

A systems engineering specification formalism

Citation for published version (APA):
Arends, N. W. A. (1996). A systems engineering specification formalism. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR461122

DOI:
10.6100/IR461122

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR461122
https://doi.org/10.6100/IR461122
https://research.tue.nl/en/publications/83568bab-1af7-45cd-a4d2-06ae051e9dab

N.,N.A. Arends

A Systems Engineering
Specification Formalism

Cover design: N.W.A. Arends.

Print: Wibro, Helmond.

ClP-DATA KONINKLIJKE BIDLIOTHEEK, DEN HAAG

Arends, Norbertus Wilhelmus Anthonius

A Systems Engineering Specification Formalism I
Norbertus Wilhelmus Anthonius Arends.
- Eindhoven: Eindhoven University of Technology
Thesis Technische Universiteit Eindhoven.
ISBN 90-386-0028-3
Subject headings: discrete continuous systems I systems
engineering I industrial systems.

The work in thesis has been carried out under the auspices of the
research school IPA (Institute for Programming and Algorithmics).

A Systems Engineering
Specification Formalism

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN

DE TECHNISCHE UNIVERSITEIT EINDHOVEN, OP GEZAG

VAN DE RECTOR MAGNIFICUS, PROF.DR. J.H. VAN LINT,

VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE

VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

MAANDAG 17 JUNI 1996 OM 16.00 UUR

DOOR

NORBERTUS WILHELMUS ANTHONIUS ARENDS

GEBOREN TE EINDHOVEN

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.E. Rooda

en

prof.dr. M. Rem

to my late uncle
Will Smulders

Preface

Many times, during the research period of this project, I have noticed some
confusion about my backgrounds as a mechanical engineer. The development
of a specification formalism is not something you would normally expect to be
carried out in the field of mechanical engineering. The required mathematics to
define a formalism lie beyond the scope of a mechanical engineer. A mathemat­
ical engineer, however, can not be expected to have the required knowledge of
industrial systems to design a specification formalism. The obvious solution is
to join forces.

Our cooperation with the Department of Mathematics and Computing Science at
Eindhoven University of Technology was, by all means, pleasing and rewarding.
Therefore, I would like to thank M. Rem for his support and refreshing views
and for his comments on this thesis. Also, I would like to thank J.E. Rooda
and my colleagues J.M. van de Mortel-Fronczak and D.A. van Beek for each
being a stimulant and a great resource of ideas. They were, together with
W.T.M. Alberts, G. Naumoski, G. Fabian, and P.L. Janson, members of the
'x-club'. Our weekly meetings provided that extra.

Furthermore, I would like to thank all people that have in some way contributed
to this work or have provided an enjoyable working environment. My special
thanks go to M.W.J. Gunter-Lousberg, for her coffee and amiable conversations,
H.W.A.M. van Rooij, for sharing his PC-related knowledge with me, G.F.W.J.
van de Kamp and E.M.M. Voorbraak for their contributions to Chapter 7, and
H.A. Preisig and A.A. van Steenhoven for their comments on this thesis and
taking part in the committee.

Finally, I want to thank Monique, for sharing her life with me.

vii

Vlll

Summary

The design process of an industrial system is a process of decision-making, where
each decision has its impact on the resulting system. To substantiate design
decisions, a formal specification is inevitable. In this research, we introduce the
formalism X as a means to specify the dynamic behaviour of industrial systems.
The dynamic behaviour is a key aspect in the design of a system.

The basic concepts of the formalism are derived from the process-interaction
approach in which a system is viewed as a collection of interacting processes,
operating concurrently. Each process models the behaviour of a system compo­
nent. Processes can be grouped into a system, where each system can act as a
process. It can be grouped with other processes and systems, thereby forming a
new system. This hierarchical decomposition of a system into subsystems allows
the formalism to be used for the specification of systems of arbitrary complexity.

The behaviour, described by a process, can be discrete, continuous, or a combi­
nation of discrete and continuous. In x, both discrete and continuous behaviours
are considered first class citizens. Neither of the two is subordinate to the other.
Moreover, it is possible to make a specification with only a continuous or a
discrete behaviour. The description of a discrete behaviour has the form of a
sequential program where changes in the state of a process are accomplished by
performing actions. The continuous behaviour is described by a set of differential
and algebraic equations.

The relations between processes are defined by channels. We distinguish between
discrete and continuous channels. Discrete channels are used for synchronisation
or communication. Both these applications are based on a synchronous interac­
tion mechanism. A continuous channel defines a relation between local variables
of different processes. All channels are one-to-one connections.

The language for the description of a discrete behaviour is derived from the
guarded command language, extended with an explicit notion of time. The lan­
guage provides constructs to specify nondeterministic choices between alterna­
tive actions, guarded by Boolean expressions. Furthermore, a guarded command
enables an orthogonal combination of different events, such as communication,
delay, and state-events.

ix

X

The interaction between a continuous and a discrete behaviour is described in a
process. Only two language constructs are needed to define these interactions:
state-events and guarded equations. A state-event is a discrete event that is
triggered by a Boolean expression becoming true. This expression depends on
the continuous state of a process. It defines the influence of the continuous be­
haviour on the discrete behaviour. The influence of the discrete behaviour on
the continuous behaviour is defined by a guarded equation. A guarded equa~
tion defines a choice between alternative sets of equations, guarded by Booledll
expressions that depend on the discrete state of a process.

The state of a process is defined by local variables in the process. Moreover, the
formalism does not allow the use of global variables. The formalism uses strong
typing for all data objects. Therefore, all variables and channels are declared
with a type, denoting the domain of possible values.

This dissertation deals with the definition of the syntax and semantics of the
formalism X· The application of the formalism is illustrated by examples of in­
dustrial systems, including their control systems. Furthermore, it gives a survey
of the design decisions that resulted in the presented formalism. This research
is meant to initiate the development of a calculus, dedicated to the analysis of
the behaviour of industrial systems.

Samenvatting

Het ontwerp-proces van industriele systemen is een proces van het nemen van
ontwerp-beslissingen, waarbij elke beslissing zijn invloed heeft op het resul­
terende ontwerp. Voor het beargumenteren van ontwerp-beslissingen is een
formele specificatie onontbeerlijk. Dit proefschrift presenteert het formalisme
x als een manier voor het beschrijven van het dynamische gedrag van indu­
striiHe systemen. Het dynamisch gedrag vormt een belangrijk aspect van een
systeem.

De basisconcepten van het formalisme zijn afgeleid van de proces-interactie
benadering waarin een systeem wordt beschouwd als een verzameling parallel
werkende interacterende processen. Elk proces modelleert een component van
het systeem. Processen kunnen worden gegroepeerd in een systeem, waarbij elk
systeem weer als een proces kan worden gezien. Het kan worden gegroepeerd
met andere processen en systemen teneinde een nieuw systeem vormend. Dit
hierachisch decomponeren van een systeem in subsystemen maakt het mogelijk
het formalisme te gebruiken voor de specificatie van een systeem van een wille­
keurige complexiteit.

Het gedrag, beschreven door een proces, is discreet, continu of een combinatie
van discreet en continu. In x worden beide soorten gedrag als even belangrijk
beschouwd. Geen van beide is ondergeschikt aan de ander. Het is mogelijk om
een specificatie op te stellen met uitsluitend processen met een discreet dan wei
een continu gedrag. De beschrijving van het discrete gedrag heeft de vorm van
een sequentieel programma waarbij veranderingen in de toestand van een proces
worden verkregen door het uitvoeren van akties. Het continue gedrag wordt
beschreven door een verzameling differentiaal en algebraische vergelijkingen.

De relaties tussen processen worden gedefinieerd door kanalen. Er wordt onder­
scheid gemaakt tussen discrete en continue kanalen. Discrete kanalen worden ge­
bruikt voor synchronisatie en communicatie. Beide toepassingen zijn gebaseerd
op een synchroon interactie-mechanisme. Een continu kanaal definieert een re­
latie tussen lokale variabelen van verschillende processen. Aile kanalen vormen
een een-op-een verbinding.

xi

xii

De taal voor het beschrijven van het discrete gedrag is afgeleid van de 'guarded
command language', uitgebreid met het begrip tijd. De taal biedt constructies
voor het specificeren van een nondeterminibtische keuze tussen alternatieve akties
elk voorzien van een Boolse expressie. Verder maakt een guarded command een
orthogonale combinatie van verschillende events mogelijk, zoals communicatie,
wachten en state-events.

De interacties tussen een continu en een discreet gedrag wordt beschreven in
een proces. Slechts twee taalelementen zijn nodig voor het beschrijven van deze
interacties: state-events en guarded equations. Een state-event is een discreet
event dat wordt veroorzaakt door het waar worden van een Boolse expressie.
Deze expressie hangt af van de continue toestand van een proces. Het definieert
de invloed van het continue gedrag op het discrete gedrag. De invloed van het
disc1ete gedrag op het continue gedrag wordt gedefinieerd door een guarded
equation. Een guarded equation definieert een keuze tussen een aantal verza­
melingen van vergelijkingen die elk zijn voorzien van een Boolse expressie die
afhangt van de discrete toestand van een proces.

De toestand van een proces word vastgelegd door lokale variabelen. Het forma­
lisme staat het gebruik van globale variabelen niet toe. Het formalisme gebruikt
sterk getypeerde data-objecten. Aile variabelen en kanalen worden daarom gede­
clareerd met een type welk het domein aanduidt.

Dit proefschrift handelt over de definitie van de syntaxis en semantiek. van het
formalisme x. De toepassing van het formalisme wordt geillustreerd met voor­
beelden van industriiHe sjstemen inclusief hun besturingssystemen. Verder geeft
het een overzicht van de ontwerp-beslissingen die hebben geresulteerd in het
gepresenteerde formalisme Dit onderzoek beoogd een aanzet te zijn voor de
ontwikkeling van een calculus, toegewijd aan de analyse van het gedrag van
industriele systemen.

Contents

Preface

Summary

Samenvatting (Summary in Dutch)

1 Introduction

1.1 Designing systems

1.2 A new formalism

1.3 Research objectives .

1.4 Overview ... " ...

2 Systems and Models

2.1 Systems

2.2 Models.

2.3 Modelling industrial systems

2.4 Summary

3 Specification Requirements

3.1 The bottle-filling system .

3.2 Modelling issues

3.3 Requirements for a specification formalism.

3.4 Summary

xiii

vii

ix

xi

1

1

2

3

4

5

5

9

12

16

19

19

21

27

29

xiv

4 The Formalism x 31

4.1 Basic concepts 31

4.2 Minimal language . 32

4.3 Keywords 41

4.4 Variables and types . 42

4.5 Functions 48

4.6 Parameters 53

4.7 Hierarchy 54

4.8 Stochastic behaviour 58

4.9 Summary 59

5 The Bottle-filling System 61

5.1 The system environment . 61

5.2 The system 64

5.3 The vessel system . 66

5.4 The filling system . 73

5.5 Bottle wrapping 76

5.6 Summary 76

6 Design Decisions 79

6.1 Basic concepts 79

6.2 Continuous channels and links . 80

6.3 Discrete channels . . 82

6.4 Connecting channels 84

6.5 Mixed behaviour 86

6.6 The language . . 86

6.7 Functions and procedures 89

7 The State-Transition Controller: A Case 91

7.1 The controlled system 93

7.2 The control system 97

7.3 Summary 105

XV

8 Conclusion 107

Bibliography 111

A The Syntax 117

A.1 Global declarations . 118

A.2 Functions 118

A.3 Processes 119

A.4 Systems 120

B Statistical Distributions 121

B.1 Discrete distributions . 121

B.2 Continuous distributions . 123

Index 127

Curriculum Vitae 131

xvi

Chapter 1

Introduction

There seems to be no limit to the demand for products to support the level of
prosperity in modern society. The demand for more diversity and larger amounts
ever increases. Also, the life-cycle of a product decreases as new technological
developments provide new innovative products. As a result of these changes in
the consumer's society, the production of these products becomes more complex
every day. The production is no longer artisan's work, but complex manufac­
turing systems must be used to attain the consumer's satisfaction.

1.1 Designing systems

Realisation of such complex systems incorporates the effort of experts in the
fields of systems engineering, chemistry, physics, mathematics, and many other
disciplines. In the design phase of an industrial system, the experts are work­
ing as a team in the project. Designing an industrial system is therefore not
only a technical problem but also an organisational one. To ensure that the
cooperation of the different disciplines will produce the desired results, a proper
specification of intermediate designs is essential. If this specification is a formal
one, ambiguity and misinterpretation can be avoided. Formal specifications also
enable designers to communicate more easily on their designs and can bring up
deficiencies in the design before they are implemented.

The design process of an industrial system can be defined as decision-making
concerning the object to be realised [Bra93]. Every decision has its repercussions
on the final design of the system and must, therefore, be made well-considered.
To help in substantiating a decision, an evaluation of the consequences of the dif­
ferent alternatives should be made. Many evaluation techniques exist to support
this decision-making process. Most of these techniques make use of a model of

1

2 Chapter 1. Introduction

the object to be designed in which relevant aspects of the object are represented.
A formal model enables a formal evaluation and thus leads to more substanti­
ated decisions. The introduction of the computer has increase the possibilities
to evaluate formal models. Now that computers become largely available at low
costs, these techniques are increasingly gaining the interest of designers.

Summarising, we can state that a formal specification is a valuable document in
the design or redesign phase of industrial systems. It can serve as a communica­
tion document for experts working on the design and it enables the evaluation of
intermediate designs. The evaluation possibilities of a formal specification can
help to substantiate the different decisions to be made. Analysis and simulation
techniques can evaluate 'what-if' scenarios and can thereby increase the confi­
dence in the resulting design. They can, to some extent, ensure that a design
meets the specifications of the system and they can shorten the design process.
Furthermore, a formal specification avoids misinterpretations during the reali­
sation phase of the system. Moreover, if the representation of the specification
is executable, it can be used in the implementation of the system.

1.2 A new formalism

In this dissertation, we propose a specification formalism for industrial systems.
We concentrate on the formal specification of the system's behaviour. The spec­
ification of the behaviour is a model of the system that specifies how the system
must behave. The behaviour of a system is one of the key aspects in the design
of a system. The introduction of a formal specification technique increases the
quality of the design and decreases the effort to create the design. Usually, mod­
elling techniques for the specification of a system behaviour distinguish between
continuous-time and discrete-event behaviour.

In a continuous-time approach, the system is described by a set of equations and
the state of the model changes continuously when time passes. Therefore not
only the time changes continuously, but also the model's state. The techniques
vary in the kind of equations that are allowed in a model and in the possibilities
to describe discontinuities in the otherwise continuous behaviour. Simulation
packages, supporting these techniques are often based on the standard formu­
lated by the CSSL committee [CSS67]. One of the drawbacks of this standard is
the restriction to ordinary differential equations. During the past decades, other
modelling techniques evolved, allowing differential and algebraic equations and
even partial differential equations.

A discrete-event specification of the behaviour of a system describes the abrupt
changes in the model's state that occur at fixed points in time. Here both the
state space and the time are discretised. A number of different approaches can
be recognised in the available techniques today [Nan81, Pol89, Tan94]. These

1.3. Research objectives

include event-scheduling, activity-scanning, Petri-nets [Pet62], and the process­
interaction approach. The use of discrete-event techniques is still not as wide­
spread as is the use of continuous-time modelling techniques. Since the intro­
duction of commercially available simulation packages in the early seventies,
the use of discrete-event techniques is slowly gaining acceptance by designers of
industrial systems.

The choice for a continuous or a discrete modelling technique becomes more
ambiguous when the systems to be modelled become more complex. For in­
stance, chemical processes in the process industry are usually modelled using a
continuous-time approach. If, however, the control system is to be included in
the tnodel, a discrete-event approach would be more suitable. For this reason,
many recent attempts have been made to combine the two approaches in one
modelling technique. The developments originated from both the continuous­
time and the discrete-event worlds and often consist of adapting an existing
technique from the other world of modelling techniques to fit into the technique
already used. The results, however, are not always satisfactory because of the
large differences in the two approaches. Most problems occur when parts of the
model, described by two techniques, interact with each other. Interfacing two
modelling techniques involves the addition of new constructs that often do not fit
into the concepts of either of the two modelling techniques that were combined.

1.3 Research objectives

From the previous section, we can conclude that there is a need for a theoret­
ical base or framework that enables smooth interactions between discrete and
continuous models. A possible approach for combining continuous and discrete
modelling techniques is to design a formalism and integrate the concepts for the
interactions between the two kinds of behaviours directly from the beginning.
This would avoid the problems mentioned earlier. It also allows the decision,
whether to model a certain behaviour as a continuous or as a discrete behaviour,
to be postponed to a later stage in the modelling process.

The objective of the research in this thesis is to develop a uniform specifica­
tion formalism for the modelling of the behaviour of industrial systems. With
uniform, we mean that the formalism must be capable of modelling both con­
tinuous and discrete behaviours. Furthermore, the formalism must be able to
specify both the primary and the control processes of a system. The evaluation
of a specification can be achieved by either applying analytical or numerical
evaluation techniques. Although evaluation techniques are not subject of this
research, the formalism must allow the application of such techniques to investi­
gate the system behaviour. As such, the formalism must be independent of any
evaluation technique.

4 Chapter 1. Introduction

1.4 Overview

This dissertation is organised as follows. In Chapter 2, first we briefly review
systems theory and give definitions for a system and a model. The life-cycle
of a system illustrates in which phases in this life-cycle of a system models are
used. As an example of an industrial system, Chapter 3 describes a bottle­
filling system. Both the primary and the control processes are defined. With
this example, the requirements for the specification of industrial systems are
investigated, resulting in the objectives for a new formalism. The new formalism
is then presented in Chapter 4. The syntax and semantics of the formalism are
defined and some examples of its use are given. With the new formalism, a model
of the bottle-filling system is set up in Chapter 5. This chapter is intended to
give a brief introduction to the use of the formalism. Chapter 6 deals with some
critical notes on the design of the formalism. As in any design process, many
compromises must be made. This chapter substantiates the most relevant design
decisions. The use cf the formalism is illustrated with a real-life example of an
industrial system in Chapter 7. The dissertation is completed in Chapter 8 with
some concluding remarks and suggestioD,S for future research.

Chapter 2

Systems and Models

Industrial systems become more complex due to the ever increasing demand for
more flexibility. As these systems exhibit an increasing complexity, so will the
process to design these systems become more complex. The design process is
a process of decision-making, where each decision has its impact on the overall
design of a system. Thus, each decision has to be made carefully and should be
evaluated to investigate its consequences. Models play an important role in the
design process of industrial systems. With the increasing complexity of systems,
they become an essential means to substantiate design decisions.

To attain the research objectives, mentioned in the previous chapter, we need a
suitable set of definitions of systems and models. In this chapter, we will briefly
review systems theory and define a vocabulary to be used in the chapters to
follow. We start by defining a system and in particular industrial systems. Next,
models are defined to investigate the behaviour of systems and some desirable
characteristics of model representations will be discussed. The use of models is
discussed in the context of the life-cycle of industrial systems. Finally, a brief
survey of the modelling process for industrial systems is presented.

2.1 Systems

In this section, we will review systems theory and present a set of definitions to
be used in the remainder of this thesis. Furthermore, we will concentrate on the
definition of industrial systems and will emphasise some characteristics that are
relevant for the modelling of these systems.

5

6 Chapter 2. Systems and Models

Systems theory

Many definitions of a system have been given in all kinds of scientific text books
and articles. Each scientific discipline uses its own (set of) definitions that suits
best for their purpose. Yet, the word system is not ambiguous. It is merely
the wide spread applicability of systems that caused these many definitions.
Moreover, because of the wide spread use of systems, it is hard to give a general
definition. Gaines has made an attempt in this direction with the following
definition [Gai79]:

"A system is what is distinguished as a system."

Although this definition may seem a trivial one, it indicates an essential char­
acteristic of a system: it has to be distinguished from the rest of the universe.
From this definition, it is clear that anything can be defined to be a system.
The creation of a system makes only sense if it serves certain objectives. This is
reflected by the definition of a system given in the Webster's dictionary [Web86]:

"A system is a complex unit of many, often diverse, parts subject to
a common plan or serving a common purpose." 1

By separating a part of the universe, the system boundaries are determined. The
elements contained in the system are considered to be part of the system because
of the existence of relationships between these elements which are relevant for
the system's objectives. Here, another characteristic of systems h~ been en­
countered: a system contains a collection of interrelated elements. Bertalanffy
defines a system as a set of elements standing in interrelation [Ber68]. A similar
definition is given by VanAken [Ake78]:

"A system is a set of elements with a set of relations between the
elements, where the relations have the property that all elements are
directly or indirectly related."

Together with the system's boundaries, also the relations between elements in­
side the system and other elements outside the system are defined. The latter
elements are referred to as the system's environment or surroundings. If there
are no relations with the environment, and thus the environment contains no
elements, the system is called a closed system. Otherwise the system is an open
system.

Because of the relations between the system's elements, the elements can be
considered to have some kind of ordering. This ordering is reflected by the
definition given in [Web90]:

1 Note that the terms 'complex' and 'many' are subjective and have no relevance to the
definition of a system. A system can also be a simple unit of a few parts.

2.1. Systems

"A system is an orderly, interconnected, complex arrangement of
parts." 2

In [Coh86], a system is said to have the following characteristics:

7

• Systems exhibit behaviour. Requirements for a system are largely formu­
lated in terms of the observable behaviour of a system. A system's behav­
iour is observable by the interactions it has with its environment.

• Systems have internal structure. The system's behaviour is the result of
the behaviour of its parts, which may themselves be systems, and of the
interrelationships among these parts.

A subset of the system's elements can again be distinguished as a system. In
this case we speak of a subsystem. This can also be applied to the elements of
each subsystem. This hierarchical ordering of elements is based on the relations
between the elements in the subsystems and thus is considered to be part of the
system's structure.

Summarising, we have found the following characteristics that many definitions
of a system have in common:

• A system is defined to serve certain objectives.

• A system is a separated part of the universe.

• A system is a collection of hierarchically ordered interrelated elements.

• A system can have relations with its environment.

• A system exhibits a behaviour.

Many related concepts to the definition of a system are mentioned in literature
[Ber68, Ake78, Coh86]. Often, the definitions of these concepts are similar and
interchangeable. A subset of these system theoretical concepts will be defined
here.

In the definitions of a system, the term element is mentioned frequently. An
element can be defined as the smallest part of a system that is considered to
be indivisible. Also the concept of relations or relationships is used in system
definitions. A relation denotes interdependence between elements. A subset of
the collection of elements in a system and all the relations between these elements
is called a subsystem. The collection of all relations is called the structure of the
system.

2 Again, the term 'complex' is subjective and has no relevance to the definition of a system.
(See also: 1 .)

8 Chapter 2. Systems and Models

Without defining a system explicitly, we have given the most frequently men­
tioned characteristics used in definitions of a system. These characteristics will
provide an adequate understanding of the concept system. Furthermore, we
have defined some related system theoretical concepts. Other concepts from the
field of systems theory can be defined with the concepts presented here. This
brief review of systems theory is considered to be sufficient for the remainder of
this dissertation.

Industrial systems

We will now concentrate on the definition of an industrial system. Industrial
systems can be distinguished by the incorporation of three subsystems. The
first subsystem, the primary system, involves the flov.r of material. In a manu­
facturing environment one can think of products and raw materials. Although
it may sound rather crude, also people can be considered as material flow, for
instance in the case of a hospital. In general, the material flow is all that is
subject to a transformation, carried out by the industrial system. Moreover,
this transformation of material is the primary objective of the industrial system.

The secondary system is associated with the flow of information. This informa­
tion can comprise orders for a factory, signals from a sensor, or sales reports for
the management team. The information flow controls the material flow. This
subsystem is therefore often referred to as the control system. Although infor­
mation can be transformed by the system, it is not part of the material flow as
it is not the primary objective of the system to transform this information.

The tertiary system or economical system incorporates the flow of values, com­
pensating the flow of material. The value flow is responsible for preserving the
system. In a sense, it can be seen as the 'energy' for the system. A value, in this
case, is seen in a wider context. It can be a monetary value or a compensation
in goods. Again, although the system may transform the value flow, this flow
is not part of the material flow. In [Roo83], the value flow has an accompany­
ing information flow, called the invoice flow. This information flow controls the
flow of values. In our discussion, however, this invoice flow is considered to be
included in the information flow of the secondary system.

The three subsystems mentioned above comprise an industrial system. This
matches the definition of a production system given by Brandts in [Bra93]. Ac­
cording to Brandts, an industrial system consists of a collection of products and
a production system. We will, however, leave an explicit definition of products
aside in our definition of an industrial system and consider the products included
in the material flow.

From the three subsystems, it is easily recognised that the relations with the
system's environment involve flows of material, information and values. An in­
dustrial system receives material, information, and values from its environment,

2.2. Models 9

transforms these flows and supplies them (in a transformed state) back to the
environment. Note that an industrial system is considered to be an open sys­
tem. Its primary objective is to transform material that is exchanged with its
environment. It thus has relations with its environment and is therefore an open
system.

Many examples of industrial systems can be found around us. Product manufac­
turing systems and distribution centres are commonly known examples. Also,
a refinery and a waste water treatment system are industrial systems. Even
a single machine, a person, or a hospital can equally well be considered as an
industrial system.

2.2 Models

To investigate the behaviour of an industrial system, we must study the input
and output flows of the system and the transformation of these flows within the
system. It is thereby desirable to suppress irrelevant aspects and to make an
abstract system, representing only the relevant aspects of the system that are
responsible for the transformation of input and output flows. Such an abstract
system is called a model.

In this section, we will first give a brief introduction to modelling theory. Then,
we will address some issues concerning models of industrial systems.

Modelling theory

Models are used to:

• think about the system and try to understand it,

• communicate with others about the system,

• perform experiments on.

The first application of models is common to all scientific and engineering re­
search. Together with the experimentation on models, it is a way of gathering
knowledge about a system. It enables us to structure the knowledge and deduct
the relations between causes and effects. The definition of science, given in
[Web90], illustrates the contribution that models have to science:

"Science is the knowledge acquired by careful observation, by deduc­
tion of the laws which govern changes and conditions, and by testing
these deductions by experiment."

10 Chapter 2. Systems and Models

Definitions of models are as diverse as definitions of systems. Minsky has given a
definition in which the scientific characteristics of models are expressed [Min65]:

"A model M for a system S and an experiment E is anything to
which E can be applied in order to answer questions about S."

From this definition, we can conclude that a model is a system. Furthermore, a
model is always related to a system and an experiment. The latter determines
what is represented in the model: it defines the model objectives. The model
objectives determine which aspects of the system are relevant, and should thus
be included in the model, and which aspects are to be left out. Without first
stating the objectives for a model, it is impossible to build a model.

Note that the validity of a model is not only determined by the system but also
by the experiment for which the model is build. A model is valid if it provides
the answers to the posed questions about a system. The answers can be attained
by performing an experiment on the model. Clearly, any model is valid for the
'null experiment', while no model is valid for all possible experime1 .. ts.

Summarising, we can define a model as an abst;ract system, represer.ting a subset
of the aspects of a real system. The relevancy of the aspects, represented by the
model, is determined by the objectives of the model. The objectives are derived
from the experiment that is applied to the model. An experiment is applied to
the model to gain knowledge about the system.

Model representation

Unlike distinguishing some part of the universe as a system, a model has to be
build in order to exist. Building a model means that a model has to be repre­
sented in some way. Simple models are often only represented in the engineer's
mind. Such model representations, called concP,ptual models, can be used to
think about a system but are difficult to share with others. Other model rep­
resentations can exist on paper, are coded in software, or are shaped in three
dimensions. These representations can be used in communication with others or
to perform experiments on. The kind of representation used for a model depends
on the application of the model and the environment in which the model is used.
We will now discuss some characteristics of model representations for industrial
systems.

Type of symbo~.s

A model is represented by symbols where each symbol has its meaning. The
set of symbols together with the rules of application of the symbols is called

2.2. Models 11

a modelling language. Depending on the kind of symbols, used in a language,
modelling languages fall into one of the following categories:

• iconic languages

• mathematical languages

Iconic languages use graphical symbols to express the aspects of a system. Exam­
ples of iconic models are construction drawings, electrical circuit diagrams and
sheet music. Iconic languages are widely appreciated in systems engineering
because of the power to express complex problems in simple abstract drawings.
Certain aspects of systems, such as the ordering of and relations between the
elements of a system, are more easily expressed in graphical symbols than with
an equivalent textual notation.

Mathematical languages use textual symbols that represent numbers, variables
or other entities to express relationships or quantities that satisfy particular
conditions. Examples of mathematical languages are differential algebra, tensor
algebra, and set theory. An advantage of mathematical models is that they can
be subject to calculations or symbolic manipulations. The latter are often used
to reduce the number of symbols in a model or to emphasise certain relations
between the model symbols.

Symbol sets

The applicability of a language depends on the possibilities to properly express
the desired aspects of a system that are needed for particular objectives of a
model. The language must be rich enough to express what needs to be expressed.
If, for instance, a language only provides symbols to represent boxes with their
sizes, it will be impossible to distinguish between boxes of different colours. In
this case the symbol set of the language does not fit to its application.

On the other hand, the language should not contain too many symbols. A rich
symbol set requires a substantial effort to learn the language and, because of the
limited use of modelling languages in everyday life, this would be impractical.
Natural languages are examples of rich symbol modelling languages and it is
clear that it takes much effort to learn such a language. Also, a rich symbol
set may introduce the possibility to express the same aspect in more than one
way. Moreover, if a language provides too many symbols, the danger of creating
ambiguous models increases. Again, the language is not appropriate for its
application area.

Another issue, concerning the language symbol set, is that the available set of
symbols for representing a model influences the way in which we perceive a
system. For example, the experts in the field of dressage have a much more

12 Chapter 2. Systems and Models

elaborate vocabulary for describing the perf:>rmance in a dressage test than
has the average spectator. The average spectator simply ignores some of the
subtleties of the movements of the horse and its rider because of the lack of
symbols to express them.

Finding the proper set of symbols for a certain purpose is an evolution process
in which the symbol set is constantly adapted to fit to the application for which
it is designed. An example of evolving languages can be found in the field of
computer science. Starting with assembly language, programming languages
evolved to higher order languages, capable of expressing algebraic calculations
and abstract data types. Compared with the assembly languages, the higher or­
der languages provide a symbol set that is more closely related to the perception
of the mathematically minded end-user. The language thus fits better to the
field of application. Furthermore, the increase in expressive power accompanies
a decrease in learning effort.

Structure

Industrial systems tend to be too complex for humans to perceive them as a
whole. A modelling language must, however, provide the means to represent a
system of arbitrary complexity. The resulting model must be manageable by
the human mind. To resolve this problem of complexity, the system can be
decomposed into smaller (sub)systems and thereby decrease the complexity of a
system.

However, the relations between the subsystems must still be clear to enable,
to some extent, the perception of the system as a whole. This implies that
a representation of a complex systen involves a hierarchy of abstraction levels
where the higher-levels hide some of the details of the lower-levels. The relations
between the different levels must however be preserved and must be visible in
the model. Furthermore, the language should provide some means to keep these
relations consistent.

The higher levels of abstraction often represent the structure of a system, where
the lower levels represent the (atomic) elements of a system. The structure of
a system is best represented in a graphical way and thus a modelling language
should provide iconic symbols for this level of abstraction. The elements de­
scribed in the lower levels of a model are best represented using mathematical
symbols. Consequently, a language for the representation of models of industrial
systems should contain both iconic and mathematical symbols.

2.3 Modelling industrial systems

In this section, we will describe the role of models in the life-cycle of industrial
systems. An emphasis is put on the design process of systems and the application

2.3. Modelling industrial systems 13

of models in this process. Finally, we present a method that can be used to create
models in the modelling process.

Life-cycle of industrial systems

nothing

Orientation phase

objectives

Specification phase

abstract system

Realisation phase

concrete system

Utilisation phase

obsolete system

Elimination phase

nothing

Figure 2.1: The life-cycle of an industrial system [Roo91].

An industrial system has a life-cycle in which five phases can be distinguished
[Roo91]. The phases are depicted in Figure 2.1. The life-cycle begins with noth­
ing. In the orientation phase, the objectives are defined for a system that does
not yet exist. These objectives are initiated by the need for the transformation
of materials, the task of the system to be designed. The orientation phase is
characterised by the awareness of this need.

After having defined the objectives, the system is designed in the specification
phase. In this specification phase, three subphases can be distinguished:

14 Chapter 2. Systems and Models

• The function determination phase.

• The process determination phase.

• The resource determination phase.

The result of the design or specification phase is an abstract system or model.
This abstract system is a specification th1.t defines what functions have to be
performed by the system, how these functions are performed and what resources
are required to perform the functions. A structured design method for industrial
systems can be found in [Bra93].

In the realisation phase, the system is built according to the specifications. The
result of this phase is a concrete system that serves the objectives, stated in the
orientation phase and that meets the specifications as set up in the specification
phase.

The concrete system is used in the utilisation phase to a point where either the
system does no longer perform accord~ng its objectives or to a point where the
objectives have changed. Either way, the system has become obsolete and the
utilisation phase has ended.

In the elimination phase, the obsolete system is eliminated. Optimally this
results in nothing. During the specification phase, it is the responsibility of
the designers to allow a safe elimination regarding economic and environmental
aspects.

It is obvious from the life-cycle of industrial systems that models are used during
the specification phase. Less obvious is the use of models during the realisation
phase and utilisation phase. Yet, also in these phases, models can help in under­
standing and communicating about the system. Even in the elimination phase,
we can benefit from the use of models. Nevertheless, we will concentrate on the
modelling of an industrial system in its specification phase.

The modelling process

In the specification phase, models are used to evaluate design decisions and to
help solving problems that arise during the specification of industrial systems.
A well-established method for evaluation and problem-solving is the simulation
of the dynamic behaviour of a system. It is not self-evident that modelling and
simulation is the only and best method of solving a problem. For now, however,
we will concentrate on this method. A number of steps are to be taken for a
simulation study to be successful.

Before building a model, we have to define the problem to be investigated. This
problem statemsnt is essential. A number of questions can be posed, concerning

2.3. Modelling industrial systems 15

the system, that have to be answered. An experiment is defined by which the
answers to the problem can be attained. From the experiment definition, the
objectives for the model can be derived. Knowing the objectives, we can start
the simulation study. This study can be subdivided into a number of steps that
are to be taken to allow a simulation study to be completed successfully. Rooda
[Roo91] proposes the following steps:

• system identification,

• system specification,

• data collection,

• model implementation,

• model verification,

• model validation,

• experimentation,

• output analysis.

In the first step, we will identify the system by separating it from its environ­
ment. The system identification determines the system boundaries and defines
the relations with its environment. The second step, the system specification,
involves the building of a model of the system. The model represents the relevant
aspects of the system for the given objectives. In the next step, data collection
results in a statistical representation of the relevant data for the model. This
statistical representation reduces the data to a manageable amount. After imple­
menting the model (for instance, by coding it in software), the implementation
is verified to operate correctly. In the model validation step, the consistency
between the behaviour of the model and the behaviour of the system is checked.
Finally, experiments with the model can be performed where-after the output
of the experiments can be analysed.

In this dissertation, we will focus on the first two steps, with emphasis on the
second step: system specification. This step can, again, be divided into a number
of substeps. In the following, we will address the steps to be taken in the
modelling process.

The first step in the modelling process is to identify the input and output quan­
tities that are relevant for the model, where the relevancy is determined by the
objectives. From these inputs and outputs of the system, we can identify ele­
ments in the environment that have relations with the system. These elements
will (partly) be included in the model, so that the model is a closed system. The
next step is to define the structure of the model. The elements of a model are

16 Chapter 2. Systems and Models

related to each other and these relations determine the ordering of the elements.
This ordering is a hierarchical ordering which results in the definition of sub­
systems in the model. The definition of the structure also defines the amount
of detail at various levels. Note that the amount of detail at the lowest level
depends on the objectives of the model.

The material, information, and values, flowing through the system, define the
relations between the system elements. These flows are represented by object
flows in the model. The next step in the modelling process is to identify the
different objects and to define these objects in terms of the language in which
the model is represented. This step is often referred to as defining the data
structures of a model. After defining the objects, the relations between the
model elements can be defined.

The final step in the modelling process is to complete the model with the de­
scription of the behaviour of the model elements. This behaviour involves the
transformation of the objects and preserving the flow of objects through the
model.

It is unrealistic to think that this process can be completed without iteration.
After each step, an evaluation step must take place that may result in repeating
previous steps and thereby optimising the model to a point where the model fits
to the desired objectives. Building a model is a design process and should be
treated as such. The choice for the steps given here is an arbitrary one, yet a
practicable one. It will be used in the chapters that present examples of models
of industrial systems.

2.4 Summary

The concepts of systems and models have been discussed in the previous sec­
tions. A review of systems theory has led to the definition of a system and of an
industrial system in particular. An industrial system has been defined to com­
prise of three subsystems. The primary system involves the flow of material. It
is recognised that the transformation of material is the primary objective of an
industrial system. The secondary system involves the flow of information wliich
controls the material flow. This second aspect system is identified as the control
system. The flow of values is responsible for the preservation of the industrial
system, and can be seen and the 'energy' for, the system. This value flow is
characteristic for the tertiary system.

An introduction to modelling theory illustrated the important role of models
in modern science. A definition of a model has been given and the relation
between models, systems, and experiments has been discussed. Some require­
ments for model representation have been summarised with the emphasis on
models of industrial systems. A model representation consists of symbols. A

2.4. Summary 17

modelling language has been defined as a combination of the set of symbols and
their semantics. Iconic and mathematical languages are distinguished. For the
representation of the model's structure, iconic languages are considered to be
preferable over mathematical languages. For the description of dynamic behav­
iour, a mathematical language is advised. Finding the proper symbol set of a
language for a particular field of application is a process of evolution. Adapting
the symbol set to fit to its application is considered to be essential in language
development.

The relation between models and industrial systems has been illustrated with the
life-cycle of a system. We have focused on the role of models in the specification
phase of a system. In this phase, models are used to support decision-making
and problem-solving. Simulation studies have been mentioned as a helpful tool
for the evaluation of design decisions. A method has been presented for the
modelling process in relation with a simulation study. As an introduction to
the definition of a formalism for the specification of industrial systems, we will
illustrate this method with an example of a bottle filling system in the next
chapter.

18 Chapter 2. Systems and Models

Chapter 3

Specification Requirements

The modelling process, as presented in the previous chapter, is a design process
that results in a model for a given system. A model can help to solve problems
concerning the system or it can be used to gain (more) knowledge of the system.
The information, represented in a model, is determined by the purpose of the
model. It is therefore essential to first state the objectives for a model before
starting the modelling process.

The question arises how to determine which aspects of a system should be repre­
sented in a model to satisfy the objectives of the model. Answering this question
can help us to find the requirements for a formalism in which models are repre­
sented. It is, however, not the subject of this dissertation to answer this question.
Moreover, finding the answer is all but a trivial matter. Yet, we can find out the
main characteristic aspects of modelling a system's behaviour without assert­
ing whether they satisfy given objectives or not. We can compare this problem
with designing a programming language. There, we can decide to define a set of
language constructs without knowing in advance what programs will be written
with the language.

We introduce a bottle-filling system as an example of an industrial system and
use this system to illustrate some issues that are encountered in the modelling
process. From these issues, we then formulate the requirements for our specifi­
cation formalism.

3.1 The bottle-filling system

In this section, we present an example of an industrial system: a bottle-filling
system [Mel86, Ove87]. Its purpose is to produce filled bottles, of two sizes, and

19

20 Chapter 3. Specification Requirements

to deliver them to customers. A customer places an order for the number of
bottles required. The bottles are then delivered according to this order. The
bottles are filled with a liquid having a certain acidity. The system consists of
two bottle-filling lines that operate concurrently. Both lines are fed by a single
vessel, containing the primary product to be bottled. Filled bottles are packed
before they are delivered to the customer. Figure 3.1 shows the vessel and one
of the bottle-filling lines.

control valve

primary product ----:;=::;--,
make-up acid -""""'~ vessel

Figure 3.1: The bottle-filling system.

The vessel

The vessel contains an amount of liquid that is kept between a minimum and a
maximum value. The maximum capacity of the vessel is about 600 liters and its
diameter is 50 em. Thus the maximum level in the vessel is about 76 em. If the
amount of liquid in the vessel drops below the minimum value, the vessel is filled
with a primary product of a predetermined acidity or pH value. The primary
product is supplied through an input valve. At the maximum level, the filling is
stopped. The product is unstable and changes its pH when it is exposed to air.
A make-up stream of acid allows for the necessary adjustment of the product
quality in the vessel before it is used to fill the bottles.

The control system of the vessel has two tasks. The first task is to keep the
liquid level between its minimum and maximum values by opening and closing
the input valve. This input valve has two states: completely open and completely
closed. The amount of liquid is measured by a sensor in the vessel. The second

3.2. Modeiiing issues 21

task is to maintain the pH value of the liquid within given tolerance limits. Due
to the unstahility of the product, this pH value changes over time and can be
adjusted by supplying a make-up acid to the vessel. The valve, through which
the acid is supplied, has three states: completely open, completely close, and an
intermediate state which we call 'dribble'.

The bottle-filling line

Both bottle-filling lines are identical, though different bottles are processed on
each line. Two sizes of bottles can be filled: small bottles with a volume of 1-litre
and large 5-litre bottles. Because both lines use the same vessel as the source
for the liquid, the composition of the liquid used by the two lines is identical at
any point in time.

Each line draws bottles from a bottle supply unit that releases bottles on request.
The empty bottles slide down a chute from the supply unit to the position where
they are filled. The arrival of a new bottle is detected by a sensor. After a bottle
has been filled, a label is attached to the bottle that shows the actual pH and
volume contained in the bottle. Finally, the bottle is removed from the bottling
line and is transported to a packaging machine. Each line has its own control
system that controls the filling of bottles on that line. All signals (bottle release
and arrival, bottle level sensor, etc.) are handled by the corresponding control
system.

Customer orders

The orders received from a customer are split into two separate orders, one for
each bottling line. After all bottles have been filled for a given order, the bottles
are wrapped and delivered to the customer. There is one packaging machine that
wraps up the filled bottles of both lines. The bottles for a single customer order
are collected and stacked together on a pallet. Note, that bottles should only
be filled if the pH of the product in the vessel is within its tolerance limits. H
this is not the case, the filling process is suspended and the pH is first adjusted.
Then the filling of the bottles can be resumed.

3.2 Modelling issues

Before setting up a model of the bottle-filling system, the objectives of the model
must be defined. Some possible objectives for a model are:

• Determine the number of orders that can be completed in a certain time
interval.

22 Chapter 3. Specification Requirements

• Determine the delivery time of an order. This is the time between the
placement of an order and the time of delivery of the bottles.

• Determine the through-put time of an order. This is the time between the
start of an order and the time at which the order is completed.

• Determine the degree of capacity utilisation of a bottle-filling line. The
subsystem with the highest degree is possibly the bottleneck of the system.

• Try out different control strategies. What happens with the above men­
tioned values if another control strategy is used?

• Try out different configurations of the system. For exampl€, what happens
if not only one vessel is used, but two (one for each line) instead?

• Investigate the behaviour of the system. Try to increase the knowledge
about the processes that take place in the system.

In the previous chapter, we have seen that defining an experiment and stating
the objectives for a model is an essential step in a modelling study. Different
objectives lead to different models, since the objectives determ~ne what is rt:p­
resented in the model. Without restricting ourselves to one of the mentioned
objectives, we address some general modelling issues that are to be considered
when modelling industrial systems. We do not intend to be complete, but merely
try to illustrate what aspects are relevant when making a model to investigate
the behaviour of a system.

System identification

The first step in the modelling process is to identify the system. In this step,
the system boundaries are determined and the relations between the system and
its environment are defined. In the case of the bottle-filling system, the system
can be identified to contain the vessel, the two filling lines and the packaging
machine. Furthermore, the system contains the necessary control systems. The
system's environment contains the customers and the suppliers of the raw ma­
terials: empty bottles, pallets, liquid, and so on. The bottle-filling system has
now been identified as an open sy8tem; it has relations with its environment.

But, did we really identify an open system? Clf".arly, the bottle-filling system
is an open system, but we also distinguished the customers and suppliers of
the system. Furthermore, we did not define relations between these customers
or suppliers with other entities in the universe. In fact, we identified a closed
system, containing the bottle-filling system and some relevant aspects from its
environment. Irrelevant aspects, such as relations of customers to other entities
are left out. These relations are irrelevant according to the given objectives for
the model.

3.2. Modelling issues 23

To investigate the behaviour of an industrial system, we study the response of the
system to the different stimuli from its environment. To be able to define these
stimuli, we must include the entities that provide the inputs for the system in
the model. Also, the system may influence its environment. Thus, the entities,
affected by the system should also be included in the model. The resulting
model represents a closed system, comprising an (open) industrial system and
the relevant entities in its surroundings.

System structure

The identified system is considered to consist of three subsystems: the primary,
secondary, and tertiary system. The structure of the system is determined by
these three subsystems and is essentially a hierarchical structure. Two hierar­
chies can be distinguished in the specification of a system, the model hierarchy
and the system hierarchy.

Model hierarchy

The model hierarchy defines the structure of the model. In this hierarchy, a
system is composed of elements: system components or subsystems. A subsys­
tem is again composed of subsystems. Each level in this hierarchy represents a
certain level of abstraction.

The level of abstraction determines how much detail is described by a model
and it depends on the stated objectives for the model. So far, we have described
how bottles are being filled in an operational fashion. We did not describe how
sensors function or how the packaging machine is constructed. Also, we did not
describe whether the customer orders are handled by humans or by an automated
information system. We described the bottle-filling system at a certain level of
abstraction which we feel is consistent with the stated objectives. We are, for
instance, not interested in how a sensor works but it is sufficient to recognise
that a signal is available when a sensor becomes activated.

The level of abstraction is also determined by the existence of parallelism. If
two components of a system operate concurrently we prefer to specify these
components separately and define their interactions with relations between the
components.

The hierarchical ordering of subsystems enables us to gain a clear overview of
how the system is constructed. Without falling into details, the model hierarchy
offers an abstract representation of the structure of a system at various levels.
When we speak of the bottle-filling system, comprising a vessel, two filling lines
and a packaging machine, we are not interested in the details of the filling lines.
The model hierarchy hides the details of lower-level specifications.

24 Chapter 3. Specification Requirements

Together with the model hierarchy, also modularity is achieved. This modularity
enables the specification of a system component without worrying about other
components that have relations with this component. When, for instance, we
set up a specification of a filling line, we do not need to have a detailed insight
in the behaviour of the vessel. Only the relations with the vessel are of interest.

Modularity also enables the parameterisation of a model. For example, the two
filling lines are identical except for the size of bottles that are being filled on
a line. A modular model provides the possibility to make one model for both
filling lines and adapt each line to its specific characteristics by supplying the
proper parameters (the bottle size, for instance).

Systenn hierarchy

An industrial system is characterised by the transformation of material, infor­
mation, and compensating values. These three flows through the system are
reflected by the architecture of the system. We can distinguish three kinds of el­
ements in a system, where each kind is responsible for the transformation of one
of the three flows. Rooda [Roo83] defines an architecture for industrial systems
in which these three flows are clearly visible (Fig 3.2). The main flows through
a system are the material and value flows. The material flow is determined by
the main objective for the system, the value flow assures the preservation of the
material flow, and thus the entire system. The information flow can be divided
into several subflows:

• Order. A request for products, semi-products, or raw material.

• Material tag. Information accompanying the delivered products.

• Invoice. Request for compensating values (money).

• Value tag. Information accompanying the delivered compensating values.

The architecture of a system determines the system hierarchy. In this hierarchy
the system components, responsible for the transformation of information flows
through the system, form the control systems. The material and value trans­
formation processes are the controlled systems. The relation between these two
categories of transformation processes is like the relation between an employer
and an employee; a boss-servant relation. This type of relations is characteristic
for the system hierarchy.

The system hierarchy and model hierarchy are independent of each other. A
system hierarchical relation can be found at several levels in the model hierarchy,
as can be seen in for instance job-shop manufacturing environments. Also, a
model hierarchy can be used in the specification of any system. For instance,

3.2. Modelling issues 25

value value

value tag value tag

invoice invoice
supplier consumer

side side
order order

material tag material tag

material material

Figure 3.2: The system's architecture model [Roo83].

a control system can be decomposed in different (concurrent) control tasks.
Furthermore, the controlled system can, in its turn, be composed of different
parts.

Data structure

The input and output of an industrial system consist of the material, informa­
tion, and compensating value flows. In our example system, we can identify
the material flow to contain bottles, pallets, liquid, etc. The information flow
consists of customer orders and probably delivery information, accompanying
the delivered pallets. The economical system is not considered and is therefore
missing in the model.

A specification of the bottle-filling system must include the specification of the
various material and information objects. These can be represented by data
structures that contain the relevant information about the object they repre­
sent. The data objects in a specification are hierarchically ordered. For instance
the object pallet contains boxes, and these boxes contain bottles. This hierar-

26 Chapter 3. Specification Requirements

chy, called the data hierarchy, must be made clear in the specification of these
elements.

Behaviour

The behaviour of a system is described by the concurrent behaviours of the
system components. A component can have a discrete behaviour, a continuous
behaviour, or both. Whether a behaviour is modelled as a discrete or a continu­
ous behaviour depends on the desired abstraction or granularity for a component
and on the kind of material, information, or compensating value that has to be
transformed.

In the bottle-filling system, the vessel's main function is to store and mix the
incoming liquids. The material flow for this component is a continuous flow (of
liquids) and its behaviour is therefore best described as a continuous behaviour.
The packaging machine, however, receives bottles and 'transforms' them into
boxes. Both input and output of this component are discrete objects. There­
fore, the behaviour of the packaging machine is considered to have a discrete
behaviour. A mixed continuous and discrete behaviour can be found in the fill­
ing lines, where liquid is coming in as a continuous flow, and the bottles that
enter and leave (empty and filled respectively) are discrete objects. A spec­
ification of a filling line, therefore, exhibits both a continuous and a discrete
behaviour.

The above mentioned examples of component behaviours are determined by
looking at the type of input and output of the component. However, the choice
for a certain behaviour can also depend on the granularity used to describe the
component. For example, the opening and closing of a valve can be modelled
as to occur at a certain point in time, but it can also be modelled as a gradual
change of the aperture of the valve. In the first case, the behaviour is discrete,
in the latter case it is continuous.

The kind of relations between system components is determined by the kind of
behaviours of the components. If two components have a discrete behaviour, it
is obvious that a relation between these components has discrete characteristics.
A similar reasoning can be applied to a relation between continuous behaviours.
Less obvious is a relation between a continuous and a discrete behaviour. Such
relations are known as discontinuities and state-events. A discontinuity is a
discrete change in an otherwise continuous behaviour. A state-event is an event
in the discrete behaviour of a system, induced by the continuous behaviour of
the system.

A specification of a system's behaviour is an idealised representation of the
actual or required behaviour of a system. The actual behaviour is normally not a
deterministic but a stochastic behaviour. For example, machines can fail, bottles

3.3. Requirements for a specification formalism 27

can break, and the number of bottles ordered by a customer fluctuates. This
stochastic behaviour is the cause of many difficulties in analysing a behaviour
of a system. A specification, unable to describe stochastic behaviours, would be
highly impracticable, if not worthless.

3.3 Requirements for a specification formalism

In the previous sections, we have illustrated some modelling issues using an
example of a bottle-filling system. In this section we set-up the requirements
for a specification formalism that enables the creation of specifications with
consideration of the mentioned aspects. The requirements can be categorised
as:

• general requirements,

• domain-specific requirements,

• implementation requirements.

General requirements

The general requirements consider the language for the representation of models.
Some aspects of model representation have been discussed in Chapter 2. These
aspects can be summarised by:

• Type of symbols. The language symbols can be iconic or mathematical.

• Symbol set. The choice for a symbol set influences the expressive power of
the language, the effort needed to learn the language, and the perception
we develop when using the language.

• Structure. The language must enable the specification of hierarchical struc­
tures like the model, system, and data hierarchies.

Although the hierarchical structures, mentioned in the previous section, are
possibly best described using iconic symbols, we prefer the use of mathematical
symbols only. Mathematical symbols have the advantage of leading to more
compact and unambiguous specifications than do iconic symbols. We do, how­
ever, allow the use of iconic symbols in addition to mathematical symbols for
illustration purposes, especially for representing the model structure. A trans­
lation from mathematical symbols to iconic symbols is easier and more accurate
than a translation in the opposite direction.

28 Chapter 3. Specification Requirements

Another issue that has to be concerned, regarding the choice for mathematical
or iconic symbols, is the acceptance of the formalism. There are many disciplines
involved in the design process of industrial systems, where each discipline has
its own established iconic languages. If the formalism is to be used in as many
disciplines as possible, it should allow the use of these existing iconic representa­
tion methods. We believe that a mathematical language will experience a higher
level of acceptance than an iconic language. Most systems en~ineers are familiar
with mathematics and are expected to have little difficulty in learning a new set
of mathematical symbols. Replacing an established iconic language with a new
one, however, will encounter considerable resistance.

Finally, although it may seem of minor importance, mathematical symbols are
easier to produce using today's word processors than iconic symbols, which would
require more dedicated tools.

The symbols of a language represent the concepts that can be expressed by the
language. A concept (and its representational symbol) is called primitive if the
concept cannot be expressed using other symbols of the language. We strive fur
a minimal number of primitives where the primitives form an orthogonal set of
concepts. All primitives are essential language constructs and should together
cover the domain of application of the formalism.

Additional (non-primitive) symbols can be defined to increase the expressive
power of the language. Such symbols are often referred to as 'syntactic sugar'.
The definition of such symbols should, however, be well considered to avoid
proliferation. The latter would decrease the acceptance and thus the use of
the formalism because of the increasing learning effort to get familiar with the
additional symbols.

Domain-specific requirements

The domain-specific requirements focus on the set of concepts that can be ex­
pressed by the formalism. A number of these concepts have been mentioned in
the previous section. We will now give a summary of these concepts in the form
of requirements for the formalism.

The structure of a system and the objects that exist in it must be reflected in
the system's specification. Both system and data structures are essentially hi­
erarchical structures. Thus, the specification formalism must provide language
constructs for a hierarchical decomposition of the system and the objects con­
tained in it.

The decomposition of a system leads to a (hierarchically ordered) collection
of system components. These components operate concurrently and together
they determine the behaviour of the system. The specification of this concur­
rent behaviour of system components demands a concept of parallelism in the

3.4. Summary 29

formalism. We refrain from defining parallelism within a single component.
Such parallelism can be modelled by further decomposition in (sub)components.
Thus, the formalism should provide a parallel composition of system components
where each component does not contain any parallelism.

Modularity allows a piece-wise development of specifications. In setting up a
specification of a subsystem, only the relations with other subsystems have to
be considered. Furthermore, a module can be made generic with the use of
parameters. These generic specifications tend to shorten a modelling process by
the re-use of existing specifications. Summarising, we require the formalism to
enable the definition of parameterised specifications in a modular way.

Implementation specific requirements

This research focuses on the development of a formalism and not on possible
assisting software tools. Yet, we take these future developments into account by
stating some requirements that should contribute to the implementation of such
tools. The most important (and most obvious) requirement is the definition
of the operational semantics of the formalism. The semantics may serve as
an operational specification for a simulation engine that executes specifications
set up by the formalism. Recent developments on this subject can be found
in [Mor95b].

A less important requirement deals with the implementation of data structures.
Most programming languages use a concept of strong typing that allows a syn­
tax and type check before compilation or execution is started. Even if an imple­
mentation does not require strong typing, we still require strong typing for the
formalism. This provides a means to check the consistency of models.

3.4 Summary

The bottle-filling system is presented as an example of an industrial system.
Some modelling issues are discussed using this example. The definition of the
objectives for a model are considered to be essential when building a model. The
modelling process consists of a number of phases. In the system identification
phase, the system and its environment are determined as well as the interactions
between them.

Two hierarchical structures are recognised: the model hierarchy and the system
hierarchy. The model hierarchy determines the abstraction levels in the model.
The system hierarchy involves the relationships between control systems and
controlled systems. The architecture model is presented to clarify these rela­
tionships. The third hierarchy that can be distinguished is the hierarchy of the

30 Chapter 3. Specification Requirements

data structures in a model. The data structures represent the various objects
that comprise the three flows of material, information, and compensating values.
The last step in the modelling process is the specification of the behaviours of
the system components.

From the discussed modelling issues, the requirements for a specification formal­
ism are derived. The general requirements concern the specification language.
A language is defined by its symbol set and their associated semantics. The
domain-specific requirements involve the choice for certain concepts that the
formalism must enable to represent. Finally, some requirements are presented
that may contribute to the implementation of a supporting software tool for the
formalism.

Chapter 4

The Formalism x

In this chapter, we introduce the formalism x for the specification of (industrial)
systems. The formalism offers a language in which the behaviour of systems can
be described. The language provides constructs according to the requirements
mentioned in the previous chapter. We define a minimal language that forms
the basis of our formalism x. Other language constructs are defined using these
primitive language constructs. The first section presents some basic concepts of
the formalism, followed by the definition of the minimal language. The remaining
sections describe additional language constructs that, together, result in the
definition of the formalism x.
In this chapter, we restrict the definition of the formalism to an informal de­
scription of the syntax and semantics of the language. We refer to Appendix A
for a formal definition of the syntax of X.

4.1 Basic concepts

The approach to the modelling of systems with the formalism x is derived from
the process-interaction approach [Roo82b, Ove87] and real-time concurrent pro­
gramming [Bur93]. In our approach, as in both mentioned approaches, a system
is considered to consist of a set of processes. Each process models a system
component and the processes operate concurrently. Although this approach was
originally developed in the field of discrete-event modelling, we will use it as the
basis of our formalism x, to specify both the discrete and continuous behaviours
of a system.

The relations between the processes are modelled by fixed channels that connect
the processes. Different kinds of channels are distinguished for discrete and
continuous relations. All channels are one-to-one connections between processes.

31

32 Chapter 4. The Formalism x

A hierarchical structure is achieved by grouping processes into an entity called
a system. Such a system can act as a process. It can be combined with other
processes and systems to form a new system. The resulting top-level system
forms a specification of the modelled system. Although, here a bottom-up ap­
proach has been used to illustrate the relationships between processes and sys­
tems in a specification, the formalism does not prescribe any approach for the
modelling of systems. It allows for both a top-down and bottom-up approach
as well as for a centre-out approach or for any combination of these.

A specification forms a description of the behaviour of a system. The state
of the system is determined by the states of the processes that comprise the
system. This state changes when time passes. The state of a process is recorded
in process variables. All variables in a specification are local variables, defined
in processes. Global variables do not exist.

The behavioural description of a process can be discrete or continuous or a
combination of the two. The description of a discrete behaviour has the form of
a sequential program where changes in the state of a process are accomplished
by performing actions. The continuous behaviour of a process is defined by a set
of differential and algebraic equations, expressed in the process' state variables.

To visualise the structure of a model, a graphical representation can be used.
Here, a process (or system) is represented by a circle with the process name
centred in this circle. A channel is visualised by a (curved) line between the
processes that are connected by the channel. The line can be supplied with
an arrow head or with one or two open dots to indicate the type of channel.
Somewhere along the line, the channel's name can be given. The graphical
representation is not an essential part of the formalism but it is a helpful means
in structuring system specifications.

4.2 Minimallanguage

The minimal language presented here forms the basis for the formalism X· It
is the minimal subset of X by which systems can be specified. Based on this
minimal language, the formalism x is described in the sections that follow. The
syntax used to define the minimal language is a simplified version of the syntax
of X·

In the sequel, we use the following identifiers to denote variables, channels and
other entities that occur in the definition of the formalism:

19 E

T E
i,j,k,m,n,N E

V (domain of values)

7 (time), 7 ~ V

N (natural numbers), N ~ V

4.2. Minimallanguage 33

c,cl,···,Cn E C (channel names)

X, X1, ... ,Xn E X (discrete variables)

u,ut, ... ,un E U (continuous variables)

u1 ,u~, ... ,u~ E U' (derivative variables)

b,b1, ... , bn E B (Boolean values)

We use the following conventions in the definition of our minimal language.
These conventions do not hold for the formalism X·

• Although all variables are local, we use unique global identifiers for the
variables of processes. No two processes, however, may refer to the same
variable.

• Channels are defined globally and if two processes refer to a channel iden­
tifier c E C they refer to the same channel.

Systems and processes

The formalism is based on the parallel composition of sequential processes. Each
process specifies the behaviour of a system component. A system is defined with:

y ![P1 II · · · II Pn]I

where P 1 , ... , Pn are the processes of the system. A process can have two kinds
of behaviour: discrete and continuous. We formally define a process as:

p I[E '!' s]I

where E denotes the continuous behaviour of the process and consists of a set
of differential and algebraic equations. S is a sequential program that describes
the discrete behaviour.

Note that in our minimal language, a model of a system consists of a single
system. All system components are modelled by the processes of this system.
Thus, the minimal language does not provide hierarchical modelling.

Variables and values

The description of a process' behaviour forms a formal definition of how the state
of a process changes in time. The state of a process is stored in the process'
memory. This memory is constructed with variables. Because of the differences
between a discrete and a continuous behaviour, different variables must be used

34 Chapter 4. The Formalism X

to memorise the state of a process. In a discrete behaviour, the process' state
changes abruptly at certain points in time. Therefore, the values of variables will
change abruptly too. A continuous behaviour, however, defines a continuously
changing process state. To record these state changes, the values of variables
must be able to change continuously. We therefore distinguish between discrete
and continuous variables.

In our minimal language, discrete variables can have numerical values only, and
not, for instance, strings or characters. In the sequel, we use the identifiers
x, x 1 , ••• , Xn E X to denote discrete variables. Since a continuous variable can
be used in differential equations, it must also be able to keep track of the value of
at least its first time derivative. Furthermore, continuous variables are restricted
to have a numerical value. With the identifiers u, u1 , ••• , ttn E U we denote
continuous variables and the identifiers u', u~, ... , u~ E U' represent their first
time derivatives. For continuous variables and their first time derivatives we
require:

du
u E U ¢:> u' E U' 1\ u' = -

d7

We introduce a special variable 7 that represents the process' time. It has a
value 7 E T, where T = { 7 E IR I 7 ;?; 0 } is a dense time domain.

The possible numerical values of a variable (either discrete or continuous) are
given by the set V, where Vis the domain of all (numerical) values. Furthermore,
we define T ~ V to allow calculations in the time domain.

Expressions

In both continuous and discrete behaviour specifications we use expressions to
describe operations on variables and values. We define the following expressions
for our minimal language:

e
b

{) I x I u I u' I e1 + ez I e1 ez I e1 x ez
e1 = e2 I e1 < e2 I b1 V bz I • b

where e, e1, ... , en den-:>te numerical expressions and b, b1, ... , bn E B denote
Boolean expressions. Furthermore,{) E V.

Henceforth, we use the following abbreviations for expressions:

= 0 =0
• true

= •(• b1 V • bz)

where = denotes syntactic equivalence.

4.2. Minimallanguage 35

Continuous behaviour and relations

The continuous behaviour of a process is described by a set of equations. An
equation has the general form:

where e1 and e2 are expressions as described earlier. If a process contains more
than one equation, the equations are separated by commas:

Q

The continuous behaviour of a process is formally defined as:

E € I El' E2 I Q I H I L

where Hand L denote guarded equations and variable links respectively. Both
language constructs are described later. Furthermore, € denotes an empty equa­
tion set with:

£, E =: E, € =: E

We allow the following abbreviation for processes that have no continuous be­
haviour:

I[€'1'SJI=I[S]I

Guarded equations

Sometimes, the set of equations for a process is not fixed, but depends on the
values of discrete or continuous variables. For example, a stationary liquid flow
through a pipe is a laminar flow if Reynolds' Constant has a value Re ~ 2320.
Otherwise the flow is a turbulent flow. In these two cases, the behaviour of the
liquid flow is described by two totally different sets of equations. Which set
must be used depends on the value of Re, and this value, in its turn, depends
on the values of the variables representing the flow. For this kind of situations
we introduce the language construct of guarded equations.

A guarded equation is an equation (or a set of equations) that takes part in the
behaviour description of a process if (and only if) a certain condition is fulfilled.
The condition is represented by a Boolean expression. Formally, we define a
guarded equation as:

36 Chapter 4. The Formalism X

For the guards in a guarded equation, we demand that at least one guard is
open:

b1 V ... V bn = true

If more than one guard is open, one will be chosen non-deterministically. In this
case we require, however, that the behaviour is the same for all alternatives with
an open guard.

As an example, the stationary flow through a pipe can be described by a guarded
equation of the form:

[Re < 2320 -t Q1
0 •Re < 2320 -t Q2
]

where Q1 is the set of equations describing the stationary laminar flow and Q2

describes the turbulent flow through the pipe.

The construct of the guarded equation is derived from guarded commands, in­
troduced by E.W. Dijkstra in [Dij74]. The guarded commands are also used in
x in the discrete behaviour of processes (see Section 4.2, Page 40).

Variable linking

A continuous relation between two processes is a relation between the states of
the two processes. Or, more specific, a relation between the continuous (local)
variables of the two processes. To define such a 'relation, the two variables are
linked to a continuous channeL This channel then defines that the variables
represent the same physical quantity and are said to be equal to each other.

We distinguish two kinds of physical quantities: vector and scalar quantities. A
vector quantity has an associated direction. Examples of vector quantities are
mass flow, force, and speed. Scalar quantities, like pressure and temperature,
have no direction. A possible direction of a quantity is defined by the channel
to which a variable, representing this quantity, is linked. Thus, we have chan­
nels with a direction (for vector quantities) and without a direction (for scalar
quantities). For more details on the semantics of linking variables to channels,
we refer to Section 6.2.

Linking a continuous variable u E U to a channel c E C is formally defined with:

L ct -o u I cj. -o u I ct -o u

4.2. Minimal language 37

The expression c t --<> u defines that the variable u is linked to channel c. Here,
the channel c does not define a direction, which is denoted by the symbol t.
Thus, the variable u represents a scalar quantity. The expressions c.!---<> u and
c t --<> u define that the variable u is linked to an incoming (c..!.) and an outgoing
(c t) channel respectively. Linking a variable to au incoming channel means that,
if the value of the variable is positive, the vector quantity enters the process.

As au illustration of the use of variable linking, consider the following system S
in which a liquid flows from a vessel A to a vessel B:

S= I[AIIB]I

A= I[ct--<> fPt, V{ =-~PI I SA :11

B = I[c.!- -o ipz, v; = ipz I SB]I

where 1p1 E U represents the outgoing flow of vessel A and 1p2 E U represents
the incoming flow of vessel B. Both variables represent the same flow. To define
this relation between IPl and 1p2 , both variables are linked to channel c. The
relation between the variables 1P1 and ipz, defined by the channel c, is 1P1 = ip2.

The current contents of the vessels are represented by V1 E U and V2 E U
respectively. Observe that this implies that V{ E U' and v; E U' and thus:

V' _ dV1
1 - d'T and V' 2

The system can be represented graphically as:

The graphical representation of the continuous channel can be seen as an arrow,
except that the arrow head is replaced by au open dot. The direction of this
'arrow' indicates the direction of the channel. In our example, a positive value of
the variables IPl and 1p2 means that the liquid flows from A to B. For relations
involving a quantity without a direction, an open dot is placed at each end of
the channel.

Discrete behaviour and relations

The discrete behaviour of a process is described by a sequential program. The
statements that comprise such a program are defined by:

38 Chapter 4. The Formalism x

8

The statement c; denotes the empty statement, with:

c:;8 8;c:=.8

Execution of the empty statement terminates immediately without influencing
the state of the process. In analogy with the absence of a continuous behaviour,
we allow the following abbreviation for processes without a discrete behaviour:

I[E'I'c:JI=I[EJI

Furthermore, in the sequel, we also use the keyword skip to denote the empty
statement:

c; = skip

The statement x := e denotes an assignment statement that changes the value
of a variable x to the value of the expression e. Although we have used x E X
to define the assignment statement, both discrete and continuous variables are
allowed as the destination for an assignment. Thus, also u := e is a valid
statement. FUrthermore, execution of an assignment statement takes no time,
i.e. the value of T does not change.

The sequential composition of statements is defined by S1 ; 82, which means
that statement 82 is executed after the execution of statement 81 has been
terminated.

The statements C and G (with variant *G) denote event statements and guarded
commands respectively. These statements are described in the following sections.

Event statements

The event statements comprise synchronisation, communication, time-passing,
and state-events. Formally, these statements are defined by:

C c~ I c?x I c!e I Lle I V'b

We introduce the name interaction to denote a communication or synchronisa­
tion statement.

4.2. Minimal language 39

Synchronisation A synchronisation action is performed on a channel c by
execution of the statement c ~. If two processes perform a synchronisation action
on the same channel, but at different times, the discrete behaviour of the process
that first started the synchronisation statement is suspended until the other
process performs its synchronisation action. If both synchronisation actions
are performed at the same time, nothing happens, and the execution of both
processes is continued.

Note that a synchronisation channel has no associated direction.

Communication Communication between two processes is similar to syn­
chronisation, except that while processes are synchronised, a value is passed
from one process to the other. The process that provides a value for a com­
munication along a channel c executes the statement c! e, where the value of
expression e is the value used in the communication. This process is referred to
as the sending process. The other process, the receiving process, executes a state­
ment c? x, where x is the variable whose value is changed to the value received
in the communication. As with synchronisation, a process can be suspended if
its communication partner is not yet ready to participate in the communication.

Communication can be seen as a distributed assignment. The value of expression
e is assigned to variable x. A communication channel is unidirectional.

Time-passing Execution of the statement ~ e denotes time-passing . We also
use the name delay for this statement. The discrete behaviour of a process that
executes this statement is suspended for a number of time units equal to the
value of expression e. The value of e is restricted toe~ 0, where~ 0 = €.

State-event An event, caused by the continuous behaviour of a process, is
called a state-event. The occurrence of such an event depends on a condition
expressed in the continuous variables of a process. The discrete behaviour of
a process can be suspended until a state-event occurs with the statement \7 b,
where b is a Boolean expression denoting the condition for a state-event.

Observe that the Boolean expression b must depend on continuous variables.
Discrete variables do not change their values if a process is suspended and
would therefore suspend the process forever. The continuous variables, how­
ever, change while time advances and can thereby trigger the condition for a
state-event. Observe further that the state-event statement is similar to a time­
passing statement, except that the time for which a process is suspended is
normally not known at the time the execution of the state-event statement is
started.

40 Chapter 4. The Formalism x

Guarded commands

Guarded commands were first introduced by E.W. Dijkstra [Dij74] and adapted
to be used with communicating processes by J. Hooman in [Hoo91]. The guarded
command we define in our formalism exist in two varieties. The first defines a
selection statement, the second is used for selective waiting. For both types, we
define a variant that makes the command repetitive.

Selection The selection statement has the general form:

G

where b1 , ... , bn E 8 are Boolean expressions and S1 , ... , Sn are statements. The
execution of a selection statement starts by evaluating the Boolean expressions,
called the guards. A guard is called open if the Boolean expression evaluates
to true. In a selection statement, at least one guard must be open. One of the
open guards bi is chosen non-deterministically and the associated statement si
is executed.

Selective waiting A selective waiting statement has the form:

G

where Ci are event statements as described earlier. The other elements are the
same as in a selection statement. A guard is the part to the left to the ---+ and
is called open if the Boolean part bi evaluates to true. The statement is invalid
if none of the guards is open. The selection for an open guard is determined
by the earliest possible event statement that can be executed. If more than one
event statement can be executed at the same time, the following priorities are
applied:

1. Interactions. If one of the possible events is a synchronisation or commu­
nication, execute the alternative containing an interaction.

2. State-events. If no interactions are possible, then chose a state-event.

3. Delays. If no state-events occur, then select a delay statement.

If in one of these situations more than one alternative can be chosen, each having
the same priority (for instance, two state-events occurring at the same time),
select one non-deterministically. Note that including a time-passing statement
in a guarded command, defines a time-out for the interaction statements and
state-events.

4.3. Keywords 41

Repetitive guarded command The guarded commands, both selection and
selective waiting, can be made repetitive by preceding it with an asterisk:

The repetition terminates if none of the guards in G is open.

We allow the following abbreviations to be used in guarded commands:

true; C
* [true -----+ S]
b; C-----+ e

:C
*[s l

:: b;C

Observe that with the guarded commands, conventional programming constructs
can be defined:

if b then 81 else Sz fi = [b -----+ 81 ll .., b -----+ Sz]
while b do Sod = *[b-----+ S]

Also, a case-like statement can be constructed in a similar way.

Syntactic constraints

We assume the following restrictions for our minimal language. These restric­
tions also hold for the formalism X·

• Communication and vector-type continuous channels are uni-directional.

• All channels are one-to-one connections.

• A continuous channel can only be linked once in a process.

4.3 Keywords

The first extension to the syntax of our minimal language involves the use of
keywords to introduce the definition of specification elements. A specification
consists of a number of such elements, such as systems and processes. The
elements can be given in any order that seems appropriate. This gives a speci­
fication a declarative character rather than an imperative one.

In the sequel, keywords are printed in a sans-serif font style. This is not a pre­
scribed rule but merely an aesthetical preference .. For the specification elements
system and process we introduce the keywords syst and proc:

42

syst Y = I[P1 II · · · II Pn]I

procP=I[EIS]I

Chapter 4. The Formalism x

where Y and Pare the identifiers of the system and process respectively.

Other keywords are presented in the sections to follow.

4.4 Variables and types

The specifications of objects, occurring in a model, must reflect the relevant
aspects of their real-life counterparts. These objects are represented by one
or more variables and the restriction, that a variable can only have a numerical
value, may conflict with this requirement. In this section, we will introduce types
for defining a domain of a variable. These domains no longer restrict values to be
numerical but allow for more diverse values that increase the similarity between
modelled objects and the variables that represent them.

Also, the limitation to simple variables prevents the data from representing hier­
archical structures that occur in objects. To overcome this deficiency, compound
data types are introduced that allow variables to be grouped into structures,
thereby enabling the creation of hierarchical data structures.

Furthermore, we will allow new data types to be defined in terms of existing
data types. A new type declaration starts with the keyword type and is followed
by the definition of the type. A type declaration is of the form:

type t1 = type I, ... , tn = typen

where, for i E { 1, ... , n }, ti is an identifier for the new type and typei is an
expression that denotes how the type is constructed.

The type of a variable is defined with the declaration of the variable. A variable
x of type T is declared with:

x:T

Since all variables are local variables, the declaration of variables occurs in a
process definition. We extend the syntax of a process definition with a declara­
tion section as follows:

proc P = I[V I E I S]I

where V denotes the declaration of variables. H no variables are to be declared,
the declaration section may be omitted.

4.4. Variables and types 43

Primitive types

A number of primitive types exist in x where a primitive type defines the domain
of a simple variable. In our minimal language, we defined the set V to denote
all numerical values. The following primitive types represent subsets of V:

Denotation

Natural nat

Integer int

Real real

Associated set of values

{0, 1, 2, ... }
{ ... ' -3, -2, -1,0, 1, 2, 3, ... }
all real numbers

Variables of different numerical types can occur in the same expression. The
value of the expression is coerced to the destination type required. The coercion
rules we apply are similar to those found .in many programming languages and
are not addressed here in detail.

In addition to the arithmetical operations +, -, and x , we allow all commonly
used mathematical operations on numerical values. Thus the following expres­
sion is a valid expression in x:

{/ x 2 - 2 X X + y2

xf2+y

Furthermore, we propose the operators // and \\ for Integer division and Modulo
calculation respectively.

To define a variable that represents a Boolean value, we introduce the type bool.
A variable of type bool bas either a value true or false. In addition to the <
operation we define:

e1 > e2
e1 ~ e2
e1 ~ e2
e1 "f. e2

e2 < e1
...,(e2 < e1)
...,(e1 < e2)
...,(e1 = e2)

Text values are represented by the types char and string, where char denotes the
type Character whose values represent single characters. A value of type string
represents a concatenation of characters. Examples of Characters and Strings
are:

'a', 'B', '3'
"abc", "This is a string"

44 Chapter 4. The Formalism x

We allow the following abbreviations for Characters and Strings if no ambiguity
arises because of their use:

'A'= A
"ThislsAString" = ThislsAString

A String is a special kind of list: a list of Characters. In the next section, we
introduce a type list that can hold any kind of data type.

Lists

The first compound data type we define is the list. The list type is similar to
the list type of Lisp and defines an ordered sequence of elements of some base
type. A list may contain any number of elements. Also, duplicate elements are
allowed. The type representing a list of elements of type T is denoted by T*.
The literal expression for a list is of the form [e1 , ••• , en]. For example:

[1, 2, 3]
[1, -2, 3, -2]
[[1, 2], [3]]
[]

is of type nat*
is of type int *
is of type nat**
(empty list) is of type T*, for every type T

For the list type, we define the following predicates and functions1 as:

• = equality: two lists are equal if they contain the same number of
elements and if their elements have equal values in each position.

• * -concatenation: joins two lists of the same base type, for example:
[1, 2,3] * [3, 2, 1] = [1, 2,3,3,2, 1]

• len length: delivers the number of elements contained in the list:
len([I, 2, 3, 3, 2, 1]) = 6

• hd - head: delivers the first element of the list:
hd([l, 2, 3, 3, 2, 1]) = 1

• tl tail: delivers the remainder of the list when the first element is
removed:
tl([I, 2, 3, 3, 2, 1]) = [2, 3, 3, 2, 1]

1see Section 4.5 for an explanation of functions.

4.4. Variables and types 45

Tuples

A tuple is a structured data type for the aggregation of a fixed number of vari­
ables of possibly different types. The literal expression for a tuple is of the form
(e1, ... , en}. For example:

(1,0.3}
(1,2,3}
((-0.3, 1.6}, [1, 2], 3}
(-0.3, 1.6, [1, 2], 3}

is of type (nat x real}
is of type (nat x nat x nat} = (nat3)

is of type {{real x real} x nat* x nat}
is of type {real x real x nat* x nat)

Note that a tuple can contain zero or more elements. For example, an empty
tuple is of type (). The abbreviated form in the second example may be used
as a replacement for a number of successive occurrences of the same type. So,
for instance the third example can also be defined by ((real2

} x nat* x nat) and
the fourth example by (reat2 x nat* x nat}. The constant, denoting the number
of occurrences, must be greater then 1.

An individual element of a tuple is accessed by its index in the tuple. The index
of an element in a tuple is zero based. For example:

let tt == (2, 3}, then tt.O 2, and tt.1 = 3

This construct can also be used in an assignment statement to change the value
of an element in a tuple, as in:

tt.O := 6

For the tuple, the following functions are defined:

• 1ft left: delivers the leftmost element of the tuple, for example:
lft({1, 2, 3)) = 1

• rgt - right: delivers the rightmost element of the tuple, for example:
rgt((1, 2,3}) == 3

Units

The unit type is a numerical type similar to type real. It defines not just a
single value, but also the values of associated time derivatives. The first time
derivative of a variable u is denoted by u', the second time derivative by u", and
so on.

46

, du
u = '

Chapter 4. The Formalism x

um

The unit type is used for the declaration of continuous variables and channels.
A unit type represents a physical quantity and is created by defining the unit of
measurement in which the physical quantity is expressed. For example:

type temp = [K], -- temperature in Kelvin
area [m2

], -- area in square meters
press [N ·m-2] --pressure in Newton per square meters

Dimension Name Unit

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of matter mole mol
amount of candela cd

Table 4.1: Fundamental SI units.

The units of measurement that can be used in the definition of unit types are
the fundamental SI units (Table 4.1). These units are predefined in X·

For example, to denote a concentration of some soluble component in a liquid,
the following type can be defined:

type cone = [kg·kg- 1] -- concentration in mass fractions

Although the unit of this type has no dimension, it is clear that the concentration
is expressed in mass fractions (compare with for instance: [m3 ·m-3]).

For values that cannot be expressed with the SI umits, for example the pH value
of a liquid, we use the unit type [-].

The keyword unit introduces a unit declaration by which new units can be de-­
fined. A unit is used as an abbreviation for a commonly used unit as the ones
listed in Table 4.2. As an illustration of a declaration of derived units we define:

unit N = kg·m·s-2 ,

n m2 ·kg·s-3 ·A-2

4.4. Variables and types 47

Dimension Name Symbol Unit SI units

frequency hertz Hz s-1 s-1

force newton N kg·m·s-2 m·kg·s-2

energy joule J N·m m2·kg·s-2

power. watt w J·s-1 m2·kg·s-3

electrical charge coulomb c A·s s·A
electrical potential volt v W-A-1 m2·kg·s-3 ·A - 1

electrical resistance ohm n V-A-1 m2·kg·s-3 ·A - 2

electrical capacitance farad F c-v-1 m-2·kg-1-s4-A2

pressure or stress pascal Pa N·m-2 m-1 -kg·s-2

Table 4.2: Some common derived SI units.

Constants

It is sometimes convenient to define an identifier to represent a predetermined
value. Such constants are defined with a constant declaration. A constant
declaration is introduced by the keyword const and is followed by an expression
that defines the constant:

The identifier ai, fori E { 1, ... , n }, is (globally) defined to have a value denoted
by the expression ei. The type of a constant is equal to the type ofthe expression
that is used to define the constant.

We allow all kinds of operations in the expression of a constant, but we require
that the expression can be evaluated statically. It may contain literal expressions
and other constant identifiers.

As an example of a constant declaration, we define the acceleration of gravity g
as:

const g = 9.81 [m·s-2]

where the unit of measurement [m·s-2] is optional to allow consistency checks on
expressions in equations. Note that the constant g is not a continuous variable.

Observe that the following constant declaration is invalid:

const a= b,
b=2xa

48 Chapter 4. The Formalism X

because neither of the two constant expressions can be evaluated statically. Fur­
thermore, a constant may only be defined once. So the following definition is
invalid:

const b =a,
b 2xa

4.5 Functions

Functions can be defined in two different ways. In a functional definition, we
define what the result of a function is. An imperative definition states how the
function result is obtained. The first has the advantage of resulting in compact
function definitions without worrying about how the result must be calculated.
The latter largely resembles the way in which processes are defined and can easier
be implemented in a simulation tool. Furthermore, once familiar with processes,
the imperative functions require less effort to learn. In the next sections, both
types of function definitions are addressed, where we have a preference for the
imperative function definition.

Imperative definition

By convention, the name of a function is printed in the Roman font style. The
function definition starts with the declaration of the arguments and a range type
of the function. For example, the function natlen, which determines the length
of a list of Naturals, starts with the following definition:

func natlen(xs :nat*) -t nat

This function takes a list of Naturals as an argument and delivers a Nawral as
the result. The argument declarations are enclosed in parenthesis, separated by
commas. The declaration of the function's arguments and result is called the
type of a function. This type can be used as any other primitive type in X· For
example, we can put a function like natlen in a tuple with:

((nat*) -t nat)

After the introduction of functions, at the end of this section, we will use this
feature in an example.

A function call consists of the function name and the arguments, enclosed in
parenthesis and separated by commas. For example:

4.5. Functions 49

natlen(xs)

calls the function natlen with the list xs as the argument. A function call
is a valid expression in the formalism X and can be used in all places where
expressions can be used.

The declaration of local function variables is similar to the declaration of local
process variables and is discussed in Section 4.4. The arguments of a function
are all referenced by value. This means that no side-effects can occur when a
function is called.

A function definition has the form:

func F(A) -+ R = [V I F]

where A represents the declaration of arguments, and R defines the range of
the function. Local variables are declared by V. The evaluation of a function
is defined by statements, denoted by F. These statements are similar to the
statements used in a process for the discrete behaviour. There are, however,
some exceptions. For example, the event statements cannot be used in functions.

F

In functions, the only guarded command allowed is the selection statement and
its repetitive variant. Furthermore, the statements after the guard of a selection
statement may not contain event statements, only function statements.

X

The result of a function is defined by the return statement (t e) and can be used
more than once in a function definition. The return statement is always the last
statement executed.

As an example, the function natlen can be defined by:

func natlen(xs : nat•) -+ nat =
I[[XS = [] -4 tO

11

0 xs :f.[] -4 ti + natlen(tl(xs))
]

The function may also be defined in an iterative way instead of a recursive way:

50

func natlen(xs : nat•) -t nat =
I[l: nat
II:= 0
; *[xs =/: []--+ l := l + 1; xs := tl(xs) 1
; tl

11

Chapter 4. The Formalism X

Note that the argument xs is used as the destination of an assignment. This is
allowed because all arguments are referenced by value. The use of arguments in
this way does not cause any side-effects in the process or function that calls this
function. Thus, arguments may be considered as local variables in a function
definition.

Functions are introduced for data manipulation purposes. Because of the strong
typing of their arguments, they are closely related to the data objects they
operate on. In the following example, this relation is expressed by including a
function in the definition of a data type. We define a list in which the elements
are sorted according to a given criterion. The criterion used here is rather simple:
we sort the elements in ascending order. The elements themselves are of type
real.

To preserve the order of elements in a sorted list, we define a function for adding
elements to the list. This function puts an element at the proper position in the
list, according to the given sort criterion:

func put(xs : real•, x : real) -t real• =
I[[x ~ hd(xs)--+ t[x1-tt-xs

~ x > hd(xs)--+ t[hd(xs)1-tt-put(tl(xs),x)

1
11

The order of the elements is now determined by the function put. The sort
criterion is a relation between the elements in a list. It defines when an ele­
ment X precedes an element y. ci'he following function tests two values on this
relationship:

func ascend(x, y : real) -t bool =
l[tx ~ Y 11

This function returns true if the argument x should precede the argument y in
our sorted list. This sort function and the list are so closely related, that we
define the following data type for the ascending list:

type alist = (real• x (real, real) -t bool)

4.5. Functions 51

The left element of this tuple contains the list of elements. The right element
contains the sort criterion in the form of a function.

We can now change the function put to use the sort function contained in the
ascending list type alist:

func put(xs : alist, x : real) -t alist =
I[[xs.l(x, hd(xs.O)) ---+ xs.O := [x] * xs.O

]I

0 -, xs.l(x, hd(xs.O)) ---+ xs.O := [hd(xs.O)] *put((tl(xs.O), xs.l}, x)
]
txs

Functional definition

We will now briefly introduce a functional definition of functions. For earlier
mentioned reasons, we prefer the imperative function definition. Therefore, the
following functional definition may not be complete and is merely included as an
illustration. The presented definition of functions is derived from Gofer [Go£91].

The type definition is similar to imperative functions as is illustrated by the
example function natlen:

func natlen : (nat*) -t nat

where the type of the function is denoted by (nat*) -t nat. The function appli­
cation is the same:

natlen(xs)

The definition of the function result consists of one or more function definition
expressions. A definition expression is a function pattern followed by a denota­
tion of the function value for this pattern. For example, the function natlen can
be defined with:

func natlen (nat*) -t nat
natlen([]) 0
natlen(x:xs) = 1 + natlen(xs)

In the first line, the name and type of the function are defined. In the second
line, the pattern 'natlen([])' denotes the application of the function natlen to an
empty list, which results in the value 0. The last line in this function definition
states that when the function is applied to a list, constructed from an element

52 Chapter 4. The Formalism X

x concatenated with a list xs, the result of the function is defined as 1 plus the
length of xs.

The list construction operation (x:xs) provides a list that is guaranteed to con­
tain at least one element (x) which is followed by the list ofremaining elements
(xs), which may be an empty list.

Within a function definition expression, it is possible to define a guarded function
result. Consider the following example, where the function put is defined for a
list of Reals:

func put
put([], e) =
put(x:xs,e) =

(real•, real) -+ real•
[e]
[e ~ x--+ [e]*[x]*xs
0 e > x--+ [x] *put(xs,e)
l

In a function . definition, a list may also be defined with qualifiers. For example:

[x2 I x +- [2, 4, 6]]

defines the list [4, 16, 36]. Here the +- means that the value of x is successively
taken from the list [2, 4, 6].

The qualified list can be used to define a list when the elements of the list are
not known, but their characteristics can be denoted using qualifications. For
example, the function put, operating on the type alist from the previous section,
can be defined with:

func put (alist, real) -+ alist
put((xs,f),e) = ([xI x +- xs,f(x,e)] * [e] *[xI x +- xs,f(e,x)],f)

Comparing the examples of the functions, defined in an imperative or a func­
tional way, we can see that a fu:r1ctional definition leads to a more compact
definition. This is because the functional definition only states what the result
of a function is and not how to obtain this result. This is one of the reasons
that functional languages are more difficult to implement. Furthermore, the
functional way of defining a function is quite different from the definition of
processes. A systems engineer, wanting to use x, must get familiar with the
functional language as well. It is for these practicable reasons that we prefer the
imperative function definitions.

4.6. Parameters 53

4.6 Parameters

In some cases, processes have almost identical behaviours and differ only in small
characteristics such as a buffer capacity or a vessel's volume. For these situations
we introduce the concept of parameterisation. A process can be defined with a
list of parameters, that specify its distinctive behavioural aspects. For example,
we can use a parameter to pass a constant value to the process specification.
Such values can be used to define characteristic properties of the process such
as distinctive measurements or capacities. Also, a function can be passed as a
parameter to alter the behaviour of the process. An example of such a parameter
can be a function that represents the characteristic curves of a water turbine.

The formal parameter list in a process definition is enclosed in parenthesis and
follows the process identifier:

proc P(formal parameters) = [...]I

When a process is used in a system, we create a process instantiation by filling
in the actual parameters for the process:

syst Y = I[. . . II P (actual parameters) i . . .]

By using parameterised process specifications, the channels, connected to a
process, must be supplied as parameters as well. Recall, that the formalism
requires that all channels are one-to-one connections and, therefore, two instan­
tiations of the same process definition can not share any channels. The channels,
connected to a process, are supplied by including them in the parameter list.
Because of the different kinds of channels, we distinguish the following channel
parameter types:

• Incoming discrete channel parameter.

• Outgoing discrete channel parameter.

• Synchronisation channel parameter.

• Incoming vector-type continuous channel parameter.

• Outgoing vector-type continuous channel parameter.

• Scalar-type continuous channel parameter.

Besides the kind of channel, also the type of a communicated object is included
in the channel parameter declaration. For the above mentioned channel para­
meters, this results in declarations of the form:

54 Chapter 4. The Formalism X

• c: ?type

• c:! type

• c: ~void

• c:.l.type

• c:ttype

• c : ttype

Observe that a synchronisation channel does not communicate a value. We
introduce the type void to denote the 'empty type'.

The following example illustrates the use of parameters. The process B is a
buffer that stores objects of type real. The maximum capacity is given by nand
the function add determines how the objects are arranged in the buffer. The
channels p and q respectively receive and send objects of type real.

proc B(p : ? real, q : ! real, n : nat, add : (real*, real) -+ real*) =
I[x : real, xs : real*
I *[len(xs) < n ; p? x --+ xs := add(xs, x)

~ len(xs) > 0; q!hd(xs)--+ xs := tl(xs)
]

Jl

An example for the function parameter add can be defined as:

func fifo(xs : real*, x : real) -+ real* =
[txs-tt[x]]I

which defines a FIFO ordering (First In, First Out). We can al1o use the function
put, as described on page 50, to define a sorted order for the objects in the buffer.

Besides increasing the flexibility and modularity of process specifications, para­
meterisation is also introduced to enable hierarchical specifications, as will be
discussed in the next section.

4.7 Hierarchy

As mentioned in Section 4.1, processes are grouped into a system and a system
can act as a process in other system definitions. In this way, a hierarchical
structure can be built. To achieve this hierarchy, a system definition is extended
with a parameter list similar to that of process definitions. This allows a system
to be used as a process in a system definition.

4. 7. Hierarchy 55

syst Y (formal parameters) = I[...]I

Furthermore, the instantiation of a system is similar to the instantiation of a
process:

syst S = I[... II Y (actual parameters) II ...]

The channels, connected to a system, are internally connected to the processes
that comprise the system. Other channels, that exist between processes in a
system, are declared in the system. We therefore extend a system definition
with a declaration section:

syst Y(.. .) =I[D I P1(. ·.)II··· II Pn(· ·.)]I

where D denotes the declaration of channels. A channel declaration consists of
an identifier for the channel followed by the type of the channel. The direction
is not defined in the declaration, but is determined by the processes that are
connected by the channel:

D ::= C1 : typel, • • · , Cn : typen

Note that we use the type void as the type of a synchronisation channel.

To illustrate the use of hierarchical structures, consider the following example:

syst F =I[a, b: real I R(a) II S(a, b) II T(b)]I

System F is defined to comprise of the three components R, S, and T. It is not
clear from this definition whether the components of this system are processes or
systems. This is intentionally. The components are connected by two channels
a and b of type real, where channel a connects the components R and S and
channel b connects S with T .

The components R and T are assumed to be processes, defined with:

proc R(x : ! real) = [...]I
proc T(y : ? real) = I[...]I

56 Chapter 4. The Formalism x

The channel a, connected to R, is in the definition of R denoted by the formal
parameter x. It is declared as a discrete channel of type real, and is intended to
be an outgoing communication channel. Similarly, channel parameter y denotes
an incoming discrete channel of type real.

The component Sis a system, composed of two (equal) components P:

d f

syst S(d: ? real, f : ! real) = I[e :real I P(d, e) II P(e, f)]I

proc P(x : ? real, y : ! real) = I[...]I

Note that the identifiers in a system or process definition are all local identifiers.
Note further that all hierarchical specifications can be rewritten as a single
system, comprising of processes only. For example:

specifies exactly the same behaviour as system F, where the components R, P,
and T are defined as described earlier. Comparing the two specifications, we
can see that channel c1 in F is equivalent to the concatenation of channel a of
F and channel d of S in the hierarchical specification.

Next to the hierarchical ordering of processes and systems, we introduce bundles
to create a hierarchy in channels. A bundle is declared similar to a tuple, except
that parenthesis are used to delimit a bundle.

represents a bundle, consisting of two channels. All channels in a bundle are
either continuous or discrete channels and have the same type. Furthermore,
the directions of all channels in a bundle must be the same. The graphical
representation of a bundle is equal to that of a channel. As an example of the
use of bundles, we replace the channels in the previous example by bundles of
the type (real2

):

syst F =I[a, b: (real2
) I R(a) II S(a, b) II T(b)]I

4. 7. Hierarchy 57

The processes R and T are defined with:

proc R(x: !(real2)) =I[...]1
proc T(y: ?(reae)) = I[... ll

Within a process, a channel, contained in a bundle, can be addressed using its
index in the bundle. For example, to receive from the first channel in the bundle,
we can use:

proc T(x : ?(real2
)) = I[... ; x.O? a; ...]I

where a is a variable of type real. Indexing can also be applied to bundles in a
system:

d.O f.O

d. I f.l

syst S(d: ?(real2
), f: !(real2)) = I[P(d.O, f.O) II P(d.l, /.1)]I

proc P(x : ? real, y : ! real) =I[...]I

Observe that the type (real2
) is an abbreviation for (real x real). To create a

bundle with synchronisation channels, we can use:

Bundles can be grouped into a new bundle, thus creating a hierarchical structure
of channels. For example, the following bundle can be created:

For these hierarchical bundles, we also demand that the types and the directions,
if relevant, of all elements in a bundle are the same.

58 Chapter 4. The Formalism x

4.8 Stochastic behaviour

Difficulties in the analysis of a system's behaviour often arise from the fact that
the behaviour of a system is not deterministic but stochastic of nature. To
enable the investigation of such systems, we introduce statistical distributions
and a sampling operator on them to specify stochastic behaviour.

A statistical distribution is a function that defines the probability for a certain
outcome when drawing a sample from the distribution's domain. We distinguish
two kinds of domains for distributions: a discrete domain and a continuous
domain. A discrete domain contains only a fixed number of values, where a
continuous domain defines an infinite number of values.

A number of distributions are defined in x that are commonly used in system
specifications (see also Appendix B):

• Discrete distributions:

- dun -Discrete Uniform

- her - Bernoulli

- bin - Binomial

- geo - Geometric

- poi - Poisson

• Continuous distributions:

- cun -Continuous Uniform

- nex -Negative Exponential

- erl - Erlang

- nor -Normal

-gam -Gamma

- wei - Weibull

Drawing a sample from a distribution can not be defined by a function because
the result of such a function would not be the same for every call. Therefore, we
define a sample operator a to draw a sample from a distribution. Furthermore,
since a distribution is not like any type of data we introduced so far, we define the
type dist to denote statistical distributions. In a declaration of a distribution, we
also indicate the type of the samples, taken from the distribution. For example,
we use dist(nat) to define a distribution that generates samples of type nat.
Thus, we have the types dist(nat) and dist(int) for discrete distributions and
dist(real) for continuous distributions.

For example, to define a variable, representing a Binomial distribution, we use:

4.9. Summary

d: dist(nat)
d := bin(p, n)

59

where d is declared as a distribution variable and bin(p, n) defines a Binomial
distribution with probability p and number of trials n. Note that bin is a function
of type (real, nat) --+ dist(nat). A sample from this distribution is of type nat.

The expression:

ad

denotes drawing a sample from the distribution d. Observe that the expression
ad - ad does not necessarily evaluate to the value 0.

4.9 Summary

In this chapter, we presented the formalism x, starting with a minimal language,
only containing the primitive language constructs of X· Systems and processes
are the main building blocks of the formalism. The state of a system is recorded
in the variables, which are declared as local variables in the processes. We
introduced two behaviour definitions, one for discrete behaviour and one for
continuous behaviour. The two kinds of behaviours can be combined in a single
process, thus specifying a hybrid behaviour.

Some extensions to the minimal language are proposed to make the language
more applicable to the specification of industrial systems. Data types, such as
lists and tuples, enable the definition of hierarchical data structures. Continuous
variables are declared with the definition of their units of measurement. Some
units are predefined in x, others can be created with unit declarations. Further­
more, constants can be declared for those values that are global for a system
specification, such as the acceleration of gravity.

We presented two kinds of function definitions. Imperative functions, that use
similar statements as the statements used in processes. Functional definitions
tend to result in more compact function descriptions that are, however, not as
easily mastered.

We introduced parameters as a means to make specifications more flexible and
to allow the reuse of existing specifications. Parameters also introduced the
definition of hierarchical models. Processes can be grouped into systems and
a system can be grouped with other processes and systems into a new system.
Next to the hierarchy of systems and processes, we defined bundles to create
hierarchical structured channels.

60 Chapter 4. The Formalism x

The definition of the formalism xis completed with the introduction of stochastic
behaviour. Discrete and continuous statistical distributions are defined as well
as a special operator for taking samples from these distributions.

Chapter 5

The Bottle-filling System

To illustrate the use of X for the specification of industrial systems, we will set
up a specification of the bottle-filling system as described earlier in Section 3.1.

The first step in the modelling process is the system identification. We isolate
the system from its environment and determine the interactions of the system
with the environment. The objects that are involved in the interactions are
distinguished and suitable data structures are defined to represent these objects.
Also, the functions for the manipulation of the data structures are defined.

After the system has been identified, its structure is defined. The system is
decomposed into subsystems and processes that have relations with each other.
These relations are modelled as data objects, moving through the system. The
objects are represented by data structures and these data structures are used
in the definition of the relations between the model components. Finally, we
discuss the behaviour descriptions of the processes in the model.

The objectives for the model are to find out how many customer orders can be
handled by the system. In this analysis, we assume that the system operates
ideally (i.e. bottles do not break and machines do no fail). Experiments can be
performed to investigate the influence of changes in the customer orders, for in­
stance, "What happens if the average amount of bottles ordered will increase?".

5.1 The system environment

The bottle-filling system has interactions with the customers and the suppliers
of bottles and liquid. In our model, we assume that there is always a sufficient
amount of liquid available in a reservoir to refill the vessel. Because of this
assumption, there is no need to include the (external) supplier of liquid to this

61

62 Chapter 5. The Bottle-fi11ing System

reservoir in the model. Also, the supplier of bottles is treated in the same way
and is therefore not included in the system's environment. The environment of
the system consists therefore of the customers only (Figure 5.1). The customers

Figure 5.1: The bottle-filling system environment.

are modelled by two processes G and P. The first process generates the orders of
the customers. These orders are sent along channel d to the bottle-filling system
S. The second process Pis a pile that collects the deliveries of the bottles, sent
along channel b.

The interactions with the system involve the flow of orders and the flow of filled
bottles from and to the customers. These objects travel along the channels d
and b respectively. We will now define data structures to represent these objects.

An order is a request for a certain amount of bottles. The system delivers
bottles of two sizes (1 litre and 5 litre bottles). Therefore, the order contains
two amounts, one for each size. Thus, we define the following type to represent
an order:

type ord

The filled bottles are delivered to the customer as a single package, containing
both sizes of ordered bottles. Before we define a data structure for this package,
we first define a data structure for a single bottle. Since there are two sizes
of bottles, the size must be indicated in the data structure. Furthermore, each
bottle has a label, stating its contents. Thus, a type to represent a bottle may
be defined with:

type bot =(char x dat)

in which the first element (of type char) denotes the size of a bottle (x for 1litre
bottles and y for 5 litre bottles). The type dat represents the label attached to
the bottle. This label states the actual pH value and amount of liquid that is
contained in the bottle. This label is defined with:

type dat

A delivery of bottles to a customer is a collection of (small and large) bottles.
This collection is modelled by a list of bottles, denoted by:

bot*

5.1. The system environment 63

Order generator

The first process that models the environment is the process that generates the
orders for the system. An order defines in what amounts the two bottle types
are required. Both these values, that comprise an order, are represented by
statistical distributions. The kind of distribution is defined in the instantiation
of the process. The type of outcome for a sample from these distributions is
defined in the process definition. In this case, the amounts are restricted to
Naturals.

New orders are created with a call to the function neword, where the arguments
denote the requested amounts of bottles. The function is defined as:

func neword(x, y: nat) -7 ord I[t (x, y)]I

Although this seems to make little sense, it has some advantages over using the
literal expression for a tuple directly in the process specification. It increases the
readability of the specificution. Furthermore, future changes to the type ord will
affect the data manipulation functions only and not the specifications in which
the functions are used. Therefore, throughout this chapter, we define all data
manipulation with functions.

The generation of orders is defined by the process G:

proc G(d: !ord, dx,dy: dist(nat)) =
I[* [d! neword(a dx, a dy)]]I

In the first line of this specification, the channel d is declared to transfer objects
of type ord. Also, the distributions, used to generate the various amounts of
bottles, are declared as parameters. Here, only the type of outcome for the
sample operation on a distribution is defined. The declaration dist(nat) declares
a distribution of Naturals. The actual distribution used by the process will be
defined with the instantiation of the process later on.

The behaviour of the process is described by an endless loop in which the process
tries to send a new order along channel d. The arguments of the function call
neword are samples from the two distributions.

Note that the generator is always prepared to send an order. However, an order
is only sent if the system is willing to accept the order. Meanwhile, the generator
will be suspended. This mechanism implies that the bottling system operates
at its maximum capacity.

Bottle pile

The filled bottles, requested by an order, are delivered to a pile. The only task
of the pile process is to collect the deliveries.

64 Chapter 5. The Bottle-filling System

proc P(b: ?bot•) =I[xs: bot• I*[b?xs]]I

Observe that the received deliveries are ignored by the process. We are not
interested in the filled bottles, only in the fact that they are delivered. If we
were to find out how long it would take to handle an order, we could note the
time of delivery and compare it with the time at which the corresponding order
was sent.

The specification of the system, depicted in Figure 5.1, is formally defined with:

syst M =
I[d : ord, b : bot •
I G(d,dun(40,80),dun(10,30)) II S(d,b) II P(b)
ll

First the two channels d and b are declared with the appropriate types. The
instantiation of process G defines two discrete uniform distributions, denoted by
dun(min, max) for the amounts of the two sizes of bottles. In the next section,
we develop a specification of the system S including its control system.

5.2 The system

The bottle-filling system consists of a vessel, two filling lines and a packaging
machine in which the filled bottles are wrapped. These subsystems are controlled
by a system controller that handles the customer orders. The structure of the
bottle-filling system is depicted in Figure 5.2 where V S represents the vessel
system, F S is a filling line, and W is the packaging machine. System controller
SC is placed in the centre of the picture.

The specification of this system can be given by:

syst S(d8 : ord, bt : bot•) =
I[fx, /y :bot, nx, ny :nat, rx, ry :void,

Px, Py : real, lx, ly : liq, dw : ord
I V S (Px , Py, lx , ly)
II FS(nx,Px,rx,fx,lx,X,l.O)
II SC(ds,dw, nx, ny, rx, ry)
II FS(ny,Py, ry, /y, ly, y, 5.0)
II W(dw, fx, Jy, bt)
:11

The two channels, defining the interactions with the system's environment, are
declared as parameters of the system. Other (internal) channels are declared

5.2. The system 65

Figure 5.2: Bottle-filling system.

within the system and define the relations between the various subsystems. Fi­
nally, the subsystems are instantiated with the proper parameter values and
channels. Note that the two filling lines share the same specification FS. The
differences are expressed by using different values for the parameters that in­
dicate the kind of bottles to be filled. The small bottles are denoted by the
character x and have a size 1.0, whereas the large bottles have a size 5.0 and are
indicated by the character y. Furthermore, the two filling lines have different
relations with their environment and thus are connected by different channels.

The meaning of the channels in this system is made clear in the remaining of
this chapter in which the subsystems are discussed in more detail. We start with
the specification of the system controller. Its behaviour plays a central role in
the behaviour of the system. By specifying the control system first, we gain a
clear overview of the coooeration of the various sub3ystems and their relations.

System Controller

The system controller handles the incoming orders one by one. An order is
received from a customer via channel d8 • This order is passed to the packaging
machine so that the filled bottles can be collected and wrapped according to
this order. The two filling lines are informed about the amounts of bottles that

66 Chapter 5. The Bottle-filling System

have to be filled. These values are sent via the channels no: for small bottles and
ny for large bottles. Finally, a signal must be received from these filling lines
when the bottles are filled. Only then, the next order can be processed. The
specification of the system controller can be given by:

proc SC(ds: ?ord, dw: !ord, nz,ny: !nat, ro;,ry: "'void)=
I[d: ord
I *[ds? d

; dw !d

]I

; no: !nx(d)
; ny! ny(d)
; [rx~ --+ ry~ n ry"'--+ rx"']
]

We use the functions nx and ny to extract the two amounts from an order. These
functions are defined with:

func nx(d: ord) -t nat= I[tlft(d)]I

func ny(d: ord) -t nat= I[trgt(d)]I

The order in which the 'ready' signals from the filling lines are received is not
known in advance. Therefore, we use a guarded command to handle both pos­
sibilities: first rx, then ry, or first ry and then rz.

The order in which the subsystems are addressed next is inspired by the flow
of material through the system. This flow starts at the vessel system that sup­
plies the liquid. Next, the filling lines are presented and, finally, the packaging
machine or bottle wrapper is specified.

5.3 The vessel system

The main function of the vessel system (Figure 5.3) is to supply liquid with a
predetermined pH value to both filling lines. The vessel is fed from an inex­
haustible source of liquid through an input valve that is controlled by a level
controller. This controller's task is to keep the level in the vessel between a
minimum and a maximum value.

The acidity of the liquid changes slightly because of exposure to the air. The
pH value can be adjusted by the addition of an acid to the liquid in the vessel.
A pH-controller measures the current pH value and controls a valve through
which the acid can be supplied. We assume, as with the liquid, that there is an
inexhaustible source of acid available.

5.3. The vessel system 67

Figure 5.3: The vessel system.

From the vessel, the liquid is led to the filling lines. The flow is split up into
two sub-flows, one for each filling line. A flow distributor models the behaviour
of the liquid flow at this fork. The specification of the vessel system, as shown
in Figure 5.3, is given by:

syst VS(px,Py: !real, lx,ly: tliq) =
I[lns! las, ln, la, lm : liq, Ct, Ca : cmd, v: vol, p: pH
I LC(v,q,0.05,0.75)
II L(ln8 ,2.5·105,0.0017)
II C(lns,ln,ct,a)
II V(ln,la,lm,v,p,0.785)
II C(las,la,Ca,a)
II L(las, 1.5·105 ,0.0018)
II PHC(px,Py,p,ca,3.8,0.1)
ll

A number of data types have been used in the declaration of channels and
parameters. The type liq denotes a liquid and is used for both the blend and
the acid flows in the system. It is defined as:

type liq = (flow x press x cone)

A liquid is represented by a triple containing a flow, a pressure, and a concen­
tration. The types flow and press are defined by:

68

type flow
press

= [m3·s-l]
= [N·m-21

Chapter 5. The Bottle-filling System

where the unit N stands for Newtons and is defined as:

unit N = kg·m·s- 2

The concentration denotes the amount of pure acid in a blend and is defined
with:

type cone

For the amount of liquid, contained in the vessel or a bottle, we introduce the
type vol, defined as:

type vol

A pH value cannot be expressed in SI units. To represent a pH value with a
continuous variable, we define the type pH as:

type pH = [-]

Control valves

A control valve can be seen as a resistor in a pipe and thus causes a pressure
loss Ap between the inlet and outlet of the valve. The resistance is denoted
by the resistor coefficient (. Both the resistance and the speed v of the liquid
flowing through the valve apply to the aperture A of the valve. The volume flow
through the valve can be defined with cp = v x A. The pressure loss is defined
by [Dub]:

Ap = (x p x v
2

2

Thus, the relation between the volume flow through the valve and t.he pressure
loss over the valve is defined by:

2- A2_2_x_::_
cp- px(

By changing the aperture A of the valve, we can control the volume flow through
the valve. We introduce a rate r by which we can control the aperture of the
valve and define the value a as:

5.3. The vessel system

so that the equation to describe the control valve becomes:

rp2 = r x a x !:l.p

We can now define the process C that specifies a control valve by:

proc C(l1 : -.1-liq, l2 : tliq, c:? cmd, a: real)=
I[rp : flow, P1, P2 : press, x : cone, s : cmd, r : real
ll1 --<> (rp,pl> x), l2--<> (rp,P2,X)
I rp2 = r x a x (PI - P2)
, [s = open -+ r = 1.0

D s =dribble-+ r = 0.1
U s close -+ r = 0.0
l

I s := close; * [c? s]
11

69

Note that this specification is only valid if p1 ;;;:: P2 at all times. If this restriction
cannot be guaranteed, we can adjust the specification by replacing the first
equation with the following equation:

rp = T X J a X abs(pl - P2) X sgn(pl - P2)

where the functions abs and sgn are defined as:

func abs(x : real) -t real=
I[[x < 0-+ t-x

flx;;;::O-+t X

l
ll

func sgn(x :real) -t int =
I[[X< 0-+ t -1
Dx=O-+t 0
Ux>O-+t+1
l

ll

We assume that all valves and pipes, used in the bottle-filling system, have
similar characteristics. If we assume certain values for A, p, and (, the value of
a can be computed as:

70 Chapter 5. The Bottle-filling System

2 X A2 2 X (1·10-3)2

a=--= =8·10-9

p X (1000 X 0.25

Since this value will be used in several specifications, we declare it as a constant
with:

canst a

Liquid and acid supply

In the specification of the vessel system, the process L models an inexhaustible
source of liquid. By applying the proper parameter values, it can be used for
both the liquid and the acid suppliers for the vessel. We define a pressure (with
values 2.5·105 [N·m-2] and 1.5·105 [N·m-2] for liquid and acid supply resp.) as a
driving force for the liquid flow. The last parameter indicates the concentration
of pure acid in the blend: a value of 0.0017[m3·m-3] for a liquid with the
requested pH value of 3.8 and a value of 0.0018[m3·m-3] for the acid supply
which corresponds to a pH value of 2.2.

The process definition of L can be given by:

proc L(l: tliq, p 8 ,s: real)=
I[r.p : flow, p : press, x : cone
ll-o (r.p,p,x)
I r.p2 =a X (p8 - p), X = s

ll

Here, Ps is the pressure at which the liquid supply takes place. The acidity
of the liquid is denoted by the concentration of acid in the liquid given by the
parameter s. We use the constant a to describe the flow characteristics of the
outlet of the supplier.

Vessel

The vessel has two inlets and one outlet. Furthermore, it contains two sensors
that are used to pass information to the level and pH controllers. The specifi­
cation of the vessel reads as follows:

proc V(ln,la: .J_liq, lm: tliq, v: tvol, p: tpH, A: real)=
I[f{Jn,f{Ja,f{Jm: flow, Pn,Pa,Pm: press, Xn,Xa,Xm: cone,

V: vol, pHc: pH
lln -o (r.pn,Pn,Xn), la-o (r.pa,Pa,Xa), lm -o (r.pm,Pm,Xm),

V -o V, p -o pHc

5.3. The vessel system

IV'= l..pn +r..pa

, x~ XV= (xn
'Pn = Patm

, Pa = Patm

l..pm

Xm) X l..pn + (Xa - Xm) X !..pa

, Pm Patm + P X 9 X VI A
, [Xm < 0.00125 --+ pHc -400 X Xm + 11.5

~ Xm ~ 0.00125 --+ pHc = 16000 X Xm + 31
l

ll

71

0.35·10-6

The vessel has a continuous behaviour, fully described by equations. In the first
equation, the volume balance is defined with the sum of incoming and outgoing
flows. The pressure at the top of tl1e vessel is the atmospheric pressure, defined
with the constant:

const Patm = 1.01·105

At the bottom (at the outlet), the pressure is increased by the term p x 9 x vI A,
where A is the cross-sectior. of the vessel. The concentration of acid in the vessel
is denoted by Xm which is of the type [m3 ·m-3]. This type defines that the
concentration is expressed in volume fractions. The constant 0.35·10-6 denotes
the change in the concentration due to atmospheric influences. The calculation
of the pH value depends on the value of Xmas defined by the guarded equation.

Level Controller

The amount of liquid in the vessel is kept between a minimum value Vn and a
maximum value Vx.

proc LC(v: tvol, Ct: !cmd, Vn,Vx: real)=
I[Vc : vol
I V-<> Vc

I*[Vc ~ Vn; V'Vc < Vn--+ Ct !open
D Vc ~ v, ; V' Vc > Vx --+ Ct ! close
]

ll

The current volume is available as the value of Vc. The controller's behaviour can
be described as follows. If the current volume is greater or equal to the minimum
volume then we wait for the current volume to drop below this minimum and we
open the valve. If the current volume is less or equal to the maximum volume
then we wait for the vessel to be filled to its maximum volume and we close the
valve.

72 Chapter 5. The Bottle-filling System

pH-Controller

The behaviour of the pH-controller is a little more complicated compared to that
of the level controller.

proc PHC(px,Py: !real, p: !pH, Ca: !cmd, pHr,tol: real)=
I[PHc: pH, d,ok: bool
I p-o pHc
I ok := (abs(pHc - pHr) :::;; tol)
j *[ok; Px !pHc

]I

fl ok; Py !pHc
fl V(abs(pHc pHr) > tol)

--+ ok : = false
d := true; Ca ! dribble
*[-.ok 1\ d; VpHc > 11.0

fl -.ok 1\ -.d; VPHc < 11.0
0 -.ok; V(abs(pHc -pHr):::;; tol)

1

--+ d := false; Ca ! open
--+ d :=true; Ca! dribble
--+ ok := true; Ca ! close

The pH-controller keeps the current pH (pHc) of the liquid in the vessel close
to the set-point pHr. As long as the current pH is within range, this pH value
can be sent along the channels Px and py to inform the filling lines that the pH
is OK and that bottles may be filled. H the pH is out of tolerance, a correction
procedure starts. This procedure changes the pH of the liquid in the vessel
by dribbling acid into it. If the pH crosses the critical value of 11, the acid
valve is completely opened. The procedure stops when pHc is within tolerance
boundaries again. Note that the interactions Px ! pHc and Py! pHc cannot occur
during the correction procedure.

Flow distributor

The flow distributor is aT-fork that splits the flow coming from the vessel into
two sub-flows, one for each filling line. All characteristics of the liquid are the
same for all flows at this process, i.e. the pressure and the concentration of
acid. The only behaviour described by this process is based on the mass balance
equations:

proc D(lm : + liq, lx, ly : t liq) =
I[f.Px, !.py, 'Pm : flow, p : press, x : cone
llx -o (r.px,p,x), ly -o (r.py,p,x), lm -o (r.pm,p,x)
I 'Px + 'Py 'Pm

11

5.4. The tilling system 73

This specification of the flow distributor concludes the definition of the vessel
system. The next section discusses the specification of the filling lines.

5.4 The filling system

Each filling line consists of a bottle supply and release unit and a filling station.
A controller coordinates the various activities of these subsystems. Figure 5.4
shows the structure of a filling line, where B is the supplier of empty bottles, T
is the bottle transport and release process, F is the filling station, C is a valve,
and FC is the filling controller.

f

Figure 5.4: The filling system.

The specification of the filling line defines the subsystems and processes and
their relations:

syst F S(n : ? nat, Pc : ? real, r : ~void, f: ! bot,
l : ..1-liq, t: char, Vf :real) =

I[b,bf: bot, s,a: void, v: vol, d: dat, c: cmd, l1: liq
I FC(n, r, s, a,pc, v, c, d, Vf)

II B(b, t)
II T(b, bj, s, 10)
II F(bJ,J,d,lf,v,a)
II C(l,lf,c,a)
Jl

74 Chapter 5. The Bottle-filling System

We will now have a closer look at the different processes that comprise the filling
line.

Bottle supply

The bottle supply unit models an inexhaustible source of empty bottles. Each
filling line has its own supply unit that supplies bottles of the appropriate size,
indicated by the parameter z:

proc B(b:! bot, z: char)= I[*[b! newbot(z)]]I

New empty bottles are created by the function newbot that attaches the size
indication z to each bottle. The initial data is set for each new bottle by the
function newdat that is called from newbot.

func newbot(c: char) -+ bot =I[t (c, newdat(O.O, 0.0)} Jl

func newdat(p, v :real) -+ dat =I[t (p, v)]I

Bottle release process

proc T(b: ?bot, b1: !bot, s: ~void, n: nat)=
l[xs: bot*, x. bot
I XS := []
; *[len(xs) < n; b? x--+ xs := xs * [x]

~ len(xs) > 0; s"" --+ ,6.1.5; b1 !hd(xs); xs := tl(xs)

1
:11

The bottle release process is a conveyor belt with a limited capacity of n bottles.
As long as there is free space on the belt, a new bottle can be received on channel
b, which is then put in the list xs. Bottles are, after a request on channel s,
removed from the belt and thus removed from the list xs. After the bottles are
removed from the conveyor belt, they slide down a chute to the position under
the filling process. This takes 1.5 time units. The conveyor belt behaves as a
limited capacity FIFO buffer.

Filling process

The filling process models the actual filling of the bottles:

5.4. The filling system

proc F(b: ?bot, q:! bot, d:? dat, l: ..j,.liq, v: tvol, a:~ void) =
I[<p :flow, p: press, x :cone, Vb : vol, f :bot, lbl: dat
ll-o (cp,p,x}, v -o Vb

I v~ = <p, p = Patm
I * [b? f; vb == 0.0; a~; d? lbl; f := addlbl(f, lbl); q! f]

ll

75

A new empty bottle f is received through channel b. The bottle's contents is set
to empty (Vb := 0.0) and a signal is sent on channel a to indicate the arrival of
the new bottle. After the bottle has been filled, a label with the corresponding
data is received on channel d that is attached to the bottle with the function
addlbl. This function is defined as:

func addlbl(b: bot, d: dat) --t bot= I[t (lft(b), d)]I

Finally the bottle is removed from the filling process through channel q.

Filling Controller

The filling controller coordinates the different activities of a filling line. Its
specification is given by:

proc FC(n : ? nat, r, s, a :~void, p: ? real, v : t vol,
c: ! cmd, d: ! dat, VJ :real) =

I[k : nat, pHc : real, Vc : vol
IV -o Vc

I *[n? k
; *[k > 0 ---t p?pHc

; r~

l
11

; si"'Y; at'<.J

; c ! open ; \7 Vc ~ v 1 ; c ! close
; d! (PHc,vc)
; k k 1

After receiving an order on channel n to fill k bottles, the filling controller starts
filling. For each bottle, it first checks whether the pH in the vessel is within
range (p? pH c). Then it puts a new bottle under the filler by first triggering
the bottle release process (s ~) and then waiting for the bottle to arrive at the
filling position (a~). It opens the filling valve (c! open), waits until the bottle
is filled (\7 vc ~ VJ) and closes the valve (c! close). When the bottle is filled,
the label data is sent to the filling process to complete the filling (d! (PHc, Vc)).
After filling k bottles, a ready signal is sent back to the System Controller (r ~).

76 Chapter 5. The Bottle-filling System

5.5 Bottle wrapping

The bottle wrapping process or packaging machine is the last process in the
specification of the bottle-filling system. It collects the filled bottles that are
received from the filling lines. The specification of the packaging machine reads
as follows:

proc W(dw : ord, fx, jy : ? bot, bt : ! bot*) =
I[d: ord, nx, ny :nat, bx, by :bot*, b: bot
I *[bx := [) i by:=[]

]I

; dw ?d
; nx := nx(d); ny := ny(d)
; *[nx > 0; fx? b---+ bx := bx * [b] j nx := nx- 1

~ ny > 0; jy ?b---+ by:= by*[b]; ny := ny -1
]

; bt! bx *by

l

We use two lists of type bot* to hold the bottles, one for each size. :From the
order d, the two amounts of ordered bottles are extracted with the functions
nx and ny. The two counters n., and ny denote the number of small and large
bottles respectively that are to be received to complete the delivery for the
current order. Finally, the two lists are concatenated to a single list and sent to
the customer.

5.6 Summary

In this chapter, we have set Up a specification of a bottle-filling system. It
serves as an illustration for the use of the formalism x. First the system has
been identified and isolated from its environment. Relevant elements in this
environment are included in the specification to gain a closed system.

The different subsystems have been identified and a specification has been given
for each of the processes that comprise the subsystems. Data structures have
been defined for the representation of objects and substances that exist in the
system. The relations between elements in the specification are modelled with
channels between the model elements.

In the resulting specification, some processes have a discrete behaviour, some
a continuous behaviour, while others have a combined discrete and continuous
behaviour. The formalism provides the necessary means to create such a speci­
fication. The decision for a certain kind of behaviour is made at a process level.

5.6. Summary 77

Depending on this decision, the relations with the process' environment are de­
fined. When the relations have been defined, the structure of the specificatbn
can be set up. This implies that the formalism prescribes a bottom-up approach
when creating a specification. However, as illustrated in this chapter, also a
top-down approach can be applied. The structure of a system can be defined
using the graphical representation in which not all relations have to be defined
from the start. After the ~pecification of the identified model elements, the final
relations can be supplied to complete the specification.

The given objectives for the specification of the bottle-filling system are fictive
and vaguely formulated. Since a specification heavily depends on this problem
statement, many different specifications may qualify for the given objectives.
The presented specification is just one instance of the possible specifications.
The primary goal of this chapter is to illustrate the use of the formalism and
not to answer questions about the system.

78 Chapter 5. The Bottle-filling System

Chapter 6

Design Decisions

In Chapter 4, we introduced the formalism, named x, for the specification of
the dynamical behaviour of systems. The use of this formalism is illustrated
by an example of a bottle-filling system in Chapter 5. In this chapter, we
review the design process that led to the formalism X· A great number of design
decisions have been made during this process. Some of these design decisions
are self-explanatory while others may be based on aesthetic grounds. In this
chapter, a number of interesting design decisions are discussed and some possible
alternative designs are presented.

6.1 Basic concepts

The formalism is based on the idea that systems can be seen as to consist of
concurrently operating subsystems or processes. This approach is known as the
process-interaction approach. In earlier developments, this approach has proved
to be suitable for the description of the dynamical behaviour of industrial sys­
tems [Roo82b, Ove87, Wor91]. The major advantages of this approach are its
modularity and the possibility to deal with the parallelism in a system. The
approach originates from the field of discrete-event modelling techniques. A
similar approach has been used for the specification of continuous systems in,
for instance, Omola [And90]. In our formalism, we use the process-interaction
approach as the basis for the specification of both discrete and continuous be­
haviours, as well as a combination of the two.

The description of the discrete behaviour of a process is defined with a sequential
program. The parallelism in a system has been taken into account in the decom­
position of a system into (sequentially operating) processes. There is, therefore,
no need to define additional parallelism in a process. Furthermore, it is much

79

80 Chapter 6. Design Decisions

easier to think about sequential activities than about parallel activities when
modelling a process' behaviour.

The continuous behaviour of a process is defined by a set of differential and
algebraic equations. Although it is not included in the definition of the formalism
as yet, the use of partial differential equations is yet allowed. Nevertheless, in
the field of application, for which the formalism is designed, we do expect to
encounter systems that require an extensive use of partial differential equations.
Also, we made the restriction to differential equations for reasons concerning the
implementation of a supporting simulation tool.

6.2 Continuous channels and links

The relation, defined by a continuous channel, has been explained in the Section
'Variable linking' on Page 36. There are, however, a number of considerations
that led to this definition of a continuous channel. These are discussed in this
section.

A continuous variable of a process represents a physical quantity that is part of
the process' state. A single quantity may be used in different processes. Since
all variables are local variables, different variables are used to represent the same
physical quantity. This relation, between local variables of different processes,
is defined by a continuous channel connecting the processes involved. Note that
a channel is a one-to-one connection between two processes. Therefore, if more
processes are involved, more channels are needed to define the relations. Recall
the example of two connected vessels (see: Page 37):

syst S =
I[c: [m3 ·s-1] I A(c) II B(c) Jl

proc A(c1: t[m3 ·s-1]) =
I['PI: [m3 ·s-1], Vi: [m3]

I Ct -o 'Pl

IV{= -<Pl

ll

proc B(c2: ,J,[m3 ·s-1]) =
I[<P2: [m3·s-1], v2: [m3J
I C2 -o 'P2

1 v~ = 'P2

ll

6.2. Continuous channels and links 81

In this example, there is a liquid flow from vessel A to vessel B. The specifica­
tions of the processes A and B both refer to this physical quantity. In process
A the local variable £P1 is used for this purpose, in process B the variable 1p2 is
used. This relation between the variables 1p1 and 1p2 is defined by the channel c
in systemS.

Thus, a continuous channel defines a relation between a variable of one process
and a variable of another process. Both variables are continuous variables and
represent the same physical quantity. The relation, defined by a continuous
channel, is an equality relation. This means that the value of the first variable
is equal to the value of the second variable (£P1 = £P2). A physical quantity,
however, is more than just a numerical value.

The value of a quantity is expressed in a certain unit of measurement. In our
example, 1p1 is expressed in [m3 · s- 1). The unit of measurement in which a value
is expressed, defines the meaning of the value. A relation between two values
only makes sense if the values are expressed in the same unit of measurement.
Suppose that 1P2 were expressed in [l·s-1

) (litres per second), then the relation
1p1 = 1p2 is no longer valid. Therefore, to define a relation between two variables
as described above, we demand that both variables are expressed in the same
unit of measurement. To achieve this, we have introduced the unit type by
which the unit of measurement is defined. Furthermore, a channel can only be
connected to variables of the same type, thus ensuring that the units of the
connected variables are the same.

We can also resolve this problem by a unit transformation. If two variables are
to be related that are expressed in different unit~ of measurement, their values
must be transformed to the same unit of measurement. Only then, the variables
can be set equal to each other. In this solution, we need to define the unit
of measurement for each continuous variable. Furthermore, when relating two
variables by a channel, a transformation must be defined. The channel would be
an obvious choice to handle the transformation. For example, if 1p1 is expressed
in [m3·s-1) and £P2 in [l·s-1), this would lead to the relation 1000 x 1p1 = IP2·

Both solutions ~equire the definition of the unit of measurement of each con­
tinuous variable. The second solution, however, has the disadvantage of an
additional definition of a unit transformation. To keep our formalism as simple
as possible, we have decided in favour of the first solution.

The second issue in the representation of a physical quantity is the definition of a
direction. Some physical quantities have an associated direction that is essential
to their definition. We distinguish two kinds of quantities: scalar quantities and
vector quantities. The difference between the two kinds is that vector quantities
have a direction and scalar quantities have not. Examples of the first kind
are temperature, pressure, and mass. Examples of the second kind are force,
velocity, and all kinds of flows.

82 Chapter 6. Design Decisions

The direction of a vector quantity, is usually expressed in a properly chosen
coordinate system. Depending on the dimension of the coordinate system, we
can distinguish one, two, and three dimensional vector quantities. As with
the unit of measurement, an equality relation between two variables can only
be established if the associated directions of the quantities, represented by the
variables, are expressed in the same coordinate system. This problem is similar
to the earlier mentioned problem and, thus, we have two possible solutions. The
first is to ensure that variables, that are connected by a channel, are expressed
in the same coordinate system. The second solution is a coordinate system
transformation.

A coordinate system transformation requires the definition of the coordinate
system for each continuous variable. Furthermore, the transformation must be
defined within the connecting channel. This would surely increase the complexity
of variable and channel definitions in our formalism.

To apply the first solution, we must make a few restrictions to the physical
quantities that can be represented by variables. A channel is a one dimensional
connection between two processes. If we define a direction for a continuous
channel (as we have done for discrete channels), the channel can serve as a coor­
dinate system definition for the connected variables. Since a channel is declared
in the parameter list of a process, this coordinate system is locally available
to the process and its variables. In this way, no additional coordinate system
definitions or transformations are needed. Note that we restrict ourselves to
one dimensional vector quantities. However, we expect that higher dimensional
quantities are not likely to occur very often in the specification of industrial
systems.

6.3 Discrete channels

Discrete interactions can be defined with a synchronous or an asynchronous in­
teraction mechanism. With a synchronous mechanism, the process that performs
the interaction statement first, will be suspended until its communication part­
ner performs the counterpart statement. An asynchronous mechanism buffers
the send action until the other process consumes it with a receive action. The
sending process can never be suspended, the receiving process only if no send­
ing actions are currently buffered. Another difference is that a synchronous
mechanism can work in both directions, where an asynchronous mechanism is
uni-directional.

The two mechanisms are not mutually exclusive. A synchronous interaction
can be described using two asynchronous interactions. Consider the following
example:

6.3. Discrete channels

syst Sa=
I[p,q: void
I A(p, q) II B(p, q)

Jl

proc A(p : ??void, q : !!void) =
I[. p ?? . q II . 'II . . . ' . ~ ' .. '

proc B(p: !!void, q: ??void) =
I[... ; P !! ; q ?? ; · · · ll

83

The two channels p and q are asynchronous channels. In this example, an asyn­
chronous send action on a channel p is denoted by p !!, and a receive action by
p ?? . The synchronisation is initiated by an asynchronous communication on
channel p. This ensures that both processes are ready for a communication on
channel q, by which the actual synchronisation is established.

Also, an asynchronous interaction can be described by two synchronous interac­
tions and an additional process, a buffer. The buffer stores the interaction, sent
by the process D in the following example:

syst s. =
l[p,q: void
I D(p) II E(p, q) II F(q)
]I

proc D(p: ~void) =
l[... ;p~; ...]l

proc E(p, q : ~ void)
I[*[P~;q~]]l

proc F(q : ~ void) =
l[... ;q~; ...]l

q

Here, the buffer E is a one-place buffer. Only one interaction from process D
can be stored, so that, if process F does not perform an interaction, a second
interaction will suspend the process D. If more interactions should be buffered,
a buffer with an infinite capacity can be applied:

84

syst 88 =
I[p,q: void
I D(p) II E(p, q) II F(q)
11

proc D(p : "'void) =
I[···; p"'; ···ll

proc E(p, q : "'void) =
I[n: nat
I n:=O
i*[;p"'----7n:=n+1

Dn>O;q"'----7n:=n 1
]

11

proc F(q : "'void) =
I[···; q"'; · · · 11

Chapter 6. Design Decisions

q

If there exists a buffer in a system to hold synchronisation or communication
messages, it should be visible in a specification. Only then, the capacity of the
buffer can be estimated instead of making it infinite.

6.4 Connecting channels

All channels (discrete and continuous) are one-to-one connections. Other con­
nection mechanisms would be one-to-many, many-to-one, and many-to-many.
These mechanisms, however, have some disadvantages over one-to-one connec­
tions which are discussed next.

Suppose we have a discrete communication channel that is connected using a
one-to-many connection with other processes. The data, supplied by the sending
process, can be received by any of the receiving processes. It is not known in
advance which process will receive tbe data. We have thus modelled an implicit
non-deterministic choice.

Similar situations occur with many-to-one connections and many-to-many con­
nections. We aim at specifications in which the behaviour of a system is explicitly
described. We, therefore, refrain from using any form of implicit modelling. If

6.4. Connecting channels 85

in a system, a non-deterministic choice has to be made, we prefer to explic­
itly describe this choice in the behaviour of a process. This can be done using
a selective waiting command as described on Page 40. Moreover, one-to-one
connections are simpler in their definition and use and are therefore preferable
according to the requirements for our formalism.

In Section 6.2, we have discussed the meaning of continuous channels. We have
described how to use the direction of a channel to define a coordinate system for
the linked variables. This method can only be used with one-to-one connected
channels. Consider, for example, the following system:

syst S =
l[p:[m3·s-l]
I A(p) II B(p) II C(p)
Jl

proc A(p: t [m3]) =
I[a: [m3·s-l]
I p-o a

Jl

proc B(p: .J,. [m3 ·s-1])

I[b: [m3·s-1]
I p-o b

ll

proc C(p: .J,. [m3 ·s-1]) =
I[c: [m3·s-1]
I p-o c

11

In this example, we have defined a one-to-many connected channel p. The flow,
represented by variable a in process A is an outgoing flow. In the two processes
B and C we have two incoming flows, represented by the variables b and c
respectively. All three variables are linked to the channel p. For the semantics
of the relation, defined by this channel, we have two possibilities. The first is
that all variables have an equal value:

a=b=c

86 Chapter 6. Design Decisions

This is, however, physically impossible. It would imply that medium is created
when it flows from A to Band C.

The second option for the semantics is to split the flow a into two subflows b
and c. This results in a relation of the form:

a+b+c=O

The flows b and c are not properly defined in this way. The ratio between b and
c cannot be determined. The values of these two subflows are determined by
the characteristics of the pipes through which the medium flows. It depends,
for instance, on the construction of the T-fork. The behaviour of the medium
at the fork should be specified in a process. The latter solution is used in, for
instance, Dymola [Elm78].

Summarising, we can say that channels, connected to more than two processes,
tend to define a certain implicit behaviour. Because we prefer to specify the be­
haviour explicitly in processes, we restrict channels to be one-to-one connections
only.

6.5 Mixed behaviour

The behaviour of a process can be continuous, discrete, or a combination. In­
teractions between the continuous and discrete behaviour are specified within a
process. If we disallow a mixed behaviour in a process, the interactions between
continuous and discrete processes would have to be defined by channels. This
implies that more kinds of channels must be defined. For instance, we need to
have a channel to define a state-event, an interaction from a continuous to a
discrete behaviour. Another kind of channel defines the interaction from the
discrete behaviour to the continuous behaviour, a discontinuity.

Setting aside how such channels should be defined, they implicitly model a cer­
tain behaviour. We prefer to specify the behaviour in the processes and not
in the channels. Furthermore, the number of channel types would increase and
would make the formalism more complex. This can be avoided when allowing a
mixed behaviour in a process.

6. 6 The language

Many design decisions have led to the set of language constructs as described in
Chapter 4. Some of these decisions are discussed here.

6.6. The language 87

Keywords and symbols

We have decided to use symbols instead of keywords to define our language
elements. For example, to enclose the behaviour description of a process, we do
not use Pascal-like keywords like begin and end, but we use the symbols I[and
]I instead. Also, to delimit a guarded command we use the symbols [and].
Other symbols have been defined for operators like a for sampling a statistical
distribution and V' to denote state-events.

The use of symbols, as opposed to keywords, results in more compact descrip­
tions that are easier to comprehend. The use of keywords tends to make a spec­
ification more fuzzy because the keywords attract the attention of the reader.
This will distract the reader in perceiving the actual specification. To illustrate
this, compare the two following descriptions of a buffer process.

proc B(p:? any, q: ! any, n: nat) =
I[x :any, xs: any*
I XS := []

; *[len(xs) < n; p? x ---+ xs := xs * [x]
~ len(xs) > 0 ; q! hd(xs) ---+ xs := tl(xs)

l
:II

proc B(din p: any, dout q: any, par n: nat)
begin

end

var x: any, xs: list of any;
XS := [];

do len(xs) < n; p recv x then xs := xs * [x]
alt len(xs) > 0 ; q send hd(xs) then xs := tl(xs)
od

Observe that we have made an exception to use keywords to denote the beginning
of a process, a system, a type or unit definition, and a function. Here, we make
use of the earlier described effect that keywords have: focus the reader's attention
to the beginning of a specification.

Keywords are usually words derived from a natural language. We choose the
English language to derive our keywords from. Avoiding too large a dependence
on English is another reason for using as many symbols as possible. It makes
the formalism more accessible to non-English users. Note, that the keywords
that we use for systems, processes, and functions are four-letter keywords. We
abbreviated these words to make them more practicable and because the trans­
lations of these words in many natural languages only differ from their English
counterparts after the first four letters.

88 Chapter 6. Design Decisions

Types

A crucial point when making a model is how to represent the data that exists
in the model. Many different kinds of data should be representable in compre­
hensive data structures. As in programming languages, we use variables to store
the data of our models in. Furthermore, our specification language is a strongly
typed language which means that each variable is of a certain type. The types
we proposed for building data structures are tuples and lists.

For the sake of simplicity of concept, we only define these two structured types.
The first is intended to define a fixed data structure in which data of possibly
different types can be grouped. A list is a collection of data elements of one type
where the number of elements, contained in the collection, may vary.

The restriction to tuples and lists as the only structured types seems to be
adequate to specify the systems we aim at. Well-known data types, such as
arrays and objects or records, may easily be defined with these two types. In
Smalltalk-80 [Gol83], other, more flexible, data structures are defined. It is, for
instance, possible to create a list, containing elements of different types. We
refrain from defining such data structures. Moreover, a data structure, built
up of this kind of lists, should carefully be reconsidered. Such data structures
may lead to unpredictable or even erroneous behaviour due to the inability to
anticipate what data type to expect when manipulation such data structures.

Combining event statements

Although a guarded command seems to be a complex language construct at
first, it contributes to the requirement of a minimal number of primitives. It
provides the required control structures to describe the possible sequence in
which statements are performed. It allows simple selection and selective event­
handling (communication, time-outs and state-events), both guarded by Boolean
expressions, as well as repetition. A well appreciated advantage of the guarded
command is its ability to combine the different types of event statements in an
orthogonal manner.

The selective waiting command, a variant of the guarded command, combines
events, from which one is chosen for execution. There is yet another way of
combining events. Suppose we want to model an assembly workstation. In this
workstation, several parts are needed to assemble one product. The order, in
which the parts arrive at the workstation, is not relevant. The following part of
a specification illustrates this:

... ; x?p; y?q; ...

Note, however, that the process, that provides the assembly parts q is suspended
until the parts p is received. An additional language construct can be used to

6. 7. Functions and procedures 89

avoid such suspending of processes. In the next example, the two events are
combined in such a way, that each event must be executed once, but their order
is not prescribed:

.•. j X ? p, y ? q j ...

Although this language construct seems useful, we refrain from including it in
the formalism. The aforementioned situation does not seem to occur frequently
enough to define an additional language construct for it. Moreover, it can be
constructed with a guarded command as follows:

... ; [x?p---ty?qOy?q---tx?p]; ...

Stochastic behaviour

Statistical distributions form the basis for the specification of non-deterministic
discrete behaviour. Although we give a list of predefined distributions in Appen­
dix B, this list may freely be extended to one's needs. The formalism provides a
type (dist) and an operator (0') on this type to draw a sample from a distribution.

Where the creation of a distribution is defined by a function, taking a sample
from a distribution cannot be defined by a function. A function must give
the same result each time it is called with the same set of arguments. This is
normally not the case when drawing a sample from a distribution. Therefore,
we defined an operator for this purpose at the cost of an additional primitive in
our specification language.

6.7 Functions and procedures

The formalism provides a means to define functions. These functions can be
used for data manipulation only, not for communication with other processes.
Also, we do not allow the definition of procedures. Procedures can be useful in
creating various abstraction levels within a process specification. On the other
hand, if procedures are used, the specification of a process is distributed over
different parts of a specification. Without procedures, a process is specified in
one single process description.

In our experience, process specifications tend to be rather small. They easily fit
on a single letter size sheet of paper. FUrthermore, the structures of the processes
we came across appear to be straightforward and do not require procedural
abstraction to make them easier to comprehend. For the time being, we refrain
from including a form of procedural abstraction in the formalism. It would

90 Chapter 6. Design Decisions

make the formalism more complex and it does not increase its applicability or
usability.

The one form of abstraction within a process specification we do allow is the ab­
straction of data manipulation. Particularly control processes incline to largely
consist of data manipulation statements. The use of functions for this purpose,
can help to enlighten the structure of a process. By abstracting from the data
manipulation, the communication of a process becomes more distinguishable.
Furthermore, the data, handled by a function, is defined with global data types.
It therefore seems justified to define global functions that act upon these data
types. Moreover, we recommend to arrange the data type definitions and their
accompanying functions close together.

Chapter 7

The State-Transition
Controller: A Case

In this chapter, we present a case in which the formalism is applied to the
development of a control system. The case is adopted from Van de Kamp and
Voorbraak [Kam95]. The controlled system is a hot water tank. From this tank,
containers are filled with water that has a certain temperature. The water tank
is similar to the vessel, in the example described in Chapter 3 and Chapter 5.
The difference is that, in the water tank system, not the pH value of the liquid
is controlled but the temperature instead.

The formalism is used in several stages in the development of the control system.
First, the hot water tank system and its environment are identified and a model
of this system and its control system is set up. The behaviour of the control
processes depend on the chosen control concepts. In [Kam95], several control
concepts are elaborated, such asP- and PI-controllers, sliding-mode controllers,
fuzzy logic controllers, state-transition controllers, and neural-net controllers.
In this chapter, we only use one control concept: state-transition control. After
the model has been completed, the control system is tested, using a simulator.
Finally, it is used in the real-life system to control the water tank system.

A schematic diagram of the water tank system is shown in Figure 7.1. It shows
the water tank and its control system. Two sensors, marked T and L, measure
respectively the temperature and the level of the water in the tank. The first
task of the control system is to keep both temperature and level within given
limits. The temperature and the level can be adjusted by supplying hot or cold
water. A surplus of water can be drained off. The hot water, cold water and
drain flows are controlled by opening and closing the appropriate valves. The
second task of the control system is to open and close the filling valve to fill the
containers.

91

92 Chapter 7. The State-Transition Controller: A Case

hot

CONTROL
cold

II\ water tank

drain

Figure 7.1: Schematic diagram of the water tank system.

From the schematic diagram, two subsystems can be identified: the physical
system and the control system. The physical system consists of the water tank,
the valves in the input and output streams, and the two sensors. The interactions
between the two subsystems consist of the sensor information about the current
temperature and level in the tank and the actuator information for controlling
the valves. The model W of the system reflects this subdivision in subsystems
in:

syst W =
I[a : (int4

), s : (int2
)

I C(s, a) II P(a, s)
ll

The physical system, the water tank and all its fittings, is denoted by P. C
represents the control system. The interactions between the water tank and

7.1. The controlled system 93

its control system are modelled by two bundles, one for the sensor information
(bundle s), and one for the actuator signals (bundle a).

7.1 The controlled system

The controlled system is the physical part of the water tank system. We consider
the suppliers of hot and cold water, as well as the drain, to be part of the physical
system. The model of the hot water tank is depicted in Figure 7.2.

Figure 7.2: The water tank system P.

In this figure, the valves are modelled by the processes V. L are water suppliers
and D are processes that draw water form the tank, e.g. the drain and the
containers. The sensors are named ST and S£. Furthermore, for the various
channels, we use the indexes h and c for respectively hot and cold water streams,
an index d is used for streams associated with the drain, and an index f is used
for the streams concerning the filing of containers.

The interactions with the control system are modelled by two bundles. The
actuator information controls the valves and are grouped in the bundle v. Since
there are four valves, this bundle contains four channels, indexed 0 through 3.
The sensor information is passed to the controller by two channels in the bundle
tl.

94 Chapter 7. The State-Transition Controller: A Case

Before the model of the water tank system can be given, a number of types are
defined:

unit N

type flow = [m3 ·s-1]
press= [N·m-2]

temp= [K]
liq = (flow x press x temp)
level = [m]

FUrthermore, the following constants are defined that are used in the specifica­
tion of the hot water tank system:

const At = 0.036
Ph = 1.25 ·105

Pc = 4.30·105

Po.tm = 1.03 ·105

Th = 333
Tc = 295
Tv = 0.1
a = 8·10-9

tank cross section
hot water pressure
cold water pressure
atmospheric pressure
hot water temperature
cold water temperature
valve opening/dosing time

] characteristic value
for the valves

NT = 2 -- number of temperature boundaries
N L = 2 -- number of level boundaries
RT (307.75, 308.25) -- ([K]NT) temperature boundaries
RL = (0.0475,0.0525) -- ([K]NL) level boundaries

The constants NT, NL, Rr, and RL are used in the state-transition controller.
Their meaning is described in Section 7.2. The model of the physical system, as
depicted in Figure 7.2, is represented by:

syst P(v: ?(int4
), tl: !(int2

), kr,kL: nat)
I[sh, Sc, sd, sf, lh, lc, ld, l f : liq, Ot :temp, 01 : level
I T(lh, lc, ld, l f, Ot, Ot, At)
II L(sh,Ph, Th)
II L(Sc.Pc,Tc)
II V(ld,Sd,v.2,a,T,)
II v(l,,s,,v.3,a,T,)
II Sr(ot,tl.O,kT,Nr,Rr)
11

II V(sh,lh,v.O,a,Tv)
II V(sc,lc,v.l,a,Tv)
II D(sd,Patm)
II D(sJ,Patm)
II SL(O!, tl.l, kL, NL, RL)

7.1. The controlled system 95

Control valves

The control valves are similar to the valves used in the bottle-filling system
of Chapter 5. However, the opening and closing of the valves does not occur
instantaneous. It takes Tv seconds to open or close a valve. This is modelled
by the second (guarded) differential equation in the following specification of a
control valve:

proc V(h: .j..liq, b: tlio., c: ?int, a,rv: real)=
I[<p: flow, Pl,P2: press, T: temp, r: [], s: int
Ill-<> (<p,pl,T), l2-<> (<p,p2,T)
I <p r x a X (PI - P2)
, [r ;;:=: 0.0 A r :::;; 1.0 ---+ r 1 = sfrv

fl r :::;; 0.0 A s :::;; 0.0 ---+ r 1 = 0.0
U r ;;::: 1.0 A s ;;:=: 0.0 ---+ r' = 0.0

l
l*[c?s]
ll

Note, that we assume p1 ;;::: P2 at all times. Otherwise, the specification should
be changed as described on Page 69.

Water supply and d1ain

The water supply (L) and drain (D) processes are self-explanatory and are
specified with:

proc L(l : t liq, p8 , t : real)
I[<p: flow, p: press, T: temp
ll-<> (<p,p, T)
I <p2 a X (Ps p), T = t
Jl

proc D(l : .j..liq, Ps :real)=
I[<p : flow, p : press, T : temp
jl-<> (<p,p,T)
I p=ps

ll

Water tank

The water temperature decreases due to heat losses to the environment of the
tank. Three kinds of heat losses are distinguished: convection, conduction, and

96 Chapter 7. The State-Transition Controller: A Case

radiation. The influence of radiation on the water temperature is considered to
be insignificant and thus not included in the model. For the remaining two kinds
of heat losses, resistance factors are introduced.

The continuous behaviour of the hot water tank is described by the mass and
energy balance equations:

A X h' = 'Ph + 'Pc - 'Pd- 'PI

A X h X T' = 'Ph X (Th - T) + 'Pc X (Tc - T) + 'Yd X h + 'Yv X (Te - T)
Cp X p

in which:

'Ph hot water flow Th hot water temperature

'Pc cold water flow Tc cold water temperature

'Pd drain water flow T tank water temperature

'PI outlet water flow Te environment temperature

h liquid level h water level in the tank

A tank cross section g accelaration of gravity

Cp heat capacity 'Yd heat resistance factor for conduction

p specific mass 'Yv heat resistance factor for convection

The specification of the water tank reads as follows:

proc T(lh,lc: ..(.liq, ld,h: tliq, l: tlevel, t: ttemp, A: real)=
I['Ph, 'Pc, cpd, 'Pb :flow, Ph,Pc,P: press, Th, Tc, T: temp, h: level
I lh --<> (cph,Ph, Th), lc--<> (cpc,Pc, Tc), ld--<> (cpd,p, T), h --<> (cpb,P, T)

t --<> T, l --<> h
A X h' = 'Ph + 'Pc - 'Pd - 'Pb

'Yd X h + 'Yv
, A X h X T' = 'Ph X (Th - T) + 'Pc X (Tc - T) + X (Te - T)

Cp X p

:11

Ph = Patm
Pc = Patm
p = Patm + p X g X h

The behaviour of a sensor, that measures the level or the temperature of the
water in the tank, depends on the kind of control system. In the next section,
we describe the control system for the hot water tank, using a state-transition
control concept. Therefore, we postpone the specification of the sensors till the
control concepts are discussed.

7.2. The control system 97

7.2 The control system

The control system we use in this example is a state-transition controller [Pre93].
This controller generates a control signal whenever a state-transition occurs. A
state-transition occurs when a state variable crosses a bvundary. For each state
variable, a number of such boundaries are defined, resulting in a discretized state
space.

For each state transition, a control signal is defined. All possible control signals
for all possible state transitions are recorded in a so-called control logic table.
Together with the choice of state boundaries, the design of such a table deter­
mines the quality of the controller. A number of design techniques for control
logic tables are discussed in [Pre93, Kam95].

The control structure

The control system has two input values: the level and temperature of the water
in the tank. Furthermore, the control system generates four output signals: one
for each valve in the system. The control of the hot water tank system involves
three phases. In the first phase, the temperature and the level are adjusted to
meet their set-points. This phase is referred to as the start-phase. In the filling­
phase, containers are filled with water of a certain temperature. After filling one
batch of containers, a new batch must be supplied. Meanwhile, no containers
can be filled, and the control system is said to be in its rest-phase.

Figure 7.3: The water tank control system C.

The specification of the control system shows two subcontrollers and a super­
visory controller. The task of the first subcontroller, the tank controller Cr, is
to keep the level and temperature close to their set-points. This subcontroller
controls three of the four valves: the hot and cold water supply valves, and the

98 Chapter 7. The State-Transition Controller: A Case

drain valve. The second subcontroller, CB, handles the filling of the containers
by opening and closing the filling valve. The supervisory controller C M coordi­
nates the activities of the underlying sub controllers. The structure of the control
system Cis given by Figure 7.3. The specification of the control system is given
by:

syst C(tl : ?(int2
), v : !(int4)) =

I[qs,qf,qr,qb: void
I CM(qs,qf,qr,Qb) II CB(qb,v.3, 12)
II Cr(Qs, qf, qr, tl.O, tl.1, v.O, v.1, v.2, 1, 1)

ll

The interactions between the subcontrollers and the supervisory controller are
explained on Page 103 where the model of the supervisory controller is discussed.

State-transition controller

A state-transition controller generates a control signal whenever a state tran­
sition occurs. A state transition is an event that occurs when a state variable
crosses some boundary. The state space of a system is discretized by dividing
the domain of each state variable into a number of subdomains. For a variable
x, we define a set B of n state boundaries such that:

B = { bi : 1 ::;; i < n : bi-1 < bi}

The domain of a variable x, therefore, has n + 1 subdomains. We define the
discrete state variable x to represent the discrete state in which x resides such
that:

where:

do (-oo,bo]
di = (bi-1, bi] ; 1 ::;; i < n
dn = (bn , +oo)

In our example of the water tank, the state variables, that we monitor for state
transitions, are the temperature and level of the water in the tank. The state
space, represented by these variables, can be discretized as illustrated in Fig­
ure 7.4. We define two boundaries for both the temperature and the level,
resulting in a 3 x 3 state space. A discrete state is denoted by the tuple (T, L),
where T is the temperature and L is the level.

7.2. The control system 99

Figure 7.4: Discretized state space of the water tank system.

The control signal, generated for each state transition, consists of three output
values, denoted by the tuple (h, c, d), where h is the control value for the hot
water valve, c controls the cold water valve, and d controls the drain. The
control values depend on the phase in which the tank controller operates. For
the start-phase and rest-phase, the control values are identical. The values for
the filling-phase deviate slightly from those of the other two phases.

1 -1 1 -1 -1 1

(0,2} (1,2) (2,2}
1 -1 1 -1 -1 1

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1

1 1 1 1 1 1
1 -1 0 -1 -1 -1

(0, 1) (1, 1) (2,1}
1 -] 0 -1 -1 -1

1 1 0 0 -1 -1
-1 -1 0 0 -1 -1

1 0 -1 -1 -1 -1
1 -1 -1 0 0 -1

(0,0) (1, 0) (2,0)
10-1 -1 0 -1

Figure 7.5: Control values for the start-phase and rest-phase.

In Figure 7.5, the control values for the start-phase and the rest-phase are given.
These values are derived from [Kam95]. A value 1 denotes opening a valve, the
value -1 denotes closing a valve, and the value 0 means that the current control
value for the valve does not change. Now suppose, the state changes from (1,0)
to (0,0}. This implies that the temperature is decreasing. Due to this state
change, the controller determines a new control action. From Figure 7.5, we can
derive that the new control action is defined by the tuple (1,0, -1}. This means
that the hot water valve is opened (denoted by the value 1), the state of the

100 Chapter 7. The State-Transition Controller: A Case

cold water valve does not change (control value 0), and the drain valve is closed
(control value -1).

The control values for the filling-phase are given in Figure 7.6.

-1 -1 -1 -1 -1 -1

(0,2} (1,2} (2,2}
-1 -1 -1 -1 -1 -1

1 1 0 -1 -1 -1
-1 -1 0 -1 1 1
-1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

(0,1} (1' 1) (2, 1}
1 -1 -1 -1 -1 -1

1 1 1 1 -1 -1
-1 -1 1 1 1 1
-1 -1 -1 -1 -1 -1

1 -1 -1 -1 1 -1

(0,0} (1, 0} (2,0}
1 -1 -1 -1 1 -1

Figure 7.6: Control values for the filling-phase.

For the tank controller to determine the proper control values, they must be
represented in a data structure, called the control logic table. For each phase, we
distinguish four situations: the temperature increases or decreases, or the level
increases or decreases. The control logic table for an increasing temperature in
the start-phase is given by:

C:f8 =(((1,-1,-1),(0, 0,-1}}
' ((1,-1, 0),(-1,-1,-1}}
' ((1,-1, 1},(-1,-1, 1}}
)

The table C:f8 contains the control actions associated with the left-to-right ar­
rows in Figure 7.5. The first line in the table represents the control values for
the situation in which the temperature decreases while the level is in state 0.
Similarly, the second line of the table is associated with a changing temperature
while the level is in state 1 and the last line of the table is associated with level
state 2. Note that the table is up-side-down compared to Figure 7.5.

We have eight of these control logic tables, four for each phase. The index T is
used for a changing temperature, the index L for a changing level. Furthermore,
the tables for the start-phase are indexed with an Sand the table for the filling­
phase with an F. Finally, a + denotes an increasing state, a - denotes a
decreasing state.

7.2. The control system

Cis= (((1, -1, -1}, (0, 0, -1)}

' ((1, -1, 0),(-1,-1,-1})
,((1, -1, 1),(-1,-1, 1)}
}

cts ({(1, 1},(-1,-1, 1))
' ((0, 0,-1),{-1,-1, 1))
, ((-1,-1,-1),(-1,-1, 1})
)

Cj F = ({ (1, -1, -1)' { -1, 1, - 1))
' {(1, -1), (-1, -1, -1))
, ((-1, -1, -1}, (-1, -1, -1)}
)

ctp=<<< 1,-1,-1),(1,-1,-1))
' ((1, 1,-1),(0, 0,-1))
'((-1, 1,-1),(-1, 1,-1))
}

101

c:rs =< ((1, 0,-1),(-1, 0, -1)}
, ((1, -1, 0}, (-1, -1, -1})

' ((1,-1, 1), (-1, -1, 1)}
}

C£s = (((1, -1, 0},(-1,-1, 1))
,((0, 0,-1),(-1,-1, 1))
,((-1}, (-L -1, 1}}
)

c:;.F =< << 1,-1,-1),(1, 1,-1))
' ((1, 1, -1), (-1, -1, -1)}
'((-1,-1,-1), 1,-1,-1}}
)

C£p = (((1, -1, -1), (1, -1, -1))
' ((1, 1,-1),(-1,-1,-1))
'((-1, 1,-1),(-1, 1,-1})
}

We combine the corresponding tables for an increasing and a decreasing state
into one tuple, which results in the following four control logic tables:

The function ctrl is defined to obtain the proper control values for a given state
transition in a certain control phase as:

func ctrl(p, s: char, t, l: nat, c: int) =
I[c := sgn(1 - c)
; [s = T ---T t := min(t, t- c)

; [p F ---T tCTp.c.l.t
~ p =f. F ---T tCTs.c.l.t
l

~ s =f. T ---T l := min(l, l -c)

l
ll

; [p = F ---t tC£p.c.t.l
D P =f. F ---T tCLs.c.t.l
l

102 Chapter 7. The State-Transition Controller: A Case

The argument p denotes the current phase of the tank controller (S for start­
phase, R for rest-phase, and F for filling-phase). The state that caused the state
transition is denoted by s, where the value T represents a temperature change
and L a change of the level. The values t and l represent the 'old' state of
the system, before the state transition occurred. If the state, denoted by the
parameter s increases, the parameter c has the value 1. Otherwise, it has the
value -1. For example, if the temperature decreases from state {1,0} to {0,0}
during the start-phase, the following expression delivers the new control action
for this state transition:

ctrl(S,T,1,0,-1)

Domain observers

A domain observer has a continuous input and a discrete output. The input is
transformed into a range index. The range boundaries are given in the parameter
B. An output is generated only when an index change occurs. An output -1
denotes a decrease of the index, and a value + 1 denotes an increase. The range
index lies between 0 .and n, where index i denotes an input value less than
boundary value B.i, and index n denotes values greater than B.(n 1). The
observer is initialised with the index k in the following specifications:

proc Sr(a:.!. temp, b:! int, k, n: nat, B: (realn)) =
I[x : temp, i : nat
I a--ox

1 i == k
;*[i>O;Vx~B.(i 1) ---ti:=i-1 ;b!-1

~ i < n; \7 x ~ B.i ---7 i := i + 1 ; bl +1
]

:11

proc SL(a: .!.level, b: lint, k,n: nat, B: {realn}) =
I[x : level, i : nat
la--<>x

1 i := k
;*[i>O;Vx~B.(i 1) ---ti:=i-1 ;b!-1

~ i < n; \7 x ~ B.i ---7 i := i + 1 ; b! + 1

l
Jl

In our example, we have two input values: temperature and level of the water in
the tank. Therefore, we define a domain observer for each type of input variable.
They differ only in the type of the input.

7.2. The control system 103

The water tank controller

In the previous section, we have presented the control concepts for the tank
controller. We can now complete the specification of the control system by
describing the three control processes, mentioned in Section 7.2.

Supervisory controller

The supervisory controller eM activates and deactivates the two subcontrollers
and determines the phase in which the tank controller operates.

proc CM(qs,qf>qr,qb: ~void)=
I[qs ~ j qs ~ ; qb ~
; *[Qf ~ i qb ~; Qr ~ i qb ~]

ll

A synchronisation on channel q8 initiates the start-phase. When both level
and temperature are at their respective set-points, a second synchronisation on
channel q8 ends the start-phase. The filling of containers is initiated by a signal
on channel qb, activating the filling controller C B. While filling the containers,
the tank controller is put in its filling-phase operation by a signal on Qf· After
completion of a. batch of containers, the filling controller CB is deactivated by
a signal on channel qb. Now the supervisory controller ends the filling-phase
and starts the rest-phase of the tank controller Cr by synchronising on channel
qr. The rest-phase ends with a signal on channel Qb, which starts the filling
of containers again. The supervisory controller alternates between filling-phase
and rest-phase. Note, that in th:"! filling-phase, both the filling controller CB
and the tank controller Cr are active, while in the rest-phase, only the tank
controller is active.

Filling controller

The filling controller handles the filling of the containers. The containers are
supplied in a batch, consisting of n containers. It takes Ifill seconds to fill a
container. If a container has been filled, it is replaced by the next container
from the batch. It takes ltr seconds to replace the filled container by an empty
one. Although, during this period, no containers are being filled, the supervisory
controller remains in the filling-phase. After all containers of a batch have been
filled, a new batch must be supplied. The exchange of batches takes Icon seconds.
During this period, the supervisory controller is in its rest-phase. The filling
controller is represented by:

104 Chapter 7. The State-Transition Controller: A Case

proc CB(q: ~void, v: ! int, n: nat) =
I[i: nat
lv!-1
; *[q~

; i := n
; * [i > 0 ----+ V! + 1; f:l. Tfill; V! -1; f:l. Ttr; i := i - 1 1
; q~

; f:l. Tcon

1
11

Initially, the valve is closed (v ! -1). Then, the controller makes itself active (q ~)
and starts filling n containers. When the containers are filled, the controller
deactivates (q~) and a new batch is supplied (!:l.rcon).

Observe that we did not define a data structure to model the containers. The
objectives for this example are to design a control system for the water tank
system and it is therefore sufficient to model the various activities by delay
statements.

Tank controller

The tank controller has three modes of operation, one for each phase. The
current mode of the controller is recorded in the variable m. It is set to S,
denoting the start-phase, when a synchronisation on channel q8 occurs. The
initial control values are assigned to y and sent to the valves.

proc Cr(Qs,Qj,Qr: ~void, t,l: ?int, vh,Vc,Vd: !int, Ts,Ls: int) =
I[y: (int3

), m: char, T, L: nat, c: int
I Qs ~
;m:=S
; y := (1, -1, -1)
; Vh! y.O; Vc! y.1; Vd! y.2
; *[t? c----+ y := map(ctrl(m, T, T, L, c))

:11

; Vh! y.O; Vc! y.1; Vd! y.2
; T:= T+c

l? c ----+ y := map(ctrl(m, L, T, L, c))
; Vh! y.O; Vc! y.1; Vd! y.2
; L := L+ c

11 m = S 1\ T = Ts 1\ L = L 8 ; Qs ~ ----+ m := F
11 m = F ; Qr ~ ----+ m := R
11 m = R ; q1 ~ ----+ m := F

l

7.3. Summary 105

State transitions are received through the channels t and l. A new set of control
values is computed by the function ctrl and mapped on the current values with
the function map:

func map : (x, y : (int3)) -+ (int3)

I[z: (int3
), i: nat

1 i := o
; *[i < 3 -+ [x.i = 0 -+ z.i y.i

;tz
ll

U x.i :f:. 0 -+ z.i x.i
]

; i := i + 1

This function changes the current values to the new values, unless a new value
is equal to 0. In that case the current value is preserved.

The mode chanbes of the tank controller are accomplished by synchronising on
the channels q8 , qf, and q,.. Note that we only switch from start-phase to filling­
phase if the current state is the desired state, denoted by the parameters T8 and
Ls.

7.3 Summary

In this chapter, we have demonstrated how the formalism x can be used in the
design process of a control system for a hot water tank. We have made a model
of th€ physical system that represents the relevant aspects, needed to develop
the control system. It contains the behaviour of the water tank and the valves
that can be influenced by the control system. Next, the processes that model
the relevant aspects of the environment of the system are included in the model.
These relevant aspects are the supply and drain of water. We have not included
a model of the containers and their movements because they are not assumed
relevant for the control system of the water tank.

The design of the control system starts with the definition of the interactions
with the controlled system. Furthermore, the structure of the control system is
defined. The behaviours of the processes in the control system depend on the
chosen control concepts. We have presented state-transition control as a means
to control the level and temperature of the water in the tank. A data structure
has been developed that can be used in the specification of a state-transition
controller. Also, the functions to manipulate these data structures have been
defined.

106 Chapter 7. The State-Transition Controller: A Case

Figure 7.7: Test set-up of the water tank [Kam95].

Finally, the control processes are specified, based on the chosen control concepts.
At this point, we have yet no means to test the developed control system. How­
ever, van de Kamp and Voorbraak [Kam95] have built a preliminary x simulator
that is used to evaluate the control system design. For this purpose, a test set­
up (Figure 7.7) was made to test the controllers in a real-life environment. We
refer to this work for detailed information about the performance of the state­
transition controller for the water tank system.

Chapter 8

Conclusion

The ever increa~ing complexity of industrial systems demands for more sophis­
ticated techniques to support the design process of these systems. In this dis­
sertation, we present the formalism x for the specification of the dynamical be­
haviour of industrial systems. The formalism is based on the process-interaction
approach in which a system is viewed as a collection of concurrently operating
and interacting components, called processes. Each process models the behav­
iour of a system component. The formalism x provides means to specify this
behaviour a,s a continuous or as a discrete behaviour. Moreover, the behaviour
can be specified as a combination of continuous and discrete behaviour.

Hierarchical models are achieved by grouping processes into a system, which in
its turn can act as a process. A system can be grouped with other processes and
systems to form a new system. This hierarchy enables the decomposition of a
system into smaller subsystems.

Interactim;s between processes are defined by channels. Different channels are
defined for different kind of interactions. In this way, the specification of a
process can he made independent from other processes in the model. The chan­
nels define an interface to the environment of the process, thus, allowing the
process' behaviour to be specified without any knowledge of the behaviour of
other processes. This modularity is one of the requirements for the specification
formalism.

In our approach to the development of the formalism, we consider continuous and
discrete behaviours as equally important. The interactions between continuous
and discrete behaviours are specified within a process and not in channels. Only
two language constructs are defined to specify these interactions: state-events
and guarded equations. This approach has led to a formalism that allows an
easy and straightforward specification of mixed continuous and discrete systems.
We consider this one of the major advantages of the formalism X·

107

108 Chapter 8. Conclusion

The language, used by the formalism to represent models, is based on the
guarded command language for the discrete behaviour descriptions and on dif­
ferential and algebraic equations for the continuous behaviour descriptions. The
language consists of a symbol set and the definition of the semantics. The lan­
guage, used for the representation of a model, influences our perception of the
system that we model. If a modelling language is only capable of representing
sequential activities, a modelling engineer, thinking in terms of this language,
will not perceive any existing parallelism in the system. It is therefore necessary
that a language is suitable for the application area in which it is used, other­
wise potentially important information will be lost. Furthermore, in designing
a language, it is important to define enough symbols to be able to represent
what needs to be represented. On the other hand, too many symbols make the
language hard to learn and use. The best way to resolve this dilemma is to let
the language evolve to fit to its application area.

The formalism X is the next generation in a series of specification languages and
tools for industrial systems. The evolution process started with SOLE [Roo82a]
and proceeded with D86 [Mun86], S84 [Roo84] and ROSKIT [Ros85] to Process­
Tool [Wor90]. This evolution process does not stop with X· Using the formalism
will reveal new insights and defects that will lead to improved formalisms in the
future. Nevertheless, there is a difference between x and its predecessors. The
formalism x is not developed as a simulation tool and is thus independent of a
programming language. It is meant to initiate the development of a calculus,
dedicated to the design of industrial systems and their control systems.

We recommend that future research will be carried out in two directions. From
the use of the predecessors of x, we can conclude that a supporting simulation
tool is indispensable to the application of the formalism. Recently, a simula­
tion tool has been developed that supports the simulation of discrete behaviour
models [Nau95]. This project will be continued and must lead to the implemen­
tation of a simulation tool that supports both discrete and continuous behav­
iours. Eventually, making the specifications executable, allows the specification
of control systems to be used as the real-time control system in the real system.

In the development of a simulation tool, special attention must be paid to the
specification of experiments that are performed on models. A formal specifi­
cation of an experiment serves as a documentation and discussion object, and
enables the repeatability of an experiment. Anticipating these developments, we
have not included a means to initialise the state of a process. Initialisation is part
of the initial value problem associated with performing simulations. The initial
state of a system should therefore be defined in the experiment specification.

More research should be carried out to develop our formalism into a calculus. A
calculus provides means to reason about a specification and to prove properties
of the specification. For example, it would be useful to prove that a specifi­
cation is free of deadlock, or to prove that certain states of a system cannot

109

be reached [Bae90]. Some research has already been done on this subject by
Verreijken [Ver!cl5].

A specification formalism, like x, is a tool to assist the systems engineer in
designing industrial systems. It formalises the way in which models are rep­
resented. It does not state how to build a model. Nevertheless, a formalism
influences our perception of systems. The use of the formalism x changes the
way in which we think about industrial systems. Ultimately, this should lead to
better designs.

110 Chapter 8. Conclusion

Bibliography

[Ake78]
J .E. van Aken,
On the Control of Industrial Organizations.
Dissertation. Martinus Nijhoff Social Sciences Division, Leiden, 1978.

[And90]
M. Andersson,
Omola- An Object-Oriented Language for Model Representation.
Thesis. Lund Institute of Technology, Lund, 1990.

[Are94a]
N.W.A. Arends, J.M. van de Mortel-Fronczak and J.E. Rooda,
Continuous Systems Specification Language.
In: CISS First Joint Conference of International Simulation Societies Pro­
ceedings. Society for Computer Simulation, Zurich, 1994, (pp. 76-79).

[Are94b]
N.W.A. Arends, J.M. van de Mortel-Fronczak and J.E. Rooda,
Specification Language for Continuous Systems .
In: Applied Modelling and Simulation. Proceedings of the lASTED Interna­
tional Conference, Lugano, 1994.

[Bee95]
D.A. van Beek, S.H.F. Gordijn and J.E. Rooda,
Integrating Continuous-time and Discrete-event Concepts in Process Mod­
elling, Simulation and Control.
In: Proc. of the First World Conference on Integrated Design and Process
Technology, Society for Design and Process Science, 1995, (pp. 197-204).

[Bae90]
J.C.M. Baeten and J.A. Bergstra,
Process Algebra.
Cambridge Tracts in Theoretical Computer Science 18, Cambridge University
Press, 1990.

111

112

[Ber68]
L. von Bertalanffy,
General System Theory.
George Braziller Inc., New York, 1968. (Revised edition.)

[Bur93]
A. Burns and G. Davies,
Concurrent Programming.

BIBLIOGRAPHY

International Computer Science Series. Addison-Wesley, Amsterdam, 1993.

[Bra93]
L.E.M.W. Brandts,
Design of Industrial Systems.
Dissertation. Eindhoven University of Technology, Eindhoven, 1993.

[Coh86]
B. Cohen, W.T. Harwood, M.l. Jackson,
The Specification of Complex Systems.
Addison-Wesley, Amsterdam, 1986.

[CSS67]
The SCi Continuous System Simulation Language (CSSL).
In: Simulation, 9(6), 1967, (pp. 281-303).

[Dij74]
E.W. Dijkstra,
Guarded Commands, Nondeterminacy and a Calculus for the Derivation of
Programs.
Nederlands Rekenmachine Genootschap, 1974.

[Dub]
W. Beitz and K.H. Kuttner,
Dubbel. Taschenbuch fiir die Machinenbau. 14th revised edition.
Springer-Verlag, Berlin, 1981. (In German.)

[Elm78]
H. Elmqvist,
A Structured Model Language for Large Continuous Systems.
Dissertation. Lund Institute of Technology, Lund, 1978.

[Gai79]
B. Gaines,
General Systems Research: Quo Vadis.
In: General Systems Yearbook, 24, 1979, (pp. 1-9).

BIBLIOGRAPHY

[Gof91]
M.P. Jones,
An Introduction to GOFER.
1991.

[Gol83]
A. Goldberg and D. Robson,
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Massachusetts, 1983.

[Hoa85]
C.A.R. Hoare,
Communicating Sequential Processes.
Prentice Hall, Englewood-Cliffs, New York, 1985.

[Hoo91]
J. Hoornan,
Specification and Compositional Verification of Real- Time Systems.
Springer-Verlag, Berlin, 1991.

[Kam95]
G.F.J.W. van de Kamp and E.M.M. Voorbraak,

113

Control of Hybrid Industrial Systems. A Case: The Liquid Tank.
Postgraduate Thesis. Stan Ackermans Instituut, Eindhoven University of
Technology, Eindhoven, 1995.

[Lee74]
A.C.J. de Leeuw,
Systeemleer en organisatiekunde. Een onderzoek naar de mogelijke bijdragen
van de systeemleer tot een integrale organisatiekunde.
Stenfert Kroese, Leiden, 1974. (In Dutch.)

[Mel86]
S.J. Mellor and P.T. Ward,
Structured Development for Real- Time Systems.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986.

[Min65]
M. Minsky,
Models, Minds, Machines.
In: Proceedings IFIP congres New York 1965, MacMillan, London, 1965, (pp.
45-49).

114 BIBLIOGRAPHY

[Mor95a]
J.M. vand de Mortel-Fronczak,
Application of Concurrent Programming to Specification of Industrial Sys­
tems.
In: Proceedings of the 1995 /FAG Symposium on Information Control Prob­
lems in Manufacturing, Beijng, 1995, (pp. 421-426).

[Mor95b]
J.M. van de Mortel-Fronczak,
Operational Semantics of X·
Internal Report WPA 420062. Eindhoven University of Technology, Eind­
hoven, 1994.

[Mor95c]
J.M. van de Mortel-Fronczak, J.E. Rooda and N.J.M. van den Nieuwelaar,
Specification of a Flexible Manufacturing System Using Concurrent Program­
ming.
In: Concurrent Engineering: Research and Applications, 3(3), 1995, (pp. 187-
192).

[Mun86]
B. Munneke and R. Overwater,
Design '86.
Manual. Eindhoven University of Technology, Eindhoven, 1986.

[Nan8l]
R.E. Nance,
The Time and State Relationships in Simulation Modelling.
In: Comm. Ass. Comp. Mach., 24(4), 1981, (pp. 173-179).

[Nau95]
G. Naumoski and W.T.M. Alberts,
The x Engine: A Fast Simulator for Systems Engineering.
Postgraduate Thesis. Stan Ackermans Instituut, Eindhoven University of
Technology, Eindhoven, 1995.

[Ove87]
R. Overwater,
Processes and Interactions. An Approach to the Modelling of Industrial Sys­
tems.
Dissertation. Eindhoven University of Technology, Eindhoven, 1987.

[Pet62]
C. Petri,
Kommunikation mit Automaten.
Dissertation. University of Bonn, Bonn, 1962. (In German.)

BIBLIOGRAPHY 115

[Pol89]
L.F. Pollacia,
A Survey of Discrete Event Simulation and State-of-the-art Discrete Event
Languages.
In: Sigsim Simul(.tion Digest, 20(3), 1989, (pp. 8-25).

[Pre93]
H.A. Preisig,
More on the Synthesis of a Supervisory Controller from First Priciples.
In: Proceeding of the !FAG World Congress, Sydney, Australia, 1993.

[Roo82a]
J.E. Rooda,
Simulation of Logistic Elements (SOLE}.
Report. Twente University of Technology, Enschede, 1982.

[Roo82b]
J.E. Rooda,
Transport- en produktiesystemen, modelbouw en simulatie.
In: Transport + Opslag, 6(8), 1982, (pp. 30-35). (In Dutch.)

[Roo83]
J.E. Rooda and J.H.A. Arentsen,
Een structuurmodel voor de beschrijving van transport- en produktiesyste­
men.
In: Transport + Opslag, 7(10), 1983, (pp. 88-90). (In Dutch.)

[Roo84]
J.E. Rooda, S.M.M. Joosten, T.J. Rossingh and R. Smedinga,
Simulation in S84.
Manual. Twente University of Technology, Enschede, 1984.

[Roo91]
J.E. Rooda,
Procescalculus: nieuw instrument beschrijft industriele systemen.
In: 12Werktuigbouwkunde, 5, 1991, (pp. 13-15). (In Dutch.)

[Roo95)
J.E. Rooda,
The Modelling of Industr-ial Systems.
Syllabus (4746). Eindhoven University of Technology, Eindhoven, 1995

[Ros85]
T.J. Rossingh and J.E. Rooda,
Real-time Operating System Kit (ROSKIT).
Manual. Twente University of Technology, Enschede, 1985.

116 BIBLIOGRAPHY

[Tan94]
0. Tanir and S. Sevinc,
Defining Requirements for a Standard Simulation Environment.
In: IEEE Computer, 27(2), 1994, (pp. 28-34).

[Vel92]
J. In 't Veld,
Analyse van organisatieproblemen. Een toepassing van het denken in systemen
en processen.
Stenfert Kroese Uitgevers, Leiden, 1992. (In Dutch, Sixth edition.)

[Ver95]
J .J. Verreijken,
A Process Algebra for Hybrid Systems.
Eindhoven University of Technology, 1995.

[Web86]
Webster's Third International Dictionary.
Merriam-Webster Inc., Springfield, 1986.

[Web90]
The New Lexicon Webster's Dictionary of the English Language.
Lexicon Publications Inc., New York, 1990.

[Wor90]
A.M. Wortmann and J.E. Rooda,
The Process-Interaction Environment User Manual.
Manual (WPA0841). Eindhoven University of Technology, Eindhoven, 1990.

[Wor91]
A.M. Wortmann,
Modelling and Simulation of Industrial Systems.
Dissertation. Eindhoven University of Technology, Eindhoven, 1991.

Appendix A

The Syntax

In this appendix, the syntax rules of the specification language are described,
using the BNF notation. All non-terminals that are define in this appendix are
slanted and capitalised. Other non-terminals, printed in lower-case letters, are
not defined by syntax rules. Table A.l shows the informal meaning of these
non-terminals.

name definition

id Identifier: a sequence of letters and digits, starting
with a letter.

ids Iden.;ifiers: a sequence of identifiers, separated by
commas.

e Expression: a mathematical expression that may
evaluate to any type.

b Boolean expression: a mathematical expression that
evaluates either to true or false.

nat /1.-atural expression: a mathematical expression that
evaluates to a Natural number.

int Integer expression: a mathematical expression that
evaluates to an Integer number.

c channel identifier: an identifier that represents a
channel.

Table A.l: Informal definition of non-terminals.

117

118 Appendix A. The Syntax

A.l G lo hal declarations

X ::= TDEC I CDEC I UDEC I FDEC I PDEC I SDEC

Type declarations

TDEC •. - type TDEF

TDEF .. - ids = TYPE I TDEF, TDEF

TYPE .. - PTYP I LTYP I TTYP I FTYP

PTYP booll nat I int I real! char I string I dist I void I id I [UNIT]

LTYP .. - TYPE*

TTYP .. - 0 I (PTUP}

PTUP .. - TYPE I TYPEnat I PTUP X PTUP

FTYP .. - ()-+ TYPE I (ATYP) -+ TYPE
ATYP .. - TYPE I TYPE, TYPE

Constant declarations

CDEC .. - const CDEF

CDEF .. - ids = e I CDEF, CDEF

Unit declarations

UDEC .. - unit UDEF

UDEF .. - ids UNIT I UDEF, UDEF

UNIT .. - PUN! I PUN!i.nt I UNIT·UNIT
PUN! .. - m !kg Is lA IK I mol I cd 1-

A.2 Functions

FDEC .. - func FDEF = I[FBOD]I
FDEF .. - id() -+ TYPE I id(ARGS) -+ TYPE

ARGS .. - ids : TYPE I ARGS, ARGS

FBOD VARS I VARS 'I, FSTM I FSTM

I id

A.3. Processes

FSTM .. - STMT I FSTM; FSTM I te I [FSEL] I *[FSEL]

FSEL .. - b --+ FSTM I FSEL ~ FSEL

A. 3 Processes

PDEC .. - proc PDEF = I[PBOD]I
PDEF .. - id ! id(PARS)

PARS .. - ids : PART I PARS, PARS

PART .. - "" CTYP I ? CTYP I ! CTYP

t CTYP I .).. CTYP I t CTYP
TYPE

CTYP .. - TYPE I (BTYP)
BTYP •. - GTYP I CTYPnat

PBOD .. - VARS

VARS 'I' LINK
VARS '!'LINK'!' EQTN

VARS 'I' EQTN

VARS 'I' LINK 'I' EQTN'!' PSTM

VARS 'I' EQTN 'I' PSTM

VARS 'I' LINK 'I' PSTM
VARS 'j' PSTM

PSTM

VARS .. - ids : TYPE I VARS, VARS

LINK .. - ids -<> LEXP I LINK, LINK

LEXP .. - id I (LIDS}

LIDS .. - LEXP I LEXP, LEXP

EQTN .. - e = e I EQNS I [GDEQ]
EQNS .. - EQTN, EQTN

GDEQ .. - b --+ EQNS I GDEQ ~ GDEQ

PSTM STMT I PSTM; PSTM I ESTM

[PSEL l I*[PSEL]

[PSLW l I *[PSLW l

STMT .. - skip I x := e

ESTM .6. e I c"" I c? x I c! e I V b

119

120 Appendix A. The Syntax

PSEL .. - b ---t PSTM I PSEL 0 PSEL

PSLW .. - ESTM
ESTM ---t PSTM
b; ESTM
b; ESTM ---t PSTM

PSLW 0 PSLW

A.4 Systems

SDEC .. - syst SDEF = I[SBOD 11
SDEF .. - id I id(PARS)

SBOD CHAN
CHAN 'I, PROC

CHAN .. - ids : CTYP I CHAN, CHAN

PROC .. - id I id(APAR) I PROC II PROC

APAR .. - e I APAR, APAR

Appendix B

Statistical Distributions

Statistical distributions allow the modelling of stochastic discrete behaviour in
processes. A number of such distributions are predefined in X· We distinguish
bftween discrete and continuous distributions. A sample from a discrete distri­
bution is a fixed number, usually a Natural or an Integer. Samples from contin­
uous distributions are continuously distributed on the range of the distribution.
They are normally of type real.

The remainder of this appendix presents the predefined distributions of X· For
each distribution, a number of characteristics are listed in a table. First, the
function, to create a distribution, is presented in the upper-right corner of the
table. Tne domains of the arguments of this function are defined, as well as
the domain of samples (x), taken from the distribution. Finally, the mean (JL),
the variance (a2), and the density function (f(x)) are given for each type of
distribution.

B.l Discrete distributions

Uniform dun(a, b)

a E { -oo, ... , oo} X E {a, ... ,b}

b E { -oo, ... , oo}

a+b
a2

(b- a+ 1)2 - 1
JL -- = 2 12

f(x)
1

=
b-a+1

121

122 Appendix B. Statistical Distributions

A uniform distribution is used as a first model for a quantity that is felt to be
randomly varying between a and b, about which little else is known.

Bernouilli

p E [0, 1]

IJ=p

f(x) = { 1
p

p

x=O
x=1

X E {0,1}

p(1- p)

ber(p)

A Bernoulli random variable can be thought of as the outcome of an experiment
that either fails or succeeds. The probability parameter p is the probability of
success. Such an experiment is called a Bernoulli trial and provides a convenient
way of relating several other discrete distributions to the Bernoulli distribution.

Binomial bin(p,n)

p E [0, 1] X E {0, ... ,n}

n E {0, ... ,oo}

ll np q2 np(1- p)

f(x) = (:)p"'(1 _ p)n-z

The Binomial distribution defines the number of successes in n independent
Bernoulli trials with probability parameter p of success on each trial. A possible
application for the Binomial distribution is to denote the number of defective
items in a batch of size n.

Geometrical geo(p)

p E [0, 1] X E {O, ... ,oo}

1 p
(1'2

l-p
ll = = 7 p

f(x) p(1- PY

A Geometrical distribution defines the number of failures before the first success
in a sequence of independent Bernoulli trials with probability p of success on each
trial. It can be used to denote the number of items inspected before encountering
the first defective item.

B.2. Continuous distributions 123

Poisson poi(p)

p E (0, oo) X E {0, ... '00}

ft = p (12 p

f(x) =

The Poiason distribution defines the number of events that occur in an interval of
time when the events occur independently of each other. An example application
is to denote the number of items in a batch of random size.

B.2 Continuous distributions

Uniform cun(a, b)

a E (-oo,oo) X E [a,b]

b E (-oo, oo)

a+b
(12

(a+ b)2

ft = -- = 2 12

f(x)
1

b-a

As with the discrete Uniform distribution, it is used for a randomly varying
quantity whose value li&s between a and b.

Negative Exponential nex(a)

a E (0, 00) X E [0, oo)

1
(12

1
ft = = a2 a

f(x) ae-ax

The Negative Exponential distribution can be used for the definition of the
time between independent events, for instance, arrivals at a service facility, that
occur at a constant rate (inter arrival times). Another example of its use is the
definition of life-times of devices with constant hazard rate.

124 Appendix B. Statistical Distributions

Erlang erl(k, a)

k E {1,oo} x E [O,oo)

a E (0, oo)

k a2 k
Jt = = a2 a

f(x) =
ae-ax(ax)k-1

(k- 1)!

The Erlang distribution represents a time to complete some task, e.g. customer
service, machine repair or operation time. It consists of the product of k subse­
quent samples from an exponential distribution.

Gamma

p E (0, oo)

a E (O,oo)

p
Jt = a

f(x)
ae-az(ax)P-1

r(p)

gam(p,a)

X E [0, oo)

The Gamma distribution is similar to the Erlang distribution, except that the
parameter pis not restricted to a whole number. Its application is the same as
that of an Erlang distribution.

Normal nor(m, s)

m E (-oo,oo) X E (-oo, oo)

s E (O,oo)

J.L m a2 = s2

f(x)
e !(z~m)

sVZii

The Normal distribution is used to represent quantities, for instance, measure­
ment errors, that are sums of a large number of other quantities.

B.2. Continuous distributions

Wei bull

c E (O,oo)

a E {0, oo)

~rc: 1)

125

wei(c,a)

x E (O,oo)

The Weibull distribution is used in reliability models for life-times of devices
and is used to define a time to complete some task.

126 Appendix B. Statistical Distributions

Index

II ll block begin/end, 33

I separator symbol, 33
sequential composition, 38
parallel composition, 33

·- assignment, 38
negation, 34

(J (sample), 58
t return statement, 49
'T' time, 34
-o link symbol, 36

+ continuous channel, 36

t continuous channel, 36

t continuous channel, 36
? discrete channel, 39

discrete channel, 39
discrete channel, 39

6. delay statement, 39
\7 state-event statement, 39

0 tuple, 45
[] list, 44

* co:u.catenation, 44
[l guarded command/equation,

40

u alternative separator, 36
--+ guard, 36, 40

* repetition, 41

-A-
argument declaration, 48
assignment statement, 38, 50
asynchronous interaction, 83

-B-
behaviour, 26, 32, 86
Bernoulli, 58
Binomial, 58
bottle release, 74
bottle supply, 74
bottle wrapping, 76

36,

127

bottle-filling system, 19, 61
buffer, 54, 83
bundle, 56, 93

-C-
channel, 31

communication, 39
continuous, 53
declaration, 55
discrete, 53
synchronisation, 39

char, 43
communication, 39
const, 47
constant declaration, 4 7
continuous behaviour, 26, 33, 35, 80,

86
continuous channel, 53, 80
continuous relation, 36
continuous variable, 34, 36, 46, 81
control system, 8, 91
control valve, 68, 95
coordinate system, 82

-D-
data structure, 16, 88
declaration

argument, 48
bundle, 56
channel, 55
constant, 47
function, 48
type, 42
unit, 46

delay statement, 39
discontinuity, 26, 86
discrete behaviour, 26, 33, 37, 79, 86
discrete channel, 53
discrete variable, 34

128

dist, 58
domain observer, 102
drain, 95

E
economical system, 8
element, 6, 7
elimination phase, 14
empty statement, 38
empty type, 54
environment, 6
equation, 33, 35
Erlang, 58
event statement, 38
experiment, 10, 15
expression, 34

-F
false, 34
filling controller, 75, 103
filling line, 73
filling process, 74
How distributor, 72
func, 48
function, 44, 45, 48-52, 89

imperative, 48
parameter, 54

function statement, 49
functional definition, 51

G
Gamma, 58
Geometric, 58
graphical representation, 32, 37, 56
guard, 40
guarded command, 40, 88
guarded equation, 35

H
hd (head), 44
hierarchy, 12, 23, 54, 56

-I
iconic language, 11, 28
imperative function, 48
index (in a bundle), 57
index (in a tuple), 45
industrial system, 8-9, 13, 79
information How, 8, 24

int, 43
interaction, 40, 82
invoice How, 8

-L
len (length), 44
level controller, 71
lft (left), 45
life-cycle, 13
linking, 36, 80, 85
liquid supply, 70
list, 44, 88

-M
material How, 8, 24
mathematical language, 11, 28
mixed behaviour, 86
model, 9-10

hierarchy, 23, 24
representation, 10, 27

modelling language, 11, 12
modularity, 24, 29, 79

-N­
nat, 43
Negative Exponential, 58
Normal, 58

-0-
order generator, 63
orientation phase, 13

-P-
packaging machine, 76
parallelism, 23, 28, 79
parameterisation, 24, 53
pH-controller, 72
pile, 63
Poisson, 58
primary system, 8
primitive type, 43
proc, 41
procedure, 89
process, 31, 33, 41, 53, 79

-R
real, 43
realisation phase, 14

INDEX

INDEX

relation, 6, 7, 12, 15, 26, 31, 35-37, 80,
82

repetition, 41
return statement, 49
rgt (right), 45

-S
sample, 58, 63, 89
scalar quantity, 36, 53, 81
secondary system, 8
selection, 88
selection statement, 40, 49
seledive waiting, 40, 88
sequential statement, 38
simulation, 14, 29, 48, 108
skip statement, 38
specification phase, 13
state-event, 26, 39, 86
state-transition controller, 98
statement, 37-41

assignment, 38
communication, 39
delay, 39
empty, 38
event, 38
function, 49
repetition, 41
return, 49
selection, 40, 49
selective waiting, 40
sequential, 38
skip, 38
state-evei.Lt, 39
synchronisation, 39

statistical distribution, 58, 63, 89
stochastic behavlour, 26, 58
string, 43
subsystem, 7, 16, 23, 79
supervisory controller, 103
synchronisation, 39, 83
synchronisation channel, 55
synchronous interaction, 82
syst, 41
system, 6-8, 31, 33, 41, 53, 55, 79

architecture, 24
behaviour, 7, 26
control, 8
element, 7

environment, 6, 8, 15
hierarchy, 12, 24
identification, 15, 22
structure, 7

system controller, 65

-T
tank controller, 104
tertiary system, 8
time, 34
time-passing, see delay statement
tl (tail), 44
true, 34
tuple, 45, 88
type, 42-46, 88

char, 43
declaration, 42
dist, 58
int, 43
list, 44
nat, 43
primitive, 43
real, 43
string, 43
tuple, 45
unit, 45
void, 54

type, 42

u-
uniform distribution, 58
unit, 46
unit declaration, 46
unit of measurement, 81
unit type, 45, 81
utilisation phase, 14

V-
value flow, 8, 24
variable, 32-34, 42
variable linking, 36, 80, 85
vector quantity, 36, 53, 81
vessel, 70
void, 54, 55

-W-
water supply, 95
water tank, 96
Weibull, 58

129

130 INDEX

Curriculum Vitae

Norbert Arends was born on the 13th of February 1964 in Eindhoven. After
finishing his Atheneum B in 1982 at the St. Joris College in Eindhoven, he
started his studies at the Eindhoven University of Technology, Department of
Mtchanical Engineering. During the final years of his study, he was involved in
the modelling of wafer production plants. He graduated, in the section Systems
Engineering, on a research project on the implementation of the simulation tool
'Process-Interaction Environment' in December 1989.

On January the 1st 1990, he started a research project on Man-Machine In­
terfaces at Eindhoven University of Technology, supervised by Prof.dr.ir. J.E.
Rooda. Since May 1991, his research focused on the development of a speci­
fication formalism for the modelling of the dynamical behaviour of industrial
systems.

131

Stellingen.

behorende bij het proefschrift

A Systems En.gineering

Specification Formalism

1. Voor de specificatie van de interacties tussen discreet gedrag en
continu gedrag is het voldoende te beschikken over state-events
en guarded equations.

Dit proefschrift

2. Een model van een systeem kan niet worden opgesteld zonder
vooraf het doel of de doelen van het model te formuleren.

Dit proefschrift

3. Een specificatie-taal moet een evolutie doormaken om een ge­
schikte taal te worden.

Dit proefschrift

4. Voor het uitvoeren van een experiment middels simulatie is het
nodig een begintoestand te definieren voor het te simuleren mo­
del. Daar de begintoestand betrekking heeft op het experiment
client initialisatie van variabelen van het model te geschieden
in de experiment-beschrijving en niet in de model-beschrijving.

5. Abstractie is geen tekortkoming van een specificatietaal. Het
maakt de taal juist geschikt voor specificaties.

6. Het opstellen van de specificatie van het dynamisch gedrag van
een systeem leidt tot een beter ontwerp.

Dit proefschrift

7. Een specificatie-formalisme verdient pas dan het predicaat hy­
bride als het, naast een gecombineerd discreet en continu ge­
drag, ook zuiver discreet of zuiver continu gedrag kan beschrij­
ven.

Dit proefschrift

8. Het feit dat in de laatste jaren steeds meer wiskunde en in­
formatica wordt toegepast bij het ontwerpen van industriele
systemen wijst niet op een trend dat werktuigbouwkundigen
van hun vak vervreemden maar juist dat de wetenschappelijke
waarde van de werktuigbouwkunde toeneemt.

9. Het bestaan van vooroordelen over het beoefenen van de
schietsport wordt veroorzaakt door personen die schieten niet
als sport zien.

10. Uit de bewondering die bestaat over vaardigheden uit een ver
verleden die worden aangeduid met een zinsnede als "Wat knap
dat ze dat toen al konden.", kan geconcludeerd worden dat de
ontwikkeling van deze vaardigheden sindsdien vooruit is ge­
gaan. Deze conclusie is onjuist.

11. Als gevolg van de vertragende werking van onze zintuigen kun­
nen wij de grens tussen verleden en toekomst niet waarnemen.
Daarmee leven wij in het verleden.

Norbert Arends Eindhoven, 17 juni 1996

The design process of an industrial system is a process of
decision-making, where each decision has its impact on the
resulting system. To substantiate design decisions, a formal
specification is inevitable. In this research, we introduce the
formalism x as a means to specify the dynamic behaviour of
industrial systems.

This dissertation describes the syntax and semantics of the
formalism x The application of the formalism is illustrated by
examples of industrial systems, including their control
systems. Furthermore, it gives a survey of the design
decisions that resulted in the presented formalism. This
research is meant to initiate the development of a calculus,
dedicated to the analysis of the behaviour of industrial
systems.

The picture on the cover is a so-called 3D-stereogram. It
contains a threedimensional image of discrete and continuous
objects. To experience the image, you must look at it out of
focus, a few inches behind the picture. You can also start by
keeping the picture at a one inch distance before your eyes
and stare at it. Now slowly move the picture away without
refocusing. Let your eyes adjust and the image should reveal
itself. Just relax and let it happen ...

ISBN 90-386-0028-3

