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Abstract:
Modeling of dynamical properties of highly complex and interconnected systems becomes
important in different fields of science. When identifying the structure and dynamics of a network
of interconnected dynamical systems, including cause-effect relations, there is a tendency to use
nonparametric or FIR models of the output error type. In this paper it is shown, and illustrated
by some simple examples, that appropriate attention should be given to using flexible noise
models, in order to allow consistent identification of the dynamics, while the use of external
excitation/probing signals may reduce this need. It is a first step towards using prediction error
identification tools to identify the structure of a network.

Keywords: System identification; Identifiability; Network topologies; Complex systems;
Prediction error methods.

1. INTRODUCTION

In the field of system identification one is used to iden-
tify a system (and possibly noise dynamics) in a sys-
tem/measurement/excitation structure that is clearly well
defined a priori. One knows up front where the excitation
takes place, where causal transfer functions appear, and
where noise sources are assumed to be present. Typically
one restricts to well-defined a priori chosen structures:

• Open-loop system with possible excitation on the
input, and additive noise disturbance on the output;

• The previous situation, but with noisy measurements
of the input also (errors-in-variables approach);

• Feedback configuration, with or without external ex-
citation and disturbances at particular locations.

• Scalar (SISO) and/or multivariable (MIMO).

From this standard situation there are two different direc-
tions for natural extension of the problem.

(1) If the data generating system is a complex network
of interconnected dynamic subsystems, one would like
to be able to identify the dynamics of the subsystems.

A conceptually simple solution could be to write
the system back to a centralized form and into one of
the classical open-loop or closed-loop schemes and ap-
ply standard multivariable identification methods. In
this situation the structural properties of the MIMO
models would become central. Thus new concepts of
structured models should be explored, in their use,

1 The work of Arne Dankers is supported in part by the National
Science and Engineering Research Council (NSERC) of Canada.

suitability and consequences for identification pur-
poses. Some contributions to identification of struc-
tured systems can be found in Gudi and Rawlings
[2006], Leskens and Van den Hof [2007], Wahlberg
et al. [2009], Massioni and Verhaegen [2008].

(2) If the interconnection structure of the subsystems is
not known a priori and should be identified also on the
basis of measurement data, there appears a problem
of structure or topology identification. The basic
question then becomes, under which conditions can
we identify the interconnection structure of individual
subsystems that form an interconnected system.

In this paper we are going to elaborate on this second
problem, that seems to have not been addressed very
extensively in the identification literature.

Early contributions to this problem date back to Anderson
and Gevers [1982], Gevers and Anderson [1981, 1982] who
on the basis of the work of Granger [1969] and Caines and
Chan [1975], Caines [1976] address the question whether
an open-loop or closed-loop structure is present between
two measured signals u and y. The conclusion was that for
particular structures (two measured signals driven by two
independent noise sources of similar dimensions), a unique
separation of forward (system) and backward (feedback)
path could be determined under fairly general conditions.
This basically led to the joint i-o approach of closed-loop
identification.

More generalized system configurations do not seem to
have been addressed in the identification literature. How-
ever currently interest has been renewed in trying to detect



the topology of more complex networks based on measure-
ments of the system (Friedman et al. [2010], Yuan et al.
[2010], Sanandaji et al. [2011], Materassi and Innocenti
[2010], Materassi et al. [2011] among many others).

In these papers the data generating system is assumed to
be described by a node-and-link style of network, as shown
in Fig. 1. The goal is to recover the topology using only
time records of the variables wi, i = 1, . . . , L. The output
of each node is:

wi =
L

∑

j=1

j 6=i

Gij(q, θ)wj + vi (1)

where vi a (stochastic) noise disturbance.

n2 n3 n4n1

Fig. 1. Node-and-link style network used in topology
identification. Each node ni represents a signal wi,
and arrows represent causal (dynamic) relationships.

Most often nonparametric or FIR output error models
are used to model the dynamics of the links Gij(q, θ)
Friedman et al. [2010], Yuan et al. [2010], Sanandaji et al.
[2011], Materassi and Innocenti [2010], Materassi et al.
[2011]. Materassi and Innocenti [2010] identify a tree-based
structure, where in each node an additive noise distur-
bance is present, and only passive data is taken from the
network. Non-causal Wiener filters determine the dynamic
components in the tree structure. This work is extended
in Innocenti and Materassi [2008], Materassi et al. [2011]
towards a more general interconnection structure, and to
the use of causal Wiener filters as models. In Sanandaji
et al. [2011] a similar structure is considered but FIR
models are employed. Sometimes there are assumptions
on the presence of external excitation at each node, and
the possibility to perform experiments (Timme [2007]).

In this paper we will consider a prediction-error approach
to detect the interconnection structure of a dynamical
network. The approach will be illustrated using some basic
examples. The sensitivity of the approach to the presence
of noise sources will also be investigated.

In Section 2 we will sketch the identification approach, in
Sections 3 and 4 we will show some of its consequences
for a cascaded system topology. In Section 5 a closed loop
structure will be discussed. Some discussion on the benefits
of external excitation signals will follow in Section 6.

2. IDENTIFICATION SETUP

Consider a data generating system which is a network of
nodes as shown in Fig. 1. The output of node i is:

wi =

L
∑

j=1

j 6=i

G0

ij(q)wj + vi. (2)

with vi a stochastic noise disturbance, determined by

vi(t) = H0

i (q)ei(t)

where for every i = 1, . . . , L, H0

i is a monic stable filter
with a stable inverse, ei is a white noise process, and ei

and ej are independent for i 6= j. The variance of vi is
denoted σ2

vi
.

The structure of a network is considered as the intercon-
nections between the subsystems of the network. Since
the measurements are assumed to have been taken at
the outputs of the subsystems, detecting the structure is
equivalent to detecting non-zero dynamics between the
measurements. If it is decided in some manner that the
transfer function from variable wj to variable wi is zero,
then the conclusion is that there is no connection between
these two nodes, implicitly identifying the topology.

The dynamics will be estimated using the prediction-error
method. The one-step ahead predictor is (Ljung [1999]):

ŵi(t|t − 1, θ) = H−1

i (q, θ)
(

L
∑

j=1

j 6=i

Gij(q, θ)wj

)

+ (1 − H−1

i (q, θ))wi. (3)

The prediction error is defined as the difference between
the measured output and the predictor output:

ε(t, θ) = wi(t) − ŵi(t|t − 1, θ).

When adopting a standard least squares identification
criterion, under weak assumptions the parameter estimate
converges to the minimizing argument θ∗ of V̄i, where,

V̄i(θ) = lim
N→∞

1

N

N−1
∑

t=0

E[εi(t, θ)
2]. (4)

Our investigation will consist of studying some very simple
networks, and studying what the effects of certain assump-
tions are on the ability of the proposed method to recover
the network topology. The first simple network considered
will be an open-loop cascaded network. The second will be
a closed loop network.

2.1 Wiener Filter Approach

In Materassi et al. [2011] this problem has been analyzed
on the basis of (causal) Wiener filter estimates of the
transfers functions Gij .

The optimal causal Wiener filter W (z) that estimates the
transfer function between u and y is defined by the so
called Wiener-Hopf equations (Benesty [2008]):

Ruy(τ) =

∞
∑

t=0

w(t)Ry(τ − k), τ = 0, 1, 2, . . . ,

where Ruy and Ry are the cross-correlation between u and
y and the autocorrelation of y respectively.

In the appendix it is shown that in the prediction-error
framework the optimal causal Wiener filter is equivalent
to the asymptotically optimal FIR model estimate, with
the model order tending to infinity. We will proceed using
the prediction error framework, and the analysis tools
available in this framework, but all the results apply to
the causal Wiener filter approach as well.



3. A OPEN-LOOP CASCADE EXAMPLE - OUTPUT
ERROR MODELS

Consider a data generating system to be composed of a
concatenation of two systems, according to:

w1 = G0

1rr + v1 (5)

w2 = G0

21w1 + v2, (6)

with G0
1r, G

0
21 proper transfer functions.

G0

1r + G0

21
+

v2v1

r
w1 w2

Fig. 2. Cascade system with measured signals in red.

We will identify this system, but without any a priori infor-
mation on its structure. We will only use the information
that we have 3 measured signals w1, w2, r, with r being
persistently exciting of a sufficiently high order.

In this section, we will focus our attention to identifying
the dynamics between measurement w1 as the output, and
measurements w2 and r as the inputs using the Output-
Error (OE) model structure. For this model structure
Hi(θ) in (3) is equal to 1, resulting in the predictor

ŵ1(t|t − 1, θ) = G12(q, θ)w2 + G1r(q, θ)r. (7)

Both w2 and r are included as inputs since it is not known
a priori that w2 in fact does not causally affect w1. Since
we are using a causal predictor, we expect the estimated
G12(q, θ) between w1 and w2 to be zero, and G1r(q, θ)
between w1 and r to be non zero.

From Section 2 the asymptotical estimates of G12(q, θ) and
G1r(θ) are determined by the minimizing argument of (4).
Using (7) the expression for the prediction error is

ε1(t, θ) = w1(t) − ŵ1(t|t − 1, θ)

= w1(t) − G12(θ)w2(t) − G1r(θ)r(t)

= (G0

1r − G12(θ)G
0

21G
0

1r − G1r(θ))r(t)

+ (1 − G12(θ)G
0

21)H
0

1e1(t) − G12(θ)H
0

2e2(t) (8)

Using (8) and Parseval’s theorem the identification crite-
rion (4) can be expressed as

V̄ (θ) =
1

2π

∫ π

−π

∣

∣G0

1r(e
iω) − G12(e

iω , θ)G0

21
(eiω)G0

1r(e
iω)

− G1r(e
iω, θ)

∣

∣

2
Φr(ω)

+
∣

∣

(

1 − G12(e
iω , θ)G0

21
(eiω)

)

H0

1
(eiω)

∣

∣

2
σ2

e1

+
∣

∣G12(e
iω, θ)H0

2 (eiω)
∣

∣

2
σ2

e2
dω, (9)

where Φr is the power spectral density of r and σ2

e1
and

σ2

e2
are the variances of the noise terms e1 and e2.

Note that V̄ (θ) is a sum of three positive terms. This sep-
aration into three terms is possible due to the assumption
that r, e1 and e2 are independent.

Next we will consider three different cases:

• G0

1r , G0

21
are strictly proper and v1, v2 are white.

• G0

1r , G0

21 are strictly proper and v1, v2 are colored.
• G0

1r , G0
21 are not strictly proper and v1, v2 are white.

3.1 Case 1: G0

1r, G0

21 strictly proper and v1, v2 white

In this case H1 = H2 = 1. Since G0
21(q) is strictly proper,

the smallest value the e1-dependent term in (9) can achieve
is 1. The smallest value the r and e2-dependent terms can
achieve is 0. Each term achieves its minimum when

G12(θ
∗) = 0 (10)

G1r(θ
∗) = G1 (11)

provided that these choices are present in the considered
model set, and provided that σ2

v1
, σ2

v2
> 0.

If σ2

v1
= σ2

v2
= 0, then we have the situation that

G1r(θ) = G0

1r − G12(θ)G
0

21
G0

1r minimizes (9), and G12(θ)
is free. In other words, non-unique estimates are obtained.

Considering all possible situations of values of σv1
, σv2

we
obtain the results as indicated in the following table:

σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) 0 0 0 non-unique

G1r(θ
∗) G0

1r G0

1r G0

1r non-unique

Table 1.Asymptotic results in Case 1 (strictly proper
transfers and white noises).

We can conclude that as long as one of the two noise
sources is present, the dynamics is consistently estimated,
and the correct structure is identified.

3.2 Case 2: G0

1r, G0

21
strictly proper and v1, v2 colored

In this case H0

1
and H0

2
are not equal to 1. When mini-

mizing the power of (9) (9), the e1-dependent term is not
necessarily minimized for G12(θ

∗) = 0.

Here, G12(θ
∗) will be such that it minimizes the sum of the

two noise terms, and G1r(θ
∗) is then adjusted to equate the

first term to 0. As a result G12(θ
∗) will be dependent on the

relation between the noise powers σ2

v1
and σ2

v2
. Therefore

it will generally be not consistent. The estimate becomes
consistent though if σ2

v1
= 0, since then the e2-dependent

term will force G12(θ̂) to become 0.

σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) biased biased 0 non-unique

G1r(θ
∗) biased biased G0

1r non-unique

Table 2. Asymptotic results in Case 2 (strictly proper
transfers and colored noises).

As a conclusion we can observe that in general the esti-
mation results will be biased, which will limit the deter-
mination of the topology. Only in the situation of absence
of the noise source v1, the structure is correctly retrieved.

3.3 Case 3: G0

1r, G0

21
not strictly proper and v1, v2 white

In this case again H0

1
= H0

2
= 1. If G0

21
is not strictly

proper, then a choice G12(θ
∗) = (G0

21)
−1

would actually
allow the e1-dependent term in (9) to become 0. However
since G12(θ) appears also in the e2-term, the estimate

G12(θ̂) will generally be biased, and dependent on the
relation between the two noise powers of e1 and e2.



σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) biased (G0

21
)
−1

0 non-unique
G1r(θ

∗) biased 0 G0

1r non-unique

Table 3. Asymptotic results in Case 3 (proper transfers
and white noises).

We can conclude that in general the estimation results
will be biased, which will limit the determination of the
correct topology. Only in the situation of absence of the
noise source e1, the structure is correctly retrieved.

3.4 Discussion

This example shows that the correct structure can be
retrieved from the measured signals, in the situation that
the dynamic links are strictly proper, and the noise is white
(i.e. the noise is correctly modeled with an OE model).
In the prediction error framework, this latter condition
is formulated as: the system should be included in the
model set. Whereas in classical open-loop system identifi-
cation it is possible to consistently identify plant transfers
with output error models, even if the measured signals
are disturbed by colored noises, apparently this property
disappears in the structure identification problem.

4. A OPEN-LOOP CASCADE EXAMPLE -
PARAMETERIZED NOISE MODELS

A partial remedy to the problem indicated in the previous
section is the inclusion of appropriate noise models in the
considered model structure, leading to the prediction error

ε1(t, θ) = H1(θ)
−1

[

(G0

1r − G12(θ)G
0

21
G0

1r − G1r(θ))r +(12)

+ (1 − G12(θ)G
0

21
)H0

1
e1 − G12(θ)H

0

2
e2

]

.

Consider the same three cases as in the previous section.

4.1 Case 1: G0

1r, G0

21
strictly proper and v1, v2 white

By looking at (12) we can see that the smallest value
the e1-dependent term in V̄ (θ) can achieve is σ2

e1
. This

minimum is achieved when H1(θ) = 1 − G12(θ)G
0

21
.

When σe2
6= 0, G12(θ) is forced to zero by the e2-dependent

term in V̄ (θ).

However, when σ2

e2
= 0, we have

H1(θ) = 1 − G12(θ)G
0

21

G1r(θ) = G0

1r − G12(θ)G
0

21
G0

1r,

where G12(θ) is free. The results are tallied in Table 4.

σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) 0 non-unique 0 non-unique

G1r(θ
∗) G0

1r non-unique G0

1r non-unique

Table 4. Asymptotic results in Case 1 (strictly proper
transfers and white noises) - with parameterized noise

models.

G0

1r + G0

21
+

G0

12

v2v1

r
w1 w2

Fig. 3. Example closed-loop system.

Compared to Case 1 in the previous section, it appears
that adding noise models in this case actually leads to less
powerful results. It seems that the extra flexibility in the
model structure is a hindrance.

4.2 Case 2: G0

1r, G0

21
strictly proper and v1, v2 colored

The reasoning in this case is exactly the same is in Case
1, with the same results as in Table 4.

Compared to Case 2 in Section 3.2 it appears that mod-
eling the noise is beneficial since it leads to unbiased
estimates if both σ2

e1
and σ2

e2
are nonzero. In the other

cases, there is no advantage to modeling the noise.

The results for Case 3, not strictly proper transfer func-
tions G0

1r and G0
21, however stays the same as before. In

this case no correct structure is identified, unless σ2
e1

= 0.

4.3 Discussion

The results of this example show that again, the correct
structure can be retrieved from the measured signals in
the situation that the transfer functions are strictly proper,
and the noise sources are correctly modeled. There is an ex-
ception however when the noise in the data generating sys-
tem is white, the added flexibility in the model structure
actually inhibits the possibility of consistent estimates.
In a normal open loop system identification setting the
added flexibility is not a problem, apparently this property
disappears in the structure identification problem.

5. A CLOSED-LOOP EXAMPLE

By adding a third interconnection to the data generating
system, we can move to a closed-loop structure, as depicted
in Fig. 3. The system equations only have one additional
term, in comparison to the cascade example from the
previous section:

w1 = G0

1rr + G0

12w2 + v1, (13)

w2 = G0

21w1 + v2. (14)

With the sensitivity function:

S0 :=
1

1 + G0
12

G0
21

the system equations read:

w1 = G0

1rS
0r + S0v1 − G0

12S
0v2

w2 = G0

21
G0

1rS
0r + G0

21
S0v1 + S0v2.

Using the models with parameterized noise models, the
prediction error for signal w1 is:



ε1(t, θ) = H1(θ)
−1 [w1(t) − G12(θ)w2(t) − G1r(θ)r(t)]

= H1(θ)
−1

[

(G0

1rS
0 − G12(θ)G

0

21G
0

1rS
0 − G0

1r(θ))r+

+ S0(1 − G12(θ)G
0

21
)H0

1
e1 − S0(G0

12
+ G12(θ))H

0

2
e2

]

For strictly proper transfers G0

1r, G
0

21
, G0

12
and colored

noises v1, v2 we now arrive at the following results using
the same reasoning as before. If we fix H(θ) = 1 (i.e. OE
model structure) then:

σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) biased non-unique −G0

12
non-unique

G1r(θ
∗) biased non-unique G0

1r non-unique

Table. 5 Asymptotic results in Case 2 (strictly proper
transfers and colored noises) - with FIR/OE models.

If we do not fix H1(θ) = 1 then:

σv1
> 0 > 0 = 0 = 0

σv2
> 0 = 0 > 0 = 0

G12(θ
∗) −G0

12 non-unique −G0

12 non-unique
G1r(θ

∗) G0

1r non-unique G0

1r non-unique

Table. 6 Asymptotic results in Case 2 (strictly proper
transfers and colored noises) - with parameterized noise

models.

In the current situation the estimate G12(θ
∗) = −G0

12
and

G1r(θ
∗) = G0

1r corresponds to the correct structure. It is
correctly identified in the situation that all noise sources
are present, only when parameterized noise models are
applied. With OE-models, a bias occurs in the estimates.
A second opportunity for estimating the correct structure
is when there is no noise present on the considered signal
(σv1

= 0).

6. POTENTIAL BENEFIT OF EXCITATION
SIGNALS

In our examples and analysis presented so far we have not
made explicit use of the fact that the excitation signal r
is at our disposal for probing the network. Actually in all
the results presented in the previous sections, r is actually
handled as just any other node signal.

However when we have an external probing signal available
for probing the network, then this can provide additional
information. Actually this phenomenon comes down to
inserting the prior knowledge that the particular node
signal only acts as input in the network and not as output.

In closed-loop identification the benefit of excitation sig-
nals is well known (Van den Hof [1998], Forssell and Ljung
[1999]). It allows us to identify plant dynamics without
having the necessity to model all noises correctly, through
indirect methods. In a related phrase, it allows us to apply
instrumental variable types of techniques, where the exter-
nal excitation signals can act as external (instrumental)
signals that are uncorrelated to all noise sources in the
network (Gilson and Van den Hof [2005]). In order to
utilize this in a network identification problem, a different
model structure and a different identification criterion has
to be considered.

As an example we use the closed-loop situation of Section
5, and we consider the problem of identifying the transfer
G21(θ).

Consider now the predictor

ŵ2(t|t − 1, θ) = G21(θ)w1

which means that we have removed the information from
the excitation signal r.

The prediction error then becomes:

ε2(t, θ) = (G0

1rG
0

21S − G21(θ)G
0

1rS)r +

+S(G0

21 − G21(θ))v1 + S(1 + G21(θ)G
0

12)v2.

Applying an instrumental variable (IV) method for esti-
mation now comes down to setting:

θ̂ = solθ lim
N→∞

1

N

N−1
∑

t=0

ε2(t, θ)r(t−k) = 0 for k = 1, 2, 3....

If r is an external excitation signal, and uncorrelated with
the noise signals v1, v2, the solution will be determined by

(G0

1rG
0

21
S − G21(θ̂)G0

1rS) = 0

implying that G21(θ̂) = G0

21
. This correct result is ob-

tained without any modeling of the (colored) noises v1

and v2.

It is conjectured that this mechanism can provide appro-
priate information for detecting the network structure,
while refraining from extensive noise modeling. Results of
this approach will be presented in future work.

7. CONCLUSIONS

In this paper we have touched upon the problem of
identifying the network topology of a network of dynamical
systems, using classical identification tools, i.e. prediction
error methods. FIR/Output error models or equivalently
causal Wiener filter models, that are often used for this
purpose, are shown to lead to biased results for the
dynamic transfers in the network, if the noise contributions
are non-white. And biased model estimates seem to be a
weak basis for detecting the network structure. A partial
solution exists in the use of parameterized noise models.
The results of this have been illustrated in two simple
examples. This idea is further investigated in the upcoming
paper Dankers et al. [2012]

Additionally the particular role of external excitation sig-
nals has been discussed, showing the opportunity to iden-
tify the network structure while circumventing parameter-
ized noise modeling. This idea is further investigated in
the upcoming paper Van den Hof et al. [2012]

The results presented here seem to be in line with the use
of so-called Granger filters as presented in the recent work
of Materassi et al. [2011], where use seems to be made of
ARX (noise) model structures.

APPENDIX

Proposition 1. Let the prediction model (3) for the ith
node be the FIR predictor:



ŵi(t|t − 1, θ) =

L
∑

j=1

j 6=i

Gij(q, θ)wj =

L
∑

j=1

j 6=i

Wjθij

where Gij(q, θ) =
∑nb

k=0
θij(k)q−k and

Wj =









wj(0) wj(−1) . . . wj(−nb)
wj(1) wj(0) . . . wj(−nb + 1)

...
...

...
wj(N − 1) wj(N − 2) . . . wj(N − 1 − nb)









.

Suppose that all the signals wi are persistently exciting
(i.e. each matrix Wi has full rank for any nb). Moreover,
assume that each signal wi contains an external excitation
that is independent of the other signals wj , j 6= i. Then the

asymptotically optimal θ̂i is a MISO causal wiener filter.

Proof. Due to the conditions assumed on the signals wi,
the matrix W = [W1 . . . WL] has full rank for any value
of nb. The optimal θ satisfies the equations:

(WT W )θ̂ = WT w1

taking the expected value, and letting N → ∞ results in:

lim
N→∞

1

N
E[(WT W )θ] = lim

N→∞

1

N
E[WT w1]

which in turn results in






Rw2,w2
. . . Rw2,wL

...
...

RwL,w2
. . . RwL,wL













θ̂12

...

θ̂1L






=







R̆w2,w1

...

R̆wL,w1







where

Rwi,wj
=







Rwi,wj
(0) Rwi,wj

(1) . . .
Rwi,wj

(1) Rwi,wj
(0) . . .

...
...

. . .







R̆wi,w1
=







Rwi,w1
(0)

Rwi,w1
(1)

...







where Rx,y(τ) is the cross-correlation function between the
signals x and y.

These are the famous Wiener-Hopf Equations, and their
solution is the multi-input, single-output Wiener Filter
Benesty [2008].
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