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1 Introduction
1:1 Small dilatations

wWhether one considers a dilatation small depends largely on the
subject one has in mind. This may vary from the dilatation of an expan-
ding balloon to the dilatation of a pressed quartz crystal in a piezo-
electric cigarette lighter. These dilatations are measured in m's and
nm's, respectively. The scale of dilatations considered in this thesis
is the atomic scale which is less than 1 nm.

An X-ray diffractometer1 or a double-crystal neutron-diffracto-
meter2'3 is able to detect steplike dilatations AL of 10 nm. For
samples with a thickness L of about 1 cm this corresponds to a minimal
detectable strain AL/L in the order of 10—6. Dilatations of these
order of magnitude occur in thermal expansion experiments.

Much smaller dilatations with an amplitude EL of 1 pm can be
detected by a capacitance dilatometer4 or an optical stabilized Michel-
son interferometers. The corresponding detectable strains are of the
order of 10-10. Acoustic and thermal random dilatations, that occur in
these instruments, can be compensated by an electronic servo 1oop6’7.
This enables precise measurements of gL down to 0.1 pm and the detec—
tion of even smaller values of EL.

In this thesis we are concerned with measurements in the 0.1 pm

-13

{:10 "“m) region. We used an interferometer capable of detecting dila-

tations in the order of 10-14m or 10 fm.



1:2 Electrostriction

Small expansions in materials are expected in measurements of
electrostriction. Electrostrictive strains ALi/Lj {i,3 = 1,2,3), which
occur in every material when an electric field is applied, are propor-

{k,1

it

tional to products 1,2,3) of polarisation‘components

BBy
Pi(cfmg). The polarisation 3 = (Pi' P2' P3). The components Pl' P2 and
P3 lie along the %, y and z-axis, respectively. These axes form an

orthogonal basis. This basis is shown in figure 1.1 together with the

orientations and definitions of the dilatations ALi and the lengths Li'

x~axis

z-axis

=
|
v
[
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T Wesiinin iz :
0‘ ‘ l ] y-axis
— |
2 AL, >0

Figure 1.1 Definition of Li and ALi in relation with the orthogonal

basis (x, y, 2).

The constants relating ALi/Lj to Pkpl form a fourth-rank tensor
Qijkl(m4/c2)' According to ﬁevonshire8 electrostriction is described
by

AL /Ly = Q44 PPy a.n
In the above equation the Einstein summation convention has been

used.



Electrostrictive strains are generated by applying an electric
field with components Ei(VXm) to a dielectric sample. So these strains
may be described alternatively by9

ALi/Lj = Yklij Ekgl (1.2)
where Yijkl (m2/v2) is a fourth-rank electrostriction tensor. This
tensor is related to Qijkl by the dielectric tensor Pij (F/m) since
Pi = Pij Ej. In this work Yijkl is measured according te (1.2).
Equation (1.2) defines the electrostriction tensor Yijkl'

Relatively large values of Pi can be found in‘ferroelectric mate-
rials so these were the materials in which electrostriction was first-
1y investigatedlo’ll.

For instance, in triglycine sulphate (7GS) Q2222 was determined

indirectly by measuring P2 and 9999 (mz/C). The following eguation

defines 9909
S
%222 ~ 7, (AL, /L,) (1.3)

In general the piezoelectric tensor gijk is defined by the following

8
relation

3
Iij = 55;’(ﬂLi/Lj) (1.4)

Since P1 and P3 may be assumed to be zero in TGS, it follows from
(1.1) and (1.3) that Q093 = &gzzz/Pz in TGS.
Important relations leadingg to the value of Yijkl are:
3 ;
(dikl)’ with dikl = SEZ-(AkaLl) and (1.5)

B
Yijkl © aE,

-3



(1.6)

dijk(m/v) is a piezoelectric tensor component and oij(N/mZ) a stress
tensor component. Equations (1.4) and {(1.5) are phenomenological rela-
tions. Equation (1.6) is a thermodynamic relation explained in section
3.2.

Pure electrostrictive strains were measured on NaCl, quartz12
and TG313 (about 1960). The sensitivity of the equipment used is
10-100 pm. Apparatuses with higher sensitivities as mentioned in
section 1:1 allow electrostriction measurements in all dielectric
materials.

Values of Yijkl can be predicted according to the phenomenologi-
cal relation (1.5). Values of Qijkl are found by combining the pheno~
menological relations (1.1) and (1.4). Equation (1.6) leads to the
exact value of Yijkl gince it is a thermodynamical one.

In this thesis the direct measurements of Yiiii with a stabilized‘
Michelson interferometer are compared with the calculated results of
(1.6).

Parameters related to electrostriction are the derivatives of
both the dielectric constant14 and the refrative index15 with the

respect to pressure. This is shown in principle by (1.6).

-



2 The stabilized Michelson interferometer

2:1 Experimental set-up

The experimental set-up is described in the following article
which will be published in January 1983 by the journal

29
"Review of Scientific Instruments".

Interferometric measurements of very small electrostrictive strains

B.J. Luymes
Eindhoven University of Technology, Department of Electrical Engineering,

5612 AZ Eindhoven. The Netherlands

Abstract

Electrostrictive dilatations in the order of 10-13m are measured in
dielectric crystals by an interferometric method based on the Michel-
son interferometer. The electrostriction constants y1111 of quartz,
diamond and of LiF are found to be (-0.6 + 0.2), (+0.17 + 0.03) and

(7.9 + 0.8) 10"2!m?/v?, respectively.



Introduction

An electronical-stabilized-Michelson interferometer has been

built and adapted to measuring small electrostrictive AC dilatations

AL1 of a sample. ALl is in the order of 10—13m. We use phase sensiti-

ve detection. The electronic stabilisation reduces the effects which
mechanical-and accoustic-noise have on the sensitivity of the Michel-

-15
son interferometer. This sensitivity is now 5 x 10 ! m. Small electro~-

striction constants y1111(=10~22m2XV2) can now be measured on samples
with a thickness L1(210"3m). There is no risk of electric breakdown
through the air which could occur at electric fields E1 greater than
1000v/mn. We started from the expression for the electrostrictive
strain2

2
ALy /Ty = Yyp14% (L

where Y1111 is a component of the fourth-rank electrostriction tensor
Yijkl’ This expression defines Y1111 which is measured according to
the method described below.

Experimental method

The measurements determining Y1141 will be described on the
basis of the set-up given in Fig. !. The interferometer shown in
this figure is capable of measuring AC dilatations of a sample
attached to mirror 1. These dilatations must be much smaller than
632.8 nm {the laserlight wavelength A of the He~Ne laser). A zero-

order interference spot is projected on the photodiode. The maximum
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Figure 1 Schematic diagram of the stabilized Michelson interfero-
meter adapted to measure electrostriction. The dotted area
is the interferometer table. The frequency in the right
hand corner of several blocks shows the tuning of these

instruments. £ can be either fo or 2f°.

sengitivity of this interferometer is obtained if the optical path-
length difference (o.p.d.) between the two arms of the interferometer
equals %) (disregarding Nx%i; N = + 1, + 2, + 3, ...). At this point
the luminous intensity of the interference spot results in an electri-

cal current %(I + . = i i . i ind -
o ( Im;n) Ia in the photodiode. The maximum {(mini

mum} luminous intensity corresponds to the current I (I . } and
max T min

an o.p.d. of A{%r).



From the measurements of Imax and Imin we determine Ia. The lumi~-
nous intensity on the photodiode results in a current I proportional
to the intensity. I consists of three parts: a DC current Ia' noise
(which has a DC Component) and a signal current If with a frequency
£. If contains the information about the dilatation of the sample.

The differential amplifier determines the difference between I and

a preset DC reference current Ia. its output gives If superimposed on
the noise component. The noise is given by the notch output of selec-
tive amplifier 1 which is tuned to f£. This notch output is connected
to the control amplifier which drives the piezoelectric ceramic trans-
ducer attached to mirror 2. The control amplifier is a proportional
integrating lowpass amplifier. It has been designed to keep the notch
output zero and thus the interferometer in quadrature (:o0.p.d. = %A).
This continously ensures the maximum sensitivity of the interferometer.
Further details about the stabilisation are given by K,waaitaal1 et al.

The signal I_ is given at the bandpass output of selective amplifier

£

1. If has an amplitude I

1 (p.s.d.1) tuned to f.

£ and is detected by phase sensitive detector
Under these conditions a vibrational electrostrictive dilatation

{(with a frequency f and an amplitude l(AL } of the sample is cal-

Vel
4
culated to be

-1
(ML) =+ [21r(1max - 1) ] AT, (2)

The positive sign in (2) corresponds to an expanding sample.
We use disklike samples with a diameter of 5 mm.
The two flat and parallel surfaces of the disk are either evaporated

with a gold layer or coated with silverpaint. Electrical contacts to



the electrodes on the sample are made by thin supple gold wires 3 cm
long and 20 um thick. These wires take care of the mechanical isola-
tion between sample and the coax cable to the high voltage amplifier.
This is important since Coulomb forces cause the coax cable to vibra-
te. Stray fields are kept at a minimum by the ccax cable, the sample
electrodes and the form of the sample. Any change in the relative
positions of coax cable, sample and gold wires did not effect the
measurements of electrostrictive dilatations. Therefore we conclude
that the effect of stray fields may be neglected.

The sample and mirror are mounted on an orientable support.
This is necessary for aligning the interferometer.

The whole interferometer is placed on a granite slab (0.9 x 0.9
x 0.08 m3) with four air cushions underneath, This provides sufficient
isolation from mechanical vibrations of the floor.

Electrostriction in the dielectric sample is generated by El'
an electric field provided by the high voltage amplifier connected to
osecillator 1. 31 congists of a d.c. field EQ plus an a.c. field é cos
2wf°t in which fo is the frequency set by oscillator 1. The high vol-

tage amplifier supplied an AC voltage V superimposed on a DC voltage

£
[+

VO. Building up of space charges in the sample could complicate the
calculation of El‘ Therefore we estimated the RC~time of the samples.
This was found to be in the order of minutes. We did not find any

such time dependence in the measured electrostrictive dilatations.

S0 E1 is calculated in the usual simple way. The voltages Vf and
(=]

v0 have maxima of 450V r.m.s. and ca. 750V, respectively. To ensure
approximately static conditions while retaining the advantages of
a.c. detection, fo has been set between 30 and 200 Hz. Substituting

E1 = Eo + E cos ZWfot in (1) gives

~g-



AL = (AL,) cos 4ﬂf0t + (ALi}f cos 2wfot + (aLl)0

1 1)2f
[v] [o]
with
. 2 "2

(ML) o 2 Ypqq (B + HEDIL, ’

(ALllfo z 2Y1111EOE L, and (3a)

(AL,) ... = %y, E°L ‘ (3b)

P2, F un® i

The p.s.d. | uses oscillator 1 as a reference and is able to detect
signals either at frequency fo of 2fo. Combining (2) with either (3a)
or (3b) leads to an expresgion for Yi111°

A calibrated dilatation is obtained by applying a signal with an

amplitude vq to a quartz crystal attached to mirror 2. This crystal
7

£

has a known orientation and a well known piezoelectric constant2

-12
dlll = -2.3 x 10 m/V.

Oscillator 2 provides the frequency £ of ¥ , that is either

q,f
fo or 2fo, and is synchronised by the frequency coupler to oscillator
1. Coherent expanding and shrinking of this guartz crystal and the
sample at the same amplitude is detected by p.s.d. 1, so that

(AL,)

e = HiaVe,r (4)

The sign in (4) is determined by a phase shift (0° or 180°) of the
signal at the output of the frequency coupler. Zexro phase shift
corresponds to a shrinking sample and a positive sign in (4). Within
the experimental error of 10% the results of (2) and (4) are the same
for (AL1)f.
A second harmonic distortion szf /Vf of the electrostatic
]

amplifier leads to dilatations 5(AL1)2f of piezoelectric samples.
el

-10-



This piezoelectric effect is reduced by at least a factor of 10 by
using a sample in which two identically orientated piezoelectric crys-
tals were set on top of each other. The outer electrodes of the disc-
like crystals were grounded while the middle one was connected to

the electrostatic amplifier. Measurements with the 100:1 attenuator,
selective amplifier 2 and p.s.d. 2 showed that 6V2f was less than

6 mV. Thus, in a quartz crystal we have G(ALI)2f° = dlllévzfo/lo <2 x
10_15m. This value may be neglected in view of the sensitivity of
this interferometer. In this instance szf /Vf was less than 0.002%

o o

in the measurements on quartz.

Results and discussion

In the literature, small values of Yijkl are theoretically pre-

dicted for diamond5 and have been measured on quart26'7. The informa-

tion given about sign and magnitude of Y1111¢ howéVer, is inconclusi-
ve. We have therefore performed experiments on single crystals of
these materials and on a single crystal of LiF which was used in

electrostriction experiments by Bohatfe.

Quartz (L1 =2.96mm, E= 1.43 x 105V/m, Brasil quartz, x-cut)

showed a value of Y1111 of (-6 + 2) x 10-22m2/v2 which is surprisingly

low compared with earlier data7 of 2.5 x 10~20m2/V2. However, they

do not yield an analysis of second-harmonic distortion. Possibly the
discrepancy may be inputed to this effect as rather stringent require-
ments of 6V /Vf have to be met. Our value of Y1111 determined from

2f
°c © 6 -22 2
m

(3b) is in good agreement with the value of 73333 of +3 x 10 /V2.

Diamond (L1 = 0.50 mm, Eo =1.40 x 106V/m, purest9 type II A)

showed a value of Y1111 of (+1.7 + 0.3) x 10_22m2/V2 which is about

-11-
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Fig. 2 The electrostrictive strain in diamond is given as a
function of E2. The circles and square show the results
(and their error) of the measurement of (ALl)f and
o
(AL1)2fO, respectively.
The electrostriction constant can be calculated accor-

ding to (1). The broken line shows the theoretical pre-

s . .5
diction according to Maradudin .

twice that of a theoretical prediction5 based on the values of the
dielectric, elastic and elasto-optic constants of diamond. The experi-
mental results of (ALl)f /L1 and (AL1)2f /L1 are marked in Fig. 2 by
circles and a square, re;;ectively, corregponding to Ef = ZEOE (3a)
and Ef = %éz (3b). This presentation allows Yi111 to be calculated
according to (1).

Lithium fluoride (L1 = 3.00 mm, é =2.12 x 105V/m) showed a

value of Yi111 of (-7.9 + 0.8) x 10_21m2/v2 which is in fair agree-

ment with (-7.2 + 1.1) x 10_21m2/v2 found by Bohatis. Y1111 has been

determined from (3b).

-12-



Two types of forces contribute to the wvalue of 71111 as defined
in (1) i) Attracting Coulomb forces acting between the electrodes on
the sample il) Forces acting inside the sample itself, such as
Coulomb forces between electric-field indiced dipoles. The first
effect has been described by Bohat?e. The second, much larger effect
has been described by a model proposed by Luymesio. The experimentally
found value of Yii11 is the result of these two effects.

Highest accuracy attainable is 10% and follows from the sgtandard
deviation of Y1111 measured at several frequencies. The sensitivity

of the interferometer determines the final accuracy.
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2:2 Noise sources in the interferometer

Noise sources have a tendency to change sensitivity of the inter-
ferometer for the worse. They introduce real or imaginary vibrations.
In general vibrations of a sample are described by the following egua~

tion16 (see section 2.1)

: -1
[(an) o = Az, [2n(1max—xmin) ] (2.1)

I(AL is the amplitude of a vibrating sample at a freguency f.

Vel

A is the laserlight wavelength. I_ is the amplitude of a current mea-—

£
sured on the phase sensitive detector. This signal originates from
the photodiode in the interferometer. Imax and Imin are the maximum
and minimum current in the photodiode, respectively, corresponding to
the maximum and minimum of the interference pattern projected on

this photodiode.

Several noise sources influence the measurement of ]{aLi)fl.
These sources are: laser noise, shot noise and excess noise in the
photodiode, amplifier noise, mechanical noise, thermal fluctuations
and acoustic noise, and refractive index noise.

The shot noise in the photodiode, caused by the photon character
of light, sets the detection limit of this interferometer. This is
explained in the article at the end of this section. It is experimen-
tally verified in section 2.3.

Refractive index noise is caused by temperature variations along
the laserbeampath in the interferometer. The refractive index n
depends on the temperature T, roughly according tol?anf3T= 10-6Kf1.

Changes in n cause variations in the optical path difference since

-14-



this is expressed as a number of wavelengths A. This number,
if[Zn(Imax—Imin}]“l determines l(ALl}f] according to (2.1). Therefore
the refractive index noise causes a nolse component AL' of |(AL1)f|.
This component is negligible under normal circumstances, when compared
to the sensitivity of the interferometer.

The intensities of mechanical, thermal, acoustic and refractive'
index noise show an increase with an increasing optical path diffe-

18
rence between the two branches of the interferometer .

According to (2.1) it follows that

- 3r SIf aIf
AT = = A{L,=L )+ 57 AL' + oo A(T__ =1 . )+
£ 3(L2—L1) 271 3L’ a<1max Imin) max ~min
R (2.2)
T pnens
X £,rest

Here 2{L2—L1) is the optical path difference between the branches of
the interferometer. It is influenced by displacements of interfero-
meter parts. The optical path differences, induced by refractive in-

dex noise, are described by L'. The value of I I varies along

max min

with the guality and power of the interference pattern. The mode

beating of the laser varies A somewhat. AIf rest includes all other
r

sources. The gquantity to be measured AL1 has been left out in (2.2}.

Noise sources influence the parameters given in (2.2). This is shown

in the table below. The table also shows when the occurence of these

sources is manifest.

Photodiode noise and amplifier noise are noises in the detecting sys-

tem. They influence the measurement of I_. This influence can be

£

treated as if they were noise components in If.

The quantity AI_. leads to the uncertainty in (ﬁLl)f as seen by

£
(2.1).

~15~



Table 2.1 The influence of noise sources upon the parameters

given in (2.2).

occcurence

laser noise
displacements:

a) mechanical x
origin

b} acoustic X
origin

c) thermal

expansion

refractive

index noise

amplifier noise

shot- and exces noise

in the photodio%e

warming up period

touching the inter-

ferometer

hand clapping

continuously

blowing across the

laserbeam path
continuously

continuously

A detailed treatment of the shot noise mentioned in tabel 2.1 is

given in the following article which has been published in the

7 :
*Journal of Physics D: Applied Physics" . Some of the other noise

sources are also treated.

~16=




J. Phys. D: Appl. Phys., 13 (1980) 1005-15, Printed in Great Britain

Noise limitations of Michelson laser interferometers

Th Kwaaitaal, BJ Luymes and G A van der Pijll
Bindhoven University of Technology, Department of Electrical Engineering,
Eindhoven, Netherlands

Received 1 October 1979, in final form 28 December 1979

Abstract. The noise limitations of two types of stabilised Michelson interferometers
are analysed. These interferometers are suitable for the measurement of vibrational
amplitudes in the picometre and femtometre range. Formulae are derived for the
attainable signal-o-noise ratio, assuming that the shot noise of the photodiode sets
the fundamental limitation. Measurements on several He-Ne lasers show that good
agreement between theory and experiment is possible.

1. Introduction

Michelson interferometers can be used to measure vibrational amplitudes down to
about 1014 m and for this purpose it is necessary to stabilise the sensitivity, We will
concern ourselves with two types of stabilised interferometers. The first is stabilised
by means of an electronic control system, the second by a special optical arrangement.
A brief description follows, based on detailed descriptions of both principles by
Kwaaitaal (1974) and Vilkomerson (1976).

In the electronically stabilised interferometer, as shown in figure 1, an interference
pattern is produced and its luminous intensity is detected by a photodiode. The sample
length is varied by an Ac signal. This variation is much less than the wavelength of the
He-Ne laser light. The length variation gives an intensity variation which is detected
by the photodiode. The sensitivity to this variation depends on the position in the
curve of luminous intensity versus path length difference (figure 2). This position can
be varied by the b¢ level shift on the piezoelectric path length modulator. This position
will also vary as a result of temperature changes and acoustic perturbations. The in-
formation on the optimum position is derived from the mean current through the
photodiode. Comparison with a reference current produces an error signal that can
be filtered, amplified and fed to the path length modulator to effectively stabilise the
luminous intensity at one point.

The priaciple of the optically stabilised interferometer is shown in figure 3. The
A/8 plate introduces an optical path length difference of A/4 between two perpendicularly
polarised components of the laser beam in one arm of the interferometer. The angle
between the polarisation direction of the laser source and the optical axes of the A/8
plate is 45°. This gives two interference patterns which are in quadrature of phase.
These two patterns are separated by the polarising beam-splitter (a Wollaston prism)
and detected by the two photodiodes. Due to the A/4 phase shift in one polarisation
direction the Ac signals from the sample vibrations are #/2 out of phase in the photo-
diode currents. That means that one Ac photodiode signal (x) is a sine function of

0022-3727/80/061005-+ 11 $01.50 © 1980 The Institute of Physics 1005
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Figure 1. Schematic diagram of the electronically stabilised interferometer.

Figure 2. The dependence of the luminous intensity J on the mirror displacement X.

the variation of the mean path length difference while the other signal (y) exhibits a
cosine-like variation,

This implies that the operation z={(x2--y2)¥/2 leads to a constant sensitivity inde-
pendent of the static optical path length difference. The arithmetical operation is per-
formed by a vector computer which is part of the double lock-in analyser used in our
experiments.

The signal-to-noise ratio of both interferometers is determined by a number of
noise sources. We distinguish between the shot noise in the photodiode current, the
electronic noise (thermal noise in resistors and excess noise in integrated circuits),
the noise from mechanical origin and noise originating from the laser, like plasma
noise and mode interference noise. It will be shown that shot noise sets the main limita-
tion on the sensitivity. As a consequence the signal-to-noise ratio will be calculated on
the assumption that shot noise is the main noise source.
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Figure 3. Schematic diagram of the optically stabilised interferometer.

2. Theory

Here we shall derive expressions for the signal-to-noise ratio. We assume that the
separation of adjacent fringes in the interference pattern is much larger than the field
of view, i.e. the diameter of the laser beam. This implies a low order of interference
(Born and Wolf 1959) so that the light can be focused on the surface of the photodiode.
This assumption can readily be confirmed experimentally.

The light, of power P, impinging on the photodiode can now be expressed as a
function of the phase difference ¢ between the two arms of the interferometer (Born
and Wolf 1959)

P=3aPo(l+Csing) @)

where Py is the power of the laser source in watts, « the attenunation factor of this laser
power due to the reflections at the glass—air interfaces, etc. and C is a contrast factor
accounting for the inequality of the power in the two arms. The factor 1 is introduced
because one half of the laser power is returned to the laser by the beam-splitter. In
the general case of static and dynamic displacements of a mirror of the interferometer,
we can write

$=[2(X +x)/A] 2= @

where X is a static and x a dynamic displacement of a mirror. The static displacement
can also be expressed as the difference between the lengths L; and Ls of the two arms
of the interferometer from the light-separating surface of the beam-splitter to the surface
of the reflecting mirrors. The optical path lengths of the two arms are 2Ly and 2L,.
As it is of no consequence whether X is a multiple of A/2 larger or smaller, within the
above mentioned demand on the fringe separation we may write X =La—L; +nA[2.
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If we confine ourselves to harmonic modulations of the sample displacement we can
put
x=2 sin 2aft. 3)

The photodiode current can be written as

1=?§P=’?giam(l +Csin4—;(X+x})

hy hv2
%Z—z%a}’o(l +Csin i’;—é’cos 4%"-%0 cos izf sin 4—1;3—5) 4

where  is the quantum efficiency of the photodiode expressed as the number of electrons
per photon; ¢ is the charge of an electron, / is Planck’s constant and » is the frequency
of the laser light. If 4mx/A<1, thus for amplitudes smaller than about 1 nm, equation (4)
reduces to

I =(ngfhvyiaPe[l + C sin (dnX/X)+([@dnx/A) C cos (dn X]A)]. (5)

Starting from this expression we can calculate the signal-to-noise ratio for both types of
interferometer assuming the shot noise of the photodiode to be the main noise source.

2.1. Electronically stabilised interferometer

In this case the information on the amplitude of the displacements J; is contained in the
third term of equation (5), i.¢.

Lo=(na/h)haPo(dmx[A) C cos (4nX|N). ©)

The first and second terms of equation (5) determine the mean current <J> from which
the shot noise is derived.

<% =2 DAS =2gAf(nglhvYhoPoll +C sin (4w X]N)] 1G]
where Af is the bandwidth considered.
Now we can define the signal-to-noise ratio SfN as

. _2m% C2cos? (4 X/N)\ 1/2
SAKESKiN)E= Y Nellz( lm)

where Ne=naPof2hvAf is the number of electrons generated in the photodiode in the
measuring time. The interpretation of this result is facilitated by figure 4, which gives
the mean photodiode current {I> and the signal-to-noise ratio as a function of the
displacement X. The signal-to-noise ratio turns out to be dependent on the position
X in the interference pattern. By making the assumption that 4nx/A<€1, a singularity
arises in the mathematical formula (8) at X =3A/8 if C=1. This singularity has no
physical meaning and disappears when Bessel function expansions are used in a more
rigorous treatment. There is no need for such treatment, as in practice the contrast
factor C is always less than unity.

®

2.2. Optically stabilised interferometer

In the case of the optically stabilised interferometer the signals on the two photodiodes
are 7/2 out of phase, thus for the one photodiode, the phase difference between the two
beams, in accordance with equation (2) is

$1=4n/)( X +x) 9a)
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(a)

s ah A2

{b)

e Ak A2
: X

Figure 4. The mean photodiode current and signal-to-noise ratio as a function of
path length difference from equations (5) and (8). (@) gives

y=<I>[(na/hv}iaPol=1+Csin (4= X/})
and (b) gives

_ SN (C?cos®(4nX[2)\ V2
2= BraNE ™ (1 +Csin (4qu/)«)) :

Curves A, B and C correspond to C =1-0, 0-9 and 0-8, respectively.

while for the other photodiode
do=An/NX +x) +7[2=4x D[ X + x+(/8)]. (9b)

From this it follows that the currents I1 and 7z through photodiode 1 and 2
respectively are

47X  4nx 4ﬂX
Il_lz_ZaPo(l+CSlnT+T Cco Y ) (102)
4nX 4ax 4rX
Iz—h—ZaPo(1+Ccos—A——-—,\—C 5 ) (105)
The information signals Js; and 52 on photodiodes 1 and 2 respectively are
L1 =(ng/hv) }oPo(dmx|X) C cos (4nX[A) (11a)
Iz = —(ng|hv) }aPo(4rx/A) C sin (4m X/). (115)

9
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The noise currents (i12)1/2 and (22>1/2, generated in the two photodiodes are given
by

(2> =2gCIDASf = quf’?qlapo(HcSm“_’;l‘) (124)
and ’
Cig?>= 2q<Ig>Af—-2qu"qlan(l«I»Ccos%-A—X) : (128

To obiain a constant acC signal current independent of the displacement X, the
operation z={(x24y2)1/2 is performed on the two signal currents and thus on the two
noise currents. We can therefore define a signal-to-noise ratio

T+ Is2D\V2_wf 4 X -111/2
SIN (—__012-1-122) ) =N uz[cz[uwz Csin (T* 4)] } .
(13)

To interpret this result we plot in figure 5 the mean photodiode currents {/1> and
{I3> and the signal-to-noise ratio as a function of the displacement X. From this figure

20

20
15
N 10
o5k .
0 : Y : FV3 ' : ! A2
X

Figure 5. The mean photodiode current and signal-to-noise ratio as a function of
path length difference from equations (10) and (13). (a) gives

y1=LB[(g/hvYiePo= 1+ C sin (4u X]A)

and

yee={Igy[(nglhv)ioePo=1+ C cos (4n X]A)

and {b) gives .

1= AR fﬁ;ﬁeuﬁ {C2[1 +4v2 Csin (4%{-}%)] l}m

Curves A, B and C correspond to C =10, 09 and 0-8, respectively. Motice that the
normalisation of S/N differs from that of figure 4 by a factor of two,

-22~
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we see that the signal-to-noise ratio depends on the momentary value of the displacement
X. If we take the contrast factor C =1 we find for the maximum and minimum signal-
to-noise ratio

(5/N)max=18(z 2NV at 4w XjA=Suf4
and
(S M)min =0T (@£ Nel/2 at dwX|A=m/4.

Comparison with the electronically stabilised interferometer having a theoretical
maximum
(S/N)max = 2-8(mR{ AN M2

shows that the signal-to-noise ratio decreases, by a factor between two and four. The
difference between the minimum and the maximum value inspired us to look for a
solution in which the optically stabilised interferometer always operates in the point
of the maximum signal-to-noise ratio. Electronic stabilisation in this point by using
an extra modulating signal is a distinct possibility. Calculations show that this does
not lead 1o an essential improvement with respect to the electronically stabilised inter-
ferometer (from §2.1). If electronic stabilisation is applied the operation z=(x2+y?)1/2
on the photodiodes is no longer essential. Subtracting the two photodiode signals
(subtract because of opposition of phase) leads to

(SI N)max= 2:6(m %/ A)N 1/2

if C=1 and 4nX/A=5n/4. The slight difference with the maximum signal-to-noise
ratio of the electronically stabilised interferometer from §2.1 stems from the condition
that ¢y —do= —nf2.

It is interesting to make an estimate of the detection limit, i.e. of the value of %
corresponding to SIN=1. We take a He-Ne laser with light of power Po=5mW at
a wavelength 2=632'8 nm, 2 photodiode with a guantum efficiency =05, and an
optical system with a value of «=0-1. From these figures it follows that N.=4 x 1014,
Using equation (8) and curve B in figure 4 we get for C =09 and X 2 5)/16 and for a
measuring bandwidth Af=1 Hz:

2=48x10-15m.

3. Experiments and results

Some experiments were performed to confirm the assumption that the shot noise of the
photodiode was the principal limitation to the detection limit. The noise spectra of
(i) the electronic noise, (i) the photodiode shot noise, (iii) the laser noise, (iv) the
mechanical noise were determined.

The spectra are measured by means of the set-up shown in figure 6. The light from
the laser source is detected by a photodiode (United Detector Technology type PIN
5D). The photodiode current i is converted in a voltage v by a current amplifier so
that p=iRy, where Ry is the feedback resistor. The signal and noise are measured by
a Brookdeal lock-in analyser (type 9505) provided with a Noise Measurement Plug in
Unit type 5049. A PAR model 189 selective amplifier is incorporated to prevent faulty
measurements by overloading etc. As a reference signal an all purpose function
generator (HP type 3312A) is used. The signal from the lock-in is recorded on an xt
recorder.
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Figure 6. Schematic diagram of the set-up to measure noise spectra.
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Figure 7. The noise spectrum of the photodiode and preamplifier. In the high frequency
part of the spectrum the expected noise, 37 x 10-* V (Hz)~1/2, is determined by the noise
of the feedback resistor Ry and the noise of the operational amplifier.

(1) The noise spectrum of the photodiode and preamplifier is given in figure 7.
At low frequencies excess noise caused a discrepancy between theory and experiments.
The theoretical noise at higher frequencies is the sum of the thermal noise of the feed-
back resistor (28-8 x 10-* V Hz~7/2) and the noise of theic amplifier (23-7 x 10~V Hz-1/2)
and thus equals 37 x 10~V Hz-¥/2,

If the photodiode is not connected to the preamplifier a noise voltage of 36 x 10-9
V Hz-1/2, in excellent agreement with theory is measured. We have no explanation for
the increase of the noise when the photodiode is connected. This point is, however, of
minor importance compared to other noise sources, i.e. laser and shot noise.

(ii) The noise spectrum resulting from an incandescent lamp supplied from a pC
source is given in figure 8. To obtain a normalised quantity independent of the
luminous intensity of the source the squared noise voltage per Hz was divided by
the voltage difference V1; at the output of the photodiode preamplifier corresponding
with the light intensity. In the white part of the spectrum the agreement between measured
and expected shot noise is excellent. The expected value in figure 8 is calculated using the

shot noise formula

{n®>=2qI0f
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Figure 8. The normalised measured noise spectra of incandescent lamp (A), NEC
laser (I1) aod optically stabilised interferometer (@). The sofid line indicates the
expected shot-noise level.

where {in?) is the effective value of the shot noise current squared, g the electromic charge,
1 the photodiode current and Af the bandwidth of the measuring system. The contribu-
tion of the electronic circuitry is about 1% and thus negligible. This means that an
interferometer with an incandescent lamp as a light source will show a seusitivity
determined by the shot noise if the mechanical noise contribution can be neglected
as discussed in §4. In the low frequency region below 1 kHz the spectrum is excess-
noise dominated with an f~1? dependence,

(iii) The analysis of the laser contribution to the total noise needs explanation. In
literature (Levine and de Maria 1976) several noise contributions are mentioned with
spontaneous emission noise giving the ultimate limit for the amplitude stability. In
practice, certain externally controllable factors determine the attainable stability. These
are mode interference, transition competition, plasma effects and environmental dis-
turbances. The amplitude stability is also affected by irregularities and hum on the
discharge current through the laser.

In multimode lasers, mode interference is a superposition of a swept frequency
distorted sine wave on the mean laser intensity. The frequency varies between several
kHz and 1-2 MHz. The duration of the sweep and its repetition rate depends on the
temperature change of the plasma tube. If the laser has reached working temperature
after a warming-up period and the environmental temperature is reasonably constant,
the repetition rate may be as low as one sweep in ten minutes. As normal measurements
can be made within one minute this noise source is of no importance, although its
momentary amplitude is much higher (in the order of 20 dB or more than the other
noise sources). In single-frequency lasers mode interference is absent.

Transition competition originates from the existence of several possible transitions
in a He-Ne discharge. If one transition is selected by the choice of the Brewster window,
this effect is unimportant.

Plasma effects include all discharge-induced perturbations that vary the population
of the energy levels. It appears to be the most important noise source in the lasers
examined. Radio frequency excitation is the best way to reduce this kind of noise.

~25-
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This, however, introduces other problems, such as shortening the life of the laser tube,
impedance matching problems and radiation effects. The three different types of spectra
of plasma noise are given by Bellisio ef al (1964). The first type is a spectrum with high
noise in the 0-70 kHz region, and some excess noise above the photodiode shot noise
at higher frequencies. A second type can occur with sharp spikes and apparently no
excess noise between the spikes. The third spectrum is a flat spectrum that is shot-
noise dominated. The occurrence of the first or second spectrum is determined by the
discharge current amplitude, or by a capacitive loading of the discharge circuit. A
transition between these two operations can always be effected. As the second spectrum
shows no excess noise in the region between the spikes, appropriate choice of the fre-
quency of the vibrational amplitudes will prevent plasma noise from influencing the
signal-to-noise ratio.

Environmental disturbances include all external processes that alter the passive
optical characteristics. They can be of thermal or mechanical origin. Owing to the
rigid construction of our lasers this kind of noise is negligible.

We measured the noise spectra of five commercially available He~Ne lasers. Without
special precautions, none of the lasers met the shot-noise limit set by the photodiodes
over the entire frequency range. The spectra of the three multimode lasers had to be
measured during time intervals in which no mode interference occurred. After thermal
isolation, the Nippon Electric Company laser model GLG 2034 showed a spectrum
which agreed well with the expected shot noise. The use of a well stabilised laser supply
to get rid of hum would make reliable measurement of this spectrum possible in the
range below about 1 kHz. This spectrum is shown in figure 8. One of the single-mode
lasers also showed a spectrum that was mainly determined by shot poise in the high
frequency range. Hum in the laser current prevented reliable measurement at frequencies
below 10 kHz.

{iv) The noise spectrum of the optically stabilised interferometer is also given in
figure 8. From equation (13) it follows that the signal-to-noise ratio has maxima and
minima depending on the momentary value of the displacement X. As the minima
correspond with a low light intensity and the maxima with a high light intensity, the
applied normalisation of the noise brings both extremes in one point of the figure.

4, Discussion and conclusions

The noise spectra show that the signal-to-noise ratic decreases seriously at frequencies
below 1 kHz due to excess noise. If we confine ourselves to frequencies from 1 kHz
to 100 kHz the spectra show that the electronic noise is negligible at the light levels
used in the experiments. These light Ievels correspond to photodiode currents in the
order of 100 pA. Furthermore it follows from figure 8 that a low noise laser meets the
theoretical shot-noise limit to within a factor of two.

Figure 8 also shows that environmental noise does somewhat decrease the signal-
to-noise ratio. This spectrum was measured in a quiet laboratory room during the day-
time with closed doors and windows. This rather satisfactory result was reached by
the rigid and compact construction of the interferometer. The spectrum of the electronic-
ally stabilised interferometer showed a similar behaviour.

As the influence of environmental noise can be reduced by proper acoustic isolation
it is realistic to take the shot noise as the limiting factor for the sensitivity of the inter-
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ferometer. If the application of the interferometer requires a constant and reliable
detection limit it is necessary to avoid the mode beating effect and to use a single mode
laser. The higher power of a multimode laser will increase the detection limit except
during short periods at which the sensitivity is seriously decreased due to mode inter-
ference. The modulation frequencies must preferably be chosen above 1 kHz.
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2:3 Detection limit of the interferometer

It would be very difficult to present an exact detection 1i&it
of the stabilized Michelson interferometer. It depends on factors
as integrating time, frequency, laser power, several noise sources
and loss factors which are discussed in7 section 2:2. A typical
measurement involving very small vibrations is shown in fig. 2.1.

In fig. 2.1 a signal measured by phase séhsitive detector 1 is
shown before during and after the activation of a piezoelectric
ceramic transducer with a signal of 1uv (r.m.s.). Calculations accor-
ding to (2.1} showed a dilatation of 4.5 + 1fm (r.m.s.). The sensi-

tivity of this transducer is 5.4 nm/V as determined from fig. 2.2,

The phase sensitive detector had an integrating time of 40 s.

This corresponds with a sensitivity of 0.8 fm according to the calcu-
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Fig. 2.1

Recorded signal from the phase sensitive detector 1

detecting a dilatation of (4.5 * 1)x10—15m on a piezo-

electric ceramic transducer. On the right hand side the

corresponding amplitude is presented.

lation given in section 2.1. This calculation uses the shot noise of

the photodiode as the main limitation to the sensitivity of the

interferometer. From figure 2.1 we can conclude that the noise on

the signal has a peak-peak value of 2 fm and this is of the same order

as the 0.8 fm mentioned above, The long measuring time of 1200 s is

necessary to show the effect of the dilatation superimposed on the

noise.,

Figure 2.2 shows the linear relationship between the applied

signal and the resulting dilatation in the piezoelectric ceramic

transducer over seven decades.
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Fig. 2.2 The linear relationship between the voltage applied to a
piezoelectric ceramic transducer and the corresponding

dilatation. The sensitivity of the transducer is 5.4 nm/V.

The result shown in figure 2.1 is the one with the smallest
dilatation shown in f£igure 2,2,

We may conclude that the measurements of AL are fundamentally
limited by the shotnoise of the photodicde. Other noise sources play

a minor role.

2:4 Reference dilatation

For the measurement of unknown electrostrictive dilatations of

the order of 10_13m it is important that calibrated dilatations are

~20m



available, They are used as references. Such a reference dilatation
is created by applying a signal Vq f(=50mv) to a specially selected
14
9
piezoelectric crystal. Brasil, x-cut, quartz has a piezoelectric

1

constant a of ~2.3 x 10~ 2m/V. This constant is independent of

111

frequency below the resonant frequency (=10583) of the quartz crystal.
A crystal of this type has been attached to mirror 2 in the reference
arm of the interferometer (see figure 1 in section 2.1). The signal

Vq £ is applied to this crystal by oscillator 2. The piezoelectric
¥

dilatation ALf is determined using (2.1). The constant d can

111

If this leads to -2.45 x 10"12m/'\sr<e'11

be determined from ALf/Vq 11

1

a

-<2.15 x 10”7 mev the error in d is less than the total accuracy

111
of 10% of this interferometer (see section 2.1). Larger exrors than
10% can result from wrong tuning of the selective amplifiers with

raspect to the frequency of the oscillator which drives the guartz

crystal. This can be easily corrected by retuning.

2:5 (ontracting or expanding sample?

The stabilisation of the interferometer {section 2:1) locks the
optical path difference to %\ (disregarding multiples of ¥i). The
two possible points of stabilisation are shown in Figure 2:3.

One point is a stable point the other unstable. After activating
the electronic stabilisation of the interferometer this stabilisation
will lock the optical path difference in a stable point. Lets say
this point is A, disregarding multiples of A in the optical path

difference. In A of A' the phase of a signal I_ resulting from

£
©
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Fig. 2.3 The luminous intensity of the interference spot projected
on the photodiode is either stabilised at point A or B.
Dilatations (ALi)f cos 2wfot result in current changes
If which are eithzr in phase or 180° out of phase with

o
the signal applied to the sample.

{ani)f cos 2nfot will be the same. So the phase of Ifo will never be
changeg by the stabilisation loop. This conclusion is also true if
the stabilisation locks at point B.

As seen from figure 2.3 the phase of If gives no directAclue
about the positive or negative value of (ALl?f . Therefore we have to
introduce a known dilatation and determine its corresponding phase.

A piezoelectric guartz crystal with a known qrientation gives
such a dilatation by applying an electric field to it.

According to Nyeg the following eguations are true for a compres-

sed x-cut guartz crystal

P (2.3}

1= %11%1
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where P1 is the polarisation along the x-axis and 611 the strain.

ALy /Ty = 4™y (2.9)

It follows from (2.3) that P, indicates the positive x-axis since

1

dlll and 0,y are both negative. The determination of P

the figures 2.4{a-c}. An electric field Ei in the direction of the

1 is shown in
positive x-axis will result in a negative value of AL1/L1 according
to (2.4).

This is shown in figures 2.4 (d,e).

a)
' :positive pole of the meter
+idirec~ - + .
fl Ttion (i) relectrostatic charge meter
inegative pole of the meter
) [ |
} ; 9y is a strain < 0
ki - +
L
il L1+ﬁL1 (?) ALI
Y T <0
o
1
[
) | "11 o
S o - . charge distribution
L +AL ) TP in a pressed
141 xzaxis |1 quartz crystal
T
4)
1 T .___J__
If1 L, *AL, ]EI
+V
e}
1 FEEFeEFHE 1 the charge distribution here
L, +AL . ip R is the same as in figure 2.4 (b~-c¢).
1771 Xoaxis )
S=Stona So A < =
sy B0 Ll/Li 0 and ALl/L1 d111E1<0

Fig. 2.4 A stress ALI/L1 in a piezoelectric quartz crystal (x-cut)
may be caused by a strain or an electric field. Comparing
figures 2.4c and 2.4e with each other shows that an electric

field El’ as shown above, will constrict the sample.
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We use this knowledge in the following way. We measure the dila-

tation of a sample and detect the phase of I, on the phase sensitive

detector. We do not know whether this phase r:presents a contraction
or an expansion of the sample. So we replace the sample by the contrac-
ting guartz crystal and measure the new phase. No difference between
old and new phase implies that the sample contracts at "the same
moment" as the quartz crystal., A 180° difference implies expansion at

"the same moment". Once this is known the sign of an electrostriction

constant is easily determined.
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3 Theory of Electrostriction

3:1 An estimate of the electrostriction constant }711111

In ordexr to estimate f we assume that electrostriction is

Y1111
caused by electric-field-induced dipoles in the material to which the
electric fieid has been applied. We also assume that without such a
field there are no dipoles in the material.

The dipoles attract or repulse each other depending on their
relative orientation. These dipoles cause stresses in the material
which in turn cause strains.

Pirst of all: What are the forces g'acting between two dipoles
51 and Sé? For simplicity we assume that the dipoles are identical
fﬁ%} = ¥Bél = p. We determine F in the following way.

The potential energy_Uq of an electric charge g in the electric

field of a dipole-moment p is given by the following potential

U %) = Edx - Bgcosp (3.1)

2 2.3/2 2
4nao(x +y ) 4neor

where x, vy, r and @ are shown in figure 3.1. €, is the dielectric
constant of vacuum and has been taken 8.8542x10-12Ffm. As will be
seen Further on we will only take into account nearest neighbour
interactions between induced dipoles. Therefore it is justified to
use just the dielectric constant of wacuum in (3.1).

We would like to know the potential energy Up of a dipole ﬁé in

. -> > } >

the electric field of a dipole pl. The force ¥ of Pl acting on p, can

be determined from

-

Fix,y) = -Vup(x,y) (3.2)
The force F(x,vy) depends in direction and strength on the relative

~3 4=



r
E
+q¢ 1
A{ =
Pl ¥y
-q

Figure 3.1 The relative position of two identical induced dipoles

;1 and Eé in a material with an electric field E, applied
to it. It is assumed that Ax << r
position of both dipoles.
In order to calculate Up(x,y) we define
p EgAx , with Ax << r {3.3)
We see from figure (3.1) that
U (x = U (x+%A%,¥) 40 {x-%Ax =
p( ¥l q( A%, Y} _q( AX,¥)
= U (x+%AX,v) ~U_(x- =
q(x LA, V) q(x BAX, V)
3
= 5;'Uq(x,y) Ax (3.4) .
Combining (3.1), (3.3) and (3.4) gives
2 2 2 2
U_(x,y) = CRERETS (1—: 2 2)= B Uz3cos ) (3.5)
P ane (X +y ) X +y dne ¥
o o
Combining (3.2) and (3.5) gives
2
sup(x,y)z’ax zx %l Ca ;x
Fix,y) = - o 3pr D x+y
’ = =
2, 2 2
2
u_(xy)/ay) AT\ __y [ 5X
P 2 2% 2
(x"+y™)
Y X +y
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cos@(B-Scoszﬁ)

- £ = Fir,0 (3.6)
4ne_r

° sinﬂ(l—Scoszﬁ)

The direction of F(r,ﬁ} and its relative strength as a function

of § are shown in figures 3.2, 3.3 and table 3.1.

|
:x-axis E1I

g:(rré).

y-~axis

>
Figure 3.2 Direction and relative strength of forces F(r,f) acting
> -> -
between induced dipeles p1 and p2. The origin of Flr,f)
indicates the position of 52 on the circle. E, shows the

direction of the electric field.

x-axis i;7;2z:2§>\\

y

1 y-axis

L

A 7

: > -
Figure 3.3 The forces F{xr,f) acting on dipole p, are shown
.
in detail. F({r,#) has been calculated according to (3.6)

and is tabulated in table 3.1.
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@ (41:egr4f3pz)§tr:¢) g (4ﬂ€or4/392)ﬁ(r,¢)
0° | -2.0p, 0.00) 50° (+0.60,-0.82)

10° | (-1.82,-0.67) 60° (+0.88,-0. 38)

15% | (-1.77,-0.95) 70° (+0.83,+0.39)

20° | (-1.33,-1.17) 75° (+0.69,+0.64)

30° | (-0.65,-1.38) 80° (+0.49,+0.84)

40° | (+0.05,-1.24) 90° { 0.00,+1.00)

45° | (+0.35,~1.06)

Table 3.1 Quantitative data derived from egquation (3.6).

Pigure 3.3 is based on these data.

The forces g(r,ﬁ) cause electrostrictive strains aLl/L1 which will

be estimated by using the next four assumptions

1) The electric~field~induced dipoles form a simple cubic lattice
as seen in figure 3.4.
—-> ->
2) The strongest forces, F(r,o) and F(r,n), determine the strain
Tyqn These forces can be seen in figure 3.2. We only take into
account these forces if they result from nearest dipoles
interaction.
3} The induced polarisation of the material is PilEl' The volume
reserved for one dipole is r3 as seen in figure 3.4. Therefore
-+ 3
e, = » = £7p};5
4) Only the strain 011 will be taken into account.
We describe the stress in the x direction as 011 with
2
0y, = ~|F(x,0)|/x (3.7

Here we made use of the assumptions 1 and 2. Combining {(3.6) and (3.7)

gives
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?
1:'.'......“?" E

.,f“"§ 1

Figure 3.4 Simple cubic dipole lattice used to estimate !Yllllt'

The dipoles p are induced by the electric field El'

0,,= ~€p°/ ldne 20 (3.8)

Using assumptions 3 and 4 together with the following equation for

bulk material
ALy/Ly = 81400 F v

and neglecting other strasses, gives

. . 2 . (3.9)
AL /Ly = -68,,,4Py, B 2/84TE )

Sijkl(mz/N) is a component of the elastic compliance.
The above eguation, together with the definition of electro~

striction, leads to the following estimate for the electrostrictive

constant

, 2
= -6 BT/ (4TE )

s (3.10)
11

Y1111

In this simple model Yllll can only be negative . However,the sign of
-

Yllll depends strongly on the goniometric factors included in F(x,3).

If different dipole lattices are considered we will find different

>
directions of F(r,#%).
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Such a change to another lattice could easily result in a
positive value of Y1111' An example of a positive Y1111 is given in
chapter 6 for the diamond lattice. So (3.10) can only be used to
estimate the order of magnitude of inilll'

We will now check if the assumption Ax << r is right. The volume
per dipole is r3 ag shown in figure 3.4. This may be considered as the
volume of an atom of the material investigated for electrostriction.
< 106V/m, Pt <10_9F/m and q = 10”19C, combining

1 11
(3.3) with the third assumption leads to

Since r3 = (108)3, E

px < 10 m << r = 10™7%m

It follows that Ax << r is a correct assumption.

The value of [71111[ of several materials has been estimated with

{3.10). The results are shown in table 3.2 together with the values

of §,,.. and P! /¢ which are used in the estimate. This table also
111l ) 1L (o]

shows the experimentally found value of Yiiii' Figure 3.5 shows the

good correlation between the estimated values and experimental values

of . Index i refers to one or more specific crystallografic

Prggasl
axes in the single crystal. The values of i are given in table 3.1.

We see that the estimate of ‘Y- I gives the correct order of

iiis
magnitude. The result shown in (3.9) has the same form as (1.1):
= ] 1 = .

ALi/Lj Qijkl?kpl' if one remembers that PijEj v Pi We conclude
that (3.9) and (3.10) are realistic relations.

When we are interested in the temperature dependence of 71111
we should first loock at the temperature dependence of 51111 and Pli'
According to (3.10) this will give some information about Y1111 as a

function of temperature.
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In an analoguous way we can look at Yijkl in general and see if

there is any temperature dependence to expect.

10718 , : .
{'Y i el "/
iiij
in %P 19
2,2 10°77F ¥
m™ /v
-20
10 - LF x N
1072t -
Duartz
Diamond
-2 - - - -
10722 19721 1g720 719 418

| estimated in (m2/V2)

Yiiii

Figure 3.5 Experimental values of !Yiiiil versus the estimated
values of !Yiiii!' These estimates are made according

to (3.10). Details about the value(s) of i are given in

table 3.2.

For further empirical relations between electrostriction constant
and other material constants we refer to Uchino and Cr03323l
Theoretical estimates of Yi111 in the alkali halogenides have been
made by Grindlay and Wong37. According to Bohaty26 these estimates
result in the same sign as the experimentally found value of
Yi11e°

Apart from the electrostriction caused by internal forces
in a sample between the electrical induced dipoles there is a smaller

attractive Coulomb force between the electrodes of the sample. These

forces result in an extra strain -%sllllerso according to Hausslihl

4O



et a127. This correction has no influence on the order of magnitude

°f Y4911

which has been estimated in this section.

Table 3.2 Comparison of the theoretically estimated and experimentally

observed values of Yiiii®
-21 2,2
in 1 v
Yigqp 10 T EY
12 2 !
iiii(lo- m /N P;i/go equation (3.10) |} experimental
I
=e -1 absolute values
1
aiamona®® (i=1,2,3) 0.955 4.86 0.095 | +0.17
i
quartz  (i=1) 12.7 3.5 0.66 I -0.6
|
LiE20'21(1=1,2,3) 11.7 7.9 3.1 | -7.9
|
1
Triglycine 70 44 570 | ~-600
sulphate22(1=2) i
i

3:2 Relation between the dielectric constant and the electrostriction

congtant.

The relation between the stress dependence of the dielectric constant

3Pi1/3011 and Y111 is calculated by Nyeg. That calculation is repeated

here.

Combining the first and second laws of thermodynamics results in

4au = o, d(AL, /L )+E, 4D +TdS
ij i3 i

U is the internal energy of a crystal, Di

(3.11)

is the dielectric displacement
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and S the entropy. We now have to consider the free energy function ¢

defined by
¢ = U-o, (AL ,/L.})-TS - ED {3.12)
i3 i3
Combining (3.11) and (3.12) leads to
dé = -AL, /L, do, .~-D dE, -S4T {3.13)
i3 774 Ti7d

We see from (3.11) and (3.12) that ¢ is a function of Gij’ Ei and T.

Hence we may write

3¢ 3¢ ad
d@ = EY dalj + B—ET— dEi + ﬁ daT (3.14)
i3 E,T 1 o, T g.E

The suffixes indicate which variables have been kept constant in detex-
mining the differentials of ¢. Comparing the coefficients of (3.13) and

(3.14} gives

3¢ 3¢
Sa = -ALi/Lj: ggf‘ =-Di (3.15)
1j i
E,T o,T

Differentiating the first equation of (3.15) with respect to Ek
and the second with respect to Uij and after changing the indices from i

to k gives

a(ALi/L.) oD,
...___._._._.1._3E =5 (3.16)
k a,T +J E,T
Differentiating (3.16) with respect to El gives
5% (AL /1) D,
i3 =2 K] o 2 p') (3.17)
8Ek331 ¢, T aoij 3El 30, . k1
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Since
BZ(AL./L,)
PR it S
Yiqkl 9EPE, -
*

the equation {(3.17) results in

Yi111 © %89{1/3011 (3.18)

The tensor component BPil/Bﬁll has not been measured directly
since large homogeneous stresses are necessary to measure any change

in Pil in materials like diamond. It is possible, however, to apply

a hydrostatic pressure ¢. This has been done by Waxler and Weirls.

They measured Bnilzac where nyy is the refractive index. If we lock

at a fixed frequency, n,, = Pileo + 1= €, by definition, where €.

2
11
is the relative dielectric constant. It is then easily calculated that

t ¥ 1 a
Piy %Py Py 4
+ + = ~2n,,€

914 3022 3033 1170 30

3

3 (3.19)

The minus sign in (3.19) results from the fact that a hydrostatic
pressure corresponds with compressive or negative stresses. The three
terms on the left side of equation (3.19) will partly compensate each
other. Assuming that the terms with 622 and 033 describe secondary

effects, it follows that

ap! an
11 11
oy > 2n11<»:o 70 {3.20)
11
Combining (3.18) and (3.20) results in
an
11
I¥y15q0 2 e sy (3.21)

-l 3



As seen in table 3.3 the absolute experimental value ‘Y
n
11

1156 TS0 |

111q 18

indeed larger than |n

Table 3.3 Comparison between the experimental value of Yllll and15

n11803n11!80 as determined by (3.21)

en
=12 2 -21. 2,2 11 -21 2,2
- v
3n11/80(10 m /M) Dy Y1111(10 m /v n €0 5o {10 “'m /v
diamond -1.15 2.418 +0.17 +0.025
quartz +10.9 1.55 -0.6 -0.15
Li¥F 0 1.392 ~7.9 0

Details about table 3.3 will be discussed in the chapters 5 to 8 dealing

with the individual crystals.
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4 Electrostriction in practice
4:1 Sample requirements

We like to compare theory with experiments. Therefore we chose
materials with well-known properties which can be (partly) described
by well-known relations. At the end of this section some details
about these relations are given.

The sensitivity, 10—13m, of the stabilized Michelson interfero~
neter can be used in two ways.

1) ELECTROSTRICTIVE CONSTANTS, as small as 1072202 /9%, can be
measured. This requires the use of high e%ectric fields,
106V'm, in order to get a detectable dilatation.

2) LOW ELECTRIC FIELDS, 104V/m, can be used in measurements of
large electrostrictive constants, 10‘18m2/V2.

The last mentioned method is important in piezoelectric materials,
where second-harmonic distortion of the applied voltage causes
dilatations which can easily be confused with electrost;ictive
dilatations. If only low electric fields are required the second-

harmonic distortion will be a small percentage of the applied voltage.

The experimental layout of the interfezometer24permitted the use
of solid samples with a diameter wp to 5 mm. 7

We used dielect?ic materials. In these materials, electric fields
in the range of 104 to 106V!m will not cause any warming-up. Therefore
we can use a simple, no power delivering, high voltage amplifier.
Single crystals of known orientation are required. We used LiF,
diamond, quartz and triglycine sulphate., These crystals will be

discussed in detail in chapters 5, 6, 7 and 8 respectively.
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4:2 Details on the preparation and mounting of the sample

A conductive layer on the flat sides of the disclike samples
provided the necessary electrodes on the sample. The layer was made
of silverpaint or by evaporating gold or silver. The second method
sometimes had the advantage that the evaporated layer could also
be used as a mirror. We generally prefered the silverpaint electrodes.
The necessary mirror was then easily stuck to the sample.

Electrical connections to the sample were made of gold wires.
They were attached to the sample by silverpaint. Great care had to
be taken to avoid an electrical short=-circuit by spilling some
silverpaint on the sides of the sample which had a thickness of
only lmm.

The orientation of the crystals was checked by the Laue back
reflection methcdzs.

The sample had to be fixed to a support with two degrees of free-
dom. This enabled the alignment of the laserbeam of the interferometer.

The sample was attached to a partly rotateble support by using
grease as an "adhesive". This was necessary in order to let the sample
move freely. The influence of a rigid support on the induced strains
of a sample is discussed in chaptexr 7. The crystal had to be mounted
horizontally on the support in order to prevent a deteriorating
of the interference pattern caused by slipping away. This is seen
in figure 4.1. An example of the sample preparation is given in

figure 5.1.
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Figure 4.1 I Topview of the arrangement of the stabilized Michelson
interferometer. AB is the plane of symmetry between
reference and sample beam. Actually the sample and
reference mirror cannot be seen underneath the 45°
mirror.
II A partly rotatable support fixed on the common back-

ground of reference and sample mirror.

4:3 Experimental difficulties in measuring true electrostrictive

dilatations.

- The stabilized Michelson interfercmeter is isclated from outside
mechanical vibrations by fixing it on a rigid slab of granite. This slab
rests in turn on four air-~filled tires. The effects of mechanical
vibrations that still come through are reduced in three ways.

1} The reference- and sample~beam of the interferometer are kept
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as near to each other as possible., In this case 10 mm as shown
in figure 4.1.

2} The lightpaths of the interferometer are kept as short as
possible. They are about 20 cm.

3) The random lightpath variations between sample-and reference-
beam are compensated by the electronic stabilisation described
in detail by Kwaaitaalz?

The electronic stabilisation compensates random variations. However,
there is one exception: vibrations, having the same frequency as the
electrostrictive dilatations of the sémple. This freguency is 2fo and is
the second harmonic of the frequency fO of the voltage Vf which is=
applied to the sample. °

There are four sources of signals at 2f0 which are detected by the
phase sensitive detector. One source is the sinusoidal form of the
interferxence relation. This will be discussed in section 4.4. Another
source is the second harmonic distortion of the high voltage amplifier
connected to a piezoelectric sample. This will be discussed in chapter 7.

The remaining sources of vibrations with frequency 2fO will be
discussed below. They are caused by Coulomb interactions.
I : A Coulomb interaction between electric charges g can be described

by a force F with

F q2 v (C Vf )2 ; Vf NCE 4+ B cos 2nf ¢ (4.1)
s £ o o o

Cs is a stray capacitance of the electrical contacts leading to the sample.
It follows from (4.1) that F has frequency components at fO and ZfQ.
The Coulomb interaction causes vibrations at 2fO of the electrical
contacts on the sample and thus of the sample itself. The intensity

of these vibrations is linear with Vf?. Therefore these vibrations
o
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look very much like electrostrictive vibrations. So they have to be

reduced. This has been done in four ways.

1)

2

~

3)

4)

The electrical contacts are shielded, until very near the sample.
This reduces F between cable and surroundings.

The actual electrical contacts on the sample are made of 20 um
thin supple gold wires. This reduces the mechanical coupling
between the wires and the sample.

The electrical contacts are laid symmetrical with respect to

the supports of reference- and sample~beam mirrors, {(The plane
of symmetry is indicated by the line AB in figure 4.1). In this
way any vibration of the common support of the mirrors will have
the same influence on the position of these mirrors. Simultaneous
movement of both mirrors is not detected in this interferometer.
A mechanical resonance frequency of 2fo of some part of the
equipment near the sample will alter the phase of the signal
measured on the phase sensitive detector. We are glad for

this phase change since this provides the criterium with

which we circumvent resonance vibrations. To prevent such a
resonance, one has to vary fo in order to find the signal

with the right phase when compared with Vf . An example of

o

a positive electrostrictive dilatation AL, is given as a

1
function of time, together with Vf , in figure 4.2.
o

The frequencies we used lay in the range of 30 to 200 Hz. This corresponds

to the "quiet" region given by Bohaty

26

II: A Coulomb force also acts between the electrodes stuck to the

sample. This foree results in a strain (ALl/Ll)c given by Hausslihl

27

and Waldu

(AL1/L1)c = -k

2,2
S1111%%"s /11 , 4.2)
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E = [Fo e =\ T - —_ ——— Rnd — —“—
] 1 i
— * g £
~ t(s) -
ALl \ . 7
ET_'T \\total strain /

Figure 4.2 The electric field applied to the sample is shown above.
The lower part shows the three frequency components
. 2,72
£t t i = .
o he electrostrictive strain with (ALi)f le-Yilil(E°+%E ¥i

dotted line iALl)f /L =2Y1111E0E; curve A and

1

(ALilzfo/L1=%Y1111§2; curve B. The broken line shows the

sum of these three components.

Estimating the electrostrictive strain (ALi/Ll)c is easy. If (AL/L)C

would be the only effect contributing to electrostriction of the sample,

we would measure a value of Y1111 for diamond, quartz, LiF and

triglycine sulphate of -0.025, -0.25, -0.46, -1,4x10—21m2/V2, respectively.
This follows from (4.2) and the numerical data given in table 3,2.

The results are of the order of the uncertainty in the measurement

of the electrostrictive strains.

Only repeated measurements, under slightly different arrangements

of the electrical contacts to the sample, can show if  true electro-
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strictive dilatations are measured. The electrostrictive dilatations

have to vary linearly with 1/L, if V_ is kept constant, This follows
i

£
o

directly from the definition of electrostriction.

Another indication is the correct phase.

4:4 VNon linearities introduced by the sinuscidal character of the

interference relation.

The stabilisation of the luminous intensity J(x) of the inter-
ference spot on the photodiode will not always keep J(x) at %(Jmax+Jmin).

Figure 4.3 shows J(x), versus x, together with J and J ., . The
max min

level %(Jmax+J n) ig the most sensitive part of the interference spot

mi
with respect to small dilatations (see chapter 2). Some change in the
quality of the interference pattern may cause stabilisation at a

level ®H{J +7J )+Jo. Figure 4.3 shows J0 with Jo << H{J ~3 . ).

max min max = mi
J (%)
12mmax+Jm;i.n)'“

Figure 4.3 The luminous intensity J(x) is shown as a function of the
i i . The I +J
displacement x of the sample mirror e level %{Jmax min}
is the ideal stabilisation level. This level has no

second-harmonic distortion caused by the sinusoidal

character of J.
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Now we will give a definition about the gqguality of the inter-
ference pattern.

The interference pattern is formed by the two interfering laser-
beams of the interferometer. These beams have a luminous intensity

of J, and J, (W) respectively. Under total interfering conditions

1 2
. 28
Jmax Jmin is given by
{J -J .} = 4WT, T (4.3)
max min 1772

In practice (J -Jmin) < 4VJ1J2- This igs caused by not totally overlapping

max
laserbeams at the interference place. The quality of the interference
pattern may now be defined by (Jmax-Jmin)/4¢Ji.J2). Thig value lay some-

where between 0,90 and 0.95 in our interxrferometer.

Now we will show that a stabilisation at %(J +3 . J+J results in
max in o)

m
non-linearities in the measurement of small dilatations. They look like
spurious dilatations BALi)2f ]sp'

L

The function J(x) is given by” the following equation

J(x) = %(Jmax+Jmin)+%(J Yeosdmx/ A (4.4)

max-Jmin

We will make a Taylor expansion of J(x) in powers of the displacement
(ALi)f sinZﬂfot around x = {3X8)A+xo. We define X implicitly by the

following relation sin(4nx0/x) = ZJOX(Jmax”Jmin)' Figure 4.3 shows x .

It follows from (4.4) that
A/ B+ = i -
J(3N/ xo+(ALi)fo) %(Jhax+Jmin)+J°+3f05192ﬁf0t J2f00054"fot

with

and (4.5)

52 =



)2 (4.6)

2
J B JoJfo/ﬁJmaxmsmin

2f
o

In the same way as (AL,) has been defined in (4.5) we now define

i'f
o

EAL.)zf by the following relation
+ olsp

Asz
o

EaLi)Zf] S @ T
ol sp max min

Using (4.5) and (4.6) leads to

J (ALy) ¢
(o]

FALi)zf ] = (ALi)f . ?3"**:3“T—7'. 2m . “""i—*~" (4.7)
o|8p o max min

with A = 63288.

The importance of EALl)Zf ] will be shown in the following example.
olsp
We apply a voltage Vs to a piezoelectric sample. This results in

a vibration with an amplitude 1{aL1) [ of 108. If the stabilization

£
o

is not at its optimum the value of JOX(J -Jmin} may be as high as 0.01.

max
According to (4.7) this results in an spurious quadratic vibration

with an amplitude of 10_32. Hence, when we measure such small quadratic
vibrations, we have to check according to (4.7) if they can possibly
result from spurious dilatations. This check is only needed in the case

of piezcelectric materials where (ALl)f could be “large".

(o]
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5 Electrostriction in LiF

The first measurements of electrostriction with our interfero-
meter were done on a single crystal of lithium fluoride., This crystal
was put at our disposal by Bohat?.AHe had determined the electrostric-
tion constants of several alkali halogenides4 such as LiF and NaCl.
His measurements had been performed with a capacitive dilatometer
and resulted in electrostriction constants Y1111 of LiF and NacCl

-21 2, 2

of (-7.2 + 1.1} and 6.7 i.l'O} x 10 m /V", respectively. The negative

value of vy of NaCl was in contradiction with the positive value

1111
given by Zheludev12. So there was some question about the sign of
Y1111 in these materials.
We cut several samples of LiF out of the original sample of
Bohaty. A sample is showm in figure 5.1. We applied grease to fix the
sample to the support and mirror. Pirst we used silverpaint but thié
resulted in an agingveffect in the measurements of Yllll' This was
caused by the hardening of the silverpaint. This hardening restricted
the movement of the sample through clamping by ca. 30%. This type of
clamping will be discussed in detail in chapter 7.

We measured the linear striction (ALl)f and the quadratic
striction (ALl)Zf . They are giveﬁ by (3a) agd (3b} in section 2.1,

o

(ALl}fo = 2B E Ly

-2
(BLidye =339 Yy
o}
where EO is the pooling field and E is the amplitude of an a.c. field
superimposed on Eo (see figure 4.2). The values of (AL1)f and
(éLl)zf were negative. They were detexmined according to the method

(o4
described in chapter 2. This resulted in a value of 71111 of LiF of

p-Y: 2



(-7.9 + 0.8) x 10_21m2/V2. The results are in good aéreement with the

earlier one's on the same crystal (-7.2 + 1.1) x 10_21m2/V2.

The hydrostatic pressure derivative of the refractive index In/dg
of LiF has been measured by Waxleristo be zero. According to section 3.2
this suggests a very small electrostriction constant. However this was
not found experimentally. The value of Yllli is easily measured in
different ways.

As seen in séction 3.1 the dielectric constant is an important
parameter in finding the right order of magnitude of Yllil'

The relative dielectric constant ar of LiF is 8.9 at low frequencieszi.

The refractive index n for a wavelength of 5875.62 ® in LiF is

11
1.392 (table 3.3). From this it follows that at light frequencies
sr = nil = 1.94. This shows that er changes strongly with frequency.

This change is caused by the ionic polarisation of LiF which only
plays a role at low frequencies, The different values of

the two frequencies used in the determinations of Yii11 and
ndn/3c may cause the above mentioned discrepancy between the

results for n aoanxl/ac and vy in LiP.

11 1111

tlaser
theam

AR

silverpaint |7 [N

grease | 3mm 20 um gold wires

[ —
’ i
=

o

Figure 5.1 Sample of LiF with a diameter of 5 mm.

The electrostriction measured was of the order of 10—12 m,
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© Electrostriction' in diamond

6:1 Information on the diamond samples

We distinguish four types of natural diamondl? The properties of

these types are described in the table below.

Table 6.1 The properties of the four types of diamond.

Type { 1 11
a b a b
u.v. absorption range A<340nm A<225nm
i.r. absorption range 2.5um< A< 10um 2.5um< A<6um
dark resistivity >1014Qm >1014Qm § <104Qm
nitrogen content 500...2000 ppm § 50...500ppm <50 ppm é <50 ppm

We are interested in high resistivity and a low impurity contents
so that the crystal can be submitted to electric fields of 106V/m oY more.
Therefore we have chosen the type IIa diamond. This type of diamond
could be commercially obtained. Two diamond single crystal cylinders
with a diameter of 5 mm are obtained from D. Drukker & Zn. N.V. (Amster-
dam} . The heights of these cylinders were 0.50 and 1.00 mm., They were
prepared for the electrostriction experiments by evapourating géld
mirrors on the flat surfaces of the cylinder. These mirrors also
provided the necessary electrodes. Further details about the
preparation are given in section 4.2.

The orientation of the cylinder axis was [100]. This was
thecked by an X-ray photo made with the Laue back-reflection methcdzs.

The structure of diamond is shown in figure 6.1. Bach C-atom
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Figure 6.1 Positions of electric field induced dipoles p in a diamond
lattice. E1 indicates the direction of the electric field.

r, Is the nearest neighbour distance.

has four nearest neighbours. The distance between a C-atom and its
nearest neighbours is 1.54449 . The sides of the cube shown in
. 19 2 : . o ;
figure 6.1 are 3.56684 A which is 4/¥3 times the nearest neighbour
distance L
It is possible to estimate roughly the electrostriction in diamond
along the lines given in section 3.1. But now we will take into account

the actual crystal structure of diamond.

The calculation is given in the following section.
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6:2 Estimate of Yilll' using the crystal structure

The immediate surrounding of a C-atom in the diamond structure

is given in figure 6.2. Only nearest neighbours are shown.

Fy
4
E i
F, 1 Fg .ﬁp
| P, Fy:
.
P fiv F [¥-axis
: 3 i
; I
: x/__..—-t--/'_' e ™
/// .1_ // YdaXlS////
e : P “zléicigx
e e . e et e o, o g
% ar
X AT
| F

Figure 6.2 An induced dipole p in diamond with its four nearest
neighbours, The forces of the central dipole acting on
the nearest neighbour dipoles are shown. E1 indicates the

direction of the electric field.

The electric field applied to the diamond is along the x~-axis.
This field induces on each C-atom an identical dipole-moment p.

According to (3.6} dipole-dipole forces are linearly related to
r-d, where r is the distance between two dipoles. Forces between next-
nearest neighbours will be neglected. The net result of these forces
is nearly an order of magnitude smaller than nearest forces.

The force of a central dipole acting on a parallel dipole is given

by (3.6). This equation is written in the new coordinates of figure 6.2,
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]

cos¢(3—5coszﬁ) 1
2
F(x,y,2) -—33'9-7{ 42sinp(1-5cos°8) | =[ F (6.1)
2

4wsor 2
5V25ing(1-5c0s @) F3
R _ X X
with cosf = - (x2+y2+22)% .

We had to change coordinates in order to let the new coordinates
coincide with the crystallographic axes of diamond. The change involved
a 45° turn around the x-axis. Hence the original y-component of g(x,y)
in (3.6) is split up in the new y-and z-components given in (6.1).

In the case of diamond icosﬂi = V1/3 as is seen from figure 6.1.

Using (6.1) results in

AVER S

= s = 2|r,| (6.2)

2|

The direction of the forces of the central dipole on the nearest
dipoles is shown in figure 6.2.
Figure 6.1 shows that C-atoms in the ground plane ABCD (:a (100)-

plane) have two nearest neighbours. In a (100)-plane there are two

16y
C-atoms in an area of ~§*1~. Now the stress 011 between the ground plane

5

and the parallel plane (at a distance 3" rl) above can be calculated.

The same stress can be found for each pair of planes parallel to ABCD
and at a distance of 3_%r1 from each other. Therefore this stress

exists in the whole crystal. The stress 611 is calculated from (6.1) and

(6.2).

4|F, | 2
O, = B L o = -20,, 6.3)

11 2 22
(16/3)r1 4ﬂaor1

In (6.3} we have calculated 022 and 033 along the same lines of reasoning
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as 011. A negative stress means a compressive stress in the crystal.
The elastic stresses result in strains., We will calculate ALl/L1 according

to the next equation9

AL /Ly = 81441%3

The above equation together with (6.3) results in
AL

1. Y3 (
with S

2 6
S11117S1122)P /4TETY) (6.4)

1122 = S1133°
In order to find ALl/L1 we calculate p through the following relation

1 4 3
=3 7rr 11 1 = f? r, 11E1 (6.5)

where P“E1 is the dipole moment per unit of volume, (4/#5.riﬁ is the
volume of the cube shown in figure 6.1 and the factor 1/8 stems from
the fact that there are 8 C-atoms in the cube.

Combining {(6.4) and (6.5) results in

AL
1 _ 16 /3 2, 2
T, ~ 27 e, S1111 81122 P11 By (6-6)

If we look at the definition of electrostriction it follows from (6.6)

that

= /" - .
Yigqg T FL6YIPL TS 14478 000/ (27T ) 6.7

The following values have experimentally been found for the material

propertieslgof diamond.
= 9.55 x 10 *n?/N

= -0.99 x 10" >p?/n

S1111

s1122
1 =
P“/sO 4.86

If then follows from (6.7) that Y1111 = 007 x 10~21m2/V2. We see
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that this more realistic estimate results in the correct sign of the
electrostriction constant. The rough estimate of section 3.1 always
yields a negative sign. Taking into account an nearest neighbours in

the diamond structure only results in an increase of Y1111 of 13%.

So Yi111 becomes 0.08 x 10_21m2/V2.

6:3 Relation between Y1111 and the photo elastic constants

Maradudin and Burnstein30 have found the electrostriction of

diamond by using the tensor (Yijkl) We will summarize their treatment.

cl’
)

is defined implicitly by the following relation for a clamped

o511

sample

15 = Tt 01150 1B

The suffix cl refers to the totally clamped condition of the sample.

The tensor (Yijkl)cl has the dimension of the dielectric constant of

vacuum € . In diamond the tensor (y,. .) has three non-zero components.
o ijkl cl

These are

(fygqq)ay = Py + 38),/2 (&L /1) (6.8)
(Y1122)c1 = Pil + aPil/a(ALZ/LZ) (6.9)
(Vip12)c1 = %P1,/ (AL /L))

The equations (6.8) and (6.9) together with

Y1111 = 111 Y3’ a1

lead to
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P ¥
Yir1n = 3514917804220 P14¥8y, (991, /3 (a0 /1))

QP'lja(AszLz) (6.10)

+ 5142099

Here we see again a relationship between Y1111 and the tensors Pij

and S . The tensor 3PijZ3(ALk/Ll} can be easily derived from the

ikl
photo elastic tensor 8(1/GI)X3(AIE{Lj).T%e experimental values of
1 1 30
a(er)za(ALl/Ll) and B(E:?/B(ALZ/LZ) are given by~ .

32 /3(AL /L) = -0.49 ; (-0.244)
X

#

n ol
o(E—aZa(aszLz) +0.20 ; (+0.042)

r
The values of the other tensor components were already given in section
6.2. Using these values in (6,10) gives an estimate of Yi111 in diamond

-21m2/V2. The values between brackets are given by

of +0.093 x 10
Landolt*Bﬁrnsteinlg. They lead to an estimated value of Yllll of
+0.053 x 1072 n2 %,

All estimates lead to a postive value of Y1111 in diamond.

6:4 Measurement and conclusions

We applied a 450 V r.m.s. signal to a 0.50 mm thick diamond sample.

sample.

The electric field was parallel to one of the [100]}-axes of diamond.

The frequencies of the signals were chosen at 38,67 and 81 Hz. We detected

~15
an electrostrictive dilatation l(ALl)zf | equal to 63 fm (=63x10 ~m) at
o
all three freguencies. [(AL1)2f i was found according to (2.1). The value
o
of {AL1)2f is shown by point D in figure 6.3.
o

The problem is now whether the measured value of !(ALI)Zf i corres-—
[}
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Figure 6.3 The compressive dilatation of a quartz crystal (Q) has a
measured phase § which is almost opposite to the neasured
phase of the electrostrictive dilatation of diamond (D).
The crosses indicate calculated phase and amplitude of a
quartz dilatation. The dots are the actually measured

phase and amplitude.

ponded to an expansion or compression of the diamond during electrostriction.
To solve this problem we introduced a compressive dilatation on a
quartz crystal with known orientation. We applied a 0.020 V r.m.s. signal

”w\z.

to the quartz crystal with a piezoelectric constant9 of =2.3 x 107
The expected value of -65 fm for the amplitude of the compressive
dilatation of the quartz crystal is indicated by a cross with index 1
in figure 6.3. We measured a phase and amplitude on the phase sensitive
detector which is represented by point Q in figure 6.3. We see that
point  has the opposite phase when compared to the electrostriction
of diamond indicated by D. This means that the electrostriction in
diamond corresponds to an expansion, so the 71111 of diamond is positive.
To illustrate the errors involved in determining the Y1111 of
diamond we vary the phase of the signal applied to the quartz crystal.
The calculated amplitudes and phases are indicated by the crosses in

figure 6.3, the dots represent the measured points. Corresponding

crosses and dots have the same number. The difference between the crosses
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and the dots gives an idea about the errors involved. Actually the error

in (ALl)zf of diamond is estimated at 5 fm. We estimated this from
o

the recording of the signal on the phase sensitive detector. An example
of a recording is given in figure 2.1.
We used (3a) and (3b) of section 2.1 to calculate Y1111' These

equations are rewritten here

Y111 = 5(ALl)fo/(le E) (6.10)

_ -2
Yi111 © Z(ALl)zfo/(LlE } {6.11)

The values of (ALi)f , (AL) , E and E0 are given in the table below,
]

1 2f0
We have also given the value of Y141 calculated according to either
(6.103 or {6.11). We recollect that L1 = 0.50 mm.

Table 6.2 Numerical values used to calculate Y1111 of diamond according

to either (6.10) or (6.11).

- " .
£ (10%/m | B (108w/m |, af Sm) (L), 16%%m| y (10% a2 %)
o jo]
1.27 - - 63 + 5 +0.16 +0.0z
1.27 1.41 313 +15 - +0.18
0.631 1.41 143 +12 - +0.16

Figure 2 of section 2.1 can be made with the data in table 6.2.
- 2
The experimental result for Y1111 is (+0.17 +0.03)x10 21mz/v .

In the table below we will summarize the results given in

geveral sections of this thesis,

-y



Table 6.3 Summary of the estimates of Yllll for diamond and the only

experimental value of Yllll'

estimates of Yy111 in 10_21m25v2 according to:

section 3.1 : + 0.095 section 6.2 : + 0.07

section 3.2 : > 0.025 section 6.3 : + 0.093; 0.053
. -21 2, 2

experimental value of 71111 =4 Q.17 x 10 “m /V

We conclude that the experimental 71111 is about twice or three times
the estimnated values. The sign of the experimental Y1111 is correct.

No attem>t will be made to explain the discrepancy of a factor 2 or 3.
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7 Electrostriction in quartz

Before measuring the electrostriction in quartz we had to investigate .
two effects. These effects were (i) the clamping of the sample by the
support and (ii) the piezoelectric dilatation of the quartz crystal
caused by the unavoidable second-harmonic distortion in the electric
field applied to the sample. These effects are discussed in section 7.1

and 7.2, respectively.

7:1 Clamping of the sample by the support

The effect of clamping is described in detail in the following
31
article. To avoid this effect we used grease to fix the sample to the

support.

Journal of Magnetism and Magnetic Materials 26 (1982) 187-190
North-Holland Publishing Cc

pvatly

CALCULATION AND MEASUREMENT OF MAGNETOSTRICTIVE CONSTANTS OF THIN
LAYERS

Th. KWAAITAAL, B.J. LUYMES and W.M.M.M. van den EIJNDEN
Eindhoven University of Technology, Department of Electrical Engineering, 5612 AE Eindhoven, The Netherlunds

The striction of a disc-like sample clamped by a support is described by computer simulations as a function of the
thickness-to-width ratio of the sample. Denting of the support has been taken into account. Experiments on quartz have shown
that the support restricts the piezoelectric strain in two ways.

1. Introduction

We have analysed a problem related to the
magnetostriction of thin samples. The magneto-
- strictive constant of a material is defined as the
change in the dimensions of a material caused by
magnetization, assuming the material expands
freely. If the magnetostriction of thin samples is
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measured, the last-named condition cannot always
be fulfilled and it will be necessary to take into
account the influence on the sample by clamping
to the substrate or support. -We met this problem
for example when measuring the magnetostriction
of aluminium-substituted nickel ferrites [1] where
the largest dimensions of the crystal were between
1 and 2mm. We measured the magnetostriction
with a stabilized Michelson interferometer [2], ca-
pable of measuring vibrational amplitudes as small
as 10 " "m, corresponding to strictions A of the
order of 10 ~? in samples with a thickness of 1 um.
To prevent undesired sample vibrations it has to
be fixed rigidly to the interferometer.

As a suitable configuration of the samples, both
for calculations and experiments, we have chosen
a circular cylinder as shown in fig. la, which is
attached to its support by a layer of glue. In the
case of layers on a substrate, the thickness of the
layer of glue is diminished and it is given the same
properties as the support.

All calculations are made for isotropic materi-
als. The finite-element method [3] was used to

calculate, with the aid of a computer, the axial and
tangential strains of the samples as a function of
the dimensions of sample and glue and of the
elastic properties of the sample, glue and support.
A typical example of the deformation is shown in
fig. 1b. The displacements are highly exaggerated.
The deformation is caused by the restriction of the
transverse strains of the sample by the support.

These strains always accompany the axial strain of
the mechanically free sample and, when these
strains are reduced, so is the axial strain.

We made use of a computer simulation to
calculate the mechanical clamping of thin samples
or films by a support. The results of these calcula-
tions will be described in detail in sections 2, 3 and
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Fig. 1. (a) The configuration of the sample, glue and support,
Young’s moduli and Poisson’s ratio of sample and support are
indicated by E,, », and Ey, »,, respectively. The interferometer
measures dilatations in the direction indicated by the large
arrow, (b) A typical deformation (dotted) of a sample glued on
to a support. The displacements are highly exaggerated.

4 and compared with experimental results in sec-
tion 5.

2. Computer simulation

The configuration of sample and support used
for the computer simulations is shown in fig. la.
We will use the following terms in describing the
influence of the support upon the movement of
point A shown in fig.1b: A is the axial striction of
the free sample. A (z/w) is the mechanically
clamped striction of the sample which is princip-
ally a function of the thickness-to-width ratio t/w
and is equal to (A’B’ — AB)/AB, shown in fig. 2. »
is the Poisson’s ratio; E is the Young’s modulus;
A,(t/w) is the normalized movement of A which
is experimentally easy to measure and equals
AA’/AB shown in fig. 1b; Ay(¢/w) is the normal-
ized denting of the support shown as BB’/AB in
fig. 1b; n=A(t/w)/A; and 8 = A (0) /A (0).



A simple measurement of A _(¢/w) in order to
determine A (¢/w) is not enough since the simula-
tions showed that the support will dent under a
sample undergoing axial striction. The simulation
also showed that a 10 pm layer of glue between
sample and support changed A (z/w) by less than
2% for practical values of Young’s modulus, hence
this effect will be disregarded from now on. Calcu-
lations were done with a relative strain A; = 1%, in
the free sample.

3. Clamping

3.1. Mechanical clamping

An analytical calculation showed that a thin

sample (1/w — 0) on a rigid support has an axial

striction A (0) which is expressed as a function of

A, and », by the equation
A0 =(1-22)1=5) A, t/w=0, (1)

where », is the Poisson’s ratio of the sample.

This result makes three assumptions: that the
support has no influence on the mechanism caus-
ing the original free striction A;: that the sample
must be isotropic; and that the volume of the
sample remains constant. The heavy dots in fig. 2
are the result of eq. (1) and they agree very well
with the results for n found through simulation. In
order to show the linear relationship between 74
and ¢/w for t/w=<0.1 the horizontal axis of fig.2
is linear for r/w=<0.1 and logarithmic for ¢t/w =
0.1. It was found that A (0) was independent of E,
if-the ratio E, /E is smaller than 2.5, where E, and
E, are the Young’s moduli of sample and support
respectively. In this region of £ /E, the support
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may be described as rigid and eq. (1) will give the
correct solution for A (0).

v,
0.25— 0

linear tIW ———-

By | L] |

. I‘m\m_ 0.5 1,/2/:2 l
00 I MM 0.04— tA,

WR’

0.08— 0.08—

Fig. 2. The normalized clamped striction of a sample is shown
as a function of ¢/w together with the normalized denting
Ao /A of the support. The function (A, /A)(¢/w) shows that
the denting is constant when measured absolutely if t/w>0.3.

3.2. Magnetostrictive or piezoelectric clamping

In eq. (1) the assumption has been made that
the support has no influence on the mechanism
causing the free striction. This is not true for
anisotropic crystals which show magnetostriction

or piezoelectricity. The striction in these crystals
caused by magnetic or electric fields, respectively,
is only possible in combination with transverse
movements of the atoms in these crystals. Since
these movements are prevented by the stresses
exerted by the support on the sample, the free
striction will be reduced to a value less than

Aft/w).



4. Denting of the support

In calculating the denting of the support under
the sample it is assumed that no external forces are
exerted on the sample. The normalized dilatation
Ao(t/w)/A; of the support is shown as a function
of t/w in fig. 2. There is a linear relation between
Ao(t/w) and t/w for t/w=<0.1. This relation is
only slightly changed by varying »,.

4 is nearly linear function of E, /E, as shown in
fig. 3. The slope of the function depends on the
value of », /»,, where v, and », are the Poissons
ratios of the sample and support respectively. This
is verified by setting », and », at three different
values while keeping », /v, constant. The simula-
tions showed no difference in the results for 8. The
denting of the support measured in absolute values
is constant for t/w = 0.3 as shown by the function
tAo(t/w)/(wA;) in fig. 2.

IJfXQQM

t/wi 0

->Vs= 5/6\6

as |- =1

V=74

{\é =2 (fused quartz)
* \6.—_—03 (Cr.Ni steel)

0 0.5 2.0

0 15
&

Fig. 3. The denting of the support Ay(0) normalized by the
striction of the sample A (0) is shown as a function of the ratio
of Young’s moduli E, /E,,.
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5. Measurement of the striction on quartz crystals

We used quartz crystals in our experiments
because of their well known piezoelectic effect. A
disadvantage is their anisotropy which required a
detailed calculation (analytic) of the piezostriction
of a quartz crystal on a rigid support. By assuming
that. the support did not affect the piezoelectric
mechanism in the crystal and using the values of
the elastic constants quoted by Nye [4], it was
calculated that the mechanically clamped sample
would have a piezostriction A (0) of 83% of the
free striction (see appendix). However, an axial
piezostriction in quartz is accompanied by an
equally large transverse striction of the free sample
in one direction perpendicular to the axis. In sam-
ples with ¢/w<0.1, half the striction, the trans-
verse striction, is impossible. We assume that this
limitation of the striction reduces the piezoelectric
effect by 1.

The denting of the support can be roughly
estimated by using the E, and », of fused quartz.

‘i.ﬂ
&"/At Q7%
0.5
025+ /
linear A0 = Q34
s'cate mf )\f
O ———
0 0} 0.2 05 1 2
thw swemd

Fig. 4. 'Measurement of the striction A, of a quartz crystal
along the piezoelectric axis. A, is normalized by the free
striction A; of the quartz crystal.



These are given by Anderson [5] as 10'""N m™2
and 0.2, respectively. The support used in this
experiment was made of Cr-Ni steel with an E,
and »; of 2X 10'"N m™2 and 0.3, respectively.
According to fig. 3 § = 0.19.

The measured dilatation of quartz should be

Am(0) =A0)(1-8)-3, /w0, )

Eq. (2) gives a value of 0.34A; for A_(0). The
experimental value found for A (0.02) was 0.34X,
so this is in very good agreement with the value
calculated above.

The experimentally measured curve of
A (t/w)/A; for a quartz crystal is shown in fig. 4.
In this experiment A; was about 10 76,

6. Conclusions

The various strictions mentioned above are in-
dependent of a 10 um layer of glue. The support
can be assumed rigid in the calculation of the
mechanical clamped striction, according to eq. (1),
if E, /E, <2.5. The piezoelectric effect of quartz is
limited by the support and this had to be taken
into account in order to explain the experimentally
measured striction of a thin quartz sample. This
resulted in a factor of 0.5 in eq. (2).

The denting of the support is constant for sam-
ples with ¢/w greater than 0.3. In general, eq. (2)
can be rewritten as

AL (0)=A,0)(1—8)c;0<c<1,t/w—0,

where c is a constant which depends on the part of
the mechanism of the striction in the sample which
has been made impossible by the support.
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Appendix

Calculation of the mechanically clamped striction of
a piezoelectric quartz crystal

A mechanically free quartz crystal with an elec-
tric field E applied to it shows the following
strictions A :

A= A =d,E, (A. 1a)

A, = —d, E, (A. 1b)
Ay =As=Ag =0 (A. Ic)
A, =d,E,. (A. 1d)

The directions corresponding to the indices are
shown in fig. 1a. The matrix for the piezoelectric
constants d;; of quartz crystals is given by Nye [4]
(p. 126). The numbering of the indices is according
to Voigt’s notation.

When a thin quartz crystal (z/w—0) is at-
tached to a rigid support A, and A, will be zero.
This is caused by the stresses o,, 0, and o, exerted
on the crystal by the support, the other stresses
being zero. We use the values of the elastic con-
stants S;; of quartz given by Nye [4] to adapt eq.
(A. 1) to the mechanically clamped condition. This
leads to eq. (A. 2) for the mechanically clamped
striction A (0) of quartz:

A} =A,(0) = S),0, + S50, + 81404 +d)\E,

(A. 1a)
A, =0=S,0, + 5,30, = S0, —d,;E, (A.2b)
A =0=S,30, + 8330, = A5 =A% (A.2¢)
N, =0=—58,,0, + S0, +d E, (A.2d)

where S,;, Si2» Si3» Sias S3; and S,, are 127,
—0.17, —0.15, —0:43, 0.97 and 2.01 10~ "' m?
N !, respectively, and d,; and d, are 2.3 X 1012



and 0.67X107"?m V™! respectively. Simple
calculation shows that A (0) = 0.834,, E, = 0.83A,.
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7:2 Piezoelectric effect caused by second-harmonic distortion

In the electrostriction experiments we connected a high voltage
amplifier to the sample, This amplifier has a second~harmonic distortion

8V superimposed on the signalV

o applied to the sample.
o

£
©

The signal &V will cause dilatations G(AL1)2f in a
o

2fo
piezoelectric sample, These piezoelectric dilatations have exact the
same freguency as the electrostrictive ones, Hence they have to be kept
as small as possible.
In figure 7.1 the dilatation G(ALl)zf of a quartz crystal is given
e}
versus szfo.

Reversing the electric field in the sample results in a sign

reversal of G(ALI)2f as is expected from a pilezoelectric dilatation.

O
Figure 7.1 demonstrates that we are indeed measuring a piezoelectric effect.
Even the absolute value of the pilezoelectric constant 2.5 x 10'12m/v

calculated from this figure is in good agreement with the well known
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Figure 7.1 The piezoelectric dilatation S(ALg)zf caused by the second-
o
harmonic distortion in the applied electric field

The electric field has been applied in two opposite directions,

value of -2.3 x 10-12mfv for quartzg.

By changing the d.c. offset of the signal Vf (300 V r.m.s.) it was
o

possible to minimize 8V2 to less than 6 mV r.m.s. This corresponds to

£
<]
a second-harmonic distortion which was less than 2 x 10 5. The dilatation

12

|8 (AL | will be lower than 0.006 x 2.3 x 10 ~m = 15 fm. This is

1)2f
o
above the sensitivity of the interferometex which is 5 fm. Therefore

we introduced a double sample. This is shown in figure 7.2.

RITITITTTICTITI 4 =0

Ly 11 %-axis quartz! %’(A)

te oscillator

%Ll |1 x-axis quartzl {B)

(Aé///f//////////suppo:t

Figure 7.2 Orientation of the gquartz crystals in a double sample.
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The orientation of the x—axes of both quartz crystals is identical,
The outside electrodes of the double sample are grounded. The middle
electrode is connected to the high voltage amplifier. The piezoelectric
dilatations of both quartz crystals are thus opposite in sign. Now we
measure the overall linear piezocelectric effect of the double sample.
This is less than 10% of the piezoelectric effect of a single quartz
crystal, So 5(AL1)2f is also reduced by a factor 10. The electrostric~-
tive dilatations of each quartz crystal add. So the ratioc between
electrostrictive dilatations and S(ALl)zf increases 20 fold by using
the double sample. After measuring the am;litude of a dilatation with
frequency 2f0 we interchange the connections (A) and (B) on the double
sample (see figure 7.2). Again we measure the amplitude of a dilatation
with frequency 2fo' We now add both measurements and take half the sum.
This gives us the exectrostrictive dilatation (AL,) since the

1 2fo
piezoelectric effect B(ALi}Zf has been compensated by this method,
©

7:3 Measurement of electrostriction in quartz

We used two samples of Brasil x-cut quartz with a thickness Ll
of 2.96 mm. The samples are bought from the Dr. Neher Lab. in
lLeidschendam. We applied a signal with an amplitude of 424 V to the
middle electrode of the double sample shown in figure 7.2. In another
experiment we grounded the middle electrode and applied the same
signal to the outher electrodes to correct for the second-harmonic
distortion in the applied field. The electrostrictive dilatation
{ALI)2f was the average of the measurements performed under the two

described experimental conditions.

(ALl)Zf was measured as a function of the freguency f0 with

-
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0 50 w100 150 200
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Figure 7.3 (ALi)ZfO and Y111 determined as a function of the

frequency fo on a double sample of quartz.

30 Hz < fo < 200 Hz. As expected fALl)zf was independent of fo.
o
The uncertainty in (ALl)zf is 7 fm.
o
(AL1)2f versus fo is shown in figure 7.3. The electrostrictive
o)

constant was calculated according to (3a) in section 2.1.

Yyqqq Versus fo is shown in figure 7.3. Using the error in {bLl)zf

we calculated y1111 of gquartz:

-22_2
m

= (-6 + 2) x 10 R

Y1111

wWe conclude that Y1111 is no function of the frequency in this
frequency range. .

We will now compare this result with the estimates given in
chapter 3.
The discrepancy between our results and the experimental results of
Gagnepain et al.32 has been discussed in section 2.1. It must be
interpreted as second-harmonic distortion in their experiment. In

our experiments this distortion is less than 1.5 fm or less than 5%
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of (ALl)Zf . It does not play a role in view of the inaccuracy of about

30% in 71111.

The rough estimate based on dipole-dipole forces gives the correct
absolute value of Yilli' The estimate based on the pressure dependence

of the refractive index gives the correct sign of Yi111°

Table 7.1 Several estimated and experimental values of Y1111 in guartz.

~-21 2,2

Tyyq4 (10 7 m/V)
absolute value calculated from 0.66
dipole~dipole forces (section 3.1)
minimum value calculated from the more negative than
pressure dependence of the refrac- -0.15
tive index (section 3.2)

32

Y1111 measured by Gagnepain 25
our experimental value -0.6 + 0.2
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8 Electrostriction in triglycine sulphate (TGS)

8:1 Data on TGS

TGS is a ferroelectric compound. It is soluble in water. Its
solubility, as a function of temperature, is given by,Nitsche33.
single crystéls of TGS are easily grown from a agueous solution of 3
mol parts of glycine mixed with 1 mol part of 32504. Glycine is also
known as aminoacetic acid. It has the chemical formula NHZCHZCOOH.
The crystals are easily formed by letting the water slowly evaporate
at room temperature. We have grown our own TGS single crystals with
approximate dimensions of 10 x 10 x 6 mm3. Some crystals were given
to the Lab. for Organic Chemistry at our university. This labofatory
verified the expected ratio of 3:17:6 between the numbers of N-, H-
and C-atoms in TGS. The chemical formula of TGS is given by
COOH) ., .H,S0

2 3727

TGS has been discovered to be a ferxocelectric compound in 195634.

(Nngca

Ferroelectric means that the substance has a spontaneous polarisation
below the Curie temperature. This temperature35 is 49.4°C. The spon-
taneous polarisation diseppears gradually with increasing temperature
and is zero at 49.4°c. This gradual disappearance is characteristic
for a so called second~order transition.

The direction of the spontaneous polarisation lies parallel
to the b-axis of a single domain crystal.

The dielectric constnt Pé along this axis is high and strongly
temperature dependent. The electrostriction conétant v shows a quadra-
tic dependence on Pé {see eq., (3.10)).Therefore it is interesting to

measure Y as a function of temperature with the electric field along

-8~



the ferroelectric b-axis. The results of these measurements are shown
in section 8.2.

TGS is piezoelectric below 49.4°C. S0 again we had to circumvent
the influence of the second-harmonic distortion in the electric field,
just as in quartz (see section 7.2). We did this by using a double sample.
The samples are made in the following way.

TGS single crystals are easily cleaved along the plane perpenaicular
to the ferroelectric axis. This plane is used for orientation. The
electric field lies in the direction of the ferroelectric axis. A sample
is made by cleaving a single cyystal twice at a distance of about 1 mm
and sawing the resulting "plate” in two egual parts of 5 x 6 mmz. These
parts are coated with silverpaint. They are set upon each other to form
a double sample. More details on the preparation of this sample are

given in section 4.2.
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8:2 Theory and measurements

We present here the electyxostriction constant v of TGS,
measured along the ferroelectric b-axis. We measured ¥ as a function
of temperature. This function is quantitatively described by an

extended theory of the second-order ferroelectric phase transition.

The theoretical treatment is given in the following article36

together with the experimental results.

Volume 90A, number 6 PHYSICS LETTERS 19 July 1982

ELECTROSTRICTION IN A UNIAXIAL FERROELECTRIC
WITH SECOND ORDER PHASE TRANSITION

B.J. LUYMES
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Received 18 February 1982

The electrostriction constant -y (m? %) of a uniaxial ferroelectric with a second order phase transition has been calcu-
1ated as a function of the dielectric constant (3P/38)g. The results have been experimentally verified on triglycine sulphate
(TGS) by measuring v and (3P/3E)q. A sign reversal of v above the Curie temperature is presented.

Predicting electrostrictive constants is difficult. For
instance we used a first order Raylor expansion of the
polarisation with respect to the electric field and pre-
dicted a positive electrostrictive constant in TGS.

However we measured a negative one. We therefore
introduce a second order approximation below, which
explains this discrepancy well. .

32—



Electrostriction in uniaxial ferroelectrics is
described by the following equation [1]

ALIL=QP?, 1)

where AL/L is the relative change in thickness L of a
sample in the direction of the polarisation P (C m™ 2)
along the ferroelectric axis. Q is a constant.

In electrostriction experiments, an electric field £
is applied to a dielectric sample. The field £ consists
of an ac field AE superimposed on a much larger pol-
ing field Eg. The minimum electric field strength has
to be several times higher than the coercive field £ in
order to avoid hysteresis effects.

In general, electrostriction is described by

ALIL=(AL[L)o+(do+ 7AE + ..) AE, @

where d( (mV 1) describes the linear converse piezo-
electric effect. The electrostrictive coefficient is 7.
The index O refers to the situation in which £ = E.
The coefficient v can be expressed as a function of Q
by expanding P in the second order Taylor expansion

P=Py+P)AE + sP{AEZ + ..., (3)

where Py is the polarisation at £ = E and P and Py
are first and second order partial derivatives of P with
respect to . Combining eqgs. (1), (2) and (3) leads to

v=Q(P¢+PoPy), do=20PPy,

(AL/L)o = QPj . %

Our experiments on a uniaxial ferroelectric crystal
TGS resulted in a negative value for v/Q below the
transition (Curie) temperature T(49.4°C, [3]). Ac-
cording to eq. (4) such a negative value of y/Q can be
explained by a negative value of Py.

The sign of Pg can be deduced from the expression
of the elastic Gibbs energy G (J m~3) for a uniaxial
ferroelectric crystal [4]
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G=Gy—EP+i8(T - T P*+LsP*, )

where |G|, § and 6 are positive constants. T stands
for temperature. Differentiating G with respect to P
and then twice more with respect to £ leads to

P = —65PyPy . (6)
Thermal equilibrium has been assumed, so that :
0G/dP = 0. The positive signs of Py and P result in an

expected negative value of Pj in eq. (6). Combining
egs. (4) and (6) leads to

y=QPP( —6b), b=8P§P), 0<b<i. (7)

The coefficient iy will now be analysed as a func- .

tion of T. At temperatures below T the factorsl%
and Pg are equal to (T — T)/6 and 2{3" (T. - 71
respectively [4] This leads to b11. Above T the fac-
tors Py and Pg are roughly propomonal to (T — Tc)"
[4], leading to b40. The result is 0 <b <3, as shown
in eq. (7).

Calculating 3%G/dPE and 3G/dP from eq. (5)
and replacing 8P20P0 by b gives

T=To+ [(1-30)BI BESB(-20)1. (8

A relation between 7y and Pg can be derived from cal-
culating 32G/3ToP and 32G/dEDP. This leads first to

dP/dT = —BPoPy . ' ®

Differentiating eq. (9) with respect to E and supple-
menting with eq. (4) gives

v =—(Q/B) 0Po/0T . (10)

All calculations are done under isothermal conditions.
Differentiating eq. (7) with respect to T and eliminat-
ing P[0T and aPo/dT according to egs. (9) and (10),
respectively, leads to eq. (11), if v is eliminated finally
as given in eq. (7)



3y/dT = —20P§3 B(1 — 3b)(1 — 18b) . (11)

According to eq. (7), ¥ shows a sign reversal if b = 1/6.

The temperature T at which this happens can be cal-
culated from eq. (8). According to eq. (11) y has
extrema at temperatures Tcand 7o if b =1/3 and b =
1/18, respectively. T and T can also be calculated
with the aid of eq. (8). The extrema of v, i.e. Y(T¢)
and y(T), are calculated by analogy with the calcu-
lations leading to eq. (8):

v(To) =—30BEP~3, (12)

Y(T2)=)° Q8EH 3. (13)

The above described theory of  as a function of
temperature has been verified on TGS. Fig. 1 shows
both vy and 9Pg/3T. The electrostrictive dilatation
YAE? has been measured by a lock-in technique in an
electronically stabilized Michelson interferometer [5].

\I/so-'nj ’%TP‘"

=8 2
C PETE)

Fig. Both the electrostriction constant v and the temperature
derivative of the dielectric constant Py of the electrical poled
TGS are shown as a function of temperature. An ac measure-
ment determines Pg. The broken line shows 3P¢/a 7. The tri-
angles show calculated points of ¥ according to egs. (8), (12)
and (13).
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Pg has been measured by a Sawyer—Tower circuit [6].
An arbitrary frequency of 67 Hz was used in both .
cases. ‘

Earlier experiments on TGS [7] showing a depen-

dence of y on £, do not show a sign reversal of yas a
function of temperature, since these experiments have
been performed without a poling field. In our experi-
ments Eg = 500 V/mm and AE = 80 V/mm. Hysteresis
effects are avoided since £(TGS) < 40 V/mm above
20°C [8]. :

¥(To), T1 and y(T) are calculated for TGS. The
results are marked by triangles in fig. 1. We used @ =
+2.35C %m? g9] ,B=+3.5%X107 F~1K~1m [10] and-
§=+6.5X% 10! C2m? [10]. The value on for
TGS is constant [1 1]

Calculating y1 0Py/0T for each temperature inter-
val of 1 K from 22°C to 60°C leads to a value of §/Q
of (1.5 + 0.25) X 107 T m~3K ! according to eq. (10).
The results of §/Q are shown in fig. 2 and are in good
agreement with the figures for § and Q mentioned
above.

I 2
B/a
(lo?Jrh3K ‘)1 S e
10
30 20 -~ 80 80
T°C)

Fig. 2. The coefficient 8/Q = —(3.Py/3 T/~ has been calculated
for TGS for different temperatures. The broken line gives the
expected value of /@ according to refs. [9,10].

An inaccuracy in the temperature measurement of
0.5 K caused by a temperature gradient between ther-
mocouple and TGS crystal led to scattering when
measuring T, T and T5. The agreement between the



calculated and measured values of the extrema of v is
good, as shown in fig. 1.
Stnctly speaking an adiabatic correction [1 +
bg /6Cp(T¢ T)] in the right-hand side of eq. (10)
should be introduced. This first order approximation
has been calculated, since v, Q and Pg are experimen-
tally determined adiabatically. Cp, is the heat capacity
at constant polarisation and is mlmmal 2.6 X 1087
m~3K~ for TGS [8]. In calculating the adiabatic cor-
rectlon we used the method given by Devonshire [1].
The correction is less than 1% in TGS and may be
neglected in view of the experimental uncertainties in

v, Q and Py
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8:3 Details on the adiabatic coxrection

In section 8.2 we derived the eguation

ap!
o

=2 _°
Y% &

(8.1)

In this relation we deal with Y& and o where the index T refers to

the isothermal condition. Now we will express (8.1) in YS and QS

since our measurements were done under adiabatic conditions, denoted

by the index §. The numerical correction will prove to be very small.

The following expressions are used for Yop and QT

g = (pmm) | L faa/n) |
T BEZ - 2E 3E T

(')
- (1 + kDK, - o8 (.Qéé.é._

2E 9P

= [ean/n) 1 f3AL/L
Qp = N 56 \ op

T

2

with %E = yE~ = QPZ, the electric field E larger

field E ,
[

PRy (Pé}s 1 +km

(BAL/L) - (SAL/L)
ap T 2\ 3p g

This last assumption will be checked latexr on.

Using the expressions for Yopr QT and (Pé)T in {(8.1) gives

H

- . k
Qs 3(p) |}+1+

s =B 3T
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o

than the coercive

(8.2}

(8.3)



We leave out the index S of Pé between the sgquare brackets, since
we are dealing with a correction factor. This factor is estimated

in the following way. According to Devonshires.

2
1 1 JE
= B e o T /C (8.4)
(PO)S (PO)T (;T)P P

The factor (%%) is easily calculated from equation 5 in section 8.2.
P

It equals BP. We derive an expression for k, in. a straitforward

1
way from (8.2), so

L 2.2, Y
kl = R°Pp PO,/CP = b /(CP(S), with le << 1 {8.5)

The numerical values of the constants are given in section 8.2 for TGS.
We see that the assumption made in (B.2) agrees with (8.4). The assumption
k,T << 1 is correct for TGS as k, = 3.6x10"3(k™!) ana T g 333 K in

our experiments. From equation 5 in section 8.2 it is easily seen

that

3T
5 In B - e~ T (8.6)
o)

Using (8.5) and (8.6) in (8.3) leads to

~g. (") pe2(r_ - m
) Q

st MY TEs

P

Sc the adiabatic correction of (8.1) amounts to ki(TC - T x 100%
or about 1% for TGS. It may be neglected in view of the expeximental

errors.
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9 Summary and conclusions

Electrostriction occurs in every material. It causes very small
dilatations in our experiments. They are of the oxder of 10_13ms The
ferroelectric compounds are an exception since the electrostrictive
dilatations in these compounds are several orders of magnitude larger.
The very small dilatations accompanying the phenomenon of electrostriction
are detected in a stabilized Michelson interferometer. The sensitivity
of this specially designed interferometer is such that it is easy to
detect vibrations with an amplitude down to 5 x 10—15m. This amplitude
is of the same order as the fundemental limit set by the photon
character of the light impinging on the photodiode of the interfero-
meter.

Electrostriction is described by the electrostriction coefficient

Y(mzlvz). This coefficient described the guadratic relationship between

the strain AL/L and applied electric field E
AL/L = YE2

A compound may either contract (y < 0) or expand (y > 0) in an
applied electric field. In order to determine the sign of y we compare
the images of two signals on an oscilloscope. One signal originated
from a contracted piezoelectric guartz crystal and the other from
the electrostrictive dilatation of the compound to be studied. (chgeégg_gg
In orxder to estimate’£he electrostrictive strains that can be
expected, we studied a simple model for electrostriction. This

mechanism is based on the forces between dipoles induced by the electric

field. The model proposed results in

5 2

vl = 3- 8,08 e, = 1)

-30~-



where gO(F/no is the dielectric constant of vacuum, Silﬁm?/N) a component
of the elastic compliance tensor and €, the relative dielectric constant.
This model gives the correct order of magnitude of y as observed in a
number of crystals. The model does not take into account the actual
crystal structure. In the case of diamond, where we did take into account
its crystal structure, we also found the correct sign of v (section 6.2}).
In general the sign of y is opposite to that of the derivative of the
refraction index n with respect to the hydrostatic pressure. The absolute
value of this derivative gives an estimate of the minimum value of
[v[/ e - {chapter 3)
We use an a.c. method to detect electroétrictive dilatations. Great
care has been taken to circumvent spuriocus signals resulting from mechanical
resonance. This has been done by choosing the right measurement frequency.
We measure the electrostriction of mechanically free samples. Further
details on the sample preparation are given. (chapter_ 4
Values of vy have been experimentally determined for LiF (chapter 5},
diamond (chapter 6) . quartz (chapter 7) and triglycine sulphate or TGS
(chapter 8).
The way to cope with "large" piezoelectric effects is by stacking two
identically orientated single crystals on toé of each other. £§é22§€£_zi
. A detailed theory of v as a function of temperature near the Curie
temperature Tc is given for ferroelectric crystals with a second order
transition at Tc' We describe and use a method which enables us to measure
¥ continuously as a function of temperature around Tc. There is gquantitative

agreement between theory and experiments on ferroelectric single crystals

of triglycine sulphate. {chapter_8)
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indices and

suffixes:

a

f

£
o

i,j.k,1

Symbols Units

Y 11:12V_2
C,c -
c am x}

P

-1
19k nv

D cn 2
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Notation index

They stand for:

average

frequency, free moving or feedback

oscillator frequency

specific directions in a single crystal,
they are 1, 2 or 3

measured quantity

noise

stationary condition or support

constant polarisation

quartz

adiabatic conditions

signal or sample

isothermal condition

description

optical loss factor in the interferometer

gngstrom

component of an electrostriction tensor
coﬂstant between zero and one

heat capacity at constant polarisation
component of a piezoelectric tensor
component of the dielectric displacement

vector



Y

Af

ALi/Lj

Hz

Hz

Hz

dielectric constant of wvacuum: 8.8542x10-11
relative dielectric constant

component af:the electyric field vector
coercive field

Young's moduli

component of the force vector

force vector .

frequency

width of a frequency band

oscillator frequency

free Gibbs energy

component of a pilezoelectric tensor
efficiency defined in each relevant section

Planck's const:::mt:fé.63}(10_34

total current and signal current, respectively

luminous intensity on a photodiode

amplitude of noise in J

amplitude of noise, apparantly in J

wavelength of laserlight

strains

length

difference in length between the two inter-
ferometer arms

relatively small change in length

apparant displacement caused by refractive
index noisé

component of the strain tensor

Q3



(AL{L)C - apparent strains caused by Coulomb forces

acting on the electrical connections to

the sample

6§AL1)2f m dilatations caused by second~harmonic distortion
[(ALi)Zf:]sp m spurious dilatations with frequency 2fQ

v . Hz frequency of lightwaves
vo'vs - Poigson's ratios

N noise

nij - , component of the refractive index tensor

P Cm“2 or W component of the polarisation vector or the

power of light impinging on a photodiode

E Cm.2 polarisation vector

P’ F‘m-1 derivative of P with respect to E

Po Cm-z polarisation at field E0

PO' Fmﬁl derivative of Po with respect to E, at E0

Po" C second derivative of PO with respect to E, at Eo

P Cm magnitude of a dipole moment

g Cm dipole moment wvector
Qijkl m4C"2 component of an electrostriction tensor

q C charge

Rf 2 feedback resistor

r m distance

o Nm-'2 hydrostatic pressure

Uij Nm—2 component of the stress tensor

S Jk_l entropy
Sijkl’sij mzw-l component of the elastic compliance tensor

T 4 temperature

Tc K Curie temperature

t/w ’ - thickness to width ratio



U Jm internal energy
-3
% Jm free energy
4] - phase
Vtt v represents the difference between maximum and

minimum of the interference pattern

szf v second~harmonic distortion

xo w . static displacement

X m dynamic displacement

Ax m small distance in the direction of the x-axis
(X,¥,.2) - refers to the three orthogonal axes
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Toelichting bij de in dit proefschrift opgencmen artikelen.

Hieronder volgt een nadere aanduiding van de bijdragen van medeauteurs
aan de in dit proefschrift opgenomen artikelen. Hiexmee wordt voldaan

aan art. 13 van het promotie-reglement.

1} Noise limitations of Michelson laser interferometers (hfdst. 2).
Dr. Ir. Th. Kwaaitaal heeft twee gedeelten uitgewerkt i) Het effect
van shotnoise op de gevoeligheid van de elektronisch gestabiliseerxde
interferometer en het effect van andere ruisbronnen op de gevoelig-
heid van Michelscn interferometers.
Ir. G.A. van der Pijll verrichtte in het kader van ziin afstudeer-

werk de meeste metingen die in dit artikel gepresenteerd ziijn.

2} Calculation and measurement of magnetostrictive constants of thin
layers (hfdst. 7).
Dr. Ir. Th, Xwaaitaal heeft het experiment met de biijbehorende computer
simulatie voorgesteld en heeft deze simulatie mede uitgevoerd.
Ing. W.M.M.M. van den Eijnden heeft de experimenten die in dit

artikel gepresenteerd worden uitgevoerd.
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werking met alle leden van deze groep. Op praktisch~technisch gebied
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lende onderdelen van de interferometer.
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flinke taakverlichting voor mij.
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het uittypen van het manuscript plus de tijdrovende toevoegingen.
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STELLINGEN
B.J. Luymes 17 december 1982

I. Bij de bestudering van de geieiding in ZnO varistors geeft men
vaak de stroom-spannings-karakteristiek weer op dubbellogaritmische
schaal (logx/xgiog va&). Het is beter dit te doen op enkellogarit-
mische schaal (log I}IO—V).
1] L.M. Levinson and H.R.Philipp, The phy-
sics of nmetal oxide varistors, J.Appl.
Phys., Vol.46, (1975), p.1332-1341.
2] K.Eda, Conduction mechanism of non-chmic
zincoxide ceramics, J.Appl.Phys., Vol.49,

(1978}, p. 2964~-2972,

II. Het verschil tussen de gemeten en geschatte elektrostrictie
coéfficiént van LiF is groot.*De ocorzaak van dit verschil moet gezocht
worden in het lonogeen-karakter van LiF.

*hfdst. 3 van dit proefschrift,

III. De grenzen van het meetbare zijn niet bereikt met de meetmethode
die in dit proefschrift beschreven is. Optische vermenigvuldiging van

de te meten verplaatsing geeft nieuwe mogeliijkheden.

IV. In het artikel van J.L.M.J. van Bree et.al. is de detectielimiet
van een lineaire verplaatsingsépnemer onvolledig gegeven, daar de
frequentie~afhankelijkheid van de limiet, t.g.Q. het skineffect in
ferromagnetische kernen, niet meegenomen is.

J.L.M.J. van Bree, J.A.Poulis and F.N.Hooge,

Barkhausen noise in differential transfor-



mers, Appl.Sci.Res., Vol. 30, (1975},

P.304-308.

V. Het verschil in de gemiddelde lichtintensiteit van de twee, reeds

geinterfereerd hebbende, laserbundels van een Michélson interferometeyx
kan als foutsignaal gebruikt worden om &én der interferometerspiegels
piezoelektrisch te positioneren op de gevoeligste plaats, voor kleine

verplaatsingen.

VI. Het stablilisatiesysteem van een Michelson interferometer is met
een kleine verandering ook brulkbaar in een capacitieve dilatometer.

1] hfdst. 2.van dit proefschrift.

2]} K.Uchino, S.Nishida and S.Nomura,

A highly-sensitive AC interferometric
dilatometer, Jap.J. Appl.Phys. Vol. 21,
(1982), p.596-600.

3] K.Uchino and L.E.Cross, A very high sensi-
tivety AC dilatometer for the direct
measurement of plezoelectric and electxo--
strictive constants, Ferroelectrics, Vol.

27, (1980), p.35-39,

VII. Experimentatoren geven verschillende waarden van de gravitatie-
constante, waarbij de foutengebieden om de opgegeven waarden, elkaar
éelfs niet overlappen. Er moet hier sprake zijn van een onbekend
effect.
G.T. Gillies, The Newtonian gravitational
constant: An index of measurements.

Rapport B.I,P.M.-82/9, uitgegeven door het



Bureau International des Poids et Measures,

Sévres, France,

VIII. Bij het publiceren over nauwkeurige gravitatieconstante - experi=-
menten is het noodzakelijk de tijdspanne te geven waarover de gemiddel=-
de trillingstijd van de torsieslinger bepaald is. Op deze manier is
het mogelijk de gemeten onzekerheid in de trillingstijd te vergelij-
ken met de thermische ruis van deze slinger,
1] ©.6. Luther and W.R. Towler, Redetermina-
tion of the Newtonian gravitational
constant G, Phys.Rev. Lett., Vol. 48,
(1982}, p.121-123.
2] H.H.J.van Dijk, J.A.Poulis and F.N.Hooge,
Noise in weighing, Appl. Sci. Res., Vol.

31, (1976), p. 445-453,

IX. De bewering dat Coulombkrachten de capaciteit van een geladen

condensator doen toenemen is in zijn algemeenheid onijuist.
K.Kpfmliller, Einflthrung in die theoretische
Elektrotechnik, 106e druk, Berliin: Springer

Verlag, 1973.

X. "De Utrechtse opleiding richt zich meer op de relatie tussen de
materialen en de fundamentele eigenschappen van de materie, terwiil

de Technische Hogescholen meer gericht zijn op de technische aspecten
van de productie™. ‘

Deze bewering, gedaan op blz. 129 van het ontwikkelingsplan 1983-1987
van de Rijks Universiteit Utrecht is niet geschikt als stelling, zelfs
niet als laatste.

de T.H. gidsen.



