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Abstract

We study a queueing network with a single shared server that serves the queues in a cyclic
order. External customers arrive at the queues according to independent Poisson processes. After
completing service, a customer either leaves the system or is routed to another queue. This model
is very generic and finds many applications in computer systems, communication networks, man-
ufacturing systems, and robotics. Special cases of the introduced network include well-known
polling models, tandem queues, systems with a waiting room, multi-stage models with parallel
queues, and many others.

The present research develops a novel unifying framework to find the waiting time distribu-
tion, which can be applied to a wide variety of models which lacked an analysis of the waiting
time distribution until now. That is, we derive the waiting time distributions for stable systems
as well as various asymptotic results (heavy traffic, light traffic, and infinite switch-over times)
for systems with general renewal arrival processes. By interpolating between these asymptotic
regimes, we develop simple closed-form approximations for the waiting time distribution for ar-
bitrary loads.

Keywords: queueing network, waiting times, heavy traffic, light traffic, approximation

Mathematics Subject Classification: 60K25, 90B22

1 Introduction

In this paper we study a queueing network served by a single shared server that visits the queues in
a cyclic order. Customers from the outside arrive at the queues according to independent Poisson
processes, and the service time and switch-over time distributions are general. After receiving service
at queue i , a customer is either routed to queue j with probability pi, j , or leaves the system with
probability pi,0. This model can be seen as an extension of the standard polling model (in which
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customers always leave the system upon completion of their service) by customer routing. Yet another
view is provided by the notion that the system is a Jackson network with a dedicated server for each
queue with the additional complexity that only one server can be active in the network simultaneously.
The goal of the present paper is the derivation of the waiting time distribution in a queueing network
with a single shared server. In most of the paper we assume that each queue receives gated service
(only those customers present at the server’s arrival at a queue will be served before the server switches
to the next queue). The analysis of systems with gated service is slightly more involved than systems
with exhaustive service. For completeness, we discuss the case where (some of) the queues receive
exhaustive service in the appendix.

The possibility of re-routing of customers further enhances the already-extensive modelling capabili-
ties of polling models, which find applications in diverse areas such as computer systems, communi-
cation networks, logistics, flexible manufacturing systems, robotics systems, production systems and
maintenance systems (see, for example, [5, 19, 23, 33] for overviews). Applications of the introduced
type of customer routing can be found in many of these areas. In this regard, we would like to mention
a manufacturing system where products undergo service in a number of stages or in the context of re-
work [18], a Ferry based Wireless Local Area Network (FWLAN) in which nodes can communicate
with each other or with the outer world via a message ferry [21], a dynamic order picking system
where the order picker drops off the picked items at the depot where sorting of the items is performed
[17], and an internal mail delivery system where a clerk continuously makes rounds within the offices
to pick up, sort and deliver mail [28].

The key observation, which is at the same time the mathematical motivation of the present study,
is the fact that internally rerouted customers do not arrive at queues according to standard Poisson
processes. The standard school of deriving delay distributions is, however, the one embroidering the
distributional form of Little’s Law, which relies heavily on the assumption that every customer in the
system has arrived according to a Poisson process. Due to this intrinsic complexity of the model,
studies in the past were restricted to queue lengths and mean delay figures (see [6, 28, 29, 30]). This
motivates us to develop a novel framework to derive the waiting time distribution - a performance
metric of which the importance requires no further explanation.

In the past many papers have been published on special cases of the current network. In some of
these papers distributional results are derived as well; the techniques used do, however, not allow for
extension to the general setting of the current paper. Some special case configurations are standard
polling systems [33], tandem queues [24, 35], multi-stage queueing models with parallel queues [20],
feedback vacation queues [10, 34], symmetric feedback polling systems [32, 34], systems with a
waiting room [1, 31], and many others. In conclusion, one can say that the present research can be
seen as a unifying analysis of the waiting time distribution for a wide variety of queueing models.

The main contribution of the present paper is twofold. Firstly, we derive the Laplace-Stieltjes trans-
form (LST) of the waiting time distribution of an arbitrary (internally rerouted, or external) customer
in a queueing network with a single shared server. Although the mean waiting times have already been
studied in the past, no results have been known in the existing literature for the waiting time distri-
bution. Since the interdependence of the queueing processes prohibits an exact explicit analysis with
closed-form expressions, we also derive various asymptotic (heavy traffic, light traffic and infinite
switch-over times) and approximate results for the waiting time distribution in systems with general
renewal arrival processes. These closed-form expressions are strikingly simple and show explicitly
how the delays depend on the system parameters and in particular on the routing probabilities pi, j .
Numerical results are presented to assess the accuracy of the distributional approximation.
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Secondly, a novel method is developed to find the waiting time distribution in queueing systems,
which can be applied to a myriad of models which lacked an analysis of the waiting time distribution
until now. Contrary to existing methods, we explicitly make use of the branching structure to find
waiting time distributions. The advantage of this method is that a system no longer needs to satisfy
all of the prerequisites required to apply the distributional form of Little’s Law. That is, one could
apply the framework (possibly after some minor modifications) to obtain distributional results in all
of the aforementioned special cases of the studied system [1, 10, 20, 24, 31, 32, 33, 34, 35] but also,
for example, in a closed network [2], in an M/G/1 queue with permanent and transient customers
[9], in a network with permanent and transient customers [3], or in a polling model with arrival rates
that depend on the location of the server [4, 8]. Although we study a continuous-time cyclic system
with gated or exhaustive service in each queue, we may extend all results - without complicating the
analysis - to discrete time, to periodic polling, to batch arrivals, or to systems with different branching-
type service disciplines such as globally gated service.

The structure of the present paper is as follows. In Section 2, we introduce the model and notation.
Section 3 analyses the waiting time distribution of an arbitrary customer for general loads. The penul-
timate section, where we relax the assumption of Poisson arrivals, studies the behaviour of our system
under heavy-traffic conditions. In the last section we derive an accurate closed-form approximation of
the waiting time distribution based on asymptotic results, and we present some examples which show
the wide range of applicability of the studied model. Systems with a mixture of gated and exhaustive
service are discussed in the appendix.

2 Model description and notation

We consider a queueing network consisting of N ≥ 1 infinite buffer queues Q1, . . . , QN . External
customers arrive at Qi according to a Poisson arrival process with rate λi , and have a generally dis-
tributed service requirement Bi at Qi , with mean value bi := E[Bi ] and LST B̃i (·). In general we
denote the LST or PGF of a random variable X with X̃(·). The queues are served by a single server in
cyclic order. Whenever the server switches from Qi to Qi+1, a switch-over time Ri is incurred, with
mean ri . The cycle time Ci is the time between successive moments when the server arrives at Qi . The
total switch-over time in a cycle is denoted by R =∑N

i=1 Ri , and its first two moments are r := E[R]
and r (2) := E[R2]. Indices throughout the paper are modulo N , so Q1−N and QN+1 both refer to Q1.
All service times and switch-over times are mutually independent. Each queue receives gated service,
which means that only those customers present at the server’s arrival at Qi will be served before the
server switches to the next queue. This queueing network can be modelled as a polling system with
the specific feature that it allows for routing of the customers: upon completion of service at Qi , a
customer is either routed to Q j with probability pi, j , or leaves the system with probability pi,0. Note
that

∑N
j=0 pi, j = 1 for all i , and that the transition of a customer from Qi to Q j takes no time. The

model under consideration has a branching structure, which is discussed in more detail by Resing
[27]. The total arrival rate at Qi is denoted by γi , which is the unique solution of the following set of
linear equations:

γi = λi +
N∑

j=1

γ j p j,i , i = 1, . . . , N .

The offered load to Qi is ρi := γi bi and the total utilisation is ρ := ∑N
i=1 ρi . We assume that the

system is stable, which means that ρ should be less than one (see [30]). The total service time B∗i of
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a customer is the total amount of service given during the presence of the customer in the network.
Its first moment, denoted by βi , is uniquely determined by the following set of linear equations: For
i = 1, . . . , N ,

βi = bi +
N∑

j=1

β j pi, j .

The LST of B∗i is not discussed in the present paper, but can be obtained by solving a similar set of
equations.

3 The waiting time distribution

In the present section we study the waiting time distribution of an arbitrary customer. We define
the waiting time Wi as the time between a customer’s arrival at Qi and the moment at which his
service starts. As far as waiting times are concerned, a customer that is routed to another queue, say
Q j , upon his service completion is regarded as a new customer with waiting time W j . The waiting
time distribution is found by conditioning on the numbers of customers present in each queue at an
arrival epoch. To this end, we study the joint queue length distribution at several embedded epochs
in Section 3.1. In Sections 3.2 and 3.3 we use these results to successively derive the cycle time
distribution and the waiting time distributions of internally rerouted customers and external customers.

3.1 The joint queue length distribution at embedded epochs

Sidi et al. [30] derive the PGFs of the joint queue length distributions in all N queues at visit be-
ginnings, visit completions, and at arbitrary points in time. In order to keep this manuscript self-
contained, we briefly recapitulate their approach, as it forms the starting point of our novel method
to find the waiting time LSTs. There is one important adaptation that we have to make, which will
prove essential for finding waiting time LSTs. We consider not only the customers in all N queues,
but we distinguish between customers standing in front of the gate and customers standing behind the
gate (meaning that they will be served in the next cycle). Hence, we introduce the N + 1 dimensional
vector z = (z1, . . . , zN , zG). The element zi , i = 1, . . . , N , in this vector corresponds to customers in
Qi standing in front of the gate. The element zG at position N + 1 is only used during visit periods.
During V j , the visit period of Q j , it corresponds to customers standing behind the gate in Q j . This
makes the analysis of systems with gated service slightly more involved than systems with exhaustive
service (discussed in the appendix). Before studying the joint queue length distributions, we briefly
introduce some convenient notation:

6(z) =
N∑

j=1

λ j (1− z j ),

6i (z) = λi (1− zG)+
∑
j 6=i

λ j (1− z j ),

Pi (z) = pi,0 + pi,i zG +
∑
j 6=i

pi, j z j .
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Visit beginnings and completions. A cycle consists of N visit periods, Vi , each of which is fol-
lowed by a switch-over time Ri , for i = 1, . . . , N . A cycle Ci starts with a visit to Qi and consists
of the periods Vi , Ri , Vi+1, . . . , Vi+N−1, Ri+N−1. Let P denote any of these periods. We denote the
joint queue length PGF at the beginning of P as L̃B(P)(z). The equivalent at the completion of period
P is denoted by L̃C

(P)
(z). Since the gated service discipline is a so-called branching-type service dis-

cipline (see [27]), we can express each of these functions in terms of L̃B(Vi )
(z), for any i = 1, . . . , N .

These relations, which are sometimes called laws of motion, are given below.

L̃C
(Vi )
(z) = L̃B(Vi )

(
z1, . . . , zi−1, B̃i

(
6i (z)

)
Pi (z), zi+1, . . . , zN , zG

)
, (3.1)

L̃B(Ri )
(z) = L̃C

(Vi )
(z1, . . . , zN , zi ),

L̃C
(Ri )
(z) = L̃B(Ri )

(z)R̃i

(
6(z)

)
,

L̃B(Vi+1)
(z) = L̃C

(Ri )
(z),

...

L̃B(Vi+N )
(z) = L̃C

(Ri+N−1)
(z). (3.2)

Note the subtle difference between L̃C
(Vi )
(z) and L̃B(Ri )

(z), due to the fact that the gate in Qi is
removed after the completion of Vi , causing type G customers to become type i customers. In steady-
state we have that L̃B(Vi+N )

(z) = L̃B(Vi )
(z), implying that we have obtained a recursive relation for

L̃B(Vi )
(z). Resing [27] shows how a clever definition of immigration and offspring generating func-

tions can be used to find an explicit expression for L̃B(Vi )
(z). For reasons of compactness we refrain

from doing so in the present paper. Instead we want to point out that the recursive relation obtained
from (3.1)-(3.2) can be differentiated with respect to the variables z1, . . . , zN , zG . The resulting set
of equations, which are called the buffer occupancy equations in the polling literature, can be used to
compute the moments of the queue length distributions at all visit beginnings and completions.

Service beginnings and completions. We denote the joint queue length PGF at service beginnings
and completions in Q j by respectively L̃B(B j )

(z) and L̃C
(B j )
(z). Since a customer may be routed to

another queue upon his service completion, we define L̃C
(B j )
(z) as the PGF of the joint queue length

distribution right after the tagged customer in Q j has received service (implying that he is no longer
present in Q j ), but before the moment that he may join another queue (even though these two epochs
take place in a time span of length zero). Eisenberg [16] has observed the following relation, albeit in
a slightly different model:

L̃B(Vi )
(z)+ γiE[C]L̃C

(Bi )
(z)Pi (z) = L̃C

(Vi )
(z)+ γiE[C]L̃B(Bi )

(z). (3.3)

Equation (3.3) is based on the observation that each visit beginning coincides with either a service
beginning, or a visit completion (if no customer was present). Similarly, each visit completion
coincides with either a visit beginning or a service completion. The long-run ratio between the
number of visit beginnings/completions and service beginnings/completions in Qi is γiE[C], with
E[C] = E[Ci ] = r/(1− ρ). The distribution of the cycle time is given in the next subsection.

Furthermore, Eisenberg observes the following simple relation between the joint queue length distri-
bution at service beginnings and completions:

L̃C
(Bi )
(z) = L̃B(Bi )

(z)B̃i
(
6i (z)

)
/zi . (3.4)
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Substitution of (3.4) in (3.3) gives an equation which can be solved to express L̃B(Bi )
(z) in L̃B(Vi )

(z)
and L̃C

(Vi )
(z).

Arbitrary moments. The PGF of the joint queue length distribution at arbitrary moments, denoted
by L̃(z), is found by conditioning on the period in the cycle during which the system is observed
(V1, R1, . . . , VN , RN ).

L̃(z) = 1
E[C]

N∑
j=1

(
E[V j ]L̃ (V j )(z)+ r j L̃ (R j )(z)

)
, (3.5)

with E[V j ] = ρ jE[C]. In (3.5) the functions L̃ (V j )(z) and L̃ (R j )(z) denote the PGFs of the joint queue
length distributions at an arbitrary moment during V j and R j respectively:

L̃ (V j )(z) = L̃B(B j )
(z)

1− B̃ j
(
6 j (z)

)
b j6 j (z)

, (3.6)

L̃ (R j )(z) = L̃B(R j )
(z)

1− R̃ j
(
6(z)

)
r j6(z)

. (3.7)

The interpretation of (3.6) and (3.7) is that the queue length vector at an arbitrary time point in V j or
R j is the sum of those customers that were present at the beginning of that service/switch-over time,
plus vector of the customers that have arrived during the elapsed part of the service/switch-over time.
For more details about the joint queue length and workload distributions for general branching-type
service disciplines (in the context of polling systems, but also applicable to our model) we refer to
Boxma et al. [12].

3.2 Cycle time distributions

In the remainder of this paper we present new results for the model introduced in Section 2. We start
by analysing the distributions of the cycle times Ci , i = 1, . . . , N . The idea behind the following
analysis is to condition on the number of customers present in each queue at the beginning of Ci (and,
hence, of Vi ). The cycle will consist of the service of all of these customers, plus all switch-over times
Ri , . . . , Ri+N−1, plus the services of all customers that enter during these services and switch-over
times and will be served before the next visit beginning to Qi . The cycle time for polling systems
without customer routing is discussed in Boxma et al. [11]. However, as it turns out, the analysis is
severely complicated by the fact that customers may be routed to another queue and be served again
(even multiple times) during the same cycle.

From branching theory we adopt the term descendants of a certain (tagged) customer to denote all
customers that arrive (in all queues) during the service of this tagged customer, plus the customers
arriving during their service times, and so on. If, upon his service completion, a customer is routed
to another queue, we also consider him as his own descendant. We define B∗k,i , i = 1, . . . , N ; k =
0, . . . , N , as the service time of a type i − k (which is understood as N + i − k if i ≤ k) customer,
plus the service times of all of his descendants that will be served before or during the next visit to
Qi . The special case B∗0,i is simply the service time of a type i customer, i = 1, . . . , N . A formal
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definition in terms of LSTs is given below:

B̃∗k,i (ω) = B̃i−k

(
ω +

k−1∑
j=0

λi− j
(
1− B̃∗j,i (ω)

))
P̃∗k,i (ω), k = 0, . . . , N ; i = 1, . . . , N , (3.8)

where

P̃∗k,i (ω) = 1−
k−1∑
j=0

pi−k,i− j
(
1− B̃∗j,i (ω)

)
, k = 0, . . . , N ; i = 1, . . . , N . (3.9)

For a type i − k customer, P∗k,i accounts for the service times of his descendants that are caused by the
fact that he may be routed to another queue upon his service completion.

A similar function should be defined for the switch-over times:

R̃∗k,i (ω) = R̃i−k

(
ω +

k−1∑
j=0

λi− j
(
1− B̃∗j,i (ω)

))
, k = 0, . . . , N ; i = 1, . . . , N .

Note that, compared to (3.8), no term P̃∗k,i (ω) is required because no routing takes place at the end of
a switch-over time.

Finally, we define the following N + 1 dimensional vectors:

Bk,i =
(
1, . . . , 1, B̃∗k,i (ω), 1, . . . , 1

)
, k = 0, . . . , N − 1; i = 1, . . . , N , (3.10)

BN,i =
(
1, . . . , 1, B̃∗0,i (ω)

)
, i = 1, . . . , N , (3.11)

with B̃∗k,i (ω) at position i − k in (3.10) (or position N + i − k if k ≥ i), and B̃∗0,i (ω) at position N + 1
in (3.11). We use

⊗
to denote the element-wise multiplication of vectors.

Theorem 3.1 The LST of the distribution of the cycle time Ci is given by

C̃i (ω) = L̃B(Vi )
( N−1⊗

k=0

Bk,i−1
) N−1∏

k=0

R̃∗k,i−1(ω), i = 1, . . . , N . (3.12)

Proof:
To prove Theorem 3.1 we keep track of all the customers that will be served during one cycle. We
condition on the numbers of customers present in each queue at the beginning of Ci , denoted by
n1, . . . , nN . Note that there are no gated customers present at this moment, because the gate has been
removed at the beginning of the last switch-over time of the previous cycle. A cycle Ci consists of:

1. the service of all customers present at the beginning of the cycle,

2. all of their descendants that will be served before the start of the next cycle (i.e., before the next
visit to Qi ),

3. the switch-over times R1, . . . , RN ,

4. all customers arriving during these switch-over times that will be served before the start of the
next cycle,
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5. all of their descendants that will be served before the start of the next cycle.

We define S j for j = 1, . . . , N , as the service time of a type j customer plus the service times of all
of his descendants that will be served during (the remaining part of) Ci . Since the service discipline
is gated at all queues, we have:

S j = B j +
i−1∑

k= j+1

Nk (B j )∑
l=1

Skl +
{

Sm for m = j + 1, . . . , i − 1, w.p. p j,m,

0 w.p. 1−∑i−1
m= j+1 p j,m,

(3.13)

where Nk(T ) denotes the number of arrivals in Qk during a (possibly random) period of time T , and
Skl is a sequence of (independent) extended service times Sk . Note that S j depends on i , although
we have chosen to hide this for presentational purposes. The gated service discipline is reflected in
the fact that only customers arriving in (or rerouted to) Q j+1, . . . , Qi−1 are being served during the
residual part of Ci . It can easily be shown that the LST of Si−k is B̃∗k−1,i−1(ω) for k = 1, . . . , N .
Note that the first summation in (3.13) is cyclic, which may sometimes cause confusion (for example
if j = i − 1, when this is supposed to be a summation over zero terms). Avoiding this (possible)
confusion is the main reason that we have chosen to define B̃∗k,i (ω), P̃∗k,i (ω) and R̃∗k,i (ω) relative to
queue i (k steps backward in time).

Using this branching way of looking at the cycle time, we can express Ci in terms of R1, . . . , RN and
S1, . . . , SN . First, however, we derive the following intermediate result.

E

e−ωRi−k

i−1∏
j=i−k+1

N j (R j )∏
l=1

e−ωS jl

 = R̃i−k
(
ω +

i−1∑
j=i−k+1

λ j (1− E[e−ωS j ]))
= R̃∗k−1,i−1(ω).

Now, introducing the shorthand notation n1, . . . , nN for the event that the numbers of customers at
the beginning of Ci in queues 1, . . . , N are respectively n1, . . . , nN , we can find the cycle time LST
conditional on this event.

E
[
e−ωCi | n1, . . . , nN

] = E

exp
(
− ω

i−1∑
j=i−N

( n j∑
l=1

S jl + R j +
i−1∑

k= j+1

Nk (R j )∑
l=1

Skl

))
= E

 i−1∏
j=i−N

( n j∏
l=1

e−ωS jl

)
e−ωR j

i−1∏
k= j+1

Nk (R j )∏
l=1

e−ωSkl


=

i−1∏
j=i−N

( n j∏
l=1

E
[
e−ωS jl

]) i−1∏
j=i−N

E

e−ωR j

i−1∏
k= j+1

Nk (R j )∏
l=1

(
e−ωSkl

)
=
(

N∏
k=1

B̃∗k−1,i−1(ω)
ni−k

)
N∏

k=1

R̃∗k−1,i−1(ω).

Equation (3.12) follows after deconditioning. �
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Remark 3.2 Because of our main interest in the waiting time distributions, we have followed quite
an elaborate path to find the LST of the cycle time distribution. However, if one is merely inter-
ested in a quick way to find C̃i (ω), a more efficient approach can be used. One of the most efficient
ways to find C̃i (ω) is to distinguish between customers that arrive from outside the network (ex-
ternal customers) and internally rerouted customers (internal customers). One can straightforwardly
adapt the laws of motion (3.1)-(3.2) to find an expression for L̃B(Vi )

′
(zE

1 , z I
1, . . . , zE

N , z I
N ). Just like

L̃B(Vi )
(z1, . . . , zN , zG), L̃B(Vi )

′
(zE

1 , z I
1, . . . , zE

N , z I
N ) stands for the PGF of the joint queue length at the

beginning of Vi , but now we distinguish between external and internal customers in each queue (in-
dicated by zE

j and z I
j ). Since external customers arrive in Qi according to a Poisson process with

intensity λi , one can apply the distributional form of Little’s Law (see, for example, Keilson and Servi
[22]) to the external customers in Qi :

C̃i (ω) = L̃B(Vi )
′
(1, . . . , 1, 1− ω/λi , 1, . . . , 1), i = 1, . . . , N .

3.3 Waiting time distributions

In this subsection we find the LSTs of W E
i and W I

i , the waiting time distributions of arbitrary external
and internal customers in Qi , and use them to obtain the LST of Wi , the waiting time of an arbitrary
customer. We stress that common methods used in the polling literature to find waiting time LSTs
cannot be applied in our queueing network, because they rely heavily on the assumption that every
customer in the system has arrived according to a Poisson process. Since this assumption is violated in
our model, we have developed a novel approach to find the waiting time LST of an arbitrary customer
in our network. The joint queue length distributions at various epochs, as discussed in Subsection 3.1,
play an essential role in the analysis. First we focus on the waiting times of internal customers, then
we discuss the waiting times of external customers.

Internal customers. The arrival epoch of an internal customer always coincides with a service com-
pletion. Hence, we condition on the joint queue length and the arrival epoch of an internal customer to
find his waiting time LST. The waiting time of an internal customer given that he arrives in Qi after a
service completion at Qi−k is denoted by WC(Bi−k )

i (i, k = 1, . . . , N ). To find WC(Bi−k )
i , we only have

to compute the probability that an arbitrary internal customer in Qi arrives after a service completion
at Qi−k . The mean number of customers (internal plus external) present at the beginning of Vi−k at
Qi−k is γi−kE[C]. Each of these customers joins Qi upon his service completion with probability
pi−k,i . This observation combined with the fact that the mean number of internal customers arriving
at Qi during the course of one cycle is (γi − λi )E[C], leads to the following result:

W̃ I
i (ω) =

N∑
k=1

γi−k pi−k,i

γi − λi
W̃C

(Bi−k )

i (ω), i = 1, . . . , N . (3.14)

As a consequence, the problem of finding W̃ I
i (·) is reduced to finding W̃C

(Bi−k )

i (ω) for all i, k =
1, . . . , N .

9



Theorem 3.3

W̃C
(Bi−k )

i (ω) = L̃C
(Bi−k )(B0,i

k−1⊗
j=0

Bj,i−1
) k−1∏

j=0

R̃∗j,i−1(ω), k = 1, . . . , N − 1, (3.15)

W̃C
(Bi−N )

i (ω) = L̃C
(Bi )(BN,i

N−1⊗
j=0

Bj,i−1
) N−1∏

j=0

R̃∗j,i−1(ω), (3.16)

for i = 1, . . . , N .

Proof:
The key observation in the proof of Theorem 3.3 is that an arrival of an internally rerouted customer
always coincides with some service completion. For this reason, we consider the system right after
the service completion at, say, Q j ( j = 1, . . . , N ). We compute the waiting time LST of a customer
routed to Qi after being served in Q j , conditional on the numbers of customers of each type (now
including gated customers) present at the arrival epoch (not including the arriving customer himself).
We denote by n1, . . . , nN , nG the event that the numbers of customers of all types are respectively
n1, . . . , nN , nG . Let niG := ni if i 6= j , and niG := nG if i = j . Note that the type G customers are
located behind the gate in Q j , and that the customer routed to Qi only has to wait for these customers
in case i = j . The waiting time of the tagged customer consists of:

1. the service of all n j customers in front of the gate in Q j at the arrival epoch,

2. the service of all n j+1, . . . , ni−1 customers present in Q j+1, . . . , Qi−1 at the arrival epoch,

3. all of the descendants of the previously mentioned customers that will be served before the next
visit to Qi ,

4. if i 6= j , the service of all niG customers present in Qi at the arrival epoch; if i = j , the service
of all niG gated customers present in Qi at the arrival epoch,

5. the switch-over times R j , . . . , Ri−1,

6. all customers arriving during these switch-over times that will be served before the next visit to
Qi ,

7. all of their descendants that will be served before the next visit to Qi .

We denote the waiting time of an internal customer conditional on the event that he arrives in Qi after
being served in Q j , and conditional on the event that the numbers of customers of all types at the

arrival epoch are respectively n1, . . . , nN , nG , by WC(B j )
′

i . Just like in the proof of Theorem 3.1, we

can express WC(B j )
′

i in terms of R1, . . . , RN and S1, . . . , SN :

WC(B j )
′

i =
i−1∑
k= j

[
nk∑

l=1

Skl + Rk +
i−1∑

l=k+1

Nl (Rk )∑
m=1

Slm

]
+

niG∑
l=1

Bi,l . (3.17)

Taking the LST of (3.17) leads to (3.15) if k < N , and to (3.16) if k = N , after deconditioning.
The derivation proceeds along the exact same lines as in the proof of Theorem 3.1, and is therefore
omitted.

�
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External customers. External customers arrive in Qi according to a Poisson process with intensity
λi . We distinguish between customers arriving during a switch-over time and customers arriving
during a visit time. The waiting time of an external customer in Qi given that he arrives during Ri−k

is denoted by W (Ri−k )
i (i, k = 1, . . . , N ). Similarly, we use W (Vi−k )

i to denote an external customer
arriving in Qi during Vi−k . The waiting time LST of an arbitrary external customer can be expressed
in terms of W̃ (Ri−k )

i (·) and W̃ (Vi−k )
i (·):

W̃ E
i (ω) =

1
E[C]

N∑
k=1

(
E[Vi−k]W̃ (Vi−k )

i (ω)+ ri−k W̃ (Ri−k )
i (ω)

)
, i = 1, . . . , N . (3.18)

We first focus on the waiting time of customers arriving during a switch-over time. Consider a tagged
customer arriving in Qi during Ri−k , i, k = 1, . . . , N . Since the remaining part of the switch-over time
is part of the waiting time of the arriving customer, it will turn out that we need the joint distribution of
all customers present at the arrival epoch and the residual part of Ri−k , denoted by RR

i−k . The PGF of
the joint queue length distribution at the arrival epoch is given by (3.7). Equation (3.7) is based on the
observation that the number of customers in each queue at an arbitrary moment during Ri−k is simply
the sum of the number of customers present at the beginning of Ri−k and the number of customers
that have arrived during the elapsed (past) part of Ri−k , denoted by R P

i−k . These random variables
are independent. Hence, it is straightforward to adapt (3.7) to find the joint distribution of the queue
lengths and residual part of Ri−k , using the following result from elementary renewal theory:

R̃ P R
j (ωP , ωR) = R̃ j (ωP)− R̃ j (ωR)

(ωR − ωP)r j
, j = 1, . . . , N ,

with R̃ P R
j (ωP , ωR) denoting the LST of the joint distribution of past and residual switch-over time

R j . Hence,
L̃ (R j )(z, ω) = L̃B(R j )

(z)R̃ P R
j (6(z), ω), (3.19)

where L̃ (R j )(z, ω) denotes the PGF-LST of the joint distribution of the number of customers of each
type at an arbitrary moment during R j and the residual part of R j . Obviously, there are no gated
customers present during a switch-over time.

Consequently, and also using PASTA, we can find the waiting time distribution by conditioning on
the number of customers present at an arbitrary moment during Ri−k and on the residual switch-over
time.

Theorem 3.4

W̃ (Ri−k )
i (ω) = R̃ P R

i−k

( k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

)+ λi
(
1− B̃i (ω)

)
, ω +

k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

))

× L̃B(Ri−k )
(
B0,i

k−2⊗
j=0

Bj,i−1
) k−2∏

j=0

R̃∗j,i−1(ω), i, k = 1, . . . , N , (3.20)

Proof:
We consider an arbitrary customer arriving in Qi during R j . Similar to the proofs of the preceding
theorems in this section, we condition on the number of customers present in all queues at the arrival
epoch, denoted by n1, . . . , nN . As mentioned before, no gated customers are present during a switch-
over time. However, we also condition on the residual length of R j , denoted by tR . The waiting time
of the tagged customer consists of:

11



1. the service of all n j+1, . . . , ni−1 customers present at the arrival epoch in Q j+1, . . . , Qi−1,

2. the service of all their descendants that will be served before the start of the next visit to Qi ,

3. the service of all ni customers present at the arrival epoch in Qi ,

4. the residual switch-over time tR ,

5. the switch-over times R j+1, . . . , Ri−1,

6. the service of all customers arriving during tR, R j+1, . . . , Ri−1 that will be served before the
start of the next visit to Qi ,

7. the service of all descendants of these customers that will be served before the start of the next
visit to Qi .

If we denote the waiting time of a type i customer arriving during R j , conditional on n1, . . . , nN and

tR , by W (R j )
′

i , we can summarise these items in the following formula:

W (R j )
′

i =
i−1∑

k= j+1

[
nk∑

l=1

Skl + Rk +
i−1∑

l=k+1

Nl (Rk )∑
m=1

Slm

]
+

ni∑
l=1

Bil + tR +
i−1∑

l= j+1

Nl (tR)∑
m=1

Slm . (3.21)

Taking the LST of (3.21) and using (3.19) leads to (3.20) after deconditioning. The derivation is not
completely straightforward, but rather than providing it here, we refer to the proof of Theorem 3.5,
which contains a similar derivation of a more complicated equation. �

Now we only need to determine W̃ (Vi−k )
i (·). Focussing on a tagged customer arriving in Qi during

the service of a customer in Qi−k , for i, k = 1, . . . , N , we can find W̃ (Vi−k )
i (·) by conditioning on

the number of customers in each queue at the arrival epoch and the residual service time. Similar to
R̃ P R

j (·), we define the LST of the joint distribution of past and residual service time B j as

B̃ P R
j (ωP , ωR) = B̃ j (ωP)− B̃ j (ωR)

(ωR − ωP)b j
, j = 1, . . . , N . (3.22)

We can now use Equations (3.6) and (3.22) to find the PGF-LST of the joint distribution of the number
of customers of each type present at an arbitrary moment during V j and the residual service time of
the customer that is being served at that moment:

L̃ (V j )(z, ω) = L̃B(B j )
(z)B̃ P R

j (6 j (z), ω). (3.23)

Note that the customers arriving in Q j during the elapsed part of B j are gated customers.
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Theorem 3.5

W̃ (Vi−k )
i (ω) = B̃ P R

i−k

( k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

)+ λi
(
1− B̃i (ω)

)
, ω +

k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

))

× L̃B(Bi−k )
(
B0,i

k−1⊗
j=0

Bj,i−1
) k−1∏

j=0

R̃∗j,i−1(ω)×
P̃∗k−1,i−1(ω)

B̃∗k−1,i−1(ω)
, i = 1, . . . , N ; k = 1, . . . , N − 1,

(3.24)

W̃ (Vi−N )
i (ω) = B̃ P R

i

( N−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

)+ λi
(
1− B̃i (ω)

)
, ω +

N−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

))

× L̃B(Bi )
(
BN,i

N−1⊗
j=0

Bj,i−1
) N−1∏

j=0

R̃∗j,i−1(ω)×
P̃∗N−1,i−1(ω)

B̃∗N−1,i−1(ω)
, i = 1, . . . , N . (3.25)

Proof:
We denote by n1, . . . , nN , nG the numbers of customers of all types present at the arrival epoch of
the tagged customer. The residual part of the service time of the customer being served at this arrival
epoch is denoted by tR . Let niG := ni if i 6= j , and niG := nG if i = j . The waiting time of a type i
customer arriving during V j , conditional on n1, . . . , nN , nG and the residual service time consists of
the following components:

1. the service of n j−1 customers in front of the gate in Q j (We exclude the customer being served
at the arrival epoch),

2. the service of all n j+1, . . . , ni−1 customers present in Q j+1, . . . , Qi−1,

3. all of the descendants of the previously mentioned customers that will be served before the next
visit to Qi ,

4. if i 6= j , the service of all niG customers present in Qi at the arrival epoch; if i = j , the service
of all niG gated customers present in Qi ,

5. the switch-over times R j , . . . , Ri−1,

6. the residual service time tR ,

7. all customers arriving during tR and R j , . . . , Ri−1 that will be served before the next visit to Qi ,

8. all of their descendants that will be served before the next visit to Qi ,

9. the (possible) future service of the customer being served at the arrival epoch, due to the fact
that he may be routed to another queue that will be served before the next visit to Qi ,

10. the service of all descendants of this rerouted customer (Note that if he will be rerouted and
served again, he will count as his own descendant).

13



More formally:

W (V j )
′

i =
n j−1∑
l=1

S j,l +
i−1∑

k= j+1

nk∑
l=1

Skl +
niG∑
l=1

Bil +
i−1∑
k= j

[
Rk +

i−1∑
l=k+1

Nl (Rk )∑
m=1

Slm

]

+ tR +
i−1∑

l= j+1

Nl (tR)∑
m=1

Slm +
{

Sl for l = j + 1, . . . , i − 1, w.p. p j,l,

0 w.p. 1−∑i−1
l= j+1 p j,l,

.

(3.26)

We now show that Equations (3.24) and (3.25) (for the cases i 6= j and i = j respectively) follow
from taking the LSTs:

E[e−ωW
(V j )
i |n1, . . . , nN , niG]

= E

n j−1∏
l=1

e−ωS jl

i−1∏
m= j+1

nm∏
l=1

e−ωSml

E

[
niG∏
l=1

e−ωBil

]
E

 i−1∏
m= j

e−ω
(

Rm+∑i−1
l=m+1

∑Nl (Rm )
q=1 Slq

)
× e−ωtRE

 i−1∏
l= j+1

Nl (tR)∏
m=1

e−ωSlm

 i−1∑
l= j+1

p j,lE
[
e−ωSl

]+ 1−
i−1∑

l= j+1

p j,l


= E

[
e−ωS j

]n j−1
i−1∏

m= j+1

E
[
e−ωSm

]nm E
[
e−ωBi

]niG
i−1∏
m= j

R̃m

(
ω +

i−1∑
l=m+1

(1− E[e−ωSl ])
)

× e−ωtR

i−1∏
l= j+1

∞∑
m=0

E[e−ωSl ]mP[Nl(tR) = m]
1−

i−1∑
l= j+1

p j,l

(
1− E

[
e−ωSl

] )
= B̃∗k−1,i−1(ω)

ni−k−1
k−1∏
l=1

B̃∗l−1,i−1(ω)
ni−l B̃i (ω)

niG

k∏
l=1

R̃∗l−1,i−1(ω)

× exp

−(ω + i−1∑
l= j+1

(1− E[e−ωSl ])
)

tR

 P̃∗k−1,i−1(ω)

= B̃∗k−1,i−1(ω)
ni−k

k−1∏
l=1

B̃∗l−1,i−1(ω)
ni−l B̃i (ω)

niG

k∏
l=1

R̃∗l−1,i−1(ω)

× exp

[
−
(
ω +

k−1∑
l=1

(1− B̃∗l−1,i−1(ω))
)

tR

]
Pk−1,i−1(ω)

B̃∗k−1,i−1(ω)
,

where k = i − j (or k = N + i − j if j ≥ i). Deconditioning of this expression leads to (3.25). �

Arbitrary customers Finally, the LST of the waiting time distribution of an arbitrary customer in
Qi follows from (3.14) and (3.18), after deconditioning on the event that an arbitrary customer is an
internal or external customer:

W̃i (ω) = γi − λi

γi
W̃ I

i (ω)+
λi

γi
W̃ E

i (ω), i = 1, . . . , N .
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Remark 3.6 The novel approach of the present section to find the LST of the waiting time distribution
can also be applied to other types of models with a single server serving multiple queues. Obviously,
one can apply it to standard polling models (without customer routing) by simply taking pi,0 = 1
and pi, j = 0 for j > 0. However, the developed methodology carries almost directly over to tandem
queues [24, 35], multi-stage queueing models with parallel queues [20], feedback vacation queues
[10, 34], symmetric feedback polling systems [32, 34], systems with a waiting room [1, 31], closed
networks [2], M/G/1 queues with permanent and transient customers [9], networks with permanent
and transient customers [3], or polling models with arrival rates that depend on the location of the
server [4, 8].

4 The waiting time distribution under heavy traffic

In the present section we study the behaviour of our system under heavy-traffic (HT) conditions.
From now on, we relax the assumption of Poisson arrivals, and we assume that the network consists
of at least two stations. We only require that the interarrival times are independent random variables.
Heavy-traffic conditions imply that we increase the load of the system until it reaches the point of
saturation, ρ ↑ 1. As the total load of the system increases, the visit times, cycle times, and waiting
times become larger and will eventually grow to infinity. For this reason, we scale them appropriately
and consider the scaled versions. We consider several variables as a function of the load ρ in the
system. Scaling is done by varying the interarrival times of the external customers. To be precise, the
limit is taken such that the external arrival rates λ1, . . . , λN are increased, while keeping the service
and switch-over time distributions, the routing probabilities and the ratios between these arrival rates
fixed. For each variable x that is a function of ρ, its value evaluated at ρ = 1 is denoted by x̂ . For
ρ = 1, the generic interarrival time of the stream in Qi is denoted by Âi . Reducing the load ρ is done
by scaling the interarrival times, i.e., taking the random variable Ai := Âi/ρ as generic interarrival
time at Qi . The (scaled) rate of the arrival stream at Qi is defined as λi = 1/E[Ai ]. After scaling, the
load at Qi becomes ρi = ργ̂i bi . Furthermore, we define arrival rates λ̂i = 1/E[ Âi ], and proportional
load at Qi , ρ̂i = ρi/ρ (“proportional” because

∑N
i=1 ρ̂i = 1).

To obtain HT-results for the waiting-time distributions, we use HT results for polling systems, which
are obtained by Coffman et al. [13, 14] and by Olsen and Van der Mei [25, 26]. The key observation
in these papers is the occurrence of a so-called Heavy Traffic Averaging Principle (HTAP). When a
polling system becomes saturated, two limiting processes take place. Let V denote the total workload
of the system. As the load offered to the system, ρ, tends to 1, the scaled total workload (1−ρ)V tends
to a Bessel-type diffusion. However, the work in each queue is emptied and refilled at a faster rate than
the rate at which the total workload is changing. This implies that during the course of a cycle, the
total workload can be considered as constant, while the workloads of the individual queues fluctuate
according to a fluid model. The HTAP relates these two limiting processes. We start by discussing
the fluid model and subsequently discuss the limiting distribution of the scaled total workload. At the
end of this section we use these results to obtain the HT limit of the scaled waiting time distributions.

4.1 Fluid model: workload

We start by studying the fluid limit of the per-queue workload, which is obtained by multiplying by
(1 − ρ) and letting ρ ↑ 1. For our model, the fluid limit of the workload at Qi is a piecewise linear
function. During Vk , k = 1, . . . , N , external fluid particles flow into Qi at rate λ̂i . Each of these fluid
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Vi Vi+1 Vi+2 Vi+3 Vi+N−1

δi c

γ̂iβi c

c

Figure 1: Mean amount of work in Qi in the fluid limit that arises when the system is in heavy traffic.
The length of one cycle is c.

particles brings along βi units of work into the system. Simultaneously, work is being processed in
Qk at rate one. Since

∑N
i=1 λ̂iβi = 1, the total workload remains constant throughout the course of a

cycle. Although work is processed at rate one, due to the internal routing work is flowing out of Qk

at rate

1+ 1
bk

N∑
i=1

pk,iβi = βk

bk
,

which is greater than (or equal to) one. The reason for this anomaly is that work decreases in Qk

either because of the service of fluid particles (customers) in this queue, or because work is shifted
due to internal routing of fluid. Work including rerouted fluid particles is flowing into Qi , during Vk ,
at rate γ̂i,kβi , where

γ̂i,k := λ̂i + pk,i/bk, i, k = 1, . . . , N .

It is straightforward to verify that βk/bk = ∑N
i=1 γ̂i,kβi . Figure 1 depicts a graphical representation

of the mean amount of work in Qi in the fluid limit throughout the course of a cycle, the length of
which is a constant, denoted by c. One can show that the fluid limit of the mean amount of work in
Qi at the beginning of a visit to Q j is

∑ j−1
k=i ρ̂k γ̂i,kβi c for j = i + 1, . . . , i + N . This reduces to γ̂iβi c

for j = i + N . We have used that in the fluid limit the fraction of time that the server is visiting Q j

is ρ̂ j ( j = 1, . . . , N ). Combining these observations, one can obtain the following expression for δi ,
defined as the ratio of the fluid limit of the average amount of work at Qi and the length of a cycle
(see Figure 1).

Lemma 4.1 For i = 1, . . . , N ,

δi = 1
2
ρ̂iβi (γ̂i + ρ̂i γ̂i,i )+

i+N−1∑
j=i+1

ρ̂ j

(
1
2
ρ̂ jβi γ̂i, j +

j−1∑
k=i

ρ̂kβi γ̂i,k

)
. (4.1)

As the total inflow in all queues is equal to the total outflow per time unit, the total amount of work
during a cycle remains constant at level δc, where δ is defined as

δ =
N∑

i=1

δi . (4.2)
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4.2 Fluid model: waiting times

For the fluid model under consideration we are interested in the waiting time distribution of an arbi-
trary fluid particle, internal or external. Just like in the previous section, we define the waiting time
as the the time between the arrival in a queue, and the moment of departure from this queue (even if
the particle is routed to another, or even the same queue). During Vk fluid flows into Qi at rate γ̂i,k .
Hence, the probability that an arbitrary fluid particle arrives during Vk , given that it arrives in Qi , is
πi,k := γ̂i,k ρ̂k/γ̂i . The corresponding waiting time consists of the residual part of Vk , the visit periods
Vk+1, . . . , Vi−1, and the processing of the amount of fluid that has arrived in Qi during the elapsed part
of the cycle, i.e., Vi , . . . , Vk−1 plus the elapsed part of Vk . Let Uk be a uniformly distributed random
variable on [0, 1], indicating the fraction of Vk that has elapsed at the arrival epoch of a fluid particle
in Qi . The waiting time distribution is:

W fluid
i

d= (1−Uk)ρ̂kc +
i−1∑

j=k+1

ρ̂ j c +
k−1∑

j=i−N

ρ̂ j cγ̂i, j bi +Uk ρ̂kcγ̂i,kbi w.p. πi,k

= c
(

1+
k−1∑

j=i−N

ρ̂ j (γ̂i, j bi − 1)+Uk ρ̂k(γ̂i,kbi − 1)
)

w.p. πi,k, (4.3)

for i = 1, . . . , N and k = i − N , . . . , i − 1.

4.3 Original model: workload, cycle time and waiting times

We now return to the original model under HT conditions. We denote by V the total amount of work in
the system at an arbitrary epoch. As far as the total amount of work is concerned, the system behaves
like a polling system in heavy traffic with external customers bringing in an amount of work B∗i in
Qi , but with work shifting from one queue to another upon the service completion of a customer.
For polling systems with general renewal arrivals the HT limit of the scaled total amount of work at
the beginning of a cycle is conjectured by Olsen and Van der Mei [26]. Although this conjecture is
widely accepted to be true, it has only been proven for systems consisting of two queues (cf. [13, 14]),
systems with Poisson arrivals (cf. [25]), or for the means rather than the complete distributions (cf.
[37]). An adaptation of the conjecture in [26] to our model leads to the following result.

Conjecture 4.2 Define

σ 2 =
N∑

i=1

λ̂i

(
Var[B∗i ] + (λ̂iβi )

2Var[ Âi ]
)
,

α = 2rδ/σ 2 + 1,

µ = 2/σ 2,

where δ is given by (4.2). Then, for ρ ↑ 1, (1− ρ)V has a Gamma distribution with shape parameter
α and rate parameter µ.

For more details we refer to [26] (who, in turn, refer to a result from [14]).

Subsequently, the diffusion limit of the total workload process and the workload in the individual
queues can be related using the HTAP. To this end, we start with the cycle-time distribution under HT
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scalings, which follows from Conjecture 4.2 and the fluid analysis carried out in the first part of this
section. The length of a cycle depends on the amount of work at the beginning of that cycle (which
may be any arbitrarily chosen moment). Denote by C(x) the length of a cycle, given that a total
amount of x work is present at its beginning. In steady state, we have the following relation

δC(x) = x . (4.4)

Hence, given an amount of work x , the cycle time is C(x) = x/δ. However, the cycle during which an
arbitrary customer arrives, is a so-called length-biased cycle. If a random variable X has probability
density function fX (x), then we define the length-biased random variable X as a random variable with
probability density function

fX(x) = x fX (x)/E[X ].
From renewal theory, we know that the length-biased cycle length accounts for the fact that an arbitrary
customer arrives with a higher probability during a long cycle, than during a short one. Hence, when
relating the waiting times to the cycle times, one should consider the length-biased cycle time. We
are now ready to formulate the second conjecture, concerning the limiting distribution of the scaled
length-biased cycle time.

Conjecture 4.3 For ρ ↑ 1, we find that (1 − ρ)Ci converges in distribution to a random variable
having a Gamma distribution with shape parameter α and rate parameter δµ.

Given the cycle time distribution, we can finally find the waiting time distributions under HT condi-
tions. We use the fluid analysis, in combination with the conjectures in this section, to find the limiting
distribution of the scaled waiting times. In the fluid analysis the cycle time had a fixed length c. Due
to the HTAP we can replace the constant cycle time from the fluid analysis by the random variable Ci ,
the scaled length-biased cycle time. Obviously, this replacement can only be carried out because of
the independence between the length of the cycle time and the uniformly distributed random variables
appearing in (4.3). The following conjecture summarises this result.

Conjecture 4.4 As ρ ↑ 1, the scaled waiting time (1− ρ)Wi converges in distribution to the product
of a random variable having the same distribution as W fluid

i and a random variable 0 having the same
distribution as the limiting distribution of the scaled length-biased cycle time, (1 − ρ)Ci . For i =
1, . . . , N ; k = i − N , . . . , i − 1, and ρ ↑ 1,

(1− ρ)Wi
d→0 ×

(
1+

k−1∑
j=i−N

ρ̂ j (γ̂i, j bi − 1)+Uk ρ̂k(γ̂i,kbi − 1)
)

w.p. πi,k, (4.5)

where 0 is a random variable having a Gamma distribution with parameters α and δµ, and U1, . . . ,UN

are independent uniform [0, 1] distributed random variables.

The (HT limit of the) mean waiting time of an arbitrary customer in Qi obviously follows from (4.5),
but an easier way to find it, is by application of Little’s Law to the mean queue length at Qi , which is
simply the mean amount of work in Qi divided by the mean total service time.

Corollary 4.5 For i = 1, . . . , N ,

(1− ρ)E[Wi ] →
(

r + σ
2

2δ

)
δi

γ̂iβi
, (ρ ↑ 1). (4.6)

18



We conclude this section with some remarks.

Remark 4.6 In the current section we have derived the system behaviour under heavy traffic for
systems with general renewal arrival processes based on the partially conjectured HTAP. Recently,
Van der Mei [36] has developed a unifying framework to derive rigorous proofs of the heavy-traffic
behaviour of branching-type polling models with Poisson arrivals. By applying this stepwise approach
in conjunction with the results of the previous section to the model under consideration, one can
rigorously prove the HT asymptotics in queueing networks served by a single shared server under the
assumption of Poisson arrivals. These steps are not particularly enlightening by themselves so we
have chosen not to highlight them and refer the interested reader to [36].

Remark 4.7 In HT the system reaches saturation due to an increase in the total utilisation ρ. How-
ever, the system might also get saturated due to an increase of the total switch-over time r . These
two asymptotic regimes show, however, significantly different behaviour. In [38, 39] it was shown
for polling systems that the scaled cycle and intervisit times converge in probability to deterministic
quantities in the case that the (deterministic) switch-over times tend to infinity. One has to compare
this with the Gamma distribution which is prevalent in the scaled cycle time in the diffusion limit of
the present section. The results for polling systems with increasing switch-over times of [38, 39] can
be extended to the setting of the current paper. That is, as a consequence of the scaled cycle time con-
verging to a constant, a fluid limit is obtained implying that the scaled delay converges in distribution
to a mixture of uniform distributions (cf. Formula (4.3)).

5 Waiting time approximations

The HT diffusion distribution derived in the preceding section may be used directly as an approxi-
mation for the waiting time distribution in non-heavy-traffic systems. However, it tends to perform
poorly under low or moderate traffic. Therefore, in this section we refine this diffusion distribution
such that its mean coincides with the mean of a novel mean waiting time approximation, while the
diffusion distribution remains unchanged in the case of HT after refinement (cf. [15]).

5.1 Mean waiting time approximation

In order to derive an approximation for the mean waiting times, we study the LT limit of E[Wi ] which
can be found by conditioning on the customer type (external or internally routed).

Theorem 5.1 For i = 1, . . . , N ,

E[Wi ] → λi

γi

r (2)

2r
+

i−1∑
j=i−N

γ j p j,i

γi

i−1∑
k= j

rk, (ρ ↓ 0). (5.1)

In light traffic we ignore all O(ρ) terms, which implies that we can consider a customer as being alone
in the system. Equation (5.1) can be interpreted as follows. An arbitrary customer in Qi has arrived
from outside the network with probability λi/γi . In this case he has to wait for a residual total switch-
over time with mean r (2)/2r . If a customer in Qi arrives after being served in another queue, say Q j

(with probability γ j p j,i/γi ), on average he has to wait for the mean switch-over times r j , . . . , ri−1.
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Subsequently, we construct an interpolation between the LT and HT limits that can be used as an
approximation for the mean waiting times. For i = 1, . . . , N ,

E[W approx
i ] = wLT

i + (wHT
i − wLT

i )ρ

1− ρ , (5.2)

where wLT
i and wHT

i are the LT and HT limits respectively, as given in (5.1) and (4.6). Because of
the way E[W approx

i ] is constructed, it has the nice properties that it is exact as ρ ↓ 0 and ρ ↑ 1.
Furthermore, if we have Poisson arrivals, it satisfies a so-called pseudo-conservation law for the mean
waiting times, which is derived in [30]. This implies that the E[W approx

i ] yields exact results for
symmetric (and, hence, single-queue) systems.

The astute reader has already noticed that the LT result (5.1) is a first-order Taylor expansion of
the mean waiting time at ρ = 0, which can be naturally extended with the m th derivatives of the
mean waiting time with respect to ρ at ρ = 0. Together with the HT limit one has m + 1 pieces of
information, which can be used to construct an (m+1)th degree polynomial interpolation (cf. [7]). As
can be seen in the numerical evaluation, the presented first-order polynomial interpolation is however
already quite accurate.

5.2 Refining the HT waiting time distribution

First, let us define W fluid
i as W fluid

i /c, i.e., the ratio of the waiting time of a particle in the fluid model
discussed in the previous section, and the length of a cycle in the fluid model. As a starting point
of the refinement of the diffusion distribution, we assume that the waiting time distribution of Qi for
general load can be written as a product of W fluid

i and a gamma random variable with parameters αa

and µia , divided by (1 − ρ), in line with the HT result. To parameterise αa and µia , we impose the
following three requirements:

1. The refined approximation must coincide with the diffusion distribution (4.5), i.e., α/αa → 1
and µi/µia → 1 when ρ tends to 1.

2. The mean of the refined approximation equals E[W approx
i ] as defined in (5.2).

3. The squared coefficient of variation of the refined approximation equals the squared coefficient
of variation of the HT diffusion distribution (4.5).

These requirements uniquely determine the parameters αa and µia , leading to the following approxi-
mation for the waiting time distribution for ρ < 1,

P[Wi < x] ≈ P
[
0

approx
i ×W fluid

i < (1− ρ)x
]
, (5.3)

where 0approx
i is a Gamma distributed random variable with parameters

αa = 2rδ
σ 2
+ 1, and µia = αaE[W fluid

i ]
(1− ρ)E[W approx

i ] . (5.4)

It can be shown that this approximation is exact in the limiting case of deterministic set up times that
tend to infinity (see [38, 39]) and, by construction, in the HT regime. Finally, it is not inconceivable
that the approximation can be refined even further, but since the primary goal of this paper has been the
derivation of the waiting time distributions under general and heavy traffic conditions such refinements
are beyond the scope of the paper.
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5.3 Numerical evaluation

We do not aim at giving an extensive numerical study to assess the accuracy of the approximation.
Instead, we give some numerical examples that indicate the versatility of the model that we have
discussed, and show the practical usage of the approximation (5.3). To this end, we use some examples
that can be found in the existing literature, and show how our model can be used to describe the various
systems and find the relevant performance measures. It is noteworthy that all of these examples contain
one or more queues with exhaustive service, which is described in the appendix.

Q1

Q2

Q3

λ1

λ2

Server

Figure 2: Tandem queues with parallel queues in the first stage, as discussed in Example 1.

Example 1: tandem queues with parallel queues in the first stage. We first use an example that
was introduced by Katayama [20], who studies a network consisting of three queues. Customers arrive
at Q1 and Q2, and are routed to Q3 after being served (see Figure 2). This model, which is referred
to as a tandem queueing model with parallel queues in the first stage, is a special case of the model
discussed in the present paper. We simply put p1,3 = p2,3 = p3,0 = 1 and all other pi, j are zero.
We use the same values as in [20]: λ1 = λ2/10, service times are deterministic with b1 = b2 = 1,
and b3 = 5. The server serves the queues exhaustively, in cyclic order: 1, 2, 3, 1, . . . . The only
difference with the model discussed in [20] is that we introduce (deterministic) switch-over times
r2 = r3 = 2. We assume that no time is required to switch between the two queues in the first stage,
so r1 = 0. In Table 1 we show the means and standard deviations of the waiting times of customers
at the three queues and their approximated values. From this table we can see that the accuracy for
the mean waiting time is best for values of ρ close to 0 or 1, but the overall accuracy is very good
in general. The standard deviation is approximated very accurately as well, but (in contrast to the
mean) its approximation is not exact for the limiting case ρ ↓ 0. Hence, for practical purposes we
recommend using it for systems with ρ > 0.5.

We have also tested the accuracy of the approximation for different interarrival-time distributions, with
squared coefficient of variation (SCV) equal to respectively 1

2 and 2. In the first case we have fitted a
mixed Erlang distribution, and in the second case a hyperexponential distribution. For an SCV equal
to 1

2 , the accuracy of the approximations for E[W1] and E[W2] remains excellent (maximum relative
error below 7%). However, for the mean waiting times in Q3 the performance of the approximation
deteriorates, with relative errors up to 30% (for ρ = 0.5). The results for an SCV equal to 2 are
excellent for all three queues, with maximum relative errors of respectively 5%, 2% and 10%. The
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accuracy of the approximations for the standard deviations is comparable to the Poisson case, i.e.,
very good results for ρ > 0.5.

ρ 0.01 0.1 0.3 0.5 0.7 0.9 0.99 mean standard deviation
E[W1] 2.0 2.5 3.9 6.2 11.2 36.1 370.4

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

E[W approx
1 ] 2.0 2.4 3.6 5.7 10.7 35.4 369.6

sd[W1] 1.3 2.0 3.6 5.9 10.9 35.3 362.7

sd[W approx
1 ] 2.0 2.4 3.5 5.6 10.4 34.7 362.1

E[W2] 2.0 2.4 3.5 5.4 9.8 31.2 319.1

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

E[W approx
2 ] 2.0 2.4 3.4 5.2 9.5 30.8 318.7

sd[W2] 1.2 1.8 3.1 5.1 9.4 30.3 312.4

sd[W approx
2 ] 2.0 2.3 3.3 5.1 9.3 30.2 312.2

E[W3] 2.0 2.3 3.4 5.5 10.4 35.5 374.8

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

E[W approx
3 ] 2.0 2.4 3.6 5.8 10.8 35.9 375.3

sd[W3] 0.4 1.2 2.7 4.8 9.2 30.2 311.6

sd[W approx
3 ] 1.7 2.0 3.0 4.8 9.0 29.8 311.1

Table 1: Results for the first numerical example. The solid grey lines in the figures correspond to the
exact values, the dashed lines are approximations.

Example 2: a two-stage queueing model with customer feedback. This second example is intro-
duced by Takács [31], and extended by Ali and Neuts [1]. The queueing system under consideration
consists of a waiting room, in which customers arrive according to a Poisson process with intensity
λ, and a service room. The customers are all transferred simultaneously to the service room where
they receive service in order of arrival. However, at the moment of the transfer to this service room M
additional “overhead customers” are added to the front of this queue. (In [31] M is a constant, in [1]
it is a random variable.) Upon service completion, each customer leaves the system with probability
q , and returns to the waiting room with probability 1− q . Overhead customers leave the system with
probability one after being served. A schematic representation of this model is depicted in Figure 3.

We use the same input parameters as Takács [31]: q = 2/3 and λ/µ = 1/6, where 1/µ is the
mean service time in the service room. This service time is exponentially distributed. The number
of overhead customers that are added to the front of the queue is a constant with value M . We can
model this system in terms of our network with a single, shared server by defining arrival intensities
λ1 = λ and λ2 = 0. The service times in stations 1 and 2 are respectively 0 and exponentially
distributed with mean b2 = 1/µ. The routing probabilities are p1,2 = 1 and p2,1 = 1/3, the other
pi, j are zero. The service times of the overhead customers are also exponentially distributed with
parameter µ. Hence, we can model the addition of M overhead customers as a switch-over time
which is Erlang-M distributed with parameter µ. The switch-over time between Q2 and Q1 is zero.
The mean waiting times in stations one and two (corresponding to the waiting room and the service
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Waiting room Service room

1 − q
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Server

M

Figure 3: The two-stage queueing model with customer feedback, as discussed in Example 2.

room) are respectively

E[W1] = 1+ M
2µ

, E[W2] = 1+ 7M
6µ

.

For this simple model our approximation for the mean waiting times (5.2) yields exact results.

The main purpose of this example is to illustrate how we can model a seemingly different queueing
system as a special case of our model. The results are slightly different from those presented in [31],
because Takács also considers the overhead customers in the computations of the waiting times and
allows them to return to the waiting room after their service is completed. Modelling this situation
would require one minor adaptation in the laws of motion (adding the overhead customers at the
beginning of V2) and another adaptation in the waiting time LST (conditioning on the event that a new
customer is an overhead customer). These changes are not too difficult but beyond the scope of this
paper.
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Appendix

A Exhaustive service

Sidi et al. [30] analysed systems with exhaustive service. They assumed last-come-first-served ser-
vice, since this simplified the analysis considerably without affecting the queue length distributions.
We can use the same idea, which includes using extended service times and modified transition prob-
abilities, to compute the cycle time distribution. However, the first-come-first-served assumption
cannot be relaxed when computing waiting time distributions. In this appendix we illustrate how to
analyse systems with exhaustive service, while allowing some of the queues to have gated service as
well. The analysis in this appendix does not reveal any new insights and is only given for complete-
ness. We restrict ourselves to presenting the results, but we omit all proofs as they can be produced
similar to the proofs in Sections 3 and 4.
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In this section we use the index e ∈ {1, . . . , N } to refer to an arbitrary queue with exhaustive service.
The main difference between gated and exhaustive service is that customers arriving in Qe during Ve

will be served during that same visit period. This is true, even if the customer has just received service
in Qe and was routed back to Qe again. To deal with this issue, Sidi et al. define an extended service
time Bexh

e which is the total amount of service that a customer receives during a visit period Ve before
being routed to another queue (or leaving the system). They observe that Bexh

e is the geometric sum,
with parameter pe,e, of independent random variables with the same distribution as Be. The LST of
Bexh

e is given by

B̃exh
e (ω) = (1− pe,e)B̃e(ω)

1− pe,e B̃e(ω)
.

We denote a busy period of type e customers by BPe. The PGF-LST of the joint distribution of a busy
period and the number of customers served during this busy period satisfies the following equation:

B̃Pe(z, ω) = z B̃exh
e

(
ω + λe(1− B̃Pe(z, ω))

)
.

A.1 Queue lengths

At visit beginnings and completions. The laws of motion (3.1)-(3.2) have to be adapted if a queue
receives exhaustive service. First we need to redefine 6i (z) and Pi (z) if Qi is served exhaustively,
and introduce Pexh

i (z):

6e(z) =
∑
j 6=e

λ j (1− z j ),

Pe(z) = pe,0 +
N∑

j=1

pe, j z j ,

Pexh
e (z) = pe,0

1− pe,e
+
∑
j 6=e

pe, j

1− pe,e
z j ,

for all e ∈ {1, . . . , N } corresponding to queues with exhaustive service. The laws of motion now
change accordingly:

L̃C
(Ve)
(z) = L̃B(Ve)

(
z1, . . . , ze−1, B̃Pe

(
Pexh

e (z),6e(z)
)
, ze+1, . . . , zN , 1

)
,

L̃B(Re)
(z) = L̃C

(Ve)
(z),

for any exhaustively served Qe.

At service beginnings and completions. Eisenberg’s relation (3.3) remains valid for queues with
exhaustive service. Note that Pe(z) should not be replaced by Pexh

e (z) for exhaustive queues in (3.3)!
Relation (3.4) should be slightly changed for queues with exhaustive service, since customers are not
placed behind a gate:

L̃C
(Be)
(z) = L̃B(Be)

(z)B̃e
(
6(z)

)
/ze.
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At arbitrary moments. Equation (3.5) for the PGF of the joint queue length distribution at arbitrary
moments remains valid if some of the queues have exhaustive service. However, L̃ (V j )(z) should
be adapted for queues with exhaustive service by replacing gated customers with “ordinary” type e
customers:

L̃ (Ve)(z) = L̃B(Be)
(z)

1− B̃e
(
6(z)

)
be6(z)

.

A.2 Cycle times

The fact that customers arriving in an exhaustively served queue, say Qi−k , during Vi−k are served
before the end of this visit period, requires changes in the definition of B̃∗k,i (ω).

B̃∗k,i (ω) = B̃Pi−k

(
P̃∗k,i (ω), ω +

k−1∑
j=0

λi− j (1− B̃∗j,i (ω)
))
, k = 0, . . . , N ; i = 1, . . . , N , (A.1)

where

P̃∗k,i (ω) = 1−
k−1∑
j=0

pi−k,i− j

1− pi−k,i−k

(
1− B̃∗j,i (ω)

)
, k = 0, . . . , N ; i = 1, . . . , N . (A.2)

Given this modified definition of B̃∗k,i (ω), the function R̃∗k,i (ω) remains unchanged. The expression for
the LST of the cycle time Ci , given by (3.12), also remains valid for systems containing exhaustively
served queues.

A.3 Waiting times

Internal customers. The waiting time LST of internal customers (3.14) is determined by condition-
ing on the event that an arrival in Qi follows a service completion in some Qi−k . As stated before, for
queues with exhaustive service we need to take into account that customers that are routed back to the
same queue will be served during the same visit period. For an arbitrary exhaustively served queue
Qe, this results in

W̃ I
e (ω) =

N−1∑
k=0

γe−k pe−k,i

γe − λe
W̃C

(Be−k )

e (ω).

Compared to (3.14), the summation starts at k = 0 and runs up to k = N − 1. We now introduce

B′0,i =
(
1, . . . , 1, B̃i (ω), 1, . . . , 1

)
, i = 1, . . . , N ,

with B̃i (ω) at the position corresponding to customers in Qi . If Qi has exhaustive service, there is a
subtle difference with B0,i which has B̃Pi (1, ω) at position i . We can now determine W̃C

(Be−k )

e (ω) for
any Qe that receives exhaustive service:

W̃C
(Be−k )

e (ω) = L̃C
(Be−k )(B′0,e

k−1⊗
j=0

Bj,e−1
) k−1∏

j=0

R̃∗j,e−1(ω), k = 1, . . . , N − 1,

W̃C
(Be)

e (ω) = L̃C
(Be)(B′0,e

)
.

For each Qi that receives gated service, we can still use (3.14)-(3.16) with the modified definition of
B̃∗k,i (ω) for each Qi−k which receives exhaustive service.
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External customers. The waiting time LST of external customers (3.18) is determined by condi-
tioning on the event that an arrival in Qi takes place during Vi−1, . . . , Vi−N or during Ri−1, . . . , Ri−N .
Before discussing the waiting times of external customers arriving in an exhaustively served queue,
it is important to realise that allowing some queues to have exhaustive service will now also require
some changes to waiting times of customers arriving in a queue with gated service. This means that
(3.24) should now become

W̃ (Vi−k )
i (ω) = B̃ P R

i−k

( k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

)+ λi
(
1− B̃i (ω)

)+ λi−k
(
1− B̃∗k−1,i−1(ω)

)
,

ω +
k−1∑
j=1

λi− j
(
1− B̃∗j−1,i−1(ω)

)+ λi−k
(
1− B̃∗k−1,i−1(ω)

))

× L̃B(Bi−k )
(
B0,i

k−1⊗
j=0

Bj,i−1
) k−1∏

j=0

R̃∗j,i−1(ω)×
1−∑k−1

j=0 pi−k,i− j−1
(
1− B̃∗j,i−1(ω)

)
B̃∗k−1,i−1(ω)

, (A.3)

if Qi−k receives exhaustive service (and Qi receives gated service). Compared to (3.24) we can see
that there are two additional terms λi−k

(
1 − B̃∗k−1,i−1(ω)

)
which take into account that customers

arriving in Qi−k during the elapsed and during the residual part of the present service time Bi−k will
be served during the present visit period. Furthermore, we can see that P̃∗k−1,i−1(ω) has been replaced
by 1−∑k−1

j=0 pi−k,i− j−1
(
1− B̃∗j,i−1(ω)

)
, which is required because the customer being served should

be allowed to return to Qi−k upon his service completion.

If Qe receives exhaustive service we have to make some additional changes. We have

W̃ E
e (ω) =

1
E[C]

N∑
k=1

(
E[Ve−k+1]W̃ (Ve−k+1)

e (ω)+ re−k W̃ (Re−k )
e (ω)

)
,

where we have chosen to denote the waiting time LST of customers arriving in Qe during Ve as
W̃ (Ve)

e (ω) rather than W̃ (Ve−N )
e (ω) to illustrate the fact that they will be served during the same visit

period. The expression for W̃ (Re−k )
e (ω), given by (3.20), should be slightly modified if Qe receives

exhaustive service. However, since the only required modification is that B0,i should be replaced by
B′0,i, we refrain from giving the complete expression.

If k > 0, the expression for W̃ (Ve−k )
e (ω) remains almost the same as (3.24) if Qe−k receives gated

service, or (A.3) if Qe−k receives exhaustive service. The only change is, once again, that B0,i should
be replaced by B′0,i. The case k = 0 results in a much simpler expression, since we only have to
wait for the service times of the customers that were present at the beginning of the present service
(excluding the customer in service) plus the service times of the customers that have arrived in Qe

during the elapsed part of the present service, plus the residual service time:

W̃ (Ve)
e (ω) = B̃ P R

e

(
λe
(
1− B̃e(ω)

)
, ω
) L̃B(Be)

(
B′0,e

)
B̃e(ω)

.

This concludes the analysis of a mixed model with gated and exhaustive service for ρ < 1. We now
discuss the heavy-traffic analysis for this model.

Heavy traffic Changing the HT analysis requires substantially less work. The fluid trajectory, as
depicted in Figure 1, is the same as for the gated case, except that it needs to be moved downwards
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such that the queue is empty at the end of the visit period. More precisely, if Qe receives exhaustive
service, then we define

δe = δgated
e − ρ̂eγ̂e,eβe,

where δgated
e is the value of δe given by (4.1) for the case that Qe would have received gated service.

The waiting time distribution of an arbitrary fluid particle is determined similarly to the gated case,
except for fluid particles arriving in Qe during Ve, obviously. This results in the following conjecture.

Conjecture A.1 Let Qe be an arbitrary queue with exhaustive service in the model under considera-
tion. As ρ ↑ 1, the scaled waiting time (1−ρ)We converges in distribution to the product of a random
variable having the same distribution as W fluid

e and a random variable 0 having the same distribution
as the limiting distribution of the scaled length-biased cycle time, (1− ρ)Ce. For ρ ↑ 1,

(1−ρ)We
d→


0 ×

(
(1−Uk)ρ̂k +∑e−1

j=k+1 ρ̂ j +∑k−1
j=e−N+1 ρ̂ j γ̂e, j be +Uk ρ̂k γ̂e,kbe

)
w.p. πe,k

(k 6= e),
0 ×Ue(γ̂e − γ̂e,eρ̂e)be w.p. πe,e,

where 0 is a random variable having a Gamma distribution with parameters α and δµ (as defined in
Section 4), and U1, . . . ,UN are independent uniform [0, 1] distributed random variables. Note that
the HT limit of We does not depend on whether the service disciplines in the other queues are gated
or exhaustive.

Finally, we note that the LT limit remains unchanged. Since we do not consider O(ρ) terms, the
system is always empty when a customer arrives, implying that the LT limit of the mean waiting time
is independent of the service discipline.
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[12] O. J. Boxma, O. Kella, and K. M. Kosiński. Queue lengths and workloads in polling systems.
Operations Research Letters, 39:401–405, 2011.

[13] E. G. Coffman, Jr., A. A. Puhalskii, and M. I. Reiman. Polling systems with zero switchover
times: A heavy-traffic averaging principle. The Annals of Applied Probability, 5(3):681–719,
1995.

[14] E. G. Coffman, Jr., A. A. Puhalskii, and M. I. Reiman. Polling systems in heavy-traffic: A Bessel
process limit. Mathematics of Operations Research, 23:257–304, 1998.

[15] J. L. Dorsman, R. D. van der Mei, and E. M. M. Winands. A new method for deriving waiting-
time approximations in polling systems with renewal arrivals. Stochastic Models, 27(2):318–
332, 2011.

[16] M. Eisenberg. Queues with periodic service and changeover time. Operations Research, 20(2):
440–451, 1972.

[17] Y. Gong and R. de Koster. A polling-based dynamic order picking system for online retailers.
IIE Transactions, 40:1070–1082, 2008.

[18] S. E. Grasman, T. L. Olsen, and J. R. Birge. Setting basestock levels in multiproduct systems
with setups and random yield. IIE Transactions, 40(12):1158–1170, 2008.

[19] D. Grillo. Polling mechanism models in communication systems – some application examples.
In H. Takagi, editor, Stochastic Analysis of Computer and Communication Systems, pages 659–
699. North-Holland, Amsterdam, 1990.

[20] T. Katayama. A cyclic service tandem queueing model with parallel queues in the first stage.
Stochastic Models, 4:421–443, 1988.

[21] V. Kavitha and E. Altman. Queueing in space: design of message ferry routes in static adhoc
networks. In Proceedings ITC21, 2009.

[22] J. Keilson and L. D. Servi. The distributional form of Little’s Law and the Fuhrmann-Cooper
decomposition. Operations Research Letters, 9(4):239–247, 1990.

[23] H. Levy and M. Sidi. Polling systems: applications, modeling, and optimization. IEEE Trans-
actions on Communications, 38:1750–1760, 1990.

28



[24] S. S. Nair. A single server tandem queue. Journal of Applied Probability, 8(1):95–109, 1971.

[25] T. L. Olsen and R. D. van der Mei. Polling systems with periodic server routeing in heavy traffic:
distribution of the delay. Journal of Applied Probability, 40:305–326, 2003.

[26] T. L. Olsen and R. D. van der Mei. Periodic polling systems in heavy-traffic: renewal arrivals.
Operations Research Letters, 33:17–25, 2005.

[27] J. A. C. Resing. Polling systems and multitype branching processes. Queueing Systems, 13:409
– 426, 1993.

[28] D. Sarkar and W. I. Zangwill. File and work transfers in cyclic queue systems. Management
Science, 38(10):1510–1523, 1992.

[29] M. Sidi and H. Levy. Customer routing in polling systems. In P. King, I. Mitrani, and R. Pooley,
editors, Proceedings Performance ’90, pages 319–331. North-Holland, Amsterdam, 1990.

[30] M. Sidi, H. Levy, and S. W. Fuhrmann. A queueing network with a single cyclically roving
server. Queueing Systems, 11:121–144, 1992.

[31] L. Takács. A queuing model with feedback. Revue française d’automatique, d’informatique et
de recherche opérationnelle. Recherche opérationnelle, 11(4):345–354, 1977.

[32] H. Takagi. Analysis and applications of a multiqueue cyclic service system with feedback. IEEE
Transactions on Communications - TCOM, 35(2):248–250, 1987.

[33] H. Takagi. Analysis and application of polling models. In G. Haring, C. Lindemann, and
M. Reiser, editors, Performance Evaluation: Origins and Directions, volume 1769 of Lecture
Notes in Computer Science, pages 424–442. Springer Verlag, Berlin, 2000.

[34] T. Takine, H. Takagi, and T. Hasegawa. Sojourn times in vacation and polling systems with
Bernoulli feedback. Journal of Applied Probability, 28(2):422–432, 1991.

[35] M. Taube-Netto. Two queues in tandem attended by a single server. Operations Research, 25
(1):140–147, 1977.

[36] R. D. Van der Mei. Towards a unifying theory on branching-type polling models in heavy traffic.
Queueing Systems, 57:29–46, 2007.

[37] R. D. van der Mei and E. M. M. Winands. A note on polling models with renewal arrivals and
nonzero switch-over times. Operations Research Letters, 36:500–505, 2008.

[38] E. M. M. Winands. On polling systems with large setups. Operations Research Letters, 35:
584–590, 2007.

[39] E. M. M. Winands. Branching-type polling systems with large setups. OR Spectrum, 33(1):
77–97, 2011.

29


	044-cover.pdf
	044-report

