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Efficient Calculation of Uncertainty
Quantification

E.J.W. ter Maten, R. Pulch, W.H.A. Schilders and H.H.J.M. Janssen

Abstract We consider Uncertainty Quantification (UQ) by expanding the solution
in so-called generalized Polynomial Chaos expansions. In these expansions the so-
lution is decomposed into a series with orthogonal polynomials in which the pa-
rameter dependency becomes an argument of the orthogonal polynomial basis func-
tions. The time and space dependency remains in the coefficients. In UQ two main
approaches are in use: Stochastic Collocation (SC) and Stochastic Galerkin (SG).
Practice shows that in many cases SC is more efficient for similar accuracy as ob-
tained by SG. In SC the coefficients in the expansion are approximated by quadra-
ture and thus lead to a large series of deterministic simulations for several parame-
ters. We consider strategies to efficiently perform this series of deterministic simu-
lations within SC.

1 Polynomial chaos for dynamical systems with random
parameters

We will denote parameters by p = (p1, . . . , pq)
T and assume a probability space

(Ω ,A ,P) given where A represents a σ -algebra, P : A → R is a measure and
p = p(ω) : Ω → Q⊆ Rq. Here we will assume that the pi are independent.

E.J.W. ter Maten, R. Pulch
Bergische Universität Wuppertal, FB C, AMNA, Gaußstraße 20, D-42119 Wuppertal, Germany,
e-mail: {Jan.ter.Maten,Roland.Pulch}@math.uni-wuppertal.de

E.J.W. ter Maten, W.H.A. Schilders
Eindhoven University of Technology, Dep. Maths. and Comp. Science (CASA), P.O. Box 513,
5600 MB Eindhoven, the Netherlands, e-mail: {E.J.W.ter.Maten,W.H.A.Schilders}@
tue.nl

H.H.J.M. Janssen
NXP Semiconductors, High Tech Campus 46, 5656 AE Eindhoven, the Netherlands, e-mail:
Rick.Janssen@nxp.com

1



2 E.J.W. ter Maten, R. Pulch, W.H.A. Schilders and H.H.J.M. Janssen

For a function f : Q → R, the mean or expected value is defined by

Ep[ f (p)] =< f >=
∫

Ω

f (p(ω))dP(ω) =
∫
Rq

f (p) ρ(p)dp. (1)

The specific probability distribution density is defined by the function ρ(p). A bi-
linear form < f ,g > (with associated norm L2

ρ ) is defined by

< f ,g >=
∫
Rq

f (p) g(p) ρ(p)dp =< f g > . (2)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f : Q → Rm×n.
We assume a complete orthonormal basis of polynomials (φi)i∈N, φi : Rq → R,
given with < φi,φ j >= δi j (i, j,≥ 0). When q = 1, φi has degree i. To treat a uniform
distribution (i.e., for studying effects caused by robust variations) Legendre polyno-
mials are optimal in some sense; for a Gaussian distribution one can use Hermite
polynomials [16, 25]. A polynomial φi on Rq can be defined from 1-dimensional
polynomials: φi(p) = ∏

q
d=1 φid (pd). Actually i orders a vector i = (i1, . . . , iq)T .

We will denote a dynamical system by

F(x(t,p), t,p) = 0, for t ∈ [t0, t1]. (3)

Here F may contain differential operators. The solution x ∈Rn depends on t and on
p. In addition initial and boundary values are assumed. In general these may depend
on p as well.
A solution x(t,p) = (x1(t,p), . . . ,xn(t,p))T of the dynamical system becomes a ran-
dom process. We assume that second moments are finite: < x2

j(t,p)>< ∞, for all
t ∈ [t0, t1] and j = 1, . . . ,n. We express x(t,p) in a Polynomial Chaos expansion

x(t,p) =
∞

∑
i=0

vi(t) φi(p), (4)

where the coefficient functions vi(t) are defined by

vi(t) =< x(t,p),φi(p)> . (5)

A finite approximation xm(t,p) to x(t,p) is defined by

xm(t,p) =
m

∑
i=0

vi(t) φi(p). (6)

For traditional random distributions ρ(.) convergence rates for ||x(t, .)− xm(t, .)||
for functions x(t,p), that depend smoothly on p, are known (see [2] and [25] for an
expansion in Hermite or in Legendre polynomials, respectively). For more general
distributions ρ(.) convergence may not be true. For instance, polynomials in a log-
normal variable are not dense in L2

ρ . For convergence one needs to require that the
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probability measure is uniqely determined by its moments [8]. One at least needs
that the expected value of each polynomial has to exist.
The integrals (5) can be computed by (quasi) Monte Carlo, or by multi-dimensional
quadrature. We assume quadrature grid points p0, p1, . . . ,pK and quadrature weights
wk, 0≤ k ≤ K, such that

vi(t) =< x(t,p),φi(p)>≈
K

∑
k=0

wk x(t,pk) φi(pk). (7)

Typically, Gaussian quadrature is used with corresponding weights. We solve (3) for
x(t,pk), k = 0, . . . ,K (K+1 deterministic simulations). Here any suitable numerical
solver for (3) can be used. By post-processing we determine the vi(t) in (7).

2 Statistical information (mean, variance) and Sensitivity

We note that the expansion xm(t,p), see (6), gives full detailed information when
varying p. From this the actual (and probably biased) range of solutions can be
determined. These can be different from envelope approximations based on mean
and variances.
The mean of x(t,p) is given by

Ep[x(t,p)]≈
∫
Rq

xm(t,p)ρ(p)dp =< xm(t,p)φ0 >= v0(t). (8)

This involves all pk together. One may want to consider effects of pi and p j sepa-
rately. This restricts the parameter space Rq to a one-dimensional subset with indi-
vidual distribution densities ρi(p) and ρ j(p). A covariance function of x(t,p) can
also be easily expressed

Ep[(x(t1,p)−Ep[x(t1,p)])T (x(t2,p)−Ep[x(t2,p)])] ≈
m

∑
i=1

vT
i (t1)vi(t2). (9)

Having a gPC expansion also the sensitivity (matrix) w.r.t. p is easily obtained

Sp(t,p) =
[

∂x(t,p)
∂p

]
≈

m

∑
i=0

vi(t)
∂φi(p)

∂p
. (10)

Fromd this a relative sensitivity can be defined by

Sr
p(t,p) =

[(∂xi(t,p)
∂ p j

·
p j

xi(t,p)
)

i j

]
= Sp(t,p)◦

[( p j

xi(t,p)
)

i j

]
. (11)

It describes the amplification of a relative error in p j to the relative error in xi(t,p)
(here ◦ denotes the Hadamard product of two matrices).
The sensitivity matrix also is subject to stochastic variations. With a gPC expansion
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it is possible to determine a mean global sensitivity matrix by

Sp(t) = Ep

[
∂x(t,p)

∂p

]
≈

m

∑
i=0

vi(t)
∫
Rq

∂φi(p)
∂p

ρ(p)dp. (12)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.

3 Failure and Tolerance Analysis

Failure may be defined after introducing a criterion function g(t,x(t,p)), e.g.,
g(t,x(t,p))≡ x(t,p)−θ . Then failure is measured by a function χ

χ(g(t,x(t,p))) =
{

0 for g > 0
1 for g≤ 0 . (13)

The Failure Probability is then

PF(t) =
∫

χ(g(t,x(t,p)))ρ(p)dp≈
∫

χ(g(t,xm(t,p)))ρ(p)dp. (14)

In (14) the expression at the left of the approximation symbol may be obtained us-
ing Monte Carlo methods for the orginal problems, probably speeded up by methods
like Importance Sampling [7, 19]. In [19], after applying results from Large Devi-
ations Theory, also realistic, but sharp, upper bounds were derived involving the
number of samples that have to be drawn.
Alternatively, after having spent the effort in determining xm(t,p) in (6) the evalua-
tion for different p is surprisingly cheap. Monte Carlo, Quasi Monte Carlo, Impor-
tance Samping can be used again for statistics, but at a much lower price [21]. De-
termination of Failure Probability, however, deserves additional attention, because
the expansion xm(t,p) in (6) may be less accurate in areas of interest for this kind
of statistics. The software tool RODEO of Siemens AG seems to be the only indus-
trial implementation of failure probability calculation that fits within the polynomial
chaos framework [20].
A hybrid method to compute small failure probabilities that exploits surrogate mod-
els has been introduced by [17]. Their method can be slightly generalized as follows.
By this we can determine the effect of approximation on the Failure Probability. To
each sample zi we assume a numerically obtained approximation z̃i. In addition g is
approximated by g̃. The probabilities one checks are

P̃ε(t) =
∫

χ
(
g̃(t, z̃(t,p))+ ε

)
ρ(p)dp,

Q̃ε(t) =
∫

χ
(
− g̃(t, z̃(t,p))− ε

)
χ
(
g̃(t, z̃(t,p))− ε

)
χ
(
g(t,z(t,p))

)
ρ(p)dp.
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Note that in P̃ε(t) one deals with g̃(t, z̃(t,p)) ≤ −ε . In Q̃ε the first two fac-
tors involve |g̃(t, z̃(t,p))| ≤ ε . The two quantities result in a Failure Probability
P̃F(t) = P̃ε(t)+ Q̃ε(t). The impact of the last factor in Q̃ε is that one additionally
evaluates the exact g(t,z(t,p)) (or one approximates it more accurately) when its
approximation g̃(t, z̃(t,p)) is small.
Now let D̃ε(t) =

∫
|g̃(z̃(t,p))−g(z(t,p))|>ε

ρ(p)dp be the combined quality of both ap-
proximations. One should be able to make this small. Note that |g̃(z̃(t,p))−
g(z(t,p))| < |g̃(z̃(t,p))− g̃(z(t,p))|+ |g̃(z(t,p))− g(z(t,p))|. The first term needs
Lipschitz continuity for g̃ to deal with z̃(t,p)− z(t,p), the second one deals with
|g̃− g|. By this and exploiting the finite probability measure one may assume, f.i.,
that D̃ε(t)< δPF(t), for 0 < δ < 1.
One can proof (similar to [17], Theorem 4.1)

|P̃F(t)−PF(t)|< D̃ε(t)< δPF(t). (15)

In practise, one may order the (remaining) approximative samples g̃(i)(t)= g̃(t, z̃(t,pi))
according to |g̃(i)(t)| and replace the smallest ones by g(i)(t) = g(t, z̃(t,pi)) and re-
duce the set of (remaining) approximative samples accordingly. One may stop if the
Probability Failures do not change that much anymore [17]. This procedure resem-
bles algorithmic steps in [20].

4 Strategies for efficient Stochastic Collocation

Stochastic Collocation implies that the problem has to solved for a sequence (or
sweep) of parameter settings p0, . . . ,pK . One can obtain some benefit by exploiting
knowledge derived before.
In [15], the parameters pk are grouped in blocks and in each block one simulation
is made, say for pk0 . At the subset of the pk0 the solution x(t,pk0) is calculated
at some higher accuracy (f.i., with a smaller stepsize h0). The solution is used to
estimate the truncation error of the time integration for x(t,pk). One determines the
residue r(t,x(t,pk0)) for x(t,pk0) using the same integration method as intended to
be used for x(t,pk), with stepsize h, but using pk0 in all expressions. By this the
discretization error for x(t,pk) is estimated automatically when pk0 is close to pk

and one may expect a larger stepsize h to be used then without this modification.
One can also adaptively build an estimator. In [2, 20] one builds an estimator by a
moderately-sized gPC approximation

x̃m′ =
m′

∑
i=0

ṽi(t)φi(p). (16)

As before the best ṽi(t) has ṽi(t) =
∫

x(t,p)ρ(p)dp. We can approximate them by a
Least Squares procedure at each time t
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min
ṽi(t)

∫
(x(t,p)− x̃m′)2

ρ(p)dp ≈ min
ṽi(t)

K

∑
k=0

wk(x(t,pk)−
m′

∑
i=0

ṽi(t)φi(pk))
2

= min
y
||My−b||22, where (17)

M =


√

w0
. . . √

wK


 φ0(p0) . . . φm′(p0)

...
...

φ0(pK) . . . φm′(pK)

 ,

b = (
√

w0xT (t,p0), . . . ,
√

wKxT (t,pK))T ,

y = (ṽT
0 (t), . . . , ṽ

T
m′(t))

T

In [2,20] one applies a Least Squares procedure (17) not for the final solution values
x(t,p0), ..., x(t,pK), but after splitting the sequence in already determined values
x(t,p0), ..., x(t,pK̃), and approximated values x̃(t,pK̃+1), ..., x̃(t,pK). Clearly the
error ∆y is determined by ∆y = M+∆b, where the ∆b comes from the errors in
the zk ≡

√
wkx̃(t,pk), k = K̃ +1, . . . ,K. One can sort the zk and update the x̃(t,pk)

to final solution values x(t,pk) for the ∆ K̃ largest zk. This allows to update x̃m′

iteratively and the approximation values x̃(t,pK̃+1), ..., x̃(t,pK) may come from the
previous x̃m′ . Interpreting the values x(t,p0), ..., x(t,pK̃), x̃(t,pK̃+1), ..., x̃(t,pK) as
coming from a function x̂(t,p). Then for x̂(t,p) the mean, variance and sensitivity
simply follow from the gPC expansion. The mean and variance can be used to check
their change after an update. Note that here one can exploit the average sensitivity as
well, which also simply follows from the gPC expansion. In this way one can assure
that one includes dominant parameters first. We finally note that the approximations
may come from (parameterized) Model Order Reduction.

5 Parameterized Model Order Reduction

Model Order Reduction (MOR) techniques can be applied to reduce the size of the
deterministic problems that have to be simulated using stochastic collocation. For
good general introductions we refer to [1, 4, 22]. For parameterized MOR we refer
to [3, 9, 10, 23].
We consider a linear system for circuit equations with capacitor matrix C = C(p),
conductivity matrix G = G(p) and source u(t) = u(t,p) that involve parameters p,

C(p)
dx
dt

+G(p)x(t,p) = Bu(t,p). (18)

This separation of p and x in the expressions in each equation is quite common in cir-
cuit simulation (capacitors and resistors depend on p), but for more general expres-
sions (like when using controlled sources this may require some organization in the
evaluation tree of the expression handler). In [10] a parameterized system in the fre-
quency domain is considered in which the coefficient matrices have been expanded.
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We consider however the nonexpanded form. Let s be the (angular) frequency. It
is assumed that a set p1,p2, . . . ,pK is given in advance, together with frequencies
s1,s2, . . . ,sK . In our case the p1,p2, . . . ,pK can come from quadrature points in
Stochastic Collocation. Let Ψ k = (sk,pk). Furthermore, let A = sC(p)+G(p) and
AX = B, and, similarly, Ak = A(Ψ k) = skC(pk)+G(pk) and AkXk = B.
A projection matrix V (with orthonormal columns vi) is searched for such that
X(s,p)≈ X̄(s,p)≡ VX̂(s,p)≡ ∑

K′
i=1 αi(s,p)vi.

We assume that we have already found some part of the (orthonormal) basis,
V = (v1, . . . ,vk). Then for any Ψ j that was not selected before to extend the ba-
sis the actual error is formally given by E j = X(Ψ j)−∑

k
i=1 αi(Ψ

j)vi and thus for
the residue we have R j = A jE j = B−∑

k
i=1 αi(Ψ

j)A jvi. Note that the residues deal
with B and with x and not with the effect in y. For UQ one may consider a two-
sided projection here, which will bring in the effect due to the quadrature weights.
The method of [10] was used in [6] (using expansions of the matrices in moments
of p). In [6] the parameter variation in C and G did come from parameterized layout
extraction of RC circuits.
The selection of the next parameter introduces a notion of ”dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of zero residues).
We finally describe two ideas to include sensitivity in parameterized MOR. One
can calculate the sensitivities of the solution of the reduced system by adjoint tech-
niques as described by [12, 13]. Alternatively one can exploit the sensitivity indi-
cation based on the gPC expansion of the combined list of exact evaluations and
outcomes of approximations as mentioned in Section 4.
If first order sensitivity matrices are available for C(p) = C0(p0)+C′(p0)p and for
G(p) = G0(p0)+G′(p0)p one can apply a Generalized Singular Value Decompo-
sition [11] to both pairs (CT

0 (p0), [C′]T (p0)) and (CT
0 (p0), [C′]T (p0)). In [18] this

was applied in MOR for linear coupled systems. The low-rank approximations for
C′(p0) and G′(p0) give way to increase the basis for the columns of B of the source
function. Note that by this one automatically will need MOR methods that can deal
with many terminals [5, 14, 24].

6 Conclusion

We have derived strategies to efficiently determine the coefficients in generalized
polynomial chaos expansions. When determined by Stochastic Collocation and nu-
merical quadrature this leads to a large number of deterministic simulations. Param-
eterized Model Order Reduction is a natural choice to reduce sizes. In selecting a
next parameter for the subspace extension different options have been described:
residue size and options for sensitivity. For UQ however, one should involve the
influence of the quadrature weights and one may check the contribution to global
statistical quantities. A related algorithm can be used for Failure Probabilities.
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