z) are q x 1 
vectors, Pt( z) is a q x p matrix. The true process Fe{ z) is assumed to be linear 
time-invariant. The true noise signals dt(z) and et(z) are unknown, but will 
be assumed to belong to a certain class. We consider all signals for all z E C. 

4.2 Multiple Experiments 

In the SISO-case we only did one experiment. We measured the input and 
output data and we applied the discrete Fourier transform to obtain the fre­
quency signals y(z) and u(z). Together with the input and output disturbance 
signals dt(z) and et(z) we derived: 

Pt(z) = Yt(z) = y(z)- et(z) 
Ut(z) u(z) + dt(z) 

In the MIMO-case however the input signal ttt(z) will be a p x 1 vector, and 
so we can not just divide Yt(z) by the signal Ut(z) to obtain the true process 
Pt(z). The input signal ut(z) contains some 'directional' information. By 
only exciting the system Pt(z) with one signal vector ttt(z), we will not be 
able to determine all dynamics of the system with all internal interactions by 
only observing the output. This can be understood by the following. 

Suppose Pt(z) = P1(z) + P2 (z), where we choose this partitioning 
such that Ut(z) in in the null-space of P2{z), so P2(z)ut(z) = 0. There is no 
response in Yt(z) due to the part P2(z), so by only exciting the process by 
the signal ut(z) we will not be able to give an estimate of the magnitude of 
P2(z). So even if we find a bound for the model error of the part P1 (z), we 
still do not have a bound for the total model error. 

One way to solve the problem is to fix the structure of the model and 
assume that this structure is valid for Pt( z ). For most practical cases this can 
only be done in an approximate way or it is even impossible. 

Another solution, we introduce here, is to do multiple experiments, where 
we change the 'direction' of the input signal ut(z) for every experiment. To 
excite all dynamics of the system Pt(z) we will have to do a number of 
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experiments that is equal to the number of inputs: 
We do p experiments where we measure the input and output signal. Now 
index the signal vectors, corresponding to the i·th experiment, as Ui(z), uu(z), 
dti(z), y,(z), Yti(z) and en(z). Then we can construct the following matrices: 

U(z) =[ u1(z) u2(z) u,{z) 
Ut(z) =[ Utt(z) Ua(z) tttp(z) 
Y(z) =[ Yt(z) Y2(z) y,(z) 
Yt(z) =[ Yn(z) Yt2(z) Yep(z) 
Dt(z) =[ dtt(z) dt2(z) dtp(z) 
Ee(z) =[ ett(z) et2(z) eq,(z) 

The matrices U(z), Ut(z) and Dt(z) are p xp matrices, the matrices Y(z), 
Yt(z) and Et(z) are q x p matrices. We have: 

Ue(z) = U(z) + Dt(z) 
Yt(z) = Y(z)- Et(z) 
Yt(z) = Pt(z)Ut(z) 

We assume that the vectors u1(z), u2(z), ... ,ttp(z) are linearly independent 
for all z E C and that the vectors utt(z), Ut2(z), .. . ,tttp(z) are linearly inde· 
pendent for all z E C, so that U(z) and Ut(z) are invertible for all z E C. 
This results in: 

So by constructing a square matrix Ut(z) with linear independent vectors we 
are sure that Ut( z) excites in all 'directions', and so we will not miss any 
dynamics of Pt(z). 

Of course the noise matrices Dt(z) and Et(z) are unknown. However, 
like in the SISO-case, we will consider them to belong to certain sets. These 
noise sets will be discussed in the next section. 

Remark : As was already mentioned in the sections 2.4 and 2.5, the matri­
ces U(z), Y(z), Ut(z), Yt(z), Dt(z) and Et(z) can be considered as matrices 
in RHoo representing systems with a finite number of Markov parameters 
(l ::; 2N). 

4.3 Structured and unstructured noise sets 
In this section the assumptions on the noise will be discussed for the multi· 
variable case. The input noise matrix Dt( z) is a p x p matrix, the output noise 
matrix Et( z) is a q x p matrix. Define: 
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l:'l( ) ~ [ Dt(z)] 
rt z - Et(z) , a (p+ q) x p matrix. 

Assume that for the every experiment, the noise on the k-th input is bounded 
by a known filter W dh( z ), and that the noise on the l-th output is bounded by 
a known filter We~(z) with 

lduc(z)l :S !Wdh(z)i and lett(z)! :S !Wet(z)! for z E C 

Then we can construct the diagonal matrices 

[ W.o(•) 0 

wiJ W.(z) = r Wa2(z) 

0 

[ W,~(•) 0 

WLl 
w.,2(z) 

We(z) = : 
0 0 

and 

W(z) = [ Wd(z) 0 ] 
0 W.,(z) 

Further we define 

Qut(z) ~ w-1(z) [ ~:i;j ] 
(the subscript u denotes 'unstructured', as will be made clear soon. The 
subscript t denotes 'true'). 
This matrix Qut(z) is a (p+ q) x p matrix and is in fact the scaled version of 
the noise matrix Ft( z ). For 1 ::; i ::; (p + q) and 1 ::; j ::; p we have: 

I [ Qut(z) ]ij I ::; 1 

The sewed noise matrix Qut(z) is unknown, but we are sure that all entries 
of the matrix are on the unit disk. If we now introduce a set with matrices 
with all entries on the unit disk, then Qut( z) will be in this set. There are 
two ways to describe such a set for the matrix Qut(z), an unstructured or a 
structured way. 

Unstructured set: If we want to describe Qut(z) in an unstructured way, we 
like to find an eu such that 
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11 Q,.t(z) 11 :S €,. for all z E C 

This €u is very easy to derive. All entries of the matrix Qut(z) are on the unit 
disk. The maximum singular value of a matrix filled with elements that are 
on the unit disk, is found if all elements are 1. In that case €u = .j(p + q)p. 

Using this €,., we can define the unstructured scaled noise set Q,. as follows: 

Q,. = { Q,.(z) Ill Q,.(z) 11 :S .j(p + q)p for all z E C} 

We define the set F,. as follows: 

F,. = { F,.(z) = W(z) Q,.(z) for all Q,.(z) E Q,.} 

Note that Qut(z) E Q,. and so Ft(z) E F,.. 

Also note that the matrix Q,.(z) = ( .j(p + q)p) I is in the set Q,.. 
However, we are sure that Qut =I ( .j(p + q)p) I , for all elements of the 
matrix Q .. t are on the unit disk. So, the description in an unstructured way, 
using only the largest singular value, generally will not be very tight. A better 
description can be given using a structured set. 

Structured set: We can also describe Qut(z) in a structured way. 
First we construct a diagonal matrix Q.(z) where all elements of the matrix 
Qut(z) are put on the diagonal of Q.t(z): 

[Q.thi-t)q+lc,(i-t)q+lc = [Q .. t]lci with 1 ::; k ::; p + q , 1 ::; i ::; p 

Now define 

1p = [11 ... 1] --....-.- IP is a p x p identity matrix 

ptimea 

1q = [11 ... 1] Iq is a q x q identity matrix ......__,._. 
q time• 

and 

1p 0 0 0 

Vi = [ (Ip ~ 1p) 
(Iq ~ 1p) ] 

0 1p 0 0 
= 0 0 1p 0 

0 0 0 1p 
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Y1 is a (p + q) x p(p + q) matrix, V2 is a p(p + q) x p matrix. 
With these definitions, the following holds 

All elements of the matrix Q.e(z) are in the unit disk. Because the matrix is 
diagonal, we find for the norm: 

11 Q.t(z) 11 $ 1 

So by constructing the diagonal matrix, we can define the structured scaled 
noise set Q. as follows: 

Q. = { Q.(z) is diagonal a.nd 11 Q.(z) 11 $ 1 for all z E C} 

We define the set F. as follows: 

F.= { F.(z) = W(z) Y1 Q.(z) V2 for all Q.(z) E Q. 

Note that Q.,(z) E Q. and so Ft(z) E F •. However the structured set F. is 
smaller than the unstructured set F tu and so 

F. cFu 

If we use a structured description instead of an unstructured description for 
the noise we generally will find smaller bounds on the model error. 

Example: We will construct the matrices for the 2 x 2 case. 
Suppose Dt(z) and Et(z) are given as 

D ( ) _ [ d1(z) ~(z) ] 
t z - da(z) d.t(z) 

For this Dt(z) and Et(z) we can derive: 
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and 

Qa(z) = 

W.ij_1dt 0 0 0 0 0 0 0 
0 W,j2t~ 0 0 0 0 0 0 
0 0 Wdj_1da 0 0 0 0 0 
0 0 0 W,j21d4 0 0 0 0 

= w-l 0 0 0 0 el et 0 0 0 
0 0 0 0 0 w-t e2 e2 0 0 
0 0 0 0 0 0 w-1 et ea 0 
0 0 0 0 0 0 0 w-1 

e2 e4 

1 0 
0 1 

Yt; [ ~ 
1 0 0 0 0 0 

~] 
1 0 

0 1 1 0 0 0 
V2= 

0 1 
0 0 0 1 1 0 1 0 
0 0 0 0 0 1 0 1 

1 0 
0 1 

So far we assumed that the noise bounds remained the same for all experi­
ments. In practical situations, however, it can happen that for every experiment 
the character of the noise changes, and therefore the noise bounds. For that 
case we will consider the structured set. 

Assume that for the i-th experiment the noise on the k-th input ([<4.] 111 = 
Dt~ti) is bounded by a known filter Wdlei(z) with IDtieil $ IWdlei(z)l , z E C, 
and assume that for the i-th experiment the noise on the l-th input ([en]z = Et~,) 
is bounded by a known filter Weti(z) with IEt~•l $ IWeli(z}l , z E C. Now 
construct the diagonal matrices wd. w.,, Ot with 

[Wa](i-t)q+le,(i-t)q+le = wdk. with 1$k$q,1:Si$q 

[W.,](j-t)q+l,(j-t)q+l = W.,u with 1$l$p,l$j$p 

[Qtd](i-1)q+k,(i-1)q+k = W~Ddlei with l:Sk$q,l$i:Sq 

[Qte](j-l)q+l,(j-l)q+l 
- -1 with 1$l$p,l$j$p = w.,li Ee~• 

and construct the diagonal matrices 

- [ Qtd 0 ] 
Q.t = o Ote 
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For this case we can define the structured scaled noise set Q. as follows: 

Q. = { Q.{.z) is diagonal and 11 Q,(.z) 11 ::; 1 for all z E C} 

We define the set F. as follows: 

F.= {F. = Vi W Q.(z) V2 for all Q,(.z) E Q.} 

Note that Q.t{z) E Q, and so Ft(z) E F,. 

In the following chapters we will consider the unstructured set <'lu and 
the structured set Q,. In the case where we need Q. the formulae are easily 
adapted. 



R­
parametrization 

5.1 Introduction 
In chapter 3, a methodology was given to identify systems using an additive 
or multiplicative model error structure. In this chapter we will introduce a 
coprime factor model error structure that has advantages over additive and 
multiplicative model errors. The interpretation of coprime factor model er­
rors, which is not so obvious, will be discussed in the sections 5.1 and 5.2. 
In section 5.3 we will introduce a simpler scheme and in section 5.4 we will 
show that this scheme is also applicable to all other model error structures. 

In chapter 3 bounds were derived for a model error ~t(z), that was as­
sumed to be stable. A stable model error ~t( z) in an additive or a multi­
plicative model error structure means that either the true plant Pt(z) and the 
model P( z) are both stable or that we can obtain an exact description of the 
unstable part of Pt(z). 

In the case where the number of unstable poles of the true plant is not ex­
actly known, we cannot use an additive or multiplicative model error structure 

71 
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any more. Then it will be necessary to use another model error description, 
like a reverse type structure or coprime factor structure. If we do not know 
the exact number of the true plant zeros that are outside the unit disk we will 
have to use a coprime factor plant description. We then consider the errors 
on the coprime factors of the process, which are required to be stable. 

y 

- + 

Figure 5.1: Left coprime factor model error 

A simple example where the number of unstable poles of the true plant is not 
exactly known, is the case where we have the true plant 

Pt(z) = az- b 
z-1+e 

where the sign of e is unknown. H we take a model 

P(z) = O.z- b 
z-1+€ 

we can not guarantee that H(z) has the same number of unstable poles as 
the model P( z ), and so we can not apply the results from robust control for 
additive or multiplicative model errors. In that case we can use the coprime 
factor plant description (Figure 5.1), where we assume the errors on the eo~ 
prime factors to be bounded. 
For the example we can choose: 

az....;.b z-1+e 
Nt(z) = -- , Mt(z) = 

z- c1 z- c1 

where we fix c1 with lc11 < 1 and as a model 

N(z) = O.z- b ' M(z) = z- 1 + € 
z c2 z- c2 

where we fix c2 with lc21 < 1. It is clear that the factor model errors 

Mt(z) - M(z) 
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are both stable because Ntt Mtt N and M are stable. 

As should be clear from above the coprime factor model error is not only 
depending on the model P( z) and the true process Pe( z ), but also on the 
choice of coprime factorization P(z) = M(z)-1 N(z) and coprime factoriza­
tion Pt(z) = Mt(z)-1 Nt(z). In the example these factorizations are chosen 
by fixing c1 and c,. A different choice of these constants leads to a different 
coprime factor model error [ 6N(z) AM(z) ]. For example, a scaling with 
a non-zero constant of the factors Ntt Mt. Nand M will not change their 
coprimeness. The coprime factor model error however will be scaled with 
the same constant In this way we can make the model error as small as we 
like. If we define a model error criterion J(6), for which J{O) = 0, we can 
make J(6) smaller than any '7 > 0, which is unrealistic in the light of e.g. 
the frequency behaviour of P and Pt. 

N 

Figure 52: Coprimefactors of true process and model 

We can visualize this non-uniqueness problem with a simple example 
where we only consider constant real scalar valued systems. In figure 5.2 
we show the coprime factors of the true process and all models in a model 
set We put the M-factor on the horizontal axis and theN-factor on the verti­
cal axis. A single line through the origin represent all coprime factorizations 
of one specific system, and the gradient of the line is equal to the value of 
that function. The vertical axis is excluded, because M = 0 is not allowed. 
As an example we have chosen the 'constant transfers' Pt = 2 and P = {3 in 
a model set P, where {3 is restricted to -~ ~ {3 ~~(so Pt is not in the model 
set). The line St gives all possible coprime factor pairs (Nt.Mt) of the true 
process Pt NtMt-t· The dashed region S gives all possible coprime factor 
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pairs (N,M) for the models P = NM-1 in the model set P. We choose a 
particular coprime factorization of Pto denoted by (Nto, Mt 0 ), and we choose 
a particular coprime factorization for one choice of a model P E P, denoted 
by ( N0 , M 0 ). The coprime factor model error is now given by 

11[ Nto- No Mto Mo ]11 = V(Nto- No)2 + (Mto- Mo)2 

and is equal to the Euclidean distance between the points ( Nta, Mta) and 
(No, Mo) in the figure. Although Pt ti P we can make this distance and so 
the coprime factor model error as small as we like by shifting (Nto,Mto) and 
(N0 , M0) towards the origin (the origin itself is excluded). In this way the 
coprime model error does not give any indication about how far away the 
model is away from the true process. 

It is clear that we will have to fix at least one of the coprime factorizations, 
either of the model or of the true process. We will choose for fixing the 
coprime factorization of the model, because then we can restrict the structure 
and order~ of the nominal model coprime factors. This is important if we want 
to use the model coprime factors for robust control later on. We need some 
constraints on the choice of the model coprime factors in such a way that the 
model coprime factors become uniquely associated with a model in the model 
set P. 
In order to achieve that we introduce a bijective mapping 1r from the model 
to the model coprime factors 

1r( P(z)) = [ N(z) M(z)] 

Here, N(z) and M(z) are specific coprime factors in RIHoo such that P(z) = 
M(z)-1N(z). Therefore 1r is bijective and there holds 

1r-1 
([ N(z) M(z)]) = P(z) 

In chapter 9 we will consider a specific choice for this mapping 1r. The choice 
of 1r will influence the optimization procedure to find the optimal model with. 
minimum error bounds (see chapters 8 and 9). 

With the choice of the mapping 1r we have chosen the coprime factorization 
of the model in a unique way. If we consider all models in the model set P 
we can define the set of coprime factor models: 

S = {[ N(z) M(z)] = 1r( P(z) ), where P(z) E P} 

In short: S = 1r (P). 

Also for the true process Pt( z ), although it is unknown, we can fix a eo­
prime factorization by a bijective mapping 11't from RIP to RIHoo x RIHoo 
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[ Nto(z) Mto(z)] = 'll't( Pt(z)) 

where Pt(z) = Mto(z)-1 Nto(z). Usually this mapping 'll't will not be the 
same as the mapping 1r. The mapping 1r is only defined on the model set P, 
where as '~~'twill be defined on all the functions in RIP. 

If we consider the robustness criteria concerning coprime factor model 
errors (Vidyasagar [63] and McFarlane [43]) then there is no constraint on the 
choice of coprime factorization of the perturbed planL The true plant will be 
in the set of perturbed plants, so a fixed coprime factorization for the process 
is not desirable. We will describe a way to find all coprime factorizations of 
the true process, starting from the mapping '~~'t· For that purpose we formulate 
the following lemma: 

Lemma 5.1: 
Let Pt(z) = Mto(z)-1 Nto(z) be a left coprime factorization of Pt(z) in 
RHoo. 
Then 
Pt(z) = Mt(z)-1 Nt(z) will also be a left coprime factorization of Pt(z) in 
RH00 if and only if there exists a unimodular matrix function A(z) in RHoo 
such that 

[ Nt(z) Mt(z)] = A(z) [ Nto(z) Mto(z)] 
[J 

The proof of this lemma is in Vidyasagar ([62], page 75). 

Using Lemma 5.1, we can now define a set St with all possible coprime 
factorizations of the true process: 

where the set A is defined as the set of unimoduJar functions in RHoo with 
the same dimensions as Mt. 

We now define optimality as follows: The coprime factor model error is 
given 

~(z) = [ Nt(z)- N(z) Mt(z)- M(z)] 

Consider a model error criterion J(~). A model P(z) is called optimal if the 
model error criterion J(~) is minimal, where we fix the coprime factorization 
of model P( z) and where we have chosen the best possible coprime factor­
ization of the true plant Pt(z). The aim is to find the optimal model P(z) 
with optimal coprime factors 
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[ N(z) M(z)] = 1r{ P(z)) 

so we like to solve the problem: 

inf inf J ( [ Nt(z)- N(z) Mt(z) M(z)]) = 
(N M]e8 (Nt Mt ]ESt 

= inf inf J ( [ A(z) Nto(z)- N(z) A(z) Mto(z) M(z)]) 
(NM]eS AeA 

where [ Nto(z) Mto(z)] = 1rt( Pt(z) ). We will denote this optimization 
problem as the coprime factor approximation problem. We have to optimize 
over the model set P and the unimodular functions A( z) for a fixed coprime 
factorization of the true plant Pt(z). 

In figure 5.3 we fixed the mapping 1r for the coprime factorization of the 
model. This is the solid line through the point (No, M 0 ). This line represents 
the setS. 
Now J we like to find the minimum distance between the element 
( N0 (z) , M 0 (z)) in the setS and an element in the set st: We compute the 
fixed coprime factors of the true process [ Nto(z) Mto(z)] 7rt( Pt(z) ). 
Note that the set St is parametrized by multiplying any coprime factorization 
of Pt( z) with a unimodular function A( z ), in our case a scalar a. 

((Nt(z) Mt(z)J) = ([aNto(z) o:Mto(z)]) 

The set St is represented by the line through the origin and the point 
( Nto(z) 1 Mto(z) ). 
For all elements ( N(z) 1 M(z) ) in S we can compute this distance. In 
figure 5.3 the optimal model coprime factors in the set S will be the pair 
( No(z) 1 Mo(z) ). 
In the figure the element in St with minimum distance to ( N0 ( z) 1 M0 ( z) ). 
is denoted by ( Nt(z) , M;(z) ). 

Remark: Note the conceptual difference between the sets S and St: For the 
set S we fixed the coprime factorization and we vary the model P( z) in P. 
For the set St we vary the coprime factorization for a fixed true process Pt. 

Of course the next problem is that we do not know Pt( z ). What we do 
know is the set of unfalsified systems P, that do not falsify the data. There 
holds Pt(z) E P. For every element F(z) E P we can now compute a coprime 
factorization by the bijective mapping 1rt· This mapping is defined on the true 
system, but will be extended to the set P. Thus, for any P E P we consider 

[ No(z) Mo(z)] = 7rt( F(z)) 
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t 
N 

M-

- -
Figure 53: Coprime factors of true process and model 

and so P(z) = M0 (z)-1 N0(z). 

With this definition we can define a set S0 with a specific coprime factor· 
ization for all possible systems in the set of unfalsified systems P( z} E P: 

S0 = {[ N0 (z) Mo(z)] = 11't( P(z) ), where P(z) E P} 

In short: So = 11't(P). 

We can also define a set S with all possible coprime factorization for all 
possible systems in the set of unfalsified systems P( z) E P: 

S = {(.N(z) M(z)] = A(z)11't(P(z)), AEA, PEP} 

Note that 

11't( Pt) E So C S 
11't(Pt) ESt CS 
11't(Pt) =Son St 

Now we can redefine the notion of an optimal model: A model P(z) E P 
will be optimal if the model error criterion J(~) is minimal, where we have 
chosen the best possible coprime factorization of the worst case system P( z) 
in the set of unfalsified systems P. So we have to solve the problem: 
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inf sup inf J ( [A(z) No(z)- N(z) A(z) M0(z)- M(z)J) 
[N M]eS [No Mo]eSo AeA 

We will denote this optimization problem as the min-max coprime factor 
approximation problem. 

N 

M-

Figure 5.4: Cop rime factors of true process and model 

In order to illustrate the idea, we continue in figure 5.4 the scalar system 
example from figure 5.2 and figure 5.3. We consider a set P of unfalsified 
systems with elements P = "t where 1 ~ "t ~ 4, and so Pt E P. For all 
elements in P we can compute all coprime factorizations and we obtain a set 
S. Now we consider the element P = 4 in P and we compute the factors 
[ N0 M0 ] = 7rt( P ). This coprime factor pair can be scaled with a non-zero 

scalar a and we obtain [ N M] = [a N0 a M0 ]. 

Consider the pair ( N0 , M 0 ), which is an element of the set S. We can 
measure the distance between that pair ( N0 , M 0 ) and the best possible 
coprime factorization of the worst case element P in the set P. In the case of 
figure 5.4 the best chosen coprime factors of the worst case element of P is 
obviously the pair ( N* , .M• ). The distance between the pairs ( N* , .M• ) 
and ( N0 , M 0 ) is always larger than or equal to the distance between the 
pair ( N0 , M 0 ) and the optimal choice of coprime factorization of the true 
process. 

In the next section we will introduce a way to define the mapping 7rt. 

using the so called R-parametrization from Hansen et al. ([27], [28]). We 
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will fonnulate the optimization problem, as mentioned above, in terms of this 
parametrization. This parametrization, and thus the mapping '~~"t• will depend 
on the model P(z). This is allowed because during the optimization over P 
the model P( z) will be fixed. 
In section 5.3 we will simplify the set up of section 5.2, and give a motivation 
for this simplification. Finally in section 5.4 it will be shown that many model 
error structures fit in the simplified scheme of section 5.3. 

5.2 R-parametrization 

We will assume that we have the knowledge of a controller K ( z) that stabilizes 
the true process Pt(z) and which has a left coprime factorization 

K(z) = M(i1 (z)Nc(z) 

This stabilizing controller K(z) will be used during the analysis of the true 
process. It is not necessarilly the same controller as the controller K.n,,( z) 
that is used for the experiments. 

We will now assume that the model P( z) will also be stabilized by the 
controller K(z), and so we restrict the model set P to those models P(z) that 
are stabilized by the controller K(z). 

We now interconnect the coprime factors N(z), M(z), Nc(z) and Mc(z) 
with some function R(z) as in the scheme of figure 5.5. 

y u 

w 

Figure 5.5: R -parametrization with left coprime factors 

For this scheme we can formulate the following theorem 

Theorem 5.1: 
Let K ( z) be a controller with a left coprime factorization 
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Jr(z) Al01 (z)PVc(z) 

that stabilizes a model P(z) with a left coprime factorization 

P(z) = Al-1(z)N(z) 

Then Jr(z) stabilizes a process P0 (z) if and only if there exists a function 
R(z} in RlHoo such that 

Po(z) = Al01(z)No(z) (5.1) 

where 

PVo(z) 
Alo(z) 

N(z) + R(z) Alc(z) 
Al(z) - R(z)Nc(z) 

(5.2) 

Moreover, for every such R(z) E RJH00 , the pair N0 (z) and Al0 (z) will be 
left coprime and R(z) uniquely defines the function P0 via equation(5.1) and 
equation(5.2). 

0 

The proof of this Theorem is in Schrama[54]). 

This way of parametrizing all plants stabilized by controller Jr(z) was in­
troduced by Hansen et al. ([27], [28]) and is called the R-parametrization. 

The theorem claims that if the true process is stabilized by the controller 
Jr(z), then there exists a stable function Rt(z), that results in a left coprime 
factorization of the true process. So given any model P(z) Al(z)-1 N(z), 
there exists a unique function Rt(z) E RJH00 , such that the functions 

Nta(z) N(z) + Rt(z) Alc(z) ., 
Alto(z) = Al(z) Rt(z) Nc(z) 

are coprime and 

Pt(z) = Altl}(z)Nto(z) 

For fixed model coprime factors Al(z) and N(z) and a fixed controller K(z) 
the function Rt(z) E RlHoo defines in this way a unique left coprime factor­
ization of the true process Pt(z} with coprime factors Alta(z) and Nta(z}. In 
this way we have defined a bijective mapping 1rt such that 

[ Nto(z) Alto(z)] = 1rt{ Pt(z)) 

Note that the mapping 1rt depends on the choice of the model coprime factors 
Al(z) and N(z) and the choice of the stabilizing controller Jr(z), so 
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1rt(Pt(z)) = 1rt,(N,M,K)(Pt(z)) 

Because Rt(z) is unique for fixed M(z), N(z), Mc(z) and Nc(z), there is 
also a bijective mapping lit from the true process to the stable function 

Rt(z) =lit (Pt(z)) 

Just like the mapping lit depends on the choice of the model coprime factors 
M(z) and N(z) and the choice of the coprime factors Mc(z), Nc(z) of the 
stabilizing controller. 

llt(Pt(z)) = llt,(N,M,Nc,Mc)(Pt(z)) 

We can parametrize all left coprime factorizations of the true process Pt( z) by 
multiplying one pair of coprime factors with an arbitrary unimodular function 
A(z) in RHoo and this yields the set St: 

St = {[ Nt(z) Mt(z)] = 
= A(z) [ N(z) + Rt(z) Mc(z) M(z)- Rt(z) Nc(z)], 

where Rt(z) =lit ( Pt(z)), a.nd A(z) EA} 

where A is the previously defined set of unimodular functions. 

The coprime factor model error can now be expressed as: 

( .QN .QM ] = [Nt - N Mt - M ] = 
= [A(N+RtMc)-N A(M-RtNc)-M] = 
= [(A- I) N + A RtMc (A- J) M- A RtNc] 

where Rt(z) =lit (Pt(z)) is a specific stable function and A(z) is an arbitrary 
unimodular function in RH00• 

Remark: By parametrizing the coprime factors of .P,;( z) in terms of the 
functions Rt(z) and A(z), we are sure that Mt(z) and Ne(z) are eo­
prime, and so we compare all coprime factorizations of the true process 
with a specific coprime factorization of the model. 

With the function Rt(z) we can redefine the coprime factor approximation 
problem as: 
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inf inf J([(A-I)N + ARtMo (A-I)M ARtN0 ]) 
[N M]eS AeA 

where Rt(z) = vt( Pt(z) ). So we optimize over the model P(z) and the 
unimodular function A(z). One should keep in mind that the function Rt(z) 
is itself a function of the model P(z) and the initially chosen controller K(z). 

The true process Pt(z) is unknown. However, we can derive a set of 
unfalsified systems P with the use of the observed data { u , y } and the noise 
bounding filters Wd(z) and We(z), as was already shown in chapter 3 for the 
SISO-case. If we now fix the model coprime factors ( N(z), N{z)) and the 
controller coprime factors ( M0 (z), N0 (z) ), we can define the set 

R = {.R(z) E RlH00 I R(z) = Vt (P(z)), F(z) E P} 

In short: R. = vt (P). 

This results in a specific coprime factorization for every element F(z) E P 
using the mapping 1t't as introduced in Theorem 5.1. 

[ No(z) M0(z)] = 1t't( P(z)) 

with 

- de/ -N0 (z) = N(z) + R(z) Mo(z) 
- de/ -Mo(z) = M(z) - R(z) No(z) 

and R(z) = Vt (P(z)). 

We can now redefine the min-max coprime factor approximation problem 
as follows: 

inf sup inf J ( [ A N0 - N A M0 - M ]) = 
[N M]eS [No Mo]eSo AeA 

inf sup inf J ( ((A - I) N + A R Me (A - I) M A R Ne]) 
[N M]eS .Reit AeA 

In the following chapters we will show how to compute the set R. How­
ever, the functions R(z) will not be given as real rational functions. We will 
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t 
N 

-
Figure 5.6: Coprimefactors of true process and model 

only be able to derive bounds for R(z) on specific frequencies zt. This makes 
the min-max coprime factor optimization problem very difficult to solve, for 
we have to explicitly optimize over all unimodular functions A( z) for all R( z ). 

In figure 5.6 we continue the scalar system example from figure 5.4. The 
controller K = 1 is stabilizing for the true process Pt = 2, because ( 1 + 
PtKt1 = l· and also for all models in the model set~ ~ (1 + P K)-1 ~ ~ 
with -~ ~ P ~ ~· We choose Me= 1 and Ne 1. We choose the pair 
( N0 , M0 ) in the model set P and consider the R-parametrization line with 
all pairs ( N + R Me , M - R Ne) for all R E JR.. In figure 5.6 this is 
the line through ( N0 , M0 ) and ( N0 , M0 ). The set S0 is the intersection 
of the R-parametrization line and the setS. 

Again, the best chosen coprime factors of the worst case element of P will 
be the pair ( :N• , M* ), like in figure 5.4. 

In this thesis we will not discuss the optimization over the unimodular 
function A( z ), because this optimization problem is too complex at this stage. 
We will choose A( z) to be a fixed: A( z) = I. This choice can be motivated 
by the notion of consistency: 
We will call our optimization method consistent if the chosen model error 
criterion J(~) will go to zero, when the model is chosen to be equal to the 
true process while at the same time the noise level is going to zero. 
Thus consistency means that 
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So for the min-max approximation problem: 

inf sup J ( [(A- I) N + ARMc (A- I) M- ARNc]) 
[N M]eS .Reil 

To be consistent we should necessarily have that J(O) 0, which is typically 
the case if J is a nonn. 
We observe that J ( 0) = 0 and study what will happen if P( 8, z) --+ Pt ( z) and 
W11,W.,--+ 0. 

We will assume that the true process Pt(z) is in the model set P and we 
choose the model P( 8, z) = Pt( z ). We parametrize the true process coprime 
factors: 

Nto(z) = N(z) + Rt(z) Mc(z} 
MtO(z) = M(z) - Rt(z) Nc(z) 

This gives the true process coprime factors for Rt( z) 0. During an iden­
tification we will not be able to find Rt(z} = 0, because of the disturbances. 
We will only be able to derive the set R which will contain Rt(z). As we 
will show in chapters 6 and 7, we can derive an Hoo nonn bound on all the 
elements of R: 

11 R(z) lloo Se 

This e is only depending on the noise bounding filters W11(z) and W.,(z). 
If we approach the noiseless case, so if W11(z), W.,(z) --+ 0 then we find 
e--+ 11 Rt(z) lloo · 
If P(8,z) = Pt(z), then Rt(z) = 0 and we find that Wc~(z), W.,(z)--+ 0 leads 
toe--+ 0. 

For P(O, z) = Pt(z) and e--+ 0 the model error bound J(A} becomes 

J( A) = lim sup J([ N - N M- M ]) = 
t:-+O 11All:5" 

:;:::: lim sup J([(A- I)N +ARMc (A- I) M- ARNc]) = 
t:-+0 IIRII$t: 

= J([(A- I)N (A- /)M]) 

The choice (A - I) = 0 will make this model error A equal to zero, and 
thus J(A) = 0. 
So, if J(O) = 0 and A(z) =I we find 



5.3 a~PARAMETRIZATION 85 

P-+Pt } ( ) We~, We -+ 0 ===} J A. -+ 0 

which yields consistency of the optimization method. 
In this thesis we therefore will only consider the optimization problem with 
fixed unimodular function 

5.3 ~-parametrization 

In this section we show that for a fixed unimodular function A(z) = I the 
optimization problem will become easier. 

As was mentioned in the previous section, we assume that we have the 
knowledge of a controller K(z) that stabilizes the true process Pt(z). Now 
we choose our model P(z) = M-1(z)N(z) such that it is also stabilized by 
this controller K(z). We will denote the stable function Rt(z) by the stable 
function At( z ). The reason to change notation is the following: By fixing 
A(z) = I, the function Rt(z) will behave as a model error, as will become 
clear in the next section. Therefore we introduce the notation A.t(z) = Rt(z). 
We now can give the interconnected scheme of figure 5.7: 

Yt 

w 

Figure 5.7: A.-parametrization with left coprime factors 

In this way we parametrized the true plant Nt(z) and Mt(z), with the left 
coprime factors of the model N(z) and M(z), the left coprime factors of the 
controller Nc(z) and Mc(z), and a stable function A.t(z): 
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For this model P(z) we can give an expression for the coprime factor 
model error: 

( aN{z) aM(z)] = 

= [Nt(z) - N(z) Mt(z) - M(z)] = 

= [(N(z) + at(z)Mc(z))- N(z) (M(z)- at(z)Nc(z))- M(z)] = 

= [ at(z) Mc(z) -at(z) Nc(z)] 

= at(z) [ Mc(z) -Nc(z)] (5.3) 

and so the coprime factor model errors can be expressed in terms of an un­
known stable function at(z) multiplied by the known controller coprime fac­
tors [ Mc(z) -Nc(z) ]. In the chapters 6 and 7 we will show how to find 
an estimate of this function at{z) and how to derive bounds on the model 
error. 

So far we showed that coprime factor model errors can be discribed by 
the left coprime factor structure of figure 5.7. In the following section we will 
show that also other model error structures can be put in the configuration of 
figure 5.7. In the same way as we derived the scheme of figure 5.7 with left 
coprime factors we can give a scheme with right coprime factors (see figure 
5.8), and analoguous results will hold. 

y u 

Figure 5.8: a-parametrization with right cop rime factors 
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5.4 Model error structures 
In this section we will show that many model error structures can be described 
by the left coprime factor structure of figure 5.7 and the right coprime factor 
structure of figure 5.8. 

First we will consider the setup of figure 5.7. We have a model with a 
left coprime factorization P(z) = M(z)-1N(z) and a controller with a left 
coprime factorization K(z) = Me(z)-1 Ne(z). If this controller K(z) stabi­
lizes the model as well as the true process, then by Theorem 5J we can write 
the true process as: H(z) = (M(z)- Ne(z)At(z)}-1(N(z) + Me(z)At(z)), 
where At(z) is stable. Many kinds of model errors can be described with this 
setup: 

Additive model error (see figure 1.3): 
We assume P(z) and Pt(z) to be stable so that K(z) = 0 is a stabilizing 
controller for both systems. 
By choosing 

N = P , M = I , Ne = 0 , Me = I 

we find Pt(z) = P(z) + A(z), which is the additive model error structure. 
The model error A{z) = Pt(z)- P(z) is in RH00 • 

Input multiplicative model error (see figure 1.4): 
We assume P(z), P(z)-1, Pt(z) and Pt(z)-1 to be square and stable. Then 
K(z) = 0 is a stabilizing controller for both systems. 
We now choose 

N = I , M = p-t , Ne = 0 , Me = I 

and we find Pt(z) = P(z) (I+ A(z) ), which is the multiplicative model 
error structure. The model error A(z) = P(z)-1(Pt(z)- P(z)) is in RH00 • 

Reverse additive model error (see figure 1.6): 
We assume P(zt1 and H(z)-1 to be square and stable. Then K(z) = oo 
(see remark 1 at the end of this section) is a stabilizing controller for both 
systems. 
We choose 

N = I , M = p-1 
, Ne = I , Me = 0 
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and we find Pt(z) = P(z) (I+ ~(z)P(z) r 1
• which is the reverse additive 

model error structure. The model error ~(z) = Pt(z)-1 -P(z)-1 is in RIH00 • 

Output reverse multiplicative model error (see figure 1.8): 
We assume P(z), P(z)-1, Pt(z) and Pt(z)-1 to be stable. Then K(z) = oo 
is a stabilizing controller for both systems. We choose 

N = P , M = I , Ne = I 1 Me = 0 

and we find Pt(z) = (I+ ~(z)) P(z), which is the output reverse model 
error. The model error ~(z) = (Pt(z)- P(z))Pt(z)-1 is in RIH00 • 

Left coprimefactor model e"or (see figure 1.9): 
We assume P( z) and Pt( z) to be stabilized by K ( z ), and we choose 

~N =Me~, ~M= -Ne~ 

We find Pt(z) = (M(z) + ~M(z)r1 (N(z) + ~N(z)), which is the left 
coprime factor model error structure. The model error 

( ~N(z) ~M(z)] = (MPt- N)(M., + N.,Pt)-1 
[ Me(z) -Ne(z)] 

is in RIH00 • 

Now consider the setup of figure 5.8 where we have a model with a 
right coprime factorization P(z) = N(z)M(z)-1 and a controller with a right 
coprime factorization K(z) = Ne(z)M01

• If this controller K(z) stabilizes 
the model as well as the true process, then we can write the true process as: 

Pt(z) ( N(z) + ~t(z))Me(z)) ( M(z)- ~t(z)Ne(z) )-1 

where ~t( z) is stable. Also with this setup many kinds of model errors can 
be described: 

Additive model error (see figure 1.3): 
We assume P(z) and Pt(z) to be stable. Then K(z) 0 is a stabilizing 
controller for both systems. 
By choosing 

N = P 1 M = I , Ne = 0 , Me = I 
we find Pt(z) = P{z) + ~(z), which is the additive model error structure. 
The model error ~(z) = {Pt(z)- P(z)) is in RIH00 • 

Output multiplicative model error (see figure 1.5): 
We assume P(z), P(z)-1, Pt(z) and Pt(z)-1 to be square and stable. Then 
K(z) = 0 is a stabilizing controller for both systems. We choose 
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N = I , M = p-1 , Ne = 0 , Me = I 

and we find Pt(z) = (I +6(z)) P(z), the multiplicative model error structure. 

The model error 6(z) = (Pt(z)- P(z))P(zt1 is in RH00• 

Reverse additive model error (see figure 1.6): 
We assume P(zt1 and Pt(z)-1 to be square and stable. Then K(z) = oo is 
a stabilizing controller for both systems. 
We choose 

N = I , M = p-t , Ne = I , Me = 0 

and we find Pt(z) = P(z) (I+ 6(z) P(z) ). which is the reverse additive 

model error structure. The model error 6-(z) = Pt(z)-1(Pt(z)- P(z)) is in 
RHoo. 

Input reverse multiplicative model error (see figure 1.7): 
We assume P(z), P(z)-1 , Pt(z) and Pt(z)-1 to be square and stable. Then 
K(z) = oo is a stabilizing controller for both systems. 
By choosing 

N = P , M = I , Ne = I , Me = 0 

we find Pt( z) = P( z) (I+ 6.( z)) -t. which is the input reverse multiplicative 

mod~l error. structure. The model error 6(z) = Pt(z)-1(Pt(z)- P(z)) is in 
RHoo. 

Right coprime factor model error (see figure 1.10): 
We assume P(z) and Pt(z) to be stabilized by K(z) and we choose 

6N = 6-Mc , 6-M = ANa 
' -1 . 

We find Pe(z) = ( N(z) + 6-N(z) ){ M(z) + AM(z)) , the. right coprime 
factor model error structure. The model error 

is in RHoo. 

In table 5.1 all considered model error structures are summarized with the 
corresponding coprime factor choices N(z), M(z), N0 (z) and M0 (z). 
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pd 
K left/right model error structure 

N Ne Me coprime 
P(z) I 0 I left/right additive 

I p-l(z) 0 I left input multiplicative 
I p-l(z) 0 I right output multiplicative 

N(z) M(z) 0 I left/right coprime factor (~M = O) 
I p-l(z) I 0 left/right reverse additive 

P(z) I I 0 left reverse output multipl. 
P(z) I I 0 right reverse input multipl. 
N(z) M(z) I 0 left/right coprime factor (fiN= 0) 
N(z) M(z) Nc(z) Mc(z) left/right coprime factor 

Table.5.1: Model error structures and corresponding coprime factor choices. 

Remark 1: For some model error structures we like to choose Mc(z) = 0. 
This corresponds with a controller K ( z) = oo. We will explain how such a 
controller can be interpreted. 
Suppose a square and invertible system P(z) with a stable inverse P-1(z) is 
in closed loop with a controller K(z) = f3 K0(z) where K0 (z) and K01 (z) 
are stable. We choose as left coprime factors of P(z) and K(z): 

M(z) = P(z), N(z) =I, Me(z) = p-t K0
1(z), Nc(z) =I 

The closed loop will now be stable if and only if A = M(z)Mc(z) + 
N(z)Ne(z) is unimodular, so if and only if A and A-1 are both in RH00 

(Vidyasagar [62]). We find that A = {r1 K01(z)P-1 (z) + I is in RH00 

because K0(z) and p-1 (z) are in RH00• Furthermore if we let f3 go to 
infinity we find 

lim A-1(z) = lim ( p-t K01(z)P-1(z) + I )-1 = I 
/3-oo ~->oo 

which is in RH00 • So for {3- oo the controller K(z) will stabilize P(z). 
If we write K(z) = oo we mean that we are dealing with a stable minimum 
phase controller K(z) = {3 K0 (z) of unbounded gain {3 - oo, with left eo­
prime factors Me(z) = 0 and Ne(z) =I. 
The saine holds for the right coprime case. 

Remark 2: In this section we showed that many model error structures fit in 
the scheme of figure 5.7 and figure 5.8. However, on the model error structure 
there are some constraints that are not necessary for the use of robust control. 
For instance, in the case of an additive model error, we require the process 
to be stable. In the case of a multiplicative model error we even require the 
transfer matrix to be unimodular. 
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The reason to introduce these requirements is purely technical and guar­
antees solvability of our identification problem. A first constraint is that the 
model error must have the same size as the true process. A second constraint 
is that the model error must be stable. By formulating the problem in the 
scheme of figure 5.7 and figure 5.8. we can guarantee that these requirements 
are fulfilled. 

Remark 3: To get the scheme as in figure 5.7 and figure 5.8 we have to 
calculate two coprime factorizations, one for the model P( z) and one for the 
controller K(z). The problem, however, is that a coprime factorization is not 
unique and can be obtained in many different ways. 

The choice of the coprime factorization of the model may depend on some 
physical insight in the process, or can be motivated by the parameter estimation 
(see chapter 8). We can also choose a normalized coprime factorization, so that 
the final model will have some nice properties ([43]). The choice of coprime 
factorization of the model is highly correlated with the parametrization of 
the model and the choice of weighting filters for the model error. We will 
comment on this problem in chapter 8. 

Remark 4: A excellent choice for the representation of the controller is the 
normalized coprime factorization. By formula 5.3 in that case there holds that 
the norm of the model error that is chosen is equal to the norm of the stable 
function ~(z) in figure 5.7 and figure 5.8. For the additive, multiplicative, 
reverse additive and reverse multiplicative model errors, one of the coprime 
factors of the controller will be zero, so that the other coprime factor can be 
chosen as the identity matrix. For that choice the function ~(z) in figure 5.7 
and figure 5.8 represents the model error, and we have 

additive: 8a(z) = ~(z) 

multiplicative : ~m{z) = ~(z) 
inverse additive : ~io(z) = ~(z) 

inverse multiplicative : ~m(z) = ~(z) 

Simularly, in the case of a left coprime model error structure we obtain the 
model error 

[ ~N(z) ~M(z)] = ~(z)[ Mc(z) - Nc(z)] 

If we choose a normalized left coprime factorization for the controller the 
matrix [ Mc(z) - Nc(z) ] will be a coinner function and the norm of the 
function ~( z) will be equal to the norm of the coprime factor model error 

II[~N(z) ~M(z}]ll = 

= 11 ~(z)[ Mc(z) - Nc(z)] 11 = 
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= 11.6-(z) 11 for allz E C 

The same holds in the case of a right coprime model error structure. 
So instead of considering the norm of the model error that is chosen, we can 
just consider the norm of the stable function .6.( z ). Another choice than a 
normalized coprime factorization for the controller leads to a kind of weight­
ing of the model error. 

In chapter 7, where we consider the norm of the model error, we will in­
troduce weighting filters. Since we have seen that all model error structures 
can be put in the framework of coprime model errors there is no need to 
further distinguish them. Motivated by Remark 4 we assume in the remainder 
of this thesis 

• We will only consider a normalized coprime factorization 
of the controller K ( z ). 

• As a consequence the stable function .6.( z) can be 
denoted as the model error. 
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Star products 

In the previous chapters we considered several topics, like the true process, 
the model, the model error with its structure, the R-pararnetrization frame­
work, disturbance signals with their bounding functions, sets for the scaled 
true noise. 
So far we discussed the following: 

• The true model error At(z) in a specific structure is a function of the 
true process and the chosen nominal model. 

• The true process can be expressed as a function of the measured signals 
u(z) and y(z) and the true noise signals dt(z) and et(z). 

• The true noise signals can be scaled by the disturbance bounding filters 
W4(z) and W .. (z) and we obtain the true scaled noise matrix Qt(z). 

• The true scaled noise matrix Q,( z) is in a set Q, either the structured 
scaled noise set Q. or the unstructured scaled noise set Q,.. 

In this section we will introduce the notion of the Redheffer star product (Red­
heffer [50]), that describes the interconnection of two or more systems in a 

95 
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structured way. The star product has already shown to be a usefull tool in 
robust control theory (Doyle et al. [14]). The results of this chapter can be 
achieved without the use of the Redheffer star product. However, we will 
use the star product because it gives a good insight in the interaction between 
model error, model error structure, model coprime factors, measured data, the 
noise bounds and the true scaled noise matrix. Finally, the star product de­
scription makes it very easy to link our identification problem to results from 
the robust control optimization, such as the computation of the structured sin­
gular value J.l. (we will discuss this computation in chapter 7). 

We will first introduce the mathematical concepts of a star product. Then 
we will use the star product for the true process, the model error structure and 
for the model error itself. 

6.1 Notation and properties of star products 
Suppose we have two systems A E RIP and B E RIP which are partitioned 
as 

Suppose that 

[::]-A[:] 
[::] = B [:] 

and consider the interconnection as in figure 6.1 where v2 = y3 and v3 = y2• 

If the matrix of I - A22B11 is well-defined and invertible, we can con­
nect the lower outputs of A with the upper inputs of B, and connect the 
upper outputs of B with the lower inputs of A, as shown in figure 6.1. The 
interconnected system again is a map and is described by 

[ :: ] = S(A, B) [ ~: ] 
where S(A, B) is called the Redheffer star product [50], with 
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A 

Figure 6.1: Interconnected system 

S(A,B) = 
_ [ An+ AuBn(I- A22Bu)-1 A21 An( I- BuA22)-1 Bn ] 
- B21(l- A22Bu)-1 A21 B22 + B21A22(l- BuA22t1 B12 

If A11 , A12 and A21 are empty then 

S(A, B) = B22 + B21A22(l- BuA22)-1 Bn = Fu(B, A22) 

is an upper linear fractional transformation. 

If B22• B12 and B21 are empty then 

S(A,B) = Au + A12Bu(I- A22Bu)-1 A21 = Fi(A,Bu) 

is a lower linear fractional transformation. 

If S(A,B), S(B,C) and S(S(A,B),C) are well-defined, it is immediate that 

def S(S(A,B),C) = S(A,S(B,C)) = S(A,B,C) 

If S(A, B) is well-defined, but S(B, C) is ill-defined (so det(J -B22C11 ) = 0), 
it can happen that S(S(A, B), C) is well-defined. 

Example: Suppose the constant matrices: 

A = [ ~ ~ ] B = [ ~ -
1

/1
2 

] C = [ ! ~ ] 
Then S(B, C) does not exist because det(I- B22C11 ) = 0. However, if we 
first compute S( A, B) and then S ( S( A, B), C) we get: 



98 STAR PRODUCTS 

Finally we give the following lemma: 

Lemma 6.1: 

Suppose a matrix A is partitioned as A = [ ~~: ~: ] with A22 invertible. 

Let 

[ =~ ] = [ ~~~ ~: ] [ :~ ] 
where Yt. y2, z 1 and z 2 are vectors, compatible with the partitioning of A 
Then we can interchange the input vector z 2 with output vector y2 and the 
following will hold 

[ 
Yt ] = [ An - A~i A2i" A21 A12 ~~ ] [ Zt ] 
Z2 -A22 A2t A22 Y2 

Proof: 
We have 

Yt = Au Zt + A12z2 

Y2 = A2t Zt + A22 Z2 

So from the last equation it follows 

Z2 = -A;; A21 Zt + A22
1 

Y2 

Substitution into the first equation gives 

Yt = Au Zt + A12 ( -A22
1 

A21 Zt + A22
1 

Y2) 

This results in: 

[ 
~~2 ] = [ Au - A~i A22

1 
A21 A12 ~2i" ] [ Zt ] 

.., -A22 A21 A22 Y2 

(6.1) 

[] 

(6.2) 

[] 

Remark: In this chapter the Redheffer star product is used in a rather informal 
way. The partitioning of the various matrices is considered to be known and 
we assume the interconnections to be well-defined. 
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6.2 The true process and the noise as a star 
product 

In this section we are going to write the true process as a star product of two 
matrices, where the first matrix consists of the sampled data and the second 
matrix is the scaled noise matrix Qt(z). In chapter 4 we derived that in the 
MIMO-case there holds 

Pt = (Y - Et)(U + Dt)-1 

under the assumption that the matrix Ut( z) is invertible. We will also assume 
the matrix U(z) to be invertible. (The case where Ut or U is not invertible 
will be treated in section 6.5). 
First we claim that we can express the true process as a star product 

where the matrix T(z) is defined as 

T(z) = [ Tu(z) T12(z) ] = 
T21(z) T22(z) 

= [ ~~~~~-l(z) 
u-1(z) 

-Y(z)U-1(z) 

and the matrix 

Indeed: 

Pt - (Y - Et)(U + Dt)-1 

= (Y - [0 I]Ft)(U + [I O)Ft)-1 

= {Y + ([YU-1 0) + [-YU-t - I])Ft}(U +[I O]Ft)-1 

- {YU-1(U +[I O]Ft) + [-YU-1 - I]Ft}(U +[I O]Ft)-1 

= yu-t + [-YU-1 - I]Ft(U +[I O]Ft)-1 

YU-1 + [-YU-1 - I]Ft(l + [U-1 O]Ft)-tU-1 

= Tu + T12 Ft ( I T22 Ft )-1 T21 

S(T,Ft) 

(6.3) 
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So the true process can be written as a star product of the matrix T( z) with the 
true noise matrix Ft(z) (see figure 6.2). Note that we treat the true noise matrix 
Ft(z) and the signal matrices U(z) and Y(z) as transfer matrices instead of 
signal matrices. That is, the matrices .Ft(z), U(z) and Y(z) are interpreted 
as transfer functions in the space RHoo with the original time signals in 
.1L2 [0, 2N- 1] as Markov parameters. 

Y. u. 

Figure 6.2: True process as a star product Pt(z) = S( T(z), .Ft(z) ). 

We do the same manipulation for the true noise matrix Ft(z) and write 
this matrix as a star product of a weighting filter and a scaled noise matrix. 

• If we consider the unstructured noise matrix Qut with the corresponding 
bounding filter W(z), (where Qut and W(z) as defined in section 4.3), 
we derive 

Ft = [ ~:] = WQut = S(V,Qt) 

where the matrices V(z) and Qt(z) are defined as 

V(z) = [ ~ W~z) ] 
(6.4) 

Qt(z) = Qut(z) 

• If we consider the structured noise matrix Qat with the corresponding 
filters W(z), Vi and lt2 (where Qut> W(z), Vi and V2 as defined in 
section 4.3), we derive 

Ft = [ ~:] = WVi Q.t V2 = S(V,Qt) 

where the matrices V(z) and Qt(z) are defined as 
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V(z) = [ 0 W(z)Vi] 
Vi 0 (6.5} 

SoFt= S(V,Qt) where V(z) and Qt(z) are defined either as in equation 6.4 
for the unstructured case, or as in equation 6.5 for the structured case. If we 
combine these results Pt = S(T, Ft) and Ft = S(V, Qt) we get: 

Pt = S(T,Ft) 

which can be represented by a scheme as in figure 6.3 

Y. 
T(U,Y) 

V(W, Vi, V2) 

Figure 6.3: True process as a star product Pt(z) = S( T(z), V(z), Qt(z)) 

6.3 Standard form 

In this section we introduce a standard form in which the true process is 
written as a star product of the model coprime factors N(z) and M(z)-1, the 
true model error .6-t(z) and a standard matrix H(z), containing the coprime 
factors Na(z) and Ma(z) of the stabilizing controller (see chapter 5}. We 
assume N(z), M(z) and .6-t(z) to be stable. 
Consider figure 6.4: 

We introduce a matrix H(z) such that 

[~ l 
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Figure 6.4: Model error scheme with left coprime factors 

It is easily derived from figure 6.4 that H ( z) is given by 

H(z) - [ ~ ~ ~ ~ ] 
- 0 Nc(z) 0 Mc(z) 

0 I 0 0 

The function H(z) is clearly in RlH00 • Now we close the upper loops 
from Wt. 'IJ.i2 and ~1 to Xt. 'IJ.i1 and ~2 with the transfer functions at(z), 
M-1 (z) and N(z) respectively as in figure 6.5. 

Figure 65: Standard form 

We obtain the transfer function from Ut to Yt, which is equal to the transfer 
function of the true process. We can write Pt(z) as the star product: 

[ 

N(z) 0 0 l 
Pt(z) = s( 

0
o M(

0
z)-1 0 ,H(z)) 

~t(z) 

(6.6) 
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Remark: Of course one can think of model error structures that do not 
fit into the scheme of figure 5.7, but can be described in terms of a transfer 
function H(z), with model coprime factors N(z) and M(z) and the true model 
error At( z ). 

6.4 Model error as a star product 
In the previous section we introduced the standard form 

Pt(z) = s( [ N~z) M(~)-1 ~ l ,H(z)) 
0 0 At{z) 

where Pt(z) is given as a function of the model coprime factors N(z) and 
M(z), the true model error At(z) and the standard matrix H(z). By manipu­
lating this matrix H(z) we can transform the interconnections in such a way 
that we obtain the model error as a function of the model coprime factors, the 
true process and a manipulated matrix H(z). 

Consider figure 6.4 where we introduced the matrix H(z). We can partition 
H(z) in such a way that: 

Using Lemma 6,1, we will now interchange the lower output vector [ ~ l ~u. lower input ~ [ n 
There are three reasons to do so : 

1. We like to work with M(z) instead of M-1(z). 

2. We like to close the loop from Ut to Yt with the transfer function of the 
true process Pt(z). 

3. We like to obtain Wt to become the input and Xt the output of the 
interconnected system, so that this system will describe the transfer 
function of the true model error At( z ). 

We define the matrix 
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[ 

lf22(z) ll2a(z) lf24(z) l 
ll,.,(z) = lfa2(z) 1f33(z) Jl34(z) 

1f42(z) lf4a(z) Jl44(z) 

For the set up of figure 6.4 the matrix lf,.,(z) will be 

[ 
0 I 0 l 

ll(z) = Nc(z) 0 Mc(z) 
I 0 0 

STAR PRODUCTS 

We assume the matrix lf .. 1(z) to be invertible, which is the case if Mc(z) is 
invertible. (The case where Me( z) and lf,., are not invertible will be discussed 
in section 6.5). 

If lf,.l is invertible we can derive with equation (6.1): 

where 

H(z) = 

Using this matrix H(z) we get a scheme as in figure 6.6 where we opened 
the loop from Xt to Wt and where we closed the lower loop with yt(z) = 
Pt(z)Ut(z). The input of this interconnected system is Wt(z), and the output 
is Xt( z) as desired. This means that this system is equal to the true model 
error 

(6.7) 

For example, if we consider the matrix lf(z) corresponding to figure 6.4 

and we assume Me to be invertible, then [ ~c ~ ;;c ] is invertible and 
I 0 0 

we obtain: 
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Figure 6.6: True model error as a star product 

[ 

0 0 Mc(z)-
1 

-K(z) l 
A 0 0 0 I 

H(z) = -I I 0 0 

0 0 Mc(z)-1 -K(z) 

We already derived Pt = S(T, V, Qt)· When we substitute this in equation 
(6.7) for the true model error we get 

[ 
N(z) 0 ] A At(z) = S( 0 M(z) ,H(z),T(z), V(z),Qt(z)) (6.8) 

which is illustrated in figure 6.7 . 

Define 

G(z) = s ( [ No( z) o ] HA ( ) T( ) V( )) M(z) , z , z , z . (6.9) 

Then At(z) = S(G(z),Qt(z)) . Note that G(z) is built up with known 
information, {N(z),M(z)} is the chosen model, H(z) is determined by the 
chosen model error structure, T(z) is built up with the data {U(z), Y(z)} and 
V(z) contains the knowledge of the noise bounds {Wd(z), We(z)}. 

For the set up of figure 6.4 we derive 

G(z) = 

(6.10) 
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::::} model 

::::} model error structure 

::::} data 

::::} noise bounds 

::::} scaled true noise 

G 

Figure 6.7: True model error as a star product 

A de/ A de/ 
where W(z) = McU +N0 Yand X(z) = MY -NU. These signal matrices 
W and X are related with the signal matrices Wt and Xt in figure 6.4 for the 
noiseless case, so for Qt = 0. 
We can now compute the model error from (6.10) by: 

~t(z) = s(G(z),Qt(z)) = 

= (X + [ -N - M]ViQtV2 )( W + [Me - Nc]ViQtV2 f 1 

=(MY NU- NDt- MEt)(NcY + McU + McDt- NcEt)-1 



6.5 GENERALIZATION 107 

which corresponds to figure 6.4. 

6.5 Generalization 
In section 6.2 and section 6.4 we made the assumptions that 

1. The matrix U(z) or Ue(z) is invertible. 

2. The matrix H,.1(z) is invertible. 

In this section these conditions are relaxed and we show that we can still 
compute the matrix G(z ). 

1. The matrix U(z) or Ue(z) is not invertible: 
The matrix Ut(z) will become singular if the true process Pe(z) has a zero 
on the unit circle. If Zo is a zero of Pt(z) (with l.zol = 1), the feedback will 
make the matrix Ue(Zo) singular in Zo and the matrix U(.zo) will be singular 
or close to singularity. 

If the matrix U(z) or the matrix Ut(z) is not invertible, we can still solve 
the problem if the following conditions are satisfied: 

The signal W(z) 'J;1 Mc(z)U(z) + Nc(z)Y(z) is invertible. 

The signal We(z) 'J;1 Mc(z)Ut(z) + Nc(z)Yi(z) is invertible. 
where Mc(z) and Nc(z) are the left coprime factors of a stabilizing controller. 
This assumption is reasonable, for if we use the controller K(z) = 

M01(z)Nc(z) for the experiments, we find that W(z) 'J;1 Mc(z)U(z) + 
Nc(z)Y(z) M01(z)R(z), where the reference signal matrix R(z) is 
choosen invertible and where Mc(z) is invertible. If the noise is not to 
big Wt(z) will also be invertible. 

Now instead of looking at the true process we consider the transfer matrix 

Pe 'J;1 Yi wt-1 = Yi( Mc(z)Ut(z) + Nc(z)Yi(z) }-1 

We derive: 

= Yi ( Mc(z)Ut(z) + Nc(z)Yi(z) )-1 

= (Y- Ee)(Mc(z)U(z) + Nc(z)Y(z) + Mc(z)De(z)- Nc(z)Ee(z))-1 
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= (Y- [0 I]Ft)(W +[Me - Ne]Ft)-1 

= {Y + ([YW-1 Me - yw-1 Ne] + [-yw-l Me yw-1 Ne - I])Ft}· 

·(W +[Me -Ne]Ft)-1 

= {YW-1(W +[Me -Ne]Ft) + [-YW- 1Me yw-1Ne- I]Ft}· 

·(W +[Me -Ne]Ft)-1 

= yw-1(W +[Me -Ne]Ft) + [-Yw-t Me yw-1 Ne- I]Ft· 

·(W +[Me -!Ne]Ft)-1 

= yw-t + [-Yw-1 Me yw-t Ne - I]Ft· 

·(I + [-w-t Me w-1 Ne]Ft)-1W- 1 

= S(Tw2,Ft) 

where the matrix Tw2 is defined as 

[ 

~~~.t : -.~~~t.~e 
W-1 : W-1Mc 

Tw2 y~.-~::~. -~ I l 
-W-1 Nc 

(6.11) 

By definition of Tw2 it will hold: 

Now we introduce the matrix T.,1 as 

Twt ~ [ ~c ~c] (6.12) 

and it will hold: 

The previously defined G( z) is now replaced by 

Gu(z) = S ( S ([ ~ ! ] , if, Twt) , s( Tw2, V)) (6.13) 
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Figure 6.8: True model error as a star product for U IUJt invertible 

and we get the scheme as shown in figure 6.8 

Remark: If we choose for H(z) the set up with left coprime factors as in 
figure6dpar, then Wt(z) = Wt(z), and the final G .. (z) will be equal to the 
result of equation (6.1 0). 

So, even if S(T101 , Tw2 ) does not exist, we can still compute G .. (z) by 
splitting T(z) in two parts. Note that if U(z) and Ut(z) are invertible there 
holds T(z) = S(Twl, Tw2) and G(z) = G .. (z) 

2. The matrix H.,.l(z) is not invertible: 
If the matrix Hrl(z) is not invertible, we can still solve the problem if the 
three following conditions are satisfied: 
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1 Th . H ( ) [ H22(z) H23(z) ] . . 'bl . e matrix cen z = H
32

(z) H
33

(z) ts mvertl e. 

2. The process Pt( z) is sqaure and invertible for all z E C. 

3. The signal matrices Yt(z) and Y(z} are invertible. 

The matrix H,.1(z) will not be invertible if we choose for a reverse type of 
model error structure because then Mc(z) = 0 for the controller controller 
K(z) = oo (See remark 1 of section 5.4). 
However for a reverse type of model error structure we get a controller eo­
prime factor and Nc(z) = I. This makes the matrix Hcen(z) invertible. 
Further for all the reverse type model errors structures we have the condition 
that the process pt-1{z) E RlH00 , and so there are no zeros outside the unit 
disk. If we make sure that the reference signal R( z) is invertible we will find 
that Yt(z) and Y(z) are invertible. 

If H.,.... is invertible we can derive from Lemma 6.1: 

where 

with 

Using this matrix Hc(z) we get a scheme as in figure 6.9 where we opened 
the loop from Xt to Wt and where we closed the lower loop with Ut(z) = 
pt-1(z)Yt(z). Note that in comparison with figure 6.6 the signals Ut(z) and 
Yt(z) are not interchanged, so that we close the loop with pt-1(z) instead of 
H( z ). The input of this interconnected system is 'Wt( z ), and the output is 
Xt(z). 

This means that this system is equal to the true model error 
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~tl ""·--W.-t 

Figure 6.9: True model error as a star product 

[ 
N(z) 0 ] A ( ) _ 1( )) ~t(z) = S( O M(z) ,He z ,Pt z (6.14) 

Consider the H(z) corresponding to figure 6.4 with Me = 0 and Ne is 

invertible, then [ :e ~ ] is invertible and we obtain: 

[ 

0 0 
A 0 0 

Hc(z) = -I I 

0 0 

In section 6.2 we derived the matrix T(z) to get the relation between Pt(z) 
and Ft(z). In the same way we can compute a matrix Tc(z), that gives the 
relation between ~-1 (z) and Ft(z). We find 

Tc = [ ~~~~ : " •~ · · ~~~~ l 
y-1 : 0 y-1 

so that pt-l = S(Tc, V, Qt)· When we substitute this in the equation for the 
true model error we get 

where Gc(z) is defined as 
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[ 
N(z) 0 ] • Gc(z) = S( 0 M(z) ,Hc(z),Tc(z), V(z)) (6.15) 

Note that for H,.1(z) is invertible, we indeed find G(z) = Gc(z). 



Model error 
bounds 

7.1 Introduction 
In the previous chapter we showed that for a fixed model with a specific model 
error structure, the true model error can be written as a starproduct of some 
known matrix function G(z) and a matrix Qt(z) with the scaled true noise 
parameters. For every frequency z E C , we can compute the matrix norm of 
the modelerror, and we get: 

IIAt(z)ll = IIS(G(z),Qt(z))ll 

If we want to emphasize the norm at certain frequencies, or if we want to 
emphasize some input-' directions' or output-' directions', we can introduce 
weighting matrices W~u(z) and W62(z) and calculate the weighted matrix 
norm of the model error 

11 WAt(z) At(z) WA2(z) 11 = 

= 11 WAt(z) S(G(z), Qt(z)) WA2(z) 11 -

113 



114 MODEL ERROR BOUNDS 

= 11 S(Gw{z}, Qt(z)) 11 

where 

Gw(z) ~ [ Gwu{z) Gw12{z}] = [ W41GuW42 W41G12 ] 
Gw21(z) Gw22{z} G21 W42 G22 

and so we incorporate the weighting filters in Gw. 

The matrix Qt{z), however, is unknown. What we do know is that Qt(z) 
(either Qut or Q.t), belongs to some unstructured or structured set Q (either 
Q .. or Q.). 

For every frequency z E C , we can bound the weighted matrix norm of 
the model error by: 

11 W4t(z} Llt(z} W42(z) 11 = 

= 11 S(Gw{z}, Qt{z}} 11 ::; 

< max 11 S(Gw(z},Q(z)) 11 
Q(z)EQ 

Now we will derive bounds for the matrix norm at one specific frequency 
z. For this specific frequency Gw(z} and Q(z} are constant complex matrices 
and will be denoted by Gw and Q. 
We will first consider the structured case. Later we will show that the un­
structured case sometimes has some advantages. 

7.2 An upper bound using structured noise sets 
In the case where we consider structured noise sets, we can derive non­
conservative bounds, using the so called JL-techniques (Van den Boom [56]). 
We have 

V 

Gw 

{ 
IQ.·,· I <_ 1 fori = J. 

is a diagonal matrix with IQi;l = 0 fori =I= j 

[ 
0 W\'t] 

V2 0 

[ 
N 0 ] A WAtS( 0 M ,H,T,V)W42 [ 

Gwu Gw12] 
Gw21 Gw22 
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and we consider the structured noise set Q. with diagonal matrices Q. satis­
fying: 

11 Q.ll ~ 1 

Then Qt = Q.t E Q.,. 

We consider the weighted model error 

Wat.6.t Wa2 = S(Gw,Qt) 

For the matrix norm of the weighted model error there holds 

max IIS(Gw,Q.)II ~ "'/ iff JL( G...,) ~ 1 
Q.eQ. 

where we defined: 

G _ [ "Y-
1Gwu 

..., - ""-1/2G 
I W21 

This JL(G...,) denotes the structured singular value of the matrix G..., and is 
defined by Doyle ([10],[11]): 

(7.1) 

where 

= [ .6.1 0 ] 
0 Q. 

and .6.1 is in the set of q x p matrices with 11.6.111 ~ 1 and Q. is in the set of 
p(p+ q) x p(p+ q) diagonal matrices Q., with IIQ.II ~ 1 (so Q. E Q.). 

If no .6.~ makes det(I + G...,.6.~") singular, then JL(G...,) = 0. 

We can adjust the "Y in an iterative way until we find JL( G...,) = 1. 
The value JL is difficult to compute, but we can give an upper bound: 

We can even refine this bound with: 

(7.2) 
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where D is the set of matrices 

D = [ ~ ~2] 
with D2 diagonal, and the partition of D comformably to the partition of G..,. 

The matrix D 2 that gives the minimum in equation (7 .2) can be calculated 
using a converging algorithm (Packard et al. [ 47]). The upper bound will 
usually be very close, so that for practical use we will assume that the upper 
bound is equal to 1-'( G..,). In this way we can find the bound "Y for the norm 
of the model error. 

7.3 An upper bound using unstructured noise 
sets 

In the case where we consider unstructured noise sets, we have 

Qt = Qut is a. full matrix with IQiil $ 1 for all i,j 

V [ ~ ~] 

[ 
il o ] ~ Gw = WAtS( 
0 

M ,H,T,V)WA2 = [ 
Gwu Gw12] 
Gw21 Gw22 

and we consider the unstructured noise set Q .. with matrices Q .. satisfying: 

(where p denotes the number of inputs and q denotes the number of outputs 
of the process). Then Qut = Qt E Q ... 

If 11 Gw22 11 < A01, so if the signal-to-noise ration is sufficiently large, 
we can find a bound for the weighted matrix norm: 

11 WAl 6t WAl 11 = 11 S(Gw,Qut) 11 $ ma.x 11 S(Gw,Q .. ) 11 
IIQ .. II~>.o 

The problem is a two full-block wproblem. For this problem we can calculate 
the exact bound using wtechniques. There holds: 
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ll~lt{~ 11 S( Gw, Qu) 11 = 'l 

iff 

. ( [ Gwu '1~ 1 
d 'it,12 

Gw12 '1~1 /2 ] ) = 1 ~ O"mcm d-1 'it,12 
Gw21 '1~1/2 Ao Gw22 
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An important advantage of this bound, compared with the bound for the struc­
tured set. is that we can compute the bound exactly (Packard et al. [5]). This 
can be important if we like to use convex optimization techniques, as will be 
discussed in chapter 9. Another advantage is that we only have to optimize 
over one scalar d instead of (p + q)p scalars from the diagonal matrix D2 in 
the case of a structured set. 

A disadvantage is that the bound can become very conservative, compared 
to the approach with a structured set. 
Another disadvantage is that we still need an iteration (although it is only over 
a scalar J:). We will show that for the SISO-case we can find the bound in an 
explicit way without iteration. To find this explicit bound we will transform 
the expression 

~ = S(Gw,Qu) Gwn + Gw12 Qu ( I 

which is not affine in the variable Qu. into an affine form. 
We will now give four lemmas that provide the basic tools to transform the 
afore mentioned expression into an affine form (fhis will be formulated in 
Theorem 7.1): 

Lemma 7.1: 
Suppose that an orthogonal matrix E( z) E lRLoo that is partitioned as 

E(z) = [ Eu(z) E12(z) ] 
E21(z) E22(z) 

where we assume that E12 and E21 are square and invertible for z E C. 
Define the matrix 

Then there will hold: 

E*(z)E(z) I z E C 
E~(z)E-(z) = I , z E C 

(7.3) 

(7.4) 

(7.5) 
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S(E, E_) =[
0
I

1
o] 

(7.6) 

= [oi Io] S(E_, E) 
Cl 

fmQf;, 
Property (7 .5) is obvious because E and E_ are orthogonal. Property (7 .6) is 
easily found by substitution of (7.3) and (7.4) in the starproduct. 

An important consequence of the last property stated in Lemma 7.1 is now 
given in the following lemma. 

Lemma 7.2: 
Let E and E_ satisfy the conditions of Lemma 7 .1. 
Then for all X, Y E IRLoo there holds : 

Y = Fi(E,X) # X= Fi(E_, Y) 

Fi(E_, Y) = Fi(E_,Fj(E, Y)) = Fi(S(E_,E), Y)) = 

= Fi ( [ ~ ~],X) = X 

and 

Fi(E,X) ::: Fi(E,Fi(E_,X)) = Fi(S(E,E_), Y)) = 

= Fi ([~ ~].Y) = Y 
Lemma 7.3: 
Let E(z) E RlLoo be an orthogonal matrix, so E(z)E*(z) =I. 
Further let X(z) be any matrix in RlLoo and define Y = S( E, X). 
Then 

11 Y 11 $ 1 <=> 11 X 11 $ 1 for all z E C 

The proof of this Lemma is in appendix A4. 

Cl 

Cl 
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We now introduce two important orthogonal matrices J and J_ as follows: 
Let A(z) E RLoo with 11 A(z) lloo < 1. 
Define the matrices 

_ [ A*(z) A*(z) ] 
J(A) - A*(z) -A*(z) A(z) A.-1 (z) 

J_(A) = [ ~ ~ ] ( J(A)-
1

) [ ~ ~ ] = 

= [ -(k(z))-1 A*(z) A(z) A(z) ] 
A(z) A(z) 

where A(z) and A(z) are in Rllfoo with 

A(z)A*(z) = (I- A(z)A*(z)) and 

A*(z)A(z) = (I - A*(z) A(z)) 

(7.7) 

(7.8) 

The matrices A(z) and A(z) can be found with a spectral factorization (An­
derson ??). The matrices J(A) and L(A) are both orthogonal. 

Lemma 7.4: 
Let B(z) E RL00 be partioned as: 

B(z) = [ Bu(z) Bu(z) ] 
B21 (z) B22(z) 

and define 

C(z) = [ Cu(z) Cu(z) ] = S ( B(z), J(B22(z))) 
C21(z) C22(z) 

with J( ·)as in equation (7.7). 
Then 

D 
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C22 = J22 + J21 B22 ( I - Ju B22 )-1 J12 
= -A* B22 A.-t + A* B22 (I - Bi2 B22 )-1A* = 
= A* ( -B22(A*A)-1 + B22(I- Bi2B22t1)A* 
= 0 

D 

With the aid of the Lemmas 7.1 to 7.4 we can transform the expression 

d = S( Gw, Qu) = Gwu + Gw12 Qu ( I - Gw22 Qu )-1Gw21 

into an affine form in the variable Qu. 
This is the formulated in Theorem 7.1: 

Theorem 7.1: 
Define the matrix Xu as: 

Xu = S(L(~Gw22),,\Q1 Qu) 

for some (p + q) x p matrix Qu and with J( ·)as in equation (7.7). 
Further define the matrix 

Then 

utf"I~:XO 11 S( Gw, Qu) I loo 

Proof: . 
First from Lemma 7.2 we find: Qu = Ao S( J, Xu)· Since J is an orthogonal 
matrix, Lemma 7.3 yields 

11 Xu 11 ~ 1 {:} 11 Qu 11 ~ Ao 

So now we have: 

max 11 S( Gw, Qu) I loo 
IIQ.II$Ao 
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From Lemma 7.3 we infer that by choosing .A0 J{Gw22) we find GJ4 = 0 
and so 

0 

A next bound is then given by: 

'Y = max 11 G Jt + G J2 Xu G Js 11 ::; u( G JI) + u( G J2) u( G Js) 
IIX-119 

In the case where we deal with a SISO process Pt> the matrix Gw will be a 
2 x 3 matrix, and GJ1 and GJ2 will be scalar functions. The last inequality 
then becomes an equality: 

In that case we can calculate the bound without iteration (Van den Boom [57]). 

7.4 Norms in the frequency domain 
In the previous sections it was shown that an upper bound "Y (either 'Y for the 
structured or for the unstructured case) can be derived for the matrix norm 
of the model error for each frequency z E C. This results in a frequency 
dependent bound 'Y(z), with 

'Y(z) = max IIS(Gw(z),Q(z))ll , z E C 
Q(z)EQ 

where 11·11 denotes the matrix norm as defined in section 1.1 . 
Now we formulate four model error bound criteria J("Y(z)): 

Two norm: 

(7.9) 

(7.10) 
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Infinity norm: 

(7.11) 

Weighted sum of norms: 

(7.12) 

where a and {3 are positive real scalar constants. 

Square root of the weighted sum of the squared norms: 

J. 

J •• ('r(z)) = (a2 lh(z)ll~ + f32lb(z)ii!,) 2 (7.13) 

where a and {3 are positive real scalar constants. 

Maximum of weighted norms: 

(7.14) 

where a and {3 are positive real scalar constants. 

All these criteria J('r) are norms because they satisfy the four conditions: 

1. J(-y) ~ 0 

2. J('r) = 0 iff "'/ = 0 

3. J(a"Y) = lal J('r) where a is a scalar constant. 

4. Jhl + "'!2) ~ J('rt) + J("Y2) 

We can use these criteria to formulate an optimization problem, leading to 
an optimal nominal model in the sense of one of the norms mentioned above. 
This will be discussed in the next chapter. 

Computation in the sampled frequency domain : 
In this chapter we considered the infinity-norm and the two-norm in the fre­
quency domain. In practice, however, we will compute the infinity-norm and 
the two-norm for the sampled frequency domain. 
If we have chosen the length of the observation interval 2N large enough, so 
N » lll., where lll. is the length of the impulse response hll. ( k) of the model 
error 8( z ), then we know from section 1.1 that 

lim ll8(z) ll .. oo = ll8(z) lloo 
N-+oo 

lim ll8(z) 11 .. 2 = ll8(z) ll2 
N-ooo 
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In applications we therefore expect that the error we make will be negligible if 
the observation interval is large enough (note that we assume ~(z) E R/H00). 

Even if l 11 is not finite and we assume that the tail-contribution of h11(k) is 
bounded by 

we derived in section 1.1 that the error in the two-norm and the infinity-norm 
will be smaller than t:11• 
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Parametrization 
and Optimality 

8.1 Introduction 
We derived upper bounds for various model error criteria for a given model. 
Now we are going to parametrize the model coprime factors and we will op­
timize the parameters in the sense of minimizing the model error bound. We 
will have a discussion about quantities, except for the model-parameters, that 
influence the final optimal model, like applied controllers, factorizations and 
weighting filters. 

We parametrize the model coprime factors N ( z) and M ( z) using an n x 1 
parameter-vector 8 belonging to a set B. The corresponding dependence of 
the coprime factors of 8 will be denoted as N(O, z) and M(8, z). Also, the 
upper bound ;( z ), as defined in chapter 7, will be denoted as -y( 8, z) and so 
we obtain the criterion J('y( 8, z )), that we wish to minimize over all 8 in B: 

125 
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min J (1'(8 1 z)) (8.1) 
seB 

For the criterion J we can make several choices, like J00 , J 2, J. or J •• , as 
defined in section 7 .4. ote that the criterion J depends on the model coprime 
factors, the controller coprime factors and the weighting filters: 

J = J( N(Biz) I M(Biz) I Nc(z) I Mc(z) I w41(z) I w42(z)) 

Remarks: 

• The first item we discuss is the choice of the model error structure. 
In chapter 5 we showed that the stabilizing controller indicates which 
model error structures can be used. If we have K(z) = 0 we can 
choose for an additive model error, input/output multiplicative model 
error or a coprime factor model error structure with fixed ~M(z) = 0. 
For K ( z) = oo we can choose one of the reverse type model error 
structures or a coprime factor model error structure with fixed ~N = 0. 
For K(z) -::/= 0 and K(z) -::/= oo we deal with a coprime factor model 
error structure. 

The only choice that may be left is that of a left or a right coprime 
factorization of model and controller. In this thesis we assume that this 
choice is already made and so we consider the model error structure to 
be fixed. 

• For the model P( e 1 z) we have to select a coprime factorization. If 
we made a choice for a particular coprime factorization we obtain a 
parametrization of the model coprime factors N(8 1 z) and M(8 1 z). We 
will discuss this topic in section 8.2. 

• Also for the stabilizing controller K(z) we have to choose a coprime 
factorization. Further, if we have more than one stabilizing controller, 
we have to make a choice between these stabilizing controllers. We will 
discuss this topic in section 8.3. 

• Finally we select the weighting filters W41 (z) and W42(z) to be mo­
tivated by control requirements. We will discuss this topic in section 
8.4. 

8.2 Parametrization of the model coprime 
factors 

In this section we will shortly discuss the choice of parametrization of the 
model coprime factors and the consequences of this choice. The controller 
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and its coprime factorization are assumed to be fixed. We like to obtain a 
nominal model that is suited for the design of a robust controller. We look 
for a nominal model with a low order, an easy structure. For the sake of a 
reliable and fast estimation of the parameters, it is recommendable to use a 
minimum number of parameters. 

Before we can parametrize the model coprime factors we have to fix the 
coprime factorization of the model. For this, we introduce, as in section 5.2, 
a bijective mapping 1r: 

1r ( P(z)) = ( N(z) M(z)] 

where Nand M constitute a specific coprime factorization of P. 
Choice of coprime factorization of the model 
We will work out what happens if we compare the resulting true model error 
for two different choices of left coprime factorization: 
Consider two different coprime factorizations of a model P( z) E P: 

P(z) = M}1(z) Nt(z) 

P(z) = M21 (z) N2(z) 

and a specific coprime factorization of a system F(z) E P: 

F(z) = .M-1 (z) N(z) 

This results in the model errors 

(~N(z) ~M(z)h = [N-Nt M-Mt] 

( ~N(z) ~M(z) l2 = [ N- N2 M- M2] 

In chapter 5 we proved that there will exist a unimodular matrix A( z) such 
that: 

N2(z) = A(z) Nt(z) 

M2(z) = A(z) M 1(z) 

We will show that the model errors for these choices of coprime factorizations 
are related as: 

From equation ( 5.3) we deduce that 
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[ ~N(z) ~M(z) h = At(z) [ Mc(z) -Nc(z)] 

= ( Mt(z) Y(z) - Nt(z) U(z)) w-1(z)[ Mc(z) -Nc(z)] 

where W(z) = ( Mc(z) U(z) + Nc(z) Y(z)) and where Y(z) and U(z) 
are choosen 

[ 
~(z) ] = [ Y(z) ] + F(z) 
U(z) U(z) 

for an element F( z) in a set F. or a set F u (The sets F. and F u are introduced 
in section 4). The signal W(z) is independent of the model coprime factors 
(see example section 6.4). 

The true model error for the second choice of the left coprime factors is 
given by 

[ ~N(z) ~M(z) h = 

= ( M2(z) Y(z) N2(z) U(z)) w-1(z)[ Mc(z) -Nc(z)] = 

= (A(z)M1(z)Y(z) - A(z)N1(z)U(z))w-1(z)[Mc(z) -Nc(z)] = 

= A(z) [ ~N(z) ~M(z) h 

where Y, ii and Ware the same matrices as mentioned above. 
We see that by scaling the left coprime factors by a matrix A( z) we also scale 
the model error by matrix A(z). So, the choice of another coprime factoriza­
tion can be viewed as choosing another weighting filter W .. :u ( z ). This result 
is illustrated in figure 8.1. For the right coprime factor case the situation is 
depicted in figure 8.2. 

Remark: In the case of a normalized coprime factorization the model eo­
prime factors N(z) and M(z) are fixed, up to an inner or coninner matrix 
multiplication. 
This inner matrix, however, has no influence on the matrix-norm of the model 
error A(z). 

Parametrization: 
Suppose we have a canonical parameter set for all models P( z ). Then we can 
introduce a mapping 4> from the parameter set E> to the model set P, such that 

4> (9) p 
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fj 

Figure 8.1: Model error scheme with scaled left coprime factors 

fj 

Figure 8.2: Model error scheme with scaled right coprime factors 

If we choose the mapping 

</>(6) = P(8,z) 

in such a way that for all P( z) E P there is only one parameter vector 6 E e 
such that P( z) = P( 6, z ). we have a bijective mapping from e to P and each 
6 E e gives a canonical representation for P( 6, z) E P. Next consider the 
bijective map 1r defining the coprime factorizations of elements P E P. By 
defining the mapping 

we get a parametrization of the model coprime factors with 

.,P(6) = [N(6,z) M(6,z)] 
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Since both 1r and 1/J are bijective, also 1/J is bijective and so 

,P (e) = s and ,p-1 (S) = e 

The relation between the mappings q,, 1r and 1/J is visualized in figure 8.3. 

Figure 8.3: Bijective mappings 

In section 7.4 we introduced different model error criteria J (-y( (), z)). This 
leads to an optimization problem where we wish to minimize over all (J E e, 
as in equation (8.1). The properties of the optimization of (J E e to minimize 
a model error criterion J is depending on the choice of the parametrization of 
N(O, z) and M(9, z). 

We can choose the parametrization of N and M to be linear in the param­
eters 6. This can be done by 'fixing the poles' of the model coprime factors 
N and M. The main reason for doing so is that for this linear parametrization 
the optimization problem becomes a convex optimization problem. This will 
be discussed in chapter 9. 

There are situations where we can not fix the poles of the model coprime 
factors. For example, if we consider an additive model error structure and we 
make M(z) =I, then we do not like to fix the poles of N(z) = P(z). Another 
example is where we like to work with normalized coprime factors N and 
M. Models with a normalized coprime factorization are of special interest in 
control theory, because the problem of robust stability with these models has 
explicit solutions and controllers can be computed in a relatively simple way 
(McFarlane [43], Glover and McFarlane [22]). In those cases, however, the 
optimization problem (minimizing the funtional J over the parameters space 
9) will become very 'messy'. A pararnetrization using normalized coprime 
factors is shortly discussed in Van den Boom ([56]). 
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Of course many other parametrizations are possible, but we will restrict 
ourselves to the linear parametrization as mentioned above. 

8.3 The stabilizing controller and its coprime 
factorization 

Suppose we have a set of stabilizing controllers { K1 (z), K2(z) , .. , K,.(z) }. 
For all these controllers we can compute various left or right coprime factor­
izations which lead to different model error structures. In Chapter 5 we fixed 
the coprime factorization of the controller to be normalized. In this section 
we will release this choice and study the influence of different choices of 
coprime factorizations. Finally we consider what to do if we have more than 
one stabilizing controller. 

Choice of the coprime factorization of the controller: 
We will first consider the case where we have only one fixed controller K(z). 
The first important remark is that the choice between a left or right coprime 
factorization of the controller is determined by the choice of coprime factor­
ization of the model. If we choose a left coprime factorization for the model 
we have to choose a left coprime factorization for the controller as well, be­
cause the R-parametrization should result in a consistent scheme. The same 
holds for the right coprime case. 

Now suppose that we choose a left coprime factorization for the 
model. Then we can compute different left coprime factorizations K(z) = 
M01(z) Nc(z) for the controller. We will compare the resulting true model 
error for two different choices of left coprime factorization of the controller: 
Suppose these factorizations of the controller are given, i.e: 

K(z) = M0f(z) Nct(z) 

K(z) = M0:(z) Nc2(z) 

This results in the model errors 

[ .6N(z) .6M(z) h = .6.t{z) [Mct(z) -Nct(z)] 

[ .6N(z) .6M(z) ]2 - .6.2(z) [Mc2(z) -Nc2(z)] 

There will exist a unimodular matrix B( z) such that: 

Nc2(z) = B(z) Nct(z) 
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We will show that the model errors for both choices of coprime factorizations 
are the same. 
For the first choice of the left coprime factors N01(z) and M01 (z) we can 
derive 

[ ~N(z) ~M(z) h = ~t(z) [ Mct(z) -Nct(z)] = 

= X(z) ( Nct(z) Y(z) + Mct(z) U(z)) -t [ Mct(z) -Nct(z)] 

where X(z) = ( MY(z) - N U(z)) is independent of the controller 

coprime factors (see example section 6.4) and fJ and Y are introduced in the 
previous section. 
For the second choice of coprime factorization the true model error is given 
by 

[ ~N(z) ~M(z) ]2 = ~2(z)[ Mc2(z) -Nc2(z)] = 

= X(z) ( Nc2(z) Y(z) + Mc2(z) U(z) f 1 
[ Mc2(z) -Nc2(z)] = 

= X ( B(z) Nct(z) Y(z) + B(z) Mct(z) U(z) f 1 
• 

[ B(z) Mct(z) -B(z) Nc1(z)] = 

X(z) ( Nct(z) Y(z) + Mct(z) U(z) r1 
• 

B-1(z) B(z) [ Mct(z) -Nct(z)] = 

= X(z) { N01{z) Y(z) + Mc1(z) U(z)) -t [ Mct(z) -Nct(z)] 

= [ ~N(z) ~M(z) h 

and so the model error is not influenced by the choice of the coprime factor­
ization· of the stabilizing controller. This is illustrated by figure 8.4. Figure 
8.5 illustrates the right coprime case. 

Remark: We derived that the final model error is not influenced by the choice 
of coprime factorization of the controller. As was already motivated at the 
end of chapter 5, we will choose a normalized coprime Factorization For 
the controller. In that case there holds that the norm of the model error is 
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Figure 8.4: Model error scheme with scaled left coprimefactors 

Figure 8.5: Model error scheme with scaled right coprime factors 

equal to the norm of the stable function A( z) in figure 8.1/8.5. 

Choice between various stabilizing controllers: 
If we only know one stabilizing controller, we only have to choose for either 
a left or a right coprime factor description, which is determined by the choice 
of coprime factorization of the model. 
If we have the access to more stabilizing controllers we can choose the con­
troller that results in a minimum error bound. 
For example, suppose we have a model set with left coprime factors N(8, z) 
and M(8, z) and we have a normalized left coprime factorization of the i-th 
controller: K,(z) = M0l(z)N0 ,(z), then we search for the true process 
coprime factors in the set 

N(z) = N(9,z) + ~w(z) 
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where 

M(z) = M(8, z) - dM(z) 

dN(z) = d(z) Mc,(z) 

dM(z) = -d(z) Nc,(z) 

This means that, although [dN(z) dM(z)] will be in different spaces for 
different choice of controller K 1(z), we can compare the bounds for the various 
controllers a postriori, and we can select the one that results in a minimum 
bound for the model error. 

8.4 Weighting filters and optimization criterion 
We like the weighting filters W61 and W62 to be motivated by control re­
quirements and robustness constraints. This implies that W 61 and W 62 will 
become large for some frequency-range and in some input/output 'direction', 
if we have high control demands for that particular frequency-range or in­
put/output 'direction'. 

Before the choice of the weighting filters is discussed we will mention the 
most important ingredients of the problem so far. 

Nominal model: The nominal model P(8, z) is pararnetrized by param­
eter vctor 8 E e. The nominal model coprime factors become 
[ N(8, z) M(8, z)] = 1r ( P(8, z)) . The pararnetrization is already 
discussed in section 8.2. 

Controllers: For the identification and control of the process we use 3 dif-
ferent types of controllers: 

1. Controller Kezp for the experiments, as discussed in chapter 2. 

2. Controller Kana for the analysis, as discussed in chapter 5. 

3. Controller Kopt for optimal performance, as discussed in section 
1.3. 

The controllers Kezp and Kana may be the same controllers. 

Bounded model error: The discrepancy between the nominal model P( 8, z) 
and the true process Pt(z), is described by the model error dt(z). The 
true process Pt( z) will be in a set P, which is given as: 
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where Fu denotes the upper linear fractional transformation and the 
matrix fp(z) is given by 

fp(z) = S ( [ N(90,z) 0 ] H) 
M(9,z) ' 

Here the matrix H is defined as in section 6.4 and [ N ( 9, z) M ( 9, z) ] 
are the coprime factors of the nominal model P( 9, z ). We will assume 
the model error Li(z) to be in the set 

.a = { Li(z) Ill W~t(z) Li(z) w~2(z) lloo::; "'} 

When we start with the modelling of an unknown process using identification 
the afore mentioned basic ingredients will be unknown in general. By doing 
identification and designing a controller we will gradually find a nominal 
model with a bounded model error and an optimal controller for this model. 
The main problem is that the three aspects (model, model error and controller) 
are related very closely. To see that, we consider the three problems: The 
H00-identification problem, the robust control problem and the model error 
set determination problem. We will discuss these problems and we will show 
that we can solve the identification/control problem in an iterative procedure, 
involving the three mentioned problems: 

Problem 1: H00-ldentification problem: 

Given: 
- Data set { u , y , r } and the disturbance bounding filters Wd, We. 
- Stabilizing controllers Kezp and Kana· 
-Weighting filters W~ 1 and W~ 2 and upper bound "Y· 
- Model set with model coprime factors [M( 9, z), N( 9, z) ], 9 E 9. 

Find: 
- Optimal parameter vector 9opt E 9 such that "!( 9) = 

J oo ( "!( 9, z)) is minimized. 

Result: 
- Optimal model P(9optJ z) and "/opt= "f(9opt)· 

Problem 2: Robust control problem: 
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Given: 
- Nominal model P( 60 , z) and r o-
- A set P = { p = Fu (fp0 , a), 11 Wb.t a Wb.:alloo :5 "Yo }. 
- Weighting filters W,1, W,2, W ,..a and W p4 for the performance 
constraint. 

Find: 
- Controller Kop~: such that 

q(K) = rn;x 11 [:.:~](I+ PK)-1 
[ W,..a w,..P] lloo 

is minimized, and Kop~: stabilizes all P( z) E P. 
Result: 

-Optimal controller Kop~:(z) and T/op~; = q(Kopt)· 

Problem 3: Model error set determination problem: 

Given: 
-Nominal model P(60 ,z) and fo. 
-Controller K 0 (z). 
- Weighting filters W,1, WP2, W ,..a and W p4 for the performance 
constraint. 

Find: 
-Weighting filters W41 (z), W42(z) such that 

11 Wb.t(z) a(z) W42(z) lloo :51 ==? 

11 [ w:,~o] (I + p Ko )-1 
[ W,..a W,.. p] I loo < 1 

and K 0 ( z) stabilizes P( z) = F" (r 0 ( z) , a( z) ) 
Result: 

-Weighting filters W41 (z) and W4 2(z). 

Problem 1 is discussed in the previous chapters. 
Problem 2 is a robust control problem that can be solved using standard Hoo 
or p.-techniques (Doyle et al. [13], Doyle [11] and Balas et al. [5]). 
How to solve the third problem will be discussed now: 

Consider the performance function 
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[ w:P_ko ] (I + p Ko )-1 [ Wp3 Wp4 P ] = S( K0, !J, P) 

where !J is given by: 

[ 

o Wp3 
IJ = o wp1Wp3 

Wp2 0 
-I 0 

0 
0 
0 

wp4 tl 
For the nominal model P0 we compute 

a = 11 S{ Ko, !J , Po) I loo 
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If a > 1 the performance constraints are too tight and no controller can do 
the job for the nominal model P0 • Therefore we will assume that a < 1, so 
that there some 'room' to allow perturbations on the model P0 • 

Now suppose r 0 is the structure matrix for the model P0 , then P = 
S(r0 , 6) and we get the performance constraint: 

11 S( Ko, !J, p) lloo = 11 S( Ko, !J, ro, 6) lloo < 1 (8.2) 

We define the matrix 

R = [ ~:: ~:: ] = S( Ko, !J, ro ) 

and the performance constraint turns into 

11 S{ R, 6) I loo ~ 1 

Thus we are concerned about the magnitude of Umaz ( 6( z)) with z on 

the unit circle. We can transform this constraint into an affine form in 6( z ). 
Therefore define: 

~2 = (R.f2R12)-1 R.f2 
Go = {R22~2Rn- R21) 
A GJ' (Go GJ' )-1 R22 ~2 

T [ ~: ~: ] = S ( J _ (A) , R) 

where L(A) is defined as in equation (7.8). Finally we have assumed that 
the matrix R12 has full column-rank and the matrix ( R22Ri2R11 - R21) has 
full row-rank. 
With these definitions we can formulate theorem 8.1: 
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Theorem 8.1: 
Suppose the matrix R12 has full column-rank and the matrix ( R22~2R11 -

R21 ) has full row-rank. 
Let T(z) be defined as above. 
Then there holds 

The proof of this theorem is in appendix A5. 

[J 

The theorem claims that for some fixed P0 and K0 we can transform the 
performance constraint into a constraint affine in the model error. Except for 
the extra term T0 this constraint yields two weighting filters T1 and T2 for the 
optimization criterion of the model error. We will assume that for the nominal 
model (so .6.(z) = 0) the constraint will be satisfied, so 11 To(z) lloo ~ 1. Now 
we can approximate the criterion by 

11 Tt At T2 11 ~ 1 - 11 To( z) 11 for all z E C 

If 11 T0 ( z) lloo « 1 the approximation will be very close. Next we apply an 
inner-outer factorization on T1 ( z) and T2{ z ): 

where T1i is an inner function, T 2i is a coinner function and T1o T20 are outer 
functions. Define 

so that the filters W At and W A2 become square and stable. We get the crite­
rion: 

11 To(z) 11 )-
1 lloo ~ 1 (8.3) 

We derived filters W At and W A2 that give an indication in which frequency­
ranges and in which input/output 'directions' the minimization of the model 
error must be emphasized to satisfy the control demands. 

We solved the three mentioned problems and we find that the results of the 
first problem are necessary to solve the second problem, the results of the sec­
ond problem are necessary to solve the third problem, and finally, the results 
of the third problem are necessary to solve the first problem. 
One way to solve all three problems is to use an iterative scheme: 
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Iterative algorithm: 
We consider the 3 problems: 

1.) The Hoo identification problem 

2.) The robust control problem 

3.) The model error set determination problem 

We can start with a first estimate for filters W.1H(z) and WA 2(z) (For exam­
ple W A 1 ( z) = I and W A 2( z) = I), and then solve the Hoo identification 
problem. The optimal nominal model P0 and the model error bound i that 
are found can be used as the input parameters for the robust control problem, 
where we will find an optimal controller K0• For this K0 and P0 we can 
compute the model error set that satisfies the performance criterion and we 
obtain an new estimate for the filters WA 1 (z) and WA 2(z). 
We can repeat these 3 steps untill we are satisfied about the performance prop­
erties of the model with controller and model error bounds. 
If the performance requirements cannot be met we have to do measurements 
(perhaps with improved sensors and actuators), or we have to relax the per­
formance requirements. 
If the performance requirements are met very easily and we do not want to 
tighten these requirements, we have 'room' to optimize another identification 
criterion, like J 2, J,, J.. or Jmam, as long as after the identification it will 
hold that J00 < 1, as in equation (8.3). 

It is very difficult to get insight in the convergence of the iterative scheme. 
The three sub-problems are well defined optimization problems and will con­
verge. The interaction between model, model error bound and optimal con­
troller are very complex. However, to our believe the iterative scheme will 
converge if we deal with reasonable circumstances, like a good signal to noise 
ratio during the experiments, a wel chosen model set, and control requirements 
that are not too high. 
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PART C: 
OPTIMIZATION 
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Convex 
optimization 

Part C is about optimization. The aim of identification is to be optimal in 
the sense of some model error criterion. This usually result in an optimiza­
tion procedure using an iterative algorithm. During this iteration we hope 
to reach the optimal parameter values. For the majority of parametrizations 
and optimization algorithms there is no theoretical evidence that the algorithm 
will ever reach the optimum or will at least get very close to the optimum. 
In this Chapter we will therefore choose a special parametrization, the linear 
parametrization of the model coprime factors. i.e. a parametrization where the 
coprime factors are chosen linear in the parameter vector 8. We will show 
that, under some conditions, the optimization criterion will become convex 
over (J for this choice of parametrization. 
Two optimization algorithms, the cutting-plane algorithm and the ellipsoid al­
gorithm, will shortly be discussed. We choose for these algorithms because 
these algorithms are easily implemented and they provide simple stopping cri­
teria that guarantee us that the optimum is found up to a prespcified accuracy. 
Furthermore the algorithms only make use of subgradients rather than gradi­
ents. 

143 
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A subgradient function of four model error criteria J will be derived. 

9.1 Linear parametrization 
In this section the following parametrization of the coprime factors N(6,z) 
and M(6, z) will be considered: 

[ 
N(z) 0 ] = [ No(z) 0 ] + t 6i [ N,(z) 0 ] (9.l) 

0 M(z) 0 Alo(z) i=l 0 Afi(z) 

where fJ ~ [ 61 62 ... 6,.]T. In this way N(6,z) and Al(fJ, z) are both affine in 
the parameter 6. To guarantee coprimeness of N( 6, z) and Al ( 6, z) we will 
restrict e to those parameter vectors fJ that makes these factors coprime. 
Remark: In equation 9.1 we choose the block-structure for the parametrization 
so that we can use the results for left coprime factors as well as for right 
coprime factors. 

Examples: 
ARMA-parametrization with fixed AR parameters: 
Let: 

N(fJ,z) = C(z)-1B(6,z) and Al(6,z) = C(z)-1A(fJ,z) 

where we denote 

A(O,z) = Ao(6) + A1(6)z-1 + .. + A,.(O)z-n 

B(6,z) = Bo(6) + B1(6)z-1 + .. + B,.(O)z-n 

and we fix 

C(z) = Go+ Ctz-1 + .. + Cnz-n 

such that detC(z) i= 0 for Re(z) > 1. 
For the parametrization of A.(6) and B.(e) we can choose various canonical 
forms, as long as A.(6) and Bi(fJ) are linear in the parameter 6 (see Kailath 
[34]). So N( (}, z) and Al ( (}, z) are modelled with ARMA parameters where 
we fixed the AR parameters. (They are both affine in the parameter 6.) 

In the case of an additive model error, we have M I, and so we choose 
A. = C;.. In the case of an input multiplicative model error, we haveN= I, 
and so we choose Bi = c •. 
To avoid a trivial optimal solution Oopt. = 0 in the case where N i= I and 
Al i= I, we must guarantee that 
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We can achieve that for example by fixing M0 = I. 

Parametrization with orthogonal functions: 
Next we mention the parametrization with orthogonal functions (Heuberger 
[31]). For a SISO·model we choose 

No(z) = 0 
Mo(z) = 1 

N,(z) = fti(z) } . 
M,(z) = /2i(z) '= 1, ... ,n 

The functions fH(z) and f2i(z) are from two separate orthogonal sets with 

f !H(z) h;(z) dz { 1 fori J i,j > 0 - 0 fori::f:j 

f f2i(z) /2;(z) dz = { 
1 fori=j 

i,j, > 0 
0 fori ::f: j 

An advantage of the parametrization of the model coprime factors with or· 
thogonal functions is that the optimization will take place in an orthogonal 
domain, and may be numerically better conditioned. 

Parametrization with Laguerre polynomials: 
In the SISO case we can choose a parametrization with Laguerre polynomials 
(Wablberg [65]), which is a special case of parametrization with orthogonal 
functions: 

No = 0 M0 = 1 

~ (1 - 4tZ)i-l Ni(z) = - where -1 < a1 < 1 and 1:::; i:::; n 
z- a1 z a1 

and 

N(8,z) and M(8,z) will be Laguerre-models. 
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9.2 Convexity of the criterion 
In this section we consider the convexity. If we like to obtain convexity we 
have to extend the parameter set e to a convex set. We choose for this ex­
tented convex set the entire lR!' and so we optimize over() E JR!'. Later, after 
the optimization is done we can check if the optimal ()* is in the set e, and 
so if N( ()* 1 z) and M(()* 1 z) are coprime and if P( ()* 1 z) is stabilized by the 
controller K(z). 
We show that, if we choose a linear parametrization and if the matrix fi ( z) 
(as introduced in section 6.4) satisfies some conditions, we can transform the 
optimization procedure for particular model error structures into a convex op­
timization problem. This is formulated in the following theorem: 

Theorem 9.1: 
Suppose fi can be partioned as: 

Now let: 

fi12 
fi22 
Ha2 
fi42 

1.) [ %:: %:: ] = [ ~ ~ ] 

2.) [ H41 H 42 ] = [ 0 0] or [ %:: ] [ ~ ] 

3. ) [ ~ ! ] = [ ~0 ~0 ] + ~ ()i [ ~i ~i ] 

Then there will exist functions L0 (Q 1 z) and Li(Q 1 z) such that S(Gw(0) 1 Q) 
can be written as 

n 

S(Gw(0) 1 Q) = Lo(Q 1 z) + L()iLi(Q1 z) 

and the function 

J(-y(0 1 z)) = 

i=l 

J(max IIS(Gw(O)~ Q)ll) 
QE<} 

(9.2) 
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(9.3) 

is a convex function over 6, where J('y) is a nonn. 

0 

The proof of this theorem is in appendix A6. 

From the example in section 6.4 we can see that for the left coprime set 
up corresponding to figure 6.4 the matrix H satisfies the conditions 1 and 2. 
Also for the right coprime set up we can derive that the conditions 1 and 2 
will be satisfied. 

9.3 Cutting-plane and ellipsoid algorithms 

In the previous section it was shown that under certain conditions J(-y(8, z)) is 
a convex function over all 8 E JR:'. We can solve the problem of minimization 
by making use of special convex optimization algorithms. We will shortly 
discuss two methods, the cutting plane algorithm ([ 6],[9]) and the ellipsoid 
algorithm ([6],[25]) , which both use stopping criteria that provide an optimum 
to a certain accuracy. 

The gradients with respect to 8 for the function J (-y( 9, z)) can be discon­
tinuous, because the gradient of the function "Y( f), z) is discontinuous. We are 
interested in the mentioned methods, because both algorithms make use of 
subgradients rather than gradients. 

A function g( 9) is called a subgradient in 9 if for all e there holds 

(9.4) 

We will derive a subgradient for all criteria J in the next section. 

First the cutting plane algorithm will be discussed. Suppose, for k param­
eter vectors 8(1), .. ,8(k) we have calculated the nonns J(9(1)), •• ,J(8c,.>) and for 
the subgradients 9(t)• .. •9(k) (where 9(l) denotes g(8(1)) ). Now we know: 

J(8) 2: J(8(i)) + g'(i)(e- 9(i)) for all i = 1, .. ,k 

So for all 9 we have 

and so for Oopt there will hold 
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To calculate this minimum, define the following matrices: 

w = [ ik] [ 

9~) 
A= : 

T 
9(k) 

~1] 
-1 

and solve the linear programming problem 

w• k 

where we denote w;. E JR!'+l as the optimizer of this problem and define 
9i. =[I O]wt and Lt = [0 l]wt. 
Define uk = J( 9j.) and we find the following bounds 

u; ;:::: J(9opt) ;:::: Lie 

If the interval size (Uk - Li.) is sufficiently small, we can take 9i, as a 
reasonable estimate for 9opt. If not, we define 9(/o+t) = 9i. and put an extra 
row to the matrix A and an extra element to vector b. We can calculate a new 
upper bound u;+t and lower bounds Lie+1 , where there will hold: 

UZ 2:: UZ+t 2:: J( 9opt) 2:: Lj.+t 2:: Li. 

We can iterate until the stopping criterion is sufficiently small. 

Next we discuss the ellipsoid algorithm: 
Suppose we know that the minimum 9opt is in the ellipsoid 

where Ao is some square and non-singular matrix in JRnxn. 

We can calculate a sub gradient 9(o) in 9(o)· J( 9) is convex, so 8opt will be in 
the half-plane 

Ho = {9 I 9[o)(9- 9(o)) ::; 0} 

We now know that the half-ellipsoid Ho n Eo will contain the minimizer 8opt. 
We can construct a new ellipsoid 
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E,. = {81(8-6(t))TA11(6-6(t)) $ 1} 

such that E 1 2 (Ho n Eo) and where the volume of E,. is less than the 
volume of E0 • 

This can be repeated and we get an iterative procedure. Now suppose after 
k iterations we know that the minimum 6opt is in the ellipsoid 

E~c = {6 I (8- 8(1c))T Aj;1(6- (J{Ic)) :5 1} 

Let 9(1c) be the subgradient in (J(Ic) and define the normalized subgradient as 

- 9(1c) 
U(lc) = .I T 

V 9(~t)Akg(lc) 

Then we can calculate the ( k + 1 )th ellipsoid 

E1c+1 = {8 1 (8- 8v~+~>>x A;;!1(6- 8(1c+t)) < 1} 

where 8{1c+t) and A,.+l are given by 

(J (J A~e9(1c) 
(lc+l) - (le) - n + 1 

A,.+t = 2n
2 

1 (A~c - ~1 A~c9(1e)9~)Aic) 
n- n-

The volume of these subsequential ellipsoids will decrease to 0 for k -t oo. 
Further there holds 

J(6(~c))- J(Bope) :5 ju[H,A~cu(~e) 

Remark: For both methods we assume that ( "Y( 8, z)) is a convex function over 
8 for every z. Convexity could be lost if the approximation for 

"Y(8,z) = max 11 s(Gw(8,z),Q(z))ll 
QeQ 

using the D-iteration (see section 7.2), is not good enough. 
In the cutting-plane algorithm we might find that U1 < £1• In that case a 

new set of starting vectors 6(t)•··•8(1e) should be choosen in the neighbourhood 
of the last-found o., and we can restart the optimization. 

The ellipsoid algorithm, however, will converge, but we might find a final 
(J•, that is not really the optimal 6 •. If one of the ellipsoids E. was chosen 
too small ( so 6ope is not in E1 ) then 03, j > i tends to the boundary of the 
ellipsoid E1• We can check that by increasing the size of the final ellipsoid, 
and see if a new optimization will move out of the final ellipsoid. 
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9.4 Subgradients 
In this section we will derive subgradients for all criteria J which were in­
troduced in section 7 .4. In particular we consider the infinity-norm and the 
2-norrn in the sampled frequency domain, so z E 0. 

By definition, a subgradient g( e) will satisfy: 

J ( (-y( 8, z)) ~ J ( (7( e, z)) + gT (e)( 8 - e) for all 8 E JR" 

Before we give the subgradients we have to introduce some definitions: 

Q0(e,z) ~ arg (maxiiLo(Q,z) + f:e.L.(Q,z)ll) 
QeQ i=l 

A lkf ( A ) Zo(8) = arg maxlh·(8,z)ll 
zEO 

where L0(Q, z) and Li(Q,z) are the functions from theorem 9.1. 
Suppose 

n 

Lo(Qo,z) + }:e,L,(Qo,z) = u(z)E(z)v*(z) 
i:=l 

is the singular value decomposition for all z E n, and let tto( z) and v0 ( z) be 
the column of resp. u(z) and v(z) corresponding to the maximum singular 
value l1'ma...( z ). Then 

n 

lb(e,z)lloo = u~(z.o)(Lo(Qo,Zo) + }:eiLi(Qo,zo))vo(zo) 

Finally define: 

p(z) ~ 
[ 

tto(z)* Ll(Qo,z)Vo(z) l 
tto( z )* L2( Qo, z )vo( z) 

uo(z)* Ln( ~o, z )vo(z) 

i:=l 
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With these definitions we can give subgradients for all four criteria J: 

goo = P(Zo) 

g. = a g2 + f3 goo 

g •• = ( a 2 E p(z) -y(B, z) + /32 p(.zo) -y(O, zo)) / J •• ( -y(B, z)) 
zEO 

The derivation of these subgradients is given in appendix A 7. 
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Evaluation of the 
model 

In the previous chapters we discussed the optimization of a model error crite­
rion. When we have found the optimimum for this criterion 

we need to evaluate this result. 
In the first place we have made a lot of assumptions in the beginning of the 

identification procedure. We need to indicate if these assumptions are realistic 
or not. In the second place we like to know if the optimized criterion is really 
optimal. 

10.1 Evalution of the assumptions 
We will have to check whether the assumptions have proven to be true during 
the identification: 

153 
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Finite length of impulse responses. 
Let the observation interval for the measurements be of length 2N. In chapter 
2 we made the following assumptions: 

where 

l1 « 2N l2 « 2N l~:~.. « 2N 

l1 is the impulse response length of (I+ PtK.,"'P)-1 Pt 
l2 is the impulse response length of (I+ PtK .. "'P)-1 

l~:~.. is the impulse response length of ~t 

The function K.,"'P is known, because this is the controller we use during 
the experiments. The true process Pt(z) and the true model error ~t(z), 
corresponding to the final optimal model Popt(z) are (of course) unknown, so 
it is very difficult to varify these assumptions afterwards. In this section we 
will see what happens in the case where the optimal model Popt(z) is close to 
the true process Pt( z) (We mean close in the sense that the lengths l1 and l2 

do not change too much). 
If Popt(z) is close to Pt(z) we can substitute Popt(z) for Pt(z) and check if 
impulse responses corresponding to the functions 

(I+ PoptK.,"'P)-1 Popt and (J + PoptK.,"'P)-1 

have both a length much smaller than 2N. If this is true, we may assume that 
also for the true lengths 11 and 12 there holds: 

l1 « 2N and l2 « 2N 

It is more difficult, if not impossible to check the assumption on the length 
l~:~.. of the impulse response of the true model error. The maximum that will 
be feasible is to get an indication whether the assumption about l~:~.. is realistic 
or not Compared to the check on l1 and l2 we get an extra problem, for a 
simple substitution of Popt for Pe(z) will not be enough. For example, if we 
consider an additive model error and we substitute P.,e(z) for Pt(z) we will 
be left with an estimated model error ~( z) = P opt- P opt = 0. A better way to 
get an idea of the impuls response length of ~t(z) will be by considering the 
impulse response of P opt and Pt separately. If the length of impulse response 
of Popt(z) will be much smaller than 2N and we assume that Popt(z) is close 
to Pt( z) we may assume that Pt( z) will also have an impulse response with 
length smaller than 2N, without considering Pope = Pt. This will result in a 
(non-zero) model error with an impulse response length that is smaller than 
2N. 
Next we consider the more general case with a coprime factor model error 
structure. Suppose the coprime factors corresponding to the optimal model 
are N.,e(z) and Mopt(z). The model error can now be given by: 



10.1 EVALUTION OF THE ASSUMPTIONS 155 

~t = (MoptPt- Nopt}(NePt +Me )-1 

Substituting M.;! Nopt for Pt(z) gives us a model error ~t(z) = 0. Therefore 
we better look to two different terms 

Tt = Mopt Pt (Ne Pt + Me t 1 and 

T2 = Nopt(Ne Pt +Me t 1 

resulting 

~t(z) = Tt(z) - T2(z) 

We substitute Popt for Pt in T2(z) and we compute the length of the impulse 
response of the estimate 

A -1 T2 = Nopt(NePopt +Me) 

We can reason in the same way as for the additive model error as follows: 
if the coprime factors of P opt is close to the coprime factors of Pt and we 
find that the impulse response length of T2 is much smaller than 2N, we can 
assume that the impulse response lengths of T1 and n and thus of ~t will be 
smaller than 2N. 
Of course this reasoning completely depends on the assumption that P opt is 
close to Pt. If this is true we can get an indication if the assumptions are 
realistic with the described method. If we find that the length of the impulse 
response of T2 is larger than 2N we can nearly be certain that the assumption 
on l 11 may be too severe. 
If P opt is not close to Pt we can not get an indication whether the the assump· 
tion on l11 is realistic or not. 
The procedure as sketched above is a very inaccurate method. It may happen 
that we find that the estimated it> i2 and l11 do not satisfy the conditions, 
where the true 11, 12 and 111 are all smaller than 2N. Also the opposite case 
may happen. The checks on the assumptions have to be accepted with some 
reserve. 

Stabilizing controller: 
We assumed the model to be stabilized by the controller K(z) (see section 
5.1). We have to check if our optimal model Popt is indeed stabilized by this 
controller. If Popt = M.;;,!Nopt is not stabilized by the controller K(z) we have 
the problem that we can not guarantee that factorization of the true process 
Pt = ( Mopt - ~t Ne )-1( Nopt + ~t Me) will be a coprime factorization of 
the true process. 
In that case we will have to restart the identification procedure with a new 
coprime factorization of the true process 
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where N0 and M0 are the coprime factors of a fixed system that is stabilized 
by the controller K(z). For this new coprime factorization of the true process, 
the model error is given by 

dN(z) = Nt(z)- N(z) = No(z) - N(z) + do,t(z) Mc(z) and 
dM(z) = Mt(z)- M(z) = Mo(z) - M(z) - do,t(z) Nc(z) 

For this parametrization however we will find that 

In other words, the matrix norm of the model error [ dN dM ] will not be 
equal to the norm of the stable function do,t(z). The expressions as derived 
in the chapters 6-10 have to be adapted. The essence of the minimization will 
remain the same, e.g. a linear parametrization will still lead to a convex opti­
mization problem. The condition that P opt needs to be stabilized by controller 
K(z) is not necessary any more. The choice, however, of the system M01 N 0 

will be crucial to get acceptable bounds. 

Finally we have to check if the factors Napt and Mopt are really coprime. 
This will generically be the case. If the factors Mopt and Nopt have right-half 
plane zeros that are very close to each other and so if the coprimeness is very 
'weak' we may have chosen a too high model order. 

10.2 Evalution of the model error criterion 
If no assumptions are violated, we can evaluate if the model error criterion 
J(O) is as small as we aimed it to be. If this is small enough we can design a 
controller on the basis of this optimal nominal model with its error bounds. If 
the theoretical result and the actual implementation of the optimal controller 
will match the specifications, the job is done. We already discussed this 
procedure in chapter 8. 

As was mentioned in section 8.4, the iterative scheme might not converge 
in some cases. Restricting ourselves to the identification part of the iterative 
procedure, there are several remedies that may improve the procedure: 

• We can choose another model set P. The model can be parametrized 
in another way, the order may be increased, and for MIMO systems we 
may choose another structure. 
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• We can do another experiment to extend the data set. We may choose 
another reference signal that excites the process in some 'critical direc· 
tions or frequency ranges'. In this way we can increase the information 
about the process. 

• We can try to find better bounding functions for the noise. This can 
be done either by extending the dataset, by more intensive study of 
the sensors and actuators, or by improving or replacing the sensors and 
actuators. 

Approximate modelling and H00-identification : 
Finally a remark should be made about the concept of approximate modelling 
by Hoc -identification. The distance between a model P( z) and the true pro­
cess Pt( z) can be measured in many ways. In this thesis we focus sed on the 
minimization of an upper bound for the Hoc norm of the model error. This 
implies that we choose twice for a worst-case approach. For each frequency 
we have a worst case bound over the scaled noise Q(z), given the upper bound 
-y(8,z). Next we have a worst-case criterion over all frequencies (Hoc). The 
choice for a worst-case approach is only motivated by robust control. If we 
wish to have an approximate model that is optimal in the sense that the model 
matches the average behaviour of the true process as good as possible we 
should not use a worst-case approach, but e.g. minimize the H2 norm of an 
estimate of the model error. 
On the other hand, the Hoc minimization of an upper bound of the model error 
may still lead to a very good approximate model in sense of a good average 
behaviour (Liebregts [37]). 
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PART 0: 
EVALUATION 
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Case study 

In this chapter a case study is presented. We consider the identification of a 
laboratory process, using the techniques as derived in this thesis. The process 
under study is the so called 'Water vessel process'. The water vessel process 
is a smoothly non-linear process with two inputs and two outputs. A SISO­
version of this process has been studied by Liebregts (,[36],[37]) using the 
identification methods as described in Chapter 3. The actuators and sensors 
that are applied to the process are the same as in [36], [37], and are studied 
extensively in these reports. 

11.1 The water vessel process 

Process description 
The water vessel process is a laboratory process, that consists of four vessels, 
two roller pumps as actuators and two level sensors as shown in the con­
figuration of figure 11.1. The water vessels are positioned in two layers of 
two vessels each. Two roller pumps pump water from a reservoir tank into 
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3 4 

1 2 

Figure 11.1: The water vessel process 

the top vessels. The input voltages of the two pumps are denoted by v1 and 
v2• The rotation speed of the rollers of the pumps are denoted by u1 and u2• 

From each of the top vessels (3 and 4) the water flows via restrictions (rat> 
r 32,r41 ,r42) into the two lower vessels. From the lower vessels (1 and 2) the 
water flows via restrictions (r1,r2) back into a reservoir. The rotation speeds 
u1 and u2 of the roller pumps will be considered as the inputs of the system. 
The flow, caused by the pump, is proportional to the rotation speed of the 
pump. Since the transfer of the control voltage v, to the rotation speed u, of 
the pump shows a saturation effect, we prefer the rotation speeds ui rather 
than the control voltages of the roller pumps as input signals. The heights 
h1 and h2 of the water level in the two lower vessels will be considered as 
outputs. This two input two output system is smoothly non linear and we will 
study the dynamic behaviour in some working point. A complete modelling 
of this process using physical laws has shown to be very difficult (Liebregts 
[37]). Therefore we will only consider physical modelling in a very simple 
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and approximate manner. 

Simplified model: 
Consider figure 11.2 where water is flowing in a piece of a tube from R to S. 
We consider the density of the water to be constant p = 1, and the pressure 
p1 to be equal to P2· The area of the tube at R is denoted by A1 and at S by 
A2• The height of the water level in tube at R is denoted by h1 and at S by 
h2• The water velocity in the tube at R is denoted by w1 and at S by w2• 

R 

s 

Figure 11.2: Water-flow in a tube 

We assume the flow to be laminae and the velocity uniform. Two contributions 
to change in energy are considered: 
(1). The energy per second due to kinetic energy: 

liE,. = ~(At Wtp)w; - ~(A2w2p)w~ 
(2). The energy per second due to potential energy: 

According to the laws of hydrodynamics: 

0 

(11.1) 

(11.2) 

(11.3) 

Finally the in coming mass must be equal to the out going mass (mass balance), 
which yields 

(11.4) 
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Combining equations (11.1), (11.2), (11.3) and (11.4) results in: 

1 2 
= 2 PW2 + h2pg (11.5) 

Consider figure 11.3 with a single water vessel. 

Figure 11.3: A water vessel 

A water vessel with area A1 and an in coming flow fin· First consider the 
incoming flow fin = 0. At the bottom the water flows through a restriction 
with area A2 resulting in a out going flow fuut = w2 A2 = w1 A1• We 
assume A1 » A2, so that w 2 » w1• Further we define h = h1 - h2, and 
equation (11.5) becomes 

1 /.2 
hpg = 2P A:~ 

This results in 

I J ... ~ A,fihg (11.6) 

Now we consider the input flow fin -:1 0. The increas of the water level is 
proportional to the difference between in coming flow and out going flow 

I 
dh I I _ dt = A

1
(fin-fuut) _ (11. 7) 
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The equations (11.6) and (11.7) together describe the non linear dynamic 
behaviour of one water vessel. 

Linearized model: 
We will consider the behaviour of a vessel about some working point. Let the 
in coming flow at the working point be given by ft.n,o· In stationary operation 
we find 

dh 
dt = 0 a.nd SO J out,O = /t.n,O 

The corresponding water level is found by (11.6): 

/in,O J out,O = A2 ,j2 ho 9 

and so 

ho fin,O 

- 29A~. 

We denoted the variations around the working point by: 

/in = /t.n,O + J.n 

/out = fout,O + iout 

h=ho+h 

We derive 

!out = fout,O + iout 

= A2 V2 ( ho + h) 9 

= A, j2hog~ 1 + ~ 
~ A2 ,j2ho9( 1 + 2~)) 

~-!out,O + A2 h 

and so 

iout A2 h ~-
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With /;.n - !out = hn - iout and 

dh dh 
= 

dt dt 

we derive 

(11.8) 

Thus 

iout(s) a = where a 
im(s) s + a 

From here we will only consider the linearized equations and use the notation 
fout(s) for iout(s) and /in(s) for f.n(s). 

The Multivariable linear model: 
In the water vessel process as in figure 11.1 we have two layers with each 
layer consisting of two vessels. The out going flow fout,a of the vessel 3 is 
split into two fractions. A flow /in,31 = f3t f out,a from vessel 3 to vessel 
1 and a flow /;.n,32 = (1 - f3t) fout,a from vessel 3 to vessel 2. The same 
holds for the out going flow f out,4 of the vessel 4, which is split into two 
fractions. A flow /;.n,41 = (1- /32 ) fout,4 from vessel4 to vessel 1 and a flow 
fm,42 = /32 fout,4 from vessel 4 to vessel 2. The in going flow at vessel 1 
becomes 

and the in going flow at vessel 2 becomes 

We can find the overall model for the linearized process by considering zero­
order hold transformation of the interconnection of the four water vessels. 
However if the sampling frequency is sufficiently large we may approximate 
the overall model by the interconnections of the zero-order transforms of the 
individual vessels. 
The zero-order hold z-transformation of the i-th vessel with transfer function 

a;. 1 - a· 
H;.(s) = is given by Hi(z) = • where a;. = e-a;T 

s+ai z ai 



11.1 THE WATER VESSEL PROCESS 

We obtain a total transfer matrix 

[ 
Yt(z) ] 
Y2(z) 

This can be written as 

= [ :~~;~ ] 

where K0 = ( K1 K4 - K2 K3 )-1. 
We multiply left and right by 

[ ~: ~:] 
and we obtain 

[ 
z2 + 61 z + 6s 62 z + 66 ] [ Yt ( z) ] = 

8az + 61 z2 + 64z + 6s Y2(z) 

where 

Ot = -aa + (K2Ksa2 - KtK4at) Ko 

82 = KtK2(at- a2) Ko 

Os = KaK4(a2- at) Ko 

04 -a4 + (K2Ksat - KtK4a2) Ko 

Os as (KtK4al- K2Kaa2) Ko 

06 = K1K2a4(~- at) Ko 

07 KaK4aa(at - ~) Ko 

Os = a4 (KtK4a2- K2Ksa1) Ko 

09 = Kt 

Oto = K2 

On Ka 

On K4 
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(11.9) 
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The final model is described with 12 parameters, where the model in equation 
(11.9) only had 8 parameters. The increase of parameters is necessary because 
we want the map 

'l':B~P 

to be linear (See Chapter 9). 

11.2 Bounds on the disturbances 

Disturbances on the input: 
The input sensor measures the rotation frequency of the roller pump. For that 
purpose we measure the angular position of the shaft of the roller pump by a 
potential devider by means of a potentiometer that is connected to the shaft 
of the roller pump. The output voltage of the potentiometer is sampled by the 
computer, resulting in a saw-tooth signal for ~ constant rotation speed of the 
pump. Suppose the time interval between the first measurement v1 and the 
last measurement v1 of the saw-tooth signal is T and we measure nT drops in 
the saw-tooth signal. A rough estimate for the average rotation speed in the 
interval is found by nTfT. The number of drops can be detected without an 
error. A better estimate for the average rotation speed can be found by 

U.,. = _!:_ ( nT + Vt- Vf) 
T Vtot 

where Vtot is the total range of the saw-tooth signal. The factor (v1- v1 )fvtot 
can be measured with an error of about 10%. Because I ( v1 - v 1) /V tot I ~ 1 
the maximum absolute error that can occur is 0.1. The total relative error that 
can occur is 0.1/nT. During the experiments there holds nT ~ 10 and so the 
relative error we will make will always be less than 1% of the true rotation 
speed u( k ). We assume the error to be random over all frequencies and so 
we will consider as an upper bound for the input disturbance 

ldt(z)l ~ I0.01u(z)l "';1 IWd{z)l 

If we make the magnitude of u(z) to be constant over the frequency range the 
noise bounding filter Wa(z) will become Wd(z) = O.Olllu(z) lloc.,. 

Disturbances on the output: 
The output sensors measure the water levels in the lower vessels (1 and 2). 
The sensor consists of two plan parallel plates at a constant distance. An AC 
voltage with a frequency of 1kHz is applied to the plates. The impedance 
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between the plates will be inversely proportional to the water level. So a con­
stant AC-voltage will result in an AC current, proportional to the water level. 
The carrier of the AC current is demodulated to a low frequency voltage and 
sampled by the computer. The main error sources of the output sensor are the 
following: 

• Process disturbances and noise due to undulatory motion. 

• Error due to adhesion of the water to the plates. This will give a 
hysteresis effect. 

• Error due to the demodulation. 

First consider the demodulation. Liebregts ([37]) shows that the demodulation 
error is negligible if the level sensor is calibrated before the data acquisition. 

Next we consider the hysteresis error due to the adhesion of the water to 
the plates. Liebregts ([37]) shows that the hysteresis effect is smaller than 
2 mm for this level sensor. The problem is that this error is a bound in the 
time domain where we need a bound in the frequency domain. To transform 
this bound into the frequency domain we follow the method that is described 
in [37]. We first estimate a preliminary model Pe•t of the process. Note that 
we only need a rough estimation of the important frequency ranges instead 
of a real model. In our case the rough estimate is found by first computing 
Pt(z) = Y(z) U(z)-1 where U(z) and Y(z) are the frequency domain data 
matrices with input and output measurements. Subsequently we compute the 
Markov chain i\(k) by applying the inverse discrete Fourier transform. We 
truncate the Markov chain at a certain z,. « 2N and we obtain the estimated 
Markov chain Pe.t(k). The value of l,. should be chosen equal to the assumed 
length of the impulse response of the true process. With this Pe.t(k) we can 
compute an estimation of the output signals 

[ ~::::~:~ ] = Pe•t(k) * [ ::~:~ ] 
where u1(k) and u2(k) are the same process inputs as during the experiments. 
The signals Ye•t,i(k) represent the true water level before the hysteresis effects 
the measurements. We simulate the hysteresis by the worst possible hysteresis 
function as in figure 11.4 (see also Liebregts [37]). 

We apply this hysteresis function to the signal Ye•t,1(k) and we obtain a 
signal z, for the measured signal. We now hope that the quantity ehv•t,1(k) = 
Ye•t,i( k) - ze.t,i( k) will give a good indication of the maximum error due to 
the hysteresis. We compute the discrete Fourier transform of ehv•t,1(k) and 
determine an upper bound for I ehv•t,i ( z) I and take this as a frequency domain 
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-

Figure 11.4: The worst case hysteresis 

upper bound for the error due to the hysteresis effect. 

Finally we discuss the process disturbances and noise due to undulatory 
motion of the water in the vessels. The effect can be measured by doing a free 
run experiment. We fix the input signal u( k) = 0 and measure the magnitude 
of the output signal y(k) . . The main problem is that we can not eliminate the 
effect of the hysteresis and we will get the hysteresis error in our measured 
output signal. We will find in the next section that the measured disturbance 
during the free run experiment will be about the same as the estimation of 
the upper bound to due the hysteresis. We will therefore neglect the process 
disturbances. 

11.3 Experiments and identification 
From Liebregts ([37]) we know that the process about a working point with 
a high water level can be linearized very good. Therefore we choose a range 
of 2 Volts to 3 Volts for the pump voltages. We will derive a linear model 
about the offset voltages v1,0 = ~.o = 2.5 Volts. 
We find a stabilizing controller for the process with a transfer 

where the signal 1/.i is the rotation speeds of a roller pump ([Hz )), the signal 
!li is the water levels in one of the lower vessels ([cm ]) and where we have 
taken the controller K = 0.01 I [Hz/cm ). 
The coprime factors Nc(z) and Mc(z) of the controller allow us to scale the 
effect of the disturbances on the denominator of the expression for the model 
error as derived in section 6.4 
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dt(z) = (MY- NU MEt- NDt) (NcY + McU + McDt- NcEt)-1 

By choosing the magnitude of the controller smaller than 1 we make Mc(z) 
larger than N0 (z) and so the influence of Et(z), which is larger than Dt(z), 
in the denominator will be reduced. 
The controller has shown to stabilize the process during a closed loop exper­
iment. We will use this controller for the analysis as discussed in chapter 5. 
The experiments to obtain the datasets { u , y } will be done without a con­
troller. 

Orientation experiments: 
We first consider some orientation experiments that intend to obtain prelimi­
nary information about the process. We follow the procedure from Back:x and 
Damen ([4]) which exists of three experiments: 
- Free run experiment. 
- Staircase experiment. 
- Fast PRBNS experiment 
We will discuss the first three experiments and their results: 
During the free run experiment a constant voltage of 2.5 Volts is applied to 
both the roller pumps. This results in a constant water level in all vessels up 
to the process disturbance that is still present. This process disturbance exists 
of a low frequency trend and higher frequency noise. The low frequency trend 
can not be modelled and is filtered out. The remaining high frequency distur­
bance appears to be smaller than the 2mm of the hysteresis error. We will 
therefore neglect the process disturbance and assume that it is incorporated in 
the bound due to the hysteresis error. 
During the staircase experiment we apply a staircase test signals as input volt­
age to the roller pumps of the process. We get an idea about the non linearity 
of the process and we get a rough estimation of the largest and smallest time 
constant. Although the process shows some non linearities we will neglect 
these effects. The dynamical behaviour does not change very much over the 
complete range. 
The fast PRBNS (pseudo random binary noise sequence) experiment is meant 
to find the bandwidth of the process. In Liebregts [37] a SISO version of 
the water vessel process was identified. During a fast PRBNS experiment a 
bandwidth was found of Bsrso = 0.02 H z. We do not expect that the band­
width will differ very much for the MIMO case but to check this bandwidth 
we apply a fast PRBNS signal to the process. We take a sampling frequency 
of 1 H z, which is 50 times the expected bandwidth. 
We find that the bandwidth of process B = 0.04 H z so that we may conclude 
that a for the final experiment a sampling frequency/.= 1/6Hz is enough 
to excite all relevant dynamics of the process. 
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Now the preliminary experiments are done we consider the final experiment. 

Input design for final experiment: 
The process has two input signals and according to chapter 4 we will have 
to do 2 experiments. The input voltages of the roller pumps, that are used as 
reference signals, can be arranged in a matrix 

V(k) = Vo(k) + tio.t{k) 

where 

- [ 1 1 ] Vo.t(k) = 2.5 
1 1 

is a constant matrix, due to the offset voltage, and 

v; (k) = [ iiu(k) iiu(k) ] 
0 ii21(k) ~2(k) 

is the variantion around this offset voltage. The reference signal Vo( k) should 
be designed in a proper way, i.e. a good reference signal will excite the system 
with a maximum amplitude and the resulting frequency domain matrix Vo( z) 
will have a nice condition number um..,fumin ~ 1. A set of reference signals 
that satisfy this conditions is given by 

Vo(k) [ 
0.5 -0.5] iio(k) 
0.5 0.5 

Here iio( k) is a scalar valued signal with a length of 2N = 5000 samples that 
satisfies the following conditions: 

-liio(k)l ~ 1 in the interval k = 100, ... ,4900. 
- ii0(k) ~ 0 fork= 1, .. ,100 and k = 4900, .. ,5000. 
-The frequency signal v0(z) has approximately an flat spectrum. 

(so lvo(z)l ~constant). 

A reference signal that satisfies these conditions will have maximum energy 
within the limits of the maximum amplitude. Further in section 2.5 we showed 
that the errors in the discrete Fourier transforms are negligible if the impulse 
responses length l1 of the function (I + Pt Ke,p)-1 Pt and the impulse re­
sponses length l2 of the function (I+ Pt Ke:np)-1 are both much smaller than 
the length of the observation interval (2N). From the staircase experiments 
we found l1 ~ 100 and because Ke,p = 0 the impulse response length l2 is 
not important. Finally the frequency signal Vo(z) will be invertible for all 
z E C and because the rotation speed will be approximately proportional to 
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the input voltage (up to the saturation effect), we hope that the matrix U(z) 
will be invertible for all z E C. 
We do the final experiments with these signals of input voltages of the roller 
pumps. For both experiments we measure the roller pump rotation speeds and 
the water levels in the lower vessels. We obtain two datasets { u 1 , y1 } and 
{ u2 , y2 } • We apply a discrete Fourier transform and construct the frequency 
domain matrices: 

U(z) = [ut(z) u2(z)] 

Y(z) = [Yt(z) Y2(z)] 

We parametrize the model coprime factors with the ARMA models: 

N(z) = G(zt1 B(z) and M(z) G(z)-1 A(z) 

where 

A(z) = [ z2 + (h z + ()5 

83z + ()7 

92 z + ()6 ] 
z2 + ()4 z + 9a 

B(z) = [ ()9 
Ou 

()10 ] 

912 

G(z) = z2I 

with()= [ fh , · · · , 912 JT. The denominator polynomial G(z) has two roots 
for z = 0 so that the coprime factors N(z) and M(z) will be stable. 
We compute the bounding filters Wd(z) and W.,(z) for the input and output 
disturbances as mentioned in the previous section. The disturbances on both 
inputs have the same bounding filters, so that Wd( z) = w4 ( z) I with w4 ( z) a 
scalar function. Because the signals u(z) have an approximately flat spectrum 
we take an upper bound wd(z) = 0.29 :::::::: O.Ollu(z) I· The same holds for 
the output disturbances where we find W.,(z) w.,(z) I with w.,(z) a scalar 
function. A bounding filter for the hysteresis error is found 

40z2 

w.,(z) = {z- 0.8)2 

For the disturbance description we have two options: An unstructured or 
a structured set description as discussed in Chapter 4. The main difference 
between the two sets is that the optimization of the model error criterion will be 
a convex optimization problem for the unstructured case or an approximately 
convex optimization problem for the structured case. The optimization in the 
structured case is theoretically convex, however, the structured singular value 
JL can only be approximated by an upper bound. This approximation may lead 
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to a loss of convexity (See discussion in Chapter 7). 
The normalized coprime factors of the controller K(z) = 0.01 I are given 
by Mc(z) = 0.99995/~JandNc(z) = 0.0099995/~0.01/. 
Because the controller K(z) =/; 0 and K(z) =/; oo we can choose for a 
coprime factor model error structure. 
We will minimize the model error criterion J00 ('r(8, z)), the infinity nonn 
of the upper bound for the coprime factor model error. We first start the 
optimization of using an unstructured description of the disturbances. 

Optimal model for an unstructured noise description: 
We now minimize the criterion 

using a convex cutting plane algorithm. The algorithms are implemented in 
MATLAB, and we make use of the J.t algorithm from the J.~,-tools software 
package [5]. 
An optimum is found for 

-1.7634 
-0.1011 
-1.4481 
-1.6472 

0.8237 
0.1178 
0.6934 
0.7190 

-3.9571 
-2.2058 

0.7629 
-0.0529 

where J!(Oopt) = 1.05 

The poles of the optimal model P(Oopt, z) = M-1 (0opt, z) N(Oopt, z) are equal 
to the poles of M-1

( Oopt, z ). These poles are the roots of the polynomial 

( z2 + z 01 + Os )( z2 + z 04 + Os ) ( z 02 + 06 )( z Os + 07 ) 

For Oopt we find the roots: 

Z1,2 = 1.1432 ± j 0.2154 

z3,4 = 0.5621 ± j 0.2476 
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The first two poles are outside the unit disk, which means that the opti­
mal model is unstable. Furthermore, the model P apt in closed loop with 
K = 0.01 I gives rise to an unstable closed loop. We know that the true 
process is stable by itself and that it is stabilzed by K = 0.01 I as well. 
For these parameters Oopt we can not guarantee that the model coprime fac­
tors N(fJopt, z) and M(Oapt, z) were compared with coprime factors of the true 
process (see section 5.2 and 5.3) and so we can not guarantee that the bound 
J::, is an upper bound for the coprime factor model error. 
We now could use the procedure that was discussed in chapter 10 and take 
another coprime factorzation of the true process. However, we are more in­
terested how the structured disturbance description can improve the coprime 
factor model error. We will only use the 'optimal' parameters ()apt as initial 
values for the optimization using a structured disturbance description. 

Optimal model for a structured noise description: 
We now minimize the criterion 

using a convex ellipsoid algorithm. The algorithms are again implemented in 
MAlLAB. The optimum is not reached, because of convergence problems, 
due to the fact that the structured singular value can only be approximated by 
an upper bound using the D-iteration. By using this upper bound instead of 
the real value J.L the convexity of the optimization problem is lost. 
The optimization has not reached its minimum but we do not find much 
improvement of the criterion after 176 iterations. We will denote the last 
estimate (after 176 iterations) with parameters ()la•t as the final (suboptimal) 
model. 

-1.8291 
-0.0192 
-0.0989 
-0.0474 

0.8401 
0.0229 

-0.0980 
0.0078 
0.1263 

-0.0925 
-0.0008 
-0.9498 

where J:C,(Oza.t) = 0.33 

We compute the poles of M-1(0tcut, z) and find: 



176 CASE STUDY 

Z1,2 = 0.9150 ± j 0.0611 

za,4 = 0.0232 ± j 0.0996 

All poles are inside the unit disk, which means that the sub optimal model is 
stable. For the closed loop with the controller K = 0.01 I we find the poles: 

Z1,2 = 0.9151 ± j 0.0498 

z3,4 = 0.0232 ± j 0.1397 

Also these poles are inside the unit disk, so that we may conclude that an 
upper bound for the coprime factor model error with respect to the coprime 
factors N( Oz08t, z) and M( Oz08t, z) is given by J~ ( Otast)· It can be motivated 
from physical considerations that we expect four real valued poles. The poles 
p1,2 as well as the poles p3,4 are complex conjugated pairs, but the imaginary 
parts are indeed very small. 
Note that J~(Oz08t) < J~(Oopt). which proofs that the unstructured description 
of the noise sets is more conservative than the structured description of the 
noise sets. 

In figure 11.5 the upper bound for the coprime factor model error is given 
together with the largest singular values of the coprime factors N(Otast, z) and 
M(Ozast, z). In figure 11.6 the entries of the coprime factors N(Ozast, z) (solid 
line) and M(Oz08t, z) (dashed line) are plotted. 
We find that the bound "Y(Otast,z) is larger than Uma:c(N(Oza .. t,z)) and 

u......,(M(Otast,z)) for almost all z E C. This means that for robust con­
trol design the model error bound "Y is far to large. First we can consider the 
coprime factors errors separately. The error in the M-factor can be bounded 
as follows 

11 ~M 11 = 11 Ne~ 11 :S 11 Ne Ill I~ 11 :S 0.010.03 = 310-4 

This means that the M-factor is estimated with an error smaller than 1.5% for 
the lower frequencies and an error smaller than 0.1% for the higher frequen­
cies. So the poles of the process (the poles of M-1

) are likely to be estimated 
accurately. The error in the N-factor can be bounded 

11 ~N 11 = 11 Me~ 11 :S 11 Me 1111 ~ 11 :S 0.03 

So the uncertainty in the N -factor is larger than the magnitude of the factor 
itself. This means that the gain of the process (theN-factor) is estimated very 
unrealiably. 
One reason may be that the choice of the stabilizing controller was not an 
appropriate one. The controller determines in which coprime factor the error 
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will appear. A controller K = a I with a < 0.01 would probably have given 
a better estimate of the N-factor, with a larger error in the M-factor. 

But even for the applied controller K = 0.01 I the error is very big. This 
might be due to the simplified model or maybe the sampling frequency of 1/6 
Hz was still to high. Further study must be done to examine the effects of 
different choices of controllers, sampling frequencies and model sets. 

Evaluation of the assumptions: 
We follow the procedure of section 10.1. Because Kap = 0 in our case 
we only compute the impulse response length of the the model P1011t = 
M- 1 (0taa 1 z)N(9taat,z). We find f1 = 75 < 100 = l1• This gives us some 
confidence that the assumption 11 may be a realistic assumption. 
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Figure 11.5: Upper bound for the coprime factor model error and 
largest singular values of the coprime factors. 

11.4 Conclusions 
In this chapter we presented a case study. The system identification procedure 
as introduced in this thesis has been applied to a water vessel process, a MIMO 
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Figure 11.6: The entries of the eo prime factors I Nii I (solid lines) and 
IMi;l (dashed lines). 

system with two inputs and two outputs. 
Bounds for the disturbances on the input and output sensors were derived from 
measured data and from a theoretical analysis of the sensors. 
A controller K = 0.01 I was tested on the true process resulting in a stable 
closed loop. We considered a coprime factor model error structure and a linear 
parametrization for the model coprime factors, ARMA models with fixed AR 
parameters, was introduced. 
Two experiments were done to obtain the final data set. With the data sets and 
with the derived disturbance bounds we optimized the model error crtiterion 
J 00 (;{8,z)). In the case of a unstructured disturbance set description the 
optimization converged to an optimum, resulting in model error criterion J:;, = 
1.05. The optimal model however was not stabilized by the controller K = 
0.01 I and so the model error criterion had no meaning in the sense of an 
upper bound for the coprime factor model error. 
We used the 'optimal' parameter vector of this experiment as a initial value for 
the optimization using a structured disturbance set description. The algorithm 
did not converge and after 176 iterations the procedure was aborted. The 
parameters corresponding to the last iteration gave rise to a model that was 
stabilized by K = 0.01 I. 
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The model error criterion J:X, = 0.33 can therefore be used as a bound for 
the coprime factor model error with respect to the model coprime factors 
corresponding to the parameters of the 176th iteration. 
This bound however is very large and therefore not suitable for robust control 
design. Most likely a better choice of controller K = a I, with a < 0.01 will 
give a smaller coprime factor model error bound, with an increased error in 
the M-factor, but with a smaller error in the N-factor. 
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Conclusions and 
Remarks 

In this thesis a procedure has been described for the identification of linear 
time invariant systems with a bounded model error. 
An important difference between the identification methods, described in this 
thesis, and the conventional identification methods is that there has been cho­
sen for a approach in which an optimal model is defined by a minimum 
H00-norm upper bound on the model error. The description of the distur­
bances on input and output is done using bounding filters in ·the frequency 
domain. 
The apriori knowledge we need is 

-A data set { u(h), y(h) }. 
- Frequency domain bounds Wd(z) and We(z) on the disturbances. 
- A stabilizing controller K"" for the experiments. 
- A stabilizing controller Ka.,.. for the analysis. 
- A bound on the impulse response length of the closed loop. 
- A bound on the impulse response length of the true model error. 

The identification of SISO-systems with additive or multiplicative model error 
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structures can be done using graphical methods. These methods give a lot of 
insight in the problems that may arise but they are very limited if we want to 
extend the· problem to multi variable systems and other model error structures. 
For the identifiaction of multivariable systems we need to do multiple exper­
iments to guarantee excitation of all dynamics and their internal interactions. 
The modelling of the disturbance for MIMO-systems can be done in a struc­
tured or unstructured way. In both cases we end up with a scaled noise matrix 
Qt(z) that is in the unit ball. 
The estimations of bounds for models with a coprime factor model error struc­
ture is non-unique and the coprime factorization of the model should be fixed. 
The R-parametrization has given us a useful tool to bring all model error 
structures in one basic scheme, in which the model error is represented by a 
stable function ~t( z ). 
The concept of Redheffer star products has given a good insight in the in­
teractions between model error, model error structure, model coprime factors, 
measured data and the disturbances. It gives us the possibility to study the 
problem in a more algebraic way. 
A upper bound on the model error is minimized in the sense of some norm 
(H00, H2 or a combination). The use of Jt-techniques gives the tightest upper 
bound for the model error. 
With the derived techniques we can compute upper bounds for various model 
error criteria for a fixed model. We can parametrize the model and minimize 
the model error upper bound. 
In ttie case of a linear parametrization the optimization problem will become 
convex and the optimization will be easy. 
The identification procedures were tested on a laboratory process, a water ves­
sel process with two inputs and two outputs. Bounds on the coprime model 
errors were derived, but they were far too large for Hoo control design. An 
important reason for this large bound might be a bad choice for the controller 
K(z), used in the analysis. Another problem was that the final parameter 
optimization algorithms did not converge. This was caused by the approxi­
mation of the structured singular value by its upper bound, so that convexity 
was lost. 

This thesis gave the first steps into an new identification area, that of sys­
tem identification for robust control. The developed techniques are the first 
attempts to derive minimum model error bounds. One single path has been 
paved, but it will most probably not be the optimal one. There are still some 
interesting problems left: 

• Choice of controller Kana(z). In Chapter 11 the bound on the coprime 
model error was too large to be used for Hoo control design. Probably 
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another controller would have given a better result. 

• In chapter 5 a unimodular funtion A( z) was introduced, which was fixed 
to the identity matrix in the sequel of the thesis. The optimization over 
this matrix A( z) may be a difficult task, but it is plausible that such an 
optimization will improve the resulting model and further decrease the 
model error bound. 

• The interpretation of the coprime factor model error structure is not 
an obvious one. Not only the input-output behaviour of the process is 
important, but also the realization. The choice of coprime factorization 
plays an important role in the magnitude of the resulting model and its 
model error bound. An interesting point of further research could be the 
study of the interaction between choice of model coprime factorization 
(and so of the choice of the model error structure), the final coprime 
factor model error bound and the resulting optimal controller. 

• In section 7.4 the model error criteria J 00, J 2, J", Ju, J,_, were 
discussed. It may be interesting to study the minimization of one of 
these criteria (Jm) with a specified bound on one or more other criteria 
(Jc,l, · · · , Jc,le). This will lead to a constrained optimization problem 

where 

min JTn 
eee 

Tl</31 '" T,_</3•-Jc, _ 1 1 Jc,ro _ ,. 

The values {3, , i = 1, ... , k are prespecified levels. For example, if 
we are satisfied with an oo-norm that is smaller than some f3oo we can 
minimize the 2-norm criterion J2 under the constraint that loo ::; {300• 

In this way we can get a model with a specified worst case bound and 
a good average behaviour. 

• If a linear parametrization is chosen, the model error criterion as intro­
duced in chapter 9 will become convex in fJ E JR:". The main problem 
of the model error criterion is the computation of the structured singular 
value p,, which gives rise to a loss of convexity. This was found in the 
case study in chapter 11. A closer look should be taken at the algorithms 
to get the optimization algorithm more robust. 

• The linear parametrization has the big advantage that it leads to a convex 
optimization problem. However, other parametrizations are possible as 
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well (parametrization of normalized coprime factors, see Van den Boom 
[56]). Such kind of parametrizations need more attention in further 
research. 

• Because of the assumptions on the disturbances we can compute the 
model error bound frequency by frequency. This makes the optimization 
very easy, for we can make use of the JL-techniques. On the other hand 
it makes the resulting bound very conservative. 
By incorporating more apriori knowledge about the interaction of the 
model error at different frequencies, we can improve the bound on the 
model error. As an example of a frequency interaction we mention the 
assumption of a finite length of the model error impulse response. The 
final optimization with such an extra frequency interaction assumption 
will usually become more difficult. 



Appendix A: 
Proofs 

Appendix Al 
Proof of theorem 3.1: 

We can give the sets iJ and Y for one specific frequency as: 

u = { it = u ( 1 + a.. e'' ) I o $ e < 211' I o $ a.. $ ~~~~ } 

y = { y = y ( 1 + ay e'<P) , 0 $ ~ < 211' , 0 $ ay $ ~~i' } 
To derive the set P we will need an auxilary set X (see Fig.2.2) with signals 
i -u-1 for all it E U. 
Under the assumption that lul > IWdl > 0 so (uu• - WdW/) > 0 
it holds: 
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(uu* - uu* - uu* + uu* - WaW/):::; 0 # 

1 u* u ----- + (uu'" WaWa'"):::; 0 # 
ii* i i* 

1 ... *- ( * w. w. *). ... < 0 - ua: - u z + uu - a a za: _ # 

ii* 
ui* + u*i uu* 

uu•- WaWa* + (uu•- WaWa*)2 

So the set X is given by the ball: 

u* I 
(uu* - WdWa'") 

Cl 
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Appendix A2 

Proof of theorem 3.2: 
We have the region h{4>,,P) = {1 + re-7"'){1 + seiV'), where 0:::; 4> < 211' 

and 0 :::; '1/J < 21r. If h( 4>, '1/J) is a boundary point of the region for some 4> and 
'1/J, then it holds for the derivatives (see Fig.Al): 

&h( 4>, '1/J) - &h( 4>, '1/J) 0. with 0.
0 

E lR 
aq, - 8'1/J o 

Fig.Al: Derivatives of h(4>, ,P) at a boundary point 

This leads to 

I (8h(4>,'1/J)/84>) = 0 
m 8h(4>, 1/J)/84> 

and therefore: 

I (8h(4>,,P)/84>) =I (jrei"'( 1 + s&V! )) = 
m 8h(4>,,P)f84> m jseiV1(1+rei<l>) 

(
(rei"' + rsei(<I>+V!) )(e-N + re-i(<I>+V!) )) 

= lm (s eN + rs ei(<I>+V!) )(e-N + r e-i(<I>+V!) ) = 

(
r( ei(<I>-V!) + s ei<l> + r e-iV! + rs )) = 

lm s(l + reiV! + re-iV! + r 2 ) 

_ r( sin(4> ,P) + ssin4> - rsin'I/J) = 
0 

- s(1 + 2rcos4> + r2) 

so we find the condition 

sin( 4> - '1/J) + s sin4> - r sin,P = 0 

or 
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e}(<P-¥) - e-i(t/r-f/>) 

2j 

APPENDIX A 

+ 

Now we define a= ei"' and b = ei"' and we get the condition 

a b s r 
-b - - + sa - - + - - rb = 0 

a a b 

and because a '::/; 0 and b '::/; 0 we can write: 

a2 
- b2 + sa2b - sb + ra - rab2 = 

= a2
( 1 + sb) + a( r - rb2

) + ( -b2 sb) = 0 

We get the solutions 

a _ r( b2 
- 1 ) ± / r 2 ( 1 - b2

)
2 + 4( 1 + sb )( b2 + sb ) 

1
'
2 

- 2( 1 + sb ) -

_ r( lJ2 - 1 ) ± bf r 2( b-1 - b)2 + 4( 1 + sb )( 1 + sb-1 ) 

- 2( 1 + sb) 

r(e2N- 1) ±eN/ r2(e-N- eit/1)2 + 4(1 + seit/1)(1 + se-i.P) = 

2( 1 + seN) 

r( e2it/l - 1) ± 2ei"' v' -r2 sin2'1/J + 2s cos'I/J + 1 + s2 

2( 1 + sei.P) 

We substitute this solution for a in h( </>, '1/J) and we find two functions hbl ( '1/J) 
and h&2 ('1/J) one corresponding to a '+'sign and one corresponding to a '-' 
sign: 

h&1 ('1/J) = ( 1 + ra )( 1 + sb) = 1 + sb + ( 1 + sb) ra = 

likewise 

2 
= 1 + s eJ.P + r e2i.P - 1 ) + 

2 

+ rei"' J -r2 sin2'1/J + 2s cos'I/J + 1 + s 2 



Now we substitute 1/J = 0 and 1/J = 1r ,resulting in: 

r2 
hb1(0) = 1 + 8 + 2( 1 - 1) + r v' 1 + 28 + 8

2 = 

= 1 + 8 + r (1 + s) = 1 + s + r + rs 

r2 
hbl ( 1r) = 1 - 8 + 2 ( 1 - 1 ) - r J 1 - 2s + 82 = 

= 1 - 8 - r {1 - s) = 1 - 8 - r + r8 

r2 
hb2(0) = 1 + 8 + 2( 1 - 1) - r J 1 + 2s + s 2 = 

= 1 + 8 - r (1 + 8) = 1 + 8 r - rs 

r2 
hb2(1r) = 1 - s + 2{ 1 - 1) + r J 1 - 2s + 8

2 = 

= 1 - 8 + r (1 - 8) 

1.5 . 

0.5 . 

Fig.A2: The two boundary functions hb1 ( 1/J) and h,..2( 1/J ). 
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So the function hb1 ( 1/J) is the desired bound of the region h( 4>, 1/J ). The 
function hb2( 1/J) is an inner boundary that is caused by fixing the values nu = 8 

and ay r. If we consider again 0 ::::; au :::; 8 and 0 ::::; ay :::; r, then all inner 
points will be allowed, and the inner boundary vanishes. 

0 
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Appendix A3 

Proof of theorem 3.3: 

The function 

h(t/>,'1/J) = (1 + re14")(1 + seiV') 

where 4> = /(1/J), gives the boundary h{f(.,P),.,P)) = h,(.,P) (see Appendix 
A2) of the uncertainty region p( a 1 , a 2 , t/>, .,P) with o:1, o:2, 4> and .,P are in the 
allowed regions. We seek for a disk with a minimal radius, that encloses the 
region p( 0:1, o:2, t/>, '1/J ). 

We will consider the distance p between the point eo > 1 and the function 
h,(.,P), and determine the maxima of this function I h,(.,P) - eo I· Then we 
prove that maxima are reached in the points h(</>o,'I/Jo) = hb('ifJo) =eo+ j Po 
and h( -4>o, -'1/Jo) = h,( -1/Jo) eo - j p0 • This means that the circle with 
center point eo and radius Po encloses the region h( t/>, .,P ). Because the points 
eo+ j p0 and eo - j Po are both in the region, the mentioned circle will be the 
smallest enclosing circle, see Fig.A3. 

First we will take a closer look at the centre-point eo and radius p0 : 

Po Im(h(</>o,.,Po)) =rsin<J>o + ssin'I/Jo + rssin(t/>o+'I/Jo) 

itisclearthat p0 > r + s = Im(h(i,i)) andthusitmusthold: 

sint/>o > 0 , sin.,P0 > 0 and sin( 4>o + '1/Jo) > 0 

Further we know from the conditions for 4>o and 1/Jo that: 

r cost/>o = s cos'I/Jo 
del 

-rs cos( t/>o + 1/Jo) = Yo 

Therefore we find: 0 < 4>o < i· 0 < '1/Jo < i and ~ < (t/>o + '1/Jo) < 11'. 

We can derive: cos<J>o = y0 fr, cos'I/Jo = Yo/s, cos(t/>o+'!/Jo) = -yo/rs, 
sint/>o = 1/rJr2 - y5, sin'I/Jo = 1/sJs2 - y~ and so: 

y0 = -rscos(<J>o+'I/Jo) = rssin<J>osin'I/Jo- rscost/>ocos'I/Jo = 

this leads to 

Y~ + Yo = Vr2 
- Y5 Js 2 

- y~ 



y~ + 2y~ + y~ - y~ + r2y~ + 82y~ - r
2 

8
2 = 0 

2yg + y~ (1 + r 2 + 8
2 

) - r 2 
8

2 = 0 
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(12.2) 

where we choose the solution 0 < Yo < rs < 1, which is unique for 0 < r < 1 
and 0 < s < l.From this Yo we can easily determine </Jo = arcco8(y0 /r) and 
'1/Jo = arccos(yo/ s ). 
We can now compute: 

eo = 1 + r coscfoo + 8 C08'1/Jo + rs cos( c/Jo + 1/Jo) = 

= 1 + Yo + Yo- Yo = 1 + Yo >1 

Po = r sincfoo + s sin'I/Jo + rs sin(cfoo + 1/Jo) = 

So finally we can give two important results: 

2yg + y~(l + r 2 + s2
) - r 2s2 = 0 

and 

1 < eo = 1 + Yo < 1 + rs 

We will use these reults later. 
2~~--~~~~~~==~-,---,--:~ 

1.5· 

-1 

-1.5 

-2 L__L_~.=_:L:..::::J::::=:~.:.:.::..:.::.:L_____i __ _j_ __ ...L..J 
-0.5 0 0.5 I 1.5 2 2.5 3 3.5 4 

Fig.A3: The boundary function h,(,P) and distance p to eo. 

Now we are interested in the maximum distance 
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Pma:r: = maxp(f/>,1/J) = maxlh(f/>,1/J) - eol = 
</>,t/1 </>,t/1 

For every choice of 4> we can choose a 1/J such that: 

Pma:r: = max p( 4>, 1/J) = 
</>,t/1 

= mz.x {I r ei<P - (eo - 1) I + I s( 1 + r ei<P ) I} = 

APPENDIX A 

(12.3) 

mz.x ( J r2 +(eo -1)2 - 2r(eo- 1) cos</J + s Jr2 + 1 + 2rcos<fo) 

Note that the maximization problem over two variables 4> and 1/J has reduced 
to a maximization problem over only one variable </J. 

To compute the maximum we put the derivative of p(<fo) equal to zero: 

r(eo- 1) sinf/> 
= + Jr 2 + (eo - 1 )2 - 2r( eo - 1) cos <P 

-rs sin <P 

+ Jr2 + 1 + 2rcos<fo = 

= rsin4> ( (eo 1
) + Jr2 + (eo- 1)2 - 2r(eo- 1) cos <P 

so either 

sin4> = 0 (12.4) 

or 

(eo - 1) V r 2 + 1 + 2r cos 4> -

+ s J r2 + (eo - 1 )2 - 2r( eo - 1) cos 4> = 0 (12.5) 



From equation (3) we get the solutions 

4>t = 0 and </>a = 1r 

(We restrict ourselves to 0 ::::; 4> < 211"). 
4>t = 0 and 4>a = 1r correspond to the points :z:1 and :z:2 in Fig.A3. 
We know that G> ~ 1 and from equation (4) we derive 

(eo- 1)2
( r 2 + 1 + 2rcostf> )-

+ s2( r 2 + (eo - 1 )2 - 2r( eo - 1) cos 4>) = 0 

and so 

(eo- 1)2(r2 + s2 + 1) + r2s2 •=I 1._ 
cost/> = vo 

2r (eo -1)(s2 + 1- eo) 

If lbol ::::; 1 we obtain solutions 

4>a arccos(bo) and 4>4 = -arccos(bo) = -c/>a 
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(12.6) 

To see which solutions are maxima we calculate the second derivative of the 
function p( 4> ): 

tP p(tf>) = rcostf> ( (eo - 1) + 
d tf>2 Jr2 + (eo - 1 )2 - 2r( eo - 1) cos 4> 

-8 ) + + 
Jr2 + 1 + 2rcos(/) 

. "' ( -r(eo-1)2 sint/> + rsm'f' + 
Jr2 + (eo- 1)2 - 2r(eo -1)cos 4> 

-rssintf> ) 
+ Jr2 + 1 + 2rcost/> 

If we substitute the solutions 4>a or t/>4 we find the first term to be zero because 

(eo- 1) + -s = o 
Jr2 + (eo - 1 )2 - 2r( eo - 1) cos 4> Jr2 + 1 + 2r cos 4> 

and the second term is negative because (eo - 1) > 0, r > 0 and s > 0. This 
means that 
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rP p(tf>) < 0 
dtf>2 

APPENDIX A 

for tf>a and t/>4 and so p(tf>a) and p(t/>4 ) are maxima. Consequently p(tf>t) and 
p(t/>2) must be minima. 

We substitute the solutions tf>a in equation (2) and we find the corresponding 
solution 'f/;3 by making: 

rei~ + 1 - Co 
1/Ja = arg . ..._ 1 

reJ~ + 
In the same way we can find for t/>4 = -tf>a the corresponding 1/;4 = -1/;3• 

These solutions ( t/>a, 1/;3 ) and ( t/>4 , 1/;4 ) will lead to to the points h( t/>a, 1/;3 ) and 
h(t/>4 ,1/;4 ) which are a complex conjugated pair, symmetric with respect to the 
real axis. This points are the maxima of the function lh(t/>, '1/J) eol for eo> 1. 

Now we will prove that the points 

and 

eo-JPo 

We can prove this by showing that tf>a = ~: If we choose cost{> = cos~ = 
y0fr and we fill in eo 1 = Yo in equation (5) we get: 

(eo -1?( r 2 + 1 + 2rcostf>) 

s2
( r 2 + (eo -1)2 

- 2r(eo -1)costf>) = 

= y~( r 2 + 1 + 2yo) - s 2
( r 2 + y~ 2yo Yo ) = 

From equation (1) we know that this is zero, so we know that 4>a ~ and 

thus 1/Ja = 1/Jo· 

We proved that the points eo ± j p0 are maxima of the function 
I h( 4>, 'ljJ) - eo I and so the circle eo + Po eia. is the smallest encJosing circle 
of h,( 1/J ). 

0 
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Proof of theorem 7.1: 

We defined Y = S(E,X) = Fi(E,X). 
Now define 

E_ = [ ~ ~ ] E-
1 

[ ~ ~ ] 

Then there holds: X = S(E_, Y) = Fi(E_, Y). 
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From Packard et al.([S]) we know that for any matrix M with proper di­
mensions there holds: 

max 11 S( M, X) 11 $ uma.,( M) 
IIXII$1 

We will use this property in the following way: 

Let 11 X 11 :::; 1 , then 

IIYII:::; n~ifl IIS(E,X)II:Sumaoo(E)::; 1 

and so 11 X 11 :::; 1 => 11 Y 11 $ 1 

Let 11 Y 11 :::; 1, then 

11 X 11 :::; ll~rf1 11 S(E_, Y) 11 $ um.,.,( E_):::; 1 

and so 11 Y 11 $ 1 => 11 X 11 $ 1 

Thus: 

11 Y 11 :::; 1 {:::::;> 11 X 11 $ 1 

D 



196 APPENDIX A 

Appendix AS 

Proof of theorem 8.1: 

We defined the matrix 

R= [ 
Rn R12] 
R21 R22 

= S(Ko, ~. ro) 

and 

~2 = (R'{2R12)-t Rf2 
Go = (R22~2Ru- R2t)T 
A GJ' ( GJ' Go ) R22 ~2 
T = S(J-(A), R) 

Now we define B0 = GJ' ( GJ' Go )-1 so that A = Bo R22 R{2 
Finally we define the matrices 

X = S( Ko , ~ , r o , At ) = S( R, At ) 

and 

Y = S( L(A), X) 

For this definition of X, Y and orthogonal matrix L, Lemma 7.3 claims: 

11 X 11 ~ 1 ~ 11 Y 11 ~ 1 

This results in: 

(12.7) 

We compute 

Y = S( J_(A), X) = S( L(A), R, At) = S( T, At) 

because 

T S( L(A), R) = [ ~: i] 
It is easily varified by the definition of ( J _ (A)) 

22 
= A that T3 = 0 : 

Ta R22 + R21 A (I - Ru A t 1 Rta = 

= { Raa~a(I - Rn A) + R21 A} (I Rn A )-1 R12 



197 

= { R22~2 - R22~2Rn BoR22~2 + 

+ R21 BoR22~2 } (I - Ru A ( 1 R12 = 

= { (I - R22H12Ru Bo + R21 Bo) R22~2 } (I - Ru A )-1 R12 = 

= { ( I - ( ~2~2Ru - R21 ) Bo ) R22~2 } ( I - Ru A ( 1 R12 = 

= { (I - I) R22~2 } (I - Rn A t 1 R12 = 0 

The implication (12.7) turns into 

11 S(Ko, :E, ro, at) lloo ::::; 1 <===? 11 To+ T1atT2IIoo $1 

0 
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Appendix A6 

Proof of theorem 9.1: 
The first part of the proof is to show that it hold: 

n 

S(Gw(8),Q) = Lo(Q) + :~:.)~,L,(Q) (12.8) 
i=l 

Define 

G = S(H,T, V) 

G12 Gts ~14] G22 G23 G24 
Gs2 Gaa G34 
G42 G43 G44 

Then 

If [ H41 H42] = [ 0 0] it follows 

and so 

S( [ N
0 

0 ] ~ ~ h • [ N 0 ] [ G13 ] M ,G,Q) = Gaa + [ G31 G32] 0 M 
023 

+ 
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resulting in L0(Q) and Li(Q): 

+ w~~ (a34 + [631 G32] [ N,0o ~~ ] [ <?14 
] ) • 

1v.to G24 

and 

[ ~ ] it follows: 

and so 

S( [ N
0 

o ] A A A A [ N o ] [ 613 ] M , G, Q) = G33 + [Gat Gaa] 0 M 
023 

+ 
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resulting in L0 (Q) and Li(Q): 

The second part of the proof is to show that the function 

J('y(6, z)) = J(~eQ IIS(Gw(6), Q)ll) = 

= J (maxiiLo(Q) + f:eiLi(Q)II) 
QeQ i=l 

is convex over 6: 

APPENDIX A 

(12.9) 
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+ 11(1 .X)Lo(Q) + ~(1- .X)~Li(Q)II)) s 

[J 
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Appendix A7 

Derivations of sub-gradients: 

We have the definition: 

[ 

Uo(z)* Lt(Qo, z)vo(z) l 
~I Uo(z)*L2(Qo,z)vo(z) 

p(z) = Re : 

Uo(z)* Ln(Qo, z)vo(z) 

Now also define: 

"Y(~, zt) I 
A ~~ "Y(8,z2) 
c = 

"Y(B, ZN) 

A ~I [ ac ] 
c .. = /h(B, zo) and ~~ [ ac ] c.. = f3"'f(8, Zo) 

and q •• ~ [q Rep(zo)] 

We start with a look on the function "Y( 8, z ). For each z E n we can derive: 

n 

"'f(8,z) = maxiiLo(Q,z) + L8iLi(Q,z)ll > 
QEQ i=l 

n 

> IILo(Qo,z) + L8iLi(Qo,z)ll > 
i=l 

n 

= maxiiLo(Qo,z) + LBiLi(Qo,z)ll + 
QEQ i=l 



n 

+ EUii- e,)Re{-uO(z)L,(Qo,z)vo(z)} 
i=l 

n 

,= 7(B,z) + L(B, -8,)Re{-u0{z)L,(Qo,z)vo{z)} = 
i=l 

so we can derive the subgradient 9oo : 

lb(8,z)lloo 2 II"Y(8,Zo}ll 2 
n 

2 lh(8, Zo) + 2:(8,- 8i)Re{u~(zo)L,:(Qo, Zo)vo(Zo)} 11 2 
i=l 

n 

2 II"Y(8,Zo)!l + 2:(8,- ei)Re{u~(.Z())L,(Qo,Zo)Vo(Zo)} = 
i=l 

This gives the sub-gradient 

9oo = p(zo) 

Now we will concentrate on a sub-gradient for g2• First we derive: 

c = [ ~l:;~l]2 I ~::;:l] + Re [ :l7l; l (B 9) = 
"Y(O,zN) "Y(B,zN) p(zN)T 

= c + qT(8- 0) 

Next we can derive: 

{J2(8,z)}2 = L"Y2(8,z) = cTc 2 
z 

203 
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;::: c_Tc. +2(6-e)Tqc + (cTct1 (e-e)Tqcc.TqT(6-e) 

- (<cTc)l/2 + (6- e )T qc( cTc )-1/2)2 

and so 

J2(8,z);::: = (cTc)112 + (6-e)Tqc(cTe:)-112 = 

= J2(6,z) + (6-e)T (~p(z)-y(O,z)J2 (-r(6,z))) 

and so 

For the sub-gradient g. for J. we can derive: 

J.(-y(B,z)) = aJ2(-y(8,z)) + ,8Joo(-r(8,z)) > 

aJ2 (-y(B,z)) + agf(6-8) + ,8Joo(-r(8,z)) + ,Bg!,(6-8) 

= J.(-r(8,z)) + agf(6- 8) + ,Bg!,(6- 6) 

and so 

The subgradient g •• for J .. can be derived in the same way as the sub-gradient 
for J2: 

{ J .. (e, z) }2 = a 2 E -y2(6, z) + ,82 -y2(6, Zo) = c!'.c.& ;::: 
z 

(

A T A )T( A T A ) .~ c.. + q&& ( 6 6 ) c.. + q .. ( 6 - 6 ) = 
AT A A T A A T T A = c1111C1111 +2(6-6) p1111(z)c.,. + (6-8) q ... q .. (B-0) > 

;::: e:;.c •• + 2(6 6)T q.,.c •• + (c!'.c •• )-1 (6 e)T qc,.,.c;.q;..(e- 8) 

and so 
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1 (8 ) > (AT A )1/2 (84 8)T n (AT 4 )-1/2 .. ,z _ = c;,.c... + q,,c.,. c,,c... = 

J • .,(8, z) + (B- 8 )T (ci L: p(z) "Y(9, z)P2 p(.zo) "Y(e, .zo)) I 1.,.( "Y(9, z)) 
.zEO 

and so 

For the sub-gradient 9m- for lm_ we can distinguish two cases: 
(1). Suppose a J2 ;::: {3 loo : 

l.,_.,("Y(8,z)) = max( al2("Y(B,z)), Ploo("Y(B,z))) ;?:: 

;::: a J2 (-r( 6, z)) ;::: 

;?:: J2("Y(8,z)) + agf({J- 8) = 

= J.,_.,( "Y(8, z)) + ag'f({J- 8) = 

(2). Suppose a l2 < P loo : 

J.,_.,("Y(8,z)) = max( al2("Y(O,z)), Ploo("Y(6,z))) ;::: 

;?:: Ploo("Y(6,z)) ;?:: 

and so 

;?:: loo{"Y(8,z)) + pg~(6-6) = 

= lma~~~("Y(8,z)) + {3g~({J -8) = 

D 
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Appendix 8: 
Assumptions 

In this appendix we summerize the assumptions that are made on the true 
process, the model, the model error, the experimental conditions and the dis­
turbances. 

True process: 
(1). Pt(z) E RIP. 
(2). Pt( z) has p inputs and q outputs. 
(3). Pt(z) is stabilized by a controller K .. na(z) E RIP. 

The stabilizing controller has a normalized lcf K .. na(z) = Mc(zt1 Nc(z). 
For Pt(z) E RIHoo we may choose K .. na(z) = 0. 

Model: 
(1). P(8, z) E RIP hasp inputs and q outputs and is in a model set P. 
(2). P( 8, z) is parametrized by the parameter vector 8 E 8. 
(3). There is a bijective mapping from 8 to P. 
(4). P(8, z) is also stabilized by the controller K .. na(z) E RIP. 
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208 APPENDIX B 

For each model in P there is a unique left coprime factorization P(B, z) = 
M(B,z}-1N(B,z) defined by the bijective mapping 1r: 

[ N(B, z) M(B, z)] = 1r ( P(6,z)) 

Model error: 
We introduce the model error as in the coprime factor configuration of Fig.5.3. 
Let Pt(z), N(z), M(z), Nc(z) and M0 (z) be defined as above. 
Then there will exist a function ~e(z) E RlHoo such that 

Pt(z) = ( M(z) - Nc(z) ~t(z) t 1 
( N(z) + Mc(z) ~t(z)) 

Let h4 (k) be the Markov parameters of ~t(z). 
We assume: 

00 

L 11 hA(k) 11 $ fA 
k=l.o.+l 

where lA > 0, eA > 0. 

Experiments 
Consider the true process in closed loop with a stabilizing controller K""'~>(z) 
as in the configuration of Fig.2.4. The controller Kefi.'P( z) is not necessarilly 
the same controller as the stabilizing controller Kana(z). 
The system is excited by the reference signal r( k) and measured in the input 
signal u(k) and output signal y(k), The true noise signals dt(k) and et(k) are 
unknown. 
Let l1 be the impulse response length of the function (I+ Pt Kea~p ) Pt and let 
l2 be the impulse response length of the function (I + Pt Kefl.lP ). 
We do p experiments (so equal to the number of inputs) with an observation 
interval k = 0, .. , 2N- 1 where: 

2N » lA 1 2N » l1 and 2N » l2 

For every experiment we get the data set { r,(k), u.(k), y,(k)} and so r,(k), 
u,(k), Yi(k) are in .IL2 [0,2N -l]. The true noise signals dti(k) E IL2[0,2N -1] 
and ee,(k) E 1L2[0, 2N 1] are unknown. 
We compute the z-transformation of all signals and we obtain for the i-th 
experiment: ri(z), ui(z), Yi(z), dn(k) 1 en(k) 
We define 



U(z) = [ ttt(z),'1£2(z), .. ,u,(z}] 
Y(z) = [ Yt{z),y2(z), .. ,yp(z)] 
R(z) = [r1(z),r2(z), .. ,rp(z)] 
Dt(z) = [ du(z),dt2(z), .. ,dq,(z}] 
Et(z) = [ eu(z),et2(z), .. ,eq,(z)] 
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The vectors r 1 (z), r 2 (z), .. . ,rp(z) are assumed to be linearly independent for 
all z E C so that the matrix R( z) is invertible for all z E C. 

Bounds for the disturbances : 
Assume that for the every experiment the noise on the k-th input is bounded 
by a known filter W die( z ), and that the noise on the l-th output is bounded by 
a known filter We~(z) with 

ldu.(z)l $IW.u.(z)l and lett(z)l $ !We«(z)! for z E C 

Construct the diagonal matrix 

W(z) = diag( Wdl(z), Wd2(z), · · ·, Wap(z), We~(z), We2(z), · · ·, We9(z)) 

and the matrices 

V,.= [ (lp~lp) (lq~lp)] and V2=(lp®[lplq]r) 

structured description : 
The true disturbance signal can be written as 

Ft(z) = [ ~:i:j ] = W(z) V,. Q.t(z) V2 

where Q.t(z) is diagonal 11 Qn(z) !loo$ 1} 

unstructured description : 
The true disturbance signal can be written as 

Ft(z) = [ ~:i:j ] = W(z) Qut(z) 

where 11 Qut(z) !loo $ /(P + q)p} 
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Appendix C: List 
of symbols 

lR 
c 
L2(-oo,oo) 
RIP 
RILoo 
RIHoo 
@ 

p 
p 
0 
z(k) 
z(z) 
T 

z 

set of real numbers 
unit circle in the complex plane 
time domain Lebesgue space 
set of all finite dimensional real rational transfer functions 
set of RP-functions that have full rank on C 
set of all stable RP-functions 
parameter set 
model set 
set of all systems that do not falsify the data 
set of observation frequencies 
discrete time domain signal 
z-transform of z( k) 
backward shift operator 
elements on the unit circle C 
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11 11 
11 lloo 
11 112 
11 ll•oo 

11 "·2 H*(s) 
(J 

Pe(z) 
P(z) 
.6.t(Z) 
Ne, Me 
N,M 
Ne, Me 
u,y 
ut, Yt 
dt,ee 
U,Y 

Qt 
1rt 

1r 

ll 
l2 
lt:r. 
2N 
p 
q 
n 

= um....,( • ), matrix-nonn 
infinity nonn 
two nonn 
infinity nonn for the sampled frequency domain 
two nonn for the sampled frequency domain 
= 1fT ( -s) for z E C, complex conjugate 
model parameters 
true process (Pt E RJP) 
model (PEP) 
model error (.6.t E RHoo) 
coprime factors of true process Pt( z) 
coprime factors of model P(z) 
coprime factors of controller K ( z) 
measured input and output signal 
true input and output signal 
true input and output distrubances 
matrices with measured input and output signals 
for multiple experiments 
matrices with true input and output signals 
for multiple experiments 
matrices with true input and output disturbances 
for multiple experiments 
matrix with scaled true disturbance signals 
bijective mapping form RIP to RIHoo x RIHoo 
bijective mapping form P to RlH00 x RIHoo 

APPENDIX C 

maximum length of the impulse response of (I+ PtK_,.)-1 Pt 
maximum length of the impulse response of (I+ PtKeq:>t1 

maximum length of the impulse response of 6.t( z) 
length of the onservation interval 
number of input signals of the process 
number of output signals of the process 
number of model parameters 
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Samenvatting 

Ben systeem-identificatie procedure in het frequentie-domein wordt gepresen­
teerd waarbij een model wordt afgeleid met een begrensde ongestructureerde 
modelfout. 

De verstoringen aan de in gang en de uitgang van het proces worden veron­
dersteld begrensd te zijn in het frequentie-domein, hetgeen impliceert dat er 
begrenzingsfuncties bestaan voor de absolute waarde van de discrete Fourier 
transformatie van de ruissignalen. 

Allereerst beschouwen we de identificatie van een SISO-proces met een 
additieve of multiplicatieve modelfout-structuur. We leiden onzekerheidsge­
bieden af voor de procesdynamica en we schatten een optimaal model door 
H00-fitting. 

Vervolgens breiden we de identificatiemethode uit naar MIMO-systemen 
en beschouwen we verscheidene modelfout-structuren, zoals additieve model­
fouten, ingang en uitgang multiplicatieve modelfouten, reversie-type model­
fouten en coprieme modelfouten. AI deze modelfout-structuren passen in een 
basisschema met coprieme factoren. 

We laten zien dat voor een vast gekozen model de werkelijke modelfout 
kan worden geschreven als een functie van een bekende matrix G(z) en een 
onbekende diagonale matrix Qt(z). De matrix G(z) is opgebouwd uit be­
kende informatie, zoals het model, de modelfout-structuur, de gemeten data 
en de ruis-begrenzingsfuncties. De diagonale matrix Qt(z) bevat de werkelij­
ke geschaalde ruissignalen. Deze onbekende ruissignalen worden binnen de 
eenheidsbol verondersteld. 

Ben bovengrens wordt afgeleid voor de grootste singuliere waarde van de 
modelfout. We maken gebruik van de theorie van gestructureerde singuliere 
waarden (p.-analyse) en van de zogenaamde Redheffer sterprodukten. De 
bovengrens voor de modelfout wordt geminimaliseerd met betrekking tot een 
of andere norm (H00 , H2 of een combinatie). 

De keuze van een lineaire parametrisatie zal leiden tot een convex opti­
maliseringsprobleem en de algorithmen zullen robuust convergent zijn. 

Tenslotte wordt een praktijkvoorbeeld gepresenteerd waarbij een laborato­
riumproces, bestaande uit een stelsel van vier watervaten met 2 ingangen en 
2 uitgangen, wordt gei'dentificeerd en een model met een bovengrens voor de 
modelfout wordt afgeleid. 
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Stellingen behorende bij het proefschrift: 
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1. Een goede manier om van gemeten data van een industrieel proces te komen 
tot een optimale regelaar voor dat proces, is door gebruik te maken van een 
iteratieve procedure. Hierbij vindt tijdens elke iteratie achtereenvolgens plaats 
een H.,.,-identificatie, een ontwerp van een robuuste regelaar en een bepaling 
van de modelfoutve'i'zameling. 
(Dit Proefschrift, pagina's 138-139) 

2. De in dit proefschrift behandelde H""-identificatiemethode is gebaseerd op een 
'slechtste geval' criterium (worst case criterion). Dit impliceert niet dat het 
gemiddelde gedrag van het model slecht is. 
(Dit Proefschrift, pagina's 54-62 en W.R.H.M. Liebregts: 'A new identification tech­
nique for H00 robust control design,' Mstudeerverslag, ER, TUE, 1991) 

3. Een dataverzameling met begrenzingen op verstoringen leidt tot een verza­
meling P met mogelijke overdrachten. Een gepostuleerde modelverzameling 
P beperkt de keuze van het nominale model P E P. Een nominaal model kan 
als optimaal gekwalificeerd worden indien het de afstand tot de verst gelegen 
niet gefalsificeerde overdracht in P minimaliseert. Als 'afstand' kan hierbij de 
oneindig norm van de verschillen van de coprieme factoren worden gehanteerd. 
(Dit Proefschrift, hoofdtuk 5) 

4. Een systeem is Lyapunov-stabiel in een equilibriumtoestand als voor iedere 
begintoestand, dicht genoeg bij de equilibriumtoestand, de toestand dicht bij 
deze equilibriumtoestand zal blijven voor alle tijd. Omdat evaluatie over een 
oneindige tijd principieel niet mogelijk is, kan volgens de definitie voor geen 
enkel praktijk systeem stabiliteit bewezen worden. 
(M.Gopal: 'Modern Control System Theory', Wiley Eastern Limited, 1989) 

5. Voor een lage orde SISO-proces kunnen met een goed ingestelde PID-regelaar 
vrijwel dezelfde prestaties worden behaald als met een optimale H00-regelaar. 
Een PID-regelaar kan echter sneller ontworpen worden en kan tijdens het ge­
bruik eenvoudiger aangepast worden. Voor lage orde SISO-processen verdient 
een PID-regelaar daarom ook de voorkeur boven een H00-regelaar. 
(Ton van den Boom, Martin Klompstra en Ad Damen: 'A comparison of PDD, 
LQG, Hoo and H2-controllers for a laboratory process', 9th lASTED International 
Congres on Modelling, Identification and Control', Innsbruck, Austria, 1990) 



6. In de literatuur over het ontwerpen van robuuste regelaars wordt meer aa.n­
dacht besteed aan het oplossen van het H.,..-standaard probleem dan aa.n het 
converteren van een praktijkprobleem naar dit H00-standaard probleem. Dit 
impliceert echter niet dat het converteren naar een H00-standaard probleem 
eenvoudiger is dan het oplossen ervan. 

7. De vrije-markteconomie vindt vana.f het begin van deze eeuw haar begrenzing 
in het van overheidswege gevoerde sociaal-economisch beleid. Een verdere 
evolutie zal plaatsvinden naar een sociaal-economisch-ecologisch beleid. De 
grenzen aan de sociale zekerheid en de economische vooruitgang zullen dan 
worden aangegeven door milieubelangen. 

8. Het universitair onderwijs in Nederland dient er voor te waken niet in dezelfde 
fout te vervallen als de communistische planningseconomie, waarin het behalen 
van kwantiteit voorop stand en kwaliteit nog nauwelijks telde. 
Overigens dient oak voor het omgekeerde te warden gewaakt: kwaliteit gedijt 
niet zonder kwantiteit. 

9. Een goede belichter van toneelvoorstellingen schept sferen en leidt de toeschou­
wer rand op het toneel zonder dat deze zich daar van bewust is. Dit heeft tot 
gevolg dat een goede belichter zelden een compliment zal krijgen vanuit het 
publiek. 

10. Genealogie kan een wezenlijke bijdrage leveren tot het verkrijgen van betere 
inzichten in emigratie- en immigratiebewegingen in de 16e tot en met de 20e 
eeuw. 
(J.B.van Loon: 'Migratie, naamkunde en genealogie,' De Brabantse Leeuw, jrg. 36, 
no.4, 1987) 

11. Genealogen hanteren het begrip 'familie' in een bredere zin dan niet-genealogen. 
Hieruit mag niet warden geconcludeerd dat genealogen meer tijd kwijt zullen 
zijn aan familiebezoeken. 




