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Summary

Performance analysis of manufacturing networks:
surplus-based control

In the modern market, keeping high competition in brands and varieties in type
of products is the way for survival of manufacturing industries. Therefore pro-
duction control methods with capabilities of quick responses to rapid changes in
the demand and efficient distribution of the raw material throughout the network
are of importance among leading manufacturers. Nowadays, the production con-
trol problem has been widely studied and a lot of valuable approaches including
queuing theory, Petri nets, dynamic programming, linear programming, hybrid
systems were proposed and some of them are implemented. Though up to this
moment many methods have been developed, the factory performance remains a
challenging problem for further research. Motivated by this problem we study the
performance of several manufacturing networks operated by surplus-based control.
In the surplus-based control, decisions are made based on the demand tracking
error, which is the difference between the cumulative demand and the cumulative
output of the network. The studied networks are a single machine, a manufactur-
ing line, a multi-product manufacturing line, a re-entrant machine and a re-entrant
line. The performance analysis is based on the performance factors such as demand
tracking errors and inventory levels. Specifically, given the presence of unknown
but bounded production speed perturbations as well as demand rate fluctuations,
we investigate how close the cumulative production output of a manufacturing
network follows its cumulative production demand under a surplus-based control
policy.

The research is subdivided into theoretical analysis, simulation-based analysis and
experimental analysis parts.

Theoretical analysis
By means of analytical tools, the relation between the production demand tracking
accuracy and the inventory levels of the networks is investigated. In order to find
this relation, classical tools from control theory are used. Models of production
flow processes are formulated by means of difference as well as differential equa-
tions. In order to analyze their performance, optimal control theory and Lyapunov
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theory approaches are exploited.

Simulation based analysis
By means of simulation tools, the theoretical results on performance are evaluated
by time-based simulation models. Thus, all theoretical results are illustrated and
confirmed by computer simulation. Also two comparative studies are conducted.
The first comparative study is realized in order to test the theoretical results on
more accurate models, which are event-based. The results are shown to be in
agreement with the theory. The second comparative study is on time-based mod-
els, where the behavior of a line, a single re-entrant machine and a re-entrant line
is tested under three commonly used surplus-based production policies. The per-
formance of each network is evaluated and the results are presented.

Experimental analysis
An experimental prototype is invented, designed and developed for education and
research purposes. The prototype is a hardware tool that serves as a liquid-based
emulator of manufacturing network processes. In its core, the liquid-based emulator
consists of several electrical pumps and liquid reservoirs. The electrical pumps
emulate manufacturing machine behavior, while the liquid reservoirs serve as the
intermediate product storages, also called buffers. In the platform, pumps and
tanks can be interconnected in a flexible manner. In that way the prototype
permits an easy and intuitive way of studying manufacturing control techniques
and performance of several network topologies. A detailed system description is
provided. Several network configurations and experimentations are presented and
discussed.



Samenvatting

Prestatie analyse van fabricage netwerken:
surplus-gebaseerd regelen

In de huidige markt overleven fabricage industrieën door een grote competitie
in merken en variëteiten in product types. Hierdoor zijn methodes voor het
regelen van productie (production control) met vlugge responsmogelijkheden voor
snelle veranderingen in de vraag en efficiënte verdeling van grondstoffen door het
netwerk erg belangrijk voor fabrikanten. Het probleem voor regelen van produc-
tie is uitgebreid bestudeerd en veel waardevolle aanpakken zoals wachtrij-theorie,
Petri nets, dynamisch programmeren, lineair programmeren en hybride systemen
zijn voorgesteld en sommige van deze zijn geimplementeerd. Tot op dit mo-
ment zijn er vele methodes ontwikkeld, maar de prestaties in een fabriek blijft
een uitdagend probleem voor verder onderzoek. Gemotiveerd door dit probleem
bestuderen wij de prestatie van verscheidene fabricage netwerken bestuurd met een
surplus-gebaseerde regeling. In een surplus-gebaseerde regeling worden beslissin-
gen gemaakt op basis van de productie volgfout (production tracking error), het
verschil tussen de cumulatieve vraag en cumulatieve productie van het netwerk. De
bestudeerde netwerken zijn een enkele machine, een fabricage lijn, een fabricage
lijn met meerdere producten, een herintredende (re-entrant) machine en herintre-
dende lijn van machines. De prestatie analyse is gebaseerd op prestatie factoren
zoals productie volgfouten en bufferwaardes. We onderzoeken hoe dicht de cumu-
latieve productie van een fabricage netwerk de cumulatieve vraag volgt onder een
surplus gebaseerd beleid, gegeven de aanwezigheid van onbekende maar begrensde
perturbaties in productiesnelheden en fluctuaties in de vraag.

Het onderzoek is onderverdeeld in theoretische analyse, analyse gebaseerd op sim-
ulaties en experimentele analyse.

Theoretische analyse
Door middel van analytische hulpmiddelen is de relatie tussen de nauwkeurighed
van het volgen van de vraag en de bufferwaardes van het netwerk onderzocht. Om
deze relatie te vinden zijn klassieke methodes van de regeltechniek theorie gebruikt.
Modellen van productie processen zijn geformuleerd door differentiaalvergelijkin-
gen alsmede verschilvergelijkingen. Om de prestaties te analyseren is de theory
van optimaal regelen (optimal control) en de Lyapunov theory gebruikt.
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Analyse gebaseerd op simulaties
Door middel van simulatie hulpmiddel zijn de theoretische resultaten van de prestatie
beoordeeld met tijd gebaseerde simulatie modellen. Dus alle theoretische resultaten
zijn geïllustreerd en bevestigd door middel van computer simulaties. Ook zijn twee
vergelijkbare onderzoeken gedaan. Het vergelijkbare onderzoek is gerealiseerd om
de theoretische resultaten van meer gedetailleerde gebeurtenis-gebaseerde (event-
based) modellen te testen. Het is aangetoond dat het resultaat in overeenstemming
is met de theorie. Het tweede vergelijkende onderzoek was over tijd-gebaseerde
modellen, waar het gedrag van een lijn, een enkele herintredende machine en een
herintredende lijn is getest onder drie veel gebruikte surplus-gebaseerde strategies.
De prestatie van elk netwerk is geëvalueerd en de resultaten zijn gepresenteerd.

Experimentele analyse
Een experimenteel prototype is bedacht, welke is ontworpen en vervaardigd voor
educative- en onderzoeksdoelen. Het prototype is een hardware hulpmiddel dat
dient als een vloeistof-gebaseerde emulator van processen in fabricage netwerken.
Hoofdzakelijk bestaat deze emulator uit verschillende elektrische pompen en wa-
ter reservoirs. De elektrische pompen imiteren gedrag van machines en de water
reservoirs dienen als tussentijdse opslagplaatsen voor producten, ook wel buffers
genoemd. In het platform kunnen pompen en tanks op een flexibele manier met
elkaar verbonden worden. Op deze manier staat het prototype een makkelijke en
intuïtieve manier van het studeren van fabricage regeltechnieken en prestatie van
verschillende netwerk typologieën toe. Een gedetailleerde systeembeschrijving is
voorzien. Verschillende netwerk configuraties en experimenten zijn gepresenteerd
en bediscussieerd.

(Van enkele termen is de Engelse vertaling toegevoegd, omdat de Engelstalige
termen volledig ingeburgerd zijn in het nederlandse vakjargon.)
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1
Introduction

1.1 Overview of manufacturing networks

The concept of manufacturing network has several interpretations, that are all re-
lated, but may vary depending on a level of abstraction that is used. Within a fac-
tory a manufacturing network can be viewed at four different levels of abstraction
(see Rooda and J.Vervoort (2007) and references therein). At low level a manu-
facturing network consists of machines and buffers, interconnected in any possible
or desired configuration. A machine can be understood as hardware (equipment
or tool) used in a factory to produce a certain product (intermediate or final) from
raw materials and a buffer as a storage for raw materials or produced products. A
group of machines that are typically scheduled as one entity as it is located in the
same area in a factory, where each machine within a group performs a similar task,
is called a manufacturing cell. A higher level of abstraction is at area level, which
is a location within a factory where manufacturing cells are situated. Finally, a
system composed of manufacturing areas and individual machines or cells can be
seen as a factory or a plant. More globally, a network composed of raw material
suppliers, factories that manufacture products out of the raw material, distribution
centers and customers can be seen as a manufacturing network at a supply chain
level.

From Chryssolouris (2006) a manufacturing process consists of one or more physical
mechanisms that transform the material’s shape and/or form and/or properties.
The objective of this material transformation into goods is focused on satisfaction
of human needs.

Manufacturing processes can be classified as continuous processes and discrete part
processes. This classification also applies to industries, where these processes occur

1



2 1 Introduction

(see Pinedo (2009)).

In continuous manufacturing industries, such as paper mills, steel mills, and chem-
ical plants, two common types of operations can be identified, which are main
processing operations, and finishing or converting operations. Main processing
operations consist of converting the raw material into a product. For example,
in paper, and steel mills the machines take in the raw material, which is wooden
pulp or iron, and produce rolls of paper, or steel. Afterwards these products are
handled and transported with specialized material handling equipment. In contin-
uous manufacturing the machines that do the main processing operations typically
have very high startup and shutdown costs and usually work around the clock. A
machine in the continuous process industries also incurs a high changeover cost
when it has to switch over from one product to another. Finishing or converting
operations usually involve cutting of the material, bending, folding and possibly
painting or printing. These operations often are focused on the commodity of the
purchasing client of the producer. For example, a finishing operation in the paper
industry may produce cut size paper from the rolls that are manufactured by a
paper mill. The products in finishing operations are usually made for a fixed order,
for storage (future orders) or in combination of order and storage.

In discrete manufacturing industries, such as automotive or semiconductor indus-
try, three common types of operations can be identified. These operations are
primary converting operations, main production operations, and assembly opera-
tions. Primary converting operations are similar to the finishing operations of the
continuous processes as they may typically include stamping, cutting, and bending
processes. Some examples of these types of operations for discrete manufacturing
are stamping facilities that produce body parts for cars and facilities that produce
epoxy boards of various sizes for the plants that manufacture printed circuit boards.
The main production operations are those multiple different operations by different
machine tools that are required to be performed on a product or on its parts before
it is ready for assembly. Generally a product may have to follow a certain route
through the facility going through various work centers. Here the main investment
of a manufacturer is made on various types of machine tools like lathes, mills, chip
fabrication equipment, etc. It is often the case that certain operations have to
be performed repeatedly and that some orders have to visit certain work centers
in the facility several times. For example, in the semiconductor industry wafers
typically have to undergo hundreds of steps. These operations include oxidation,
deposition, metallization, lithography, etching, ion implantation, photoresist strip-
ping, inspection and measurements. The assembly operations serve the purpose
of putting different parts together. Typically during these operations the shape
or form of any of the individual parts is not altered. Assembly operations usually
do not require major investments in machine tools as in main operations, but do
require investments in material handling systems. An assembly operation may be
organized in work cells, in assembly lines, or according to a mixture of work cells
and assembly lines.

This introductory description of manufacturing networks and their processes could
not be complete without mentioning control policies that manage the operation in
manufacturing network processes.
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1.2 Manufacturing control policies

Nowadays, human need, mentioned in the definition of manufacturing objective in
the previous section, is becoming more difficult to satisfy. Market competition in
brands and varieties in type of products, the complexity of production processes
as well as production costs play a very significant role in manufacturing processes.
Thus manufacturing industries are confronted with a problem of how to keep effi-
cient track of their product demand while also minimizing costs of production. The
problem is very complex as product demand and costs of production are strongly
related. An incorrect forecast as well as reduction of production costs without
proper knowledge of demand may result in production losses or customer dissatis-
faction. Thus control mechanisms as well as effective methods for their performance
evaluation with regards to a manufacturing network, where such mechanisms are
applied, are required. In the context of this thesis we define a performance eval-
uation method as one that can easily show if and how a manufacturing network
operated under a certain policy is capable to satisfy its production demand while
keeping efficiency in distribution of the raw material throughout the network and
with what level of accuracy.

Currently there is a substantial literature on manufacturing control policies and
their performance. A lot of valuable approaches including queuing theory (see e.g.
Govil and Fu (1999), Shanthikumar et al. (2007)), Petri nets (see e.g. Zhou and
Venkatesh (1999), Kahraman and Tüysüz (2010)), dynamic and linear program-
ming (see e.g. Sodhi and Tang (2009)), were proposed and some of them have been
implemented.

A number of classifications of manufacturing control policies were introduced by
various authors. Usually policies are divided into three types that are push, pull
and a combination of both also called hybrid. A push-based policy releases the
material to the network at a constant rate or according to a predefined schedule
(e.g. Master Production Schedule, ERP). A pull-based policy authorizes the release
of material based on the system status (see e.g., Hopp and Spearman (2008)). A
typical example of a pull policy is Kanban presented in (González et al. (2012))
as a simple pull-based paradigm that allows a job to be processed only if there is
demand for it, in order to avoid unnecessary products in the network. It is also
interesting to note that in control theory the push policy could be associated with
a feedforward control and pull with feedback tracking control.

From the research conducted by Bonney et al. (1999) most manufacturing control
systems usually combine a mix of push and pull principles. For instance a Conwip
policy is a classical example of push/pull mix, where material is released into a
network in a pull manner and processed by the network in a push manner. For
mode details on Conwip and other hybrid policies, see Appendix K.

In this thesis, we follow the policy classification based on its triggering mechanism
introduced in Gershwin (2000), which puts the control policies into three cate-
gories: token-based, time-based and surplus-based, respectively. In token-based
approaches, so called tokens are generated and utilized in order to trigger certain
events occurring in the manufacturing system. The most famous examples of such
a policy are Kanban (Rees et al. (1987)), Conwip (Spearman et al. (1990), Ioan-
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nidis and Kouikoglou (2008)) and Basestock (Silver et al. (1998)). In time-based
approaches, the control decisions depend on the time when a certain operation
should take place, i.e. Material Resource Planning, Least Stack and Earliest Due
Date strategies (see, e.g., Burgess and Passino (1997)). In the surplus approach,
control decisions are made based on the production error, which is the difference
between the cumulative demand and the cumulative output of the system. Some
examples of this approach can be found in Bielecki and Kumar (1988); Bonvik et al.
(1997); Lefebvre (1999); Gershwin (2000); Quintana (2002); Kogan and Perkins
(2003); Boukas (2006); Stockton et al. (2007); Subramaniam et al. (2009); Savkin
and Evans (2002); Nilakantan (2010) and references therein.

1.3 Objective and contributions

This PhD research concerns the performance analysis of manufacturing networks
operated under surplus-based control. In surplus-based control, decisions are made
based on the demand tracking error, which is the difference between the cumulative
demand and the cumulative output of the system, see, e.g., Bielecki and Kumar
(1988); Gershwin (2000); Nilakantan (2010) and references therein. Thus the per-
formance of manufacturing networks is studied within the scope of demand-driven
manufacturing control problems.

The main research objective is to apply classical tools from control theory in order
to evaluate the performance of any given demand-driven manufacturing network.
In line with this objective, the following goals are considered:

• Give a general mathematical interpretation to the existing surplus-based
methodologies and identify important performance indicators for a manu-
facturing network under the aforementioned policies;

• Evaluate surplus-based control performance by analytical and experimental
means for several commonly used network topologies.

Production and inventory control of manufacturing networks are often character-
ized by discrete-event behavior, which makes it difficult to construct a proper
controller, especially for large networks. However, if a network is approximated by
a continuous or discrete flow model, then standard control theory can be applied
to control the production and inventory of the system, see e.g., Dashkovskiy et al.
(2011), van den Berg et al. (2008), Lefeber et al. (2005), Huang et al. (2009). In
discrete time the cumulative number of produced products in time k for a simple
manufacturing machine can be described as the sum of its production rates at
each time step till time k. Alternatively, in continuous time a simple manufac-
turing machine can be interpreted as an integrator, where the cumulative number
of finished products is the integral of the production rate. The content of the
inventory (buffer) between two machines is given by the difference between the
total number of products produced by the upstream machine and the total num-
ber of products produced by the downstream machine. The buffer content can
never be negative considering that the downstream machine cannot produce more
than the upstream one. In our study these notions are extended to investigate the
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behavior of the following network topologies: manufacturing line, multi-product
manufacturing line, re-entrant machine and re-entrant line. The production flow
dynamics of manufacturing networks are described by discrete time flow models.
The performance is considered in terms of production demand tracking accuracy
and inventory levels, which are evaluated by means of a Lyapunov function-based
approach, see e.g., Khalil (2002). Simulation-based analysis is conducted in or-
der to evaluate the accuracy of the theoretical results obtained for the discrete
time models on the event-based models of the studied network topologies. The
performance of three surplus-based control mechanisms is compared for manufac-
turing line and re-entrant network configurations. Alternatively, continuous-time
flow model of a manufacturing line operated by an observer-based surplus control
is introduced. Lyapunov function-based and frequency domain-based approaches
are exploited for the network’s stability and performance evaluation, respectively.

The main contributions of the research presented in this thesis are:

• Flow models for commonly used network topologies such as: a single machine,
a line, a multi-product machine and line, and re-entrant networks are derived.

• The surplus-based production policy is interpreted in terms of a variable
structure controller and applied to the above mentioned network topologies.

• Analytical, simulation-based and experimental analysis on performance of
this strategy are conducted for the network topologies.

• Networks with limited and unlimited buffers are considered.

• A liquid based experimental hardware for education and research is designed,
assembled and serving its purpose. The purpose of the platform is to emulate
production processes of manufacturing networks.

1.4 Outline of the thesis

This thesis is organized as follows.

• Chapter 2 presents a discrete time-based flow model of a single manufac-
turing machine producing one product type. For this model the optimal
control strategy is obtained in terms of a surplus-based control. The track-
ing accuracy of a single manufacturing machine operated under the optimal
surplus-based controller is studied. The performance of the closed-loop ma-
chine is illustrated by computer simulations. In addition a discrete time
model is compared to a more accurate discrete event approximation of the
manufacturing machine.

• Chapter 3 contains an extension of the flow model introduced in the previous
chapter for a manufacturing line with unlimited and limited inventory oper-
ated under the surplus-based control. The analysis of the production error
of each machine with respect to the inventory level of the network is devel-
oped. The performance issues of the closed-loop flow models are illustrated
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in numerical simulations. A comparative study of discrete time and discrete
event models of a manufacturing line is presented. A simulation-based per-
formance analysis of three surplus-based production policies is conducted for
a manufacturing line of 4 machines and 3 buffers.

• Chapter 4 introduces an extension of the flow models of a manufacturing
machine and a line of Chapters 2 and 3 to a manufacturing line that produces
several product types. The surplus-based controller is implemented in both
networks and a detailed analysis on the production error tracking accuracy
and inventory levels are presented. Performance issues of the closed-loop flow
models are illustrated in numerical simulations.

• Chapter 5 is subdivided in two parts. In the first part a flow model of one
manufacturing machine with surplus-based control is presented. A detailed
analysis of production error trajectories is developed in this section. An
analytical relation is obtained between the steady state production demand
tacking accuracy and the intermediate base stock levels in the network. The
reliability of the analytical results obtained for the discrete time model is also
tested on a discrete event model. A simulation-based performance analysis of
three surplus-based production policies is conducted for a re-entrant machine
of 3 production stages and 2 buffers. In the second part, the flow model of
a re-entrant manufacturing line with surplus-based control is obtained. Here
necessary conditions are derived to guarantee the ultimate boundedness of the
demand tracking error trajectories of each machine in the network. Steady
state bounds on demand tracking errors and its relation to a base stock
level in the inventory are shown. Performance issues of the closed-loop flow
models are illustrated in numerical simulations. Also a simulation-based
performance analysis of three surplus-based production policies is conducted
for a re-entrant line of 3 machines of 2 production stages and 5 buffers.

• Chapter 6 presents a prototype developed for education and research pur-
poses. This prototype is a liquid-based emulator of manufacturing network
processes called Liquitrol. The liquid-based emulator consists of several elec-
trical pumps and liquid reservoirs. This chapter presents a detailed descrip-
tion of the Liquitrol, subdivided in mechanical and electrical specifications.
Flow models of the platform for 3 selected network configurations are de-
tailed. Three types of practical experimentations for educational purposes
are presented.

• Chapter 7 deals with the problem of controlling a tandem line of manufac-
turing machines such that an unknown production demand is tracked with
a desired accuracy. To solve the problem in case of unknown demand rate,
a combination of a feedforward-feedback controller with a reduced-order ob-
server is proposed. This surplus-based controller is studied for one machine
as well as for a line of machines in continuous time-domain and in frequency-
domain representations.

• Chapter 8 contains the conclusions of the thesis and recommendations for
future research.
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• Appendixes A to J contain the proofs of the presented theorems of this the-
sis and Appendix K presents the models of manufacturing networks that
were utilized for the simulation-based performance analysis presented in this
thesis.

All the above presented chapters contain an abstract, an introduction to the pre-
sented research and conclusions.

1.5 Summary of publications

This thesis is mostly based on conference and journal papers, either published or
accepted. The present section summarizes the relationship between the papers
and the chapters in this thesis. Note that some papers are used in more than one
chapter.

Chapters 2 and 3 contain results presented in:

Starkov, K., Pogromsky, A., Rooda, J., 2010a. Production error analysis for
a line of manufacturing machines, variable structure control approach. In:
APMS: International Conference on Advances in Production Management
Systems. Como, Italy, CD-ROM.

Starkov, K., Pogromsky, A., Rooda, J., 2010b. Towards a sustainable con-
trol of complex manufacturing networks. In: Sustainable development: in-
dustrial practice, education and research. Monopoli, Italy, pp. 174-179.

Starkov, K., Pogromsky, A., Rooda, J., 2010c. Variable structure control of
a line of manufacturing machines. In: IFAC on Intelligent Manufacturing
Systems. Lisboa, Portugal, pp. 277-282.

Starkov, K., Feoktistova, V., Pogromsky, A., Matveev, A., Rooda, J.,
2011a. Optimal production control method for tandem manufacturing lines.
In: 5th International Scientific Conference on Physics and Control. Leon,
Spain.

Starkov, K., Pogromsky, A., Rooda, J., 2011d. Performance analysis for tan-
dem manufacturing lines under variable structure production control method.
International Journal of Production Research, 13 (8), 2363-2375.

Starkov, K., Feoktistova, V., Pogromsky, A., Matveev, A., Rooda, J.,
2012a. Performance analysis of a manufacturing line operated under optimal
surplus-based production control. Mathematical Problems in Engineering,
DOI: 10.1155/2012/602094.

Chapter 4 contains results presented in:

Starkov, K., Pogromsky, A., Adan, I., Rooda, J., 2011b. Performance anal-
ysis of a flexible manufacturing line operated under surplus-based production
control. In: ICACE: International Conference on Automation and Control
Engineering. Venice, Italy, CD-ROM.



8 1 Introduction

Chapter 5 contains results presented in:

Starkov, K., Pogromsky, A., Adan, I., Rooda, J., 2011c. Performance anal-
ysis of re-entrant manufacturing networks under surplus-based production
control. In: Recent Advances in Manufacturing Engineering. Barcelona,
Spain, pp. 152-161.

Starkov, K., Pogromsky, A., Adan, I., Rooda, J., 2012c. Performance anal-
ysis of re-entrant manufacturing networks under surplus-based production
control. International Journal of Production Research, accepted.

Chapter 6 contains results presented in:

Starkov, K., Kamp, H., Pogromsky, A., Adan, I., 2012b. Design and im-
plementation of a water-based emulator of manufacturing processes. In: 9th
IFAC Symposium on Advances in Control Education. Nizhny Novgorod,
Russia, CD-ROM.

Chapter 7 contains results presented in:

Andrievsky, B., Starkov, K., Pogromsky, A., 2012. Frequency and time do-
main analysis on performance of a production line operated by observer based
distributed control. International Journal of Systems Science,
DOI: 10.1080/00207721.2012.670300.
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Single machine

This chapter is partly based on Starkov et al. (2010b), Starkov et al. (2010c),
Starkov et al. (2011a), Starkov et al. (2012d) and Starkov et al. (2012a).

Abstract | In this chapter, we examine optimality and performance of a singe manufac-
turing machine driven by a surplus-based decentralized production control strategy. The
main objective of this type of production strategies is to guarantee that the cumulative
number of produced products follows the cumulative production demand on the output
of the given network. The basic idea of surplus-based control strategy is presented for the
case of one manufacturing machine. We prove that this strategy is optimal and present
accuracy bounds on demand tracking error of a single machine operated under this strat-
egy. The analytical results of this chapter are supported by discrete time and discrete
event simulation examples.

2.1 Introduction

Nowadays the highly dynamic market environment requires that production control
policies implemented in manufacturing industries should be capable of providing
quick and accurate responses to constant and rapid changes in the production de-
mand. This strongly shifts the interests of manufacturers to the need of theoretical
analysis of the currently existing policies, i.e. the study of conformity between the
production output and the demand of their product, as well as the relation be-
tween stock level (buffer content) and the production surplus of the manufacturing
network.
Currently there is a substantial literature on manufacturing control policies and
their performance. A number of classifications of these policies were introduced by
various authors. In this chapter, we follow the classification introduced in Gersh-

9
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win (2000), which puts the control policies into three categories: token-based,
time-based and surplus-based, respectively (for more details see Chapter 1, Sec-
tion 1.2). In the surplus approach, control decisions are based on the demand
tracking1 error, which is the difference between the cumulative demand and cumu-
lative output of the system. For extensive surveys and further details concerning,
in particular, production line control mechanisms, we refer the reader to Bonvik
et al. (1997), Gershwin (2000), Ortega and Lin (2004), Sarimveis et al. (2008).
In the afore-mentioned literature, considerable research effort has been invested
into the issue of optimality. In Bielecki and Kumar (1988), the authors showed
that for unreliable manufacturing systems with parameters from a certain domain,
the zero-inventory policies are optimal even if there is an uncertainty in the manu-
facturing capacity. This was demonstrated under the assumption that the demand
rate is constant and the production rate can be adjusted. In Perkins and Ku-
mar (1995), the optimality of pull controlled flow shop was established in the case
where the performance index encompasses buffer holding costs and system short-
fall/inventory costs. This research treated the production demand and processing
rates as deterministic.
In Martinelli et al. (2001), a broad class of dynamic scheduling problems associated
with single-server, multi-class, continuous-flow, flexible manufacturing systems was
considered. The objective was to minimize the integral of an instantaneous cost
function defined on the inventory/backlog state of the system. The authors provide
sufficient conditions under which the optimal solution comes by implementing of
the myopic scheduling policy. The paper also presents examples and counterexam-
ples that explicitly illustrate the behavior and limitations of the myopic scheduling
policies.
In Laumanns and Lefeber (2006) a model based on stochastic discrete-time con-
trolled dynamical systems was developed in order to derive optimal policies for
controlling the material flow in supply networks. Contrary to most studies in this
area, which typically assume a given (parameterized) control strategy and analyze
how the dynamics depends on the parameters, the authors do not assume a certain
family of strategies a priori, thus allowing any control law in the form of a func-
tion of the current state of the system. The individual nodes are controlling their
inflows in a decentralized fashion by placing orders to their immediate suppliers.
An explicit optimal state-feedback control is derived with respect to the cost func-
tional that typically takes into account both inventory holding costs and ordering
costs.
Extended reviews on optimal control in production networks can be found in, e.g.,
Riddalls et al. (2000), Ortega and Lin (2004), and Sarimveis et al. (2008).
This chapter concerns the performance analysis of a single manufacturing machine.
We find the optimal control policy that minimizes the mismatch between the cumu-
lative production output and cumulative demand. Then we evaluate the system
dynamics under this policy and obtain the steady state bounds on the tracking
accuracy of its production demand.

Thus, we first tackle the problem of optimal control for one manufacturing machine

1In this thesis by the term tracking we refer to the control goal of a system (e.g., manufacturing
network), which consists in keeping close the output of this system to its reference signal (e.g.,
cumulative demand). For more information see for example Khalil (2002), Chapter 12, page 474.
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that nominally produces products in lots of a given size and is controlled by carrying
out only two commands (’on’ and ’off’), unlike Laumanns and Lefeber (2006),
where the size of the lot was controllable and the set of feasible controls was a
polygon. Another difference is that we deal with a deterministic model of the
system. Similarly to Laumanns and Lefeber (2006) and contrary to the bulk of the
literature in the area, we do not limit the class of the strategies a priori and take
into account all control laws that are fed by the currently available data, which
concerns not only the current system state but also the past states. The system
is influenced by uncertain disturbances that are due to both market fluctuations
in demand rate and random fluctuations in the production rate of the machine.
By assuming known bounds on these disturbances and by applying the min-max
dynamical programming, we prove that surplus-based pull control policy is optimal.

Further, we apply classical tools from the control theory in order to evaluate the
tracking accuracy of a single machine operated under this optimal controller.

The production flow process is described by means of difference equations and in
order to analyze performance, an approach based on Lyapunov theory is employed
(see, e.g., Khalil (2002) and references therein).

The chapter is organized as follows. In Section 2.2, a general open-loop discrete
time flow model of a single manufacturing machine is presented and the control
objective is introduced. The assumptions imposed on the model are formulated
in Section 2.3 and an optimal control policy is derived under those assumptions.
Section 2.4 is devoted to analysis of the production demand tracking accuracy for a
single manufacturing machine operated under the optimal surplus-based controller.
Performance of the closed-loop system is illustrated by computer simulations in
Section 2.5. Discrete time model is compared to discrete event model of a single
machine in Section 2.6. Finally, Section 2.7 presents the conclusions.

2.2 Flow model

By pursuing the research objectives of Chapter 1 we start our analysis of manu-
facturing network topologies from the most basic configuration, which is a single
machine. The machine presents an infinite raw material supply and it produces one
product type. In Section 1.3 several approaches are mentioned for modeling such
a system. In this chapter as well as in Chapters 3 till 5 the discrete time flow mod-
els are used to describe the product flow dynamics for the studied manufacturing
networks.

The flow model of one manufacturing machine in discrete time is defined as

y(k + 1) = y(k) + u(k) + f(k), (2.1)

where all the events within the model occur at given time instances and k represents
the current time so that the time step between all the events is constant. Here
y(k) ∈ R is the cumulative output of the machine in time k, f(k) ∈ R is an external
disturbance in time k and u(k) ∈ R is the control input which action can only be
executed every time k. The model (2.1) describes the future cumulative output
y(k + 1) of a single machine by its current cumulative output y(k), its current
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controlled production rate u(k) and its current uncontrolled production rate f(k).
Note that for this research it is assumed that u(k) + f(k) ≥ 0 for all k, which
implies that the machine can only produce products or be in its idle state. The
equation (2.1) presents a general model that can describe a product flow for a
wide range of machines. Further specific assumptions on system (2.1) are given in
Sections 2.3 and 2.4.

Under the assumption that there is always sufficient quantity of the raw material
to feed the machine, the control aim is to track the non-decreasing cumulative
production demand. We define the cumulative production demand by using yd(k) ∈
R given by

yd(k) = yd0 + vdk + ϕ(k), (2.2)

where yd0 is a positive constant that represents the initial production demand, vd
is a positive constant that defines the average desired demand rate, and ϕ(k) ∈ R

is the bounded fluctuation that is imposed on the linear demand vdk. Further
specific assumptions on the production demand model (2.1) are given in Sections
2.3 and 2.4.

2.3 Optimal control strategy

To efficiently fulfill the control aim, presented in the previous section, we are going
to minimize the demand tracking error ε(k) = yd(k)− y(k) in the class of control
strategies fed by available data:

u(k) = Uk[y(0), . . . , y(k), yd(0), . . . , yd(k)] ∈ {0; 1} . (2.3)

It follows that, in time step k the control input u is limited to taking the value
of 1 or 0. Note that from (2.1) this means that we define the nominal production
rate of our machine as of 1 lot per time unit. The selected value serves here as a
theoretical example and modifying it by another desired value won’t modify the
essence of the later presented results.

It follows from (2.1) and (2.2) that the increment of the demand tracking error
given by ε(k + 1))− ε(k) obeys the following equation:

ε(k + 1) = ε(k)− u(k) + vd +∆ϕ(k)− f(k), (2.4)

where ∆ϕ(k) = ϕ(k + 1)− ϕ(k) is the deviation of the demand rate fluctuations.

Denoting by ξ(k) := vd +∆ϕ(k)− f(k) we introduce the following condition (also
known as capacity condition)

0 < ξ(k) < 1, ∀k ∈ N. (2.5)

The physical meaning of this condition is twofold :

1. The production capacity is always bigger than the demand rate;

2. The rate of cumulative demand can only be positive.
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Note that in reality it is a common situation when the demand rate exceeds the
production capacity of a machine. If the capacity of a machine is always lower than
its demand rate, then the cumulative output of this system is unable to follow its
cumulative production demand. In consequence such a system cannot fulfill the
control objective. On the other hand, if the capacity of a machine is on average
higher than its demand rate, then by (2.5) we merely assume that for discrete
time model of such machine a time step can be selected in a way that the capacity
condition is always fulfilled. For the rest of this thesis it is assumed that the time
step is fixed and defined in such a way that the capacity of the network is always
sufficient to fulfill its demand.

Given the system (2.4), (2.3) with (2.5) as the assumption on its operation, we
examine the following two optimization problems:

JT = sup
ξ(0),...,ξ(T−1)

T∑

k=0

|ε(k)|p → min
U
, (2.6)

J∞ = lim sup
k→∞

sup
ξ(·)

|ε(k)|p → min
U
. (2.7)

Here sup is taken over all ξ(·) satisfying (2.5), U = {Uk(·)}
∞

k=0 is the set of all
possible control strategies given by (2.3). By performance criterion (2.6) we want
to select a control strategy that minimizes the value of the demand tracking error
influenced by the demand rate vd and feasible perturbations ϕ(k), f(k) on a finite
and given time horizon T . While by performance criterion (2.7) we desire to select
such a control strategy that minimizes the value of the demand tracking error
influenced by demand rate and perturbations after a certain large enough (infinite)
time horizon. Though the control objectives in (2.6) and (2.7) are different, the
main result of this section (Theorem 1) shows that they are achieved by a common
control strategy.

In (2.6) and (2.7), larger values of the parameter p are used to penalize large
demand tracking errors more severely. In the literature, the most popular values
are p = 1, 2. We consider arbitrary p ∈ [1,+∞) partly in order to show that the
solution of the optimization problem is not influenced by the value of p. This is
presumably due to the use of discrete controls u = 0, 1; if the set of feasible controls
is not finite, the solution typically depends on p.

The following theorem is the main result of this section.

Theorem 1. For system (2.1) the following control strategy

u(k) = sign+

(
ε(k)

)
(2.8)

is optimal with respect to the performance index (2.6) for any given T , as well
as with respect to the performance criterion (2.7). This is true irrespective of the
choice of p ∈ [1,+∞).

Proof. The proof of Theorem 1 is given in Appendix A.
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Here the control action is given by

u = sign+(ε) :=







1 if ε > 0

0 if ε < 0

0, 1 if ε = 0

.

Basically this controller works as a pull control that authorizes the machine to
produce if the product surplus is negative, stops the machine if the surplus is
positive, and arbitrary selects between the two previous decisions if the surplus is
zero.

2.4 Tracking accuracy

In this section the production demand tracking accuracy of a single manufactur-
ing machine is analyzed in close-loop with surplus-based tracking controller. The
production flow model (2.1) is now simplified to

y(k + 1) = y(k) + β(k)u(k), (2.9)

where β(k) = µ + f(k) with µ as a positive constant representing the nominal
production rate of the machine. Note that in this setting the perturbation f(k)
influences the nominal production rate µ only when the machine is operational.
Also for the sake of definiteness, in this section the control input (2.8) is adjusted
to

u(k) = sign+

(
ε(k)

)
, (2.10)

where

u = sign+(ε) :=

{

1 if ε > 0

0 if ε ≤ 0
.

Unlike in the prior definition of u(k) (see Section 2.2 equation (2.8)), in this case
the control action authorizes the machine to produce at its processing speed of
µ + f(k) [lots/time unit] only if the demand tracking error ε(k) ∈ R is positive.
The production demand tracking error is given by ε(k) = yd(k) − y(k), where
ε(k + 1)− ε(k), along the solutions of ε(k), is defined as:

ε(k + 1)− ε(k) = vd +∆ϕ(k)− (µ+ f(k))sign+(ε(k)), (2.11)

with ∆ϕ(k) = ϕ(k + 1)− ϕ(k).

It follows from (2.11) that in order to guarantee a proper demand trajectory track-
ing the product demand cannot be higher than the machine processing speed,
which in this case is µ lots per time unit. Thus, let us assume that all machine
perturbations W (k) = ∆ϕ(k)− f(k) from (2.11) are bounded by

α1 < W (k) < α2, ∀k ∈ N, (2.12)

where α1, α2 are some constants that satisfy

α2 < µ− vd, (2.13)

α1 > −vd. (2.14)
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By (2.13) and (2.14) we state that the production demand rate can never be faster
than the speed of the machine and that considering the presence of perturbations
bounded by (α1, α2) the demand rate can only de positive, respectively. In practice
it can be rather unnatural to set bounds on market fluctuations together with
the machine perturbations. Thus starting from Chapter 4 of this book, where
the results on multi-product manufacturing line are discussed, we evaluate system
perturbations independently from the demand rate fluctuations2.

From (2.12), (2.13), and (2.14) the following condition (also known as capacity
condition) holds

0 < vd +W (k) < µ. (2.15)

Note that the physical meaning of the above mentioned assumptions is similar to
the one discussed in detail in the pervious section.

In order to follow the product demand, the variable structure controller sign+(ε(k))
is included in the flow model (2.9) of a single machine. The demand tracking error
of a single machine is defined as the difference between the cumulative demand
and the cumulative number of products produced up to this moment.

Now the following result regarding the performance of system (2.11) can be stated
in the form of a theorem.

Theorem 2. Assume that the discrete time system defined by (2.9) with control
input (2.10) satisfies condition (2.15). Then all solutions of (2.11) are uniformly
ultimately bounded by

lim sup
k→∞

ε(k) ≤ vd + α2, (2.16)

lim inf
k→∞

ε(k) ≥ vd + α1 − µ. (2.17)

The bounds (2.16) and (2.17) specify that, in steady state, the demand tracking
error of a single machine will not grow further than the maximal demand rate of
one time step and will not present a bigger product excess than the one given by
de difference between the minimal demand rate and the maximal production rate
of one time step, respectively.

Proof. The detailed proof of Theorem 2 is provided in the Appendix B.
Without loss of generality, the proof can be graphically summarized in Figure
2.1. Given the function V (ε(k)) as shown in Figure 2.1 we evaluate the increment
∆V (ε(k)) of V (ε(k)) along the solutions of (2.11). From Figure 2.1 it can be
observed that all the trajectories of ε(k) regardless their initial conditions are
attracted to the bounded zero set of function V (ε(k)) also known as Lyapunov
function. The bounds of the zero set are shown with arrows in Figure 2.1, which
correspond to the bounds (2.16) and (2.17).

2Please note that the result of Theorem 2 of this section can be similarly deduced from
Theorem 7 of Chapter 4, which is obtained for multi-product manufacturing line. This can made
if in Theorem 7 a number of machines and stages in multi-product line is reduced to a single
machine with only one production stage.
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Figure 2.1: Lyapunov function-based analysis

2.5 Discrete time simulations

Simulation results for one manufacturing machine, driven by the surplus-based
regulator (2.10), are presented in this section. Two simulation examples are in-
troduced in order to verify the effectiveness of the analytical results from previous
section. The examples are simulated using discrete time (DT) model given by 2.11
and 2.10.

For both examples the processing speed of the machine is fixed to 5 lots per time
unit. In the first example (see the outcome in Figures 2.2 and 2.3) the initial
product demand yd0 = 20 lots, the demand increment ∆yd(k) is 4 lots per time
unit and the initial production output y(0) = 0 lots. The market fluctuations as
well as the external perturbations are set to the zero value. Results from Figures
2.2 and 2.3 show that the output y(k) follows the product demand yd(k) with
tracking error ε(k) bounded by 0 ≤ ε(k) ≤ 4 lots, which satisfy (2.16), (2.17)
from where −1 ≤ ε(k) ≤ 4. It can be observed from Figure 2.2 and 2.3 that after
the transient behavior the demand tracking error trajectory reaches its zero value
in 20 time steps. Then, at time step 21 the demand signal yd(k) is gown 4 lots
higher than the output y(k). The controller u(k) responds with the authorization
for 5 lots, which are produced in the next time step while the cumulative demand
increases by another 4 lots. Thus, the cumulative output at time step 22 is 3 lots
lower than the cumulative demand. For the next 3 time steps the machine keeps
producing lots in batches of 5 until the production demand is reached again at
time step 25 with yd(k) of 120 lots. Now during the next time step, the machine
remains idle while the demand grows to 124 lots. Thus, the production cycle from
the 21st time step till the 25th is repeated.
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Figure 2.2: Demand vs Output, vd = 4 and yd0 = 20.
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Figure 2.3: Demand Tracking Error, vd = 4 and yd0 = 20.
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Figure 2.4: Demand vs. Output, with yd0 = 35, vd = 2 and ϕ(k) = 0.9 sin(5k).

For the second example the product demand rate is vd+∆ϕ(k) = 2+0.9(sin(5(k+
1))− sin(5(k))) 3 lots per time unit with the initial demand yd0 = 35 lots. Figures
2.4 and 2.5 show the output response of the machine to the nonlinear demand
growth and the demand tracking error, respectively. From Figure 2.4 it can be
observed that for given initial demand of 35 lots and initial output of 0 lots the
machine manages to reach the cumulative demand trajectory in 12 time steps.
Figure 2.5 shows that the resulting demand tracking error is bounded by −3.9 ≤
ε(k) ≤ 2.9 lots, which are identical to the theoretical results of (2.16) and (2.17).
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Figure 2.5: Demand Tracking Error, with yd0 = 35, vd = 2 and ϕ(k) = 0.9 sin(5k).

3In some simulation examples of this book in order to verify the effectiveness of the analytical
bounds on demand tracking error accuracy we introduce periodic functions to model perturba-
tions and market fluctuations in a manufacturing network. Note that these bounds are obtained
for the worst case behavior of a product flow in a network. Thus, as long as all the assumptions
on the flow model of a manufacturing network are satisfied, no relevant difference with respect
to the accuracy of the analytical bounds can be expected in case an alternative function or a
stochastic model is used to describe perturbations and fluctuations in the network.
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It can be concluded that the simulation results reflect the expected flow model
behavior for all the product demands, which are given in this section. These
product demands were selected in order to test the model behavior inside the
boundary of the given capacity condition (2.15).

2.6 Discrete event simulations

In discrete event (DE) models, the operation of a system is represented as a chrono-
logical sequence of events. Each event occurs at an instant in time and marks a
change of state in the system (see Robinson (2004)). Thus the event occurrence
is not limited to the fixed time step as in the previously presented discrete time
(DT) model. Consequently the DE models can describe the product flow in a more
accurate manner.

In this section the accuracy of the obtained demand tracking error bounds for the
DT model is tested by means of two simulation examples on the DE model of a
single manufacturing machine that produces one product type in one at a time
manner. The DE model was built by using the specification language called χ (see
Beek et al. (2006)) developed at the Eindhoven University of Technology4.

Figure 2.6 shows the diagram of the DE model of one manufacturing machine
operated under a surplus-based control. The circles represent the processes. The
wide and the thin arrows indicate the lot and the information flow directions,
respectively.

The machine is described by process M. It exchanges information with the con-
troller (process C) that authorizes the machine to produce based on the value of
the demand tracking error ε. The demand tracking error consists of the difference
between integer values of the cumulative demand yd and the cumulative number of
produced products y. If ε ≥ 1, then the controller C sends the authorization, e.g.,
by means of a token u send to M. If ε ≤ 0, then no authorization is given till the
value of yd is updated. Process C recalculates the value of ε every time it receives
yd from the demand generating process D or the update on the value of y, e.g., in
form of a token5 yf , which is send from process M to C.

Process D recalculates the cumulative demand value with preselected accuracy.
Every time the demand value is incremented by one lot, process D sends the
updated yd value to process C. Process G functions as an infinite raw material
generator, i.e. it can instantly send a product to process M. Process E mimics an
infinite storage of finished products, i.e. it can instantly receive a product from
process M. If authorization u is granted and no lots are presently processed in M,
then machine process M is provided with one lot from G. After a delay, which
occurs due to the lot processing, the product from M is send to the exit process E
and the token yf is send to process C, which increments by one its counter of y.

The following two examples are analyzed. In the first example (see the outcome on
Figure 2.7) for event-based system the production speed of the machine (µ) is fixed

4For the details on implementation see Rooda and J.Vervoort (2007)
5Every time the machine produces one product the token yf is send to the process C, which

increments its counter of y by one.
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Figure 2.6: Schematic of DE model of a machine operated under surplus-based control

to 1 lot per time unit with zero initial output. The production demand consists of
its initial value yd0 of 20 lots and the constant rate vd of 1 lot every 1.111 units of
time. The DE system is approximated by the DT model with the same production
speed and demand rate vd of 0.9 lots per time unit. The simulation run time was
set to 500 time units.

The outcome of the experiment:

• From Figure 2.7, the duration of the transient behavior of the DE system is
similar to that of the DT system.

• The steady state demand tracking error of DE model is bounded by 0 ≤ ε ≤ 1
lots. The steady state demand tracking error of DT model is bounded by
−0.1 ≤ ε ≤ 0.9 lots, which satisfies (2.16) and (2.17). The difference in
the steady state bounds of ε of the two models comes from to their distinct
interpretation of the demand arrival. In DE model the demand value is
rounded to the closest integer, i.e. the product order that arrives to the
system is for an integer number of products (1 lot every 1.111 time units).
The DT model approximates the demand arrival differently. The quantity of
0.9 lots is added every fixed time step of 1 time unit to the cumulative demand
signal yd. For this example the bounds of DT model can be translated to DE
model bounds as the ceil value of (2.16) and the floor value of (2.17).

The second example, see the outcome on Figure 2.8, differs form Figure 2.7 in that
market perturbations ϕ are introduced in the demand variable. For DE model the
constant demand rate is of 1 lot every 1.428 time units with market fluctuations
of ∆ϕ(t) = 0.1 sin(5t), where t is a current time of experiment. Thus the product
demand rate is oscillating between one lot every 1.250 and 1.666 time units. For the
DT model this behavior can be approximated by product demand rate vd+∆ϕ(k) =
0.7 + 0.1 sin(5k) lots per time unit. Here k is the time step. The run time of the
experiment was set to 500 time units.

The outcome of the experiment:

• From Figure 2.8 it can be observed that the duration of the transient behavior
of the DE system is similar to that of the DT system.
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Figure 2.7: Demand Tracking Error for vd = 0.9 and yd0 = 20.

• The steady state demand tracking error of the DE model is bounded by
0 ≤ ε ≤ 1 lots. The steady state demand tracking error of the DT model is
bounded by −0.367 ≤ ε ≤ 0.787 lots, which satisfies 0.8 lot bound from (2.16)
and −0.4 lot bound from (2.17). The difference in the steady state bounds
of ε of the two models is due to their distinct interpretations of the demand
arrival. In the DE model the demand value is rounded to the closest integer,
i.e. the product order of 1 lot that arrives to the system varies in its arrival
time between 1.250 and 1.666 time units. The DT model approximates the
demand arrival differently. The value of 0.7+0.1 sin(5(k)) lots is added every
fixed time step of 1 time unit to the cumulative demand signal yd. In this
example the bounds of the DT model can be also translated to the DE model
bounds as the ceil value of (2.16) and the floor value of (2.17).
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Figure 2.8: Demand Tracking Error for vd = 0.7, ∆ϕ(k) = 0.1 sin(5t) and yd0 = 20.
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2.7 Conclusions

The results on the performance analysis of a single manufacturing machine op-
erated under a surplus-based control were presented in this chapter. First, for a
single manufacturing machine operated under the influence of bounded but un-
known market fluctuations and a production rate perturbation, the surplus-based
controller was proven to be optimal for the cumulative demand tracking problem.
Then, by means of the Lyapunov function presented in Appendix B, the closed-
loop flow model was proven to be uniformly ultimately bounded. The bounds on
the steady state demand tracking accuracy for a single machine were presented.
The simulation results with the DT model of the product flow dynamics reflected
the accuracy of the obtained demand tracking error bounds. The interpretation
of these DT bounds for the DE model of a manufacturing machine was given for
two selected simulation examples. It was observed that the DE model described
the production flow process in a more accurate manner than the DT model, but,
given an adequate interpretation of the obtained DT bounds, they can be used as
a reference tool for the demand tracking error evaluation of the DE model.
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Manufacturing lines

This chapter is partly based on Starkov et al. (2010a), Starkov et al. (2012d),
Starkov et al. (2011a) and Starkov et al. (2012a).

Abstract | In this chapter the analysis of the surplus-based control is extended to a line
of N manufacturing machines. The general idea of this control method was presented in
Chapter 2 for the case of one manufacturing machine. In that chapter the implemented
surplus-based control strategy was proven to be optimal. This chapter is focused on
the performance of a manufacturing line under the surplus-based control. Particulary
the relation between the product demand tracking accuracy and the base stock of the
intermediate product in a line operated under the extended surplus-based controller of
Chapter 2 is evaluated. The flow model of a production line is studied first under the
assumption of the existence of infinite buffers and then under the assumption that the
buffers are finite. All the details on the used procedure as well as the obtained bounds on
the demand tracking error accuracy are given in the chapter. The production flow process
is described by means of difference equations and in order to analyze the performance,
an approach based on Lyapunov theory is exploited. Furthermore the proposed closed-
loop flow model of a line in its discrete time representation is evaluated with respect to
an event-based production model. Finally, simulation based comparative performance
analysis is conducted between three selected surplus-based controllers for a time-based
model of the line of 4 machines and 3 intermediate buffers.

3.1 Introduction

In the modern market keeping high competition in brands and varieties in type
of products is the way for survival of manufacturing industries. Therefore pro-
duction control methods with capabilities of quick responses to rapid changes in

23
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the demand and efficient distribution of the raw material throughout the network
are of a big importance among leading manufacturers. Nowadays, the produc-
tion control problem has been widely studied and a lot of valuable approaches
including queuing theory, Petri nets, dynamic programming, linear programming,
hybrid systems were proposed and some of them are implemented. Though up to
this moment many methods have been developed, the factory performance remains
unpredictable.

Some examples of implemented strategies are pull, push, and their combinations
(see, e.g. Hopp and Spearman (2008); Deleersnyder et al. (1992); Ahn and Kamin-
sky (2005) and references therein). These control strategies, together with inte-
grated computer-based systems, such as Manufacturing Resource Planning (MRP
II), and Enterprise Resource Planning (ERP) (Vollmann et al. (2004)), are widely
used by industries to control product flows in networks as well as inventory levels.
Though these policies are conceptually simple, their response to disturbances and
market fluctuations is not always fast enough for challenging requirements. An-
other often used control strategy is based on model predictive control (MPC) (see,
e.g. Song et al. (2002); Doganis et al. (2007); Camacho and Bordons (2004) and
references therein). This is a robust method that is capable of providing solutions
for a production demand tracking problem. MPC is able to take into account hard
constraints, such as the maximum production speed of the machine and buffer
capacity restrictions. MPC is an effective method that can be used for real-time
control of manufacturing systems, but it has two main drawbacks. The first one
is that the optimization problem to be solved is generally very cumbersome, so
it requires a lot of computational efforts, especially if the model presents some
stochasticity in its behavior. The second one is that MPC strategy requires the
knowledge of the future demand within a certain large enough finite control hori-
zon. However, it is known that while dealing with demand planning the future is
difficult to predict, even to the next time step. Thus, it may occur that the forecast
presents certain inaccuracy which may result in production losses or backlog.

In this chapter we tackle the problem of performance analysis (see, e.g., Ruifeng
and Subramaniam (2011)) for a surplus-based approach in control of manufacturing
networks within the scope of demand driven manufacturing control problems. In
the surplus approaches, control decisions are made based on the demand tracking
error, which is the difference between the cumulative demand and the cumulative
output of the system (for more details see Chapter 1). Some references for these
strategies are presented later in this section. Each machine in the manufacturing
system coordinates its individual production with those of the rest of the system.
Its primary objective may be viewed as manufacturing of a sufficient quantity of
parts to satisfy the demand of its immediate downstream machine and some desired
amount for the purpose of back-up material storage in its downstream buffer. The
proposed methodology is reformulated in terms of variable structure control. The
production flow process is described by means of difference equations and in order
to analyze performance, approach using Lyapunov theory is exploited (see, e.g.,
Khalil (2002) and references there in).

The novelty of our results, concerning the surplus-based approach (see, e.g. Bi-
elecki and Kumar (1988); Bonvik et al. (1997); Lefebvre (1999); Gershwin (2000);
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Quintana (2002); Kogan and Perkins (2003); Boukas (2006); Stockton et al. (2007);
Subramaniam et al. (2009); Savkin and Evans (2002); Nilakantan (2010) and ref-
erences there in), can be summarized as follows. The proposed tandem production
model is considered in discrete time. The production speed of each machine is de-
fined as deterministic with bounded perturbations. The future production demand
is assumed to be unknown and with bounded fluctuations. As a result, strict, so
called “worst case” bounds on the content of intermediate buffers and demand
tracking errors for a unidirectional tandem production line are obtained.

In particular, this chapter contains an explicit description of a flow model of a man-
ufacturing line (see, e.g. Dallery and Gershwin (1992); Alvarez-Vargas et al. (1994);
Pogromsky et al. (2009) and references therein). Here, surplus-based control1 is
introduced as a manufacturing control technique in order to give a solution to the
demand tracking problem. Special attention is paid to the constraints presented
in the network, such as machine capacity and buffer limitations. Each machine in
the network can produce a restricted number of products in a fixed period of time,
known as the capacity constraint. The content of the buffer between two machines
is given by the difference between the total number of products produced by the
upstream machine and the total number of products produced by the downstream
machine. Considering that a manufacturing line has a unidirectional product flow
implies that the buffer content can never be negative, e.g. the downstream machine
cannot produce more than the upstream one.

The chapter is organized as follows. First, in Section 3.2 the flow model of a manu-
facturing line with unlimited inventory operated under the surplus-based control is
presented. The analysis of the demand tracking error of each machine with respect
to the inventory level of the network is developed. Then, in Section 3.3, the flow
model of a manufacturing line with limited inventory operated under the surplus-
based control is presented. Similarly to Section 3.2, the analysis of the demand
tracking error of each machine with respect to the inventory level of the network
is presented. In Section 3.4, performance issues of the closed-loop flow models are
illustrated in numerical simulations. Section 3.5 presents a comparative study of
discrete time and discrete event models of a manufacturing line. In Section 3.6
simulation-based performance analysis is conducted for a manufacturing line of 4
machines and 3 buffers operated under three surplus-based production policies.
The performance is evaluated in terms of the steady state demand tracking errors
and inventory levels of the network. Finally, Section 3.7 contains the conclusions
of the chapter.

3.2 A line of machines with unlimited buffers

This section presents the discrete time-based flow model and the results on per-
formance of a manufacturing line with unlimited capacity intermediate buffers.
The manufacturing line in question is operated under an extended version of the
surplus-based control policy introduced in Chapter 2.

1In control theory this type of control is also know as a variable structure tracking control
(see, e.g. Utkin (1983); Khalil (2002))
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3.2.1 Flow model

M1 Mj MN
Bj Bj+1y1 yj yNyj-1

Figure 3.1: Schematics of a line of N manufacturing machines.

The flow model of a manufacturing line with unlimited intermediate inventories
is presented in this section. Figure 3.1 presents the schematics of a line of N
manufacturing machines with machines Mj , buffers Bj, and infinite product supply.
Here the control strategy for one machine, introduced in the pervious chapter,
is modified with respect to the number of buffers and machines present in the
line. A new limitation such as desired buffer content and minimal buffer level are
considered in the model.

The flow model of the manufacturing line2 is defined by the following equations

y1(k + 1) = y1(k) + β1(k)u1(k), (3.1)

yj(k + 1) = yj(k) + βj(k)uj(k)signBuff(wj(k)− βj(k)), (3.2)

∀j = 2, . . . , N,

where all the events within the model occur at given time instances and k represents
the current time so that the time step between all the events is constant. Here
yj(k) is the cumulative output of machine Mj in time k, wj(k) = yj−1(k) − yj(k)
is the buffer content of buffer Bj , βj(k) = µj + fj(k), ∀j = 1, . . . , N , µj is the
processing speed of machine j, fj is the external disturbance affecting machine Mj

(e.g. production speed variations, delay), uj is the control input of machine Mj

and signBuff(wj(k) − βj(k)) = 1, if wj(k) − βj(k) ≥ 0 and 0, otherwise. This last
function describes the minimal buffer level that is needed in order for machine j to
start its production, which will be discussed in detail further in this section. The
equation (3.1) and (3.2) present a general model that can describe a product flow
for a wide range of manufacturing lines. Further specific assumptions on system
(3.1) and (3.2) are given in this section.

In order to give a solution to the production demand tracking problem introduced
in Chapter 2 of this thesis we consider the following control inputs:

uj(k) = sign+(εj+1(k) + (wdj+1
− wj+1(k))), (3.3)

∀j = 1, . . . , N − 1,

uN(k) = sign+(yd(k)− yN(k)), (3.4)

where wdj+1
is the desired buffer level (base stock) of buffer Bj+1, εj+1 is the

demand tracking error of machine Mj+1 and yd(k) is the cumulative production

2For details on discrete time flow model of manufacturing machine see Chapter 2, Section 2.2.
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demand given by (2.2). The demand tracking error of each machine is given by:

εj(k) = εj+1(k) + (wdj+1
− wj+1(k)), (3.5)

∀j = 1, . . . , N − 2,

εN−1(k) = εN(k) + (wdN − wN(k)), (3.6)

εN(k) = yd(k)− yN(k). (3.7)

It follows from (3.7) that the demand tracking error of machine MN is defined
exactly as for the single machine case. The buffer restriction, as seen from (3.2), is
the only difference in the flow model of machine MN with the flow model of (2.1).
For (3.5), (3.6) new considerations are applied for the demand tracking error of
each machine Mj , where j = 1, ..., N − 1. Thus, the demand tracking error εj(k)
depends on the number of produced products yj(k) with respect to current demand
yd(k) and desired buffer content wdj+1

of each downstream buffer. This means that
every upstream machine needs to supply wdj+1

lots more than the downstream one.
The constant parameter wd is introduced in order to prevent downstream machines
from lot starvation, e.g. in case of a sudden growth of the product demand.

Figure 3.2: Flow model diagram for a line of N manufacturing machines.

Basically, model (3.1), (3.2) describes the product flow through the line of N
manufacturing machines ( see Figure 3.2). The first machine described by (3.1)
is considered to have always access to raw material and there is always sufficient
raw material. The administration of this raw material to machine M1 is decided
by the control input (3.3). Here we consider that our control input is acting as an
authorizing switch, which turns on M1 if its demand tracking error (3.5) is positive
and turns M1 off if its demand tracking error is negative or zero. Tracking error
ε1(k), see (3.5), consists of the difference between what has been done (w2(k)),
what has to be done (ε2(k)) and what has to be always in the buffer (wd2). It
can be seen from (3.5), (3.6) and (3.3) that the same demand tracking error and
control logics were applied to the rest of the machines till machine MN−1. As
for the last machine in the line, which is machine MN (Figure 3.2), the control
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action is still based on the authorizing switch. However, the difference consists in
the logic that triggers this switch. We expect that on the output of machine MN

the cumulative product demand is followed by the cumulative production of this
machine. The control switch activates or deactivates the machine based directly
on the production demand status (3.7). This control logic is the same as in the
one machine case presented in the previous section. The difference in models for
the rest of the machines from machine one can be seen through the general flow
model (3.2). Here, for each machine in the line we introduce an extra restriction
on the buffer content of each upstream buffer. Function signBuff(wj(k) − βj(k))
is acting as an extra authorization together with the control input. Thus, any
machine Mj, with j = 2, . . . , N , is activated only if two authorizations are given.
The first authorization comes from the control input (uj(k)) of the machine, which
is based on the current demand tracking error status of this machine (εj(k)). The
second authorization comes from the buffer content restriction which is granted
if the buffer contains at least the minimal number of products required (βj(k))
in order for the machine Mj to start its work. By signBuff(wj(k) − βj(k)) we
imply that in order to start producing machine j is restricted to take a certain
nonzero amount of products from its upstream buffer. This amount is defined
by the processing speed of the machine from time k till time k + 1, which for this
authorizing action is assumed to be known in advance. In reality the interpretation
of function signBuff(wj(k)−βj(k)) may vary depending on the physical system and
its limitations. For example the restrictive action, given by this function, may
already be implicit in a system, i.e. a system can be stopped if no product is
detected on its input, or a system can be stopped unless some fixed quantity of
material, e.g., a batch of products, is present on its input. In its essence the function
signBuff(wj(k) − βj(k)) is imposed so to prevent the model of the network from
describing active manufacturing processes while having insufficient product content
in its buffers in order to initiate these processes. Thus, though the interpretation
of function signBuff(wj(k) − βj(k)) may vary, the essence of its restrictive action
is preserved for any buffered manufacturing network. It is also important to take
into account that the control actions are decentralized throughout the network. In
other words, the control action of each machine in the line depends only on the
demand tracking error of its neighboring downstream machine (except for machine
MN , which depends directly on cumulative demand input) and the current buffer
content of its upstream buffer (see Figure 3.2). This gives our flow model an extra
robustness with respect to undesired events such as temporal machine setup or
breakdown.

For further analysis, let us rewrite flow model (3.1), (3.2) in a closed-loop with
(3.3), (3.4) as

∆ε1(k) = vd +∆ϕ(k)− β1(k)sign+(ε1(k)), (3.8)

∆εj(k) = vd +∆ϕ(k)− βj(k)sign+(εj(k))signBuff(wj(k)− βj(k)), (3.9)

where ∆εj(k) = εj(k + 1)− εj(k), ∀j = 1, . . . , N .

Here we assume that system (3.8), (3.9) satisfies the following assumptions.

Assumption 1. (Boundedness of perturbations) There are constants α1, α2 and
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α3 such that Wj(k) = ∆ϕ(k)− fj(k) satisfies

α1 < Wj(k) < α2, ∀k ∈ N, j = 1, . . . , N, (3.10)

and fj(k) satisfies

fj(k) ≤ α3, ∀k ∈ N, j = 1, . . . , N. (3.11)

Assumption 2. (Capacity condition) Constants α1, α2 satisfy the following in-
equalities3

α2 < µj − vd, ∀j = 1, . . . , N, (3.12)

α1 > −vd. (3.13)

Thus, from (3.10), (3.12), and (3.13) the following condition holds

0 < vd +Wj(k) < µj, ∀j = 1, . . . , N. (3.14)

Note that the physical meaning of the above mentioned assumptions is similar to
the one discussed in detail in Section 2.3 of Chapter 2.

It is important to notice that each Mj machine in the line has a processing speed
of µj lots per time unit, which can differ from the rest of the machines, and the
buffer condition is considered as

wj(k) ≥ βj(k), ∀j = 2, . . . , N. (3.15)

Thus, from (3.5), (3.6) and (3.15) the following demand tracking error condition
holds

εj(k) ≥ βj(k)− wdj + εj−1(k), ∀j = 2, . . . , N,

where wdj satisfy the following assumption.

Assumption 3. (Desired buffer content condition) The constants wdj comply with
the following inequality

wdj ≥ µj + µj−1 + α3 + α2 − α1,

from where it follows that

wdj ≥ βj(k) + µj−1 + α2 − α1, k ∈ N, j = 2, . . . , N. (3.16)

If condition (3.15) is not satisfied, then

εj−1(k)
(3.5,3.6,3.16)

> µj−1 + α2 − α1 + εj(k), ∀j = 2, . . . , N. (3.17)

3Note that in practice it can be rather unnatural to set bounds on market fluctuations together
with a machine perturbations. Thus starting from Chapter 4 of this book, where the results on
multi-product manufacturing line are discussed, we evaluate system perturbations independently
from the demand rate fluctuations. The result of Theorem 3 of this section can be similarly
deduced from Theorem 7 of Chapter 4, which are obtained for multi-product manufacturing line.
This can be done if in Theorem 7 the production stages of a multi-product line are reduced to
one production stage per machine.
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3.2.2 Performance analysis

In this section we present results respecting the demand tracking error trajectories
behavior of the flow model (3.8), (3.9).

Theorem 3. Assume that the discrete time system defined by (3.8), (3.9) satisfies
Assumptions 1, 2, and 3. Then all solutions of (3.8) and (3.9) are uniformly
ultimately bounded by

lim sup
k→∞

εj(k) ≤ vd + α2, (3.18)

lim inf
k→∞

εj(k) ≥ vd + α1 − µj. (3.19)

Proof. The proof of Theorem 3 is provided in Appendix C.

As a consequence, for the buffer content wj(k) of each buffer Bj defined by (3.5),
(3.6), considering the obtained demand tracking error bounds (3.18), (3.19) and
Assumption 3, it holds that

lim sup
k→∞

wj(k) ≤ µj−1 + α2 − α1 + wdj .

Now, in order to support the present development let us extend our analysis of a
manufacturing line to the limited buffers case.

3.3 A line of machines with limited buffers

This section presents the discrete time-based flow model and the results on perfor-
mance of a manufacturing line with limited capacity of the intermediate buffers.
The manufacturing line in question is operated under an extended version of the
surplus-based control policy introduced in Chapter 2.

3.3.1 Flow Model

The flow model of the manufacturing line shown in Figure 3.1 with limited inter-
mediate inventory is defined as

y1(k + 1) = y1(k) + β1(k)u1(k)sign−(w2(k)− γ2), (3.20)

yj(k + 1) = yj(k) + βj(k)uj(k)signBuff(wj(k)− βj(k)) (3.21)

× sign−(wj+1(k)− γj+1), j = 2, . . . , N − 1,

yN(k + 1) = yN(k) + βN(k)uN(k)signBuff(wN(k)− βN (k)), (3.22)

where yj(k) is the cumulative output of machine Mj in time k, wj(k) = yj−1(k)−
yj(k) is the content of buffer Bj , βj(k) = µj + fj(k), ∀j = 1, . . . , N , µj is the
constant processing speed of machine j, fj is the external disturbance affecting
machine Mj (e.g., production speed variations, delay or setup time), uj is the
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control input of machine Mj , signBuff(x) = (1, if x ≥ 0 | 0, otherwise), sign−(x) =
(1, if x ≤ 0 | 0, otherwise) and γj+1 is the threshold value of the buffer content
wj+1. The equation (3.20), (3.22) and (3.21) present a general model that can
describe a product flow for a wide range of manufacturing lines. Further specific
assumptions on system (3.20), (3.22) and (3.21) are given in this section.

In order to give a solution to the demand tracking problem we use the control
inputs given by (3.3), (3.4), where the demand tracking errors are given by (3.5),
(3.6) and (3.7).

Thus for each machine we introduce an extra restriction on production that is
based on the buffer content of its upstream and downstream buffer. The functions
signBuff(wj(k)− βj(k)) and sign−(wj+1(k)− γj+1) together with the control input
uj(k) are acting as restrictions that are imposed on the production of Mj . Thus,
any machine Mj , with j = 2, . . . , N−1, is activated only if three authorizations are
given. The first authorization comes from control input of Mj , which is based on
the current value of the demand tracking error of this machine (εj(k)). The second
authorization comes from the restriction on the upstream buffer content that is
granted if the buffer contains at least the minimal number of products required
(βj(k)) in order for the machine Mj to start its work. Finally, the third autho-
rization comes from the downstream buffer of given machine. This authorization
is possible only if the downstream buffer have sufficient storage in order to accept
incoming production.
Note that we could easily associate this control algorithm with the Basestock pol-
icy (see Bonvik et al. (1997) and references therein) as well as with the Hedging
Point policy (see Gershwin (2000) and references therein). From (3.5) the de-
mand tracking error of each intermediate machine can be interpreted as εj(k) =
yd(k)− yj(k) + wdj+1

+ . . .+ wdN , j = 1, . . . , N − 2.

This means that each machine is keeping track of the current demand as well as of
its Hedging point or its Basestock level, which in this case is the sum of the desired
buffer contents of all the downstream buffers of Mj . Also due to our intermediate
buffer content limitation (γj) this policy could be associated to a Kanban or a
combination of local Conwip controllers (one for each intermediate machine) and
a surplus-based pull control (for the output machine MN ).
It is also important to take into account that the control actions are decentral-
ized throughout the network. In other words, the control action of each machine
in the line depends only on the demand tracking error of its neighboring down-
stream machine (except for machine MN , which control action depends directly
on cumulative demand input) and the current buffer content of its upstream and
downstream buffer (see Figure 3.2). This gives our flow model extra robustness
with respect to undesired events such as temporal machine setup or breakdown.
For further analysis, let us rewrite flow model (3.20), (3.21), and (3.22) in feedback
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with (3.3), (3.4) as

∆ε1(k) = vd +∆ϕ(k) (3.23)

− β1(k)sign+(ε1(k))sign−(w2(k)− γ2),

∆εj(k) = vd +∆ϕ(k)− βj(k)sign+(εj(k)) (3.24)

× signBuff(wj(k)− βj(k))sign−(wj+1(k)− γj+1),

∆εN(k) = vd +∆ϕ(k)− βN(k)sign+(εN(k)) (3.25)

× signBuff(wN(k)− βN(k)),

where ∆εj(k) = εj(k + 1)− εj(k).
Assumptions 1,2 and 3 also hold for system (3.23), (3.24), (3.25).

It is important to notice that each machine Mj in the line has a processing speed
of µj lots per time unit, which can differ from the rest of the machines.
The buffer content condition is considered as

βj(k) ≤ wj(k) < γj , ∀j = 2, . . . , N. (3.26)

Note that the physical restriction on buffer content is given as

0 ≤ wj(k) ≤ γj + µj−1 + α3, ∀j = 2, . . . , N. (3.27)

Here, γj = µj + α2 − α1 + wdj . Thus from (3.5), (3.6) and (3.26) the following
demand tracking error condition holds

εj(k) ≥ βj(k)− wdj + εj−1(k), ∀j = 2, . . . , N,

where wdj satisfies Assumption 3.

One can note the following relation between the buffer content and the demand
tracking errors of its neighboring machines. That is, if the first part of inequality
(3.26) is not satisfied, i.e., the buffer content is lower than the minimum, then

εj−1(k)
(3.5,3.6,3.16)

> µj−1 + α2 − α1 + εj(k). (3.28)

In case the second part of (3.26) is unsatisfied, i.e., the buffer is full, then

εj(k)
(3.5,3.6)

≥ µj + α2 − α1 + εj−1(k). (3.29)
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3.3.2 Performance Analysis

In this section we present the obtained results on the demand tracking error tra-
jectories behavior of flow model (3.23), (3.24), (3.25).

Theorem 4. Assume that the discrete time system defined by (3.23), (3.24), (3.25)
satisfies Assumptions 1, 2, and 3. Then all solutions of (3.23), (3.24), (3.25) are
uniformly ultimately bounded by

lim sup
k→∞

εj(k) ≤ vd + α2, (3.30)

lim inf
k→∞

εj(k) ≥ vd + α1 − µj . (3.31)

Proof. The proof of Theorem 4 is given in Appendix D.

Theorem 4 states that, given that the assumptions 1, 2, 3 are satisfied, then the
steady state demand tracking errors will remain within the same tracking bounds
as the ones specified in Theorem 3, regardless initial conditions and capacity limi-
tations of the line. Logically, starvation in a manufacturing line can be avoided by
selecting a sufficiently large amount of a base stock (wdj). What happens if this
base stock is low or even zero? The answer to this question is presented in the
following theorem.

Theorem 5. Assume that the discrete time system defined by (3.23), (3.24), (3.25)
satisfies Assumptions 1 and 2. Then all solutions of (3.23), (3.24), (3.25) are
uniformly ultimately bounded by

lim sup
k→∞

εj(k) ≤ vd + α2 + xj , (3.32)

lim inf
k→∞

εj(k) ≥ vd + α1 − µj, (3.33)

where x1 = 0 and xj =
∑j

i=2max (µi−1 − α1 + α2 − wdi + µi + α3, 0) for all j =
2, . . . , N .

Proof. The proof of Theorem 5 is given in Appendix E.

The inequalities (3.32) and (3.33) of Theorem 5 present a full behavioral overview
of the steady state demand tracking error trajectories. A strong influence of the
intermediate safe stock level wdj on a tracking accuracy of each machine in a line
can be observed from (3.32). For low wdj (less than specified in (3.16)) the tracking
inaccuracy of the downstream machine is directly influenced by the difference in
the selected inventory level and its threshold value specified by (3.16). The further
the machine is located from M1, the bigger its tracking inaccuracy is. At the
same time, if wdj satisfies Assumption 3 for all j, then inequality (3.32) takes the
form of (3.30), where the tracking inaccuracy purely depends on the demand rate
and production speed perturbations. It can be observed that in all the presented
results on performance (see Theorems 2, 3, 4 and 5) the worst case scenario bound
on a positive surplus value at each machine (see, e.g., (3.33)) is kept unaltered.
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From (3.23), (3.24), (3.25) it can be seen that the worst case bound on the positive
surplus value4 is given by the difference between the lowest possible demand growth
and the highest possible production speed, i.e. vd +α1 −µj. This value represents
the worst case bound of overproduction for each machine in the line operated under
a surplus-based control in a period of one time step. If this value of overproduction
is reached in the machine, then it will be stopped by its controller. Thus, along
the time line, the overproduction value can never grow further from its value that
is reached in one time step.

Note that the result of Theorem 5 also applies to the system defined by (3.8), (3.9).

Now, in order to support the proposed development, let us supplement our analysis
by a simulation examples.

3.4 Discrete time simulations

M1 M2 M3 M4
B2 B3 B4y1 y2 y3 y4

Figure 3.3: Schematics of a line of 4 manufacturing machines.

Simulation results for a line of 4 manufacturing machines Mj with 3 buffers Bj (see
Figure 3.3), driven by the surplus-based regulators (3.3) and (3.4), are presented in
this section5. In Sections 3.4.1 and 3.4.2 two simulation examples are introduced
in order to verify the effectiveness of the analytical results from Sections 3.2.2 and
3.3.2, respectively. The examples of Section 3.4.1 are simulated using the discrete
time (DT) model of a line with unbounded buffers, which is presented in Section
3.2.1. For the examples of Section 3.4.2 the DT model of a line is considered with
limited buffer content as introduced in Section 3.3.1.

3.4.1 Unlimited buffers

Simulation results for a line of 4 manufacturing machines ( see Figure 3.3), driven
by surplus-based controllers (3.3), and (3.4) are presented in this section. For all
the examples, the processing speed of each machine is set to µj = (8, 10, 7, 6) lots

4Note that in this thesis the demand tracking error of a machine is defined as the difference
between the cumulative values of products needed and products that are done. Thus the term
positive surplus value refers to the negative demand tracking error value and the term negative

surplus value refers to the positive demand tracking error value.
5In some simulation examples of this book in order to verify the effectiveness of the analytical

bounds on demand tracking error accuracy we introduce periodic functions to model perturba-
tions and market fluctuations in a manufacturing network. Note that these bounds are obtained
for the worst case behavior of a product flow in a network. Thus, as long as all the assumptions
of the flow model of a manufacturing network are satisfied, no relevant difference with respect
to the accuracy of the analytical bounds can be expected in case an alternative function or a
stochastic model is used to describe perturbations and fluctuations in the network.



3.4 Discrete time simulations 35

per time unit, with j = 1, .., 4, and the desired buffer content of each buffer is
selected considering (3.16) as wdj = (20, 18, 14) lots, with j = 2, .., 4.

Example 1: The demand tracking error of each machine in the line is depicted in
Figure 3.5. Here the initial conditions (yd0, y1(0), y2(0), y3(0), y4(0)) are set to the
zero value. After the first 24 time steps, as it is shown in Figures 3.4(a) and 3.5,
the system reaches its steady state. Demand tracking errors are maintained inside
[-2,5] lots for machine M1, [-4,1] lots for machine M2, [-1,5] lots for machine M3,
and [0,5] lots for machine M4, which satisfy (3.18) and (3.19). From Figure 3.4(b)
it can be observed that the inventory level of each buffer satisfies the upper bound
restriction (3.20).
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Figure 3.4: Outputs yj(k) vs. Demand yd(k) (a) and Buffer Content wj(k) (b), with
vd = 5.

Example 2: The output response and the demand tracking error of each machine
are depicted in Figures 3.6 and 3.7(a) for the same initial conditions as in the
previous example. Here it is noticeable that after the first 7 time steps the output
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Figure 3.5: Demand Tracking Error εj(k), with vd = 5.

of machine M4 reaches the current demand trajectory. Demand tracking errors are
maintained inside [-6,4] lots for machine M1, [-8,4] lots for machine M2, [-5,4] lots
for machine M3, and [-4,4] lots for machine M4, which are identical to the analytical
bounds of (3.18), (3.19). The inventory level of each buffer is depicted in Figure
3.7(b). We indicate that the buffer content of each buffer satisfies the upper bound
restriction (3.20), if given desired inventory level of each buffer satisfies (3.16).

Finally, the presented simulation results on the selected examples reflect the desired
flow model behavior. All technical conditions proposed in this section correspond
to the analytical results described in Section 3.2.

3.4.2 Limited buffers

Example 1: Consider the following example of a production line of 4 manufacturing
machines (see Figure 3.3) operating under surplus-based regulators (3.3) and (3.4).
The processing speed for each machine is set to µj = 6 lots per time unit ∀j = 1, 3
and µj = 4 lots per time unit ∀j = 2, 4, the desired inventory level of each buffer is
selected considering (3.16) as wdj = 12 (lots), with j = 2, .., 4 and the mean demand
rate vd = 3.5 lots per time unit with fluctuation rate of ∆ϕ(k) = 0.2 sin(5k). The
demand tracking error of each machine in the line is depicted in Figure 3.5. Here
the initial conditions (yd0, y1(0), y2(0), y3(0), y4(0)) are set to the zero value. After
the first 40 time steps, as it is shown in Figures 3.8 and 3.10, the system reaches
its steady state. Demand tracking errors (see the dashed lines of Figure 3.10) are
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Figure 3.6: Demand Tracking Error ε4(k), with vd = 3 and ∆ϕ(k) = sin(50k).

maintained inside [-2.7,3.7] lots for machine M1, [-0.7,3.7] lots for machine M2,
[-2.7,3.7] lots for machine M3, and [-0.7,3.7] lots for machine M4, which satisfy the
bounds (3.30) and (3.31). From Figure 3.9 it can be observed that the inventory
level of each buffer satisfies the buffer limit given by the second part of inequality
(3.27) and the capacity condition (3.26) is sometimes violated due to the discrete
nature of the model. Here γ2 = 14.8 lots, γ3 = 16.8 lots, γ4 = 14.8 lots.

Example 2: Now let us show the effectiveness of Theorem 5 by means of the
following example. Consider a similar production line of 4 manufacturing machines
(see Figure 3.3) operating under surplus-based regulators (3.3) and (3.4). The
nominal speed for each machine is µ1+ f1(k) = 10.56+0.5 sin(180k), µ2+ f2(k) =
10.7 + 0.5 sin(20k), µ3 + f3(k) = 15.5 + 0.5 sin(45k) and µ4 + f4(k) = 20.5 +
0.5 sin(90k) lots per time unit. The desired inventory level of each buffer is selected
as wdj = aµj lots, with j = 2, .., 4 and a is a constant. The experiment is executed
37 times. Thus the value of constant a is modified 37 times as well, starting from
a = 1 and with increments of 0.25 units till a = 10. The demand rate is selected
as vd + ∆ϕ(k) = 10 + 0.05 cos(45k) lots per time unit. Here each γj is selected
according to (3.26). For this experiment the initial conditions (yd0, y1(0), y2(0),
y3(0), y4(0)) are set to the zero value.

The relation between the maximal value of steady state demand tracking errors
of machines M2, M3, M4 (see Figure 3.3) and the desired inventory levels of there
upstream buffers is depicted in Figure 3.11. Each graphic of Figure 3.11 shows the
maximal value of each εj in steady state with its values from simulation and from
the analytical result given by (3.32). It can be observed that our analytical result
describes in a rather accurate manner the tradeoff between the desired inventory
level and the accuracy of the production demand tracking. It is important to notice
that the precision of the demand tracking error is limited. Thus for each of 3 the
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Figure 3.7: Outputs yj(k) vs. Demand yd(k) (a) and Buffer Content wj(k) (b), with
vd = 3 and ∆ϕ(k) = sin(50k).



3.4 Discrete time simulations 39

0 10 20 30 40
0

50

100

150

200

Time  Units

Lo
ts

 

 

y
d
 

y
1

y
2

y
3

y
4

Figure 3.8: Outputs yj(k) vs. Demand yd(k).
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Figure 3.9: Buffer Content wj(k).
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Figure 3.10: Tracking Error εj(k).
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machines, the production surplus can be decreased by incrementing the desired
inventory level till some threshold value, which is given by (3.16), after which the
bound on the surplus value remains constant. Doing so improves the service level
of the network but increases the inventory costs. At the same time, lowering the
inventory level further than the threshold decreases the service level of the network.
This tradeoff relationship plays an important role in the decision making process
of a production line manager. By using the relation provided beforehand in The-
orem 5, the number of scheduling related decisions can be significantly reduced,
which in consequence can decrease the computational time spent on planning for
an efficient distribution of resources in a production line.
In conclusion, the presented simulation results reflect the desired flow model be-
havior, i.e., all technical conditions proposed in this section correspond to the
analytical results described in Section 3.3. Also the result shown in Figure 3.11
underlines the practical importance of the obtained theoretical results.

3.5 Discrete event simulations

In this section the accuracy of the obtained demand tracking error bounds for the
DT model is tested by means of two simulation examples on the DE model of
a manufacturing line. The line shown in Figure 3.3, consists of 4 manufacturing
machines and 3 buffers, and it produces one product type in one at a time manner.
The DE model was built by using the specification language called χ (see Beek
et al. (2006)) developed at the Eindhoven University of Technology6.

Figure 3.12 shows the diagram of the DE model of one manufacturing machine
operated under a surplus-based control. The circles represent the processes. The
wide and the thin arrows indicate the lot and the information flow directions,
respectively. This model is the extension of the DE model of a single machine

Figure 3.12: Diagram of DE model of a line of 4 manufacturing machines.

introduced in Section 2.6. Processes G, E and D are identical to the ones explained
in Section 2.6. Processes Mj and Cj , shown on Figure 3.12, are similar to processes
M and C of Section 2.6. Every process Mj , where index j = 1, 2, 3, 4, exchanges
information with its controller (process Cj) that authorizes the machine to produce
based on the value of the demand tracking error εj . Note that if process Cj

authorizes the production for Mj , it does not imply that Mj can immediately
start producing. Process Cj does not check the availability of products in buffer
Bj . The demand tracking error in Cj , with j = 1, 2, 3, consists of the difference

6For the details on implementation see Rooda and J.Vervoort (2007)
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between the sum value of the demand tracking error of the downstream machine
εj+1 and the desired constant base stock wdj+1 of the downstream buffer against
the current product content wj+1 = yj+1 − yj of the downstream buffer, i.e. εj =
εj+1 + wdj+1 − wj+1. The last machine tracks the demand yd on its output. Thus
for C4 the demand tracking error ε4 = yd − y4. Process Cj recalculates the value
of εj every time it receives an updated information from the following sources:

• The downstream tracking error εj+1, in case of j = 1, 2, 3, from process Cj+1.

• The cumulative output of the downstream machine yj+1, in case of j = 1, 2, 3,
from process Cj+1.

• The cumulative demand value yd, in case j = 4, from the demand generating
process D.

• The update on the value of yj, for all j = 1, 2, 3, 4, e.g., in form of a token7

yfj, which is send from process Mj to Cj .

Process Bj receives and stores the products from Mj−1. If the stored content is
positive, then it tries to send products to its adjacent process Mj . Thus if the
control authorization is given, e.g., by means of a token uj send from Cj to Mj ,
and buffer Bj contains at least one product and process Mj is not busy working
on another product, then Mj instantly takes one product form Bj.

The following two examples are analyzed. In the first example (see the outcome
on Figures 3.13-3.16) for event-based system the production speed of each machine
(µj) is fixed to 1 lot per time unit. The initial output yj(0) = 0 for all j. The
production demand consists of its initial value yd0 of 10 lots and the constant
demand rate vd of 1 lot every 1.25 units of time. The DE system is approximated
by DT model with the same production speed and demand rate vd of 0.8 lots per
time unit. The simulation run time is set to 500 time units. Several simulation runs
with different base stock values have been executed and two cases are presented.
One setting the base stock levels wdj = 0 for all j = 2, 3 and another setting wdj = 3
lots for all j = 2, 3. This is done in order to test the upper bound 3.32 in relation
to the base stock level in the network.

The outcome of the experiment is as follows :

• From Figures 3.13 and 3.15, showing the demand tracking error trajectories
for the settings with wdj = 0 and wdj = 3 of DT and DE models, it can be
observed that the duration of the transient behavior for DE system is similar
to that of DT system.

• Also from these figures it can be observed that the steady state demand
tracking error trajectories of DT model satisfy the theoretical bounds (3.32),
and (3.33). Similarly to the conclusion of Section 2.6, here the theoretical
bounds for DT model require an adequate interpretation for the DE model.
The difference in the steady state trajectories of εj of the two models origins

7Every time the machine produces one product the token yfj is send to the process Cj , which
increments its counter of yj by one.
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from their distinct interpretation of the demand arrival. In DE model the
demand value is rounded to the closest integer, i.e. the product order that
arrives to the system is for an integer number of products, i.e., 1 lot every
1.25 time units. The DT model approximates the demand arrival differently.
The quantity of 0.8 lots is added every fixed time step of 1 time unit to
the cumulative demand signal yd. Thus for this example the bounds of DT
model can be translated to DE model bounds as the ceil values of (3.32) and
of (3.33).

• The contents of the buffers for the settings with wdj = 0 and wdj = 3 are
shown in Figures 3.14 and 3.16, respectively.

• In DT model, the maximal content and the general pattern of product content
variation in each buffer is shown to be similar to the one of DE model,
but the DE model describes the buffer content variations in a more detailed
manner than the DT model. Note that in the DT model, the buffer content is
calculated based on the difference between the upstream and the downstream
cumulative outputs of the machines surrounding the buffer. Thus a product
location is undistinguished from a buffer or its adjacent machine. Differently
from DT in DE model, the products from the buffer content are distinguished
from the products in the machine.
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Figure 3.13: First example: Demand tracking errors εj , with bounds (- - -), for wdj = 0.

The second example, see the outcome on Figures 3.17-3.20, differs form the previ-
ous one in that market perturbations ϕ are introduced in the demand variable and
production speed perturbations fj are introduced in the network model. For DE
model, the constant demand rate is 1 lot every 1.25 time units with market fluctu-
ations of ϕ(t) = 0.049 cos(3t) (t is a current time of experiment). Thus the product
demand rate is oscillating between one lot every 1.1086 and 0.9107 time units. Each
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Figure 3.14: First example: Buffer content wj , for wdj = 0.
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Figure 3.15: First example: Demand tracking errors εj, with bounds (- - -), for wdj = 3.
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Figure 3.16: First example: Buffer content wj , for wdj = 3.

machine in the network produces one lot in 1
µj+fj(t)

time units with µj = 1 lot for

all j = 1, 2, 3, 4 and f1(t) = 0.1 sin(1.5t), f2(t) = 0.1 sin(t), f3(t) = 0.1 sin(3t), and
f4(t) = 0.1 sin(2.5t) lots. For the DT model, this behavior can be approximated
by product demand rate vd +∆ϕ(k) = 0.8 + 0.049(cos(3k + 3)− cos(3k)) lots per
time unit and demand rates µj + fj(k) lots per time unit. Here k is the time step.
The run time of the experiment is set to 500 time units. Several simulation runs
with different base stock values are executed and two cases are presented. In one
setting the base stock levels are wdj = 0 for all j = 2, 3, 4 and in another setting
wdj = 3 lots for all j = 2, 3, 4. This is done in order to test the upper bound (3.32)
in relation to the base stock level in the network.

The outcome of the experiment is as follows:

• From Figures 3.17 and 3.19, it can be observed that the duration of the
transient behavior for the DE system is similar to that of the DT system.

• From these figures it can be seen that the steady state demand tracking
error trajectories of DT model satisfy the theoretical bounds (3.32), and
(3.33). Similarly to the conclusion of Section 2.6, here the theoretical bounds
for DT model require an adequate interpretation for the DE model. The
difference in the steady state trajectories of εj of the two models comes from
their distinct interpretation of the demand arrival. In the DE model the
demand value is rounded to the closest integer, i.e. the product order that
arrives to the system is for an integer number of products, i.e., 1 lot every

1
0.8+0.049(cos(3k+3)−cos(3k))

time units. The DT model approximates the demand

arrival differently. The quantity of 0.8 + 0.049(cos(3k + 3)− cos(3k)) lots is
added to the cumulative demand yd every fixed time step.

• For wdj = 0 the bounds obtained for DT model also satisfy the DE model
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demand tracking error trajectories behavior.

• For wdj = 3 the bounds for the DT model can be translated to bounds for
the DE model as the ceil values of (3.32) and of (3.33).

• The content of the buffers for the experimental settings with wdj = 0 and
wdj = 3 is shown in Figures 3.18 and 3.20, respectively.

• The variation of the product content of the DT model differs from the one
of the DE model, but the control objective of maintaining the specified base
stock levels is satisfied in both models. Note that in the DT model, the
buffer content is calculated based on the difference between the upstream and
the downstream cumulative outputs of the machines surrounding the buffer.
Thus a product location is undistinguished from a buffer or its adjacent
machine. Differently from the DT, in the DE model the products from the
buffer content are distinguished from the products in the machine.
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Figure 3.17: Second example: Demand tracking errors εj , with bounds (- - -), for
wdj = 0.



3.5 Discrete event simulations 47

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

ω
2[lo

ts
]

 

 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

ω
3[lo

ts
]

 

 

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

Time Units

ω
4[lo

ts
]

 

 DE model
DT model

DE model
DT model

DT model
DE model

Figure 3.18: Second example: Buffer content wj , for wdj = 0.
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Figure 3.19: Second example: Demand tracking errors εj , with bounds (- - -), for
wdj = 3.
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Figure 3.20: Second example: Buffer content wj , for wdj = 3.

3.6 Simulation based performance analysis

M1 M2 M3 M4
B2 B3 B4y1 y2 y3 y4

Figure 3.21: Schematics of a line of 4 manufacturing machines.

In this section we present the results of the simulation-based comparison of 3 par-
ticular surplus-based production control strategies applied to a network consisting
of a line of 4 manufacturing machines (j = 1, . . . , 4) with 3 intermediate buffers
(B2, B3, B4) as shown in Figure 3.21. The selected strategies are particular cases of
Hedging Point Policy (HPP), Conwip (CWIP), and Base Stock Policy (BSP)(for
details see Appendix K). The performance criteria upon which these 3 policies will
be compared are the steady state maximum and minimum values of production
demand tracking error of the last machine M4 and the distribution of intermediate
inventory (i.e, w2 + w3 + w4) in the line.

Description of the experiment

The following common assumptions are made for all the implemented policies (see
Appendix K for the details on the used flow models):

• The manufacturing line produces a single part type.

• It is assumed that the machines are never blocked and M1 is never starved,
i.e., w1(k) > β1(k) for all k.
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• For each machine the control action is executed every time step k.

• The operation of each machine Mj is managed through the corresponding
control input uj(k).

• For all the policies, the control action of the output machine (M4) is based
on the demand tracking error ε4(k), which is given by (3.7).

• No setup times nor delays are considered in the models

The demand tracking errors and the operation principal of HPP can be described
by (3.5)-(3.7) and (3.3), (3.4) respectively.
Under the CWIP policy, the first machine M1 limits the number of products in
the network while M2 and M3 produce products in a Push manner, i.e., M2 and
M3 are always ready to produce as long as their adjacent upstream buffers contain
sufficient material content. Thus ε1(k) = wdtotal − wtotal(k), ε2(k) = w2(k) and
ε3(k) = w3(k). For a fair comparison with the other two policies, wdtotal can
be interpreted as wdtotal = wd2 + wd3 + wd4 and wtotal(k) = y1(k) − y4(k). The
control inputs u2(k) = 1 and u3(k) = 1 only if w2(k) ≥ β2(k) and w3(k) ≥ β3(k),
respectively. As well as in HPP, the control action of M4 is aimed at the production
demand tracking.
The BSP is a commonly used scheduling policy, usually applied in warehouses for
inventory control purposes. Frequently in the literature (see Silver et al. (1998),
Bonvik et al. (1997), Duri et al. (2000), Karaesmen and Dallery (2000), González
et al. (2012) and references therein) one can find BS as a policy under which
all the machines in the network keep track of the product demand, while at the
same time maintaining a base stock level of the immediate downstream inventory.
In the present comparative study, this BS notion is slightly modified, i.e., only
the last machine (M4) is tracking the product demand while the rest keep the
upstream inventory at its base stock level (see Appendix K for details). Thus for
fair comparison with HPP and CWIP, the demand tracking errors of BSP policy
are selected as εj(k) = wdj − wj(k) for all j = 1, 2, 3, while ε4(k) = yd(k)− y4(k).

Results of comparison

For all the three strategies the details of the conducted experiment can be sum-
marized as follows:

• All the models are described by difference equations and the simulations were
executed in Matlabr.

• Each simulation run is set to 15000 steps with initial demand yd0 = 500 [lots]
and yj(0) = 0 for all j.

• Three simulation scenarios are tested: balanced line, M1 fast and M4 slow,
and M1 slow and M4 fast.

• For all the three policies, the comparative study is focused on the steady state
demand tracking accuracy of the output machine (ε4(k)) and the inventory
levels of the intermediate buffers (wj(k)).
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• Due to similarity of obtained results for all the three scenarios, only the
outcome of the balanced line case is presented.

• The production speeds of the balanced line are given in Table 3.1.

• Each model is tested under 50%, 75% and 95% of the maximal production
demand rate, such that it satisfies condition (3.14)(see Table 3.1 for details).

• For each demand rate, 8 simulation runs are executed. Each run with dif-
ferent wdj in case of HPP and BSP, or wdtotal = wd2 + wd3 + wd4 in case of
CWIP policy.

• The desired product content of a buffer is selected in multiples of the maximal
production speed of its immediate downstream machine, from 0 till 20 times
the value. Thus wdj = a(µj + c4) lots, where the value of a is given in Tables
3.2-3.4.

• For each buffer in the network, its steady state mean buffer content value is
shown in Figure 3.22.

• Each bar in Figure 3.22 stands for the steady state mean buffer content value
for the selected amount of base stock level wdj or wdtotal in case of CWIP,
i.e., each bar represent the steady state w̄j value of Bj for each value of a,
for each production demand rate and for each policy, as it is shown for B2.

Parameters of the manufacturing line
j µj + fjk % vd ∆ϕk

1 5 + 0.5 sin(10k) 50 2.25 0.2 cos(180k)
2 5 + 0.5 sin(20k) 75 3.375 0.2 cos(180k)
3 5 + 0.5 sin(45k) 95 4.275 0.2 cos(180k)
4 5 + 0.5 sin(90k)

Table 3.1: Production and demand rates in lot per time unit

Tables 3.2, 3.3 and 3.4 show the obtained steady state values of the demand track-
ing error of the output stage for 95%, 75% and 50% of the average production
demand rate vd. It is observed that for all the three policies, increasing the desired
intermediate inventory level further than three times the minimal buffer content
value (a > 3) has no significant influence on the steady state tracking accuracy of
the network. For HPP, this buffer level effect is clearly reflected in the obtained
demand tracking error bound (3.32). One can note that if inequality (3.16) of
Assumption 3 is satisfied for all the intermediate inventories of the network, then
in (3.32) the term Xj = 0, and the value of every demand tracking error bound
becomes independent from the influence of wdj . For the low inventory, the de-
crease of tracking accuracy of the line under HPP could be also observed from
(3.32). If inequality (3.16) of Assumption 3 is not satisfied, then the upper bound
on the demand tracking error (3.32) is influenced by xj term that can drastically
decrease the tracking accuracy of the system. The extreme case of HPP behavior,
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i.e. wdj = 0 for all j, is reported in Tables 3.2-3.4 as well as shown in Figure
3.22, where very low inventory levels and higher demand tracking inaccuracy can
be observed for the network operated under the pure demand tracking Pull strat-
egy. In this case, no desired inventories are specified for our HPP model and the
control goal of every production stage consists in pure cumulative product demand
tracking. Thus HPP with wdj = 0 can also be classified as a basic Pull policy.

Different from HPP, the CWIP policy forces the line to constantly maintain a
certain non zero inventory level in its buffers. This can be observed from Tables 3.2,
3.3 and 3.4, where the production line under CWIP is able to track the production
demand starting from a = 2. Also from the tables, it can be seen that for a ≥ 2, the
tracking accuracy of CWIP is identical to that of HPP. From Figure 3.22 it can be
observed that the amount of wdtotal for CWIP policy is mostly accumulated in buffer
B4, which is the last buffer in the line. This material distribution can have positive
as well as negative effects on the network performance. A positive effect, for
example, is reflected in the tracking accuracy and low standard deviation (σ) from
the mean demand tracking error value (ε̄4(k)). In other words the manufacturing
network reacts faster on the rapid production demand changes if its inventory levels
are high. At the same time, keeping high inventories may impose unnecessary
storage costs, specially if the product demand is low.

For BSP the inventory levels and its distribution through the network are very
similar to the ones in HPP (see Figure 3.22). Excluding the low inventory cases,
where BSP is unable to perform due to its policy limitation, the demand tracking
error accuracy (see Tables 3.2-3.4) of BSP is shown to be almost identical to HPP.
Both policies permit an independent (distributed) control of intermediate inventory
levels of the network. Thus for a given setting, BSP can be adjusted to perform
as CWIP and HPP as pure demand tracking Pull, but not the other way around.
This makes these two policies to stand out among the three. Also the obtained
theoretical values on steady state max ε4(k) and min ε4(k) values for the HPP
policy (see Tables 3.2-3.4 under HPP (theory) reference) show the accurate lower
and upper bound evaluation. For HPP (theory) the calculations of the bounds of ε4
were based on the expressions (3.32) and (3.33). Note that the theoretical bounds
are obtained for the worst case scenario of the demand tracking error accuracy,
thus in HPP (theory) row in Tables 3.2-3.4 bigger values can be noticed for the low
inventory levels in the line, i.e, when a = 0, 1, 2. Note that differently from HPP,
the analytical bounds on the production tracking accuracy of a manufacturing line
under a BS and CWIP policies have not yet been reported in the current literature.
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a 0 1 2 3,5,10,15,20

HPP ε̄4(k) [lot] 23.35 6.96 1.99 1.99
CWIP ε̄4(k) [lot] ∞ ∞ 1.99 1.99
BS ε̄4(k) [lot] ∞ ∞ 4.27 1.99
HPP σε4 [lot] 2.54 2.44 1.45 1.45
CWIP σε4 [lot] _ _ 1.45 1.45
BS σε4 [lot] _ _ 1.57 1.45
HPP (theory)max ε4(k) [lot] 38.08 21.57 5.07 4.47
HPP max ε4(k) [lot] 31.89 14.85 4.41 4.41
CWIP max ε4(k) [lot] _ _ 4.41 4.41
BS max ε4(k) [lot] _ _ 9.91 4.41
HPP (theory) min ε4(k) [lot] -1.625 -1.625 -1.625 -1.625
HPP min ε4(k) [lot] 14.86 -0.937 -0.43 -0.43
CWIP min ε4(k) [lot] _ _ -0.43 -0.43
BS min ε4(k) [lot] _ _ -1.36 -0.43

Table 3.2: Comparison for demand rate of 95 %

a 0 1 2 3,5,10,15,20

HPP ε̄4(k) [lot] 18.58 4.192 0.52 0.52
CWIP ε̄4(k) [lot] ∞ ∞ 0.52 0.52
BS ε̄4(k) [lot] ∞ ∞ 0.52 0.52
HPP σε4 [lot] 2.577 2.188 1.54 1.54
CWIP σε4 [lot] _ _ 1.54 1.54
BS σε4 [lot] _ _ 1.54 1.54
HPP (theory)max ε4(k) [lot] 36.17 20.67 4.17 3.38
HPP max ε4(k) [lot] 26.91 10.65 3.36 3.36
CWIP max ε4(k) [lot] _ _ 3.36 3.36
BS max ε4(k) [lot] _ _ 3.36 3.36
HPP (theory) min ε4(k) [lot] -2.52 -2.52 -2.52 -2.52
HPP min ε4(k) [lot] 10.25 -2.27 -2.32 -2.32
CWIP min ε4(k) [lot] _ _ -2.32 -2.32
BS min ε4(k) [lot] _ _ -2.32 -2.32

Table 3.3: Comparison for demand rate of 75 %
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a 0 1 2 3,5,10,15,20

HPP ε̄4(k) [lot] 13.95 1.51 -0.458 -0.458
CWIP ε̄4(k) [lot] ∞ ∞ -0.458 -0.458
BS ε̄4(k) [lot] ∞ ∞ -0.458 -0.458
HPP σε4 [lot] 2.47 1.64 1.46 1.46
CWIP σε4 [lot] _ _ 1.46 1.46
BS σε4 [lot] _ _ 1.46 1.46
HPP (theory)max ε4(k) [lot] 36.05 19.02 3.05 2.37
HPP max ε4(k) [lot] 23.03 6.45 2.36 2.36
CWIP max ε4(k) [lot] _ _ 2.36 2.36
BS max ε4(k) [lot] _ _ 2.36 2.36
HPP (theory) min ε4(k) [lot] -3.65 -3.65 -3.65 -3.65
HPP min ε4(k) [lot] 4.87 -3.43 -3.28 -3.28
CWIP min ε4(k) [lot] _ _ -3.28 -3.28
BS min ε4(k) [lot] _ _ -3.28 -3.28

Table 3.4: Comparison for demand rate of 50 %

3.7 Conclusions

The surplus-based control strategy, introduced in the previous chapter, was ex-
tended to a tandem production line. Flow models of a line with unbounded and
bounded buffers were presented and their performance was evaluated. The per-
formance of the closed-loop systems was addressed in the form of bounds on the
demand tracking errors that occur for each machine in the line, respectively. The
analytical results describing the tradeoff relationship between the demand tracking
errors and the inventory level in the manufacturing line were obtained. All theo-
retical results were illustrated and confirmed by computer simulation. By means
of simulation, the obtained relation on the performance for the DT model was
also tested on the DE model. The interpretation of DT analytical bounds on the
demand tracking errors for the DE model was given for selected modeling exam-
ples. It was observed that though the DT approximation is less accurate than
the DE approximation of the production line, the DT analytical results on per-
formance still hold for DE model. Further, simulation-based comparison of three
selected surplus-based control strategies was conducted for a line of 4 machines and
3 buffers. The performance criterions were the maximum and minimum values of
the steady state demand tracking errors and intermediate inventory levels, which
were compared for the line operated under particular HPP, BS and CWIP policies.
The obtained results showed similar behavior of all the three policies.
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Multi-product manufacturing lines

This chapter is based on Starkov et al. (2011b).

Abstract | In this chapter results on the performance analysis of a multi-product manu-
facturing line are presented. The influence of external perturbations, intermediate buffer
content and the number of manufacturing stages on the demand tracking error of each
machine in the multi-product line operated under a surplus-based production control
policy is studied. Starting with the analysis of a single machine with multiple production
stages (one for each product type), bounds on the demand tracking error of each stage are
provided. Then the analysis is extended to a line of multi-stage machines, where similarly,
bounds on each demand tracking error for each product type, as well as buffer content
are obtained. Details on performance of the closed-loop flow line model are illustrated in
numerical simulations.

4.1 Introduction

A manufacturing network consisting of workstations interconnected in a tandem
manner, where at each station one machine serves several buffers (i.e., flexible
machine), can be frequently encountered as a part of an industrial production
process. For example, in case of semiconductor manufacturing it is typical to
observe that at some stages the machines are working with multiple product types.
In order to produce a wafer several layers of semiconductor material have to be
put together, which implies that the product (wafer) has to undergo several times
(some wafers more that others) through the same process before it is finally ready
(see, e.g., Montoya-Torres (2006)). In this case manufacturing machines work with
intermediate products (wafers) of different processing stages. Another example of
flexible manufacturing lines can be observed in the automotive industry (see, e.g.,

55



56 4 Multi-product manufacturing lines

Li et al. (2009)).

Analysis on control and performance of networks, which present flexible behavior
in the production process, has always attracted much attention of manufacturers,
as well as of researchers. Thus control problems of flexible manufacturing lines are
widely studied and a lot of valuable approaches including queuing theory, Petri
nets, dynamic programming, linear programming, hybrid systems were proposed
and some of them are implemented (for surveys see, e.g., Gershwin (2000); Ortega
and Lin (2004); Sarimveis et al. (2008)).

In this chapter we focus on the performance analysis of a flexible production line
controlled by a surplus-based1 decentralized production control (see e.g., Bonvik
et al. (1997)). Specifically, given the presence of unknown but bounded production
speed perturbations, as well as demand rate fluctuations, we investigate how close
the cumulative production output of the network follows its cumulative production
demand under this control policy.

In order to achieve our goal we use classical tools from control theory. The pro-
duction flow process is described by means of difference equations and in order
to analyze its performance, an approach based on Lyapunov theory is exploited
(see, e.g., Khalil (2002) and references therein). Each machine in the network is
responsible for several production stages. At each stage the machine coordinates
its individual production with those of the rest of the system. While working at
one stage the machine does not switch to another one unless the primary control
objective at this stage is fulfilled or product starvation occurs. The primary objec-
tive of each production stage may be viewed as manufacturing a sufficient quantity
of parts to satisfy the demand of its immediate downstream production stage (be-
longing to the downstream machine) and some desired amount as back-up material
storage in its downstream buffer. The production strategy itself is intuitive and
it can be associated with a wide range of existing techniques such as Basestock
policy (see, e.g., Bonvik et al. (1997)), Hedging Point policy (see, e.g., Gershwin
(2000)), and Clearing policy (see, e.g., Perkins et al. (1994)).
To the best of our knowledge, concerning the previous results on performance
analysis of surplus-based approaches (see, e.g., Gershwin (2000); Ortega and Lin
(2004); Sarimveis et al. (2008); Somlo (2004); Lu and Kumar (1991); Quintana
(2002); Subramaniam et al. (2009); Savkin and Evans (2002), the novelty of our
results can be summarized as follows. The proposed production model is considered
in discrete time. The production speed of each machine is defined as deterministic
with bounded perturbations. The future production demands are assumed to be
unknown and with bounded fluctuations. As a result, for one flexible manufactur-
ing machine of N production stages, strict, so-called “worst case” bounds on the
demand tracking error for each product type are obtained. Extending this strategy
to a network of P machines with N production stages each, we present the results
regarding the bounds on the demand tracking errors and buffer contents for each
machine and its buffers. Furthermore, we show that, though the analysis given in
this chapter is focused on multi-product manufacturing lines, the obtained results
can be easily extended to re-entrant configurations with one product type demand.

1In the surplus-based control, decisions are made based on the demand tracking error, which
is the difference between the cumulative demand and the cumulative output of the system.
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The chapter is organized as follows. First, in Section 4.2 the flow model of one
manufacturing machine with surplus-based pull control is presented. The detailed
analysis of demand tracking error trajectories is developed in this section. Then
the flow model of a flexible manufacturing line with surplus-based pull control is
analyzed in Section 4.3. Here sufficient conditions are derived to guarantee the
uniform ultimate boundedness of the demand tracking error trajectories of each
machine. Performance and robustness issues of the closed-loop flow models are
illustrated in numerical simulations in Section 4.3.3. Finally, Section 4.4 contains
conclusions of the chapter.

4.2 Single multi-product machine

Figure 4.1 shows the schematics of one machine M with N production stages, which
directly correspond to the number of product types that it can serve. The machine
is interconnected with N buffers B1 . . . BN , each containing its infinite product
supply of corresponding product type. One way of describing the product flow

Figure 4.1: Schematics of one flexible manufacturing machine M .

through such a system is by means of discrete time flow model. The discrete time
model of a single manufacturing machine with one production stage is described
in detail in Chapter 2 of this thesis. In this section we will extend the model of
Chapter 2 to a single manufacturing machine with multiple production stages.

4.2.1 Flow model

The flow model of each production stage of one flexible machine (see Figure 4.1)
in discrete time is defined as

yj(k + 1) = yj(k) + βj(k)uj(k), ∀k ∈ N, j = 1, . . . , N, (4.1)

where all the events within the model occur at given time instances and k represents
the current time so that the time step between all the events is constant. Here
yj(k) ∈ R is the cumulative output of the machine for product type j in time
k, uj(k) ∈ R is the control input of the machine in processing stage of product
type j and βj(k) = µj + fj(k) where µj is a positive constant that represents the
processing speed of the machine for servicing the product type j and fj(k) ∈ R

is an unknown external disturbance affecting the performance of the machine at
stage j. The equation (4.1) present a general model that can describe a product
flow for a wide range of production stages of manufacturing networks. Further
specific assumptions on system (4.1) are given in this section.



58 4 Multi-product manufacturing lines

Under the assumption that there is always sufficient raw material to feed every
stage of the machine, the control aim is to track the non-decreasing cumulative
production demand of each product type j on its output. We define the cumulative
production demand by using ydj(k) ∈ R given by

ydj(k) = ydj0 + vdjk + ϕj(k), ∀j = 1, . . . , N, (4.2)

where ydj0 is a positive constant that represents the initial production demand of
product j, vdj is a positive constant that defines the average desired demand rate
of product j, and ϕj(k) ∈ R is the bounded fluctuation that is imposed on the
linear demand vdjk.

In order to give a solution to this production demand tracking problem we consider
the controller based on the demand tracking error of each product type. The
machine can only work at one stage at a time (i.e., at a time step k). The controller
alternatively selects the stage at which the machine must work 2, from those where
production is needed. The machine works at this stage till its product demand is
satisfied. Then the controller again selects a stage for the machine to work at. In
case the product demand of all product types are satisfied, the controller idles the
machine. The above mentioned can be formulated by following control algorithm
(see next paragraph for a summary):

{q(k) = Bj}

if εj(k) > 0 then

uj(k) = 1,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , N,

q(k + 1) = Bj ,

end

if εj(k) ≤ 0 and ∃s 6= j : εs(k) > 0 then

uj(k) = 0,

us(k) = 1,

q(k + 1) = Bs,

end

if εs(k) ≤ 0, ∀s then

uj(k) = 0,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , N,

q(k + 1) = 0

end (4.3)

2The results presented in this chapter only concentrate on the steady state behavior of a multi-
product network. In consequence the scheduling problem within the machines play no significant
role as long as within a certain period of time all the production stages of each machine in the
network are served. Thus in algorithm 4.3 a policy to select a production stage s in case their
exist several stages with εs(k) > 0 is not detailed. Note that the priority rule for the production
stage selection for each of the multi product manufacturing machines in the line is also one of
the challenging problems in this type of systems (for more details see Winands et al. (2011) and
references therein).



4.2 Single multi-product machine 59

where q(k) is the internal variable that specifies the buffer that machine M is
processing, εj(k) ∈ R is the demand tracking error at stage j. Note that all Bj

buffers are considered to always have sufficient raw material.
Summarizing (4.3), the machine can only work on one buffer (product type) at a
time. The control input uj(k) of each production stage j can only take the value
of 0 (stop) or 1 (produce). The uj(k) receives the value of 1 only if production
stage j needs to produce (εj(k) > 0). The machine will remain at its current state
(q(k) = Bj) while all the conditions of the state are satisfied. The value of 0 is
given to the control input of stage j if at least one of the conditions of the current
state q(k) = Bj is unsatisfied. The change in the value of the control signal of a
stage j also implies a change in the machine’s state q(k). The machine has N + 1
states. This is due to that N is the total number of processing stages (product
types) that M can be working in, which directly relate to the states of the machine,
plus the idle state (q(k) = 0).

The demand tracking error at each stage of M is given by:

εj(k) = ydj(k)− yj(k), ∀k ∈ N. (4.4)

For further analysis, let us rewrite flow model (4.1) in a closed-loop with (4.3) in
terms of demand tracking errors as

∆εj(k) = vdj +∆ϕj(k)− βj(k)uj(k), (4.5)

where for all j = 1, . . . , N , ∆εj(k) = εj(k + 1)− εj(k) and ∆ϕj(k) = ϕj(k + 1)−
ϕj(k). Here we assume that system (4.5) satisfies the following assumptions.

Assumption 4. (Boundedness of perturbations) There are constants c1, c2, c3 and
c4 such that

c1 < ∆ϕj(k) < c2, ∀k, j = 1, . . . , N, (4.6)

c3 < fj(k) < c4, ∀k, j = 1, . . . , N. (4.7)

From Assumption 1, it follows that Wj(k) = ∆ϕj(k)− fj(k) satisfies

α1 < Wj(k) < α2, ∀k, j = 1, . . . , N, (4.8)

with α1 = c1 − c4 and α2 = c2 − c3.

Assumption 5. (Capacity condition) Constants c1, c2, c3 and c4 satisfy the fol-
lowing inequalities

c1 > −vdj , ∀j = 1, . . . , N, (4.9)

α2 < µj − vdj , ∀j = 1, . . . , N, (4.10)

and the following condition (also know as capacity condition) holds

0 <

N∑

j=1

vdj +∆ϕj(k)

µj + fj(k)
< 1, ∀k. (4.11)
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By (4.9), (4.10), and (4.11) we state that, in the presence of market fluctuations
bounded by (c1, c2), the demand rate for each product type can only be positive,
the production speed at each manufacturing stage of the machine is always faster
than the demand rate of its product and in general the processing speed of the
machine is faster than its demand rate, respectively.

It is important to notice that machine M at each process step j has a processing
speed of µj + fj(k) lots per time unit, which can differ from the other processing
steps.

4.2.2 Results on performance

In this section we present the results respecting the demand tracking error trajec-
tories behavior of flow model (4.5).

Theorem 6. Assume that the discrete time system defined by (4.5) satisfies As-
sumptions 4 and 5. Then all solutions of (4.5) are ultimately bounded by

lim sup
k→∞

N∑

j=1

εj(k)− vdj − α2

µj + c3
≤ 0, (4.12)

lim inf
k→∞

εj(k) ≥ vdj + α1 − µj. (4.13)

Proof. see Appendix F.

The obtained bounds can be visualized through a phase portrait of the demand
tracking error trajectories shown in Figure 4.2, which was made for a single machine
producing 2 product types. The product demand rate vdj = 0.99 [lots/time unit]
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Figure 4.2: Demand Tracking Errors ε2(k) vs. ε1(k) , with vdj = 0.99 [lots/time unit]
and µj=2[lot/ time unit].
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and the production rate at each stage µj=2[lot/ time unit]. Here the experiment
starts with initial demand tracking errors ε1(0) = 2 [lots] and ε2(0) = 2 [lots]. It can
be observed that first the controller activates stage 1 ofM . The machine works with
this stage till ε1(k) ≤ 0 and then switches to stage 2. Eventually the trajectories
of the demand tracking errors enter the zone depicted by the rectangular triangle,
where they remain for the rest of the experiment. The legs of this triangle are
given by (4.13) and the hypotenuse by (4.12).

4.3 Multi-product flow line

Figure 4.3 shows the schematics of a flexible manufacturing line consisting of P
machines M1, . . . ,MP with N production stages each. Each machine Mi receives
its intermediate products from N upstream buffers Bi,1, . . . , Bi,N . The products
flow through the network in the unidirectional manner.

Figure 4.3: Schematic of a flexible production line

4.3.1 Flow model

The flow model of each production stage of a flexible line (Figure 4.3) in discrete
time is defined as

yi,j(k + 1) = yi,j(k) + βi,j(k)ui,j(k), ∀k, i, j, (4.14)

where i = 1, .., P is the machine number, j = 1, ..., N is the processing stage
(product type) number of machine i, yi,j(k) ∈ R is the cumulative output of
machine i in processing stage j in time k, ui,j(k) ∈ R is the control input of
machine i in processing stage j and βi,j(k) = µi,j + fi,j(k) where µi,j is a positive
constant that represents the processing speed of the machine i at its stage j and
fi,j(k) ∈ R is an unknown external disturbance affecting the performance of the
ith machine at its stage j. The equation (4.14) present a general model that can
describe a product flow for a wide range of production stages of manufacturing
networks. Further specific assumptions on system (4.14) are given in this section.
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Under the assumption that there is always sufficient raw material to feed the input
buffers B1,j , the control aim is to track the non-decreasing cumulative production
demands given by (4.2) on each output of the multi-product manufacturing line.

In order to give a solution to this tracking problem we consider the following control
algorithm:

{qi(k) = Bi,j}

if εi,j(k) > 0 and wi,j(k) ≥ βi,j(k) then

ui,j(k) = 1,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , N,

qi(k + 1) = Bi,j,

end

if (εi,j(k) ≤ 0 orwi,j(k) < βi,j(k)) and

∃s 6= j : εi,s(k) > 0 and wi,s(k) ≥ βi,s(k) then

ui,j(k) = 0,

ui,s(k) = 1,

qi(k + 1) = Bi,s,

end

if (εi,s(k) ≤ 0 orwi,s(k) < βi,s(k)) , ∀s then

ui,j(k) = 0,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , N,

qi(k + 1) = 0

end (4.15)

where qi(k) is the internal variable representing the current buffer that Mi is pro-
cessing, wi,j(k) is the buffer content of Bi,j. For the current time step βi,j(k) is
the minimal raw material content in buffer Bi,j, such that machine Mi is able to
process if required at this stage. Note that B1,j is considered to always contain
sufficient raw material. Thus the buffer content condition w1,j(k) ≥ β1,j(k) is as-
sumed to be always satisfied. The demand tracking error for each product type j
at each stage of Mi is given by:

εi,j(k) = εi+1,j(k) + wdi+1,j − wi+1,j(k), (4.16)

εP,j(k) = ydj(k)− yP,j(k), (4.17)

where i = 1, . . . , P − 1, and j = 1, . . . , N . Here wi+1,j(k) = yi,j(k) − yi+1,j(k) is
the buffer content of buffer Bi+1,j and wdi+1,j

is the constant that represents the
desired buffer level (extra stock) of buffer Bi+1,j.
For further analysis, let us rewrite flow model (4.14) in a closed-loop with (4.15)
in terms of demand tracking errors as

∆εi,j(k) = vdj +∆ϕj(k)− βi,j(k)ui,j(k), (4.18)

∀j = 1, . . . , N, i = 1, . . . , P

where ∆εi,j(k) = εi,j(k + 1)− εi,j(k).
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Notice that machine Mi operates at each production step j under a processing
speed of µi + fi(k) lots per time unit, which is the same for each production stage
of the machine, but it can differ from the other machines in the network.

For system (4.18) the following assumptions are made.

Assumption 6. (Boundedness of perturbations) There are constants c1, c2, c3 and
c4 such that

c1 < ∆ϕj(k) < c2, ∀k, j = 1, . . . , N (4.19)

c3 < fi(k) < c4 ∀k, i = 1, . . . , P. (4.20)

From Assumption 3, it follows that Wi,j(k) = ∆ϕj(k)− fi(k) satisfies

α1 < Wi,j(k) < α2, ∀k, (4.21)

with α1 = c1 − c4 and α2 = c2 − c3.

Assumption 7. (Capacity condition) Constants c1, c2, c3 and c4 satisfy the fol-
lowing inequalities

c1 > −vdj , ∀j = 1, . . . , N, (4.22)

α2 < µi − vdj , ∀i = 1, . . . , P, (4.23)

and the following condition (Capacity Condition) holds for each Mi in the network

0 <
1

µi + fi(k)

N∑

j=1

(vdj +∆ϕj(k)) < 1, ∀k, i. (4.24)

Note that the physical meaning of the above mentioned assumptions is similar to
the one discussed in detail in Chapter 2, Section 2.3.

One of the important physical limitations in the network is the buffer content
restriction. In our model, in order for the positive control action (ui,j(k) = 1) of
the selected production stage (Bi,j) of Mi to take place, the buffer of this stage
must satisfy the following condition on its content3

wi,j(k) ≥ βi,j(k), ∀i = 2, . . . , P, j = 1, . . . , N. (4.25)

Thus, from (4.16) and (4.25), the following demand tracking error condition holds

εi+1,j(k) ≥ βi+1,j(k)− wdi+1,j
+ εi,j(k),

where i = 1, . . . , P − 1, j = 1, . . . , N , and wdi,j satisfies the following assumption:

Assumption 8. (Desired buffer content condition) The constants wdi,j comply with
the following inequality

wdi,j ≥ µi,j +Nµi−1,j + (N + 1)c4 (4.26)

+(N − 1)(c2 − c1),

From (4.26) it follows that wdi,j > βi,j(k), ∀k.

3By (4.25) we imply that in order to start producing each production stage j of machine i is
restricted to take a certain nonzero amount of products from its upstream buffer. This amount
is defined by the processing speed of the machine from the current time k till time k + 1, which
exclusively for the buffer content restriction of (4.15) is assumed to be known in advance. For
more discussion on buffer content restriction see Chapter 3, Section 3.2.1.
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4.3.2 Results on performance

In this section we present the results respecting the demand tracking error trajec-
tories behavior of flow model (4.18).

Theorem 7. Assume that the discrete time system defined by (4.18) satisfies As-
sumptions 6, 7, and 8. Then all solutions of (4.18) are ultimately bounded by

lim sup
k→∞

N∑

j=1

(εi,j(k)− vdj − α2) ≤ 0, (4.27)

lim inf
k→∞

εj(k) ≥ vdj + α1 − µj . (4.28)

Proof. see Appendix G.

Note that by replacing vdj +∆ϕj(k) by vd+∆ϕ(k) this result can be also extended
to a re-entrant production line serving one product type. From (4.27), and (4.28)
it can be deduced that for the buffer content wi,j(k) of each buffer Bi,j defined by
(4.16), it holds that

lim sup
k→∞

wi,j(k) ≤ (N − 1)µi +N(α2 − α1)

+µi−1 + wdi,j , ∀i = 2, . . . , P. (4.29)

Now, in order to support the present development let us present simulation results.

4.3.3 Simulation examples

Consider the following example of a flexible production line consisting of 2 man-
ufacturing machines with 2 production stages each (see Figure 4.3 ). The line is
operating under surplus-based regulators (4.15). The processing speed of each ma-
chine is set to µi + fi(k) = (10, 5) (lots per time unit), the desired buffer content
of each buffer is selected considering (4.26) as wd2 = (wd2,1 , wd2,2) = (26, 26) (lots),
and the mean demand rate for each product type vdj = 2 (lots per time unit)
with fluctuation rate of ∆ϕj(k) = 0.4 sin(90k). The demand tracking error of each
machine in the line is depicted in Figure 4.4. Here the initial conditions (y1,1(0),
y1,2(0), y2,1(0), y2,2(0)) are set to the zero value and yd0 = 100 (lots). After the
first 245 time steps for product type 1 and 241 time steps for product type 2 , as
it is shown in Figures 4.4 and 4.5, the system reaches its steady state. Demand
tracking errors are maintained inside [−8.4, 13.2] lots for M1, and [−3.4, 8.2] lots
for M2 (see the dashed lines of Figure 4.4), which satisfy the bounds given by (4.27)
and (4.28). Figure 4.5 shows the buffer content of each Bi,j in the network. After
some transient behavior the inventory level of each buffer is maintained inside the
obtained bound (4.29).
Another experimental result is presented in Figure 4.6. This two graphics show
the relation between the upper bound on the demand tracking errors ε2,1(k) and
ε2,2(k), and the desired buffer content of the network from the previous example.
Here it can be observed that the amount of extra storage for intermediate prod-
ucts has only limited influence on the tracking precision of the network and the
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threshold value of this influence is given by (4.26). In conclusion, the presented
simulation results reflect the desired flow model behavior, i.e., all the values as-
signed to the parameters used in this section are consistent with the assumptions
of Section 4.3.1 and the outcome of the simulation examples satisfy the theoretical
results.
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Figure 4.4: Demand tracking errors and the obtained bounds (dotted lines), with vdj =
2, ∆ϕj(k) = 0.4 sin(90k),∀j = 1, 2, wd2 = (26, 26), µi + fi(k) = (10, 5), and yd0 = 100.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

ω
3 [l

ot
s]

250 300 350 400 450 500
25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Time Units

ω
4 [l

ot
s]

250 300 350 400 450 500
25

30

35

40

45

Figure 4.5: Buffer contents, with vdj = 2, ∆ϕj(k) = 0.4 sin(90k), ∀j = 1, 2, wd2 =
(26, 26), µi + fi(k) = (10, 5) and yd0 = 100.



66 4 Multi-product manufacturing lines

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

ω
d2,1

 [lots]

lim
 s

up
 ε 2,

1  [
lo

ts
]

0 5 10 15 20 25 30 35 40 45 50
0

10

20

ω
d2,2

 [lots]

lim
 s

up
 ε 2,

2 [l
ot

s]

Figure 4.6: Upper bound on output demand tracking errors vs. desired buffer contents,
with vdj = 3.3 [lots/time unit], µ1,j + f1,j(k) = (10, 5) [lots/time unit], µ2,j + f2,j(k) =
(5, 10) [lots/time unit].

4.4 Conclusions

The performances of a multi-product manufacturing network operated under surplus-
based pull control has been studied. Developed results show boundedness for tra-
jectories of each demand tracking error for one flexible machine considering that
each production stage has a variable processing speed. Also bounds on the demand
tracking error of each stage of a multi-product manufacturing line were presented.
For a line it was considered that each production machine has a variable process-
ing speed. Simulation examples were presented and discussed in order to illustrate
and support analytical results. One of the important outcomes of these examples
is the relation between the amount of extra intermediate product storage and the
demand tracking error. It was shown that extra storage capacity has a limited in-
fluence on the demand tracking error. The threshold value on the desired capacity
for each buffer content was provided in Assumption 5 of the flow model analysis.



5
Re-entrant manufacturing networks

This chapter is partly based on Starkov et al. (2011c) and Starkov et al. (2012c).

Abstract | Motivated by the problem of scheduling in large semiconductor manufacturing
facilities we study the performance of multi re-entrant production networks. In this
chapter we present results on the influence of perturbations, buffer inventory levels and
the number of manufacturing stages on the demand tracking error of each machine in the
network operated under a surplus-based production control policy. First the performance
of a single machine with multiple production stages is analyzed. As a result we provide
bounds on the steady-state production demand tracking accuracy of each stage as well as
bounds on the content of each intermediate buffer. Furthermore a detailed dependency
relation between the efficiency of the production tracking and the intermediate inventory
levels of a re-entrant machine is obtained. Then our analysis is extended to a line of multi
re-entrant machines. For this network structure accuracy bounds on demand tracking
error of each stage as well as intermediate inventory levels are obtained. Finally by means
of simulation examples we show that the obtained results can be used as a reference tool
in practice.

5.1 Introduction

A manufacturing network consisting of workstations interconnected in a non-acyclic1

manner, where at each station one machine serves several buffers, can be frequently
encountered as a part of an industrial production process. For example, in case
of semiconductor manufacturing it is typical to observe that a production network
exhibits a multi re-entrant behavior. In order to produce a wafer several layers of

1Here the term non-acyclic refers to the part flow route in the network, which is re-entrant
(see Kumar and Seidman (1990))

67
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semiconductor material have to be put together, which implies that the product
(wafer) has to undergo several times through the same process before it is finally
ready (see, e.g., Montoya-Torres (2006)).
Analysis on control and performance of networks that present re-entrant behavior
in their production process has always attracted much attention of manufacturers,
as well as of researchers. Thus re-entrant networks are widely studied and a lot of
valuable control and performance evaluation approaches including queuing theory,
Petri nets, dynamic programming, linear programming, hybrid systems were pro-
posed and some of them have been implemented (for surveys see, e.g., Gershwin
(2000), Ortega and Lin (2004), Sarimveis et al. (2008), Danping and Lee (2011),
and Scholz-Reiter et al. (2011)).

Re-entrant networks are commonly associated with semiconductor manufacturing
processes, where performance factors such as throughput, cycle time, utilization,
work in progress (WIP) are of a great importance. It is also important to notice
that in the current market manufacturers try to interact more closely with cus-
tomers, which means that customer satisfaction is also an important performance
indicator to be considered. In order to do that, in our research the analysis on
performance of a re-entrant network is based on evaluation of the accuracy of pro-
duction tracking policies. Specifically, given the presence of unknown but bounded
production speed perturbations as well as demand rate fluctuations, we investigate
how close the cumulative production output of a re-entrant network follows its
cumulative production demand under a surplus-based2 pull control policy. Also,
by means of analytical tools, we investigate the relation between the production
demand tracking accuracy3 and the intermediate product inventory level of a re-
entrant network.

The motivation for trying to find this relation lies in the lack of an analytical link
between the production surplus at each stage and several important factors such
as: base stock level, production speed, number of stages in each machine, number
of buffers and machines in the re-entrant network. For implementation purposes
it is important to keep this relation as general as possible, for example in terms of
demand tracking accuracy bounds with respect to base stock levels of the network.
Thus use of this relation as a reference tool can reduce the need for simulation
based performance analysis and consequently simplify factory planning, as well as
scheduling processes.

In order to achieve our goal we use classical tools from control theory. The pro-
duction flow process is described by means of difference equations and in order
to analyse its performance, an approach using Lyapunov theory is exploited (see,
e.g., Khalil (2002), Dashkovskiy et al. (2011), Starkov et al. (2012d), and references
there in).
Each machine in a re-entrant network is responsible for several production stages.
At each stage the machine coordinates its individual production with those of

2In the surplus-based control, decisions are made based on the demand tracking error, which
is the difference between the cumulative demand and the cumulative output of the system (see
e.g., Bonvik et al. (1997)).

3Note that what we call production demand tracking accuracy is closely related to a commonly
used service level term (see, e.g., Bonvik et al. (1997), González et al. (2012))
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the rest of the system. While the machine is controlled by a surplus-based pull
controller, the objective of each of its production stage may be viewed as man-
ufacturing a sufficient quantity of parts to satisfy the demand of its immediate
downstream production stage (not necessarily belonging to the same machine) and
some extra amount as back-up material storage in its downstream buffer. The
production strategy itself is intuitive and it can be associated with a wide range
of existing techniques such as basestock policy (see, e.g., Bonvik et al. (1997)),
hedging point policy (see, e.g., Gershwin (2000)), and clearing policy (see, e.g.,
Kumar and Seidman (1990)).
To the best of our knowledge, concerning the previous results on performance
analysis of surplus-based approaches (see, e.g., Kumar (1993); Lu and Kumar
(1991); Quintana (2002); Subramaniam et al. (2009); Nilakantan (2010); Boukas
(2006); Sarimveis et al. (2008); Kogan and Perkins (2003); Savkin and Evans (2002);
Starkov et al. (2012d), the novelty of our results can be summarized as follows. The
proposed production model is considered in discrete time. The production speed of
each machine is defined as deterministic with bounded perturbations. The future
production demand is assumed to be unknown and with bounded fluctuations.
As a result, for a single re-entrant manufacturing machine of N production stages
strict, so-called “worst case” bounds on demand tracking errors and inventory con-
tent of the unlimited capacity intermediate buffers are obtained. It is also shown
that the obtained bounds on demand tracking errors are satisfied even when the
intermediate buffers of the re-entrant machine is of limited capacity. Further, the
relation between the demand tracking error accuracy on the output of each stage of
a re-entrant machine and its inventory level is investigated and derived in the form
of worst case bounds. Extending this strategy to a network of P machines with
N production stages each, we investigate the existence of the accuracy bounds on
the demand tracking error and inventory levels for each stage of each machine and
its neighboring buffers, respectively.
This chapter presents our results from Starkov et al. (2011c) and Starkov et al.
(2012c) on the analysis of surplus-based pull policies that concern a single ma-
chine and a line of re-entrant machines with both being driven by the cumulative
production demand. This chapter is organized as follows. First, in Section 5.2
the flow model of one manufacturing machine with surplus-based pull control is
presented. The detailed analytical and simulation-based analysis on performance
is developed in this section. Then the flow model of a re-entrant manufacturing
line with surplus-based pull control is analyzed in Section 5.3. In this section ana-
lytical as well as simulation-based performance analysis is provided for a re-entrant
manufacturing line. Finally, Section 5.4 contains conclusions.

5.2 Single re-entrant machine

Figure 5.1 shows a schematic picture of one re-entrant machine M with N pro-
duction stages. The output of each stage is given by y1 till yN , respectively. The
machine is interconnected by N − 1 buffers, i.e., B2 . . . BN . Each buffer stores the
intermediate product that is produced by the upstream stage of the machine. It
is assumed that the machine has always sufficient supply of raw material on its
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input, which is the reason why the buffer of stage 1 is omitted in Figure 5.1.

Figure 5.1: One re-entrant machine M with N − 1 buffers B2, . . . , BN .

5.2.1 Flow model

The discrete time model of a simple manufacturing machine with one production
stage is described in detail in Chapter 2 of this thesis. This model can be extended
for each production stage of one re-entrant machine (see Figure 5.1) as

yj(k + 1) = yj(k) + βj(k)uj(k), (5.1)

where all the events within the model occur at given time instances and k represents
the current time so that the time step between all the events is constant. Here
yj(k) ∈ R is the cumulative output of the machine in processing stage j in time k,
uj(k) ∈ R is the control input of the machine in processing stage j and βj(k) > 0
for all k is given by βj(k) = µj + fj(k). The positive constant µj represents the
processing speed of the machine at the stage j and fj(k) is an unknown external
disturbance affecting the performance of the machine at stage j.The equation (5.1)
present a general model that can describe a product flow for a wide range of
production stages of manufacturing networks. Further specific assumptions on
system (5.1) are given in this section.

Under the assumption that there is always sufficient raw material to feed the
machine, the control aim is to track the non-decreasing cumulative production
demand on its output. We define the cumulative production demand by using
yd(k) ∈ R given by

yd(k) = yd0 + vdk + ϕ(k), (5.2)

where yd0 is a positive constant that represents the initial production demand, vd
is a positive constant that defines the average desired demand rate, and ϕ(k) ∈ R

is the bounded fluctuation that is imposed on the linear demand vdk.

In order to give a solution to this tracking problem we consider a controller based
on the demand tracking error of each stage. The machine can only work at one
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stage at a time. The controller arbitrary selects the stage at which the machine
must work4, from those where production is needed. The machine works at this
stage till its product demand is satisfied. Then the controller again selects a stage
for the machine to work at. In case the product demand is satisfied at all stages,
the controller idles the machine.

The above mentioned strategy can be formulated by the following control algorithm
(see next paragraph for a summary):

{q(k) = Bj},

if εj(k) > 0 andwj(k) ≥ βj(k) then

uj(k) = 1,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , N,

q(k + 1) = Bj ,

end

if (εj(k) ≤ 0 orwj(k) < βj(k))and

∃ s 6= j : (εs(k) > 0 andws(k) ≥ βs(k)) then

uj(k) = 0,

us(k) = 1,

q(k + 1) = Bs,

end

if (εs(k) ≤ 0 orws(k) < βs(k)) , ∀s then

uj(k) = 0,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , N,

q(k + 1) = 0,

end (5.3)

where q(k) is the internal variable that specifies the buffer that machine M is pro-
cessing, βj(k) is the minimal raw material content in buffer Bj, such that at time
k machine M is able to process if required, εj(k) is the current demand tracking
error at stage j, and wj(k) is the current buffer content of Bj . Note that B1 is
considered to always have sufficient raw material, which is the reason why it is not
present in the algorithm.

Algorithm (5.3) can be summarized as follows:

• The machine can only work on one buffer at a time.

• The control input uj(k) of each production stage j can only take the value
of 0 (stop) or 1 (produce).

4The results presented in this chapter only concentrate on the steady state behavior of a re-
entrant network. In consequence the scheduling problem within the machines play no significant
role as long as within a certain period of time all the production stages of each machine in the
network are served. Thus in algorithm (5.3) a policy to select a production stage s in case their
exist several stages with εs(k) > 0 is not detailed.
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• The uj(k) receives the value of 1 only if production stage j needs to produce
(εj(k) > 0) and its buffer is not empty (wj(k) ≥ βj(k)).

• The machine will remain at its current state q(k) = Bj while all the conditions
of the state are satisfied, i.e., while εj(k) > 0 and wj(k) ≥ βj(k).

• The value of 0 is given to the control input of stage j if at least one of the
above mentioned conditions for the current state q(k) = Bj is unsatisfied.

• The change in the value of the control signal of stage j also implies a change
in machine’s state q(k).

• The machine has N + 1 states. This is due to that N corresponds to the
total number of production stages that M can be working in, which directly
relate to the states of the machine, plus the idle state (q(k) = 0).

Note that algorithm (5.3) does not consider limitations of buffer sizes in the net-
work. These buffer restrictions can be easily included in (5.3) and they are also
considered in Appendix H, Case 1, Subcase 3.
The production error at each stage of machine M is given by:

εj(k) = εj+1(k) + (wdj+1
− wj+1(k)), (5.4)

∀j = 1, . . . , N − 2,

εN−1(k) = εN(k) + (wdN − wN(k)), (5.5)

εN(k) = yd(k)− yN(k). (5.6)

Here wj+1(k) = yj(k) − yj+1(k) is the buffer content of buffer Bj+1 and wdj+1
is

the constant that represents the desired inventory level (base stock level) of buffer
Bj+1. For further analysis, let us rewrite flow model (5.1) in a closed-loop with
(5.3) in terms of demand tracking errors as

∆εj(k) = vd +∆ϕ(k)− βj(k)uj(k), (5.7)

where for all j = 1, . . . , N , ∆εj(k) = εj(k+1)−εj(k) and ∆ϕ(k) = ϕ(k+1)−ϕ(k).
We assume that system (5.7) satisfies the following conditions.

Assumption 9. (Boundedness of perturbations)
There are constants c1, c2, c3 and c4 such that

c1 < ∆ϕ(k) < c2, ∀k ∈ N, (5.8)

c3 < fj(k) < c4, ∀k ∈ N, j = 1, . . . , N. (5.9)

From Assumption 9, it follows that Wj(k) = ∆ϕ(k)− fj(k) satisfies

α1 < Wj(k) < α2, ∀k ∈ N, j = 1, . . . , N, (5.10)

with α1 = c1 − c4 and α2 = c2 − c3.
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Assumption 10. (Capacity condition)
The constants c1, c2, c3 and c4 in 5.8 and 5.9 satisfy the following inequalities

c1 > −vd, (5.11)

α2 < µj − vd, ∀j = 1, . . . , N, (5.12)

and the following condition (also know as capacity condition) holds

0 < (vd +∆ϕ(k))

N∑

j=1

1

µj + fj(k)
< 1, ∀k. (5.13)

By (5.11), (5.12), and (5.13) we state that, in the presence of market fluctuations
bounded by (c1, c2), the production demand rate can only be positive, the produc-
tion speed at each manufacturing stage of the machine is always faster than the
demand rate of its product and in general the processing speed of the machine is
faster than its demand rate, respectively. It is important to notice that machine
M at each process step j has a processing speed of µj + fj(k) lots per time unit,
which can differ from the rest of the processing steps. The physical meaning of the
above mentioned assumptions is similar to the one discussed in detail in Section
2.3.
The buffer content condition5 is

wj(k) ≥ βj(k), ∀j = 2, . . . , N. (5.14)

Thus, from (5.4) and (5.14), the following demand tracking error condition holds

εj(k) ≥ βj(k)− wdj + εj−1(k), ∀j = 2, . . . , N,

where wdj is assumed to satisfy the following condition.

Assumption 11. (Desired buffer content condition)
The constants wdj comply with the following inequality

wdj ≥ µj + c4.

From Assumption 11 it follows that for all k,

wdj > βj(k), ∀j = 2, . . . , N. (5.15)

If condition (5.14) is not satisfied, then

εj−1(k)
(5.4,5.15)
> εj(k), ∀j = 2, . . . , N. (5.16)

5This condition refers to a minimal buffer inventory level wj that is needed in order to start
the manufacturing process of M at stage j. For more details see Chapter 3, Section 3.2.1 and
Chapter 4 Section 4.3.1
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5.2.2 Results on performance

In this section we present results on the behavior of the demand tracking error
trajectories of flow model (5.7).

Theorem 8. Assume that the discrete time system defined by (5.7) satisfies As-
sumptions 9, 10, and 11. Then all solutions of (5.7) are ultimately bounded by

lim sup
k→∞

N∑

j=1

εj(k)− vd − α2

µj + c3
≤ 0, (5.17)

lim inf
k→∞

εj(k) ≥ vd + α1 − µj. (5.18)

Proof. see Appendix H.

Note that in Case 1, Subcase 3 of Appendix H we also show that Theorem 8 holds
for networks with limited capacity buffers.
The obtained bounds can be visualized through a phase portrait of the demand
tracking error trajectories shown in Figure 5.2, which was made for a single machine
producing 2 product types. In this example, the product demand rate vdj = 0.49
[lots/time unit] and the production rate at each stage µj=1[lot/ time unit]. Here
the experiment starts with initial demand tracking errors ε1(0) = 2 [lots] and
ε2(0) = 1 [lots]. It can be observed that first the controller activates stage 1 of
M . The machine works at this stage till ε1(k) ≤ 0 and then switches to stage 2.
Eventually the trajectories of the demand tracking errors enter the zone depicted
by the rectangular triangle, where they remain for the rest of the experiment. The
legs of this triangle are given by (5.18) and the hypotenuse by (5.17).
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ε1 vs. ε2
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Figure 5.2: Demand Tracking Errors ε1(k) vs. ε2(k), with vd = 0.49 [lots/time unit]
and µj=1[lot/ time unit].
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From (5.17) and (5.18), it can be deduced that for buffer content wj(k) of each
buffer Bj defined by (5.4) it holds that

lim sup
k→∞

wj(k) ≤ (µj+1 + c3)

N∑

s=1

µs − α1 + α2

µs + c3

+µj + wdj+1 + α2 − α1. (5.19)

Note that the bounds for the demand tracking error from Theorem 8 are also valid
in case the intermediate buffers are of a limited capacity (see Appendix H, Case 1,
Subcase 3), i.e. each buffer content is limited by

0 ≤ wj(k) ≤ γj,

for all k. Here j = 2, . . . , N , γj = wdj + µj + c3, which is a constant representing
an upper bound on the inventory level of Bj . Theorem 8 states that, given the as-
sumptions 9, 10, and 11 are satisfied, then the steady-state demand tracking errors
will remain within the same tracking bounds as the ones specified by (5.17) and
(5.18) regardless of the initial conditions and capacity limitations of a line. Clearly
starvation in the manufacturing line can be avoided by selecting a sufficiently large
amount of base stock (wdj). What happens if the base stock is low or even zero?
The answer to this question is presented in the following theorem.

Theorem 9. Assume that the discrete time system defined by (5.7) satisfies As-
sumptions 9, and 10. Then all solutions of (5.7) are ultimately bounded by

lim sup
k→∞

N∑

j=1

εj(k)− vd − α2 −Xj

µj + c3
≤ 0, (5.20)

lim inf
k→∞

εj(k) ≥ vd + α1 − µ, (5.21)

where Xj =
∑j

s=2max(µs + c4 − wds, 0) for all j = 2, . . . , N and X1 = 0.

Proof. see Appendix I.

In contrast with Theorem 8, Theorem 9 shows the complete relation between the
base stock level and the demand tacking accuracy of the network. From (5.20) it
can be observed that the tracking accuracy drastically decreases by decreasing the
base stock level further than specified in (5.14).
Note that the upper bound from (5.20) can be also defined as

lim sup
k→∞

εj(k) ≤ (µj + c3)

N∑

s=1

µs − α1 + α2 +Xs

µs + c3

+vd + α2 +Xj, (5.22)

where for selected index j, index s takes any value from 1 till N except for the
selected value of j. It is important to note that though bound (5.22) is simpler to
interpret, it is less accurate than bound (5.20).
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From (5.22) and (5.21), it can be deduced that for buffer content wj(k) of each
buffer Bj defined by (5.4) it holds that

lim sup
k→∞

wj(k) ≤ (µj + c3)
N∑

s=1

µs − α1 + α2 +Xs

µs + c3

+Xj + µj−1 + wdj + α2 − α1, (5.23)

where j = 2, . . . , N and s 6= j.

5.2.3 Discrete event simulation

In this section the accuracy of the obtained demand tracking error bounds for
the DT model is tested by means of a simulation example on the DE model of a
re-entrant machine. The DE model was built by using the specification language
called χ (see Beek et al. (2006)) developed at Eindhoven University of Technology6.

Figure 5.3 shows the schematics of the DE model of one re-entrant machine op-
erated under a surplus-based control. The circles represent the processes: raw
material supply (G), product demand (D), controller (C), buffers for intermediate
products (B) and buffer for final product (E). The rectangle represents the process
M, which is the manufacturing machine of 3 stages. The wide and the thin arrows
indicate the lot and the information flow directions, respectively. The re-entrant
machine consists of 3 manufacturing stages and 2 buffers, and it produces one
product type. Note that only one stage can be operational at a time.

Processes G, E and D are identical to the ones explained in Section 2.6. Process
B is explained in Section 3.5. Process C uses a different control algorithm (see
control algorithm (5.3)). Process M introduced in Section 2.6 is extended to a
machine of 3 stages. From Figure 5.3, controller C sends the authorization to M
through the index j to which the operating stage number is assigned. Every time
the jth stage of M produces a product, it is send to the corresponding buffer B and
the stage number is sent to controller C. The controller increments a cumulative
output counter of a stage every time it receives the j value from M. It recalculates
the demand tracking error values for each stage using an event based algorithm,
which is similar to (5.3).

The following example is analyzed. It is considered that a single manufacturing
machine of 3 stages produces products based on a cumulative production demand
value. For the event-based system, the production speed of each stage j = 1, 2, 3
is fixed to 1 lot per 1

µ1+f1
= 1

4+0.02 sin(0.25t)
time units, 1

µ2+f2
= 1

2+0.02 sin(1.5t)
time

units and 1
µ2+f2

= 1
1+0.02 sin(3t)

time units. Here t represents the current value of

time of the experiment. The initial output yj(0) = 0 for all j. The production
demand consists of its initial value yd0 of 10 lots and the demand rate of 1 lot every

1
vd+∆ϕ(t)

= 1
0.5+0.04 cos(0.5t)

units of time. The base stock levels wdj are selected as
wd2 = 3 and wd3 = 2 lots for all j = 2, 3. This is done in order to test the upper
bound on steady-state demand tracking errors (5.22) when the Assumption 11 on
buffer content is satisfied.

6For the details on implementation see Rooda and J.Vervoort (2007)
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Figure 5.3: Schematics of the DE model of one re-entrant machine M with 3 stages.

Two DT model approximations of DE model are considered in this example. First
the DE model is approximated by DT model with the production speeds of µj +
fj(k) lots per time unit and demand rate vd + ∆ϕ(k) lots per time unit. The
simulation run time is set to 500 time units.

The outcome of the experiment is as follows:

• From Figures 5.4 and 5.5 it can be observed that the duration of the transient
behavior for the DE system is similar to that of the DT system.

• From Figure 5.4 it can be observed that the steady state demand tracking
error trajectories of the DT and DE models are different, but they satisfy
the theoretical bounds (5.17), and (5.18).

• This DT approximation of the DE model is inaccurate.

• The contents of the buffers for the settings with wd2 = 3 and wd3 = 2 lots
are shown in Figure 5.5.

• In the DT model, the maximal content and the general pattern of product
content variation in each buffer differs from the one of the DE model. The
DE model describes the buffer content variations in a more detailed manner
than the DT model. Note that in the DT model, the buffer content is cal-
culated based on the difference between the upstream and the downstream
cumulative outputs of the machines surrounding the buffer. Thus a product
location is undistinguished from a buffer or its adjacent machine. Differ-
ently from DT, in the DE model the products from the buffer content are
distinguished from the products in the machine.
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Figure 5.4: Demand Tracking Errors
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Figure 5.5: Buffer contents

Secondly, the same DE model is approximated by a DT model with different time
scale. The time scale for the DT model is now selected as k = minj

1
µj+c3

= 1
4.02

.

The simulation run time is set to 2010 time steps, which is equivalent to 500 time
units of the previous experiment.

The outcome of the experiment is as follows:

• From Figures 5.6 and 5.7 it can be observed that the duration of the transient
behavior for the DE system is identical to that of the DT system.
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• From Figure 5.6 it can be noticed that the demand tracking error trajectories
of the DT and DE models have a similar behavior. The theoretical bounds
(5.22) and (5.21) are satisfied for the DT model, but require a different
interpretation for the DE model.

• Similarly to the manufacturing line of Section 3.6, in this example the bounds
of the DT model can be translated to the DE model bounds as the ceil values
of (5.22) and (5.21).

• This DT approximation of the DE model is much more accurate than the
one from the fist example.

• The contents of the buffer for the settings with wd2 = 3 and wd3 = 2 are
shown in Figure 5.7.

• In the DT model, the maximal content and the general pattern of product
content variation in each buffer is very similar to the one of the DE model.
But the DE model describes the buffer content variations in a more detailed
manner than the DT model. Note that in the DT model the buffer content
is calculated based on the difference between the upstream and the down-
stream cumulative outputs of the machines surrounding the buffer. Thus a
product location is undistinguished from a buffer or its adjacent machine.
Differently from the DT in DE model the products from the buffer content
are distinguished from the products in the machine.
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5.2.4 Simulation based performance analysis

Figure 5.8: Schematics of one re-entrant machine M with 3 stages and 2 buffers.

In this section we present the results on the simulation-based comparison of 3
particular cases of surplus-based production control strategies applied to a network
consisting of a single re-entrant manufacturing machine composed of 3 production
stages (j ∈ 1, 2, 3) and 2 intermediate buffers (B2, B3) as shown in Figure 5.8. The
selected strategies are particular cases of Hedging Point Policy (HPP), Conwip
(CWIP) ,and modified Base Stock Policy (BSP) (for details see Appendix K). The
performance criteria upon which these 3 policies will be compared are the steady
state maximum and minimum values of demand tracking error of the output stage
(i.e., j = 3) and the intermediate inventory level (i.e, w2 + w3) in the machine.
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Description of the experiment

The following common assumptions are made for all the implemented policies (for
more details on used flow models see Appendix K ):

• The machine M produces a single part type.

• It is assumed that there is always sufficient raw material (see Figure 5.8) and
the machine is never blocked on its final product output (y3).

• The machine can only work with one buffer at a time.

• The control input uj of each production stage can only take the value of 0
(stop) or 1 (produce).

• The control actions are executed every time step k.

• The controller takes the value of 1 only if the selected production stage needs
to produce and its buffer is not empty.

• The value of 0 is given to the control input of stage j if its demand tracking
error εj(k) ≤ 0 or its adjacent buffer is empty.

• Once the production stage is selected, the machine will operate at this stage
till its control input changes its value to 0.

• For all the policies, the demand tracking error of the output stage (j = 3) of
the machine is given by (5.6).

• No setup times are considered in the models.

The demand tracking errors and the operation principle of HPP are described by
(5.4)-(5.6) and (5.3), respectively (for more details see Appendix K).
Under CWIP policy the controller of the first stage (j = 1) limits the number of
products in the network, the second stage produces products in a clearing manner
and the output stage (j = 3) keeps track of a production demand on its output.
Thus ε1(k) = wdtotal −wtotal(k), ε2(k) = w2(k) and ε3(k) = yd(k)−y3(k). For a fair
comparison between the three policies, the desired inventory level in the network
wdtotal is interpreted as wdtotal = wd2 + wd3 and wtotal(k) = y1(k)− y3(k).
Given q(k) = B2 the control input u2(k) = 1 only if w2(k) ≥ β2(k). As well as
in HPP, the control action of the output stage j = 3 aims at production demand
tracking.
In this comparative study, each stage of the re-entrant machine operated under BSP
is tracking its own reference signal. The first and second stages try to maintain
constant their immediate downstream buffer content while the third stage tracks
the production demand. Thus the demand tracking errors of each stage operated by
BSP were selected as εj(k) = wdj −wj(k) for all j = 1, 2, and ε3(k) = yd(k)−y3(k).
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Results of comparison

The experimental details for all the policies can be summarized as follows:

• All the models are described by difference equations and the simulations are
executed in Matlabr.

• Each simulation run is set to 15000 steps with initial demand yd0 = 500 [lots]
and yj(0) = 0 for all j.

• For all the simulations, the production speed of every stage is set according
to the values listed in Table 5.1.

• Each model is tested under 50%, 75% and 95% of the maximal production
demand rate, such that it satisfies the capacity condition (5.13). The details
are shown in Table 5.1.

• For each demand rate, 10 simulation runs are executed. Each run with
different wdj in case of HPP and BSP, or wdtotal = wd2+wd3 in case of CWIP.

• For each simulation run, the desired product content of a buffer is incre-
mented in multiples of the maximal production speed of its immediate down-
stream stage, from 1 till 10 times the value. Thus wdj = a(µj + c4) [lots],
where a=1,. . . ,10. Note that for the CWIP policy, the total desired inventory
level in the network is selected as wdtotal = a(µ2 + c4) + a(µ3 + c4).

• Each bar in Figure 5.9 stands for the steady-state mean buffer content value
for the selected amount of base stock level wdj or wdtotal in case of CWIP,
i.e., each bar represents the steady-state w̄j value of Bj for each value of a,
for each production demand rate and for each policy.

Parameters for re-entrant machine
j µj fjk % vd ∆ϕk

1 10 0.5 sin(10k) 50 0.6870 0.5 cos(90k)
2 5 0.5 sin(70k) 75 1.0305 0.3 cos(90k)
3 3 0.5 sin(45k) 95 1.3053 0.04 cos(90k)

Table 5.1: Production and demand rates in lot per time unit

We focus our performance comparison on the demand tracking error of the output
stage ε3(k) and the inventory levels of intermediate buffers wj(k). Tables 5.2, 5.3
and 5.4 show the obtained steady-state values of the demand tracking error of the
output stage for 50%, 75% and 95% of the linear production demand rate vd. It is
observed that for all the three policies, increasing desired intermediate inventory
level has no significant influence on the steady-state ε3. Thus each parameter value
reported in Tables 5.2, 5.3 and 5.4 corresponds to all the tested inventory level
values, i.e. for a = 1, 2, 3, . . . , 10. For HPP, the observed steady-state behavior of
ε3 is clearly reflected in the obtained demand tracking error bound (5.22). One can
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note that if inequality (5.15) of Assumption 11 is satisfied for all the intermediate
inventories of the network, then in (5.22) the term Xj = 0, and the value of every
demand tracking error bound becomes independent form the influence of wdj . The
low inventory and high tracking inaccuracy effect of the machine under HPP is
clearly reflected in the obtained bound (5.22). One can note that if inequality
(5.15) of Assumption 11 is not satisfied then the upper bound on the demand
tracking error (5.22) is influenced by the Xs and Xj terms that can drastically
decrease the tracking accuracy of the system. This extreme case of re-entrant
machine behavior under HPP , i.e. when wdj = 0 for all j, is reported in Tables
5.2-5.4 under the Pull column, where very low inventory levels and higher demand
tracking inaccuracy can be observed for the network operated by a pure demand
tracking error-based Pull strategy. No desired inventories are specified for our Pull
model and the control goal of every production stage consists in pure cumulative
product demand tracking. Note that this Pull policy can also be classified as a
wdj = 0 case of HPP. Thus, in this comparative study, it is not considered as a
fourth policy.

From the model description it is known that in order to operate, CWIP policy
forces the re-entrant machine to constantly maintain a certain non zero inventory
level in the system. Thus the machine under CWIP can not operate with zero
desired inventory levels as HPP. From Tables 5.2-5.4 it can be seen that under
CWIP the machine presents tracking accuracy similar to HPP for a demand rate
of 50%, while at 75 and 95%, the mean accuracy loss doubles the tracking accuracy
of HPP. This accuracy loss with CWIP can be attributed to the switching priorities
between the stages, which in steady-state under CWIP are from stage 3 to stage
1 to stage 2 and back to stage 3. This circular switching delays the output stage
reaction time. The extreme steady-state demand tracking error values of CWIP
are very similar to HPP for all the tested demand rates. Also in case of CWIP
the wdtotal amount is mostly accumulated in in the last buffer B3, which can have
positive as well as negative effects on the network. A positive effect, for example, is
reflected in the tracking accuracy and low standard deviation (σ) from the demand
tracking error mean value (ε̄3(k)). In other words the network reacts faster on the
rapid production demand changes if product starvation never occurs, i.e network’s
inventory levels are high. At the same time keeping high inventories may impose
unnecessary storage costs, specially if the product demand is low.

For BSP, the inventory quantity and its distribution through the network are quiet
similar to the one in HPP (see Figure 5.9), while the demand tracking error ac-
curacy (see Tables 5.2-5.4) of BSP is higher than in HPP. Both policies permit
an independent (distributed) control of intermediate inventory levels of the net-
work. Thus for a given setting, BSP can be adjusted to perform as CWIP and
HPP as pure demand tracking Pull, but not the other way around. This makes
these two policies to stand out among the three. Also the obtained theoretical
values on max ε3(k) and min ε3(k) for the HPP policy (see Tables 5.2-5.4 under
HPP Theory) show an accurate lower bound, but a bit conservative upper bound.
This accuracy loss is due to the fact that the calculations are based on the upper
bound expression (5.22), which gives a less accurate result than (5.20).
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Policies HPP Theory HPP CWIP BS Pull
ε̄3(k) [lot] -0.6 -0.7 -1 3
σε3 [lot] 1 1 0.9 1.9
max ε3(k) 8.73 2 1.7 1.13 9
min ε3(k) -3.31 -3.31 -3.3 -3.3 -2.8

Table 5.2: Comparison for demand rate of 50 %

Policies HPP Theory HPP CWIP BS Pull
ε̄3(k) [lot] 0.17 0.4 -0.46 4.5
σε3 [lot] 1.1 1 1 2.1
max ε3(k) 8.55 3 3.4 1.8 11
min ε3(k) -2.77 -2.7 -2.7 -2.7 -1.6

Table 5.3: Comparison for demand rate of 75 %

Policies HPP Theory HPP CWIP BS Pull
ε̄3(k)[lot] 0.85 1.5 0.25 7
σε3 [lot] 1.25 1.3 1 2.3
max ε3(k) 8.13 4 5 2.6 14
min ε3(k) -2.23 -2.1 -2.2 -2.2 -0.5

Table 5.4: Comparison for demand rate of 95 %

Demand rate HPP CWIP BS Pull
50 % 3.34 3.0 3.35 3.1
75 % 3.5 3.5 3.6 3.4
95 % 3.5 3.7 3.7 3.6

Table 5.5: Standard deviation σω2
of lots in B2

Demand rate HPP CWIP BS Pull
50 % 1.89 3.2 1.95 2.1
75 % 2.07 3.3 2.09 2.87
95 % 2.28 3.5 2.25 3.18

Table 5.6: Standard deviation σω3
of lots in B3
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5.3 Re-entrant line

In this section we extend our analysis of surplus-based control of a single machine to
a re-entrant line of P machines. Each product has to go several times through the
entire manufacturing line before it is ready. In the previous section we analyzed
the performance of one machine composed of N stages that under application
of surplus-based control can only operate on one stage at a time. Extending the
control strategy to a line composed of these machines we study its demand tracking
accuracy, as well as the influence of the number of machines and production stages
on the demand tracking error.

Figure 5.10: A re-entrant line composed of P machines M1, . . . ,MP .

Figure 5.10 shows a schematic picture of a re-entrant network of P machines and
N production stages at each machine. The machines are depicted as big rectangles
with inside label Mj , where M stands for machine and j for its number. Each
machine has a number of buffers, i.e. small rectangles, connected to it. Each of
these buffers has a label Bi,j, where B stands for the buffer, i is the machine number
and j is the stage number of the machine i. Each buffer retains the intermediate
product to be processed on the production stage of its machine. The production
flow of the network is indicated by the dashed and bold arrows.

5.3.1 Flow model

The flow model of each production stage of a re-entrant line (Figure 5.10) in discrete
time is defined as

yi,j(k + 1) = yi,j(k) + βi,j(k)ui,j(k), (5.24)

where all the events within the model occur at given time instances and k represents
the current time so that the time step between all the events is constant. Here i is
the machine number (i = 1, .., P ), j is the processing stage number (j = 1, ..., N)
of machine i, yi,j(k) ∈ R is the cumulative output of machine i in processing stage
j in time k, uj(k) ∈ R is the control input of machine i in processing stage j
and βi,j(k) = µi,j + fi,j(k) with µi,j as a positive constant that represents the
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processing speed of the machine i at its stage j and fi,j(k) ∈ R is an unknown
external disturbance affecting the performance of the ith machine at its stage
j.The equation (5.24) present a general model that can describe a product flow
for a wide range of production stages of manufacturing networks. Further specific
assumptions on system (5.24) are given in this section. Under the assumption that
there is always sufficient raw material to feed the input buffer B1,1, the control aim
is to track the non-decreasing cumulative production demand given by (5.2) on the
output of this multi re-entrant network.

In order to give a solution to this tracking problem we consider the following control
algorithm:

{qi(k) = Bi,j}

if εi,j(k) > 0 and wi,j(k) ≥ βi,j(k) then

ui,j(k) = 1,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , N,

qi(k + 1) = Bi,j,

end

if (εi,j(k) ≤ 0 orwi,j(k) < βi,j(k)) and

∃ s 6= j : (εi,s(k) > 0 andwi,s(k) ≥ βi,s(k)) then

ui,j(k) = 0,

ui,s(k) = 1,

qi(k + 1) = Bi,s,

end

if (εi,s(k) ≤ 0 orwi,s(k) < βi,s(k)) , ∀s then

ui,j(k) = 0,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , N,

qi(k + 1) = 0,

end (5.25)

where qi(k) is the internal variable representing the current buffer that Mi is pro-
cessing, for the current time step βi,j(k) is the minimal content of raw material in
buffer Bi,j, such that machine Mi is able to process if required at stage j. Note that
B1,1 is assumed to always contain sufficient raw material. The demand tracking
error of each stage of Mi is given by:

εP,N(k) = yd(k)− yP,N(k), (5.26)

εi,j(k) = εr,s(k) + (wi,j − wdi,j(k)), ∀j = 1 . . . , N, (5.27)

where the constants r and s can be selected through the following relation

if i > 1 then

r = i− 1, s = j

else

r = P, s = j − 1. (5.28)
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Here wi,j+1(k) = yi,j(k)− yi,j+1(k) is the buffer content of buffer Bi,j+1 and wdi,j+1

is the constant that represents the desired inventory level of buffer Bi,j+1.
Figure 5.11 shows a schematic picture of the information flow throughout the re-
entrant line. The dashed rectangles represent the multi-stage machines, with inside
numbered circles denoting the production stages and outside short black arrows
with white fill denoting the external perturbations (fi), which are affecting its
production rates. Each machine has a set of buffers connected to it, each one
denoted by 3 joined squares. The product flow directions are denoted by solid
black bold arrows. The transfer of the demand tracking error (εi,j) information is
shown by arched, dashed arrows. For each stage the upstream and downstream
inventory level (wi,j) information transfer is depicted by a straight solid arrow with
hooklike ends and the input on the desired downstream inventory level is shown
by a short black arrow pointing to each production stage.

Figure 5.11: Control diagram of a re-entrant line

Basically, model (5.24) describes the product flow for each of the N stages of P
manufacturing machines combined into a re-entrant line configuration. The first
machine M1 is considered to have always access to the raw material at its stage
(1,1) (see Figure 5.11) and there is always sufficient raw material. The adminis-
tration of this raw material to machine M1 is decided by the control input (5.25).
For every machine Mi we consider that our control input is acting as an authoriz-
ing switch, which turns on Mi if the demand tracking error εi,j(k) of at least one
of its N stages is positive and turns Mi off if all the demand tracking errors of
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this machine are zero or negative, an also if the intermediate inventory levels are
insufficient for the machine to produce a product. Each machine can only work at
one stage at a time. The control logic is such that once the production stage is
selected, machine Mi remains working at this stage till the demand tracking error
εi,j(k) ≤ 0, or its buffer Bi,j gets empty (i.e.,wi,j(k) < βi,j(k)). This approach is
similar to clearing policies, but based on the demand tracking error and not on the
buffer inventory level.
Each demand tracking error εr,s(k), see (5.27) and Figure 5.11, consists of the
difference between what is done (wi,j(k)), what has to be done (εi,j(k)) and what
has to be always in the downstream buffer (wdi,j ). It can be seen from (5.27) that
the same demand tracking error logic is applied to every production stage of every
machine till stage (P,N − 1). As for the last production stage (P,N) of the last
machine in the line, which is machine MP (Figure 5.11), we expect that on its
output the cumulative product demand is followed by the cumulative production
of this machine. Thus control activates or deactivates this stage based directly on
the production demand status (5.26), as well as its upstream buffer content (see
Figure 5.11).
Note that the control actions are decentralized throughout the network. In other
words, the control action of each stage of every machine in the re-entrant line
depends only on the demand tracking error of its neighboring downstream stage
(except for the stage P,N , which depends directly on the cumulative demand in-
put) and the current buffer content of its upstream buffer (Figure 5.11). This
gives our flow model an extra robustness with respect to undesired events such as
temporal machine setup or breakdown.

For further analysis, let us rewrite flow model (5.24) in a closed-loop with (5.25)
in terms of demand tracking errors as

∆εi,j(k) = vd +∆ϕ(k)− βi,j(k)ui,j(k), (5.29)

∀j = 1, . . . , N, i = 1, . . . , P

where ∆εi,j(k) = εi,j(k + 1)− εi,j(k), ∆ϕ(k) = ϕ(k + 1)− ϕ(k).

Assume that system (5.29) satisfies the following requirements.

Assumption 12. (Production speed limitations)
Each machine Mi operates at each production step j under a processing speed of
βi,j(k) = µi + fi(k) lots per time unit, which is the same for each production
stage of the machine, but can differ from the other machines in the network. Thus
βi,j(k) = βi,s(k) for all k, where j, s = 1, . . . , N and j 6= s.

Assumption 13. (Boundedness of perturbations)
There are constants c1, c2, c3 and c4 such that

c1 < ∆ϕ(k) < c2, ∀k ∈ N, (5.30)

c3 < fi(k) < c4 ∀k ∈ N, i = 1, . . . , P. (5.31)

From Assumption 13, it follows that Wi,j(k) = ∆ϕ(k)− fi(k) satisfies

α1 < Wi(k) < α2, ∀k ∈ N, i = 1, . . . , P, (5.32)

with α1 = c1 − c4 and α2 = c2 − c3.
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Assumption 14. (Capacity condition)
The constants c1, c2, c3 and c4 in (5.30) and (5.31) satisfy the following inequalities

c1 > −vd, (5.33)

α2 < µi − vd, ∀i = 1, . . . , P, (5.34)

and the following condition (Capacity Condition) holds for each Mi in the network

0 < (vd + c1)
N

µi + c4
< (vd +∆ϕ(k))

N

µi + fi(k)
< (vd + c2)

N

µi + c3
< 1, (5.35)

for all k. Note that the physical meaning of the above mentioned assumptions is
similar to the one discussed in detail in Section 2.3 of Chapter 2.

It is important to notice that machine Mi at each process step j has a processing
speed of µi+fi(k) lots per time unit, which can differ from the rest of the machines
in the network. One of the important physical limitations in the network is the
buffer content restriction. In our model, in order for the control action (ui,j) of the
selected production stage (bi,j) of Mi to take place, the buffer of this stage must
satisfy the following condition on its content

wi,j(k) ≥ βi,j(k), ∀j = 2, . . . , N. (5.36)

Thus, from (5.27) and (5.36), the following demand tracking error condition holds

εi,j(k) ≥ βi,j(k)− wdi,j + εr,s(k),

∀i, r = 1, . . . , P, j, s = 1, . . . , N,

where wdi,j is assumed to satisfy the following inequality:

Assumption 15. (Desired buffer content condition)
The constants wdi,j comply with the following inequality

wdi,j ≥ µi,j +N µr,s + (N + 1)c4 (5.37)

+(N − 1)(c2 − c1).

From (5.37) it follows that for all k

wdi,j > βi,j(k), ∀i = 1, . . . , P, j = 1, . . . , N.

5.3.2 Results on performance

In this section we present the results regarding the demand tracking error trajec-
tories behavior of flow model (5.29).

Theorem 10. Assume that the discrete time system defined by (5.29) satisfies
Assumptions 12-15. Then all solutions of (5.29) are ultimately bounded by

lim sup
k→∞

N∑

j=1

εi,j(k)− vd − α2 ≤ 0, (5.38)

lim inf
k→∞

εi,j(k) ≥ vd + α1 − µi. (5.39)



5.3 Re-entrant line 91

Proof. see Appendix J.

Note that the upper bound from (5.38) can be also defined as

lim sup
k→∞

εj(k) ≤ (N − 1)(µi − α1 + α2)

+vd + α2. (5.40)

It is important to note that bound (5.40) is simpler to implement, but is less pre-
cise than the bound (5.38).

From (5.38) and (5.39) it can be deduced that for the buffer content wi,j(k) of each
buffer Bi,j defined by (5.27) it holds that

lim sup
k→∞

wi,j(k) ≤ (N − 1)(µi) +N(α2 − α1)

+µr + wdi,j . (5.41)

Now, in order to support the present development we present simulation results in
the next section.

5.3.3 Discrete time simulation

Consider the following example of a production line of 2 manufacturing machines
with 2 production stages each (see Figure 5.10) operating under surplus-based reg-
ulators (5.25). The processing nominal speeds are set as µi,j = 5 lots per time unit
and assume that the perturbations are selected in such a way that fi,j(k) = 5 lots
per time unit at stage j = 1 of M1 and stage j = 2 of M2. For the rest of the
stages µi,j = 5 and fi,j(k) = 0 lots per time unit. The desired buffer content of
each buffer is selected considering (5.37) as wdi,j = (wd1,2 , wd2,1 , wd2,2) = (26, 16, 21)
lots, and the mean demand rate vd = 2 lots per time unit 7 with fluctuation rate
of ∆ϕ(k) = 0.4 sin(90k). The demand tracking error of each machine in the line is
depicted in Figure 5.12. Here the initial conditions (y1,1(0), y1,2(0), y2,1(0), y2,2(0))
are set to zero and yd0 = 100 lots. After the first 250 time steps, as it is shown
in Figures 5.12 and 5.13, the system reaches its steady-state. Demand tracking
errors (see the dashed lines of Figure 5.12) are maintained inside [-8.4, 13.2] lots
for M1, and [-3.4, 8.2] lots for M2, which satisfy the bounds given by (5.38) and
(5.39). Figure 5.13 shows the buffer content of each Bi,j in the network. After
some transient behavior the inventory level of each buffer is maintained inside the
obtained bound (5.41).
Another experimental result is shown in Figure 5.14. This graph shows the rela-
tion between the upper bound on the demand tracking error ε2,2 versus the desired
buffer content of the network from the previous example. Here it can be observed
that the amount of extra storage for intermediate products has only limited in-
fluence on the tracking accuracy of the network and the threshold value of this

7Note that this vd value was selected as an 80% of a maximal allowed demand rate value,
which according to (5.35) is less then 2.5 lots per time unit. In (5.35) the lower bound on the
production speed µi,j + c3 = 5 lots.
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influence is given by (5.37). In Figure 5.14 one can observe that maintaining the
inventory level of B2,2 at more than 10 lots has no influence on the demand tracking
error of the output stage (ε2,2). Thus doing so may only result in extra inventory
costs. In conclusion, the presented simulation results reflect the desired flow model
behavior, i.e., all the values assigned to the parameters utilized in this section are
consistent with the assumptions of Section 5.3.1 and the outcome of the simulation
example satisfies the theoretical results.
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Figure 5.12: Demand tracking errors and their steady-state bounds (dotted lines), with
vd = 2, ∆ϕ(k) = 0.4 sin(90k), µi,j = 5, fi,j(k) ∈ 0, 5, wdi,j = (26, 16, 21) and yd0 = 100.
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Figure 5.13: Buffer contents, with vd = 2, ∆ϕ(k) = 0.4 sin(90k), µi,j = 5, fi,j(k) ∈ 0, 5,
wdi,j = (26, 16, 21) and yd0 = 100.
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Figure 5.14: Upper bound on demand tracking error ε2,2(k) vs. desired buffer content
wd2,2.

5.3.4 Simulation based performance analysis

Figure 5.15: Schematics of one re-entrant line with 3 machines Mi of 2 stages and 5
buffers Bi,j .

In this section we present results on the simulation-based comparison of 3 partic-
ular cases of surplus-based production control strategies applied to a re-entrant
line. Figure 5.15 shows the re-entrant line consisting of 3 manufacturing machines
composed of 2 production stages each (i = 1, 2, 3 and j = 1, 2) and 5 intermediate
buffers Bi,j. Similarly to the comparative analysis presented for one re-entrant
machine in Section 5.2.4, in this section the performance of the re-entrant line
is tested under particular cases of HPP, CWIP and BSP strategies. The perfor-
mance criteria upon which these three policies will be compared are the steady
state maximum and minimum values of demand tracking error of the output stage
j = 2 of machine i = 3 and the steady state intermediate inventory level (i.e,
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w2,1 + w3,1 + w1,2 + w2,2 + w3,2) in the re-entrant line.

Description of experiment

The following common assumptions were made for all the implemented policies (see
more details in Appendix K, Sections K.1.2, K.2.2 and K.3.2 on a single re-entrant
machine for more details on the used flow models):

• In the line, each machine Mi produces a single part type.

• Each Mi can only work with one buffer at a time.

• The control input ui,j of Mi at each production stage can only take the value
of 0 (stop) or 1 (produce).

• The control actions are executed every time step k.

• The control input ui,j ofMi at stage j takes the value of 1 only the production
stage j needs to produce (based on the operating policy) and its buffer Bi,j

is not empty.

• The value of 0 is given to the control input ui,j of Mi at stage j if its demand
tracking error εi,j(k) ≤ 0, its adjacent buffer is empty or the machine is
currently working with another stage.

• Once the production stage is selected, the machine will operate at this stage
till its control input changes its value to 0.

• The demand tracking error of the output stage j = 2 of the last machine M3

is given by ε3,2(k) = yd(k)− y3,2(k).

• No setup times are considered in the models

For HPP the demand tracking errors and the operation principal are described by
(5.27), (5.26) and (5.25), respectively.
For CWIP policy the first stage j = 1 of M1 limits the number of products in
the network and the rest of the stages till j = 2 of M3 produce products in a
clearing manner. Thus ε1,1(k) = wdtotal − wtotal(k), εi,j(k) = wi,j(k) for i, j =
(1, 2; 2, 1; 2, 2; 3, 1) and ε3,2(k) = yd(k) − y3,2(k). For fair comparison with HPP
and BSP, wdtotal can be interpreted as wdtotal =

∑3
i=1wdi,1 + wdi,2

8 and wtotal(k) =
y1,1(k) − y3,2(k). As well as in HPP, the control action of the output stage j = 2
of M3 aims at production demand tracking.
The operational principal of BSP is presented in Section K.2.2. The demand
tracking errors of this policy were selected as εr,s(k) = wdi,j−wi,j(k) for all i = 1, 2, 3
and j = 1, 2 except for the demand tracking error of the output stage of the last
machine ε3,2(k) = yd(k)− y3,2(k). The constants r and s are given by (5.28).

8It is assumed that B1,1 is never empty. Thus wd1,1
= 0.
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Results of comparison

For all the three strategies the details of the conducted experiment can be sum-
marized as follows:

• All the models are described by difference equations and the simulations are
executed in Matlabr.

• Each simulation run is set to 20000 steps with initial demand yd0 = 500 [lots]
and yi,j(0) = 0 for all i,j.

• For all the simulations the production speed of every stage is set according
to the value given in Table 5.7.

• Each model is tested under 50%, 75% and 95% of the maximal production
demand rate, such that it satisfies condition (5.35). See Table 5.7 for details.

• The steady-state demand tracking error values are reported in Tables 5.8-
5.10.

• For each demand rate, 8 simulation runs are executed. Each run with a
different value of wdi,j in case of HPP and BSP, or wdtotal =

∑3
i=1wdi,1 +wdi,2

in case of CWIP.

• The desired product content of a buffer is selected in multiples of the maximal
production speed of its downstream stage, from 1 till 20 times the value. Thus
wdi,j = a(µi,j + c4) [lots], where a=1,. . . ,20 as also shown in Tables 5.8-5.10.

• For each buffer in the network, its steady-state mean buffer content value is
shown in Figures 5.16-5.18.

• Each bar in Figures 5.16-5.18 stands for the steady-state mean buffer content
value for the selected amount of base stock level wdi,j or wdtotal in case of
CWIP, i.e., each bar represents the steady-state w̄i,j value of Bi,j for each
value of a, for each production demand rate and for each policy as it is shown
in the figures.

Parameters for re-entrant machine
i, j µi,j + fi,jk % vd ∆ϕk

1,1 5 + 0.5 sin(10k) 50 1.125 cos(3k)
1,2 5 + 0.5 sin(10k) 75 1.6875 0.5 cos(3k)
2,1 6 + 0.5 sin(3k) 95 2.1375 0.1 cos(3k)
2,2 6 + 0.5 sin(3k)
3,1 5 + 0.5 sin(1.5k)
3,2 5 + 0.5 sin(1.5k)

Table 5.7: Production and demand rates in lot per time unit
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As well as in Section 5.2.4, here we focus our performance comparison on the
steady-state demand tracking error of the output stage ε3,2(k) and the inventory
levels of intermediate buffers wi,j(k).

For BSP the amount of inventory and its distribution through the network are
quiet similar to the one in HPP, but different from CWIP. The mean inventory
level could be observed in Figures 5.16-5.18 and their variation σwi,j

in Tables
5.8-5.10. The demand tracking error accuracy (see Tables 5.8-5.10) of BSP and
CWIP is lower then in HPP. As also observed in Section 5.3, HPP and BSP policies
permit an independent (distributed) control of intermediate inventory levels of the
network, which makes these two policies easier to adapt to any kind of network
configuration. CWIP policy maintains the inventory level close to wdtotal amount,
which is mostly accumulated in the last buffer of the network B3,2. This inventory
distribution (see Figures 5.16-5.18) can have positive as well as negative effects on
the network. A positive effect, for example, is reflected in the tracking accuracy,
which is similar to the one reached with BSP, but with less control effort. This
could be noticed from σε3,2(k) and ε̄3,2(k) of Tables 5.8-5.10. The network operated
by CWIP is able to react faster on the rapid production demand changes due to its
high inventory of the last buffer. Thus the chance of starvation for stage 2 of M3

is low. At the same time keeping high inventories may impose unnecessary storage
costs, specially if the product demand is low.

The superiority in demand tracking accuracy of the re-entrant line under HPP
respecting CWIP and BSP is more pronounced for 75% and 95% of the product
demand value. From Tables 5.9 and 5.10, it can be observed that CWIP and BSP
present a similar demand tracking accuracy that is half of the preciseness reached
under HPP. The zero base stock case of the network’s behavior under HPP, i.e.
wdi,j = 0 for all i, j, is reported in tables Tables 5.8-5.10, where very low inventory
levels and higher demand tracking inaccuracy can be observed for the network
operated by the pure demand tracking Pull strategy. No desired inventories are
specified and the control goal of every production stage consists in pure cumulative
production demand tracking. This type of policy can be classified as simple Pull
or as a wdi,j = 0 case of HPP. The obtained theoretical values on max ε3(k) and
min ε3(k) for the HPP policy (see Tables 5.8-5.10 under HPP (theory)) show a
tight lower bound, but a bit conservative upper bound. This conservatism is due
to the upper bound expression (5.40) that was used to obtain the numerical value,
and which gives a less accurate result than (5.38).
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a 0 1 2 3 5 10,15,20

HPP ε̄3,2(k) [lot] 16.97 -0.96 -1.48 -1.49 -1.48 -1.52
CWIP ε̄3,2(k) [lot] ∞ -0.81 -0.72 -0.71 -0.62 -0.63
BS ε̄3,2(k) [lot] ∞ -0.87 -0.38 -0.56 -0.32 -0.55
HPP σε3,2 [lot] 3.32 1.53 1.50 1.52 1.52 1.52
CWIP σε3,2 [lot] _ 1.64 1.64 1.64 1.64 1.64
BS σε3,2 [lot] _ 1.59 1.63 1.59 1.62 1.62
HPP (theory)max ε3,2(k) [lot] 7.62 7.62
HPP max ε3,2(k) [lot] 27.97 3.36 2.3 2.26 2.28 2.24
CWIP max ε3,2(k) [lot] _ 3.73 3.88 3.95 4.13 4.08
BS max ε3,2(k) [lot] _ 3.6 4.58 4.22 4.69 4.73
HPP (theory) min ε3,2(k) [lot] -5.37 -5.37
HPP min ε3,2(k) [lot] 5.98 -5.29 -5.28 -5.24 -5.24 -5.29
CWIP min ε3,2(k) [lot] _ -5.36 -5.32 -5.36 -5.37 -5.36
BS min ε3,2(k) [lot] _ -5.36 -5.34 -5.35 -5.35 -5.35

HPP σw3,2 [lot] 2.75 2.47 2.42 2.43 2.43 2.42
CWIP σw3,2 [lot] _ 3.55 3.65 3.56 3.62 3.54
BS σw3,2 [lot] _ 2.62 2.65 2.63 2.64 2.65
HPP σw2,2 [lot] 2.72 2.47 2.43 2.42 2.46 2.43
CWIP σw2,2 [lot] _ 2.70 2.73 2.67 2.68 2.72
BS σw2,2 [lot] _ 2.72 2.77 2.75 2.78 2.77
HPP σw1,2 [lot] 2.56 2.18 2.16 2.15 2.14 2.15
CWIP σw1,2 [lot] _ 2.42 2.49 2.46 2.46 2.45
BS σw1,2 [lot] _ 2.51 2.55 2.52 2.58 2.55
HPP σw3,1 [lot] 2.69 2.31 2.26 2.23 2.27 2.24
CWIP σw3,1 [lot] _ 2.68 2.69 2.68 2.69 2.69
BS σw3,1 [lot] _ 2.77 2.76 2.76 2.74 2.75
HPP σw2,1 [lot] 2.70 2.34 2.32 2.35 2.29 2.28
CWIP σw2,1 [lot] _ 2.70 2.71 2.70 2.71 2.73
BS σw2,1 [lot] _ 2.76 2.78 2.85 2.83 2.84

Table 5.8: Comparison for demand rate of 50 %
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a 0 1 2 3 5 10,15,20

HPP ε̄3,2(k) [lot] 22.27 1.61 -0.38 -0.4 -0.39 -0.42
CWIP ε̄3,2(k) [lot] ∞ 0.99 1.18 1.13 1.12 1.05
BS ε̄3,2(k) [lot] ∞ 0.79 1.16 1.08 1.25 1.23
HPP σε3,2 [lot] 3.44 1.86 1.57 1.57 1.57 1.57
CWIP σε3,2 [lot] _ 1.93 1.93 1.93 1.92 1.93
BS σε3,2 [lot] _ 1.75 1.94 1.94 1.94 1.94
HPP (theory)max ε3,2(k) [lot] 7.68 7.68
HPP max ε3,2(k) [lot] 33.48 7.48 3.4 3.35 3.4 3.4
CWIP max ε3,2(k) [lot] _ 6.28 6.65 6.54 6.55 6.41
BS max ε3,2(k) [lot] _ 5.83 6.62 6.44 6.76 6.75
HPP (theory) min ε3,2(k) [lot] -4.31 -4.31
HPP min ε3,2(k) [lot] 11.07 -4.24 -4.18 -4.15 -4.19 -4.25
CWIP min ε3,2(k) [lot] _ -4.29 -4.28 -4.28 -4.30 -4.31
BS min ε3,2(k) [lot] _ -4.24 -4.29 -4.27 -4.26 -4.29

HPP σw3,2 [lot] 3.22 2.75 2.47 2.48 2.49 2.44
CWIP σw3,2 [lot] _ 3.67 3.71 3.51 3.60 3.61
BS σw3,2 [lot] _ 2.94 2.95 2.98 2.96 2.97
HPP σw2,2 [lot] 2.97 2.67 2.43 2.44 2.45 2.45
CWIP σw2,2 [lot] _ 2.93 2.94 2.97 2.95 2.95
BS σw2,2 [lot] _ 2.97 3.19 3.19 3.19 3.19
HPP σw1,2 [lot] 3.09 2.28 2.14 2.15 2.12 2.19
CWIP σw1,2 [lot] _ 2.77 2.73 2.75 2.69 2.76
BS σw1,2 [lot] _ 2.68 2.78 2.79 2.91 2.85
HPP σw3,1 [lot] 2.95 2.47 2.31 2.29 2.29 2.29
CWIP σw3,1 [lot] _ 2.97 2.98 2.97 2.97 2.98
BS σw3,1 [lot] _ 2.94 2.97 2.97 2.96 2.98
HPP σw2,1 [lot] 2.89 2.38 2.29 2.30 2.26 2.29
CWIP σw2,1 [lot] _ 2.94 2.94 2.93 2.92 2.93
BS σw2,1 [lot] _ 3.00 3.21 3.24 3.23 3.20

Table 5.9: Comparison for demand rate of 75 %
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a 0 1 2 3 5 10,15,20

HPP ε̄3,2(k) [lot] 28.76 4.95 0.41 0.42 0.42 0.41
CWIP ε̄3,2(k) [lot] ∞ 5.23 3.5 3.54 3.41 3.26
BS ε̄3,2(k) [lot] ∞ ∞ 3.45 3.3 3.57 3.53
HPP σε3,2 [lot] 3.55 2.48 1.58 1.66 1.64 1.65
CWIP σε3,2 [lot] _ 2.58 2.5 2.49 2.48 2.45
BS σε3,2 [lot] _ _ 2.56 2.61 2.58 2.58
HPP (theory)max ε3,2(k) [lot] 7.73 7.73
HPP max ε3,2(k) [lot] 40.83 13.3 4.27 4.27 4.27 4.27
CWIP max ε3,2(k) [lot] _ 13.91 10.45 10.51 10.24 9.92
BS max ε3,2(k) [lot] _ _ 10.24 10.05 10.57 10.44
HPP (theory) min ε3,2(k) [lot] -3.46 -3.46
HPP min ε3,2(k) [lot] 16.68 -3.38 -3.44 -3.42 -3.43 -3.46
CWIP min ε3,2(k) [lot] _ -3.44 -3.43 -3.43 -3.41 -3.4
BS min ε3,2(k) [lot] _ _ -3.33 -3.44 -3.42 -3.36

HPP σw3,2 [lot] 3.74 3.33 2.46 2.47 2.41 2.51
CWIP σw3,2 [lot] _ 3.66 3.68 3.70 3.76 3.69
BS σw3,2 [lot] _ 3.11 3.09 3.09 3.07 3.07
HPP σw2,2 [lot] 3.18 3.09 2.62 2.56 2.57 2.58
CWIP σw2,2 [lot] _ 3.08 3.08 3.15 3.11 3.05
BS σw2,2 [lot] _ 3.02 3.65 3.78 3.80 3.75
HPP σw1,2 [lot] 3.45 2.77 2.36 2.38 2.37 2.38
CWIP σw1,2 [lot] _ 2.97 2.86 3.03 3.04 2.94
BS σw1,2 [lot] _ 2.86 2.98 3.04 2.91 3.05
HPP σw3,1 [lot] 3.53 2.86 2.27 2.30 2.30 2.31
CWIP σw3,1 [lot] _ 3.20 3.17 3.22 3.20 3.20
BS σw3,1 [lot] _ 3.01 3.11 3.08 3.09 3.04
HPP σw2,1 [lot] 3.08 2.64 2.38 2.37 2.38 2.39
CWIP σw2,1 [lot] _ 3.10 3.15 3.12 3.11 3.12
BS σw2,1 [lot] _ 3.13 3.53 3.70 3.65 3.73

Table 5.10: Comparison for demand rate of 95 %
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5.4 Conclusions

The performances of a multi re-entrant manufacturing network under surplus-based
pull control has been studied. The developed results are presented in a form of
inequalities that express upper and lower steady-state bounds on the production
surplus.

First, these bounds are presented for every output of each production stage of a
single re-entrant machine of N stages. It is considered that each production stage
has an independent and variable processing speed. The bounds shown in Theorem
8 can be quite useful for network design as they clearly reflect the influence of
the number of production stages on the demand tracking error accuracy. For
more demanding manufacturing environments, where the size of the intermediate
inventory can not be neglected, it was shown that the bounds on the production
surplus also extend to the case when the machine has a limited intermediate buffer
capacity. For the single re-entrant machine the relation between production surplus
and the inventory level of every stage was presented in Theorem 9. We consider
this last result to be of valuable importance for managers of such a network, which
is due to the following. The upper bound on the demand tracking error given by
(5.20) in Theorem 9 describes the relation between the demand tracking accuracy
and the desired inventory (base stock) level of the manufacturing machine for any
given number of production stages. Thus without any simulation-based analysis,
a manager can use this relation as a reference tool for production control related
decision making.

Then, the steady-state bounds on the demand tracking errors for each stage of a
multi re-entrant manufacturing line were introduced. These bounds as well show
the relation between the production surplus of each stage and several important
factors such as: desired inventory level, production speed, demand rate and num-
ber of stages in each machine. It was assumed that for the re-entrant line each
production machine has a variable processing speed while it is the same for all
the stages in the machine. Simulation examples were presented and discussed in
order to illustrate and support analytical results. One of the important outcomes
of these examples is the relation between the amount of desired buffer content and
the demand tracking error of the output stage of the re-entrant production line of 2
machines with 2 stages each. By simulation it was shown that the base stock levels
have a limited influence on the demand tracking errors, which explains Assumption
15. This assumption on buffer content, eliminates the dependency of the demand
tracking error bounds on the buffer levels of the network (see Theorem 10).

By means of simulation, the obtained theoretical results for the DT model are
also tested on the DE model. The interpretation of the DT analytical bounds on
demand tracking errors for the DE model is given for the selected examples on a
single re-entrant machine. It was observed that, though the DT approximation is
less accurate than DE approximation, the DT analytical results on performance
are valid for the DE model as well. Further, simulation-based comparison of three
particular cases of the selected surplus-based control strategies was conducted for
a single re-entrant machine of 3 stages and a re-entrant line of 3 machines with
2 stages each. The maximum and minimum values of the steady-state demand
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tracking errors and intermediate inventory levels of the networks were evaluated
under particular cases of HPP, BSP and CWIP policies. The obtained results show
the dominance of HPP over the other two policies.



6
Liquitrol experimental platform

This chapter is based on Starkov et al. (2012b).

Abstract | In this chapter we present a prototype developed for education and research
purposes. The prototype is a liquid based emulator of manufacturing network processes.
At its core, the liquid-base emulator consists of several electrical pumps and liquid reser-
voirs. The electrical pumps emulate manufacturing machine behavior, while the liquid
reservoirs serve as intermediate product storages also called buffers. In the platform,
pumps and tanks can be interconnected in a flexible manner. In that way the proto-
type permits an easy and intuitive way of studying manufacturing control techniques
and performance for several network topologies. This chapter contains a detailed system
description and its application. Several network configurations and experimentations are
presented and discussed.

6.1 Introduction

Year round, hundreds of student from Eindhoven University of Technology (TUE)
in The Netherlands study multiple subjects on control and performance of produc-
tion networks offered by the Manufacturing Networks group (MN) of the depart-
ment of Mechanical Engineering. Though learning these subjects from theory and
simulation is sufficient to prepare Bachelor or Master students for their future car-
rier, the presence of an experimental tool, where all studied theoretical phenomena
can be visualized, gives the students an extra assurance of the obtained knowledge
as well as facilitates their learning process. Furthermore, hand-on experiments,
where students acquire the ability to solve problems using real equipment, form a
fundamental part of their education as engineers.
In case of the MN group of the TUE, some of its education related activities consist

105
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in lecturing and supervising students during their laboratory works, e.g. analysis
of manufacturing networks, embedded systems, hybrid dynamics, and control of
manufacturing systems courses. This in addition to research activities, which also
include experimental studies, that are performed by its integrants. In general,
research and teaching activities that are commonly practiced in engineering de-
partments of higher education centers, commonly involve some practical tasks.
Thus having an experimental tool can be of a great help for their completion.
In this chapter we present the experimental platform that was recently designed by
the MN group and presently developed by Wafer Based Solutions company1. The
prototype serves as a liquid-based emulator of manufacturing networks processes.
This liquid-based emulator consists of several electrical pumps and liquid reser-
voirs. The electrical pumps emulate manufacturing machine behavior, while the
liquid reservoirs serve as intermediate product storages also called buffers. These
pumps and tanks can be interconnected in any desired or possible configuration.
In that way the prototype permits an easy and intuitive way of studying the ef-
fects of manufacturing control techniques on the performance of several network
topologies.

Similar prototypes can be frequently encountered in studies on control of fluid dy-
namics, and industrial processes, e.g., chemical reactants level and flow control.
Fang et al. (2009) applied a fuzzy decision making mechanism to a part of an
industrial system, the behavior of which was mimicked by a coupled water tank
system developed by Quanser2. Another application of Quanser’s coupled water
tank system was presented in Pan et al. (2005), where the authors were motivated
by a desire to provide precise liquid level control, developed a set of nonlinear back-
stepping techniques for the state-coupled, two-tank, liquid level system dynamics.
Two coupled tanks CE105 prototype of TecQuipment 3 was used in Boubakir et al.
(2009). In this paper the authors develop a neuro-fuzzy-sliding mode controller
with a nonlinear sliding surface for a coupled tank system. Presented experimen-
tal results show that the suggested approach has considerable advantages compared
to the classical sliding mode control. A quadruple tank prototype (see Johansson
(2000)) was developed motivated by the necessity of demonstration tool for multi-
variable zero location and direction in an illustrative way for a frequency domain
analysis of dynamical systems. This prototype is used in several courses in the
control education, e.g., at LTH, Lund, Sweden, and at KTH, Stockholm, Sweden.
Currently all the above mentioned prototypes serve a great purpose in education
and research. However, there does not seem to exist any laboratory tool that
can emulate the dynamics of several manufacturing networks in an illustrative
and simple way. This was one of the main motivations for developing of Liqui-
trol platform. The name of the platform comes from combining the words liquid
and control, which describe the basic operational principal and the purpose of this
setup, respectively.

The remainder of the chapter is structured as follows. Section 6.2 presents a de-
tailed system description subdivided in the mechanical and electrical specification.
In Section 6.3 the dynamical model of the platform behavior for 3 selected network

1http://waferbasedsolutions.com
2Quanser Control Challenges at http://www.quanser.com
3http://www.tecquipment.com/Control/Control-Engineering/CE105.aspx
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configurations are detailed. Section 6.4 presents 3 types of piratical experimenta-
tions for students. Conclusions and future work are given in Section 6.5.

6.2 System description

In this section we present a detailed Liquitrol platform description.

6.2.1 Mechanical specification

Figure 6.1: Liquitrol Block Diagram

Figure 6.1 shows a block diagram of the platform configured as a flow line. The
platform consists of 6 water tanks, made of acrylate material, and 8 voltage driven
water pumps of 12 volts each, with 3 liters per minute as the maximal speed of
water transfer. A flow rate sensor, indicated by the thin blue triangle, is located
on the output of every water pump. Each water tank is of 3 liter capacity. The
water level of each tank can be measured by a pressure sensor depicted by the
red arrow in Figure 6.1. There are two 20 liter containers in the platform. One
container supplies the liquid into the system, which is returned to this container
once it circulates through the system. The second container called overflow sink is
directly connected to the supply container. It is installed under the water related
equipment for protection, e.g. in case of a sudden tank overflow or undesired water
leakage of the platform in general.

As can be seen on Figure 6.2, each of the 3 liter water tanks present 4 bottom
connections: one for water inlets, two for water outlets and one for the pressure
measurement. In the middle, each tank is equipped with an overflow tube made
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Figure 6.2: Liquitrol Liquid Reservoir

of thick pom material. In Figure 6.2, this tube is depicted in a light blue color.
Once installed over the overflow tube, the cylinder acts as a volume reducer. Thus
permitting a better visualization and a faster occurrence of certain phenomenons,
e.g. instability in the Lu-Kumar network (Dai et al. (2004)), for its presentation
during the lectures.

The outcome of the Liquitrol platform design, provided by Wafer Based Solutions
company, can be seen in Figure 6.3, which shows the front view of the emulator.
The platform is mounted on a four wheel table, the dimensions of which can be
found in Table 1. The pipe switch board with 36 leak free copper connectors,
whose purpose is described in the Figure 6.3, gives the platform flexibility in its
configuration. Several network topologies can be emulated given the proper tubing
connections.

Table 6.1: Liquitrol Dimensions

Platform mm Tank mm
hight 900 outside diameter 120
width 630 inside diameter 114
length 990 hight 320

6.2.2 Electrical specification

All the electrical devices of the platform are controlled through the Beckhoff Ether-
CAT4. The Ethercat consists of several blocks such as: potential supply terminals,

4Beckhoff Automation EtherCAT at http://beckhoff.com
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Figure 6.3: Liquitrol Platform

DC motor output, coupler, and AD/DA signal input/output terminals. All these
blocks are mounted inside the control cabinet. The content of control cabinet can
be graphically visualized by the block diagram of Figure 6.4. All the data acqui-
sition and control signals to the Liquitrol are managed through an ethernet cable.
The systems presents 3 electrically isolated power supplies; 2 of 12 volts and 1 of
24 volts. A more detailed power distribution diagram can be observed in Figure
6.5.

Figure 6.4: Liquitrol Electrical Block Diagram
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Figure 6.5: Liquitrol Electrical Block Diagram

6.3 Dynamical model

In this section the dynamical models for some of the selected configurations of the
platform are described. It is shown how the liquid flow dynamics in the platform
can be associated with flow models of manufacturing networks.

6.3.1 Single manufacturing machine configuration

Figure 6.6: Schematics of a manufacturing machine configuration.

In discrete time, the cumulative number of produced products (pumped liquid) in
time k for one manufacturing machine (water pump) can be described as the sum
of its production rates at each time step till time k. Thus the flow model of one
manufacturing machine (one water pump) in discrete time is defined as

y(k + 1) = y(k) + u(k) + f(k), (6.1)

where y(k) ∈ R is the cumulative output of the machine in time k, u(k) ∈ R is
the control signal, and f(k) ∈ R is an unknown external disturbance. Under the
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assumption that there is always sufficient raw material (liquid) to feed the machine
(pump), we can pose the control aim as to track the non-decreasing cumulative
production demand. We can define the production demand by using yd(k) ∈ R

given by

yd(k) = yd0 + vdk + ϕ(k), (6.2)

where yd0 is a positive constant that represents the initial production demand,
which is the initial quantity of liquid required to be pumped, vd is a positive
constant that defines the average desired demand rate (desired flow rate), and
ϕ(k) ∈ R is the bounded fluctuation that is imposed on the linear demand vdk. In
order to give a solution to this tracking problem, the following surplus-based Pull
controller (Starkov et al. (2012a))

u(k) = µsign+(ε(k)) (6.3)

is considered. Here µ is a positive constant that represents the processing speed
of the machine (constant flow rate of the pump), step function sign+(ε(k)) =(1, if
ε(k) > 0|0, otherwise), and ε(k) ∈ R is the output tracking error with respect to
the demand. This demand tracking error is given by ε(k) = yd(k) − y(k), where
ε(k + 1)− ε(k) along the solutions of ε(k) is given by:

ε(k + 1)− ε(k) = vd +∆ϕ(k)− µsign+(ε(k))− f(k), (6.4)

with ∆ϕ(k) = ϕ(k + 1) − ϕ(k). It follows from (6.4) that in order to guarantee
proper demand trajectory tracking, the product demand cannot be higher than
the machine processing speed, which in this case is µ lots per time unit. Thus,
let us assume that all machine (pump) perturbations W (k) = ∆ϕ(k)− f(k) from
(6.4) are bounded by

α1 < W (k) < α2, ∀k ∈ N, (6.5)

where α1, α2 are some constants that satisfy

α2 < µ− vd, (6.6)

α1 > −vd. (6.7)

By (6.6) and (6.7) we state that the machine (the pump) can never produce prod-
ucts (transfer fluids) faster than its maximal speed and that considering the pres-
ence of perturbations bounded by (α1, α2) the demand rate can only be positive,
respectively. Thus, by this last condition we assume that the pump transfers the
liquid in only one direction. From (6.5), (6.6), and (6.7) the following condition
(also known as capacity condition) holds

0 < vd +W (k) < µ. (6.8)

In other words, the flow rate in the system is limited by the speed of the pump.
Basically, in order to follow the product demand, variable structure controller
µsign+(ε(k)) is included in the flow model of one machine. The demand track-
ing error of a single machine is defined as the difference between the cumulative
demand and the cumulative number of products produced (liquid pumped) up to
this moment. More detailed theoretical and simulation results on this topic can be
found in Chapter 2.
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6.3.2 Line of manufacturing machines configuration

Figure 6.7: Schematics of a line configuration of 7 manufacturing machines.

The flow model of a manufacturing line is presented in this section. Figure 6.7
shows the schematics of a manufacturing line configuration for the Liquitrol plat-
form. The small white rectangles represent the 7 water pumps, the big gray rect-
angles depict the 6 water tanks and the arrows indicate the liquid flow direction.
On top of each white and gray rectangles, manufacturing machine and buffer labels
are denoted by Mj and Bj , respectively. The letter M stands for machine with its
number given by a constant j = 1, ..., 7 and the letter B stands for buffer with
j = 2, ..., 7. For M1 the raw material (liquid) is provided from the main 20 liter
deposit.

The flow model of the manufacturing line is defined as

y1(k + 1) = y1(k) + β1(k)sign−(w2(k)− γ2), (6.9)

yj(k + 1) = yj(k) + βj(k)signBuff(wj(k)− βj(k)) (6.10)

× sign−(wj+1(k)− γj+1), j = 2, . . . , 6,

y7(k + 1) = y7(k) + β7(k)signBuff(w7(k)− β7(k)), (6.11)

where yj(k) is the cumulative output of the machine Mj in time k, wj(k) =
yj−1(k) − yj(k) is the content of the buffer (tank) Bj, βj(k) = uj(k) + fj(k),
∀j = 1, . . . , 7, fj is the external disturbance affecting machine Mj (e.g., produc-
tion speed variations, undesired delay or setup time), uj is the control input of
machine Mj, signBuff(x) = (1, if x ≥ 0 | 0, otherwise), sign−(x) = (1, if x ≤ 0 | 0,
otherwise), and γj+1 is the threshold value of the buffer (tank) content wj+1.

In order to give a solution to the demand tracking problem we propose the following
control inputs:

uj(k) = µjsign+(εj+1(k) + wdj+1
− wj+1(k)), (6.12)

∀j = 1, . . . , 6,

u7(k) = µ7sign+(yd(k)− y7(k)), (6.13)

where µj is the constant processing (pumping) speed of the machine (pump) j,
wdj+1

is the constant that represents the desired inventory level (liquid level) of
buffer (tank) Bj+1 and εj+1 is the demand tracking error of machine Mj+1. Here
the value of sign+ function is same as was defined in the previous subsection. The
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demand tracking error of each machine is given by:

εj(k) = εj+1(k) + (wdj+1
− wj+1(k)), (6.14)

∀j = 1, . . . , 6,

ε7(k) = yd(k)− y7(k). (6.15)

It follows from (6.15) that the demand tracking error of machine MN is defined
exactly as for the single machine case. The water tank capacity restriction, as
seen from (6.11), is the only difference in the flow model of machine M7 with
the flow model of (6.1). In (6.14) new considerations are applied to the demand
tracking error of each machine Mj , where j = 1, ..., 6. Here εj(k) depends on
number of produced products (amount of transferred liquid) yj(k) with respect
to current demand yd(k) (desired amount of liquid) and desired buffer content
(desired tank fluid level) wdj+1

of each downstream buffer. This means that every
upstream machine needs to produce wdj+1

lots more than the downstream one.
Constant parameter wd is introduced in order to prevent downstream machines
from starvation, e.g., in case of a sudden growth of the product demand. More
detailed theoretical results on this topic can be found in Chapter 3.

6.3.3 Re-entrant network configuration

Figure 6.8: Schematics of a re-entrant line configuration of 2 manufacturing stations.

Figure 6.7 shows the schematics of a re-entrant manufacturing network configura-
tion for the Liquitrol platform. The small white rectangles represent the 7 water
pumps, where pump 1 acts as the arrival rate generator and the rest of the pumps
as the production stages of 2 station network. Each station, given by a dashed
transparent rectangle, contains 3 water pumps that supply the liquid to 3 liter
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water tanks denoted by the gray rectangles. The liquid flow through the system is
indicated by the gray arrows. On top of each white and gray rectangle, a manufac-
turing stage label and buffer label is denoted by numbers, respectively. The letter
S stands for the word stage with the first subindex i = 1, 2 indicating the station
number and the second subindex j = 1, 2, 3 denoting the stage number, which is
similar for the buffers Bi,j. For B1,1, raw material (liquid) is provided from the
main 20 liter deposit through the arrival rate generating pump.

The flow model of arrival rate (generated by pump 1 of Figure 6.8) and each
production stage of a re-entrant line in discrete time is defined as

y1(k + 1) = y1(k) + (vdk + ϕ(k))sign−(w1,1(k)− γ1,1),

yi,j(k + 1) = yi,j(k) + βi,j(k)ui,j(k)sign−(wr,s(k)− γr,s),

(6.16)

where y1(k) is the cumulative output of pump 1 in time k, vdk+ϕ(k) is the arrival
rate of raw material to S1 (similar to (6.2)), yi,j(k) ∈ R is the cumulative output of
station i in processing stage j in time k, uj(k) ∈ R is the control input of station
i in processing stage j and βi,j(k) = µi,j + fi,j(k) with µi,j as a positive constant
that represents the processing speed (pump speed) of the machine i at its stage
j and fi,j(k) ∈ R is an unknown external disturbance affecting the performance
of the ith station at its stage j. The variable wr,s(k) = yi,j(k) − yr,s(k) is the
buffer content of buffer Br,s and γr,s is the constant that represents the threshold
inventory level of buffer Br,s. The constants r and s can be selected as follows. If
i = 1 then r = 2, and s = j. If i = 2 then r = 1, and s = j + 1.

One of the possible control aims of such a system could be to manage a stable
production flow on the output of this network given a certain raw material arrival
rate on its input.

In order to give a solution to this production problem we consider the following
clearing policy (see Kumar and Seidman (1990)):

{qi(k) = Bi,j}

if wi,j(k) ≥ βi,j(k) then

ui,j(k) = 1,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , 7,

qi(k + 1) = Bi,j,

end

if wi,j(k) < βi,j(k) and

∃ s 6= j : wi,s(k) ≥ βi,s(k) then

ui,j(k) = 0,

ui,s(k) = 1,

qi(k + 1) = Bi,s,

end
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if wi,s(k) < βi,s(k), ∀s then

ui,j(k) = 0,

ui,s(k) = 0, ∀s 6= j, s, j = 1 . . . , 7,

qi(k + 1) = 0

end (6.17)

where qi(k) is the internal variable representing the current buffer (tank) that Si

is processing, for the current time step βi,j(k) is the minimal raw material content
in buffer Bi,j (minimal amount of liquid that the pump is able to transfer without
running dry), such that station Si is able to process if required at its stage j. More
detailed theoretical results on this topic can be found e.g. in Kumar (1993), and
Laumanns and Lefeber (2006).

6.3.4 Network Configurations

More complex network configurations can also be emulated on Liquitrol platform.
Some examples of these networks are shown in Figures 6.9, 6.10, 6.11, and 6.19.
The details on dynamical models and control applications for these networks can
be found in Lefeber et al. (2011), Savkin and Evans (2002), Banks and Dai (1997),
and Kumar (1993), respectively. Due to extensive technical details we omit the
dynamical models and control applications for the depicted networks of this sub-
section and only restrict ourselves by providing the bibliographical references for
an interested reader.

Figure 6.9: Road intersection for traffic control, Lefeber et al. (2011).
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Figure 6.10: Flexible manufacturing network, Savkin and Evans (2002).

Figure 6.11: Bramson type re-entrant network, Banks and Dai (1997).

Figure 6.12: Kumar-Seidman type re-entrant network, Kumar (1993).

6.4 Experiment types

Several experiments can be executed on Liquitrol by students during their practice
sessions.

6.4.1 Get familiarized with Liquitrol

The Beckhoff TwinCAT 2.11 software gives a student the opportunity to get famil-
iarized with the platform. Simple tasks such as pumping the liquid from the main
container to one of the tanks, reading the data and calibrating pressure and flow
rate sensors, can be performed. The screen shot of such an experiment is shown on
Figure 6.13. Two graphs and two tables can be observed in the picture. The upper
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Figure 6.13: Testing the platform

graph presents the flow rate measurements, in liters per minute, of 6 pumps and
the lower graph depicts the volumes, in percentage, of the 6 tanks. The pumps and
tanks were arranged in a line configuration (see Figure 6.7). The experiment lasts
for 2 minutes and the last measured values are reported in the tables of Figure
6.13.

6.4.2 Queuing theory based experiments

EtherLab, an open source toolkit for rapid real time code generation under Linux
using Simulinkr, permits the student to implement control models on the plat-
form5. For example, given the selected network topology, the arrival rate of the
liquid (deterministic or stochastic), and production rates of the pumps (determin-
istic or stochastic) a student can perform the following tasks: identification of a
bottleneck machine, visualize the dynamics of buffer levels over time, calculation
of mean throughput and utilization, work in process (WIP) identification, test and
comparison of Push, Pull, and Conwip strategies.

6.4.3 Production Control

More complicated tasks can be given to the Master student. Such as comparative
performance analysis of a certain network topology operated under different pro-
duction control strategies, identification of the optimal production control strategy
given the network and their operational characteristics, or evaluation and visual-
ization of network performance under influence of delays and set-up times.

5For Windows users, with some additional work, the interface with the platform can be man-
aged through TwinCAT 2.11
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6.5 Experiments

This section presents the results of selected experiments made with the Liquitrol.
The purpose of these experiments is to show the capability and flexibility of the
platform.

6.5.1 Unidirectional line

The experiment of this section is based on the first example of Section 3.4.2.

Figure 6.14: Manufacturing line on Liquitrol

In that example a production line of 4 manufacturing machines (see Figure 6.14)
operated under surplus-based regulators (3.3) and (3.4) is studied. The processing
speed of each machine is set to µj = 6 lots per time unit ∀j = 1, 3 and µj = 4
lots per time unit ∀j = 2, 4, the desired inventory level of each buffer is selected
considering (3.16) as wdj = 12 (lots), with j = 2, .., 4 and the mean demand rate
vd = 3.5 lots per time unit with fluctuation rate of ∆ϕ(k) = 0.2 sin(5k).

Similarly in our experiment we consider a line of 4 pumps and 3 tanks (see Figure
3.3) operated under regulators (3.3) and (3.4). Every millisecond, in our experi-
mental setting, the values of all the sensors (pressure and flow rate) are updated
and new control actions are taken. The value of 100 milliliters is set in correspon-
dence to one lot with the example of Section 3.4.2. The processing speed of each
pump is set to µj = 2.75 liters per minute ∀j = 1, 3 and µj = 1.83 liters per minute
∀j = 2, 4, which corresponds to 6 and 4 lots per time step respectively, with time
step k of 13.09 seconds. The desired inventory level of each buffer is selected as in
the example of Section 3.4.2. The mean demand rate is given by vd = 1.6 liters
per minute with fluctuation rate of ∆ϕ(k) = 0.0917 sin(5k) liters per minute. Sim-
ilarly to the discrete time (DT) simulation example, each pump in the line cannot
start its production if its immediate downstream buffer contains less liquid than
the pump can produce in one time step. The difference of this example with the
one from Section 3.4.2 is that the control action as well as the growth of the pro-
duction demand signal are not restricted by the time step of 13.09 seconds, but by
one millisecond, which is the cycle time of the experimental setup. It is important
to notice that, different from the DT model of a manufacturing machine, the water
pump, if turned on, will provide liquid in a continuous manner. Thus, if some
pump in the line has a lower processing rate then its upstream pump, then it may
start its operation earlier than assumed in our DT model of the manufacturing
line.
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The cumulative demand and output trajectories are shown in Figure 6.15. The
demand tracking error of each machine is depicted in Figure 6.16. The buffer
contents are shown in Figure 6.17. The similarity in behavioral patterns can be
observed with the DT simulation results of Figures 3.8, 3.9 and 3.10 of Section
2.5, respectively. Also, similarly to the second example of Section 2.5, the demand
tracking error dependency on the base stock levels in the manufacturing network
is depicted in Figure 6.18. The experimental results of Figure 6.18 show similarity
in behavioral pattern with the results presented in Figure 3.11 of Section 2.5.

Figure 6.15: Manufacturing line on Liquitrol: Outputs yj vs. Demand yd.

0 50 100 150 200

0

5

10

15

T
ra

ck
in

g 
E

rr
or

 P
4 

[lo
ts

]

0 50 100 150 200
−5

0

5

10

15

20

T
ra

ck
in

g 
E

rr
or

 P
3 

[lo
ts

]

Time Units
0 50 100 150 200

0

10

20

30

T
ra

ck
in

g 
E

rr
or

 P
2 

[lo
ts

]

Time Units  
0 50 100 150 200

0

10

20

30

40

T
ra

ck
in

g 
E

rr
or

 P
1 

[lo
ts

]

60 70 80 90 100
−2

0

2

4

30 40 50 60

0

2

4

40 60 80
−2

0
2
4
6

50 60 70 80
−4
−2

0
2
4

Figure 6.16: Manufacturing line on Liquitrol: Demand Tracking Errors.
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Figure 6.17: Manufacturing line on Liquitrol: Buffer Content wj(k).
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Figure 6.18: Manufacturing line on Liquitrol: Demand Tracking Errors vs. Desired
Inventory Levels.

6.5.2 Re-entrant line: Kumar-Seidman instability example

A Kumar-Seidman instability example (see Kumar (1993)) is tested on our setup.
In this setting we shall say that the manufacturing network is unstable if the buffer
level trajectories of the network are unbounded. In the example, a re-entrant
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Figure 6.19: Kumar-Seidman type re-entrant network

network (see Figure 6.19) of 2 stations of 2 stages (pumps) each, is operated under
a buffer clearing policy. Thus assuming a constant arrival rate of raw material
(water provided by Pump 1) to the first buffer (Tank 1), the goal of each stage
of every station is to process all the products of its adjacent buffer, i.e clear its
buffer, in one at a time manner. In other words, in each station only one stage can
perform its buffer clearing action at a time and only after the buffer of operational
stage is empty, another stage is selected to perform its clearing action. In the
example the arrival rate is selected in accordance to the capacity condition. This
condition delimits the product arrival rate to the production speed of the slowest
station in the network. From Figure 6.19, Pump 2 and 4 operate at 2.7 [liters/min],
and Pump 3 and 5 at 1.35 [liters/min]. The arrival rate of liquid to Pump 2 is
generated by Pump 1 at 0.8 [liters/min]. In the example of Kumar (1993) it was

Figure 6.20: Kumar-Seidman example on Liquitrol. Volume of tank 1 till 4 is depicted
by red, green, yellow and blue lines, respectively.

shown that, although the capacity condition for the network is satisfied, under a
certain selection of production speed values, starvation phenomena occur in the
network, which consequently lead the instability of the system. The products are
accumulated in some intermediate buffers while in others there is none. Similar to
the result in Kumar (1993), the growing oscillatory behavior of the trajectories of
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4 buffer contents of the re-entrant network of Figure 6.19 is shown in Figure 6.20.
More detailed theoretical results on this topic can be found e.g. in Kumar (1993).
Note that several control solutions are given to the instability problem of re-entrant
networks; see for example “buffer regulator” of Humes (1994), “stream modifier”
of Burgess and Passino (1997) and “controlled buffer technique” of Somlo et al.
(2004).

6.6 Conclusions

In this chapter a detailed description of a manufacturing network emulating tool,
called Liquitrol, was presented. The tool was developed by the Manufacturing
Networks Group so that students can visualize and control the production flow for
several manufacturing network topologies. With Liquitrol, students can deepen in
basic as well as advanced concepts of manufacturing network dynamics and control.
Some of these control concepts were mentioned in Sections 6.3, 6.4, and 6.5 of this
chapter. Furthermore, from topologies shown in Section 6.3.4, one can observe
that the Liquitrol is not only restricted to manufacturing networks, but it can
also be useful in the analysis of traffic control problems. Currently the platform
is located in the department of Mechanical Engineering of Eindhoven University
of Technology, where it serves its purpose for the Bachelor and Master students of
the Manufacturing Networks Group.

Future work will include the implementation of laboratory sessions with Liquitrol
via internet. In that way, students can create their control models and test them
on the platform via a limited access webpage containing the real live video image
of the prototype and the necessary tools to upload and test their assignments on
the platform.
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Observer-based approach

This chapter is based on Andrievsky et al. (2012).

Abstract | This chapter deals with the problem of controlling a tandem line of man-
ufacturing machines such that an unknown production demand is tracked with a de-
sired accuracy. To study this problem, a manufacturing machine is approximated by
an integrator which is subject to input saturation as a result of the finite capacity of
the machine. To solve the problem in case of unknown demand rate, a combination of
feedforward-feedback controller with a reduced-order observer is proposed. The decen-
tralized feedback control strategy for a line of machines is proposed and studied both in
continuous time-domain and in frequency-domain representation.

7.1 Introduction

The production control of manufacturing systems, i.e. how to control the pro-
duction rates of machines such that the system tracks a certain customer demand
while keeping a low inventory level, has been a field of interest for several decades.
Early control strategies based on simple push and pull concepts, such as material
requirements planning (MRP), enterprize resources planning (ERP), and just-in-
time (JIT), see e.g. (Hopp and Spearman, 2000), can provide an adequate solution
if the system requirements are not very strict and a fast reaction to possible distur-
bances/failures is not required (e.g. since such disturbances/failures hardly occur).
However, as manufacturing systems become more complex and the system’s per-
formance must constantly improve in order to stay competitive in today’s global
economy, these control strategies become less effective.

A possible way to tackle the problem is to describe manufacturing systems using

123
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so-called flow models, see e.g. (Alvarez-Vargas et al., 1994). These models, which
are based on ordinary differential/difference equations (ODEs), or sometimes par-
tial differential equations (PDEs), see e.g. (van den Berg et al., 2008; Lefeber
et al., 2005), form a continuous approximation of the discrete-event manufactur-
ing systems and therefore result in a simpler control problem. Moreover, various
(advanced) control theories are already available for ODEs, which makes these
models attractive to work with. Some of the valuable developments in control of
manufacturing systems by means of ODEs or PDEs are mentioned in the following
literature review.

Feng and Yan (2000) considered a production control problem in a manufacturing
system with a failure-prone machine and a stochastic demand. The case of the
exogenous demand forming a homogeneous Poisson flow is studied. It is shown
that a near-optimal production control remains a threshold production control type
in the sense of (Kimemia and Gershwin, 1983). The explicit form of the production
control policy and the objective functions are provided.

Boukas and Liu (2001) considered the production and maintenance control prob-
lem of a manufacturing system with part deterioration. By using the stochastic
dynamic programming technique, the production and the maintenance rates are
optimized.

Hong and Prabhu (2003) present differential equation-based models for distributed
arrival time control of parallel dissimilar machines. It is shown that the behavior
of general systems under distributed arrival time control was predictable. Conver-
gence properties of the resulting nonlinear systems established using the theory of
discontinuous differential equations.

Braun et al. (2003) developed the translation of the supply chain problem into a
formulation amenable to MPC implementation. The Intel demand network prob-
lem is used to evaluate the relative merits of various information sharing strategies
between controllers in the network. The material flows from the Factory to the
Retailer and on to the Customer are modeled with a mass balance. Results show
the potential of Model Predictive Control as an integral component of a hierar-
chical, enterprize-wide planning tool that functions on a real-time basis, supports
varying levels of information sharing and centralization/decentralization, and relies
on combined feedback-feedforward control action to enhance the performance and
robustness of demand networks.

In Surana et al. (2005) the treatment of supply chains as a kind of complex adaptive
systems is given. The authors demonstrate how tools and techniques based on the
fields of nonlinear dynamics, statistical physics and information theory can be
exploited to characterize and model supply-chain networks.

Huang et al. (2009) considered the closed-loop supply chain model under uncer-
tainty of time-delay in re-manufacturing and returns, uncertainty of system cost
parameters and uncertainty of customers’ demand disturbances. The robust op-
erations in the closed-loop supply chains are studied and relative strategies with
robust H∞ control methods are presented.

Most control strategies proposed in literature that use flow models to describe the
manufacturing system, are based on the assumption that an estimate of nominal
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or the future demand is known, and use some optimization algorithm to find a
suitable control signal, see e.g. (Gershwin, 1989; Sharifnia, 1994; Vargas-Villamil
et al., 2003; Savkin, 1998; Bauso et al., 2006) and references therein. In the ODE
models, a manufacturing machine is usually interpreted as an integrator, where
the cumulative number of finished products is the integral of the production rate.
Bounds on the production rate, due to the finite capacity of the machine, are then
taken into account in the optimization problem. Disadvantages of these control
strategies are that they depend on future demands (which are hard to predict and
therefore often inaccurate) and that in general the optimization problem requires
much computational effort.

In this chapter, a different strategy is employed for the control of manufacturing
machines, which does not depend on future demands and requires less computa-
tional effort. For this control strategy, the manufacturing machines are still ap-
proximated by an integrator, but the bounds on the production rate are interpreted
as a saturation function. This approach is based on the previous results (van den
Bremer et al., 2008) where a simple PI-controller is proposed to solve the problem.
Due to saturation in the control loop, an anti-windup compensator is required in
(van den Bremer et al., 2008) to avoid undesirable oscillations in the presence of
disturbances. In this chapter we implement a simpler approach: under assump-
tions that the nominal demand rate is constant (as well as possible disturbances)
we design an observer to estimate this rate to utilize in the control algorithm. In
case of uncertainty in the demand, caused, for example, by seasonal fluctuations
in the market, we study if the closed loop system affected by this fluctuations is
convergent. This idea results in a simple control algorithm that can be also used
in more complex manufacturing lines where additional constraints on buffer con-
tent are also imposed. It is worth mentioning that this control algorithm can be
classified as a surplus-based production control (Gershwin, 2000), where the control
decisions are based on the demand tracking error which is the difference between
the cumulative demand and the cumulative output of the system (see, e.g. (Bielecki
and Kumar, 1988; Bonvik et al., 1997; Lefebvre, 1999; Gershwin, 2000; Quintana,
2002; Kogan and Perkins, 2003; Boukas, 2006; Stockton et al., 2007; Subramaniam
et al., 2009; Nilakantan, 2010) and references there in). Detailed literature surveys
specifically on the production line control mechanisms can be found in, e.g., (Bon-
vik et al., 1997), (Gershwin, 2000), (Ortega and Lin, 2004), (Sarimveis et al., 2008).

To analyze performance of the production control strategy we utilize a frequency
domain based approach. The implementation of this approach is possible due to
the convergency property of the system. That is, if the system is convergent for
a class of a given periodic input signals, then there exists a unique steady-state
periodic solution of this system (Pavlov et al., 2005). This property gives us the
option of conducting a performance analysis by means of generalized sensitivity
and complementary sensitivity functions. Though the frequency domain analysis
can be considered as a rather classical control notion, the usage of this tool for
the performance analysis of nonlinear production models is to the best of our
knowledge and experience known as a novel application. Further details on this
topic are presented in the Section 7.5.
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7.2 Problem statement and guideline of presented

research

Following (van den Berg et al., 2006; Andrievsky et al., 2009; Kommer et al., 2009),
let us use a continuous approximation of the single discrete-event manufacturing
machine. Namely, consider a manufacturing machine that produces items with
a production rate up(t) ∈ R, t ∈ R. Assume that there is always sufficient raw
material to feed the machine. The total amount of items produced by the machine
is denoted by y(t) ∈ R and is related to production rate up(t) by the following
equation

ẏ(t) = up(t) + f(t), (7.1)

where f(t) ∈ R stands for an unknown external disturbance. This term may de-
scribe manufacturing losses, or variations of the machine capacity, for example.
The production rate up is considered to be positively valued and has a certain
upper bound up,max, caused by the machine capacity limitation. Therefore, the
following bounds are valid for the production rate:

0 ≤ up ≤ up,max. (7.2)

Assuming that the production capacity of the machine is limited, the inequality
(7.2) introduces a saturation in the control loop. The saturation effect complicates
the design of the control law and the system performance analysis.

Here the control aim is to track the non-decreasing production demand yd(t). In
what follows we assume that yd(t) may be modeled as

yd(t) = yd,0 + vd t+ ϕ(t), (7.3)

where yd,0 denotes the desired production at t = 0, vd is a constant that represents
the average desired production rate, ϕ(t) is a bounded function, describing fluctu-
ation of the desired production from the linearly increasing time-varying demand,
caused by market (e.g. seasonal) fluctuation. It is natural to suppose that the
following inequalities (also known as capacity condition) are satisfied

0 ≤ vd ≤ up,max. (7.4)

Thus the production rate is positive and on average the machine is capable to
satisfy the product demand. It may be also assumed that ϕ(t) has a “zero mean”
in some sense, because its averaged value may be considered as part of yd,0.

Though the general form of the production dynamics is given, the future demand
value in most of the practical cases is not always know in advance. Here we consider
to give a solution to the production demand tracking problem for a unidirectional
manufacturing line under assumption that the future production demand is given
by some unknown but bounded function as described in (7.3).

First, to tackle the above mentioned problem, the PI-controller with an anti-windup
control strategy was proposed and thoughtfully studied in van den Berg et al.
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(2006). This controller ensures an asymptotically vanishing demand tracking error
e(t) = yd(t) − y(t) for constant ϕ(t), f(t) and independence of the asymptotic
system behavior of the initial conditions if fluctuations and disturbances are present
(the so called “convergence property”, see Pavlov et al. (2004); van den Berg et al.
(2006); Pavlov et al. (2006) for details).

In this chapter we propose an alternative control law, which consists in a combined
feedforward–feedback control strategy. Since the integral of the demand tracking
error is not used in the proposed controller, the anti-windup compensator in the
controller is no longer needed.

The chapter has the following structure. In Section 7.3 we present an analysis on
performance of one manufacturing machine operated under feedforward–feedback
production controller. Here in Section 7.3.1 we present the control input for our
machine and deepen to the systems behavior for the case when the future demand
is given by a known linear function. Then in Section 7.3.2 we extend our analysis of
this system. First, we consider that the future demand is an unknown but bounded
linear function with a constant fluctuation parameter. Thus we design an observer
(estimator) for the nominal demand estimation purpose. Furthermore we show
by means of incremental stability property that the demand tracking error of our
closed-loop system converges to zero value disregarding its initial value. Secondly
we assume that the fluctuation parameter is now given by some unknown bounded
function. Here by means of Lyapunov function based analysis (see e.g., Khalil
(2002)) we show that, given the presence of market fluctuations in our demand
model, the demand tracking error dynamics are uniformly ultimately bounded.

In Section 7.4, the observer-based production control is extended to the case of
a unidirectional manufacturing line. First, in Section 7.4.1 we present the model
of the network. Followed by the control design in Section 7.4.2. Finalizing with
Section 7.4.3 where we analyse the stability of the close-loop N machine production
line. Furthermore in Section 7.5, we utilize the convergency property in order to
introduce an attractive tool for the production network performance evaluation.
In Section 7.5.1 we provide an illustrating example of a 4 machine production line
behavior in case of control saturation and buffer exhaustion. In Section 7.5.2 we
show that for any closed-loop, nonlinear, continuous-time flow model of a given
network, which satisfies the convergency property, we can obtain their generalized
sensitivity and complimentary sensitivity functions. Here we present 2 approaches
for the analysis of these functions. We choose a numerical approach in order to
illustrate the capabilities of this tool on a production line of 4 machines. Finally
conclusions on the presented research are given in Section 7.6.

7.3 Combined observer-based control of a manu-

facturing machine

7.3.1 Combined control law

At the beginning, we assume that the variables y(t), f(t) and the value of vd may
be measured and used to form the control action up(t). Let us take the control law
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in the following feedforward–feedback form:

up(t) = sat[0,up,max]

(
kpe(t) + vd − f(t)

)
, (7.5)

where e(t) = yd(t) − y(t) denotes the demand tracking error, kp is the controller
parameter (a proportional gain), sat[ a, b](z) denotes the saturation function,

sat[a,b](z) = min
(
b,max(a, z)

)

=







b if z ≥ b,

a if z ≤ a,

z otherwise,

(b > a). (7.6)

Equations (7.1), (7.5) describe the closed-loop manufacturing system model for
time-varying demand yd(t) given by (7.3). Performance analysis for the case of
linear time-varying demand under the valid assumption 0 < −f(t) + vd < up,max

for all t shows that the close-loop system, expressed in terms of demand tracking
error,

ė(t) = −up(t)− f(t) + vd (7.7)

presents an asymptotically stable behavior for its dynamics, which is finite time
reachable, regardless of the initial conditions; see Chapter 14 of Khalil (2002).

7.3.2 Observer-based feedback controller

In the above sections it was assumed that the average rate vd and the disturbance
f(t) are known (measured) signals. This assumption is rather unpractical. From
now on, we assume that only the error signal e(t) can be measured and used to
form the control action. Let us replace the signals vd, f in the control law (7.5) by
their estimates v̂d(t), f̂(t) provided by the observer (state estimator) which uses
only available signals e(t) = yd(t)− y(t) and up(t).

Since the observer design is based on modeling the external signals as outputs of
some dynamical system, let us assume at this stage that both vd and f are constants
and that the reference signal is strictly linear: yd(t) = yd,0 + vdt. Differentiating
the demand tracking error e(t) = yd(t) − y(t) w.r.t. t we obtain from (7.1) the
error model given by (7.7).

From (7.7) it is clear that the signals f(t) and vd can not be estimated separately
based on the measurements of e(t). It is possible to estimate the joint signal
r(t) = −f(t)+vd only. Using the above notation and assumptions, we obtain from
(7.7) the following extended plant model:

{

ė(t) = −up(t) + r(t),

ṙ(t) = 0.
(7.8)

Luenberger’s design method (Luenberger, 1964, 1971) leads to the following reduced-
order observer

{

σ̇(t) = −λσ(t)− λ2e(t) + λup(t)

r̂(t) = σ(t) + λe(t),
(7.9)
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where r̂(t) denotes the estimate of the signal r(t), produced by observer (7.9),
λ > 0 is the observer parameter (observer gain), setting the transient time for the
estimation procedure.

Let us use the estimate r̂(t) in the control law (7.5) instead of vd − f(t) = r(t).
Then the control action up(t) takes the form

up(t) = sat[0,up,max]

(
kpe(t) + r̂(t)

)
, (7.10)

where e(t) = yd(t) − y(t), r̂(t) is governed by (7.9). Equations (7.9), (7.10) de-
scribe the first-order feedback controller. The control signal u(t) = kpe(t) + r̂(t) is
calculated based on the error e(t) measurement only. The gains kp > 0 and λ > 0
are the controller parameters.

The closed-loop system (7.1), (7.9), (7.10) performance differs from that of the
system with the controller (7.5), described in Sec. 7.3.1 due to the estimation error
εr(t) = r(t)− r̂(t). This error is caused by the difference in the initial conditions of
the external and estimated signals, variations of the estimated variable r(t) (due to
fluctuation ϕ(t) of yd(t) and inconstancy of f(t)), and the measurement errors. To
find the estimation error let us write down the plant–observer model taking into
account representation (7.3) for the reference signal yd(t). We get the following
equations







ẏ(t) = up(t) + f(t),

e(t) = yd,0 + vdt + ϕ(t)− y(t),

r̂(t) = σ(t) + λe(t),

σ̇(t) = −λσ(t)− λ2e(t) + λup(t).

(7.11)

where up(t), f(t), yd,0, vd, ϕ(t) are external inputs. After simple algebra we obtain
from (7.11) the following equation for the estimation error εr(t):

εr(t) = µ(t)− ξ(t), (7.12)

µ̇(t) + λµ(t) = λξ(t), µ(0) = µ0,

where µ(t) = vd(1 − λt) − σ(t) − λyd,0 + λy(t) and ξ(t) = f(t) + λϕ(t). We see
that the error εr(t) is independent of up(t), yd,0, vd in (7.11).

Taking into account the estimation error εr(t), the control law (7.5) reads as

up(t) = sat[0,up,max]

(
kpe(t) + vd − f(t)− εr(t)

)
, (7.13)

and the closed-loop system dynamics is described by (7.1), (7.12), (7.13).

If there exists a fluctuation of the desired production ϕ(t) 6= const, convergence of
the demand tracking error e(t) to zero can not be attained. In such a case it is
advisable, both for simplification of the analysis and for system industrial applica-
bility, to assure convergence of the system trajectories to each other for different
initial conditions. This property is represented by the notion of the incremental
stability (Angeli, 2002). To verify incremental stability of the considered system
let us rewrite (7.1), (7.5) in the transformed coordinates. Introduce a new variable
z as z(t) = y(t)− yd,0 − vdt. Differentiating z(t) w.r.t. t and taking in view (7.1)
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we obtain that ż(t) = up(t)− vd+ f(t). Then the demand tracking error e(t) reads
as

e(t) = yd(t)− y(t) = yd,0 + vdt+ ϕ(t)− y(t) = ϕ(t)− z(t).

Let us rewrite expression (7.5) for the control signal up using the standard (symmet-
ric) saturation function satm(x) = min

(
m,max(−m, x)

)
. Introducing the “unsatu-

rated” control signal as u(t) = kpe(t)+vd−f(t) we obtain that up = sat[0,up,max](u) =
satm(kpe+ vd − f −m) +m. This leads to the following closed-loop system model
in the transformed coordinates:

ż(t) = ū(t) + η(t), (7.14)
{

ū(t) = satm
(
kpe(t) + r̂(t)−m

)
,

e(t) = ϕ(t)− z(t),
(7.15)

{

r̂(t) = σ(t) + λe(t),

σ̇(t) = −λσ(t)− λ2e(t) + λ(ū(t) +m),
(7.16)

where η(t) = f(t) +m− vd, m = up,max/2.

Recall that convergent systems being excited by a bounded input have a unique
bounded globally asymptotically stable steady-state solution (Pavlov et al., 2004,
2006). Therefore, for any given input, the solutions of the convergent system, inde-
pendently of the initial, conditions converge to the uniquely defined limit solution.

Let us check if this property is valid for system (7.14)–(7.16), forced by the reference
signal ϕ(t). Let us apply the general results presented in Andrievsky et al. (2009).
For doing that, rewrite the closed-loop system model in the following state-space
form:

ẋ(t) = Ax(t) +B satm(u) + Fw(t),

u(t) = Cx(t) +Dw(t), z(t) = Hx(t) (7.17)

To this end, introduce the variables ψ(t) = σ(t)−m and ρ(t) = λe(t) + σ(t)−m.
In the new notation, (7.14)–(7.16) read as

ż(t) = ū(t) + η(t),

ū(t) = satm
(
kpe(t) + ρ(t)

)
,

e(t) = ϕ(t)− z(t), (7.18)

ρ(t) = ψ(t) + λe(t),

ψ̇(t) = −λψ(t)− λ2e(t) + λū(t),

η(t) = f(t) +m− vd.

Introducing the state-space vector x(t) ∈ R
2 as x = [x1, x2]

T where x1(t) = z(t),
x2(t) = ψ(t) and the external input vector w(t) ∈ R

2 as w = [w1, w2]
T, where

w1(t) = ϕ(t), w2(t) = η(t) we obtain the system model in the form (7.17) with the
following matrices:

A =

[
0 0
λ2 −λ

]

, B =

[
1
λ

]

, F =

[
0 1

−λ2 0

]

, (7.19)

C =
[
− (kp + λ), 1

]
, D =

[
kp + λ, 0

]
, H = [1, 0].
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Let us introduce the following assumptions.

Assumption 16. There exists a number κ, 0 < κ < up,max

2
, s.t. for all t the

following inequalities

κ ≤ vd − f(t) ≤ up,max − κ.

are satisfied. Thus the product demand rate together with external perturbations lie
within the admissible bounds of the machine production rate with some margin κ.

Assumption 17. Function ϕ(t) is bounded, i.e. there exists a constant Cϕ > 0
s.t. |ϕ(t)| ≤ Cϕ for all t, and uniformly continuous on (−∞,∞).

The convergent property of system (7.14)–(7.16) is given by the following Theorem.

Theorem 11. System (7.14)–(7.16) is convergent in the following sense: for all
kp > 0, λ > 0 and for any reference signal (7.3), satisfying Assumptions 16 and 17
there is unique solution col(z̄(t), σ̄(t)) bounded on (−∞,+∞) and this solution is
globally asymptotically stable uniformly in t0 and uniformly w.r.t initial conditions
from any compact set.

Proof. At first let us show that the considered system is uniformly ultimately
bounded. Perform a similarity transformation x̄ = Tx with the following nonsin-
gular matrix

T =

[
1 0
−λ 1

]

.

In the transformed coordinates the state-space system representation has the fol-
lowing matrices:

Ā=TAT−1=

[
0 0
0 −λ

]

, B̄=TB=

[
1
0

]

, F̄ =TF =

[
0 1

−λ2 −λ

]

,

C̄ = CT−1 = [−kp, 1], D̄ = D, H̄ = H.

Then the state-space system equations in expanded form with respect to the trans-
formed variables are as follows:

{

˙̄x1(t) = satm(u) + η(t),

˙̄x2(t) = −λx̄2(t)− λ2ϕ(t)
(7.20)

u(t) = −kpx̄1(t) + x̄2(t) + (kp + λ)ϕ(t),

where η(t) = f(t) + m − vd(t). The second equation of system (7.20) represents
asymptotically stable LTI system (recall that λ > 0), forced by the bounded input
ϕ(t). Then there exists lim supt→∞ |x̄2(t)|. Consider the first equation of (7.20)
and introduce the Lyapunov function V (x̄1) = x̄21. The time derivative of V (x̄1)
along the solutions of (7.20) is given by

V̇ = 2x̄1
(
satm

(
− kpx̄1 + x̄2 + (kp + λ)ϕ

)
+ η(t)

)
(7.21)
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Since |η(t)| ≤ m− κ < m by Assumption 16, and ϕ(t) is bounded by Assumption
17 it follows that satm

(
− kpx̄1 + x̄2 + (kp + λ))ϕ = m · sign(x̄1) if kp|x̄1| >

|x̄2|+ (kp + λ)|ϕ|+m and therefore

V̇ ≤ −2κ|x̄1| < 0 if kp|x̄1| > |x̄2|+ (kp + λ)|ϕ|+m. (7.22)

Implying that system (7.20) is uniformly ultimately bounded.

The proof now can be continued along the lines of proof of Theorem 11 of (An-
drievsky et al., 2009).

Remark. Assumption 16 is not necessary for ensuring boundedness of the system
error. This assumption may be weakened by permission for vd − f(t) to leave
the interval (0, up,max) for some “short periods”, see van den Berg et al. (2006) for
details.

7.4 Control of a line of manufacturing machines

7.4.1 Manufacturing line model

Consider a line of N manufacturing machines M1, M2, . . .MN , which are separated
by buffers Bj, j = 1, . . . , N with infinite capacity, see Figure 7.1. The first machine
M1 is supplied by raw material, the Nth machine MN produces finished product.
Each machine Mj takes out a raw product from the corresponding input buffer Bj

and puts a processed product to the output buffer Bj+1. In what follows suppose
that there is always sufficient raw material to feed the first machine, i.e. that the
buffer B1 is never exhausted.

Figure 7.1: Schematics of a line of N manufacturing machines. Mj – machines, Bj –
buffers, j = 1, . . . , N .

Assume that a manufacturing machine produces items continuously in time t∈ R

with a certain production rate uj(t) ∈ R, where j = 1, . . . N is a number of the
machine. The total amount of items produced by jth machine is described by a
continuous variable yj(t) ∈ R. Interaction between the machines is described by
the buffer content variables wj(t) = max(yj−1 − yj, 0), j = 2, . . . , N . The case of
wj(t) = 0 means absence of the raw material in the input buffer of jth machine and,
therefore, the machine Mj works at the rate of its raw material inflow (for more
details see Fillipov (1988)). The above reasons lead to the following continuous
model of the manufacturing machine:

ẏj(t) =

{

uj(t) + fj(t), if wj(t) > 0,

0, otherwise,
(7.23)
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where t∈ R stands for continuous time argument; j = 1, . . . , N is a machine num-
ber; variables fj(t)∈ R denote external disturbances. For example, fj may describe
manufacturing losses, or variations of the machine capacity. The production rates
uj are bounded by umax due to machine capacity limitation. In the sequel we as-
sume, without loss of generality, that all the machine capacities in the line have
the same upper bound umax. Since the production rates uj can not be negative,
the following bounds are valid for uj(t):

0 ≤ uj(t) ≤ umax, j = 1, . . . , N, ∀t ≥ 0. (7.24)

Inequalities (7.24) lead to a saturation effect in the system. This effect restricts
the production rate, and complicates design of the controller and the system per-
formance analysis.

Summarizing, we obtain the following manufacturing line model







ẏ1(t)=u1(t)+f1(t),

ẏ2(t)=
(
u2(t)+f2(t)

)
· sign(w2(t)),

. . . . . .

ẏN(t)=
(
uN(t)+fN(t)

)
· sign(wN(t)),

(7.25)

where sign(θ) =
(
1, if θ > 0 | 0, otherwise

)
.

7.4.2 Decentralized control strategy

Let us extend the described above control strategy for a single-machine (7.9),
(7.10) to control of a manufacturing line. The direct usage of (7.9), (7.10) for
each machine is unsatisfactory, because it does not take into account the buffer
contents, which leads to exhaustion of some buffers or, alternatively, to stacking
in buffers an extra amount of material. Besides, from implementational reasons,
it is desirable to organize interactions between the neighboring machines only and
avoid transferring the reference signal to each machine. Due to these reasons,
in this chapter we propose the modification of the control strategy (7.9), (7.10),
intended to control of a manufacturing line.

Firstly, introduce the desirable constant level of the buffer contents wd > 0. Add
the “penalty” term kw

(
wd − wj+1(t)

)
(used to slow down the production in case

the buffer content is bigger than the desired one), where kw > 0 is a certain gain
(designed parameter) to jth control action uj(t). Secondly, change the demand
signal for jth machine to ensure equality yj−1(t) = yj(t) + wd in the steady-state
nominal regime. Starting from these reasons, the following control strategy for a
line of N machines is obtained. This strategy is described below in recursive form.

Take the control law for Nth machine in the form (7.9), (7.10), namely let the
control signal uN(t) be calculated as







uN = sat[0,umax]

(
kpεN + r̂N

)
,

r̂N(t)=σN (t)+λe(t),

σ̇N (t)=−λσN (t)−λ
2e(t)+λuN(t),

(7.26)
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where εN(t) ≡ e(t) = yd(t)− yN(t) is the reference error. Take the control law for
machine Mj , j=1,. . . , N−1 in the following form:







uj = sat[0,umax](kpεj+r̂j + kw(wd − wj+1)
)
,

εj(t) = wd + εj+1(t)− wj+1(t)

r̂j(t)=σj(t)+λεj(t),

σ̇j(t)=−λσj(t)−λ
2εj(t)+λuj(t),

(7.27)

where wj+1(t) = yj(t) − yj+1(t); wd is the buffer contents demand. Formulas
(7.26), (7.27) recursively specify the distributed controller for a line of N ≥ 2
manufacturing machines.

7.4.3 Nominal mode analysis

In what follows let us refer to an operating regime when no buffer is empty and all
the control actions lie within the permissible interval (i.e. no saturation occurs)
as a nominal mode. In this mode, the closed-loop manufacturing system with a
controller may be modeled by following linear state-space equations:

ẋ(t) = Ax(t) +Bg(t) +Bff(t), y(t) = Cx(t), (7.28)

where x(t) =
[
y1(t), σ1(t),. . . , yj(t), σj(t),. . . , yN(t), σN (t)

]
T

∈ R
2N is the system

state-space vector, where yj, σj are outputs of jth machine and state of jth ob-
server, respectively; the column-vector y(t)∈ R

N merges outputs of separate ma-
chines, y(t) =

[
y1(t), . . . , yN(t)

]
T

; g(t) =
[
yd(t), wd

]
T

∈ R
2 is a column vector of

the reference signals; f(t) =
[
f1(t), . . . , fN(t)

]
T

∈ R
N denotes the column-vector

of disturbances. After simple calculations the following matrices in (7.28) may be
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obtained:

A=

2N
︷ ︸︸ ︷














−kwpλ 1 kw 0 0 . . . 0 0
−λkwp 0 λkw 0 0 . . . 0 0

0 0 −kwpλ 1 kw . . . 0 0
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 −kwpλ 1 kw 0
0 0 0 0 −λkwp 0 λkw 0
0 0 0 0 0 0 −kpλ 1
0 0 0 0 0 0 −kpλ 0
















Bg=




















kpλ (N−1)kpλ+kw
λkp λ

(
(N−1)kp+kw)

...
...

kpλ (N−j)kpλ+kw
λkp λ

(
(N−j)kp+kw)

...
...

kpλ kwpλ

λkp λkwp

kpλ 0
λkp 0




















, bfj =




















0
0
...
1
0
...
0
0
0
0




















} 2j−1

} 2j
, (7.29)

Bf = [bf1 , bf2 , . . . , bfN ]∈ R
2N×N ,

C={ci,j}∈ R
N×2N , cj,2j+1 =

{

1, j=2i+1, i = 1, . . . , N

0, otherwise,

where the gains kwpλ = kw+kp+λ, kwp = kw+kp, kpλ = kp+λ are introduced.

To evaluate the closed-loop system performance let us use the following sensitivity
and complimentary sensitivity functions Sj

i (s), T
j
i (s):

T yi
yd
(s)=

Yi(s)

Yd(s)
, Syi

yd
(s)=1−T yi

yd
(s),

where Yi(s), Yd(s) are the Laplace transforms of yi(t), yd(t), respectively, i=1,. . .N .
Due to a tridiagonal form of the system matrix A, its characteristic polynomial
A(s) = det(sI −A) (here I is 2N × 2N identity matrix) can be easily found as

A(s) = (s+ kp)(s+ λ)N(s+ kwp)
N−1. (7.30)

Evidently, the closed-loop system (7.28) is asymptotically stable and its dynamics
are defined by the controller/observer gains kp, kw, λ. The polynomial A(s) is a
common denominator of all transfer functions. From (7.28), (7.29) after simple
algebra and cancelations the common poles and zeros, we obtain the following
expressions for T

yj
yd (s) and S

yj
yd(s):

T yj
yd
(s) =

kpλs+ kpλ

(s+ λ)(s+ kp)
, Syj

yd
(s) =

s2

(s+ λ)(s+ kp)
, (7.31)
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where j = 1, . . . , N . Expressions (7.31) show that, in the nominal mode, all the
machine outputs yj(t) track the reference signal yd(t) with the same dynamics,
defined by the controller/observer gains kp, λ. The gain kw has no influence on
this process. It is also clear that for linearly varying demand yd(t) = yd,0 + vdt the
asymptotic errors are zero i.e. yd(t)− yj(t) → 0 as t→ ∞.

7.5 Numerical example

Consider the manufacturing line from N = 4 machines described by (7.25), (7.26),
(7.27). Let us take the following numerical values of the system parameters (An-
drievsky et al. (2009); Kommer et al. (2009)): up,max = 1.0, kp = 5, λ = 25. Choose
kw = 30.

7.5.1 System behavior in the case of control saturation and

buffer exhaustion

In case of control saturation and buffer exhaustion, the system nonlinearity is
essential. Let us consider the system (7.25), (7.26), (7.27) behavior for a typical
demand yd(t) given by (7.3). Let wd = 0.1 be taken. The first example illustrates
the stage of the system performance when some buffers are empty, therefore, the
machines, fed by these buffers are not able to work. The initial conditions y1(0) = 1,
y2(0) = 4, y3(0) = 3, y4(0) = 2 are taken. The reference signal parameters are
following: yd,0 = 5, vd = 0.5, ϕ(t) = a sin(ωt), where ω = 1.0 s−1. Time histories
of machine outputs yj(t) and the reference signal yd(t) for the case of a = 0 are
plotted in Figure 7.2.
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Figure 7.2: Time histories: y1(t) – solid line; y2(t) – dashed line; y3(t) – dotted line;
y1(t) – dash-dot line; yd(t) – thin solid line. a = 0.

This plot shows that the machine M3 does not work prior to its production require-
ment by the machine M4. The machine M2 is waiting for the raw product to arrive
in the buffer B2 from the machine M1. The machine M4 produces finished product
while the buffer B4 is not empty. It is seen that after the finite transient time
tbuf = 3 s all the buffers have positive amount of product and the machines work
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properly. Time histories of yj(t) for the same initial conditions, a fluctuation ϕ(t)
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Figure 7.3: Time histories: y1(t) – solid line; y2(t) – dashed line; y3(t) – dotted line; y1(t)
– dash-dot line; yd(t) – thin solid line. Fluctuation ϕ(t) magnitude a = 0.5, frequency
ω = 1.0 s−1.

magnitude a = 0.5 and a frequency ω = 1.0 s−1 are plotted in Figure 7.3. It is seen
that some controls are saturated during about 10 seconds duration time interval.
After that the manufacturing line output y4(t) tracks the reference signal with a
good accuracy. It should be noticed that in the steady-state mode the outputs of
the machines differ among themselves on the prescribed value wd = 0.1.

7.5.2 Frequency domain analysis of the manufacturing line

The performance analysis of linear control systems is essentially based on frequency
domain characteristics such as sensitivity function S(iω) and complementary sen-
sitivity function T (iω). The generalized versions of these functions are defined in
(Pavlov et al., 2007) for nonlinear Lur’e systems, possessing convergence property.

Let the nonlinear system be modeled as

ẋ(t) = f(x, r), y(t) = h(x, r), e(t) = r(t)− y(t), (7.32)

where x(t) ∈ R
n is a state vector, y(t) ∈ R is the system output, r(t) is the

reference signal, e(t) is the reference error. Assume that r(t) = a sin(ωt), where a
is the amplitude and ω is the frequency of the input (reference) signal, and that
the system (7.32) is uniformly convergent in this class of inputs. Then there exists
an unique steady-state 2π

ω
-periodic solution x̄(t) of (7.32) with the corresponding

response ȳ(t) and ē(t) = r(t) − ȳ(t) (Pavlov et al. (2005); van den Berg et al.
(2006)).

Definition (Pavlov et al., 2007): The functions

S(a, ω) = ‖ē‖2/‖r‖2, T (a, ω) = ‖ȳ‖2/‖r‖2

where ‖z‖2 =
(

ω
2π

∫ 2π/ω

0
z(τ)2 dτ

)
1/2

, are called, respectively, the generalized sen-

sitivity and the generalized complementary sensitivity functions of the convergent
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system (7.32). For the linear case, the functions S(a, ω) and T (a, ω) coincide
with customary amplification frequency characteristics |S(iω)|, |T (iω)|, respec-
tively. For nonlinear systems, the functions S(a, ω) and T (a, ω) depend not only
on the excitation frequency ω, but also on the amplitude a. These generalized
sensitivity functions may be evaluated numerically based on system (7.32) simu-
lation with given harmonic input r(t). Significant reduction of the computation
costs may be achieved by using the generalization of the describing functions (
harmonic linearization) method on nonautonomous convergent systems given in
(van den Berg et al., 2007). In this thesis we limit our performance evaluation
only to a numerically based approach and consider the system analysis by means
of describing functions as part of our future research.

Thus, let us calculate the function S(a, ω) numerically, based on the system sim-
ulation.

To rephrase (7.25), (7.26), (7.27) in the form of the system (7.32), excited by
harmonic input signal, let us make the following coordinate transformation (An-
drievsky et al., 2009). Define the transformed coordinates zj(t) as zj(t) = yj(t) −
yd,0 − vdt, j = 1, . . . , 4, and introduce the vector z(t) = [z1(t), . . . , z4(t)]

T ∈ R
4.

Then, taking into account (7.3), expressions for the reference errors ej(t) = yd(t)−
yj(t) read as ej(t) = ϕ(t)− zj(t) (recall that ϕ(t) denotes the demand fluctuation
about the linear trend).
The calculations were made for the sets of amplitudes a ∈ {0.025, 0.05, 0.1, 0.5}
and frequencies ω ∈ [0.1, 30] s−1 of the harmonic fluctuation ϕ(t), and for the
different values of the demand rate vd ∈ {0.5, 0.7, 0.9} s−1. The simulations were
made only for the cases of nondecreasing manufacturing demand yd(t), i.e. when
the inequality a · ω ≤ vd was fulfilled. The results are depicted in Figure 7.4. It
is seen that for the case of half-load line (i.e. when vd = 0.5 · umax = 0.5), the
nominal mode is imposed in the manufacturing line and the sensitivity function
S(a, ω) coincides with that of the linear system. For greater values of the load
(e.g. 70% or 90% from the maximal line capacity), the saturation takes effect on
system performance for sufficiently large fluctuation magnitudes. The reference er-
ror magnitude achieves that of fluctuation, or even exceeds it. As an example, the
time histories of z4(t), e4(t), u4(t) for vd = 0.9 s−1, a = 0.5, ω = 1.0 s−1 are plotted
in Figure 7.5. One should notice that even in this case, the manufacturing line is
capable to work. This last is due to the fact that, after some short period of time,
the relative error of the finished product is small in comparison with the product
demand. Also it is worth to mention that the convergence property remains for
the system, despite that the controls are periodically saturated during some of the
time intervals. This statement may be rigorously proved applying the approach
of van den Berg et al. (2006). As an illustration, a pencil of trajectories z4(t) for
different initial conditions is plotted in Figure 7.6. The simulations were made for
the same demand signal yd(t) as above and random initial conditions yj(0) ∈ [0, 3],
j = 1, . . . , 4.
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Figure 7.4: Nonlinear sensitivity function S(a, ω) = ‖ēj‖2/‖ϕ‖2. a) vd = 0.5 s−1, b)
vd = 0.7 s−1, c) vd = 0.9 s−1. Fluctuation ϕ(t)=a sin(ωt); 1) a=0.025, 2) a=0.05, 3)
a=0.1, 4) a=0.5.
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Figure 7.6: Pencil of trajectories z4(t); vd = 0.9 s−1, a = 0.5, ω = 1.0 s−1.

7.6 Conclusions

In this chapter the problem of controlling manufacturing machine such that a
customer demand is tracked with a desired accuracy under assumptions that the
nominal demand rate is constant (as well as possible disturbances) is studied. A
combination of feedforward-feedback controller with a reduced-order observer is
proposed and the system behavior in time domain and a steady-state performance
of the system with periodic demand fluctuations are analyzed. Furthermore this
control approach is extended to a tandem production line configuration. Here the
results on nominal model analysis show the asymptotic stability of the closed-loop
system. A numerical example was presented, where an unidirectional production
line of 4 machines was tested under control saturation and buffer exhaustion con-
ditions. The frequency domain tool for the analysis of nonlinear systems satisfying
the convergency property, is introduced and shown to be an efficient method for
the performance evaluation of production networks. In our future research we are
interested in performing a comparison of the feedforward-feedback observer based
production control using the sensitivity function-based analysis with existent pro-
duction techniques such as Kanban and Control Point Policy.



8
Conclusions and future directions

Abstract | This chapter summarizes the conclusions from the research presented in
the thesis. The main contributions are highlighted and future research directions are
presented.

8.1 Conclusions

Motivated by the need of manufacturing industries to maintain high customer
satisfaction and at the same time minimize their product inventories the following
research objective was formulated:

• evaluate the performance of demand-driven control mechanisms for manu-
facturing networks by applying classical tools from control theory.

After an extensive review of existing literature, the suitable control methodology
was identified as a surplus-based control and, in line with the main objective, the
following two goals were posed:

• give a general mathematical interpretation to the surplus-based production
control methodology and identify important performance indicators for a
manufacturing network under the aforementioned control;

• evaluate surplus-based control performance by analytical and experimental
means for several commonly used network topologies.

By reading through this thesis work it could be noticed that the above mentioned
goals were pursued in every chapter of this book. Starting from Chapter 2 the re-
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search results reported in this thesis were subdivided based on the studied network
topology and their models. The evaluated network topologies were

• a single machine serving one product type in Chapter 2 based on discrete
time (DT) model and in Chapter 7 based on continuous time (CT) model

• a unidirectional manufacturing line serving one product type in Chapter 3
based on DT model and Chapter 7 based on CT model

• a single machine and a unidirectional manufacturing line serving multiple
product types in Chapter 4 based on DT model

• a re-entrant machine and a re-entrant manufacturing line serving one product
type in Chapter 5 based on DT model

The contributions of this research can be subdivided into theoretical, simulation-
based and experimental parts.

8.1.1 Theoretical contributions

The main theoretical contributions of this thesis are:

• the obtained flow models for the above mentioned network topologies;

• the mathematical interpretation of the surplus-based production control method-
ology;

• the derived analytical relation between the production tracking accuracy and
the base stock levels for the studied manufacturing networks.

Throughout the chapters of this thesis the complexity of performance analysis
increments in line with the studied network configurations, starting from the basic
configurations, such as a single machine and a manufacturing line serving one
product type till more complex networks such as multi-product lines and re-entrant
networks.

For example, the obtained bounds on demand tracking accuracy (2.16) and (2.17)
of Chapter 2 can be interpreted through the idea that in the steady state the de-
mand tracking error of a single machine will not grow further than the maximal
product demand rate of one time step and will not present a bigger product excess
than the one given by the difference between the minimal demand rate and the
maximal production rate of one time step, respectively. Also similar bounds on
demand tracking accuracy were obtained in case of a line, which were obtained
under the assumption that sufficiently large base stock levels are kept in the net-
work. Another theoretical result was obtained from the relation between the base
stock levels and the production tracking accuracy in a line, which was reported
in Theorem 5 of Chapter 3. This relation reflects the idea that increasing base
stock levels in a manufacturing line will shorten the network’s reaction time to the
product demand growth, which, in consequence, will increase the tracking accu-
racy of such a network. Also this relation shows that, due to the network capacity
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limitation, there exists a certain base stock threshold value after which the demand
tracking accuracy of the network will not change. Though these two ideas might
seem qualitatively intuitive, the obtained estimate of this relation is not. Further
results on a manufacturing line show that with or without limited inventory levels
the production demand tracking accuracy of the network remains the same. Nat-
urally, what differs is the time that is needed for a line with limited inventory to
reach the steady state tracking accuracy level in comparison to a line with unlim-
ited inventory. Thus further studies are needed in order to estimate the duration
of the transient behavior in the network. This issue is approached further in the
section on future directions of this chapter.

Chapter 4 concerns the performance analysis of more complicated network struc-
ture namely a multi-product manufacturing line. As the name suggests the study
is evolved from one product serving manufacturing line into a line with the ca-
pability of serving several types of products. What complicates the analysis of
such a network in comparison with a one product serving line is that each machine
can receive products from different routings, but the products from only one of
the routings can be served at a time. For the analysis of a single multi-product
machine it was considered that the processing time may change depending on the
product type, while for the line this assumption was omitted, but the processing
time between the machines was considered to differ. For the single multi-product
machine as well as for a line it was shown that the tracking accuracies for every
product type are interrelated.

In Chapter 5 it was shown how the obtained results of Chapter 4 can be extended
to a re-entrant machine followed by a re-entrant line. A complete analytical rela-
tion was obtained between the inventory levels and demand tracking accuracy of
a single re-entrant machine with multiple production stages. Similarly to a multi-
product machine it was considered that a re-entrant machine can have a different
processing speed for each production stage. For the re-entrant line further studies
are needed to obtain a similar relation.

In the aforementioned results the production control mechanism had no influence
on the processing speed of a network, i.e. each machine was controlled by on and
off actions of the controller. It is also important to consider such networks where a
control action can also influence production speed of every machine in the network.
For that purpose in Chapter 7 a continuous time flow models of a single machine
and a line were derived. In previous works a simple PI-controller was proposed to
solve the problem. Due to saturation in the control loop, an anti-windup compen-
sator (see van den Bremer et al. (2008)) was required in order to avoid undesirable
oscillations in the presence of disturbances. In the research reported in Chapter
7 a simpler approach was implemented. Under the assumptions that the nominal
demand rate is constant as well as possible disturbances an observer was designed
to estimate this rate, so it could be utilized in the control algorithm.
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8.1.2 Simulation-based contributions

The simulation-based contributions of this thesis are

• the theoretical results on the performance obtained for the DT flow models
of manufacturing networks where shown to be valid for the DE models of a
single machine, a line and a re-entrant machine topologies;

• the performance in terms of the steady state demand tracking errors and
inventory levels was tested for a line, a re-entrant machine and a re-entrant
network operated under a particular case of Hedging Point, Conwip and Base
Stock policies;

• the studied surplus-based production controller presented as a particular case
of Hedging Point policy was shown to be superior in comparison with other
two.

8.1.3 Experimental contributions

The experimental contributions of this thesis are obtained by means of a liquid-
based emulator of manufacturing networks that consists of several electrical pumps
and liquid reservoirs. The electrical pumps emulate a manufacturing machine
behavior while the liquid reservoirs serve as the intermediate product storages also
called buffers. In the platform, pumps and tanks can be interconnected in a flexible
manner. In that way the prototype permits an easy and intuitive way of studying
manufacturing control techniques and performance for several network topologies.
The contributions are as follows:

• An experimental prototype is invented, designed and developed for education
and research purposes.

• An accurate description and capabilities of this experimental hardware are
presented.

• A similar behavioral pattern of manufacturing line under surplus-based con-
trol and a re-entrant network under clearing policy was shown on the liquid-
based manufacturing networks emulator.

More detailed conclusions on the obtained results are presented at the end of each
chapter of this book.

8.2 Future directions

The future directions of presented results can be subdivided into two main streams
of research. The first stream concerns the future development of existing results
and further analysis of performance techniques for manufacturing networks. The
second stream refers to applications of existing results in other domains of inter-
est such as irrigation networks, and offshore oil and gas production and supply
networks.
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8.2.1 Manufacturing Networks

With regards to the presented research results still quite a few open problems can
be found on the performance analysis of evaluated demand-driven manufacturing
networks. For the case of discrete time flow models the extension of results on
performance presented in Chapter 5 for a single machine to a re-entrant line with
bounded buffers could be considered. Currently the obtained bounds on demand
tracking accuracy are limited to a certain non zero threshold value on inventory
levels (see the Assumption 15) in the network as well as the assumption that
production speed for every stage of each re-entrant machine in the network is the
same. Further research on the complete relation between the production tracking
accuracy and inventory level of multi-product network of Chapter 4 is also of
interest. The solution to the above mentioned problems lies in the extension of the
Lyapunov functions presented in the corresponding Appendices of Chapters 4 and
5.

Another open problem of interest, the solution of which can follow from the ob-
tained results, concerns a demand planning mechanism. The current analysis pre-
sented in this work assumes that the production demand rate itself is unknown,
but what is known is that the demand rate is lower than the network’s produc-
tion capacity. Thus it is assumed that product orders arriving to a network are
distributed (e.g. by means of ERP, SAP tools) in such a manner that the network
is able to fulfill them. It can be of interest to evaluate if the obtained results (
Lyapunov functions) can be used to obtain the time at which the demand tracking
errors of a network reach the steady state. This time to reach steady state can be
used in demand planning in order to estimate an order completion time. In other
words, by knowing the current number of produced products in the manufacturing
network, production speeds and base stock levels, a new order from a customer
can be received and by relying on the time to steady state the order completion
time can be immediately provided without a need of simulation. Naturally, the
accuracy of time to order completion will depend on the level of details included in
the model of a manufacturing network. Thus it is also of importance to consider
delays and setup times that may occur in a system. It is also of interest to consider
such networks where the production speed of the machines could be adjusted to
follow the production demand in a more accurate manner. Thus another line of
future research concerns the further analysis and extension of feedforward-feedback
controller presented in Chapter 7 for more complex network topologies.

8.2.2 Other Applications

Alternative application of the results of this thesis to irrigation networks, and oil
and gas production is discussed in this section.

Irrigation networks

In irrigation networks, water is typically transported along the open-water chan-
nels under the power of gravity. The flow of water through the network is regulated
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by gates along the channels. The open-water channels in an irrigation network can
be thought of as strings of pools linked by the regulating gates. Another possible,
but more expensive, water transportation may consist in pipelines, reservoirs and
water pumps. In terms of manufacturing network models, the gates or pumps
can be associated to machines and pools or other type of reservoirs to buffers. A
typical control problem in such systems is to maintain an efficient distribution of
water throughout the network in order to satisfy its demand (see e.g. Cantoni
et al. (2007), Negenborn et al. (2009) and references therein). Different from man-
ufacturing networks, the water demand is commonly known in advance. Further
studies are required to evaluate the applicability of our results to this important
application.

Oil and gas production

Among the existing challenging problems in oil and gas production, two research
directions, which are offshore production and petroleum products distribution, can
be of interest for alternative application of the results of this thesis. In offshore
oil and gas production, a mixture of water, gas and oil is extracted from under-
water wells and transported by pipelines to the processing centers. Typically this,
mixture is transported by its natural pressure and for the purpose of uniform flow,
mechanical and electrical chokes and reservoirs are used along the pipeline. In
other cases, due to the transportation distance or the density of the mixture, elec-
trical submersible pumps are also used. The control problem typically consists in
regulating the pressure and volumetric flow rate of the mixture’s flow, so as to
provide its uniform flow throughout the pipelines as well as to extend the lifetime
of the distribution system itself (see e.g., Wartmann et al. (2008), Meglio et al.
(2010), and references therein).
Another interesting research direction is towards a petroleum products distribu-
tion. Large volumes of different types of refined petroleum products are transported
through multi-product pipelines from major supply sources to distribution centers
near market areas. Large volumes of different petrol types (also called batches) are
pumped back-to-back in the same pipeline for its delivery to distribution centers.
By abstracting from the petrol distribution, operations can be seen as if different
types of liquid are pumped through the same tube, which at the end has several
cranes, one for each product type extraction, for example. Research concerning
these type of applications (see e.g., Cafaro and Cerdá (2004), Cafaro and Cerdá
(2012), Sasikumar et al. (1997) and references therein) also concerns the problem
of market demand tracking, while satisfying many pipeline operational constraints.
In this type of scheduling problems, the sequence and lengths of so called pumping
runs are of a great importance. Association with demand driven manufacturing
networks can be also found with respect to these applications. Further studies are
required to evaluate the usefulness of our results and accuracy of our models with
respect to these applications.



A
Proof of Theorem 1

Based on (2.4), it is easy to see that without any loss of generality, the class of
admissible control strategies (2.3) can be reduced to those processing only the
tracking errors:

u(k) = Uk[ε(0), . . . , ε(k)] ∈ {0; 1} .

We start with the problem (2.6). The proof is based on the min-max dynamic
programming. So we first introduce the cost-to-go:

Vτ (a) = min
Uτ (·),...,UT−1(·)

sup
ξ(·)

T∑

k=τ

|ε(k)|p, VT [a] := |a|p, (A.1)

where the minimum is over all functions Uk(εk, . . . , εT−1) ∈ {0; 1}, and ε(k) is
obtained from (2.4), where k = τ, . . . , T − 1 and ε(τ) = a. This function satisfies
the Bellman equation (Bertsekas (2005)):

Vτ−1(a) = min
u=0;1

sup
ξ∈(0;1)

{|a|p + Vτ [a− u+ ξ]} , (A.2)

and the optimal strategy is given by u(τ − 1) = U0
τ−1[ε(τ − 1)], where U0

τ−1[a] is
the point u furnishing the minimum in (A.2).

Lemma 1. The cost-to-go (A.1) is the piece-wise smooth even function depicted
in Figures A.1 and A.2, and

U0
τ (a) = sign+(a) for τ = 0, . . . , T − 1. (A.3)

Proof. We first note that (A.2) can be shaped into

Vτ−1(a) = min







S0
︷ ︸︸ ︷

sup
ξ∈(0;1)

Vτ [a + ξ] ;

S1
︷ ︸︸ ︷

sup
ξ∈(0;1)

Vτ [a− ξ]






+ |a|p. (A.4)

147



148 A Proof of Theorem 1

Here S0 and S1 correspond to u = 0 and u = 1, respectively. So U0
τ−1(a) = σmin,

where σmin = 0, 1 is the index of the term Sσ furnishing the minimum in (A.4). We
also note that since the function a 7→ |a|p is even, simple induction on τ = T, . . . , 0
and the last equation from (A.1) show that Vτ [·] is even for any τ . With this in
mind, it becomes clear that firstly, σmax = 0, 1 for a = 0 and secondly, substitution
a := −a in (A.4) switches σmin to the alternative value. This permits us to focus
on a > 0 in the subsequent proof. For a > 0, formula (A.3) (to be justified) takes
the form U0

τ (a) = 1.

(a) (b)

Figure A.1: (a):The graph of VT ; (b): The graph of VT−1

(a) (b)

Figure A.2: (a):The graph of VT−2; (b): The graph of VT−n with n ≥ 3

We proceed with immediate proof of the lemma, arguing by induction on τ =
T − n, n = 0, 1, . . ..

n = 0. The claim is immediate from the last equation in (A.1).

n = 1.

• a ≥ 1

2
: Then evidently, S1 = |a|p, and S0 = |a+ 1|p > S1. So, due to (A.4),

VT−1(a) = 2|a|p, as is depicted in Fig. A.1(b), and U0
τ (a) = 1.

• 0 < a <
1

2
: Since VT (·) is even, S1 = |a − 1|p < |a + 1|p = S0. So VT−1 =

|a− 1|p + |a|p, as is depicted in Fig. A.1(b), and U0
τ (a) = 1.

n = 2

• a ≥ 1 : Similarly, in (A.4), the supremum S0 is equal to 2|a + 1|p, whereas
S1 = 2|a|p < S0.
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• 1

2
≤ a < 1 : S1 =







2|a|p a > p

√
1
2

1 a < p

√
1
2






< 2|a+ 1|p = S0

• 0 ≤ a <
1

2
: S1 =







2|a− 1|p a < 1− p

√
1
2

1 a > 1− p

√
1
2






< 2|a+ 1|p = S0

Thus VT−2(a) =







3|a|p a ≥ p

√
1
2

1 + |a|p 1− p

√
1
2
≤ a < p

√
1
2

2|a− 1|p + |a|p a < 1− p

√
1
2

, as is depicted in

Figure A.2(a), so U0
τ (a) = 1.

Figure A.2(a) is a particular case of Figure A.2(b). So to complete the proof, it
suffices to show that

C) Figure A.2(b) is correct and U0
T−n(a) = 1

for n = 2, 3, . . ., arguing by induction on n.

Suppose that C) is true for some n ≥ 2. To compute VT−n−1(a), we consider
separately several cases.

• a ≥ p

√
n

n+1
: Here p

√
n

n+1
> p

√
n−1
n

. It follows that in (A.4), the supremum S1 is

attained at ξ = 0 and thus equals (n + 1)|a|p, whereas S0 = (n + 1)|a + 1|p > S1.
Thus C) does hold for n := n + 1.

• p

√
n−1

n
≤ a ≤ p

√
n

n+1
: Then evidently S1 = n, whereas S0 = (n + 1)|a+ 1|p >

S1. Thus C) does hold for n := n + 1.

• 1 − p

√
n−1

n
≤ a ≤ p

√
n−1

n
: Since the left end a− 1 of the interval [a − 1, a] is

still to the right of the first fracture point of the graph from Figure A.2(b), the
situation replicates the previous one.

• 1 − p

√
n

n+1
≤ a ≤ 1 − p

√
n−1

n
: That end is to the left of the first fracture point.

So either S1 = n (and is attained at the third fracture point) or S1 = (n+1)|a−1|p

(and is attained at ξ = 1). Elementary comparison shows that in fact S1 = n, and
so the situation still replicates the previous two ones.

• 0 ≤ a ≤ 1 − p

√
n

n+1
: Then conversely, S1 = (n + 1)|a − 1|p, whereas S0 =

(n + 1)|a + 1|p > S1. Thus C) does hold for n := n + 1, which completes the
proof.

For the performance index (2.6), Theorem 1 is straightforward from Lemma 1 and
the dynamic programming principle (Bertsekas (2005)).

To deal with (2.7), we introduce the following intermediate performance criterion

Jav = lim sup
T→∞

sup
ξ(0),...,ξ(T−1)

1

T

T∑

k=0

|ε(k)|p. (A.5)
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It is clear that

inf
U
Jav ≥ lim sup

T→∞

1

T
min
U
JT

(A.1)
== lim sup

T→∞

V T
0 (a)

T
,

where the upper index T in V T
τ underscores that the cost-to-go is computed for the

time horizon [0 : T ]. As a result, Lemma 1 and the evident inequality J∞ ≥ Jav

imply the following lower estimates

inf
U
J∞ ≥ inf

U
Jav ≥

{

|a|p if |a| ≥ 1

1 otherwise
.

Now we are going to show that this lower estimate of J∞ is attained at the control
strategy (2.8), which will complete the proof.

Let the system (2.4) be driven by the control law (2.8). By invoking (2.5), we
conclude that

ε[k + 1] ∈







(
ε[k]− 1, ε[k]

)
if ε(k) > 0

(
ε[k], ε[k] + 1

)
if ε(k) < 0

(
ε[k]− 1, ε[k] + 1

)
if ε(k) = 0

.

Hence

f−[ε(k)] ≤ ε(k + 1) ≤ f+[ε(k)], where

f−(ε) := min{ε;−1}, f+(ε) := max{ε; 1}.

It follows that
ε−(k) ≤ ε(k) ≤ ε+(k) ∀k,

where ε−(k) and ε+(k) are the solutions of the following recursions

ε±(k + 1) = f±[ε±(k)], ε±(0) = a.

It is evident that
ε±(k) ∈

[

min{−|a|,−1}; max{|a|; 1}
]

,

which completes the proof.
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Proof of Theorem 2

For (2.11) let us introduce the following Lyapunov function

Vk = max

(∣
∣
∣
∣
ε(k)− vd −

(α2 + α1)

2
+

1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−

1

2
, 0

)

> 0, (B.1)

where, for the sake of brevity, Vk = V (ε(k)), with Vk = 0 ∀ε(k) ∈ [vd + α1 −
1, vd + α2].

Here, ∆Vk along the solutions of ε(k) is given by

∆Vk = Vk+1 − Vk,

∆Vk = max

(∣
∣
∣
∣
ε(k) +W (k)−

(α2 + α1)

2
(B.2)

− sign+(ε(k)) +
1

2

∣
∣
∣
∣
−

(α2 − α1)

2
−

1

2
, 0

)

− Vk,

where, omitting the detailed analysis, ∆Vk = 0 ∀ε(k) ∈ [vd + α1 − 1, vd + α2].

In order to proof that ∆Vk < 0 ∀ε(k) ∈ R− [vd + α1 − 1, vd + α2], let us subdivide
the analysis in 4 cases.

Case 1:

Let ε(k) satisfy the following inequality

ε(k) > 1 + α2 −W (k). (B.3)

From (B.3) it follows that
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ε(k) > 1 + α2 −W (k)
(2.15)
> α2 + vd

(2.12,2.14)
> 0 (B.4)

and therefore ∆Vk is defined by

∆Vk = max

(∣
∣
∣
∣
ε(k) +W (k)−

(α2 + α1)

2
−

1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−

1

2
, 0

)

− Vk. (B.5)

Thus, it is also possible to state from (B.3) that

ε(k) +W (k)−
(α2 + α1)

2
−

1

2
> 1 + α2 −

(α2 + α1)

2
−

1

2

=
(α2 − α1)

2
+

1

2

(2.12)
> 0,

and therefore

∣
∣
∣
∣
ε(k) +W (k)−

(α2 + α1)

2
−

1

2

∣
∣
∣
∣

= ε(k) +W (k)−
(α2 + α1)

2
−

1

2
,

which in turn implies from (B.5) that

∆Vk = ε(k) +W (k)− α2 − 1− Vk. (B.6)

From (B.1) if follows that

Vk = max

(∣
∣
∣
∣
ε(k)− vd − α2 +

(α2 − α1)

2
+

1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−

1

2
, 0

)
(2.12,B.4)

= ε(k)− vd − α2. (B.7)

Substituting (B.7) into (B.6) yields

∆Vk = vd +W (k)− 1
(2.15)
< 0. (B.8)

Case 2:
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Let ε(k) satisfy the following inequality

vd + α2 < ε(k) ≤ 1 + α2 −W (k). (B.9)

From (2.15) it follows that vd + α2 < 1 + α2 −W (k) and hence the set defined
by (B.9) is not empty. Inequalities (2.12) and (2.14) imply that vd + α2 > 0 and
therefore from (B.9), ε(k) > 0, so one can rewrite (B.2) as (B.5).

Let us prove that from (B.9) the following inequality holds

∣
∣
∣
∣
ε(k) +W (k)−

(α2 + α1)

2
−

1

2

∣
∣
∣
∣
≤

(α2 − α1)

2
+

1

2
. (B.10)

Indeed, from the second inequality of (B.9) it holds that

ε(k) +W (k)−
(α2 + α1)

2
−

1

2
≤ 1 + α2 −

(α2 + α1)

2
−

1

2

=
(α2 − α1)

2
+

1

2
. (B.11)

Now, from the first inequality of (B.9) one concludes that

ε(k) +W (k)−
(α2 + α1)

2
−

1

2

> vd +W (k) + α2 −
(α2 + α1)

2
−

1

2

= vd +W (k) + (α2 − α1)−
(α2 − α1)

2
−

1

2
(2.12)
> vd +W (k)−

(α2 − α1)

2
−

1

2
(2.15)
> −

(α2 − α1)

2
−

1

2
. (B.12)

Combining (B.11) and (B.12) one concludes that (B.10) holds. Substituting (B.10)
into (B.5) yields

∆Vk = −Vk. (B.13)

Case 3:

Let ε(k) satisfy the following inequality

−1 + α1 −W (k) ≤ ε(k) < vd + α1 − 1. (B.14)
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From (2.15) it follows that the set defined by (B.14) is not empty.

Here, from the second inequality of (B.14)

ε(k) < vd + α1 − 1
(2.12)
< vd + α2 − 1

(2.13)
< 0 (B.15)

and, therefore, from (B.2) it follows that

∆Vk = max

(∣
∣
∣
∣
ε(k) +W (k)−

(α2 + α1)

2
+

1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−

1

2
, 0

)

− Vk. (B.16)

Similarly to Case 2

ε(k) +W (k)−
(α2 + α1)

2
+

1

2
<

(α2 − α1)

2
+

1

2
(B.17)

and substituting (B.17) in (B.16) yields

∆Vk = −Vk. (B.18)

Case 4:

Let ε(k) satisfy the following inequality

ε(k) < −1 + α1 −W (k). (B.19)

Considering (B.19) and (2.15) it follows that

ε(k) < vd + α1 − 1
(2.12)
< 0 (B.20)

and, hence, ∆Vk is given by (B.16).

Following the similar procedure as in Case 1, from (B.16) and (B.19) it yields that

∆Vk = max

(

−ε(k)−W (k) +
(α2 + α1)

2
−

1

2
−

(α2 − α1)

2

−
1

2
, 0

)

− Vk
(B.19)
= −ε(k)−W (k)− 1 + α1 − Vk. (B.21)

Now, from (B.1) let us rewrite Vk as
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Vk = max

(∣
∣
∣
∣
ε(k)− vd − α1 −

(α2 − α1)

2
+

1

2

∣
∣
∣
∣

(B.22)

−
(α2 − α1)

2
−

1

2
, 0

)
(2.12,B.20)

= −ε(k) + vd − 1 + α1.

Combining (B.21) and (B.22) yields

∆Vk = −(vd +W (k))
(2.15)
< 0. (B.23)

Summarizing the 4 cases, we have shown that for the Lyapunov function given by
(B.1) its ∆Vk is defined as:

∆Vk =







−1 + vd +W (k) < 0, Case 1;

−Vk, Case 2;

−Vk, Case 3;

−(vd +W (k)) < 0, Case 4;

−Vk, otherwise.

Thus, we have proven the uniform ultimate boundedness for the solutions of (2.11),
presented in (2.16) and (2.17).
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C
Proof of Theorem 3

First, let us prove that Theorem 3 holds for a line of 2 manufacturing machines
(j = 1, 2) defined by (3.8) and (3.9). With this goal, let us introduce the following
Lyapunov function

V 2M(ε1(k), ε2(k)) = V1(ε1(k)) + V2(ε2(k)), (C.1)

where

V1(ε1(k)) = max

(∣
∣
∣
∣
ε1(k)− vd −

(α2 + α1)

2
+
µ1

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ1

2
, 0

)

,

V2(ε2(k)) =
1

n
max

(∣
∣
∣
∣
ε2(k)− vd −

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ2

2
, 0

)

,

with n be a positive constant. It will be defined later on in the proof.

Here for the sake of brevity V 2M (ε1(k), ε2(k)) = V 2M
k , V1(ε1(k)) = V1k, and

V2(ε2(k)) = V2k, with V 2M
k = 0 ∀εj(k) ∈ [vd + α1 − µj, vd + α2].

Thus, ∆V 2M
k along the solutions of ε1(k) and ε2(k) is given by

∆V 2M
k = V 2M

k+1 − V 2M
k = ∆V1k +∆V2k, (C.2)

where

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
− µ1sign+(ε1(k)) +

µ1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆V2k =
1

n
max

(∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2

−µ2sign+(ε2(k))signBuff(w2(k)− β2(k)) +
µ2

2

∣
∣
∣

−
(α2 − α1)

2
−
µ2

2
, 0

)

− V2k.
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In order to perform a more detailed analysis on ∆V 2M
k , let us divide this proof into

3 cases.

Case 1 (Insufficient Buffer Content and Unsatisfied Demand)

Here we analyse the case where the second machine needs to keep up with the
demand, but its buffer content is not sufficient in order to start working. Suppose
that ε2(k) and w2(k) satisfies the following inequality

0 ≤ w2(k) < β2(k), (C.3)

ε2(k) > 0. (C.4)

Considering the condition (C.4), from (3.17) it follows that

ε1(k) > vd + α2 + ε2(k). (C.5)

Now for (C.3), (C.4), and (C.5), let us rewrite ∆V1k and ∆V2k from (C.2) as

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
−
µ1

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆V2k =
1

n
max

(∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ2

2
, 0

)

− V2k.

(C.6)

where V1k and V2k are defined by (C.1).

From the previous result (see (B.3),(B.9)), we know that for ε1(k) defined by (C.5)
the increment ∆V1k from (C.6) is given by:

∆V1k =

{

−ε1(k) + vd + α2 < 0, if vd + α2 < ε1(k) ≤ µ1 + α2 −W1(k);

−µ1 + vd +W1(k) < 0, if ε1(k) > µ1 + α2 −W1(k).
(C.7)

As for ∆V2k, let us subdivide the analysis of (C.6) into 3 subcases.

Case 1.1

Assume that ε2(k) satisfies the following inequality

0 < ε2(k) ≤ α2 −W2(k), (C.8)

where α2 −W2(k)
(3.10)
> 0.

Thus, from (C.8) and (C.5) the following inequality entailes

ε1(k) > vd + α2. (C.9)

Let us prove that for ε2(k) defined by (C.8) the following inequality holds

∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
≤

(α2 − α1)

2
+
µ2

2
. (C.10)
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Indeed, from the second inequality of (C.8) it gives that

ε2(k) +W2(k)−
(α2 + α1)

2
+
µ2

2
≤ α2 −W2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2
,

α2 −W2(k) +W2(k)−
(α2 + α1)

2
+
µ2

2
=

(α2 − α1)

2
+
µ2

2
.

Now from the first inequality of (C.8) it holds that

ε2(k) +W2(k)−
(α2 + α1)

2
+
µ2

2
> W2(k)−

(α2 + α1)

2
+
µ2

2

= µ2 +W2(k)− α1 −
(α2 − α1)

2
−
µ2

2

(3.10)
> −

(α2 − α1)

2
−
µ2

2
.

Thus, it follows that (C.10) is satisfied.

Now, let us prove that for (C.8) the following inequality holds

∣
∣
∣
∣
ε2(k)− vd −

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
<

(α2 − α1)

2
+
µ2

2
. (C.11)

From the second inequality of (C.8) it yields that

ε2(k)− vd −
(α2 + α1)

2
+
µ2

2
≤ α2 −W2(k)− vd −

(α2 + α1)

2
+
µ2

2

=
(α2 − α1)

2
+
µ2

2
− vd −W2(k)

(3.10,3.14)
<

(α2 − α1)

2
+
µ2

2
.

From the first inequality of (C.8) it entails that

ε2(k)− vd −
(α2 + α1)

2
+
µ2

2
> −vd −

(α2 + α1)

2
+
µ2

2

= −
(α2 − α1)

2
−
µ2

2
+ µ2 − vd − α1

(3.10,3.12)
> −

(α2 − α1)

2
−
µ2

2
.

Thus, it follows that (C.11) holds.

Now substituting (C.10) and (C.11) into ∆V2k of (C.6) yields ∆V2k = 0. As for
ε1(k) defined by (C.9), the increment ∆V1k is given by (C.7). Thus, it implies for
(C.2) that ∆V 2M

k = ∆V1k < 0.

Case 1.2

Suppose that ε2(k) satisfies the following inequality

α2 −W2(k) < ε2(k) ≤ α2 + vd, (C.12)

where −W2(k)
(3.14)
< vd.
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It follows from (C.12) and (C.5) that the following inequality holds

ε1(k) > vd + 2α2 −W2(k). (C.13)

Let us prove that for ε2(k) defined by (C.12) following inequality satisfies

∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
>

(α2 − α1)

2
+
µ2

2
, (C.14)

where

α2 − α1

(3.10)
> 0. (C.15)

It follows that from the first inequality of (C.12)

ε2(k)−W2(k)−
(α2 + α1)

2
+
µ2

2
> α2 −W2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2
,

α2 −W2(k) +W2(k)−
(α2 + α1)

2
+
µ2

2
=

(α2 − α1)

2
+
µ2

2
.

Thus, considering (C.15), the latter inequality entails that inequality (C.14) holds.

Now let us prove that for (C.12) the following inequality satisfies

∣
∣
∣
∣
ε2(k)− vd −

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
≤

(α2 − α1)

2
+
µ2

2
. (C.16)

Indeed, from the second inequality of (C.12) it follows that

ε2(k)− vd −
(α2 + α1)

2
+
µ2

2
≤ vd + α2 − vd −

(α2 + α1)

2
+
µ2

2
=

(α2 − α1)

2
+
µ2

2
.

From the first inequality of (C.12) it yields that

ε2(k)− vd −
(α2 + α1)

2
+
µ2

2
> −vd + α2 −W2(k)−

(α2 + α1)

2
+
µ2

2

= −vd −W2(k) + (α2 − α1)−
(α2 + α1)

2
−
µ2

2
+ µ2

(3.14,3.10)
> −

(α2 − α1)

2
−
µ2

2
.

Thus, the inequality (C.16) holds.

Now substituting (C.14) and (C.16) into ∆V2k of (C.6) yields

∆V2k =
1

n
(ε2(k) +W2(k)− α2) . (C.17)
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As for ε1(k) defined in (C.13) the increment ∆V1k is given by (C.7). Thus, by
combining the first part of (C.7) and (C.17) we obtain that

∆V 2M
k = −ε1(k) + vd + α2 +

1

n
(ε2(k) +W2(k)− α2),

∆V 2M
k

(3.10)
< −ε1(k) + vd + α2 +

1

n
ε2(k)

(C.5)
< −ε2(k) +

1

n
ε2(k).

Assuming that n ≥ 1, we get that ∆V 2M
k < 0.

Now combining the second part of (C.7) and (C.17) yields

∆V 2M
k = −µ1 + vd +W1(k) +

1

n
(ε2(k) +W2(k)− α2),

∆V 2M
k

(C.12)

≤ −µ1 + vd +W1(k) +
1

n
(vd +W2(k)).

Assuming that n satisfies

n >
vd + α2

µ1 − vd − α2

(C.18)

and

n ≥ 1, (C.19)

we get that ∆V 2M
k < 0.

Case 1.3

Let ε2(k) satisfy the following inequality

ε2(k) > vd + α2. (C.20)

It follows from (C.20) and (C.5) that

ε1(k) > 2(vd + α2). (C.21)

For ε2(k) given by (C.20) inequality (C.14) is satisfied as well. Now let us prove
that in case (C.20) the inequality

∣
∣
∣
∣
ε2(k)− vd −

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
>

(α2 − α1)

2
+
µ2

2
. (C.22)

holds. Indeed, from (C.20) it follows that

ε2(k)− vd −
(α2 + α1)

2
+
µ2

2
> vd + α2 − vd −

(α2 + α1)

2
+
µ2

2
=

(α2 − α1)

2
+
µ2

2
.
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Thus, using (C.15) the inequality (C.22) holds. Substituting (C.14) and (C.22)
into ∆V2k of (C.6) yields

∆V2k =
1

n
(vd +W2(k)). (C.23)

As for ε1(k) given by (C.21), the increment ∆V1k is defined by (C.7). Thus, com-
bining the first part of (C.7) and (C.23)

∆V 2M
k = −ε1(k) + vd + α2 +

1

n
(vd +W2(k)),

∆V 2M
k

(C.21)
< −2(vd + α2) + vd + α2 +

1

n
(vd +W2(k)),

∆V 2M
k < −vd − α2 +

1

n
(vd +W2(k)).

Assuming that n satisfies conditions (C.18), (C.19) we get that ∆V 2M
k < 0. Com-

bining the second part of (C.7) and (C.23) we obtain that

∆V 2M
k = −µ1 + vd +W1(k) +

1

n
(vd +W2(k))

(C.18,C.19)
< 0.

Summarizing the 3 subcases, we have shown that for the Lyapunov function given
by (C.1), its increment ∆V 2M

k is given by:

∆V 2M
k =







Case 1.1;

−ε1(k) + vd + α2 < 0,

−µ1 + vd +W1(k) < 0;

Case 1.2

−ε1(k) + vd + α2 +
1
n
(ε2(k) +W2(k)− α2) < 0,

−µ1 + vd +W1(k) +
1
n
(ε2(k) +W2(k)− α2) < 0;

Case 1.3

−ε1(k) + vd + α2 +
1
n
(vd +W2(k)) < 0,

−µ1 + vd +W1(k) +
1
n
(vd +W2(k)) < 0;

provided (C.3) and (C.4) holds and n satisfies conditions (C.18), (C.19).

Case 2 (Insufficient Buffer Content and Satisfied Demand)

Let ε2(k) and w2(k) satisfy the following inequalities

0 ≤ w2(k) < β2(k), (C.24)

ε2(k) ≤ 0. (C.25)
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Omitting further irrelevant details for the bounds of ε1(k), let us assume that
ε1(k) ∈ R. Then we can rewrite (C.2) as

∆V 2M
k = V 2M

k+1 − V 2M
k = ∆V1k +∆V2k, (C.26)

with

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
− µ1sign+(ε1(k)) +

µ1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆V2k =
1

n
max

(∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2
+
µ2

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ2

2
, 0

)

− V2k.

Here ∆V1k and ∆V2k can be analyzed independently. From the proof of Theorem
2 and assuming that ε1(k) ∈ R, we know that the analysis of ∆V1k given by (C.26)
is identical to ∆Vk from (B.5). Thus, ∆V1k is given by

∆V1k =







−µ1 + vd +W1(k) < 0, if ε1(k) > µ1 + α2 −W1(k);

−V1k, if vd + α2 < ε1(k) ≤ µ1 + α2 −W1(k);

−V1k, if −µ1 + α1 −W1(k) < ε1(k)

and ε1(k) ≤ vd + α1 − µ1;

−(vd +W1(k)) < 0, if ε1(k) < −µ1 + α1 −W1(k);

−V1k, if vd + α1 − µ1 ≤ ε1(k) ≤ vd + α2.

(C.27)

Similarly, considering (C.25), ∆V2k is deduced from the analysis of ∆Vk, see (B.5),
and it is given by

∆V2k =







−V2k, if −µ2 + α1 −W2(k) ≤ ε2(k)

and ε2(k) < −µ2 + α1 + vd;

− 1
n
(vd +W2(k)) < 0, if ε2(k) < −µ2 + α1 −W2(k);

−V2k, if −µ2 + α1 + vd < ε2(k) ≤ 0.

(C.28)

Case 3 (Sufficient Buffer Content)

Assume that w2(k) satisfies the following inequality

w2(k) ≥ β2(k). (C.29)

Omitting further irrelevant details for bounds of ε1(k) and ε2(k), let us consider
that ε1(k) ∈ R and ε2(k) ∈ R. Thus, we can rewrite (C.2) as



164 C Proof of Theorem 3

∆V 2M
k = V 2M

k+1 − V 2M
k = ∆V1k +∆V2k, (C.30)

with

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
− µ1sign+(ε1(k)) +

µ1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆V2k =
1

n
max

(∣
∣
∣
∣
ε2(k) +W2(k)−

(α2 + α1)

2
− µ2sign+(ε2(k)) +

µ2

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µ2

2
, 0

)

− V2k.

Here ∆V1k and ∆V2k can be analyzed independently. Thus, using the proof of
Theorem 2 we notice that ∆V1k and ∆V2k from (C.30) can be analyzed similarly
to ∆Vk from (B.5). In this case ∆V1k is defined by (C.27) as well and ∆V2k results
in

∆V2k =







− 1
n
(µ2 − vd −W2(k)) < 0, if ε2(k) > µ2 + α2 −W2(k);

−V2k, if vd + α2 < ε2(k) ≤ µ2 + α2 −W2(k);

−V2k, if −µ2 + α1 −W2(k) < ε2(k)

and ε2(k) ≤ vd + α1 − µ2;

− 1
n
(vd +W2(k)) < 0, if ε2(k) < −µ2 + α1 −W2(k);

−V2k, if vd + α1 − µ2 ≤ ε2(k) ≤ vd + α2.

(C.31)

Thus, in caseN = 2 we have proved the uniform ultimate boundedness for solutions
of equations(3.8), (3.9).

Now let us prove the uniform ultimate boundedness for solutions of (3.8) and (3.9)
for the case of N > 2; N is a number of machines. For that, let us introduce the
following Lyapunov function

V NM
k = V1k +

N∑

j=2

Vjk, (C.32)

where

V1k = max

(∣
∣
∣
∣
ε1(k)− vd −

(α2 + α1)

2
+
µ1

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ1

2
, 0

)

,

Vjk =

N∑

j=2

1

nj
max

(∣
∣
∣
∣
εj(k)− vd −

(α2 + α1)

2
+
µj

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µj

2
, 0

)

,
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with V NM
k = 0 ∀εj(k) ∈ [vd + α1 − µj, vd + α2].

Here ∆V NM
k is given by

∆V NM
k = ∆V1k +

N∑

j=2

∆Vjk, (C.33)

where

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
− µ1sign+(ε1(k)) +

µ1

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆Vjk =
1

nj
max

(∣
∣
∣
∣
εj(k) +Wj(k)−

(α2 + α1)

2

−µjsign+(εj(k))signBuff(wj(k)− βj(k)) +
µj

2

∣
∣
∣

−
(α2 − α1)

2
−
µj

2
, 0

)

− Vjk.

with nj be a positive constant. It will be presented later on in this proof.

Let us subdivide the analysis of ∆V NM
k into 4 cases. First, we analyse the simplest

case, in which the capacity condition (3.15) for each buffer j is satisfied. As a
result, each ∆Vjk can be considered independently. Then in Case 2N we will
analyse ∆V NM

k when the buffer content condition (3.15) is satisfied for every buffer
j except for buffer i, where i > 2, and εi(k) > 0. In Case 3N, we will extend the
analysis of ∆Vjk to the worst case scenario, in which the content condition for all
buffers is not satisfied. At the same time the production demand is growing and
εj(k) > 0, ∀j > 2, which means that the machines are starving. We conclude
our analysis by Case 4N. In this case the content condition for all buffers is not
satisfied and εj(k) ≤ 0, for all j 6= 1. The latter inequality signifies that the
customer demand is fulfilled.

Case 1N(Sufficient Buffer Content)

Assume that

wj(k) ≥ βj(k), ∀j = 2, . . . , N. (C.34)

and suppose that εj(k) ∈ R, ∀j = 1, . . . , N . Then, from previous result (see Case
3 of N = 2) we know that for εj(k) ∈ R and wj(k) given by (C.34) the increment
∆V1k of (C.33) is defined by (C.27) and ∆Vjk is given by
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∆Vjk =







− 1
nj
(µj − vd −W2(k)) < 0, if εj(k) > µj + α2 −Wj(k);

−Vjk, if vd + α2 < εj(k) ≤ µj + α2 −Wj(k);

−Vjk, if −µj + α1 −Wj(k) < εj(k)

and εj(k) ≤ vd + α1 − µj;

− 1
nj
(vd +Wj(k)) < 0, if εj(k) < −µj + α1 −Wj(k);

−Vjk, if vd + α1 − µj ≤ εj(k) ≤ vd + α2.

(C.35)

Case 2N (Insufficient Content in One of the Buffers)

Let us analyse the case where

0 ≤ wi(k) < βi(k), (C.36)

εi(k) > 0. (C.37)

The constant i stands for a number of one machine and of its buffer in the line of N
machines such that satisfies i > 2. We also consider that for the rest of machines
the following conditions are satisfied

wj(k) ≥ βj(k) ∀j 6= i, j = 2 . . . , N, (C.38)

εj(k) ∈ R ∀j 6= i− 1, i, j = 1 . . . , N. (C.39)

It is known from Case 1N that for any εj(k) given by (C.39) the function ∆Vjk is
defined by (C.35) provided (C.38) holds. It is also known from Case 1 that for any
εi−1(k) given by (3.17) the function ∆Vi−1k is given by

∆Vi−1k =







− 1
ni−1

(εi−1(k)− vd − α2) < 0,

if vd + α2 < εi−1(k) ≤ µi−1 + α2 −Wi−1(k);

− 1
ni−1

(µi−1 − vd −Wi−1(k)) < 0,

if εi−1(k) > µi−1 + α2 −Wi−1(k);

(C.40)

provided that (C.38) holds. As for εi(k) introduced by (C.37), using (C.36), we
have that

∆Vik =







0, if 0 < εi(k) ≤ α2 −Wi(k);
1
ni
(εi(k) +Wi(k)− α2), if α2 −Wi(k) < εi(k) ≤ vd + α2;

1
ni
(vd +Wi(k)), if εi(k) > vd + α2,

(C.41)

see Case 1. Thus, let us analyse ∆Vi−1k +∆Vik by following steps.
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First step, it holds for 0 < εi(k) ≤ α2 −Wi(k) and εi−1(k)
(3.17)
> vd + α2 that

∆Vi−1k +∆Vik
(C.40,C.41)

= ∆Vi−1k < 0.

Second step, it holds for α2 −Wi(k) < εi(k) ≤ vd +α2 and εi−1(k)
(3.17)
> vd +2α2 −

Wi(k) that

∆Vi−1k +∆Vik
(C.40,C.41)

= −
1

ni−1
(εi−1(k)− vd − α2) +

1

ni
(εi(k) +Wi(k)− α2)

∆Vi−1k +∆Vik ≤ −
1

ni−1
εi−1(k) +

1

ni
εi(k) < 0,

where

ni ≥ ni−1 ≥ 1. (C.42)

We obtain that

∆Vi−1k +∆Vik
(C.40,C.41)

= −
1

ni−1

(µi−1 − vd −Wi−1(k)) +
1

ni

(εi(k) +Wi(k)− α2),

∆Vi−1k +∆Vik
(3.10)
< −

1

ni−1
(µi−1 − vd −Wi−1(k)) +

1

ni
(vd +Wi(k)) < 0,

where

ni >
vd + α2

µi−1 − vd − α2
ni−1, (C.43)

and condition (C.42) are satisfied.

Third step, it holds for εi(k) > vd + α2 and εi−1(k)
(3.17)
> 2vd + 2α2 that

∆Vi−1k +∆Vik
(C.40,C.41)

= −
1

ni−1
(εi−1(k)− vd − α2) +

1

ni
(vd +Wi(k)),

∆Vi−1k +∆Vik
(3.17)
< −

1

ni−1
(vd + α2) +

1

ni
(vd +Wi(k)) < 0,

where ni and ni−1 satisfy (C.42) and (C.43).

We obtain that

∆Vi−1k +∆Vik
(C.40,C.41)

= −
1

ni−1
(µi−1 − vd −Wi−1(k)) +

1

ni
(vd +Wi(k)) < 0,
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where ni and ni−1 satisfy (C.42) and (C.43).

Case 3N(All Buffer Contents are Insufficient and Unsatisfied Demand)

Let us extend Case 2N to the following scenario where

0 ≤ wj(k) < βj(k) ∀j = 2, . . . , N, (C.44)

εN(k) > 0. (C.45)

We get from (3.5) that the inequality (3.17) is satisfied. Thus, we can rewrite ∆V1k
and ∆Vjk from (C.33) as

∆V1k = max

(∣
∣
∣
∣
ε1(k) +W1(k)−

(α2 + α1)

2
−
µ1

2

∣
∣
∣
∣
−

(α2 − α1)

2
−
µ1

2
, 0

)

− V1k,

∆Vjk =
1

nj
max

(∣
∣
∣
∣
εj(k) +Wj(k)−

(α2 + α1)

2
+
µj

2

∣
∣
∣
∣

−
(α2 − α1)

2
−
µj

2
, 0

)

− Vjk.

Here ∆V1k is defined exactly as in (C.6) (see Case 1), which results in (C.7). As
for ∆Vjk it can be easily deduced from (C.41) (see Case 2N) that

∆VNk = 0, if 0 < εN(k) ≤ α2 −WN (k);

∆VNk =
1

nN

(εN(k) +WN(k)− α2), if α2 −WN(k) < εN(k) ≤ vd + α2;

∆Vjk =
1

nj
(vd +Wj(k)), if εj(k) > vd + α2.

Here εj(k)
(3.17)
> vd + α2 ∀j = 2, . . . , N − 1.

Thus, in order for ∆V1k+
∑N

j−2∆Vjk to satisfy ∆V NM
k < 0, the following conditions

for nj must be accomplished

n2 >
vd + α2

µ1 − vd − α2

nj >
vd + α2

µj−1 − vd − α2
nj−1 ∀j = 2, . . . , N,

nj ≥ nj−1 ≥ 1 ∀j = 2, . . . , N.

Case 4N (Satisfied Demand)

Let us assume that εj(k) ≤ 0 and wj(k) < βj(k), ∀j = 2, . . . , N , and ε1(k) ∈ R.
Then we remind that ∆V1k is defined as ∆V1k from (C.27). As for ∆Vjk we can
extend the result from (C.28) (see Case 2) as

∆Vjk =







−Vjk, if −µj + α1 −Wj(k) ≤ εj(k) < −µj + α1 + vd;

− 1
nj
(vd +Wj(k)) < 0, if εj(k) < −µj + α1 −Wj(k);

−Vjk, if −µj + α1 + vd < εj(k) ≤ 0.
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Hence, ∆V NM
k = ∆V1k +

∑N
j=2∆Vjk < 0.

Thus, in this proof we have analyzed the increment of the proposed Lyapunov func-
tion by means of selected cases. It can be shown that any particular unmentioned
case is covered throughout the combination of given cases in this proof.
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D
Proof of Theorem 4

Let us prove that Theorem 4 holds for a line of 2 manufacturing machines (j =
1, 2) defined by (3.23) and (3.25). With this goal, let us introduce the following
Lyapunov function

V 2M(ε1; ε2) = max {V1(ε1), V2(ε2)} , (D.1)

where

Vj(εj) = max {−εj − µj + vd + α1, εj − vd − α2, 0} > 0 , (D.2)

∀εj 6∈ [vd + α1 − µj, vd + α2], j = 1, 2.

Here for the sake of brevity V 2M(ε1(k), ε2(k)) = V 2M
k , Vj(εj(k)) = Vj,k, with

V 2M = 0 ∀εj ∈ [vd + α1 − µj, vd + α2].

Thus, ∆V 2M
k along the solutions of ε1(k) and ε2(k) is given by

∆V 2M
k = V 2M

k+1 − V 2M
k = max{V1,k+1, V2,k+1}+min{−V1,k,−V2,k}, (D.3)

where

Vj,k+1 = max







−εj(k)−Wj(k) + α1 − µj + µjηj,k,
εj(k) +Wj(k)− α2 − µjηj,k,

0






, j = 1, 2.

For the sake of brevity we introduce ηj,k as

η1,k = sign+(ε1(k))sign−(w2(k)− γ2), (D.4)

η2,k = sign+(ε2(k))signBuff(w2(k)− β2(k)). (D.5)

In order to perform a more detailed analysis on ∆V 2M
k , let us divide this proof into

3 cases.
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Case 1 (Sufficient Buffer Content)

Suppose that w2(k) satisfies the following inequality

β2(k) ≤ w2(k) < γ2, (D.6)

which means that machine M2 has sufficient material in its buffer B2 in order to
start working and machine M1 always has an access to the infinite raw material
supply. Thus these machines have an independent behavior and it will be sufficient
to analyse the increment of only one of the functions Vj,k in order to determine the
behavior of ∆V 2M

k .

Let us assume that εj(k) satisfies the following condition

εj(k) > 0, ∀j = 1, 2 (D.7)

and in consequence from (D.4) and (D.5) it follows that ηj,k = 1.

Then, ∆Vj,k along the solutions of εj(k) is given by

∆Vj,k = max







−εj(k)−Wj(k) + α1,
εj(k) +Wj(k)− α2 − µj,

0







︸ ︷︷ ︸

Vj,k+1

+min







εj(k) + µj − vd − α1,
−εj(k) + vd + α2,

0







︸ ︷︷ ︸

−Vj,k

,

with j = 1, 2.

From where with help of Assumptions 1 and 2 it can be easily deduced that

∆Vj,k =







0 if εj(k) ≤ vd + α2,

−εj(k) + vd + α2 < 0 if vd + α2 < εj(k) ≤ µj + α2 −Wj(k),

−µj + vd +Wj(k) < 0 if εj(k) > µj + α2 −Wj(k).

(D.8)

Now, suppose that for εj(k) the following condition holds

εj(k) ≤ 0, (D.9)

and in consequence from (D.4) and (D.5) it yields that ηj,k = 0. Then ∆Vj,k along
the solutions of εj(k) is given by

∆Vj,k = max







−εj(k)−Wj(k) + α1 − µj,
εj(k) +Wj(k)− α2,

0







︸ ︷︷ ︸

Vj,k+1

+min







εj(k) + µj − vd − α1,
−εj(k) + vd + α2,

0







︸ ︷︷ ︸

−Vj,k

,

where j = 1, 2.

Here with help of Assumptions 1 and 2 it can be easily deduced that

∆Vj,k =







0 if vd + α1 − µj ≤ εj(k) ≤ 0,

−vd −Wj(k) < 0 if εj(k) < −µj + α1 −Wj(k),

εj(k) + µj − vd − α1 < 0 if −µj + α1 +Wj(k) ≤ εj(k) < vd + α1 − µj.

(D.10)
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Summarizing, for conditions (D.6), (D.7), and (D.9) from (D.8) and (D.10) it holds
that if Vj,k > 0 its increment ∆Vj,k < 0. From the definition of min it yields that
for ∆V 2M

k given by (D.3) the following inequality is satisfied

∆V 2M
k ≤ Vi,k+1 − Vi,k ≤ 0, (D.11)

where i = argmaxj=1,2{Vj,k+1}. Note that ∆Vj,k = Vj,k+1 − Vj,k = 0 only if
either first condition of (D.8) or first condition of (D.10) is satisfied and for all
εj(k) 6∈ [vd+α1−µj , vd+α2] it follows that ∆V 2M

k < 0. Thus, in this case it holds
that for V 2M

k > 0 given by (D.1) its increment ∆V 2M
k < 0.

Case 2 (Insufficient Buffer Content)

Let us assume that w2(k) satisfies the following inequality

w2(k) < β2(k), ∀k ∈ N, (D.12)

and ε2(k) satisfies

ε2(k) ≤ 0, ∀k ∈ N. (D.13)

Then from (3.17) it holds that

ε1(k) > µ1 + α2 − α1 + ε2(k). (D.14)

Here similarly to Case 1 the behavior of these two machines can be considered
independently. Thus, for ε1(k) satisfying (D.14) it holds that ∆V1,k is given by
(D.8) or (D.10) if ε2(k) < −µ1−α2+α1 or ∆V1,k is given by (D.8) if −µ1−α2+α1 ≤
ε2(k) ≤ 0. For ε2(k) satisfying (D.13) the increment ∆V2,k is given by (D.10). In
consequence for ∆V 2M

k given by (D.3) the inequality (D.11) in this case is also
satisfied.

Now, let us assume that ε2(k) satisfies

ε2(k) > 0, ∀k ∈ N. (D.15)

Then from (3.17) it holds that ε1(k) is given by (D.14). In this case M2 has
a positive tracking error, but its buffer B2 has insufficient raw material content
(D.12) in order to start working (η2,k = 0). Machine M1 has a positive error as
well, but due to its infinite raw material supply access it can immediately initiate
its production process (η1,k = 1). Thus, for (D.15) and (D.14) let us rewrite ∆V 2M

k

from (D.3) as

∆V 2M
k = max







−ε1(k)−W1(k) + α1,
ε1(k) +W1(k)− α2 − µ1,
−ε2(k)−W2(k) + α1 − µ2,

ε2(k) +W2(k)− α2,
0







︸ ︷︷ ︸

V 2M
k+1

+min







ε1(k) + µ1 − vd − α1,
−ε1(k) + vd + α2,

ε2(k) + µ2 − vd − α1,
−ε2(k) + vd + α2,

0







︸ ︷︷ ︸

−V 2M
k

.

(D.16)
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It follows from (3.10), (D.15) and (D.14) that ∆V 2M
k from (D.16) can be reduced

to

∆V 2M
k = max







ε1(k) +W1(k)− α2 − µ1,
ε2(k) +W2(k)− α2,

0







︸ ︷︷ ︸

V 2M
k+1

+min







−ε1(k) + vd + α2,
−ε2(k) + vd + α2,

0







︸ ︷︷ ︸

−V 2M
k

.

(D.17)

Now, let us prove that for ε1(k) given by (D.14) inequality

ε1(k) +W1(k)− α2 − µ1 > ε2(k) +W2(k)− α2 (D.18)

is satisfied.

Indeed, from condition (D.14) it yields that

ε1(k) +W1(k)− α2 − µ1 > ε2(k) +W1(k)− α1

(3.10)
> ε2(k) +W2(k)− α2.

(D.19)

Thus, inequality (D.18) is satisfied. Also, from (D.19) it holds that

ε1(k) +W1(k)− α2 − µ1

(3.10),(D.15)
> 0. (D.20)

Now, considering (D.18) and (D.20) we can rewrite V 2M
k+1 given by the first term of

(D.17) as

V 2M
k+1 = ε1(k) +W1(k)− α2 − µ1. (D.21)

Let us prove that for ε1(k) given by (D.14) inequality

−ε2(k) + vd + α2 > −ε1(k) + vd + α2 (D.22)

is satisfied. Here from condition (D.14) it yields that

−ε2(k) + vd + α2 > −ε1(k) + µ1 + α2 − α1 + vd + α2,

−ε1(k) + µ1 + α2 − α1 + vd + α2

(3.10),(3.13)
> −ε1(k) + vd + α2. (D.23)

Thus, inequality (D.22) is satisfied. From inequalities (D.14), (3.12) it follows that

−ε1(k) + vd + α2 < 0. (D.24)

From (D.22), (D.24) we can rewrite V 2M
k given by the second term of (D.17) as

V 2M
k = ε1(k)− vd − α2

(D.24)
> 0. (D.25)

Having V 2M
k+1 given by (D.21) and V 2M

k given by (D.25), we can finally reduce ∆V 2M
k

from (D.17) to

V 2M
k = −µ1 + vd +W1(k)

(3.14)
< 0. (D.26)
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Thus, for this Case it holds that for V 2M
k > 0 given by (D.1) its increment ∆V 2M

k <
0.

Case 3 (Limited Buffer Content)

Suppose that w2(k) satisfies the following inequality

w2(k) ≥ γ2, ∀k ∈ N, (D.27)

and let us first assume that ε2(k) satisfies

ε2(k) ≤ 0, ∀k ∈ N. (D.28)

Then from (3.29) it holds that

ε1(k) ≤ ε2(k)− µ2 − α2 + α1 (D.29)

where −µ2 − α2 + α1

(3.10)
< 0.

In this case machines M1 and M2 are not working (ηj,k = 0) and there behavior
can be considered similar to the first part of Case 2. It follows that for (D.28) and
(D.29) the increments ∆V1,k and ∆V2,k are given by (D.10) respectively. Thus, for
∆V 2M

k given by (D.3) the inequality (D.11) in this case is also satisfied.

Now, let us assume that ε2(k) satisfies

ε2(k) > 0, ∀k ∈ N. (D.30)

In this case M2 has sufficient material to start working (η2,k = 1) and M1 is
stopped (η1,k = 0) due to the limited capacity of its downstream buffer B2. Thus,
two situations may occur. First, consider that M1 is stopped, but its tracking error

ε1(k) ≤ 0. This may occur if ε2(k) satisfies 0 < ε2(k)
(D.29)

≤ µ2 + α2 − α1. The
behavior of these 2 machines can be considered independently and by following
the procedure from Case 1 we arrive to the conclusion that for V 2M

k > 0 given by
(D.1) its increment ∆V 2M

k < 0.

In the second situation, consider that ε1(k) satisfies

ε1(k) > 0, ∀k ∈ N, (D.31)

which by (D.29) implies that

ε2(k) > µ2 + α2 − α1. (D.32)

Then for (D.31) and (D.32) let us rewrite ∆V 2M
k from (D.3) as

∆V 2M
k = max







−ε1(k)− µ1 −W1(k) + α1,
ε1(k) +W1(k)− α2,
−ε2(k)−W2(k) + α1,

ε2(k) +W2(k)− α2 − µ2,
0







︸ ︷︷ ︸

V 2M
k+1

+min







ε1(k) + µ1 − vd − α1,
−ε1(k) + vd + α2,

ε2(k) + µ2 − vd − α1,
−ε2(k) + vd + α2,

0







︸ ︷︷ ︸

−V 2M
k

.

(D.33)
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It follows from (3.10) and (3.14) that ∆V 2M
k from (D.33) can be reduced to

∆V 2M
k = max







ε1(k) +W1(k)− α2,
ε2(k) +W2(k)− α2 − µ2,

0







︸ ︷︷ ︸

V 2M
k+1

+min







−ε1(k) + vd + α2,
−ε2(k) + vd + α2,

0







︸ ︷︷ ︸

−V 2M
k

.

(D.34)

Now, let us derive from (D.29) that the following inequality

ε2(k) +W2(k)− α2 − µ2 > ε1(k) +W1(k)− α2 (D.35)

is satisfied. Indeed, from (D.29) it holds that

ε2(k) +W2(k)− α2 − µ2 ≥ ε1(k) + µ2 + α2 − α1 +W2(k)− α2 − µ2,

ε1(k) + µ2 + α2 − α1 +W2(k)− α2 − µ2

(3.10)
> ε1(k) +W1(k)− α2. (D.36)

Thus, inequality (D.35) is satisfied. From (D.32) and (3.10) it also holds that

ε2(k) +W2(k)− α2 − µ2 > 0. (D.37)

Considering (D.35) and (D.37) we can rewrite V 2M
k+1 from the first part of (D.34)as

V 2M
k+1 = ε2(k) +W2(k)− α2 − µ2. (D.38)

Let us show that from (D.29) the following inequality

−ε1(k) + vd + α2 > −ε2(k) + vd + α2 (D.39)

is satisfied. Here, from condition (D.29) it yields that

−ε1(k) + vd + α2 > −ε2(k) + vd + α2 + µ2 + α2 − α1,

−ε2(k) + vd + α2 + µ2 + α2 − α1

(3.10),(3.13)
> −ε2(k) + vd + α2. (D.40)

Thus, inequality (D.39) is satisfied. From inequalities (D.29), (3.12) it follows that

−ε2(k) + vd + α2 < 0. (D.41)

From (D.39), (D.41) we can rewrite V 2M
k given by the second part of (D.34)as

V 2M
k = ε2(k)− vd − α2

(D.41)
> 0. (D.42)

Having V 2M
k+1 given by (D.38) and V 2M

k given by (D.42), we can finally reduce ∆V 2M
k

from (D.34) to

∆V 2M
k = −µ2 + vd +W2(k)

(3.14)
< 0. (D.43)

Thus, for this Case it holds that for V 2M
k > 0 given by (D.1) its increment ∆V 2M

k <
0. Summarizing for 3 cases, we have shown that for V 2M

k > 0 given by (D.1) its
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increment ∆V 2M
k < 0 for all εj(k) 6∈ [vd + α1 − µj , vd + α2] and ∆V 2M

k = 0 for all
εj(k) ∈ [vd + α1 − µj , vd + α2]. Thus, lim supk→∞ V 2M

k = 0, which completes our
proof.

In this proof we have analyzed the increment of the proposed Lyapunov function
by means of 3 cases. For a line of N manufacturing machines (j = 1, ..., N) defined
by (3.23) and (3.24) the Lyapunov function (D.1) is extended to

V NM
k = max {V1(ε1), ..., VN(εN)} .

Here the same reasoning is followed as for the proof for 2 machines. The analysis
is subdivided into the same 3 cases. Case 1 (Sufficient Buffer Content), the first
part of Case 2 (wj(k) < βj(k) and εj(k) ≤ 0, ∀j = 2, . . . , N) and Case 3 (Limited
Buffer Content) are solved identically to the proof for the line of 2 machines. For the
second part of Case 2 the proof relies on the condition (3.28) and the assumption
that machine M1 has always an access to the infinite raw material supply. Due to
the extensive technical details and similarity in the procedure we omit the complete
analysis for a line of N machines and restrict ourselves by only giving this general
description of the proof.
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E
Proof of Theorem 5

Let us prove that Theorem 5 holds for a line of N manufacturing machines defined
by (3.23) and (3.25). Assuming that now the safety stock level constants satisfy
wdj ≥ 0 for all j = 2, .., N , the Lyapunov function is modified as follows. The
function for j = 1 remains as in (D.2) and for j = 2, .., N the function is now given
by

Vj(εj) =

max







−εj − µj + vd + α1,

εj − vd − α2 −

j
∑

i=2

max



µi−1 − α1 + α2 − wdi + µi + α3
︸ ︷︷ ︸

βi

, 0





︸ ︷︷ ︸

xj

,

0







Vj(εj) > 0, ∀εj 6∈ [vd + α1 − µj, vd + α2 + xj ], j = 2, .., N.

Thus, ∆V NM
k along the solutions of εj(k) is given by

∆V NM
k = V NM

k+1 − V NM
k = max{V1,k+1, ..., VN,k+1}+min{−V1,k, ...,−VN,k},

(E.1)

where for j = 2, .., N

Vj,k+1 = max







−εj(k)−Wj(k) + α1 − µj + µjηj,k,
εj(k) +Wj(k)− α2 − µjηj,k − xj ,

0






.

Here ηj,k is given by

η1,k = sign+(ε1(k))sign−(w2(k)− γ2),

ηj,k = sign+(εj(k))signBuff(wj(k)− βj(k))sign−(wj+1(k)− γj+1),

ηN,k = sign+(εN(k))signBuff(wN(k)− βN (k)).
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The analysis of (E.1) is subdivided into the same 3 cases. Case 1 (Sufficient Buffer
Content) and the first part of Case 2 (wj(k) < βj(k) and εj(k) ≤ 0, ∀j = 2, . . . , N)
are solved identically to the proof for the line of 2 machines. For the second part of
Case 2 and for the Case 3 (just as in proof of Theorem 4) this proof relies on the
condition (3.26) in combination with equations (3.5), (3.6). Due to the extensive
technical details and the similarity of the procedure with the proof of Theorem 4
we omit the complete analysis for a line of N machines and restrict ourselves by
only giving this general description of the procedure.



F
Proof of Theorem 6

Let us prove that Theorem 6 holds for one machine with j = 1, . . . , N defined by
(4.5). With this goal, let us introduce the following Lyapunov function

V BN
k = max







−ε1(k)− µ1 + vd1 + α1,
...

−εN(k)− µN + vdN + α1,
N∑

j=1

εj(k)− vdj − α2

µj + c3
︸ ︷︷ ︸

Xk

,

0







. (F.1)

Here for the sake of brevity V BN
k = V BN (ε1(k), ..., εN(k)), with V BN ≥ 0, for all

εj(k) ∈ R.

Thus, ∆V B2

k along the solutions of εj(k) is given by

∆V BN
k =

max







−ε1(k)−∆ϕ1(k) + α1 − µ1 + β1(k)u1(k),
...

−εN (k)−∆ϕN (k) + α1 − µN + βN(k)uN(k),
Xk+1,
0







︸ ︷︷ ︸

V
BN
k+1
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+min







ε1(k) + µ1 − vd − α1,
...

εN(k) + µN − vdN − α1,
−Xk,
0







︸ ︷︷ ︸

−V
BN
k

, (F.2)

where Xk+1 =
∑N

j=1
εj(k)+Wj(k)−α2−βj(k)uj(k)

µj+c3
.

In order to perform a more detailed analysis on ∆V BN
k , let us divide this proof into

2 cases.

Case 1 (q(k) = 0)

Suppose that q(k) = 0, which from (4.3) implies that uj,k = 0, for all j = 1, ..., N .

Then we can rewrite ∆V BN
k from (F.2) as

∆V B2

k =

max







−ε1(k)−∆ϕ1(k) + α1 − µ1,
...

−εN (k)−∆ϕN (k) + α1 − µN ,
Xk+1,
0







︸ ︷︷ ︸

V
BN
k+1

+min







ε1(k) + µ1 − vd1 − α1,
...

εN(k) + µN − vdN − α1,
−Xk,
0







︸ ︷︷ ︸

−V
BN
k

.

(F.3)

From (4.3), εj(k) satisfies

εj(k) ≤ 0, (F.4)
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for all k and j. Then we can reduce ∆V BN
k from (F.3) to

∆V BN
k = max







−ε1(k)−∆ϕ1(k) + α1 − µ1,
...

−εN(k)−∆ϕN(k) + α1 − µN ,
0







︸ ︷︷ ︸

V
BN
k+1

+min







ε1(k) + µ1 − vd1 − α1,
...

εN(k) + µN − vdN − α1,
0







︸ ︷︷ ︸

−V
BN
k

. (F.5)

Here, let us assume that for V BN
k+1 the maximum is reached in the j element of the

function, i.e. V BN
k+1 = −εj(k)−∆ϕj(k) + α1 − µj. Then from the definition of min

it holds that

∆V BN

k ≤ −εj(k)−∆ϕj(k) + α1 − µj

+εj(k) + µj − vdj − α1,

∆V BN
k ≤ −vdj −∆ϕj(k)

(4.6,4.9)
< 0. (F.6)

For V BN
k+1 with maximum reached by its last element it holds that

∆V BN
k = −V BN

k . (F.7)

Thus, for in this case for V BN
k > 0 given by (F.1) its increment ∆V BN

k < 0. This
concludes the analysis of Case 1.

Case 2 (q(k) = Bj)

Suppose that εj(k) satisfies

εj(k) > 0 (F.8)

for all k. Thus, the machine is working with buffer Bj (q(k) = Bj), which is
assumed to always have a sufficient raw material. Without loss of generality let us
assume for now that the value of εs for all s 6= j is of arbitrary sign. Then we can
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rewrite ∆V BN
k from (F.3) as

∆V BN
k =

max







−ε1(k)−W1(k) + α1,
...

−εN (k)−∆ϕN (k) + α1 − µN ,
Xk+1,
0







︸ ︷︷ ︸

V
BN
k+1

+min







ε1(k) + µ1 − vdN − α1,
...

εN(k) + µN − vdN − α1,
−Xk,
0







︸ ︷︷ ︸

−V
BN
k

. (F.9)

Subcase 1: Let us first analyse (F.9) assuming that εs(k) satisfies

εs(k) > 0 (F.10)

for all k, s 6= j, and s = 1, ..., N . Then due to condition (F.8) and (F.10), the
increment (F.9) satisfies

∆V BN
k ≤

max

{
εj(k)+Wj(k)−α2−µj

µj+c3
+ εs(k)+∆ϕs(k)−α2

µs+c3
,

0

}

︸ ︷︷ ︸

−V
BN ∗

k+1

+min

{
−εj(k)+vdj+α2

µj+c3
+ −εs(k)+vds+α2

µs+c3
,

0

}

︸ ︷︷ ︸

−V
BN ∗

k

. (F.11)

Consider now that for V BN∗

k+1 the maximum is reached in its first element, i.e.

V BN∗

k+1 =
εj(k)+Wj(k)−α2−µj

µj+c3
+ εs(k)+∆ϕs(k)−α2

µs+c3
. Then from the definition of min it

holds that

∆V BN
k ≤ −

µj + fj(k)

µj + c3

+
vdj +∆ϕ(k)

µj + c3
+
vds +∆ϕs(k)

µs + c3

(4.7,4.11)
< 0.

In case that for V BN∗

k+1 given by (F.11) the maximum is reached in its second element,
then from the definition of min

∆V BN

k = −V BN

k . (F.12)
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Thus, for this subcase for V BN
k > 0 given by (F.1) its increment ∆V BN

k < 0.

Subcase 2: Now let us analyse (F.9) assuming that εs(k) satisfies

εs(k) ≤ 0 (F.13)

for all k, s 6= j, s = 1, ..., N . In analogy with the procedure followed in previous
subcase it is obtained that







∆V BN

k ≤ −vds −∆ϕs(k)
(4.6,4.9)
< 0

if V BN
k+1 = −εs(k)−∆ϕ(s) + α1 − µs,

∆V BN
k ≤ −

µj+fj(k)

µj+c3
+

vdj+∆ϕj(k)

µj+c3
+ vds+∆ϕs(k)

µs+c3

(4.7,4.11)
< 0

if V BN

k+1 =
εj(k)+Wj(k)−α2−µj

µj+c3
+ εs(k)+∆ϕs(k)−α2

µs+c3
,

∆V BN
k = −V BN

k

if V BN
k+1 = 0.

Thus, for this subcase for V BN
k > 0 given by (F.1) its increment ∆V BN

k < 0. This
concludes the analysis of Case 2.
Summarizing for 2 cases, we have shown that for V BN

k > 0 given by (F.1) its
increment ∆V BN

k < 0. Thus, lim supk→∞ V BN

k = 0, which completes our proof.
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G
Proof of Theorem 7

Let us prove that Theorem 7 holds for the multi-product manufacturing line with
P machines (i = 1, . . . , P ) and each one with N production stages (j = 1, . . . , N)
and N × P − 1 intermediate buffers defined by (4.18).
Let us start by describe the general structure of our proof.

• First, we will show that Theorem 7 holds for a line of 2 machines with 2
stages each. For that we will analyse the increment of the proposed Lyapunov
function, which will be given later in the proof. The analysis is subdivided
into 4 Cases. As it can be observed form (4.15), each machine in the network
has 2 modes, which are the working mode and the stand by (idle) mode. Thus
if we have 2 machines in the network this network may present 4 working
modes, which correspond to the number of cases in our analysis.

• Second, we will extend our proof to a complete P × N network. Given the
proof for 2 machines we will describe the followed procedure for the proof of
a complete line.

Let us begin our proof by showing first that Theorem 7 holds for a smaller network,
which consists of 2 machines Mi (i = 1, 2) with 2 production stages each (j = 1, 2)
and 2 intermediate buffers (B2,1, B2,2). For that purpose, let us introduce the
following Lyapunov function

V FM
k = max

{
V FM1

k , V FM2

k

}
, (G.1)

where

V FMi

k = max







−εi,1(k)− µi + vd1 + α1,
−εi,2(k)− µi + vd2 + α1,

εi,1(k)− (N − 1)(µi − α1)− vd1 −Nα2,
εi,2(k)− (N − 1)(µi − α1)− vd2 −Nα2,

εi,1(k) + εi,2(k)−
∑N

j=1 vdj −Nα2

0







. (G.2)
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Here N = 2, V FM
k = 0, ∀εi,j(k) ∈ [vdj + α1 − µi, (N − 1)(µi − α1) + vdj +Nα2].

Thus, ∆V FM
k along the solutions of εi,j(k) is given by

∆V FM
k = max

{
V FM1

k+1 , V FM2

k+1

}
−max

{
V FM1

k , V FM2

k

}
, (G.3)

where

V FMi
k+1 = (G.4)

max







−εi,1(k)−∆ϕ1(k) + α1 − µi + βi(k)ui,1(k),
−εi,2(k)−∆ϕ2(k) + α1 − µi + βi(k)ui,2(k),

εi,1(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ1(k)− βi(k)ui,1(k),
εi,2(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ2(k)− βi(k)ui,2(k),

εi,1(k) + εi,2(k) +
∑N

j=1∆ϕj(k)−Nα2 − βi(k)ui,1(k)− βi(k)ui,2(k),

0







.

In order to perform a more detailed analysis on ∆V FM
k , let us divide this proof

into 4 cases.

Case 1: All Machines Off (q1(k) = 0 and q2(k) = 0) From (4.15), it can be
observed that in this case at least one of the following conditions must be satisfied

εi,j(k) ≤ 0, ∀i, j = 1, 2 , (G.5)

ε1,j(k) ≤ 0 and ω2,j(k) < β2,j(k). (G.6)

Note that we consider B1,1 and B1,2 to always contain sufficient amount of products.

First, given the values of q1(k) and q2(k) let us rewrite ∆V FM
k from (G.3) as

∆V FM
k = max

{
V FM1

k+1 , V FM2

k+1

}
+min

{
−V FM1

k ,−V FM2

k

}
, (G.7)

where

V FMi
k+1 = max







−εi,1(k)−∆ϕ1(k) + α1 − µi,
−εi,2(k)−∆ϕ2(k) + α1 − µi,

εi,1(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ1(k),
εi,2(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ2(k),

εi,1(k) + εi,2(k) +
∑N

j=1∆ϕ(k)−Nα2,

0







(G.8)

and

−V FMi
k = min







εi,1(k) + µi − vd1 − α1,
εi,2(k) + µi − vd2 − α1,

−εi,1(k) + (N − 1)(µi − α1) + vd1 +Nα2,
−εi,2(k) + (N − 1)(µi − α1) + vd2 +Nα2,

−εi,1(k)− εi,2(k) +
∑N

j=1 vdj +Nα2

0







. (G.9)

Second, let us assume that the maximum of V FM
k+1 is reached in V FMi

k+1 . Thus from
the definition of minimum it is possible to state that ∆V FM

k satisfies the following
inequality

∆V FM
k ≤ V FMi

k+1 − V FMi

k . (G.10)
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Third, let us show that V FMi
k+1 − V FMi

k < 0. For that purpose we assume that

the maximum of V FMi
k+1 is reached by one of its first 2 elements, i.e., V FMi

k+1 =
−εi,j(k) − ∆ϕj(k) + α1 − µi. Then from the definition of minimum it is possible
to state that ∆V FM

k satisfies

∆V FM
k ≤ −εi,j(k)−∆ϕj(k) + α1 − µi + εi,j(k) + µi − vdj − α1,

∆V FM
k ≤ −vdj −∆ϕj(k)

(4.19,4.22)
< 0. (G.11)

Now suppose that the maximum of V FMi

k+1 is reached by its sixth element, i.e.,

V FMi
k+1 = 0. Then from the definition of minimum it is valid to state that ∆V FM

k

satisfies

∆V FM
k ≤ −V FMi

k < 0. (G.12)

One from the rest of the elements of V FMi
k+1 could be selected as its maximum only

if the tracking errors of that element are positive enough. But, from (G.6), (4.16)
and (4.26) we know that

εi,j(k) < βi,j(k)− wdi,j + εi−1,j(k) < 0, ∀i = 2, j = 1, . . . , 2. (G.13)

Thus the previous statement does not hold for this case and inequality V FMi
k+1 −

V FMi
k < 0 holds true. In consequence for Case 1 we have shown that given V FM

k > 0
its increment satisfies ∆V FM

k < 0.

Case 2: All Machines On (q1(k) = B1,j and q2(k) = B2,n) Here j and n are not
necessarily equal, though they both belong to the set {1, 2}. From (4.15) we know
that in order for this case to occur the following conditions must be satisfied for
at least one of the production steps at each machine Mi

εi,j(k) > 0, and ωi,j(k) ≥ βi,j(k). (G.14)

Given the conditions (G.14), (4.19), (4.21), (4.22) and (4.23), we can rewrite V FMi
k+1

form (G.4) as

V FMi
k+1 = max







−εi,n(k)−∆ϕn(k) + α1 − µi,
εi,j(k)− 2µi + α1 − 2α2 +∆ϕj(k)− fi(k),

εi,j(k) + εi,n(k) +
∑2

j=1∆ϕj(k)− 2α2 − µi − fi(k),

0







,

(G.15)

where j 6= n. Now, let us assume that the maximum of V FM
k+1 is reached in one of

the elements of (G.15). Then from the definition of minimum it holds that

∆V FM
k ≤ V FMi

k+1 − V FMi
k , (G.16)

where −V FMi
k is given by (G.9). Thus let us prove that V FMi

k+1 −V FMi
k < 0. Assume

that the maximum value of V FMi
k+1 is reached by its first element. Then inequality

(G.16) takes the following form

∆V FM
k ≤ −εi,n(k)−∆ϕn(k) + α1 − µi + εi,n(k) + µi − vdn − α1,

∆V FM
k ≤ −vdn −∆ϕn(k)

(4.19,4.22)
< 0. (G.17)
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Consider now that the maximum value of V FMi
k+1 is reached by its second element.

Then inequality (G.16) is reduced to

∆V FM
k ≤ εi,j(k)− 2µi + α1 − 2α2 +∆ϕj(k)− fi(k)

−εi,j(k) + µi + vdj − α1 + 2α2,

∆V FM
k ≤ −µi + vdj +∆ϕj(k)− fi(k)

(4.23)
< 0. (G.18)

In case the maximum value of V FMi

k+1 is reached by its third element, the inequality
(G.16) is reduced to

∆V FM
k ≤ εi,j(k) + εi,n(k) +

2∑

j=1

∆ϕj(k)− 2α2 − µi − fi(k)

−εi,j(k)− εi,n(k) +

2∑

j=1

vdj + 2α2,

∆V FM
k ≤ −µi − fi(k) +

2∑

j=1

(vdj +∆ϕj(k))
(4.24)
< 0. (G.19)

Finally, if the maximum value of V FMi
k+1 is reached by its fourth element then in-

equality (G.16) is reduced to

∆V FM
k ≤ −V FMi

k < 0. (G.20)

Thus we have proven that the inequality V FMi
k+1 − V FMi

k < 0 holds true. In con-
sequence for Case 2 we have shown that given V FM

k > 0 its increment satisfies
∆V FM

k < 0.

Case 3: Some Machines On (q1(k) = 0 and q2(k) = B2,j)

For this case to occur (see (4.15)) the following conditions must be satisfied

ε1,n(k) ≤ 0, ∀n = 1, 2, (G.21)

ε2,j(k) > 0 and ω2,j(k) ≥ β2,j(k), (G.22)

where j ∈ {1, 2}. With out further analysis one can note that the conditions of
this case were already analyzed in the previous Cases. Recall that in Case 1 for
this value of q1(k) with condition (G.21), as well as in Case 2 for the present value
of q2(k) with condition (G.22), we had proven that the increment of our Lyapunov
function is decreasing. In consequence for Case 3 we can also conclude that given
V FM
k > 0 its increment satisfies ∆V FM

k < 0.

Case 4: Some Machines On (q1(k) = B1,j and q2(k) = 0) For this case to occur
(see (4.15)), the following conditions must be satisfied

ε1,j(k) > 0, (G.23)

ε2,n(k) ≤ 0, or ω2,n(k) < β2(k), (G.24)

where j, n ∈ {1, 2}. Recall that in Case 1 for the current value of q2(k) with the
first inequality of (G.24), as well as in Case 2 for the current value of q1(k) with
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the condition (G.23), we have proven that the increment of our Lyapunov function
is decreasing.
As for the second part of the condition (G.24), which was also analyzed in Case
1, influence on the increment ∆V FM

k may differ, i.e., for this case the second part
of inequality (G.13) may not be satisfied. Thus let us emphasize our analysis of
∆V FM

k , where the value of V FM2

k+1 is influenced by the second part of the condition

(G.24) and the value of V FM1

k+1 is influenced by the condition (G.23). For that let
us rewrite ∆V FM

k of (G.3) as

∆V FM
k = max

{
V FM1

k+1 , V FM2

k+1

}
+min

{
−V FM1

k ,−V FM2

k

}
, (G.25)

where

V FM1

k+1 = max







−ε1,n(k)−∆ϕn(k) + α1 − µ1,
ε1,j − 2µ1 + α1 − 2α2 +∆ϕj(k)− f1(k),

ε1,j(k) + ε1,n(k) +
∑2

s=1∆ϕs(k)− 2α2 − µ1 − f1(k),
0







.

(G.26)

and

V FM2

k+1 = max







−ε2,1(k)−∆ϕ1(k) + α1 − µ2,
−ε2,2(k)−∆ϕ2(k) + α1 − µ2,
ε2,1 − µ2 + α1 − 2α2 +∆ϕ1(k),
ε2,2 − µ2 + α1 − 2α2 +∆ϕ2(k),

ε2,1(k) + ε2,2(k) +
∑2

s=1∆ϕs(k)− 2α2,
0







. (G.27)

Here j 6= n, ∀j, n ∈ {1, 2}.

Let us assume that the maximum value of V FM
k+1 is reached by one of the element

of V FM2

k+1 . Then it follows that for ∆V FM
k the following inequality is satisfied

∆V FM
k ≤ V FM2

k+1 − V FM2

k . (G.28)

From Case 1 we know that ∆V FM(k) < 0 if the maximum of V FM2

k+1 is reached by
one of its first two elements or by the last one. Now, let us verify this assumption
in case one from the rest of the elements of V FM2

k+1 is selected as its maximum. For

that we can now reduce V FM2

k+1 from (G.27) to

V FM2

k+1 = max







ε2,1(k)− µ2 + α1 − 2α2 +∆ϕ1(k),
ε2,2(k)− µ2 + α1 − 2α2 +∆ϕ2(k),

ε2,1(k) + ε2,2(k) +
∑2

s=1∆ϕs(k)− 2α2),
0







. (G.29)
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If ε2,1(k) ≤ 0 and ε2,2(k) ≤ 0 then the following inequalities hold

ε2,1(k)− µ2 + α1 − 2α2 +∆ϕ1(k)
(4.19,4.21,4.22,4.23)

< 0,

ε2,2(k)− µ2 + α1 − 2α2 +∆ϕ2(k)
(4.19,4.21,4.22,4.23)

< 0,

ε2,1(k) + ε2,2(k) +
2∑

s=1

∆ϕs(k)− 2α2

(4.19,4.21,4.22,4.23)
< 0,

which leads to

∆V FM
k ≤ V FM2

k+1 − V FM2

k < 0. (G.30)

Thus let us analyse the first, the second and the third element of (G.29) under the
assumption that ε2,1(k) > 0 and ε2,2(k) > 0. For that we will involve V FM1

k+1 from
(G.26) and analyze the relation between ε1,1(k) and ε2,1(k), as well as between
ε1,2(k) and ε2,2(k). Note that the present condition on w2,n is given by (G.24).
Thus we can rewrite the first part of inequality (G.13) as

ε2,1(k) < β2,1(k)− wd2,1 + ε1,1(k), (G.31)

ε2,2(k) < β2,2(k)− wd2,2 + ε1,2(k), (G.32)

ε2,1(k)
(4.26)
< ε1,1(k)− 2µ1 − 2c4 + c1 − c2, (G.33)

ε2,2(k)
(4.26)
< ε1,2(k)− 2µ1 − 2c4 + c1 − c2, (G.34)

ε1,1(k)− 2µ1 − 2c4 + c1 − c2
(4.19,4.20)
< ε1,1(k)− 2µ1 + α1 −∆ϕ1(k)− f1(k),

(G.35)

ε1,2(k)− 2µ1 − 2c4 + c1 − c2
(4.19,4.20)
< ε1,2(k)− 2µ1 + α1 −∆ϕ2(k)− f1(k).

(G.36)

From inequalities (G.33) and (G.34) it follows that the third and in consequence
the second, and the first elements of (G.29) are of a less value then the first or
the second element of (G.26) (depending on the value of q1(k), i.e., q1(k) = B1,1

or q1(k) = B1,2 ). Thus if (G.29) is selected as a maximal element of V FM
k+1 then

∆V FM
k will result in (G.17) or in (G.18), respectively. This concludes our proof of

Case 4, which is the last case.

Summarizing for 4 cases we have shown that given the Lyapunov function (G.1)
that satisfies V FM

k > 0, its increment given by (G.3) satisfies ∆V FM
k < 0. Thus

lim supk→∞ V FM
k = 0, which completes our proof for a line of 2 machines with 2

stages.
In the above presented proof, we have analyzed the increment of the proposed Lya-
punov function by means of 4 cases. Now for a line of P manufacturing machines
each with N production stages defined by (4.18) the Lyapunov function (G.1) is
extended to

V FM
k = max

{
V FM1

k , ..., V FMP

k

}
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where V FMi
k is given by

V FMi
k = max







−εi,1(k)− µi + vd1 + α1,
...

−εi,N(k)− µi + vdN + α1,
εi,1(k)− (N − 1)(µi − α1)− vd1 −Nα2,

...
εi,N(k)− (N − 1)(µi − α1)− vdN −Nα2,

Σ2
j=1(εi,j(k)− vdj)− (N − 2)(µi − α1)−Nα2,

...
ΣN

j=N−1(εi,j(k)− vdj)− (N − 2)(µi − α1)−Nα2,
...

ΣN−1
j=1 (εi,j(k)− vdj)− (µi − α1)−Nα2,

ΣN
j=2(εi,j(k)− vdj)− (µi − α1)−Nα2,

ΣN
j=1(εi,j(k)− vdj)−Nα2,

0







.(G.37)

Here similar reasoning is followed as for the proof of 2 machines.

"All Machines Off" Case as well as "All Machines On" Case are solved identically
as in the proof for 2 machines. As for the cases of "Some Machines On" , the
analysis is based on pure evaluation of the dependencies that are formed between
the tracking errors of the network. As it was shown in Case 4, this dependencies are
reflected through the two possible conditions ωi,j(k) < βi,j(k) and ωi,j(k) ≥ βi,j(k),
which are imposed on each intermediate buffer content. Thus in "Some Machines
On" cases two situations may occur:

1. All the errors of the non-working machine are negative

• This situation was already solved in "All Machines Off" case

2. All or some of the errors of the non-working machine are positive, which
consequently mean that the buffer content of the non-working stage is less
than the minimal required, i.e., ωi,j(k) < βi,j(k)

• First, use inequality ωi,j(k) < βi(k) to obtain the relation between the
εi,j(k) and its upstream production stage error εi−1,j(k). If the up-
stream production stage error is positive then εi,j(k) can not grow big-
ger than εi−1,j(k). Being more precise, εi−1,j(k) is separated from εi,j(k)
by wdi,j − βi,j(k) implying that the positive element, which contains

εi,j(k), of V FMi
k+1 is less than the positive element of V

FMi−1

k+1 , which con-

tains εi−1,j(k), of V FMr
k+1 . Now, if the upstream production stage error is

negative then εi,j(k) must be negative as well.

• Then, by relying on the obtained production tracking errors relations
evaluate V FM

k+1 and deduce the possible candidates for its maximal value

• Finally, use the definition of minimum and verify that the following
inequality ∆V FM

k ≤ V FMi
k+1 − V FMi

k < 0 holds for all the candidates.



194 G Proof of Theorem 7

Due to the extensive technical details and similarity in the procedure we omit
the explicit analysis for a line of N machines and restrict ourselves by the above
presented logic that lies behind the solution.



H
Proof of Theorem 8

Let us prove that Theorem 8 holds for one re-entrant machine with one buffer
(j = 1, 2) defined by (5.7). With this goal, let us introduce the following Lyapunov
function

V B2(ε1(k), ε2(k)) = max







−ε1(k)− µ1 + vd + α1,
−ε2(k)− µ2 + vd + α1,
ε1(k)−vd−α2

µ1+c3
+ ε2(k)−vd−α2

µ2+c3

0







. (H.1)

Here for the sake of brevity V B2(ε1(k), ε2(k)) = V B2

k , with V B2 ≥ 0 for all εj(k) ∈ R

with j = 1, 2.

Thus, ∆V B2

k along the solutions of ε1(k) and ε2(k) is given by

∆V B2

k = max







−ε1(k)−∆ϕ(k) + α1 − µ1 + β1(k)u1(k),
−ε2(k)−∆ϕ(k) + α1 − µ2 + β2(k)u2(k),

ε1(k)+∆ϕ(k)−α2−β1(k)u1(k)
µ1+c3

+ ε2(k)+∆ϕ(k)−α2−β2(k)u2(k)
µ2+c3

,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
ε2(k) + µ2 − vd − α1,

−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.2)

In order to perform a more detailed analysis on ∆V B2

k , let us divide this proof into
3 cases.

Case 1 (q(k) = 0)
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Suppose that q(k) = 0.

Then we can rewrite ∆V B2

k from (H.2) as

∆V B2

k = max







−ε1(k)−∆ϕ(k) + α1 − µ1,
−ε2(k)−∆ϕ(k) + α1 − µ2,

ε1(k)+∆ϕ(k)−α2

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
ε2(k) + µ2 − vd − α1,

−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.3)

Subcase 1: Let us first assume that εj(k) satisfies

εj(k) ≤ 0, (H.4)

for all k and j = 1, 2. Then by relying on (5.13) we can reduce ∆V B2

k from (H.3)
to

∆V B2

k = max







−ε1(k)−∆ϕ(k) + α1 − µ1,
−ε2(k)−∆ϕ(k) + α1 − µ2,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
ε2(k) + µ2 − vd − α1,

0







︸ ︷︷ ︸

−V
B2
k

. (H.5)

Here, let us assume that for V B2

k+1 the maximum is reached in the first element of

the function, i.e. V B2

k+1 = −ε1(k) −∆ϕ(k) + α1 − µ1. Then from the definition of
min it holds that

∆V B2

k ≤ −ε1(k)−∆ϕ(k) + α1 − µ1 + ε1(k) + µ1 − vd − α1,

∆V B2

k ≤ −vd −∆ϕ(k)
(5.8,5.11)
< 0. (H.6)

Similarly, assuming that the maximum of V B2

k+1 is reached in the second element of
the function, it holds that from the definition of min

∆V B2

k ≤ −vd −∆ϕ(k)
(5.8,5.11)
< 0. (H.7)

Finally, when the maximum of V B2

k+1 is reached by the third element of the function
it holds that

∆V B2

k = −V B2

k . (H.8)
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Thus, for this subcase, for V B2

k > 0 given by (H.1) its increment ∆V B2

k < 0.

Subcase 2: Now let us assume that ε1(k), ε2(k) and w2(k) satisfy

ε1(k) ≤ 0, (H.9)

ε2(k) > 0, (H.10)

w2(k) < β2(k), (H.11)

for all k. From (5.16) we can rewrite condition (H.11) as

ε1(k)
(5.4,5.15)
> ε2(k). (H.12)

Thus, for the case q(k) = 0, subcase 2 is not possible.

Subcase 3: Assume that buffer B2 has a limited capacity. Thus

w2(k) > γ2, (H.13)

and given the state q(k) = 0 it follows that

ε2(k) ≤ 0, (H.14)

for all k. Here γ2 = wd2+µ2+ c4, which is a constant representing an upper bound
on the product content of B2.

We can rewrite condition (H.13) as ε2(k)− ε1(k) + wd2 > γ2 from where

ε1(k) < ε2(k)− µ2 − c4. (H.15)

For (H.13) and (H.15) the analysis on ∆V B2

k was presented in Subcase 1. This
concludes the analysis of Case 1.

Case 2 (q(k) = B1)

Suppose the machine is working with buffer B1 (q(k) = B1), which is assumed to
never starve. Thus, ε1(k) satisfies

ε1(k) > 0 (H.16)

for all k. Without loss of generality let us assume for now that ε2(k) ∈ R. Then
we can rewrite ∆V B2

k from (H.3) as

∆V B2

k = max







−ε1(k)−W1(k) + α1,
−ε2(k)−∆ϕ(k) + α1 − µ2,

ε1(k)+W1(k)−α2−µ1

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
ε2(k) + µ2 − vd − α1,

−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.17)
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Here due to condition (H.16) the increment ∆V B2

k can be immediately reduced to

∆V B2

k = max







−ε2(k)−∆ϕ(k) + α1 − µ2,
ε1(k)+W1(k)−α2−µ1

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε2(k) + µ2 − vd − α1,
−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.18)

Subcase 1: Let us first analyse (H.18) assuming that ε2(k) satisfies

ε2(k) > 0 (H.19)

for all k. Then by relying on (5.13) the increment (H.18) of V B2

k can de reduced to

∆V B2

k = max

{ε1(k)+W1(k)−α2−µ1

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
,

0

}

︸ ︷︷ ︸

V
B2
k+1

+min

{
−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0

}

︸ ︷︷ ︸

−V
B2
k

. (H.20)

Consider now that the maximum of V B2

k+1 is reached in its first element, i.e. V B2

k+1 =
ε1(k)+W1(k)−α2−µ1

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
. Then from the definition of min it holds that

∆V B2

k ≤
ε1(k) +W1(k)− α2 − µ1

µ1 + c3
+
ε2(k) + ∆ϕ(k)− α2

µ2 + c3

+
−ε1(k) + vd + α2

µ1 + c3
+

−ε2(k) + vd + α2

µ2 + c3
,

∆V B2

k ≤ −
µ1 + f1(k)

µ1 + c3
+
vd +∆ϕ(k)

µ1 + c3
+
vd +∆ϕ(k)

µ2 + c3

(5.9,5.13)
< 0.

In case that the maximum of V B2

k+1 given by (H.20) is reached in its second element,
then from the definition of min it holds that

∆V B2

k = −V B2

k . (H.21)

Thus, for this subcase, for V B2

k > 0 given by (H.1) its increment ∆V B2

k < 0.

Subcase 2: Now let us analyse (H.18) assuming that ε2(k) satisfies

ε2(k) ≤ 0 (H.22)
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for all k. In analogy with the procedure followed in Subcase 1 it is obtained that







∆V B2

k ≤ −vd −∆ϕ(k)
(5.8,5.11)
< 0

if V B2

k+1 = −ε2(k)−∆ϕ(k) + α1 − µ2,

∆V B2

k ≤ −µ1+f1(k)
µ1+c3

+ vd+∆ϕ(k)
µ1+c3

+ vd+∆ϕ(k)
µ2+c3

(5.9,5.13)
< 0

if V B2

k+1 =
ε1(k)+W1(k)−α2−µ1

µ1+c3
+ ε2(k)+∆ϕ(k)−α2

µ2+c3
,

∆V B2

k = −V B1

k

if V B2

k+1 = 0.

(H.23)

Thus, for this subcase for V B2

k > 0 given by (H.1) its increment ∆V B2

k < 0. This
concludes the analysis of Case 2.

Case 3 (q(k) = B2)

Suppose the machine is working with buffer B2 (q(k) = B2). Thus, ε2(k) satisfies

ε2(k) > 0 (H.24)

for all k. Without loss of generality let us assume for now that value of ε1(k) can
take any sign. Then we can rewrite ∆V B2

k from (H.3) as

∆V B2

k = max







−ε1(k)−∆ϕ(k) + α1 − µ1,
−ε2(k)−W2(k) + α1,

ε1(k)+∆ϕ(k)−α2

µ1+c3
+ ε2(k)+W2(k)−α2−µ2

µ2+c3
,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
ε2(k) + µ2 − vd − α1,

−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.25)

Here due to condition (H.24) the increment ∆V B2

k can be immediately reduced to

∆V B2

k = max







−ε1(k)−∆ϕ(k) + α1 − µ1,
ε1(k)+∆ϕ(k)−α2

µ1+c3
+ ε2(k)+W2(k)−α2−µ2

µ2+c3
,

0







︸ ︷︷ ︸

V
B2
k+1

+min







ε1(k) + µ1 − vd − α1,
−ε1(k)+vd+α2

µ1+c3
+ −ε2(k)+vd+α2

µ2+c3
,

0







︸ ︷︷ ︸

−V
B2
k

. (H.26)
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By conducting the similar analysis as the one presented in case 2 we obtain that







∆V B2

k ≤ −vd −∆ϕ(k)
(5.8,5.11)
< 0

if V B2

k+1 = −ε1(k)−∆ϕ(k) + α1 − µ1,

∆V B2

k ≤ −µ2+f2(k)
µ2+c3

+ vd+∆ϕ(k)
µ1+c3

+ vd+∆ϕ(k)
µ2+c3

(5.9,5.13)
< 0

if V B2

k+1 =
ε1(k)+∆ϕ(k)−α2

µ1+c3
+ ε2(k)+W2(k)−α2−µ2

µ2+c3
,

∆V B2

k = −V B2

k

if V B2

k+1 = 0,

(H.27)

which completes Case 3. In this proof we have analyzed the increment of the
proposed Lyapunov function by means of 3 cases. Now for machine M serving N
number of buffers (j = 1, . . . , N) defined by (5.7) the function (H.1) is extended
to

V BN
k = max







−ε1 − µ1 + vd + α1,
...

−εN − µN + vd + α1,
∑N

j=1
εj−vd−α2

µj+c3
,

0







.

Here the same reasoning is followed as for the proof for 2 machines. Summarizing
the 3 cases, we have shown that for V B2

k > 0 given by (H.1) its increment ∆V B2

k < 0.
Thus lim supk→∞ V B2

k = 0, which completes our proof.



I
Proof of Theorem 9

Due to the similarity of the procedure with the proof of Theorem 8 we omit the
explicit analysis of this theorem. Instead we present all the necessary tools and
the logic that lies behind the solution. The Lyapunov function that leads to its
proof is given by

V BN
k = max







−ε1 − µ1 + vd + α1,
...

−εN − µN + vd + α1,
∑N

j=1
εj−vd−α2−Xj

µj+c3
,

0







. (I.1)

where Xj =
∑j

s=2 (max(µs + c4 − wds, 0)) for all j = 2, . . . , N and X1 = 0. The
proof can be subdivided in to the same 3 cases as for Theorem 8. The procedure
that was followed in all those cases, except for Subcase 2 of Case 1, are also valid
for this proof. Contrary to the result of Subcase 2 of Case 1 of the proof of Theorem
8 the conditions (H.9), (H.10), and (H.11) can occur given that wdj < βj(k). In
this case the inequality (H.12) is substituted by

εj(k)
(5.4)
<

j
∑

s=2

(βs(k)− wds)
(5.9)
< Xj , ∀j = 2, . . . , N. (I.2)

Relying on the above mentioned inequality it can be easily deduced that for V BN
k >

0 given by (I.1) its increment ∆V BN
k < 0. For the rest of the cases, the obtained

results are similar to the once presented in the proof of Theorem 8.
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J
Proof of Theorem 10

Let us prove that Theorem 10 holds for the re-entrant network with P machines
(i = 1, . . . , P ) each one with N production stages (j = 1, . . . , N) and N × P − 1
intermediate buffers defined by (5.29).
Let us start by describing the general structure of our proof.

• First, we will show that Theorem 10 holds for a 2 machine re-entrant network.
For that we will analyse the increment of the proposed Lyapunov function,
which will be given later in the proof. The analysis is subdivided into 4
Cases. As it can be observed form (5.25), each machine in the network has
2 modes, which are the working mode and the stand by (idle) mode. Thus
if we have 2 machines in the network this network may present 4 working
modes, which correspond to the number of cases in our analysis.

• Second, we extend our proof to a complete P ×N network. Given the proof
for 2 machines now we can describe the resulting 2P cases and explain the
obtained results.

Let us begin our proof by showing that Theorem 10 holds for a smaller network,
which consists of 2 machines Mi (i = 1, 2) with 2 production stages each (j = 1, 2)
and 3 intermediate buffers (B1,2, B2,1, B2,2). For that purpose, let us introduce the
following Lyapunov function

V M
k = max

{
V M1

k , V M2

k

}
(J.1)

where

V Mi
k = max







−εi,1(k)− µi + vd + α1,
−εi,2(k)− µi + vd + α1,

εi,1(k)− (N − 1)(µi − α1)− vd −Nα2,
εi,2(k)− (N − 1)(µi − α1)− vd −Nα2,

εi,1(k) + εi,2(k)−N(vd + α2)
0







. (J.2)
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Here N = 2, V M
k = 0, ∀εi,j(k) ∈ [vd + α1 − µi, (N − 1)(µi − α1) + vd +Nα2].

Thus, ∆V M
k along the solutions of εi,j(k) is given by

∆V M
k = max

{
V M1

k+1, V
M2

k+1

}
−max

{
V M1

k , V M2

k

}
, (J.3)

where

V Mi
k+1 =

max







−εi,1(k)−∆ϕ(k) + α1 − µi + βi(k)ui,1(k),
−εi,2(k)−∆ϕ(k) + α1 − µi + βi(k)ui,2(k),

εi,1(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ(k)− βi(k)ui,1(k),
εi,2(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ(k)− βi(k)ui,2(k),

εi,1(k) + εi,2(k) +N(∆ϕ(k)− α2)− βi(k)ui,1(k)− βi(k)ui,2(k),
0







.

(J.4)

In order to perform a more detailed analysis on ∆V M
k , let us divide this proof into

4 cases.

Case 1: All Machines Off (q1(k) = 0 and q2(k) = 0)

As we know from (5.25), in this case at least one of the following conditions must
be satisfied

εi,j(k) ≤ 0, ∀i, j = 1, 2 , (J.5)

ε1,1(k) ≤ 0 and ωi,j(k) < βi(k). (J.6)

Note that we assume B1,1 to always contain a sufficient amount of products.

First, given the states of q1(k) and q2(k) let us rewrite ∆V M
k from (J.3) as

∆V M
k = max

{
V M1

k+1, V
M2

k+1

}
+min

{
−V M1

k ,−V M2

k

}
, (J.7)

where

V Mi

k+1 = max







−εi,1(k)−∆ϕ(k) + α1 − µi,
−εi,2(k)−∆ϕ(k) + α1 − µi,

εi,1(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ(k),
εi,2(k)− (N − 1)(µi − α1)−Nα2 +∆ϕ(k),

εi,1(k) + εi,2(k) +N(∆ϕ(k)− α2),
0







(J.8)

and

−V Mi
k = min







εi,1(k) + µi − vd − α1,
εi,2(k) + µi − vd − α1,

−εi,1(k) + (N − 1)(µi − α1) + vd +Nα2,
−εi,2(k) + (N − 1)(µi − α1) + vd +Nα2,

−εi,1(k)− εi,2(k) +N(vd + α2)
0







. (J.9)
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Second, let us assume that the maximum of V M
k+1 is reached in V Mi

k+1 . Thus from
the definition of minimum it is possible to state that ∆V M

k satisfies the following
inequality

∆V M
k ≤ V Mi

k+1 − V Mi

k . (J.10)

Third, let us show that V Mi

k+1 − V Mi

k < 0. For that purpose we assume that the

maximum of V Mi
k+1 is reached by one of its first 2 elements, i.e. V Mi

k+1 = −εi,j(k) −
∆ϕ(k) + α1 − µi. Then from the definition of minimum it is possible to state that
∆V M

k satisfies

∆V M
k ≤ −εi,j(k)−∆ϕ(k) + α1 − µi + εi,j(k) + µi − vd − α1,

∆V M
k ≤ −vd −∆ϕ(k)

(5.30,5.33)
< 0. (J.11)

Now suppose that the maximum of V Mi
k+1 is reached by its sixth element, i.e. V Mi

k+1 =
0. Then from the definition of the minimum it is valid to state that ∆V M

k satisfies

∆V M
k ≤ −V Mi

k < 0. (J.12)

One of the other elements of V Mi
k+1 could be selected as its maximum only if the

tracking errors of this element is positive enough. But, from (J.6), (5.27) and (5.37)
we know that

εi,j(k) < βi,j(k)− wdi,j + εr,s(k) < 0, ∀i, j = 1, . . . , 2, (J.13)

where r and s are given by (5.28). Thus the previous statement does not hold for
this case and inequality V Mi

k+1 − V Mi
k < 0 holds true. Hence, for Case 1 we have

shown that given V M
k > 0 its increment satisfies ∆V M

k < 0.

Case 2: All Machines On (q1(k) = B1,j and q2(k) = B2,n)

Here j and n are not necessarily equal, though they both belong to the set {1, 2}.
From (5.25) we know that in order for this case to occur, the following conditions
must be satisfied for at least one of the production steps at each machine Mi

εi,j(k) > 0, and ωi,j(k) ≥ βi(k). (J.14)

Given the conditions (J.14), (5.30), (5.32), (5.33) and (5.34), we can rewrite V Mi
k+1

form (J.4) as

V Mi
k+1 = max







−εi,n(k)−∆ϕ(k) + α1 − µi,
εi,j(k)− 2µi + α1 − 2α2 +∆ϕ(k)− fi(k),

εi,j(k) + εi,n(k) + 2(∆ϕ(k)− α2)− µi − fi(k),
0







, (J.15)

where j 6= n. Now, let us assume that the maximum of V M
k+1 is reached in one of

the elements of (J.15). Then from the definition of minimum it holds that

∆V M
k ≤ V Mi

k+1 − V Mi

k , (J.16)
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where −V Mi
k is given by (J.9). Thus let us prove that V Mi

k+1 − V Mi
k < 0. Assume

that the maximum value of V Mi
k+1 is reached by its first element. Then inequality

(J.16) takes the following form

∆V M
k ≤ −εi,n(k)−∆ϕ(k) + α1 − µi + εi,n(k) + µi − vd − α1,

∆V M
k ≤ −vd −∆ϕ(k)

(5.30,5.33)
< 0. (J.17)

Consider now that the maximum value of V Mi
k+1 is reached by its second element.

Then inequality (J.16) is reduced to

∆V M
k ≤ εi,j(k)− 2µi + α1 − 2α2 +∆ϕ(k)− fi(k)

−εi,j(k) + µi + vd − α1 + 2α2,

∆V M
k ≤ −µi + vd +∆ϕ(k)− fi(k)

(5.34)
< 0. (J.18)

In case the maximum value of V Mi
k+1 is reached by its third element, the inequality

(J.16) is reduced to

∆V M
k ≤ εi,j(k) + εi,n(k) + 2(∆ϕ(k)− α2)− µi − fi(k)

−εi,j(k)− εi,n(k) + 2(vd + α2),

∆V M
k ≤ −µi − fi(k) + 2(vd +∆ϕ(k))

(5.35)
< 0. (J.19)

Finally, if the maximum value of V Mi

k+1 is reached by its fourth element, then in-
equality (J.16) reduces to

∆V M
k ≤ −V Mi

k < 0. (J.20)

Thus we have proven that the inequality V Mi
k+1 − V Mi

k < 0 holds true. Hence, for
Case 2 we have shown that given V M

k > 0 its increment satisfies ∆V M
k < 0.

Case 3: Some Machines On (q1(k) = 0 and q2(k) = B2,j)

For this case to occur (see (5.25)), the following conditions must be satisfied

ε1,n(k) ≤ 0, or ε1,1(k) ≤ 0 and ω1,2(k) < β1(k), (J.21)

ε2,j(k) > 0 and ω2,j(k) ≥ β2(k), (J.22)

where j, n ∈ {1, 2}. Recall that in Case 1 for this value of q1(k) with the first
inequality of (J.21), as well as in Case 2 for the present value of q2(k) with the
condition (J.22), we had proven that the increment of our Lyapunov function is
decreasing. In this case the second part of the condition (J.21), which was also
analyzed in Case 1, may have a different influence on the increment ∆V M

k , i.e. for
this case the second part of inequality (J.13) may not always hold true. Thus let
us analyze ∆V M

k , where the value of V M1

k+1 is influenced by the second part of the

condition (J.21) and the value of V M2

k+1 is influenced by the condition (J.22). For
that let us rewrite ∆V M

k of (J.3) as

∆V M
k = max

{
V M1

k+1, V
M2

k+1

}
+min

{
−V M1

k ,−V M2

k

}
, (J.23)



207

where

V M1

k+1 = max







−ε1,1(k)−∆ϕ(k) + α1 − µ1,
−ε1,2(k)−∆ϕ(k) + α1 − µ1,

ε1,1(k)− µ1 + α1 − 2α2 +∆ϕ(k),
ε1,2(k)− µ1 + α1 − 2α2 +∆ϕ(k),
ε1,1(k) + ε1,2(k) + 2(∆ϕ(k)− α2),

0







(J.24)

and

V M2

k+1 = max







−ε2,n(k)−∆ϕ(k) + α1 − µ2,
ε2,j(k)− 2µ2 + α1 − 2α2 +∆ϕ(k)− f2(k),

ε2,j(k) + ε2,n(k) + 2(∆ϕ(k)− α2)− µ2 − f2(k),
0







. (J.25)

Here j 6= n, ∀j, n ∈ {1, 2}.

Let us assume that the maximum value of V M
k+1 is reached by one of the element

of V M1

k+1. Then it follows that for ∆V M
k the following inequality is satisfied

∆V M
k ≤ V M1

k+1 − V M1

k . (J.26)

From Case 1 we know that ∆V M
k < 0 if the maximum of V M1

k+1 is reached by one
of its first two elements or by the last one. Now, let us verify this assumption in
case one from the rest of the elements of V M1

k+1 is selected as its maximum value.

For that we can now reduce V M1

k+1 from (J.24) to

V M1

k+1 = max







ε1,1(k)− µ1 + α1 − 2α2 +∆ϕ(k),
ε1,2(k)− µ1 + α1 − 2α2 +∆ϕ(k),
ε1,1(k) + ε1,2(k) + 2(∆ϕ(k)− α2),

0







. (J.27)

Here the first element of (J.27) can be excluded due to the condition ε1,1(k) ≤ 0
(see (J.21)) and the inequality

ε1,1(k)− µ1 + α1 − 2α2 +∆ϕ(k)
(5.30,5.32,5.33,5.34)

< 0.

If ε1,2(k) ≤ 0 then the second and the third element of V M1

k+1 can be excluded as
well. Thus we must focus on the analysis of the second and third elements of (J.27)
under the assumption that ε1,2(k) > 0. For that we will involve V M2

k+1 from (J.25)
and analyze the following 2 scenarios.
In the first scenario we assume that in (J.25), j = 1 and n = 2. Thus let us analyze
the relation between ε1,2(k) and ε2,1(k). From the second inequality of (J.21) we
can rewrite the first part of (J.13) as

ε1,2(k) < β1,2(k)− wd1,2 + ε2,1(k), (J.28)

ε1,2(k)
(5.37)
< ε2,1(k)− 2µ2 − 2c4 + c1 − c2, (J.29)

ε2,1(k)− 2µ2 − 2c4 + c1 − c2
(5.30,5.31)
< ε2,1(k)− 2µ2 + α1 −∆ϕ(k)− f2(k).

(J.30)
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From inequality (J.30), it follows that the third and in consequence the second
element of (J.27) are of the less value then the second element of (J.25), which if
selected as the maximal value element of V M

k+1 will result in (J.18). Thus in the

first scenario we have shown that in V M1

k+1 given by (J.27) its maximal value can
not be reached in its second, nor in its third element.
In the second scenario we assume that in (J.25) j = 2 and n = 1. Thus let us now
analyze the relation between ε1,2(k) and ε2,1(k). The present condition on w2,1(k)
is given by (J.21). Thus the inequality (J.29) remains the same and the result of
the first scenario applies here as well. This concludes the proof of Case 3. In this
case we have shown that given V M

k > 0 its increment satisfies ∆V M
k < 0.

Case 4: Some Machines On (q1(k) = B1,j and q2(k) = 0)

For this case to occur (see (5.25)), the following conditions must be satisfied

ε1,j(k) > 0 and ω1,j(k) ≥ β1(k), (J.31)

ε2,n(k) ≤ 0, or ω2,n(k) < β2(k), (J.32)

where j, n ∈ {1, 2}. Recall that in Case 1 for the current value of q2(k) with the
first inequality of (J.32), as well as in Case 2 for the current value of q1(k) with
the condition (J.31), we have proven that the increment of our Lyapunov function
is decreasing.
As for the second part of the condition (J.32), which was also analyzed in Case
1, influence on the increment ∆V M

k may differ, i.e. for this case the second part
of inequality (J.13) may not be satisfied. Thus let us analyze of ∆V M

k , where the
value of V M2

k+1 is influenced by the second part of the condition (J.32) and the value

of V M1

k+1 is influenced by the condition (J.31). For that let us rewrite ∆V M
k of (J.3)

as

∆V M
k = max

{
V M1

k+1, V
M2

k+1

}
+min

{
−V M1

k ,−V M2

k

}
, (J.33)

where

V M1

k+1 = max







−ε1,n(k)−∆ϕ(k) + α1 − µ1,
ε1,j − 2µ1 + α1 − 2α2 +∆ϕ(k)− f1(k),

ε1,j(k) + ε1,n(k) + 2(∆ϕ(k)− α2)− µ1 − f1(k),
0







. (J.34)

and

V M2

k+1 = max







−ε2,1(k)−∆ϕ(k) + α1 − µ2,
−ε2,2(k)−∆ϕ(k) + α1 − µ2,
ε2,1 − µ2 + α1 − 2α2 +∆ϕ(k),
ε2,2 − µ2 + α1 − 2α2 +∆ϕ(k),

ε2,1(k) + ε2,2(k) + 2(∆ϕ(k)− α2),
0







. (J.35)

Here j 6= n, ∀j, n ∈ {1, 2}.

Let us assume that the maximum value of V M
k+1 is reached by one of the element

of V M2

k+1. Then it follows that for ∆V M
k the following inequality is satisfied

∆V M
k ≤ V M2

k+1 − V M2

k . (J.36)
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From Case 1 we know that ∆V M(k) < 0 if the maximum of V M2

k+1 is reached by one
of its first two elements or by the last one. Now, let us verify this assumption in
case one of the other elements of V M2

k+1 is selected as its maximum. For that we can

now reduce V M2

k+1 from (J.35) to

V M2

k+1 = max







ε2,1(k)− µ2 + α1 − 2α2 +∆ϕ(k),
ε2,2(k)− µ2 + α1 − 2α2 +∆ϕ(k),
ε2,1(k) + ε2,2(k) + 2(∆ϕ(k)− α2),

0







. (J.37)

If ε2,1(k) ≤ 0 and ε2,2(k) ≤ 0 then the following inequalities hold

ε2,1(k)− µ2 + α1 − 2α2 +∆ϕ(k)
(5.30,5.32,5.33,5.34)

< 0,

ε2,2(k)− µ2 + α1 − 2α2 +∆ϕ(k)
(5.30,5.32,5.33,5.34)

< 0,

ε2,1(k) + ε2,2(k) + 2(∆ϕ(k)− α2)
(5.30,5.32,5.33,5.34)

< 0,

which leads to

∆V M
k ≤ V M2

k+1 − V M2

k < 0. (J.38)

Thus let us analyse the first, the second and the third element of (J.37) under the
assumption that ε2,1(k) > 0 and ε2,2(k) > 0. For that we will involve V M1

k+1 from
(J.34) and analyze the relation between ε1,1(k) and ε2,1(k), as well as between
ε1,2(k) and ε2,2(k). Note that the present condition on w2,n is given by (J.32).
Thus we can rewrite the first part of inequality (J.13) as

ε2,1(k) < β2,1(k)− wd2,1 + ε1,1(k), (J.39)

ε2,2(k) < β2,2(k)− wd2,2 + ε1,2(k), (J.40)

ε2,1(k)
(5.37)
< ε1,1(k)− 2µ1 − 2c4 + c1 − c2, (J.41)

ε2,2(k)
(5.37)
< ε1,2(k)− 2µ1 − 2c4 + c1 − c2, (J.42)

ε1,1(k)− 2µ1 − 2c4 + c1 − c2
(5.30,5.31)
< ε1,1(k)− 2µ1 + α1 −∆ϕ(k)− f1(k),

(J.43)

ε1,2(k)− 2µ1 − 2c4 + c1 − c2
(5.30,5.31)
< ε1,2(k)− 2µ1 + α1 −∆ϕ(k)− f1(k).

(J.44)

From inequalities (J.41) and (J.42) it follows that the third and in consequence
the second, and the first elements of (J.37) are of a less value then the first or the
second element of (J.34) (depending on q1(k) value), which if selected as a maxi-
mal element of V M

k+1 will result in (J.17) or (J.18), respectively. This concludes our
proof of Case 4, which is the last case.
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Summarizing for 4 cases we have shown that given the Lyapunov function (J.1)
that satisfies V M

k > 0, its increment given by (J.3) satisfies ∆V M
k < 0. Thus

lim supk→∞ V M
k = 0, which completes our proof.

In this proof, we have analyzed the increment of the proposed Lyapunov function
by means of 4 cases. Now for a line of P manufacturing machines, each with N
production stages defined by (5.29), the Lyapunov function (J.1) is extended to

V M
k = max

{
V M1

k , ..., V MP

k

}
,

where

V Mi

k = max







−εi,1(k)− µi + vd + α1,
...

−εi,N(k)− µi + vd + α1,
εi,1(k)− (N − 1)(µi − α1)− vd −Nα2,

...
εi,N(k)− (N − 1)(µi − α1)− vd −Nα2,

Σ2
j=1εi,j(k)− (N − 2)(µi − α1)− 2vd −Nα2,

...
ΣN

j=N−1εi,j(k)− (N − 2)(µi − α1)− 2vd −Nα2,
...

ΣN−1
j=1 εi,j(k)− (µi − α1)− (N − 1)vd −Nα2,

ΣN
j=2εi,j(k)− (µi − α1)− (N − 1)vd −Nα2,

ΣN
j=1εi,1(k)−N(vd + α2),

0







(J.45)

for all i = 1, ..., P . Here similar reasoning is followed as in the proof of 2 machines.

The "All Machines Off" Case as well as the "All Machines On" Case are solved
identically as in the proof for 2 machines. As for the cases of "Some Machines
On", the analysis is based on pure evaluation of the dependencies that are formed
between the tracking errors of the network. As it was shown in Case 3 and 4, these
dependencies are reflected through the 2 possible conditions (ωi,j(k) < βi(k) and
ωi,j(k) ≥ βi(k)), which are imposed on each intermediate buffer content. Thus in
the "Some Machines On" cases two situations may occur:

1. All the errors of the non-working machine are negative.

• This situation was already solved in "All Machines Off" case.

2. All or some of the errors of the non-working machines are positive, which
consequently means that the buffer content of the non-working stages is less
than the minimal required.

• First, use inequality ωi,j(k) < βi(k) to obtain a relation between the
εi,j(k) and its upstream production stage error εr,s(k). If the upstream
production stage error is positive, then εi,j(k) can not grow bigger than
εr,s(k). Being more precise, εr,s(k) is separated from εi,j(k) by wdi,j −
βi(k) implying that the positive element, which contains εi,j(k), of V Mi

k+1
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is less than the positive element, which contains εr,s(k), of V Mr
k+1. Now,

if the upstream production stage error is negative, then εi,j(k) must be
negative as well.

• Then, by relying on the obtained production tracking errors relations
evaluate V M

k+1 and deduce the possible candidates for its maximal value.

• Finally, use the definition of the minimum and verify that the following
inequality ∆V M

k ≤ V Mi

k+1 − V Mi

k < 0 holds.

Due to the extensive technical details we omitted the explicit analysis for a line of
N machines and restricted ourselves to only explaining the logic that lied behind
the solution.
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K
Models of manufacturing networks

The reader is invited to use this appendix as a reference on flow models of Sections
3.6 and 5.2.4 on simulation-based performance analysis. This appendix presents
a detailed description of discrete time flow models for a manufacturing line and
a re-entrant machine operated under three surplus-based production controllers.
The production controllers also known as policies are Hedging Point, Base Stock
and Conwip.

The appendix is subdivided in three sections. In each section introduces one of
the above mentioned policies first fore a manufacturing line of 4 machines and 3
buffers and then for a single re-entrant machine of 3 sages and 2 buffers.

K.1 Hedging Point Policy

In this thesis we study the performance of several network topologies operated
under a production demand oriented policy that is introduced under the general
name of surplus-based control. In the literature their exist several variants of
surplus-based controllers. Thus the controllers studied in this thesis are presented
under the name of the specific policy called Hedging Point. The Hedging Point
Policy (HPP) was first introduced by Design and Operation of Manufacturing
System Group of MIT headed by Stanley B. Gershwin (see Kimemia and Gershwin
(1983), Perkins (2004) and references therein). The aim of this policy is to provide
an efficient production demand tracking while also limiting the network’s inventory.
The interpretation of the studied surplus-based controllers in terms of a Hedging
Point Policy will be given in this section. In the following subsections the close-loop
models for a manufacturing line and a re-entrant machine operated under HPP are
presented.
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K.1.1 Manufacturing line

Recall from Chapter 3 that in discrete time the flow model of the manufacturing
line is defined as

y1(k + 1) = y1(k) + β1(k), (K.1)

yj(k + 1) = yj(k) + βj(k) signBuff(wj(k)− βj(k)), (K.2)

where βj(k) = uj(k)+ fj(k), with fj as the external disturbance affecting machine
Mj , uj is the control input of machine Mj and wj(k) = yj−1(k) − yj(k) is the
content of buffer Bj. Note that for further consistency with the flow model used in
Section 3.6 in this section the machine and buffer index j is limited to j = 1, . . . , 4.

The HPP controller uj is given by

uj(k) = µjsign+(εj+1(k) + wdj+1
− wj+1(k)), (K.3)

∀j = 1, . . . , 3,

u4(k) = µ4sign+(yd(k)− y4(k)), (K.4)

where the tracking error of each machine is given by

εj(k) = εj+1(k) + (wdj+1
− wj+1(k)), (K.5)

∀j = 1, . . . , 3,

ε4(k) = yd(k)− y4(k). (K.6)

Here wdj+1
represents a constant buffer level that is desired to maintain in each

Bj+1 buffer of the line.

Figure K.1: Control diagram of a line of 4 machines under HPP.

Figure K.1 presents the control diagram of a manufacturing line composed of 4
machines M and 3 unbounded buffers B operated under HPP. The circles repre-
sent the manufacturing machines each with inside label Mj and outside short thick
black arrows denote the external perturbations fi, which are affecting its produc-
tion rates. Each machine (except for M1) have a buffer connected to it, each one
denoted by 3 joined squares. The product flow directions are denoted by a thick
white arrows with a black frame. The transferring of information on the produc-
tion tracking error εj is shown by arched black arrows, going from one machine
to another in upstream manner. For each machine the upstream and downstream
inventory level wj information transfer is depicted by a curved black arrow coming
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from each buffer and the desired downstream buffer inventory level wdj is shown
by a short thin black arrow pointing to each machine.
Note that in this HPP implementation the control actions are decentralized through-
out the network. In other words the control action of each machine in the line
depends only on the production error of its neighboring downstream machine (ex-
cept for machine M4, which control action depends directly on cumulative demand
input) and the current buffer content of its upstream and downstream buffer (see
Fig. K.1).

From the definition of wj(k) and equations(K.5) and (K.6) the production error of
each machine can be also presented in the following form

εj(k) = yd(k)− yj(k) + wdj+1
+ . . .+ wdN , (K.7)

∀j = 1, . . . , 3,

ε4(k) = yd(k)− y4(k), (K.8)

which is commonly found in the existent literature on HPP (see e.g. Gershwin
(2000)). In this interpretation each machine in the line is keeping track of the
current demand as well as of its hedging point (also known as the base stock level),
which in this case is given by the sum of the desired buffer contents wdj+1

of all
the downstream buffers in front of Mj .

K.1.2 Re-entrant machine

In Chapter 5 the discrete time flow model of each production stage of one re-entrant
machine was defined as

yj(k + 1) = yj(k) + βj(k)uj(k), (K.9)

where yj(k) ∈ R is the cumulative output of the machine in processing stage
j in time k, uj(k) ∈ R is the control input of the machine in processing stage
j and βj(k) = µj + fj(k) where µj is a positive constant that represents the
processing speed of the machine at the stage j and fj(k) ∈ R is an unknown
external disturbance affecting the performance of the machine at stage j. Note
that for further consistency with the model used in Section 5.2.4 in this section
the machine and buffer index j is limited to j = 1, . . . , 3.

Figure K.2 shows a control diagram for one re-entrant machine M (dashed line
rectangle) with 3 production stages. The output of each stage is indicated by
variables y1, y2 and y3, respectively. The machine is interconnected with 2 buffers
B2, B3. Each buffer stores the intermediate product that is produced by the up-
stream stage of the machine. It is assumed that the machine has always sufficient
raw material on its input, which is the reason why the buffer of stage 1 (B1) is
omitted in this figure.

The HPP controller uj is given by the following algorithm
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Figure K.2: Control diagram of a re-entrant machine of 3 stages operated under HPP.

{q(k) = Bj},

if εj(k) > 0 andwj(k) ≥ βj(k) then

uj(k) = 1,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , 3,

q(k + 1) = Bj ,

end

if (εj(k) ≤ 0 orwj(k) < βj(k)) and

∃ s 6= j : (εs(k) > 0 andws(k) ≥ βs(k)) then

uj(k) = 0,

us(k) = 1,

q(k + 1) = Bs,

end

if (εs(k) ≤ 0 orws(k) < βs(k)) , ∀s then

uj(k) = 0,

us(k) = 0, ∀s 6= j, s, j = 1, . . . , N,

q(k + 1) = 0,

end (K.10)
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Summarizing for (K.10), the machine can only work on one buffer at a time. The
control input uj(k) of each production stage j can only take the value of 0 (stop)
or 1 (produce). The uj(k) receives the value of 1 only if j production stage needs
to produce (εj(k) > 0) and its buffer is not empty (wj(k) ≥ βj(k)). The machine
will remain at its current state (q(k) = Bj) while all the conditions of the state are
satisfied. The value of 0 is given to the control input of stage j if at least one of the
conditions of the current state q(k) = Bj is unsatisfied. The change in the value of
the control signal of a stage j also implies a change in machine’s state q(k). The
machine has 4 states. This is due to that 3 is a total number of processing stages
that M can be working in, which directly relate to the states of the machine, plus
the idle state (q(k) = 0). The cumulative production error at each stage of M and
the buffer content are defined in a similar way to the above provided line model as

εj(k) = εj+1(k) + (wdj+1
− wj+1(k)), (K.11)

∀j = 1, . . . , 2,

ε3(k) = yd(k)− y3(k) (K.12)

and wj+1(k) = yj(k)− yj+1(k), respectively.

K.2 Base Stock Policy

Base Stock Policy (BSP) is a commonly utilized scheduling policy usually applied in
warehouses for inventory control purposes. Frequently in the literature (see Silver
et al. (1998), Bonvik et al. (1997), Duri et al. (2000), Karaesmen and Dallery
(2000), González et al. (2012) and references therein) one can find BS as a policy
under which all the machines in the network keep track of the product demand
while at the same time maintaining a base stock (also called safety stock) level of
the immediate downstream inventory. In our comparative study this BS notion
is slightly modified. In case of a line only the last machine (M4) is tracking the
product demand while the rest keep the upstream inventory at its base stock level.
In case of a re-entrant machine only the last stage (j = 3) is tracking the product
demand while the rest keep the upstream inventory at its base stock level.

K.2.1 Manufacturing line

In this section BSP is introduced for a line of 4 manufacturing machines and 3
buffers previously described by the flow model (K.1), (K.2). For BSP the control
input uj is given by

uj(k) = µjsign+(εj(k)), (K.13)

∀j = 1, . . . , 3,

u4(k) = µ4sign+(ε4(k)). (K.14)

and tracking error of each machine is defined as

εj(k) = wdj+1
− wj+1(k), (K.15)

∀j = 1, . . . , 3,

ε4(k) = yd(k)− y4(k). (K.16)
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Figure K.3: Control diagram of a line of 4 machines under BSP.

Figure K.3 presents the control diagram of a manufacturing line composed of 4
machines M and 3 unbounded buffers B operated under BSP. The circles repre-
sent the manufacturing machines each with inside label Mj and outside short thick
black arrows denote the external perturbations (fi), which are affecting its produc-
tion rates. Each machine (except for M1) has a buffer connected to it, each one
denoted by 3 joined squares. The product flow directions are denoted by a thick
white arrows with a black frame. For each machine the upstream and downstream
inventory level wj information transfer is depicted by a curved black arrow coming
from each buffer and the desired downstream buffer inventory level wdj is shown
by a short thin black arrow pointing to each machine.
Note that the control actions are decentralized throughout the network. The con-
trol action of each machine, except for M4, depends on a product availability of its
upstream buffer and the base stock level of its downstream buffer (see Fig. K.3).
In case of M4 its control action also depends on a product availability, but unlike
the rest of the machines the production process of M4 depends on the value of the
cumulative product demand yd (see K.18).

K.2.2 Re-entrant machine

In this section BSP is introduced for a re-entrant machine of 3 stages and 2 buffers
previously described by (K.9). The structure of BS controller is also defined by
(K.10). The difference of BSP with respect to HPP lies in the interpretation of the
production errors εj.

For BSP the tracking error for each stage j in the machine is defined as

εj(k) = wdj+1
− wj+1(k), (K.17)

∀j = 1, . . . , 2,

ε3(k) = yd(k)− y3(k), (K.18)

where wj+1(k) = yj(k)− yj+1(k). Summarizing for the control action of BSP, the
last stage (Stage 3 of Figure K.2) of the re-entrant machine is keeping track of the
demand while the rest of the stages maintain the basestock level of their immediate
downstream inventory.
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K.3 Conwip Policy

From (Framinan et al. (2003)) Constant Work In Process (Conwip) production
refer to any system maintaining constant the maximum amount of Work In Pro-
cess (WIP). Originally Conwip was introduced by (Spearman et al. (1990)) as a
an alternative pull type mechanism to the Kanban system. Although the control
mechanism under the name Conwip was first presented in Spearman (1988), its ba-
sics principal was already described in (Jackson (1963)). Other identical or similar
systems have been proposed by different authors, such as the Workload control sys-
tem by (Bertrand (1983)), the C-WIP system by Glassey and Resende (1988), the
Long pull system by Lambrecht and Segaert (1990), the Globally flexible line by
So (1990), and the single stage Kanban system, studied, among others, by Spear-
man (1992), Mascolo et al. (1996), Karaesmen and Dallery (2000), and Tardif and
Maaseidvaag (2001). Although these systems have some differences among them,
there common similarity is in maintaining a constant WIP.

Note that in this thesis Conwip is addressed as CWIP policy.

K.3.1 Manufacturing line

In this section CWIP policy is introduced for a line of 4 manufacturing machines
and 3 buffers described by (K.1) and (K.2). For CWIP the control input uj is
given by

u1(k) = µ1sign+(ε1(k)), (K.19)

uj(k) = µj ∀j = 2, 3, (K.20)

u4(k) = µ4sign+(ε4(k)). (K.21)

The tracking errors of machines M1 and M4 are defined as

ε1(k) = wdtotal − wtotal(k), (K.22)

ε4(k) = yd(k)− y4(k). (K.23)

The constant wdtotal represents the total desired inventory level in the network. In
Section 3.6 for the fair comparison with HPP and BSP this constant is defined as
wdtotal = wd2 +wd3 +wd4 . The total inventory level in the system in time k is given
by wtotal(k) = y1(k)− y4(k).

Figure K.4 presents the control diagram of a manufacturing line composed of 4
machines M and 3 unbounded buffers B operated under CWIP. The circles repre-
sent the manufacturing machines each with inside label Mj and outside short thick
black arrows denote the external perturbations (fi), which are affecting its produc-
tion rates. Each machine (except for M1) have a buffer connected to it, each one
denoted by 3 joined squares. The product flow directions are given by a thick white
arrows with a black frame. For each machine the downstream inventory level wj

and wtotal information transfer is depicted by a curved black arrow and the desired
total inventory level wdtotal is shown by a short thin black arrow pointing to M1.
The machine M1 controls the product arrival into the whole network (WIP level).
The intermediate machines M2 and M3 produce based on the product availability
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Figure K.4: Control diagram of a line of 4 machines under CWIP.

in their upstream buffer and M4 tracks the cumulative production demand yd(k)
on its output.

K.3.2 Re-entrant machine

In this section CWIP policy is introduced for a re-entrant machine of 3 stages and
2 buffers. The network is depicted in Figure K.2 and its flow model is given by
(K.9). The structure of CWIP controller is defined in a similar way as in (K.10).
The machine can only work on one buffer at a time. The control input uj(k) of each
production stage j can only take the value of 0 (stop) or 1 (produce). The uj(k)
with j = 1, 3 receives the value of 1 only if Stage j needs to produce and its buffer is
not empty, i.e.εj(k) > 0 and wj(k) ≥ βj(k). The u2(k) acts as a Push controller, it
receives the value of 1 only if the buffer B2 is not empty (w2(k) ≥ β2(k)). In order
to keep the same structure of the control algorithm as the one given by (K.10)
it can be assumed that ε2(k) = c for all k, where c can be given by any positive
constant. Thus u2(k) receives the value of 1 only if ε2(k) > 0 and w2(k) ≥ βj(k).
The machine will remain at its current state (q(k) = Bj with j = 1, 2, 3) while
all the conditions of this state are satisfied. The value of 0 is given to the control
input of stage j if at least one of the conditions of the current state q(k) = Bj is
unsatisfied. The change in the value of the control signal of a stage j also implies a
change in machine’s state q(k). The machine has 4 states. This is due to that 3 is a
total number of processing stages that M can be working in, which directly relate
to the states of the machine, plus the idle state (q(k) = 0). Thus with CWIP policy
the fist production stage maintains a constant inventory in the network while the
last stage keeps the track of a current production demand and the intermediate
stage simply push the products along the network. It follows that the production
errors of stages 1, 2 and 3 can be defined as

ε1(k) = wdtotal − wtotal(k), (K.24)

ε2(k) = c, (K.25)

ε3(k) = yd(k)− y3(k). (K.26)

The constant wdtotal represents the total desired inventory level in the network. In
Section 5.2.4 for the fair comparison of CWIP with HPP and BSP this constant is
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defined as wdtotal = wd2 + wd3. The total inventory level in the system in time k is
given by wtotal(k) = y1(k)− y3(k).
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