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CHAPTER 1 

INTRODUCTION 

1.1. Atmospheric Structure 

The earth's atmosphere is commonly described as a series of layers defined by 

their thermal characteristics (fig. 1.1). Specifically, each layer is a region 

where the change in temperature with respect to altitude has a constant sign. 

The layers are called "spheres" and the boundary between the connecting layers 
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The lowest layer, called the troposphere, exhibits generally decreasing 

temperatures with increasing altitudes up to a minimum called the tropopause. 

The temperature and location vary with latitude and season. At the equator, 

lts mean altitude is located near 18 km, and the temperature is roughly 190 K. 

In the polar regions its elevation is only about 8 km and the temperature 

roughly 220 K. Above the tropopause the stratosphere begins, exhibiting 

increasing temperature with altitude up to a maximum of about 270 K at the 

level of the stratopause located near 50 km. At still higher altitude, the 

temperature again decreases up to 85 km, where another temperature minimum is 

found. This layer is called the mesosphere and its upper boundary is the 

mesopause. In these layers the major constituents, N2 and o2, make up about 80 

and 20% respectively of the total number density, so that the mean molecular 

weight of air varies little with altitude. Beoause of this common feature, the 

three layers are collectively referred to as the homosphere. 

The region looated above the mesopause is called the thermosphere. The 

temperatures there increase very rapidly with altitude and can reaoh daytime 

values of 500 to 2000 K, depending on the level of solar activity. The 

composition at these altitudes is very different from that of the lower 

regions due to an inoreasing proportion of atomie oxygen, whose density 

becomes comparable to and even greater than these of o2 and N2 above about 130 

km. The abundanoes of o2 and N2 decrease, primarily as a result of rapid 

photo-dissociation. In contrast to the homosphere, the mean molecular weight 

of air in this region, therefore, varies with altitude; for this reason the 

region above 100 km is also called the heterosphere. 

The atmosphere above the tropopause is called the upper atmosphere. 

The upper atmosphere is the site of substantial motion. Limited evidence has 

been available to mankind throughout the centuries in the form of aurora! 

displays and meteor trail distortions, but this evidence went largely 

unnoticed or unappreciated. Scientific consideration can be said to date from 

1882, when Stewart advanced the important postulate that motions of the upper 

atmosphere are responslble through a dynamo actlon for the geomagnetic 

varlations that are observed at ground level. A century later a wealth of data 

is available on motions in the upper atmosphere. The last three decades the 

available data base has exploslvely been augmented and extended by the 

development of space technology. 

The interpretation of the motion of the upper atmosphere has also reached a 

rather mature level. 
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A division of the motions aocording to the time scales involved is as fellows. 

a. Prevailing winds. Change with seasons. Dependent on latitude, longitude and 

altitude. Streng winds, for example at 250 km height windspeeds of 300 m/s 

are measured. 

b. Planetary waves. Time scales of a day or longer. Occur on a global scale. 

Amplitudes of tens of meters per second. Strongly dependent on season. 

c. Tidal oscillations. Periode are integral fractions of either a lunar or a 

solar day. Amplitudes of tens of meters per second. 

d. Acoustic-gravity waves. Periods from fractions of a second to hours. This 

class of waves contains the well-known sound· and infrasound waves but also 

the internal gravity waves. 

e. Turbulence. Time scale~ of seconds. Turbulence is revealed by variations in 

the diffusive growth of meteor trails. The cross-section of a trail 

increases first under the effects of molecular diffusion, but in a matter 

of seconds eddy diffusion becomes important and ultimately dominates. 

With regard to the dynamics of the upper atmosphere, we will restrict 

ourselves to tides and internal gravity waves and these will be considered in 

some more detail. 

1.2. ~ 

The sea tides, with rise and fall of the water twice daily on most coasts, 

have been known from time immemorial. The explanation of tides was first 

indicated by Newton in hls Principia Matnematica.·They are a·consequence of 

the lunar and solar gravitational forces. Newton realized that the tidal 

forces must affect the atmosphere as well as tne Qceans, but thought "with so 

small a motion that no sensible wind will be thence produced1' (Newton, 1687). 
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Atmospheric tides were first measured by using a barometer. The vertical 

accelerations of the air are so small that the barometer effectively measures 

the weight of the overlying air, thus an above-normal barometric height 

· implies a heaping up of air above the station. In the tropics, the barometer 

does show a marked semidiurnal variation, but its period is half a solar, not 

lunar day. This is illustrated in the historica! figure 1.2 for five days of 

November 1919, at Batavia {presently Jakarta) in Indonesia, at 6.5°S latitude, 

and also at the temperate zone station Potsdam {52.4° N) where the barometer 

undergoes larger irregular variations associated with weather changes with 

small tidal variations superimposed (Bartels, 1928). 
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Figure 1.2 Historioal registration of the barometric variations {on twofold 
different scales) at Batavia (6° S) and Potsdam (52° N) during November 1919. 
After Bartels (1928). 



In the upper atmosphere important sources of tidal wind information are the 

ionized trails left by the numerous meteors disintegrating there. These trails 

are carried by the neutra! wind and may be tracked from the ground by the 

observations of reflected radio signals. 

Greenhow and Neufeld (1961) were the pioneers of a systematic analysis of the 

horizontal wind above Joddrel Bank (53.2° N, 2.3° E) averaged over the 

vertical range 80-100 km. Later on French groups have contributed largely to 

this kind of tidal wind measurements (Fellous et al., 1975). Diurnal and 

semidiurnal winds were found at these heights with amplitudes of tens of 

meters per second. 

Comprehensive reviews of atmospheric tides can be found in Chapman & Lindzen 

(1970) and Kata (1980). 

The introduction of tidal theory is greatly simplified if it is assumed that 

the background wind can be ignored and that the unperturbed atmospheric 

parameters (p,p,T) vary wlth helght z only. The tidal variations are assumed 

to be small. The tidal oscillations may be analyzed into a number of 

eigenmodes. The longitudinal variation may be taken simply sinusoidal, while 

the latitudinal variation is the solution of the Laplace Tidal Equation. The 

solutions are called "Hough functions". With each of these eigenfunctions a 

specific parameter h is associated which is known as the equivalent depth. 

Greatest interest centers on modes which progress around the earth in step 

with the generating agency, solar or lunar as the case may be. The equivalent 
1 2 

depth of such modes will here be denoted hn and hn for the diurnal and the 

semidiurnal components respectively. The "1" and the."2" identify the number 

of wavelengths in 360° of longitude, while n is an index identifying the form 

of the latitudinal variation of the mode; it increases in magnitude with 

increasing complexity of latitudinal variations. 

The various modes are excited with various amplitudes by the forcing agencies. 

In the case of atmospheric tides the main forcing agency is solar heating of 

the troposphere and the stratosphere by absorption of bands in the solar 

spectrum by water vapour and ozon respectively (Chapman & Lindzen, 1970). 

The amplitude of the excited modes depends on the degree or fitting in their 

latitudinal and longitudinal variations with the forcing agency, It depends 

also on the degree of fitting in the vertical variation and on the degree to 

which energy input at one level manifeste itself, through propagation, at 

other levels where further input may be found and where constructivé or 

destructive interference may occur. 
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It is important to realize that the solar heating of the atmospherè is the 

main generator of the atmospheric tides. Gravitational attraction is much leas 

important. The consequence is that atmospheric tides are mainly coupled to the 

sun where as sea tides by the gravitational influence are mainly coupled to 

the moon. 

Here attention will be paid to the vertical propagation of the tidal 

oscillations. 

The value of the equivalent depth of the most important semidiurnal mode, the 

2.2 mode, is 7.85 km. This makes the local vertical wavenumber, which is a 

function of the temperature and the equivalent depth, imaginary over an 

interval of about 20 km around the temperature minimum in the upper 

mesosphere. The energy of the 2.2 mode thus tends to be trapped in between the 

mesopause and the earth surface and a standing oscillation with relatively 

slight leakage of energy is established. 

Higher order semidiurnal modes have smaller equivalent depths and real values 

of the vertical wavenumber. Accordingly they are less efficiently trapped. 

The calculation of the reflection of sernidiurnal modes at the temperature 

profile of the upper atmosphere is treated in some detail in this thesis. 

1.3. Internal Gravity waves 

Any wave must be associated with some restoring mechanism in a medium in 

equilibrium. For acoustic waves, the restoring force arises from the 

compressibility of the medium. For internal gravity waves, it is the buoyancy 

exerted on a displaced fluid element in a stably stratified fluid. 

Consider an element of fluid at some level z
0

, in a fluid with density p 

decreasing with height at a rate - ~ • 
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The situation is depicted in fig. 1.3 a. 

z 

1 
1 
l 
1 
~ 

ös 

F =-ID~ÖS 

Figure 1.3 a Schematic description of fluid elements, their displacements 
and buoyancy forces per unit mass. 

The mass of the fluid element at z
0 

is 

where öv is the volume of a fluid element. If we displace öm over a small 

vertical distance ös , it will be subject to a buoyancy force: 

acting to return öm to z
0

; g is the acceleration of gravity. Variations of 

öv due to compressibility have, for simplicity, been neglected. 

The equation of motion leads to 

(1.1) 
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Ina stably stratified, incompressible fluid ~ < 0 • Hence equation (1.1) 

describes a harmonie oscillation with a frequency w8 , given by 

w 2 
B 

- .a Q.e. 
p dz ' 

w8 is known as the Brunt-Väisälä frequency. The effect of adiabatic 

expansion is to change the expression for w8 into the following 

w 2 = ~ cL + 
B T c p 

( 1 • 2) 

( 1 • 3) 

where T is the temperature of the ambient fluid and cp is the specific heat at 

constant pressure. 

1 

i 

1 
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löz 
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------L--

Figure 1.3 b Schematic description of fluid elements, their displacements 
and buoyancy farces per unit mass. 

Let us designate the buoyancy force per unit volume on a displaced fluid 

element as 

( 1 • 4) 

F8 is directed vertically. Now consider a fluid element that is somehow 

constrained to move at some angle 0 with respect to the vertical (viz. fig. 

1 .3 b). 
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The force exerted on this fluid element will be the projection of the.buoyancy 

force 

F = -w 2 cos 2 e ös, 
B 

and the element will oscillate with a frequency w , given by 

ooa 2 cos2 e • 

( 1 .5) 

(1.6) 

Hence oscillations with all frequencies lower than the Brunt-Väisälä frequency 

are possible. If the frequency is low the neglecting of the Coriolis force is 

no langer justified and the simple picture sketched above is no langer valid. 

The gravity waves, once excited, propagate through the atmosphere which is an 

inhomogeneous medium as temperature and wind are functions of the coordinates. 

Partial reflection and transmission occurs on gradients in the temperature and 

the wind. In layered wind fields gravity wave energy is not conserved. The 

waves can loose energy at a so-called critica! level, that is the height where 

the wind velocity equals the horizontal component of the phase velocity. This 

was first treated by Booker & Bretherton (1967). But the contrary occurs also. 

Jones (1968) found that if the critica! level is situated in a region with a 

sufficiently low value of the Richardson number, then a gravity wave can tap 

energy from the background wind. 

Two chapters in this thesis are devoted to extensions of the theory of gravity 

waves propagating through height dependent windfields containing critica! 

levels. 

1.4. Ionospheric observations 

Ionospheric observations raised also the interest in gravity waves. 

Frequently, wavelike Travelling Ionospheric Disturbances (TIDs) were observed. 

In 1950 Martyn suggested already that the TIDs might be the result of buoyancy 

or gravity waves in the ionosphere. Since then a lot of experimental and 

theoretica! work has been done and is still going on on gravity waves at 

ionospheric heights. A pioneer in this field was Colin Hines (1960). 
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Radio-astronomical measurements contain information on TIDs (Kelder & 

Spoelstra, 1986 b). Radio-astronomical measurements, like those done in 

Westerbork (the Netherlands), yield very precise determinations of the angle 

of arrival of the radiation of radio sources. For point sources with well

known positions this angle of arrival can be calculated and differences with 

the measured values must be caused by refraction either in the troposphere or 

in the ionosphere. For wavelengths longer than 21 cm the ionospheric 

refraction in general dominates. Hence it is possible to subtract from angle 

of arrival measurements certain ionospheric parameters. 

The signals of beacon satellites can also be used to measure ionospheric 

structure. Beacon satellites are in principle designed for position 

determinations. They are emitting continuously signals at high frequencies 

which propagate through the ionosphere. As the ionosphere is a dispersive 

medium the time of travel is dependent on the frequency. By using two 

frequencies a first order correction can be made for the ionospheric error in 

the position determination. However, this difference in time of travel can 

also be used for the determination of some characteristics of ionospheric 

irregularities. 

A chapter is devoted to the interpretation of measurements of T!Ds by 

different techniques. 

In this thesis certain aspects of the propagation of high frequency radio 

waves through the ionosphere of some relevance for radio-astronomical and 

beacon satellite measurements are also discussed. 

Some of the work that is presented in this thesis has been published 

previously. This is the case with chapter 3 (Spoelstra & Kelder, 1984; Kelder 

& Spoelstra, 1984 a,b; Kelder & Spoelstra, 1986 a), chapter 4 (Teitelbaum & 

Kelder, 1985) and chapter 5 (Teitelbaum, Kelder & Van Duin, 1986). 
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CHAPTER 2 

ELECTROMAGNETIC WAVES OF HIGH FREQUENCY IN THE IONOSPHERE 

2.1. Introduction 

A large part of the literature on the ionosphere is devoted to the description 

of the propagation of electromagnetic waves of frequencies of kHz to tens of 

MHz. Waves with these frequencies are reflected in the ionosphere and hence 

suited for ground based remote sensing of the ionosphere. For high frequencies 

the ionosphere becomes transparent. This transparency is not perfect and in 

the last years some effort has been put in calculating the influence of the 

ionosphere on high frequency waves. The accuracy of geodesy with the help of 

navigation satellites is namely limited among other things by the influence of 

the ionosphere. 

In this chapter the higher order terms in the refractive index are calculated 

and dlscussed._ The influence of the finite temperature of the ionospheric 

plasma on the refractive index is also analysed. 

Finally an analytic expression for the Doppler shift of signals propagating 

through a wavelike perturbation of the ionospheric electron density is derived 

and discussed. 

2.2. The refractive index for the propagation of electromagnetic waves through 

the ionosphere 

The theory of the propagation of electromagnetic waves in an ionized medium in 

the presence of an imposed magnetic field is sometimes called the magneto

ionic theory. This theory was developed during the first part of this century, 

following Marconi's experiments in long-distance radio propagation and 

Kennelly's and Heaviside's suggestions in 1902 that these waves are reflected 

from a conducting layer in the upper atmosphere. In the form used today the 
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theory is mainly the result of.the work done by Appleton and Hartree between 

1927 and 1932. A thorough dlscussion can be found in e.g. Ratcliffe's 

monograph (1951 ), Stix (1962), Allis et al. (1963). The equation for the 

refractive index n of an ionized tepld medium wlth an imposed magnetic field, 

taking into account the effect of collisions by introducing an effective 

collision frequency v (see e.g. Ginzburg, 1961), is generally known as the 

Appleton-Lassen dispersion formula (Lassen, 1927; Appleton, 1928; Rawer & 
Suchy, 1967) 

2 2 " 2 2 
n = 1-X/(1-jZ-[~YT / {1-X-jZ)]±/(tYT I (1-X-jZ) +YL)) • 

X,YL,YT and Z are dimensionless quantities defined as fellows 

w frequency electromagnetic wave, 

wN = angular plasma frequency, 

v = electron collision frequency, 

wL = w8cos 0 ; wT = w8sin 0 , 

w8 = electron gyro-frequency. 

(2.1) 

where s is the angle between the direction of propagation of the wave and the 

direction of the geomagnetic field line. The plus sign corresponds in the 

quasi-transverse approximation to the so-called ordinary wave, the minus sign 

to the extraordinary wave {Stix, 1962). Although the Appleton-Lassen equation 

is strictly valid only for a homogeneous medium, we assume that the relation 

is also useful for application to slowly varying media, that is, where the 

changes in the refractive index are small over a distance of a wavelength, 

i.e. in the approximation of geometrical opties. 

We shall first review the values of the different parameters. 

The electron gyro-frequency w8 equals 2nf 8 and 

fH = eB/(2Ilm) , (2.2) 

where e is the electron charge, m the electron mass and B the earth's magnetic 

field. The earth's magnetic field B can be approximated by the field of a 

dipole, that is 

14 



3 _" _2 

B(r,À) = .32(rE/r) /(1+3 sin2 À) 10 Wbm 

_2 

B = Field strength of magnetic induction in Wbm 

rE = Earth's radius, 

r = Geocentric distance, 

À Geomagnetic latitude. 

(2.3) 

The value of the field strength B varies roughly by a factor of 2 from the 

equator to the poles. The variation with height up to 600 km is in the order 
_" 

of 10%. The value of B at 45° latitude and 350 km height is B = .43 10 
_2 

Wbm • The corresponding value of the electron gyro-frequency fH = 1.20 MHz. 

The angular plasma frequency wN is defined as 

(2.4) 

_3 

where N is the electron density in m , and E
0 

is the dielectric constant 

in vacuum. 

Substituting values in (2.4) yields a plasma frequency fN equal to 

fN (Hz) = I (80.6N) • (2.5) 

12 _3 
A high value of N is 3 10 m and the corresponding value of fN is 15.5 MHz. 

12 _3 

Typical values of N are about 10 m which corresponds to fN = 9.0 MHz. The 

,value of N varies considerably. For example, at night it drops to 10% of the 

daytime value. The average collision frequency of electrons with neutral 

particles and with ions ven and vei respectively, is given by (see e.g. Banks 

& Kockarts, 1973) 

v = 1 .8 10 8 p Hz , en n 
(2.6) 

where Pn is the neutral pressure in Torr, 

_s _1;2 

vei = 5.4 10 NT Hz , (2. 7) 

where T is in K. 
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Table 2.1 gives some specific values of the neutral and electron densities, 

the temperature, and the collision and plasma frequencies for the different 

ionospheric layers. 

Table 2.1 

Lay er D(80 km) E(110 km) F1 (180 km) F2 (300 km) 

T(K) 200 320 1130 1450 

N(m-3) 6 108 6 1010 1011 2 1012 

Nn(m-3} 4 1020 3 1018 1.5 1016 1.51015 

vei(Hz) 101 6 102 1 102 2 103 

v (Hz) 3 105 3 103 7 2 10-2 
en 

fN(Hz} 2 105 2 106 3.2 106 1 .3 107 

The neutral density is indicated by Nn. 

These values are valid at moderate latitudes with a 1500 K thermopause 

temperature (see Banks & Kockarts, 1973). 

Below, we shall discuss some approximations in magnetoionic theory, a subject 

that has recently drawn some attention (De Munck, 1982; Budden, 1983; Hartmann 

& Leitinger, 1984; Heading, 1984). 

Let us first assume that X,YL,YT and Z are all in the order of e, 

with e << 1. The electron collision frequency vin the dispersion equation 

is assumed to be equal to the sum of the electron-neutral collision frequency 

ven and the electron-ion collision frequency vei· 

The expression (2.1) for the refractive index can then be approximated by 

2 

n " 

16 

y 2 

1-X/(1-jZ-{ ~ (1+X+jZ) (2.8) 



Equation (2.8) can be reduced to 

For the refractive index n we have 
2 

jXZ X2 X 2 YT 
n = 1 - ~X±~XYL - 2 - a- - 2 (YL + ~ - Z2

) ± jXZYL 

This can also be written as 
2 2 2 

fN fN r8cos e fN 2 2 2 

n = 1- -z ± --" ( fB (cos a + ~sin2 0) - v ) 
2f 2f 2f 

(2.9) 

(2.10) 

" 
1 fN 

- -" 8 f 

(2. 11 ) 

From Table 2.1 it can be inferred that fora height of 300 km and fora 

frequency f of 100 MHz: X=0.017, Y = wH/w =0.012 and Z=10-5. That isZ - O(e 2 ). 

Hence (2.11) can be written as 

n = 

(2. 12) 

In measuring distances with the help of satellites and astronomical data some 

effort has been put into calculating higher order ionospheric corrections 

(Bertel, 1969; St. Etienne, 1981; De Munck, 1982; Lohmar, 1985). Expressions 

similar to (2.12) are then used. These authors, however, calculate higher 

order corrections by making higher order developments in an approximated 

refractive index equation. In some papers first the quasi-longitudinal 

approximation has been nu:cte and then a higher order development is made. This 

procedure offers no guarantee that all relevant terms are obtained. 
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In genera! the effects of a temperate plasma, deviations of geometrical opties 

and the influence of ions on the propagation of electromagnetic waves has to 

be carefully evaluated. in the context of higher order developments in an 

expression for the refractive index. This domain seems to be not fully 

explored. 

A less rigorous result than (2.12) is also obtained by Leitinger (1974) and 

Hartmann & Leitinger (1984).In the latter paper a worst case estimate of 

residual ionospheric errors for vertical incidence is given. In their 

calculation Hartmann and Leitinger use a model of the ionosphere of 200 km 
13 _3 

thickness and an uniform electron density of 10 m • A value of 1.74 MHz is 

taken for the electron gyro-frequency. The expression used for the refractive 

index consists of the first five terms of the right-hand side of equation 

(2.12). From this expression, Hartmann and Leitinger calculated by integrating 

optical path lengths. 

The contributions of: 

± 

respectively. 

Let the contributions of: 
6 

1 fN 
and - î6 rs-

respecti vely. 

Inserting the values of the ionospheric parameters (v is taken to be equal to 

2.103 Hz, a = O): 

àSA 
1.4 1026 

± f3 m, 

àS8 
-1.6 10 3

" r4 m, 

àSC 
-2 .4 10 32 

f" 
m, 

àS0 
-1.6 1 Q23 

f§ m, 
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ASE = - 5.7 10" 0 

m, + f" 

and 

ASF 
-6.5 10" 8 

m, = f6 

where f is in Hz. 

Taking a frequency of 100 MHz, then 

ASA = ± 140m, AS8 = -160 m, ASC = -2.4 m ,AS0 = -0.16 m, ASE=+ 5.7 m 

and ASF = -6.5 m. Hence ASE and ASF are comparable with ASC and may not 

be ignored as was done by Hartmann & Leitinger (1984). This also has 

consequences for the 150/400 MHz oorreotions, of importance in geodesy; but 

this aspect will not be pursued here. 

In the next seotion we will deal exclusively with first order correotione and 

we can eimplify (2.12) further to 
2 

fN (x, y, z, t) 
n = 1 - ------,2=---- (2.13) 

2f 

2.3. The temperate plasma correction to high frequency waves 

The dispersion relation for electromagnetic waves in a temperate plasma is 

given by (Yeh & Liu, 1972, ch. 4): 

-+ 
det D = O, (2. 14) 

with 

(2. 15) 

k 2 - w2 
o - c2 

' 

ko (n sin e, o, n cos 0), 
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where a is the angle with the magnetic field vector (//z axis), and k lies 

in the x,z plane. 

+ 
Kis given by Yeh & Liu (1972) in equations (4.18.16) and (4.18.17). 

Substituting this in (2.15) results in the following expression. 

+ w2 n2 0 0 n2 sin2 a 0 n2 sin e cos e o =? [ (o n2 0 ) - ( 0 0 0 ) + 
0 0 n2 n2 sin e cos a 0 n2 cos2 e 

1 0 0 x - (o 1 0) + * 1-Y2-n2ö (1 - y2 cos2 0) 0 0 1 

1 - n2 ö cos 2 e j y ( 1 - n2 ö cos2 0) n2 ö sin e cos e 
( - jY (1-n2 öcos2 0) 1 - n2 ö -jY n2 ö sin e cos e ) J (2. 16) 

n2 ö sin e cos e jY n2ösin e cos a 1 - y2 - n2 ö sin2 0 

The parameter ö takes into ~c~ount the thermal velocity vt of the plasma 

particles, in formula: ö = -i- = ~ • In the high frequency approximation c me 
only electrons contribute in the propagation of the wave and therefore only 

the ö corresponding to the electrons appears in (2.16). 

Define: 

Kxx = 1 - x1 
{ 1 - n2 ö cos2 a ) , 

KXY = - jX 1 Y ( 1 - n2 ö cos 2 6) , (2. 17) 

Kxz = - n2 ö x1 sin e cos e , 

Kyy = 1 - x1 
( 1 - n2 ö) • 

K22 1 - x1 (1 - Y2 - n2 ö sin2 e) , 

Kyz = + jX1 Y n2 ö sin a cos a • 
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+ 
Then D can be written as 

+ n2 cos 2 a - Kxx 
:t w2 ( 
u = 02 - KXY 

- Kxz - n2 sin e cos e 
- Kyz ) {2.18) 

- Kxz - n 2 sin e cos a n 2 sin2 e - Kzz 

A reasonable estimate for the electron temperature in the ionosphere above 200 

km height is 2000°K (e.g. Banka & Kockarts, 1973, Aeronomy II, p. 288). 

If the adiabatic condition is assumed, then for high frequency plasma waves 

Y = 3 is predicted (Yeh & Liu, 1972). With these values the parameter ö is 
_6 

roughly = 10 

This value of ö should, in principle, lead to corrections in the refractive 

index of the order discussed in the preceding section. However, below we shall 

show that this is not the case. 

2.3.1. The cold plasma 

If we take ö = 0 we get the cold plasma equations 

Kxx 
c x Kyy c x 

- 1-y2 • - 1-y2 • 

Kzz c = 1-X Kxz 
c Kyz c 

0 

~/ ~ 1-y2 

and 

n2 cos2 e - Kxx 
c 

- KXY 
c 

+ 
i)C wa 

( + KXY 
c n2 - Kyy 

c 
" ca 

n2 sin e cos e 

) . 
- n2 sin 0 cos 0 0 

The dispersion relation follows again from 

+ 
det DC = 0 • 
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K c 
Kzz 

c K c Kxx 
c 

+ j~y c • KII 
c c c Introducing 

0 I = l<xx - jKXY ' 

ultimately yields 

n2 {K c + c 
c I KII ) 

- K c KII 
c ] sin2 0 + (n2 

- K ) 2 0 I 

K c[ (n2 - K c) (n2 
o I 

- KIIC)] cos2 a 0 • (2. 19) 

The longitudinal case: a 0 , 

then (2.19) reduces to 

n2 x 
1- 1 +y 

n2 x 
1- -. 1-Y 

These expressions describe the refractive index for left- and right-handed 

circularly polarized waves respectively. 

1( 
The transversal case: a = 2 , 

n2 

n2 

or 

n2 

K c = 1-x , 
0 

2 K c KII 
c 

I 
K -

I KII 

l _ X (1-X) 
1-Y2 -X 

These expressions describe the ordinary and extraordinary waves respectively. 
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2.3.2. The temperate plasma 

We have to solve 

-+ -+ 
-+ det D = 0 with D glven by (2.18). 

We consider only two special cases: 
11' a = o and e = 2· 

The longitudinal case: e 0 • 

The expressions in (2.17) reduce to 

x 
Kyy = 1 - 1 _y 2 

and 

x 
Kzz = 1 - 1-n26 • 

The determinant becomes: 

0 

0 

- Kzz 

The only place where 6 acts is in Kzz; that is we recover the two cold plasma 

modes and one extra mode: 

1-X na = -6-

This last mode is just the electron plasma mode. 

The transversal case; 'IT e = 2 . 
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With e ·.!!'.the expressions in (2.17} reduce to 
2 

and 

Kzz "' 1 - x • 

Hence we have to solve: 

-Kxx -KXY 

KXY_ n2 - Kyy 
0 0 

or 

A One solution is 

na • K • 1 - X zz 

K __ "' K • 0 --xz YZ 

0 

0 - 0 t 

n2 - Kzz 

that is just the ordinary cold plasma electromagnetic wave. 

B The other solutions are 

x } X(1 - n2 o) (1 - ---=--...,..- (n2 - 1 + ) 
1 - Y2 - n~ó 1 - Y2 - n2 ó 

that is 

0 • 

(1 - X - Y2 
- n 2 ó) ((n2 

- 1) (1 - Y2 - n 2 ó) + X(1 - n 2 ó)) + X2 Y2 • o. 
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This can be reduced to 

ó 2 n 6 - ón~ ((2 - 2Y2 - X) + ó(1 - X)) + 

n2 ( 1 - Y2 + 6(2-X)) (1 - x - Y2
) + X2 Y2 

- (1 - x - Y2 ) 2 = o • (2.20) 

The equation {2.20) should correspond to expression (4.19.5b), p 208 of Yeh & 

Liu, but it does not. 

Let us first look at the plasma wave. 

Define 

then equation (2.20) can be written as 

ó2 N3 - óN 2 ((2-2Y2 -X) + ó(l-X)) + N(1-Y2 +ó(2-X)) (1-X-Y2 ) + 

No 
Suppose N = 'F"'" , 

1 
O(i): 

N 3 
- N 2 {2-2Y2 -X) + N (1-Y 2 ) (1-X-Y2 ) O. 

0 0 0 

The first solution is 

N = 0 • 
0 

The other solutions are 

N 2 - (2-2Y2 -X) N + (1-Y2 ) (1-X-Y2 ) • 0 , 
0 0 

(2.20a) 
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hence 

that is 

N = 1 - Y2 
- X , 

0 

For N we have: 

(2) 1-y2 
N ""-ó-

These are again plasma waves. 

0(1 ), O(ö) : 

Substituted in (2.20a) we obtain 

X(1-X) 
1 - 1-x-y2 , 

(1 - 2X - Y2 + X2 ) (-XY 2 + 2Y~ + XY~) • 
(1 - x - Y2 ) 3 (1 - Y2 ) 

Hence the lowest order of the warm plasma correction in the transverse case is 

c5 xy2. 

For high frequency waves (f - 100 MHz) 

x "" 10-2 • 

y2 "" 10 -4 

=> c5XY2 = 10-12 • 
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This can be ignored. The expression (4.19.8a) of Yeh & Liu (1972) yields a 

correction of n2 = 1 - 6 + 0(6 2 ). This correction cannot be ignored. As 

shown above, this is not correct and the temperate plasma correction can 

indeed be ignored. 

2.4. Ray paths in the ionosphere 

In discussing ionospheric parameters a spherical coordinate system is orten 

useful. Spherical coordinates r, ' and e are used, with the origin at the 

centre of the earth, ' being the longitude and e the colatitude. 

Let us consider electromagnetic waves of high frequency in the ionosphere. 

Their wavelength is much shorter than the scale at which the electron density 

changes. Approximations based on such a condition show that the energy is 

propagated mainly along special trajectories (group rays), which are not 

necessàrily straight linea. The approximations in question are termed 

geometric-optical. If we ignore the earth's magnetic field or investigate only 

propagation perpendicular to it, the geometrie-optica! treatment may be based 

on a single scalar equation with a refractive index n varying from point to 

point. 

The optica! length of a phase ray path between the points a and b is 

b 
P = f n(r, '' 0) ds = a 

rb • • " 
rf [1 + r 2 0 2 + r2$ 2 sin 2 0]~ n(r, $, 0) dr , 

a 

where 

~ = !:!! e = cte 
dr ' dr 

and 

(ds) 2 

(2.21) 
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Fermat's principle, known also as the principle of the shortest optical path 

or the principle of least time, asserts that the optical length 

b 
P f n ds , 

a 

of an actual phase ray between any two points a and b is shorter than the 

optical length of any other curve that joins these points and that lies in a 

certain regular neighbourhood of it. By a regular neighbourhood is meant one 

that may be covered by rays in such a way that one (and only one) ray passes 

through each point of it. 

From Fermat's principle the following ray equations can be derived 

d (nr2 sin20 !!î) = an 
ds ds aqi ' 

(2.22) 

d de [an + !!î 2 
ds (nr2 -) • nr2 sine cose (ds) J ·ds aa (2.23) 

d (ndr) = an + <<de >2 + s1n2e c!!î/ > ds ds ar nr ds ds (2.24) 

Let us first treat the case of a refractive index dependent on r only. The 

equations (2.22), (2.23) and (2.24) simplify to 

d (nr2 sin2e !!î) 0 , ds ds (2.25) 

d {nr2 d9) nr2 sine cos e (!!î) 2 
ds ds ds (2.26) 

and 

S!_ (n dr) an + nr((d0)2 + sin2e <%;> 2) • ds ds ar ds (2.27) 

The spherical symmetry allows a choice of axes such that the ray passes 

through e = O. Then it follows from (2.25) that %; = O , that is the ray 

stays in a longitudinal plane. 
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• 

This allows US to write (2.26) and (2.27) as 

d (nr2 d0) = 0 
ds ds 

(2 .28) 

d (n dr) an + nr(~!)
2 

ds ds ar (2.29) 

Integration of equation (2.28) yields 

n r sin i p ' (2.30) 

+ where p is a constant and i is the angle between the ray and the vector r • 

That is n(r) r sin i is constant along the ray path. This can also be proved 

from (2.29). Note that (2.30) is Snel's law for spherical surfaces. 

Since r sin i represents the perpendicular distance d from the origin to the 

tangent, (2.30) may also be written as 

nd • constant. (2. 31 ) 

This relation is sometimes called the formula of Bouguer and is the analogue 

of a well-known formula in dynamics, which expresses the conservation of 

angular momentum of a particle moving under the action of a central force. 

From (2.30) the ray path can be calculated, namely 

(2.32) 

We will now examine the refraction of high frequency radio waves more closely. 

Following the general linea of a derivation given by Born & Wolf (1970), it 

can be shown that the radius of curvature p of a ray in genera! (within the 

limits of ray theory), in an isotropic ionosphere, can be written as 

1 1 I + dn 1 - • - Vn - t -
p n ds ' (2.33) 

where n is the refractive index, t is the unit tangent vector to the ray at 

the point of interest, and s is the are length of the ray. 
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This expression can be simplified to 

.!. • .!. lgrad n sin zl , 
P n 

(2.34) 

where z is the angle between the ray and the direction of the gradient of the 

refractive index. 

Flgure 2.1 The relatlon between the curvature and the angular refraction of 
a ray in a medium with a gradient in the refractive index (Snel's law). 

With the geometry as shown in figure 2.1 and n dependent on r only, we have 

p 
(2. 35) 

1 
- = 

and 
da _ 1 dn p 
dr = ndr .....,:/n_2,...r"""'2,.---p"'"2 • (2.36) 

This formula was also derived by De Munck.(1982) (Except fora factor ). 
n 

In the high frequency limit this equation can be simplified to 

(2.37) 
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Hence 

Ir dn p 
a = - dr /r2-p2 dr • 

re 
(2. 38) 

This formula was used by De Munck (1982) to calculate the refraction of high 

frequency radio waves in a spherically stratified ionosphere. He obtained 

analytica! expressions for electron density distributions quadratic in r. 

However, the integral in (2.38) is also solvable in closed form for arbitrary 

polynomials in r (Gradshteyn & Ryzhik, 1965 p 68). Hence the class of easily 

integrable electron density profiles is larger. 

The integral (2.38) was used by Spoelstra (1983) in oalculating the refraction 

in an ionosphere that has horizontal gradients also. However, expression 

(2.38) is only strictly valid in a spherically stratified ionosphere. It has 

to be proved that this is a good approximation. 

Another expression for refraction in a spherically 

derived by Chvojková (1958) and used by Komesaroff 

(1983). Equation (2.29) can be written as 

dn 1 - n sin i .9.! = _1_ dn + n s1n21 
dr cos dr cos! dr r cos i ' 

or 

d i _ tan i dn _ tan i 
dr = n dr r 

stratified ionosphere was 

(1960) and Spoelstra 

(2.39) 

(2.40) 

The second term on the right-hand side is nothing else than the change in 1 

for the refractive index n = 1. Define !(r) = 1 
1
(r) + a(r) then 

n• 

(2 .41 ) 

This is nothing else than (2.36). 
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2.5 The Doppler shift of the signals of the beacon satellites 

The phase path ~ can be expressed as 

~ = f + ft ~l + ft , (2.42) 

where the optical path 1 = ! 5n ds, f is the frequency, t is time, À is the 
0 . 

wavelength in vacuum, c the speed of light in vacuum, n is the real part of 

the refractive index, o is the position of the observer and s the position of 

the source. For high frequencies (i.e. GHz range), n can be approximated by 

(see section 2.2) 

f2 
N 

n = 1 - 2f2 • 

From equation (2.42) and (2.43) we get 

The decrease of the phase path equals 

lf the values of the constants are substituted, equatlon (2.45) glves 

1.34 -7 
10 TEC 

f 

(2.43) 

(2.44) 

(2. 45) 

(2. 46) 

The total electron content, TEC, between the satellite and the receiver is 

defined as 

TEC = / 8 N(r)ds • 
0 -

The quantlty TEC can be expressed as 

TEC = ~1~ JSN ds = D(x)Nl • cos x 0 
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where x corresponds roughly to the zenith angle at the altitude of maximum 

electron density. A forma! definition of the geometrical factor D is 

cos x 
h h 

J s N cos1 i(h) dh };// { J s N dh } 
0 0 

(2. 49) D(x) 1 ---= 

where i(h) is the zenith angle at altitude h and hs is the height of the 

satellite. The geometrical factor D is a slowly varying function with values 

between 1 and 3 (Leitinger and Putz, 1978). 

The frequency shift, Af, being the consequence of the time-dependent phase 

shift can be written as 

_7 

Af=~"' 1.34 10 
dt f 

(2. 50) 

The relative difference in frequency shift with respect to the frequency of 

400 MHz equals 

Df = ( ~ 1 l ) 1 34 10-
7 

d (TEC) 
3 150 106 - Iioo 10 6 • dt ' (2. 51 ) 

or 

_15 d 
Df = 2.05 10 dt (TEC) • (2.52) 

From (2. 48) 

d d d dt (TEC) = dt D(x(t)) Nl(x(t),y(t)) + D(x(t)) dt Nl(x(t),y(t)) (2.53) 

where the horizontal coordinate x is the coordinate parallel to the meridian 

from north to south, while the horizontal coordinate y is orthogonal to x and 

from east to west. For satellites moving in a polar orbit with a sufficiently 

high velocity, only the variation of Nl in the coordinate x has to be 

considered. We assume a small periodic variation of Nl of the form: 

(2.54) 
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With this, and assuming that ~~ << D and Nl >> NJ , equation (2.53) yields 

~t (TEC) = Nl ~~ + D(x) ~~ Nl k cos kx • (2.55) 

Thus Df reduces to 

_1s( _2 S!x. dx ' ) 
Df = 2.05 10 N°l cos X dt + cos X dt Nlk cos kx • (2.56) 

The first term of the right-hand side is a slowly varying quantity. The second 

term reflects wavelike perturbations. In equation (2.48) Nl also contains 

observational biases such as, for example, the projection of the line of sight 

along the wave fronts. 

A more thorough discussion on the Doppler shift can be found in Bennet & Dyson 

(1982). We will retrace their derivation and show that in good approximation 

analytic expressions can be obtained which are useful for the interpretation 

of Doppler shift measurements. These authors use a genera! variational theory 

to obtain an expression for the oontribution of irregularities to the Doppler 

shift. The basis of the method is that the phase path may be expanded in a 

multiple Taylor-McLaurin series and the coefficients evaluated assuming that 

for all oombinations of values of the variables the ray oontinues to exist. It 

is thus essentially an imbedding technique. The calculations are simplified 

because the ray has to satisfy a variational equation (Fermat's principle). 

Specifically, a quasi-stationary approach to time variations is adopted and 

the refraction caused by the background ionosphere is assumed to be a first 

order perturbation of the free space ray. Then 

P - P + (ö P + ö P) + ~(ö 2 P + 2ö ö P + ó 2 P), o m r m mr r (2.57) 

where P is the phase path and P0 is the value of the phase path in the absence 

of the refraoting ionosphere. ö P is the first m-variation of P which m 
represents the first order (linear) contribution caused by the smooth 

background ionosphere and örP represents the corresponding contribution 

caused by the irregularity. At the high frequenoies used in satellite Doppler 

measurements the ionospheric refraction is small, and treating it as a first 

order perturbation is a good approximation. 
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Making use of the Doppler shift formula 

f dP 
b.f = - - -c dt ' 

the following expression is obtained 

b.f = 
dP 

f c........2 + .2_ ~ P + .2_ ~ P + > 
c dt dt urn dt ur • • • • • 

(2.58) 

(2.59) 

In equation (2.59) the Doppler shift is represented as the sum of the free 

space contribution and the first order contributions of the smooth ionosphere 

and the irregularity. The second and third term in equation (2.59) may be 

evaluated using the genera! formula for the second variation of P (Bennet, 

1969, 1973). Since we are interested in irregularities we will consider the 

third term only. 

x1(h) 
per"turbed 
ray 

--+-unperturbed ray 

H 

Figure 2.2 Coordinate system for observer at A and satellite at B. 
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Consider the simple case of a satellite passing the local zenith of the 

observer, as sketched in figure 2.2. 1hen the Doppler shift caused by the 

irregularity equals 

d 
dt (IS/) 

1 
cos Xo H 

H 

J 
0 

hµ ör dh + 
rX 2 

V2 sin Xo 

H 
0 

H 

J (2.60) 

where V2 is the horizontal component of the velocity of the satellite. x
0 

is the zenith angle and H is the height of the satellite. µ is the 

refractive index. x2 is the horizontal coordinate. 1he variation in 

refractive index µr6r equals 

(2.61) 

where denotes the smooth electron density 

distribution and w is the perturbation of the background electron density. 

1he derivative term µ 6r reads rx2 

µ ór 
rX 2 

where it is assumed that Nmöm is independent of x2 • 

(2.62) 

As a simple model for the perturbation w of the background electron density 

distribution is taken: 

(2.63) 

where h0 is the height of the maximum percentage wave amplitude, Hs is the 

scale height of the wave and x1 ,x2 and A1 ,A 2 are the vertical and horizontal 

coordinates and wavelengths respectively. 

1he first term on the right-hand side of equation (2.60), indicated from now 

on by I • is an integral over the horizontal gradient of the perturbation 
X2 

weighted by the height. The second term, indicated by I, is an integral over 

the perturbation. 

36 



From (2.60), (2.62) and (2.63) we obtain 

1 tanxo 
sin (2irh(- - --) )dh 

A1 Az 
(2 .64) 

Suppose that- Nmöm is independent of height in the region of interest, then 

(2 .64) reads 

1 tanxo 
(2ir h(-A - -A-)) dh • 

l 2 

With the substitution h1 h - h0 , the integral in (2.65) becomes 

2 
hl 

H-h0 - H 2 

f (h 1 +h0 ) e s 
-ho 

where 

sin {a h 1 + a h0 ) dh 1 • 

a • 2ir 
1 tan Xo 
(- - -- ) . 

A1 Az 

Now 
H-h 2 

(T) » 1 and 
s 

h 2 

(~) 
H s 

» 1. 

Hence we may approximate the last integral by 

+co 

J (sin a h 1 cos a h0 + cos a h 1. sin a h0 ) dh 1 + 
-co 

+co 

ho J (sin a h 1 cos a ho +cos a h 1 sin a h 0 ) dh1 
• 

-co 

The non-zero contributions in (2.68) are 

cos a h 0 

2 
hl 

+co - ~ 
f h 1 sin a h 1 e s dh 1 

-co 
+ h0 sin a h0 

+co 

f 
-co 

cos a h 1 e 

2 
hl 

- H z 
s 

(2.65) 

(2.66) 

{2.67) 

(2.68) 

dh 1 

(2.69) 
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The integrals in (2.69) are given in Gradshteyn & Ryzhik (1965), p. 495 and 

480 respectively. The result is 

11T H s 

a 2 H " ~ s 2 
(-

4
- +ho ) 

where tan a 
aH 2 

s 
2H 0 

sin (a h0 + a) e 

Using (2.70) I reads 
X2 

312 
1T 

H N öm s m 

a2H 2 
s 

--4-

sin(a h0 + a) e 

a2H 2 
s 

--4-

The integral in I can be approximated in the same way, resulting in: 

I 

1T 
a2H " 2 ~ 

(_
4
s + h

0 
) • ( h + ) ] sin a 0 a • 

05 tO-silll0 

-5 

_" 

(2.70) 

(2.71) 

(2. 72) 

Figure 2.3 The frequency shift of a high-frequency signal as a function of 
the angle of incidence in the case of a wavelike perturbation in the electron 
density of the ionosphere. 
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d In figure 2.3 the dependence of dt (örP) as function of sin Xo is drawn for 

A1 = A2 = 100 km, H = 100 km, h0 = 250 km and H = 1000 km. The shape 
d s 

of dt (örP) agrees with commonly observed patterns in the Doppler shift 

measurements (see e.g. Stolp, 1985). 

d The largest values of dt (örP) are found around a = O, that is 

A2 
tan Xo Ai • That means that the zero-order ray is aligned with the phase 

fronts of the irregularity. The decay of the amplitude is exponential and 

depends on A1 ,A2 and Hs. The angles x of the first maximum or minimum around 

Xo are given by 

A:a 
x Xo ± 4ho cos2 Xo . (2. 73) 

Hence, if the height of maximum density is known, the horizontal wavelength 

can be estimated. 

More general cases can be discussed along the same lines. For example, instead 

of (2.61) a perturbation can be taken of the form 

cos 

Suppose the satellite has a horizontal velocity (0, V2 ,V 3 ). , 

then instead of (2.60) we obtain 

d V2 h 
(ö P) = ---- f hµrX2 ör dh + dt r cos XoH 

0 

V2 sin Xo H 
+ f µrör dh + 

H 
0 

Va 1 
H 

+ ii J h µ ör dh • cos Xo 
0 

rx 3 

(2.74) 

(2.75) 

This leads to the same kind of integrals as above and analytical expressions 

can be obtained in an analogue way. 
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CBAPTER 3 

EXPERIMENTAL Sn.JDY OF TRAVELLING IONOSPHERIC DISTURBANCES 

3. 1 • In troduct ion 

It is well known that the ionosphere is not a homogeneous medium. However, 

only during the last 30 years a more or less systematic search has been made 

for irregularities in the ionosphere. An important impetus to this study was 

given by the classic paper by Hines (1960) on the interpretation of 

irregularities in terms of internal gravity waves. Since then, the knowledge 

of internal gravity waves has considerably been extended. Several review 

papers and books are witnesses to this; see e.g. Hines (1974), Kato (1980). 

While looking for methods to correct radio-astronomy observations for 

ionospheric refraction, it was realized that a radio interferometer is also a 

sensitive tracer of ionospheric behaviour. High precision measurements oade 

with the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands 

deliver information about the difference in total electron content at scales 

of the interferometer baselines ranging from 36 m to 2.7 km. In many 

observations strikingly clear wavelike patterns were present. According to the 

usual classification these are medium-scale travelling lonospheric 

disturbances (MS TIDs). 

At De Bilt, the differentlal Doppler shift in the signals of satellites of the 

Navy Navigation Satellite System (NNSS) is determined. 'nlese satellltes move 

in polar orbits around the earth. Hence the measurements contain mainly 

information on the north-south component of ionospheric dlsturbances. By 

following the satellite, a north-south sectlon through the ionosphere of up to 

4000 km long can be covered. 

A genera! review of satellite beacon contributlons to studies in the structure 

of the ionosphere can be found e.g. in Leitinger et al. (1975), Leitinger & 
Putz (1978) and Evans (1977). 
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Measurements with both techniques were combined. Climatological 

characteristics were determined. The direction of propagation of the medium 

scale TIDs seems to be mainly south - south-west. Fourier analysis of the 

amplitudes of the measured irregularities showed two periode of equal 

strength: one of 12h and the other of 24h. Given the characteristics of medium 

scale TIDs it seems probable that these are related to atmospheric tides. 

3.2. Observations 

From 8 January - 31 March, 1982 and from 24 December, 1982 - 16 March, 1983 

the WSRT (52.9°N, 6.6°E) was used for observations at 608.5 MHz. The WSRT 

consists of an array of 14 steerable telescopes, each with a diameter of 25 m. 

They are situated along an east-west baseline. Ten of them occupy fixed 

positions at 144 m intervals. Four additional paraboloids are movable and 

serve as references against which the phase of the radiation received by the 

fixed antennas is measured. To do this, the fixed antennas are connected to 

the four additional paraboloids to form correlation interferometers. The back 

end of each correlation interferometer consists of a correlator system which 

measures the four complex correlation components necessary to characterize the 

polarization state of the radiation. The maximum baseline between two 

telescopes is 2.7 km. 

A source is observed by tracking it in its diurnal rotation from 6 hours 

before to 6 hours after meridian transit, or over some fraction of this range. 

The array beam is continuously steered by proper phasing of the elements. This 

is done with very high precision. 

Point sources are observed frequently for checking and calibrating the 

instrument. The standard integration time for these observations is 1 minute. 

For point sources, we know that the incident wavefront should in good 

approximation be perfectly flat as the distance to the astronomical source is 

large; deviations must be the result of propagation effects giving rise to 

path-length errors (e.g. Hamaker, 1978; Spoelstra, 1983). 
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These deviations are vis!ble as phase errors, A,, which are to first order 

proportional to the baseline between two interferometer elements. 

-600 

15 16 17 18 19 20 . 
UT<hours> 

Figure 3.1 Example of the variation of the phase differences between two 
telesoopes. The source is 3C147, the date is 21 February 1983. The used 
baseline was 2718 m. The frequency 608.5 MHz. 

Many observations showed phase errors muoh larger than the internal accuraoy 

of the system. These errors show orten a wavelike behaviour as a function of 

the hour angle (= time). An example is given in figure 3.1. Their dependence 

on baseline and frequency of observation indicates that they are the result of 

ionospheric irregularities such as TIDs. For these wavelike patterns it is 

possible to derive the amplitudes as a function of interferometer baseline 

(the amplitude is half of the peak to peak of the variations of the phase 

errors), and as a function of the time of the day. Another quantity which can 

be determined is the apparent period of the wave. 

The Navy Navigation Satellite System consists of five satellites moving in 

polar orbits at 1100 km altitude with a velocity of 7.5 km/s. They 

oontinuously transmit two coherent signals at frequencies of 150 and 400 MHz. 
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At the Royal Netherlands Meteorological Institute (KNMI) in De Bilt (52.1°N, 

5.2°E) we use a receiver originally designed for geodetic Doppler 

observations. With this apparatus, a value is determined for the phase 

difference at each frequency, every 4.6 seconds, using the receiver's 

oscillator. The integration time of 4.6 sec means roughly a minimum horizontal 

scale of 12 km at 350 km height. As our aim was to study ionospheric 

irregularities we lÓoked at the derivative of the phase difference, i.e. the 

frequency difference. An example is given in fig. 3.2. In total nearly 500 

satellite passages have been analysed for these periods. 

r: 
6 

4 

2 

-4 

-6 

-8 

2 4 6 8 10 12 14 16 18 minutes 

" 
Figure 3.2 Example of the variation of the differential Doppler shift 
between the 150 and 400 MHz signals during a passage of the satellite. The 
measurement was carried out at 11 February 1985. The registration starts at 
12h21m UT and the maximum elevation of the satellite is 46°. 
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In all cases, in which ionospheric irregularities were observed with the WSRT 

they were also present in simultaneous differential Doppler measurements. This 

does not necessarily imply that both instruments were looking for the same 

irregularities, but it strongly suggests that the domain in which 

irregularities occur may be several hundred kilometres wide. A suggestion also 

supported by the work of Stolp (1985) on measurements ITBde simultaneously with 

two and three receivers of satellite signals. 

3.j. ClimatologY 

From the·phase variations of the WSRT observations we determined the amplitude 

A and apparent period P of each irregularity as a function of time for the 

longest baseline (2.7 km). Figures 3.3 and 3.4 show Aas a function of time (O 

- 24 hours UT). The instrumental noise at 608.5 MHz is about 0.5° in phase. 

Noise in phase of up to about 4° may be caused by the presence of low level 

structure in some of the fields observed (e.g. 3C286). Figures 3.3 and 3.4 

show a strikingly systematic pattern for the occurrence of ionospheric 

irregularities, a peak being reached around noon. With respect to noon the 

pattern is clearly asymmetrie, for there is a sharp decrease after noon in A. 

When the sun is below the horizon significant irregularities are still 

observed. However, the apparent periods P are much shorter during the night. 

During the day a typical value for P is 16 minutes. During the night P is 

typically about 4 minutes or less. When very short phase variations occur, 

i.e. with P < minute, the interferometer amplitude also shows serious 

disturbances, indicating that the variations occur within one integration 

time. After a careful check of the observations and of instrumental behaviour 

we conclude that ionospheric irregularities with time scales of less than 60 

seconds are a common feature during the night. Figures 3.3 and 3.4 indicate 

that the amplitudes of the phase variations for these rast irregularities are 

up to twice as large than those for the slower ones. The linear horizontal 

distance which the line of sight travels per minute at an altitude of about 

350 km, is 1 .5 km. The primary beam for the WSRT at 608.5 MHz has linear 

dimensions of 6 km at this height. Thus the spatial dimensions of these fast 

irregularities are of this order of magnitude or leas. 
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Figure 3.3 Variations in the amplitude of WSRT phase variations at 2.7 km 
baseline due to ionospheric irregularities as a function of time. Open symbols 
indicate that variations with periods less th~n 1 minute have been included. 
The dashed line represents the average (foF2) variation with time. Local noon 
is at 11h34m UT. 
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Figure 3.4 The mean amplitudes of the variation in phase differences during 
the first three months in 1983 as function of the time of the day. 
The dots indicate data without short-time fluctuations (shorter than 1 
minute), the open circles with these fluctuations included. 'Ihe error bars are 
also given. 
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Dlfferentlal Doppler observatlons of NNSS satellltes in genera! show the same 

behavlour, although they are not completely oomparable with the WSRT 

observatlons beoause the WSRT is mainly sensitive to the dependence on the 

east-west gradients of ionospherlc parameters along the line of slght as a 

funotion of time. With the ald of satellites a latltudinal oross-sectlon at 

discrete time intervals is obtalned. 

The most pronounced characteristlcs from the differential Doppler observatlons 

are: 

(1) Nearly every day, waves occur durlng the daytime. They are bbserved most 

clearly south of our geographic latitude, beoause the radio path lies 

approximately in surfaces of constant gravity wave phase (Georges and 

Hooke, 1970; Davis, 1972; Sen Gupta and Nagpal, 1982). 

(2) The amplitudes of the waves are a function of time and are larger in the 

morning than in the afternoon. 

(3) Small-scale irregularities (with time scales < 4.6 sec, or spatial scales 

< 12 km), are present nearly every night north of our latitude. Their 

.southern boundary varies with time and day. 
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Figure 3.5 Hourly averages of the amplitudes of irregularities for satellite 
passage in the eastern as well as in the western sky. The crosses indioate 
irregularities with horizontal scales larger than 12 km. The circles the 
irregularities with shorter scales. The error bar indicates the mean spread 
per averaged data point. 
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Figure 3.5 presents the amplitudes of these waves as a function of time. The 

registrations for satellite passages east and west of the observing stations 

are shown separately. The amplitudes of the waves are about 50% larger in the 

eastern sky than in the western sky, which agrees with the results from the 

WSRT observations. The error bar in figure 3.5 indicates the spread in the 

data. 

3.4. Mean diurnal behaviour of TID amplitudes 

In order to compare the 1982 and 1983 data, the time-dependence of the 

amplitudes of the WSRT phase variations at 2.7 km baseline (as e.g. given in 

figure 3.4) was subjected to Fourier analysis. It is assumed that because of 

the large amount of data, observational biases depending on celestial 

coordinates are averaged out. With respect to the occurrence of TIDs, the 

scheduling of WSRT observations and of the satellite passages is random. The 

observations are spread over any part of the sky over the whole 24 hours of 

the day. We observed that the diurnal behaviour does not change significantly 

from one day to another. The total coverage of data as a function of time is 

not continuous,because of gaps in the schedule of the WSRT calibration 

observations and of the satellite passages. Therefore, we assumed that it is 

permissible to average all data in windows of 30 minutes to check the average 

diurnal behaviour, because TIDs occur as a function of time. Thus, all data 

were projected on a single day after averaging, and subjected to Fourier 

analyses (Smart, 1958, pp. 157f) in order to detect systematic variations of 

the amplitudes A as a function of time, i.e. periodicities in these 

variations. The results are shown in Table 3.1. In this table these amplitudes 

are represented by Aw. In Table 3.1 only those Fourier components that were 

above the mean errors of the solutions have been given. The results show a 

time-independent component, the zero level, and components with periods of 24 

and 12h. These periodicities result primarily from the daytime observations. 

Taking errors into account, the 24h period has the same strength as the 12h 

period. This holds for 1982 as well as for 1983. The comparison between 1982 

and 1983 shows that the amplitudes in 1983 are 20% lower than those of 1982. 

Within the errors the relative strengths of the 24 and 12h terms with respect 

to the zero level are equal. This means that the difference between the 
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diurnal variations of Aw in 1982 and 1983 is only a sealing factor. This 

factor, being the ratio of the amplitudes in 1983 to those in 1982, is o.8 + 

0. 1. 

Table 3.1 

Periodicities in TID amplitudes and foF2 data 

year data units zero level 2llh per iod 12h period 

1982 Aw degrees 9. 1 ± 0. lj 5.8 :!: 0.6 5.2 :!: 0.6 

phase degrees 3!17. 1 :!: 6.2 3!17. 1 :!: 6.9 

As Hz 0. lj ± 0.1 0.5 ± 0.1 

phase degrees 3!10.5 :!: 12.9 

foF2 MHz 7. 1 :t 0. 1 3.9 :!: 0. 1 0.6 :t 0. 1 
phase degrees 32.3 :!: 2.8 347 .1 :!: 1o.1 

1983 Aw degrees 7.3 :!: 0.3 4.4 ± 0.4 ll.6 :!: 0.4 

phase degrees 357.5 :t 4.9 35!1. 9 :!: 4.7 

As Hz 1.2 :!: 0.2 0.9 ± 0.2 

phase degrees 334.0 + 20.9 

foF2 MHz 5.3 ± 0.2 3. 4 :!: 0.2 1.0 ± 0.2 
phase degrees 24.9 :!: 4. 1 26.3 ! 14.4 
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We determined the phase of the different periods with respect to the meridian 

transit of the sun. These phases are also given in Table 3.1. Again, taking 

errors into account, the behaviour in 1982 and 1983 was identical. 

The same analysis was done for the amplitudes of the TIDs detected by 

differential Doppler measurements and indicated by As. The data show only one 

specific period: 24 hours, see Table 3 .1. Perhaps this is due to the fact that 

during the night no TIDs were observed and moreover the spread in the data is 

larger for the satellite observations than for the WSRT measurements. The 

phase with respect to the solar meridian transit is, taking errors into 

account, the same as that determined from WSRT observations. 

In order to check for any relation between the amplitudes of medium scale TIDs 

and the variation in the total electron content we looked at the behaviour of 

foF2, the critica! frequency of the F2 layer, which is roughly a measure of 

the total electron content. The same Fourier analysis was performed on the 

foF2 data of the observing perioda. The results, given in Table 3.1 indicate 

that the time-dependence of foF2 differs fl"om that of the Aw data. Although, 

apart from a zero level, a 24h period and a 12h period were detected, the 

relativa strengths of these two periods are far from equal. Furthermore, the 

foF2 dependencies with respect to solar meridian transit are several tens of 

degrees out of phase with the equivalent WSRT data. We therefore conclude that 

the diurnal variations of medium-scale TID amplitudes show another time

dependency than that of the total electron content or the ionosphere. 

3.5. Discussion 

The medium scale TIDs reflect variations that are typically about 5% of the 

total electron content. The horizontal linear dimensions are between about 100 

and 800 km. It is clear that the waves propagate neither perfectly east-west 

nor north-south. It may be that the suspected preference for one of these 

directions is based on observational selection effecta: e.g. Bougeret (1981) 

11Bde his observations mainly with an east-west radio interferometer and 

therefore his sensitivity to north-south irregularities was minimal. 

There is controversy about the sources of the ionospheric irregularities, aee 
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for a review e.g. Jones (1982). There is evidence for auroral generation see 

e.g. Hunsucker (1982). Bertin et al. (1975, 1978) suggest a tropospheric 

origin, i.e. instability of jet streams. They obtained the location of the 

sources by inverse ray tracing. On the basis of differential Doppler 

measurements Sizun et al. (1981) argue that single point-like sources are not 

sufficient to explain the irregularities. They prefer extended sources that 

are located at higher latitudes, rather than the local source suggested by 

Bertin et al. (1~75, 1978). Herron and Donn (1973) using an array of 

continuous-wave Doppler sounders show that the direction of propagation of 

TIDs changes with local time: i.e. during the morning hours the preferred 

direction is south-east, at noon it is south, in the afternoon it is south

west. This·pattern agrees with the observations lIBde by Bertin et al. (1978). 

This effect might reflect directional filtering by the neutral wind. Herron 

and Donn (1973) and Bertin et al. (1978) lIB.de their observations mainly during 

daytime. Morton and Essex (1978) analysed gravity wave observations made at a 

souther_n hemisphere mid-lati tude station. They also determined the speeds, 

azimuths, periods and times of occurrence of these disturbances. Although they 

tried to interpret their results in terms of directional coupling by neutra! 

winds, their results for daytime observations basically show scatter diagrams 

only. However, night-time results seem to show some support tor the hypothesis 

of directional coupling by neutra! winds. 

If the linea of sight of the WSRT and the Doppler receiver are aligned in the 

same direction in the sky, the observations can also be used to calculate the 

azimuth and speed of the observed TIDs (Kelder & Spoelstra, 1986). The 

calculations show that the azimuths of the direction towards which the 

irregularities propagate are mainly south - south-west. This differs from the 

observations made by Bertin et al. (1978} and by Herron and Donn (1973) and 

Mercier (1986). The reason for this difference is not necessarily seasonal, 

since the observations of Bertin et al. were made during the summer and those 

of Herron and Donn during the winter. Mercier's difference is maybe due to 

differences in data reduction but this will be pursued in the near future. 

In the current literature, different sources for medium-scale TIDs are 

mentioned. With respect to these sources a distinction must be made between 

discrete events and regular sources. On the basis of the observational data, 

the following must be explained: 
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a. the occurrence of T!Ds is a regular phenomenon, since they can be 

observed continuously in any direction in the sky; 

b. the amplitudes of the TIDs show 12- and 24-hour components of equal 

strength in the Fourier analysis (see Table 3.1 ); 

c. T!Ds occur worldwide. 

The occurrence of 12h and 24h periods of equal strength in the data is, 

however, typical of upper atmospheric tides (Chapman and Lindzen, 1970). Dur 

hypothesis is that atmospheric tides generate gravity waves continuously. 

Experimental evidence of a relationship between the intensity of internal 

gràvity waves and tides has already been presented by Gavrilov et al. (1981 ). 

A possible mechanism could be as follows. Tidal waves, mainly excited in the 

lower atmosphere i.e. the stratosphere and troposphere, grow with height z as 

exp{z/2H), where H is the scale height of the atmosphere. Between 80 and 120 

km altitude they can reach large amplitudes in the order of 150 m/s. At this 

height they travel through the coldest part of the atmosphere. Here are large 

temperature gradients and low values of the Brunt-Väisälä frequency. The 

Richardson number corresponding with the tidal field can become smaller than 

0.25. Then, tidal waves become unstable and can generate internal gravity 

waves with horizontal phase velocities in the order of 150 mis. For the theory 

of hydrodynamic instability see e.g. Drazin & Reid (1982). 

The assumption that tides generate internal gravity waves can explain a, b and 

c (see above). 

The consequences of the tidal generation of internal gravity waves are: 

i. these internal gravity waves should show a latitudinal dependence; 

ii. the TID parameters should be dependent on the season; 

iii. Variation of the mesopause temperature profile shall modulate with the 

same period the internal wave amplitudes. This effect may be partly 

responsible for the observed spread in the amplitudes Aw and As. 

The assumption that internal gravity waves are excited between 80 and 120 km 

does not conflict with the validity of the filtering mechanism of 

thermospheric tidal winds as proposed by e.g. Kalikhman (1978, 1980) and 

Waldock & Jones (1986). Both mechanisms should show up as a function of time 

of day. The conclusion derived by Bertin et al. (1978) that sources of gravity 

waves are located in the troposphere does not conflict with the hypothesis of 
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tides as sources. Instabilities in the troposphere will certainly generate 

gravity waves, but the troposphere may not be the regular source needed to 

explain the daily occurrence of such waves. 

Most of this chapter has been published previously: Kelder & Spoelstra, 1984 

a,b, 1986, and Spoelstra & Kelder, 1984. 
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CHAPTER 4 

CRITICAL LEVELS FOR INTERNAL GRAVITY WAVES IN A JET TYPE FLOW 

4.1. Introduction 

In their classic paper, Booker & Bretherton (1967) analysed the propagation or 

an internal gravity wave through a height-dependent wind field containing one 

critica! level, i.e. a level where the wind velocity equals the horizontal 

phase velocity of the wave. They showed that the transmission of the wave 

depends only on the value of the Richardson number at the critical level. The 

Richardson number is defined as the ratio between the square of the Brunt

Väisälä frequency and the square of the vertical gradient of the wind. It is a 

measure for the dynamic stability of the wind field. They considered only 

background flows with a Richardson number larger than 0.25. Later on, Jones 

(1968) found that, for low values of the Richardson number at the critical 

level, overreflection, i.e. the absolute value of the reflection coefficient 

larger than 1 , occurs. 

These results have been confirmed by various authors and for different 

background flows, e.g. a broken-line profile (Eltayeb & McKenzie, 1975) and a 

hyperbolic-tangent profile (Van Duin & Kelder, 1982). 

Viscosity and thermal conduction were introduced by Hazel (1967). He showed 

that for values of the Richardson number larger than 0.25 a large amount of 

wave energy is lost near the critical level. Not known is the fract!on of 

energy lost by dissipation or by excitation of other modes. The transmission 

coefficient is the same as found by Booker & Bretherton in the diss!pationless 

model. It was shown by Van Duin & Kelder (1986} that for all values of the 

Richardson number the reflection and transmission coefficients remain 

approximately unchanged at the limit of small molecular viscosity and thermal 

conduction. Geller, Tanaka & Fritts (1975) and Fritts & Geller (1976) studied 

instability in the vicinity of the critica! level. They found that, in the 

linear theory, viscosity and heat conduction can play a stabilizing role with 

respect to convective instability. A numerical model was used by Fritts (1978, 
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1982) to compare the effects of viscosity, time dependence and nonlinear 

interaction. Time dependence was found to play only a minor role in 

stabilizing the critical level. Nonlinear effects can give rise to higher 

harmonies of the forcing wave, which develop large amplitudes near the 

critical level when viscous effects are small. 

A nonlinear non-dissipative treatment was given by Brown & Stewartson (1980, 

1982 a, b). They showed that for large values of the Richardson number the 

linear model is valid up to a certain time inversely proportional to the wave 

amplitude. After that time, the reflection and transmission coefficients 

change. Another very different approach to the nonlinear stationary problem 

was put forward by Teitelbaum & Sidi (1979). They showed that a contact 

discontinuity appears below the critical level in the absence of dissipative 

processes. 

To summarize: nonlinearities might change the results of linear nndels to an 

extent that is neither theoretically well understood nor experimentally 

documented. In agreement with Lindzen (1973), we believe that, if dissipative 

damping occurs before amplitudes have grown to the point where nonlinear 

effects become important, the linear approximation is a good one. 

The problem of one critical level has been extensively treated by Rosenthal & 
Lindzen (1983 a, b) and Lindzen & Rosenthal (1983) with regard to 

instabilities and the relation between instabilities and overreflection. 

Within the framework of a linear and inviscid model with one critica! layer 

Grimshaw (1980) added the effects of rotation and electrical conductibility. 

Although he mentioned the problem of two or more critical levels, he does not 

study this. 

Propagation through background flows containing more than one critical level 

has attracted little interest. Drazin, Zaturska & Banks (1979) have done a 

calculation for a flow containing two critica! levels. They modelled the flow 

by a broken-line profile. They showed that for large values of the Richardson 

number the transmission coefficient of the whole layer can be found by 

considering the transmission coefficients of the two critical levels 

independently, attributing to those two levels the same value of the 

Richardson number. 

In this chapter propagation through two critica! levels in a jet-type 

background flow is studied. Jet-type background winds are frequently observed 

in the atmosphere. Moreover short-period gravity waves see planetary and tidal 
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waves as stationary jets due to the large difference in the period and in the 

phase velocity. 

As the mathematical treatment is more difficult than in the case of one 

critical level, we restrict ourselves to the linear non-dissipative case. 

We have taken a symmetrie jet-type background flow. This case can be solved 

analytically. The reflection and transmission coefficients are determined. The 

influence of the distances between the two critica! levels is considered. 

Also, various values of the Richardson number are taken. The reflection and 

transmission coefficients are also calculated using a numerical approach. 

which glves the same results as the analytlcal one. 

A large part of this ·chapter has been published previously (Teitelbaum & 

Kelder, 1985). 

4.2. On the hydrostatlc and the Boussinesg approxlmatlons 

In the literature a lot can be found on approximations see e.g. Holton (1972) 

and Gil! (1982). Here some elementary concepts are repeated in a rather 

conclse form. 

In the hydrostatic approximation the pressure at any point is approximated by 

the weight of a unit cross-section column of air above that point. 

In formula 

12 - -pg • az -

The vertlcal momentum equation states that 

dw __ l~-g 
dt - p az • 

( 4. 1 ) 

(4.2) 

The hydrostatic approximation is therefore equivalent to neglecting the 

vertical acceleration in comparison with the vertical pressure variation 

divided by the density and the acceleration of gravity. This wil! be further 

elucidated hereafter. 

A scale analysis of atmospheric gravity waves leads to the followlng 

characteristic numbers: 

62 



Table 4.1 

Scale analysis of atmospheric gravity waves 

horizontal velocity scale U 

vertical velocity scale W 

horizontal length scale Lh 

vertical length scale Lz 

pressure scale p 

time scale T 

density scale p 

102 m/s 
10-1 m/s 

105 m 

102 m 

103 Pa 

Lh/U 103 s 
10-2 kg m-3 

Define a standard pressure, p0 (z), which is the average of the pressure over a 

large domain in time and in the horizontal plane. The corresponding standard 

density p
0

(z) is such that p0 (z) and p
0

(z) are in exact hydrostatic balance: 

1 dpo 
- -- = -g 
p

0 
dz • 

The total pressure and density fields may be written as 

p(x,y,z,t) = p (z) + p1 (x,y,z,t) , 
0 

p(x,y,z,t) = p
0

(z) + p 1 (x,y,z,t) • 

where p1 and p 1 are perturbations from the standard values of pressure and 

density. Substituting these expressions in the vertical momentum equation 
l l 

(4.2) and assuming that .e._ and .E.:. are rm.ich less than unity in magnitude we 
Po Po 

obtain that 

- l Ê.R - g = - _1 [p l g + IE.: J 
p az po az 

Using the numbers from Table 4.1 we find that , 
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1 "'pl -1 0 10 m/s2 

Po az- - P l•g: - -1 
.J:.--!il. 1 O m/s2 

Po 

and 

dw W -4 
dt=r-10 m/s2. 

We see that to a very good approximation the perturbation pressure field is in 

hydrostatic equilibrium with the perturbation density field such that 

!E..: + az· pig=O. 

In order to clarify further the validity of the hydrostatic and also the more 

commonly used Boussinesq approximation we consider the perturbations in a 

windless isothermal atmosphere in more detail. Assume again a state with an 

unperturbed pressure p
0

( z). Hydrostatic equilibrium is supposed hence 

(4 .3) 

Further it is assumed that ~z ln p
0 

= ~' where H is a constant scale height. 

This assumption is justified if the background temperature is not dependent of 

height. 

If the perturbations are small enough the equations may be linearized and we 

get the following set (it is understood that quantities without indices are 

first order perturbations). Without loss of generality it is assumed that 

there is no y dependency. 

(4.4) 

aw + pg + Ê.E = o, (4 .5) Po at oz 

1e. + 
dp 

(ou + aw) ~+ Po 0, (4.6) at dz ax ()z 

()p dpo ( ()p dpo 
(4.7} 

at + ~ = 02 + w--). 
at dz 
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Assume a perfect gas, then the velocity of sound o equals I Y!T• 

where Y denotes the ratio of the specifio heats Y = op/cv, R is the gas 

constant and m the molecular weight. 

With the help of (4.3) and (4.6) the equation (4.7) oan be written as 

Ê..2 p g w + p c2 (au + aw) 0 
at - 0 0 ax az ( 4 .8) 

The density perturbation p can be eliminated trom this set of equations by 

using (4.5) resulting in: 

. au + ()n 0 
Po at ~ = ' 

Ê..2 - p g w + p 02 au + p c2 aw = 0 
at 0 0 ax 0 az ' 

Po () 2 w .!. l:JL. + w au aw 
g- at2 + g azat Po H - Po ax - Po az = 0 • 

Eliminating the horizontal velocity yields: 

2 
c p 0 a2 w 0 2 l:IL Ê..2 
-g~ ät2 +Po (Y-1 ) g w + g- ()z()t + ()t = O' 

c2 
using that in a perfect gas H = yg• 

( 4. 9) 

(4.10) 

(4.11) 

(4.12) 

(ll.13) 

Eliminating the pressure perturbation p from the equations (4.12) and (4.13) a 

partial differential equation is obtained for the vertical velocity w 

(ll.Pi) 

1 (Y-1 ) g2 

where the Brunt-Väisälä frequency w8 is defined as ~ = v 02 

" z/2H " Define w by w(x,z,t) = e w(x,z,t) then the equation for w reads 

" 
a2 a2w a2 a2w a"w 

02 <w + wa
2

) at2 - <at2 + ~2 ) äX2 - at 2 az2 = o, (ll.15) 
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The coefficients in equation (4.15) are constants hence solutions can be 
. 1(wt-kx-lz) constructed with a normal mode analysis, i.e. suppose the form e , 

where w is the frequency and k and 1 are the horizontal and vertical wave 

numbers respectively. From (4.15) the following dispersion relation is 

obtained 

(4.16) 

A dispersion diagram is drawn in figure 4.1. An acoustic and gravity branch 

can be dlstlnguished. 

co 

COa 
COB 

Figure 4.1 Disperslon diagram for constant vertical wavenumber 1. 

aw Assume now that the hydrostatic approximation is valid: i.e. the term p
0 

at in 

the vertical momentum equation (4.5) is ignored with respect to the two other 

terms. Retracing the derivatlon of (4.14) wlth this in mlnd one ends up with 

(4.17) 
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Again the exponential growth of the amplitude can be split off i.e. 

z/2H A 

w(x,z,t) = e w(x,z,t). 

Tile equation for w reads 

(4.18) 

The hydrostatic wave equation (4.18) in comparison with wave equation (4.15) 
1 o4w o4 W is 1acking two terms i.e. ëf' ä't'li" and atzax2 • Comparing (4.18) and (4.15) it is 

olear that the hydrostatic approximation is valid if 

(4.19) 

Hence within the hydrostatic approximation only phenomena with time scales 

which are large with respect to 2~/wa and 2~/w8 can be described. Tile 

hydrostatic approximation is essentially a low-frequenoy approximation. 

In order to gain some insight into the values of wa and w8 the dependency of 

these frequencies with height is drawn in figure 4.2. 

200 400 600 800 (m/s) 

300 

250 

200 

Figure 4.2 Height profiles of the velocity of sound c, the Brunt-Väisälä 
frequency w8 and the acoustic cut-off frequency wa in a realistic 
atmosphere (after Tolstoy and Pan, 1970). 
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Remark that in the derivation of the equations w and w8 21J a 
constant. For the lower atmosphere values of ~ - 270 sec 

wa 
reasonable. 

are assumed to be 

and 2
1f - 300 sec are 

WB 

The hydrostatic dispers!on relation is obtained by assuming in equation (4.18) 
iCwt-kx-lz) a normal mode solution i.e. W(x,z,t) = e : 

o. ( 4.20) 

Figure 4.3 gives the dispersion diagram corresponding to (4.20). Notice that 

the acoustic branch is suppressed and that evanescent waves can be described 

2 (.\) 2 

within the hydrostatic approximation if ~ k2 < 
0
Î 

Figure 4.3 
applied. 

5 10 

Dispersion diagram for constant 1. Hydrostatic approximation 

In the Oberbeck-Boussinesq approximation (Oberbeck, 1879; Boussinesq, 1903) 

the fluid motion is assumed to be incompressible and the background density is 

treated as constant except where it is coupled to gravity in the buoyancy term 
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of the vertical momentum equation. Retracing the derivation of the wave 

equation (4.15) with this in mind we end up with 

ya2 
where w ' 2 

• ..:..a... B . c2 • 

1 a"w a"w In comparison with wave equation (4.15) the terms~ "§tlt and at2 ax2 are 

lacking and moreover no exponential growth has appeared. 

The Oberbeck-Boussinesq approximation is valid if: 

and 

(4.21) 

(4.22) 

From (4.22) it is clear that the Oberbeck-Boussinesq approximation is valid if 

the phase velocity is muoh smaller than the velocity of sound i.e. 

w2 
<< C2, i(2" 

w 2 
a Y using that ~ = 4 - 0(1 ). 

wB 

Hence the Oberbeck-Boussinesq approximation is essentially a low phase 

velocity approximation. 

(4.23) 

Substituting a normal mode solution i.e. ei(wt-kx-lz) in (4.21) the resulting 

dispersion solution reads 

( 4. 24) 

From {4.16) it is clear that this Oberbeck-Boussinesq dispersion relation can 

also be obtained by taking the limit of the velocity of sound c tends to 

infinity. Note that in the Oberbeck-Boussinesq approximation evanescent waves 

can be described if w > w5 . Figure 4.4 gives the dispersion diagram 

corresponding to (4.24). The Oberbeck-Boussinesq approximation suppresses the 

acoustic branch, changes considerably the value of Brunt-Väisäl~ frequency, 
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and finally neglects completely the exponential growth of the waves with 

height. 

l=O 

1 5 

1 
ko=10 

10 

Figure 4.4 Dispersion diagram for the Boussinesq approximation. 

4.3. On log-eressure coordinates 

Pressure and log-pressure coordinates are treated in different textbooks see 

e.g. Holton, 1972 and Gil!, 1982. For reasons of self-consistency we have 

gathered here some elementary concepts. 

In the hydrostatic approximation it is sometimes advantageous to replace the z 

coordinate with another variable. In meteorology, pressure p is most commonly 

used and the variables are then known as isobaric coordinates. The advantage 

is that the density disappears from the equations. In log isobaric ooordinates 

the logarithm of the pressure is used and the new vertical coordinate is then 

defined as 

* z : 
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where pr is a standard reference pressure (usually taken to be 100 kPa), 

H : = RTo is a constant scale height and R is the gas constant for dry air. g 
In log isobaric coordinates, at variance with isobaric coordinates, the statie 

stability parameter is almost constant with height. 

4.3.1. The momentum equation 

In the hydrostatic approximation only the horizontal momentum equation 

contains direct information on the velocity. That is 

du+~. 0 p dt ax • 

In order to rewrite this equation it is useful to refer to figure 4.5 to 

elucidate the derivation 

p 

Az 
p+Ap 

(4.26) 

Figure 4.5 The relation between horizontal variations of pressure at a fixed 
level z and horizontal variations of level (or geopotential ~ = gz ) at a 
fixed pressure. Two neighbouring pressure surfaces in the x,z plane such that 
the change in pressure in a horizontal distance àx is àp • 
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= < hydrostatic approximation > • pg (~~) 
p 

The geopotential ~ is defined as the work required to raise unit mass from 

the surface of the earth to height z: 

z 
~=· f gdz'. 

0 

The relation between variations in the pressure and the geopotential is 

illustrated in figure 4.6. 

_,..-__...-=:;:======----cc:::::::~tl> + Atl> 
p,......-- High 

P +Ap ?" ........- ....,,,,, ""'til 
(i) 

tl>+Atl> 
........ .<"' p 

" --..:cc::::-=:==::::::::::>"::::=-"-
'-..._ High 

<:::::----:::::>" < p+ Ap 
(ii) 

(4.27) 

Figure 4.6 The relation between horizontal variations of pressure at a fixed 
level z and horizontal variations of level (or geopotential <f> = gz ) at a 
fixed pressure. Representation of a high-pressure region in the x,z or 
x, <f> plane ( i). 
In (ii) the same situation is redrawn in the x,p plane and the feature appears 
as a high in geopotential on an isobaric surface. 

The horizontal pressure variation can be rewritten as 

( ].E) 
dX z 
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The horizontal momentum equation can now be written as 

du + (at) " 0 (4. 28) 
dt ax z* • 

Suppose a horizontal background flow u in the x direction and a vertical 
* * dz* velocity w defined by w : = dt • 

The operator ~t now has the following form 

!L " L + u L + w* a C4 .29 > dt at ax az* • 

The horizontal momentum.equation can then be expressed as: 

au + u au + * au + a~ = 0 
at ax w az* ax • (4 .30) 

4.3.2. The continuity equation 

Consider a fluid element of mass AM and cross-section area Ax Ay, which is 

confined between pressure surfaces pand p-Ap as shown in fig. 4.7. 

p-Ap 

Az AM 

p 

Figure 4.7 An air column of fixed mass AM confined between two isobaric 
surfaces. 
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As the problem is basically two-dimensional we remove Ay from the expression 

thus making AM a maas per unit length. 

Applying the hydrostatic approximation we may write 

AM pAzAx = AxAp 
g 

Since the mass of the fluid element is conserved following motion, we obtain 

1 d _s_ d (Ax.àp) O 
AM dt AM = Ax.àp dt -g- "' ' 

or 

From definition (4.3) we have 

* ~ = _ . .E dz 
dt H dt 

This means that 

* -z /H n * p = Poe hence Ap = - ~ Az 

* -w -+ 
H 

* aw 
az* . 

H 
and 

The continuity equation in the log pressure coordinates finally becomes 

* * au + aw w 0 
ax az* - ~ = • 

4.3.3. The thermodynamic energy equation 

Under the assumption that the motions are adiabatic, the first law of 

thermodynamica can also be written as 

dT ~ 
P 0 p dt - dt = O · 

(4.31) 

( 4. 32) 

Remark that in order to verify this assumption the time scale of the motion 

has to be compared with the time scale referring to thermal conduction. As the 

thermal conduction varies considerably with height some doubt is justified 
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about the validity of the assumption of adiabatic DX>t1on in certain regions of 

the atmosphere. 

The last term in equation (4.32) may be written as 

The time derivative ~t reads 

!!__ = L + u L + w* a dt at ax ~ , az . 

he nee 

aT + u aT + w*(aT + _e_) • O . 
at ax az* pHcp 

Define the statie stability r by r : = aT* + -ifc- . 
az p p 

With this definition equation (4.33) beoomes 

The temperature T can be expressed in the geopotential as fellows 

at at _ E at = .L " RT 
az* - Halnp = H ap pH H ' 

or 

H at 
T = R az* . 

If we furthermore define the hydrostatic Brunt-Väisälä frequency N by 
2 Rr N := ~ , the thermodynamic equation reads 

a (at ) + a at + (N
2 *) 0 at az* u ax az* w " • 

(4.33) 

( 4. 34) 

(4. 35) 

(4.36) 
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The following set of equations describes, within the hydrostatic 

approximation, the adiabatic variations of the fluid: 

au + aw* w* 0 
ax az* - tt = • 

a ( a• ) + a ( a• ) 2 * at az* u ax êz* + N w = O • 

We now ex pand on a statie sol ut ion Ü ( z*) and • 0 ( z*) 

u = U + u' 
* ' w= O+w, 

11' = tlio + 'Y ' 

where 

u' << U and 'Y << ~ • 
0 

(4.37) 

(4 .38) 

(4.39) 

Taking into account first order perturbations only and omitting the prime and 

the asterisk 

( 4. 40) 

au + aw - .!! = 0 
ax az H ' (4.41) 

( 4. 42) 

From the last equation 

w = - -1 (L + u L) aJ · N2 at ax az • 

Substituting this in the first two equations yields 

a - a a' ctu 1 a - a a' 
(- + U -)u + - - - - (- + U -) - = o ' 
at ax ax dz N2 at ax az 

(4.43) 
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and 

(4.44) 

The Brunt-Väisäl~ frequency N is assumed to be constant, which implies that 

the temperature is constant. 
a a - a Multlplying equation (4.43) by ax' (4.44) by <at + u ax) and subtraoting, u is 

eliminated from these two equations and we end up wlth 

( 4. 45) 

This is the partial differential equation for the perturbation of the 

geopotential. Note that the derivatives of Ü have disappeared. This explains 

the simple structure of equation (4.45). We look for normal mode solutions: 

m( t) .i.(z) ei(wt-kx) • 
1' x, z, = 'I' 

Then the function <P(z) has to satisfy the linear second order ordinary 

differential equation 

4> = 0 • 

z 

With <P(z) := A(z)e2H , which means an exponential growth with height, 

equation (4.46) becomes 

2 2 2 

( 4. 46) 

d ~ + [ N ~ - - 1-] A = O , ( 4 • 47 ) 
dz '2 4H2 

with the Doppler-shifted frequency '2 defined as n = w - kU 

Equation (4.47) has also been derived by Holton (1972), but he assumed a 

horizontal flow U independent of height, which - as is shown above - is not 

necessary. Equation (4.47) for A contains no derivatives of the background 

flow. Hence, applying the hydrostatic approximation and using log pressure as 

the vertical coordinate a relatively simple equation for the geopotential 

perturbation <P is obtained. 
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Notice that for a hyperbolic tangent wind profile, treated analytically by Van 

Duin & Kelder (1982), equation (4.47) can be transformed into the 

hypergeometric differential equation irrespective of the place of the critica! 

level and the value of the Richardson number. 

4.4. Critica! levels in a jet-type flow 

The background flow Ü(z) is taken to be 

Uo 
Û(z) = ---z ... 2 

+ -02 

(4.48) 

This profile represents a symmetrie jet-type flow. This type of flow occurs 

frequently in the atmosphere. For example in figure 4.8 the zona! wind 

structure is given as a function of height and more than one jet can be 

identified. 

120 

-E 
~60 

20 

Temperature regions 

t 
Thermosphere 

- Minimum 

Mesosphere 

-Maximum 

Stratosphere 

-Minimum 
Troposphere 

0 20 40 60 80 
Zonal wind, W+E ( m /s) 

Figure 4.8 Magnitude of zonal winds in the upper atmosphere by the height 
profile for 45° N latitude in January (from COSPAR International Reference 
Atmosphere, 1972). 
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Substituting expression (4.48) in equation (4.47) yields 

z2 2 
2 2 2 ( 1 + OI') 1 

-zd A + (~ --------- ] A 0 " - 4Hz = ' z2 (~ - 1 ))2 dz w c02 - c 

where c : "' ~ is the horizontal phase velocity. 
k 

Three cases can be distinguished, namely: 

uo < c no critical layer, 

uo > c two critica! layers, 

u "' 0 c one critical layer. 

Below we consider the last two cases. 

4.5. Two critical levels 

( 4 .49) 

As discussed above, if the horizontal phase velocity ot the wave is smaller 

than U0 , the wave encounters two critica! levels in the flow. This case will 

now be examined. 

After introducing the independent variable ç detined by ç: = ~d' where 

u 
d = c-2 - 1)~ ' equation (4.49) becomes: c 

2 2 2 2 2 2 2 2 

d ! + (N ~ 
1

(1+g ç i D d ) --,- A=O. 
dç c d (ç -1) 4H 

(4.50) 

Furthermore, if we define the function B{ç) 

tor B reads: 

2 -~ 
= (ç -1) 2 A(ç) , the equation 

2 2 

(1-ç
2

) .2Ji. - 2ç ~~ + (A + î
2 

(1-ç
2

) - ~) B = 0, 
dç 1-ç 

(4.51) 
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where 

2 2 u 2 

D N o 2 2 2 

(~ - --1y) À. := -2 y : = D d ' c c 4H 

and 
2 

2 
2 2 u 

1 - l!Ri with Ri · 
D N o µ := "' 4 2 c c' 

llc d 

The Richardson number Ri is defined as Ri :• N2 /(:~) 2 • It is easy to verify 

that Ri0 is the Richardson number at the critical level. 

Equation (ll.51) is known as the differential equation of spheroidal wave 

functions. The properties of lts solutions are discussed in Meixner & Schäfke 

(1954) (hereinafter referred to as MS) and Erdelyi et al. (1953). 

The equation has three singular points at y = ±1 and ""· The points ±1 are 

regular singularities, whereas the one at "" is an irregular one. The 

parameter µ is called the order of the wave function. 

We need solutions which asymptotically become plane waves, the circuit 

relations between solutions of that form then give the reflection and 

transmission coefficients. 

S
µ( 3 ,''} 

Solutions with these properties are (ç;Y) •• For lçl > 1 they can 
\/ 

be represented by convergent series of the following form 

2 -µ/2 
çµ "" sµ < a' ") (ç -1 ) aµ 2 '!:' ( 3.") 

(ç ;Y) "' 2 (Y ) ( r;'Y) ' (ll.52) 
\) Aµ 2 v,2r v+2r 

(Y ) r=-m 
\/ 

2 "" 2 ,CjJ where Aµ(Y ) "' 2 (-1 )r aµ 
2 

(Y ) and are the spherical 
\/ r=-"" "' r 

v+2r 

Hankel functions, that is 

The coefficients 

re lat ion 

aµ have to satisfy the following three term recurrency v, 2r 
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Y
2 (v+µ+2r+2)(v+µ+2r+1} µ 2 

(2v+4r+3)(2v+4r+5) av,2r+2(Y ) + 

2 

[À - (v+2r)(v+2r+1) + 2Y 
2 (v+2r)(v+2r+1) + µ -1 

(2v+4r-1)(2v+4r+3) 

2 
+ y {v+2r-µ)(v+2r-µ-1) µ 2 

(2v+4r~3)(2v+4r-1) av,2r-2(Y ) 0 

2 

] a~,2r(Y ) (4.53) 

The parameter v is called the characteristic exponent of the spheroidal 
2 

differential equation, and is a function of À, µ and Y • 
2 

It. is possible to expand· À in a power serie in Y , with coefficients 

depending on µ and v(see MS) as 

Àµ c/) "' v(v+1) - lf [1 + <2µ-1 ) <2µ+ 1 )] / + ••• 
v 12 (2v-1 ) (2v+3) 

It is obvious that: 

Àµ (O) == v (v + 1). 

" 
2 

Other solutions we need are Psµ (i;;Y ) 

" represented in the following form 

r=-oo 

and 

2 

Qsµ (r;;Y ) "' l 
v r=-oo 

2 

( -1)r µ (Y) 
av,2r 

2 
and Qsµ (l;;;Y ). 

" 

(4.53a) 

They may be 

(4.54) 

where Pµ and Qµ are the Legendre functions of the first and second kind 
" v 

respectively. The series in (4.54) converge absolutely and uniformly in every 

compact domain with the exceptions of t1 and 00 • 

The asymptotic behaviour of Sµ(a)(r;;Y) ast + oo 
v 

( s) 2 exp [i(Yr; - "2+
1 

'lr)] q-l 
Sµ (r;;Y).: (r,; -1 )-µ/ 2 r,;µ { t 

v Yi; s•O 

for -v + g S arg (Yr;) S 2'1r - g g > o. 

is 
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For the asymptotic form is: 

[ v+l ] µ exp -i(Y1; - T 'lf) A 
Sµ('')(r·Y) - c/-1)-µ/ 2 rµ JQj;l v,s + O(r-q)},(4.56) 

v "' ' "' "' Yi; 
1 s=O ( J s "' 

for -21r' + e:: :S arg (Yt) :i 1T - e:: 

Here 

Aµ = 1. 
v,O 

r(v+2r+s+1) r µ 
r{v+2r-s+1) (-l) av,2r' 

2~Yr;; 

e:: > o. 

The Aµ have to satisfy a four terms recurrency relation which can be found v,s 
in MS. 

From (4.55) and (4.56), it follows that: 

for z + "' 

[ v+1 ] exp ±i(tz - T 1T) 
A( z) - ----y----- larg (tz)I < 1T, 

where t 
2 ~ 

[~ - ~] is the vertical wave number without mean flow. 
c 4H 

(4.56) 

The relationship between A and + means that + tends exponentially to 

infinity as z + "'· This is a consequence of the density stratification. 

However, it must be taken into account that the wavelike form (4.56) is 

already a good approximation to the solution if the mean flow velocity becomes 

negligible with respect to the horizontal phase velocity of the wave. 

µ(i) 
The plus or minus signa in (4.56) correspond to the solutions S and 
sµ(") respectively. " 

v 
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The vertical wave energy flux, at least when the mean background flow is 

negligible, may be written as 

where the brackets < > refer to the average over one cycle of the wave and p
0 

is the average state density. The asterisk means the complex conjugate. 

Equation (4.39) with the tempora! and horizontal dependence used here gives: 

w=-1~+ 
N z 

With (4.57) the vertical wave energy flux becomes: 

and with the asymptotic form (4.56): 

n t 
F = ± Poo -2 • 
w 2N 

(4.57) 

(!t.58) 

where the plus or minus signs correspond to the plus or minus signs in 
(4.56). p

00 
is defined by p

0 
= p e- z/H • 

Thus in the upper half space, Sµ?
9

> tends asymptotically to an upward-, and 

Sµ(~) v 
to a downward-propagating wave. 

v 

4.6. The reflection and transmission coefficients 

Suppose there is a source emitting waves at -m. For z + +m , we must only 

have an upward-propagating wave. This boundary condition may be satisf ied as 

seen at the end of the previous section by Sµ(
3

)(~;Y) • It is then necessary 
v 

to find the analytica! continuation for values of z + -m. The physically 

meaningful path of analytica! continuation is discussed in Booker & Bretherton 

(1967), Baldwin & Roberts (1970), and Teitelbaum & Kelder (1985). 
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The connection path can be one of the equivalent paths shown in fig. 4.9. We 

followed the path indicated by a solid line, allowing us to use properties of 

the solutions, as we shall see later. 

-1 
* 

lm(y) 

Re<y> 

Figure 4.9 Complex y-plane showing the two equivalent paths for analytica! 
continuation of the spheroidal wave functions: ---, direct path; ~-, indirect 
path used in our calculation; *, singularities shifted as a consequence of the 
addition of a small dissipation. 

The Sµ(
3

,~) are only defined for lçl > 1 • First we have to extend the 
\> 

functions into the unit circle. This may be done with the following relations 

(see MS): 

2 
where Qsµ (ç;Y ) 

\> 
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(4.60) 

-iµv 2 

e Qsµ ) 
r(v+µ+1) v (ç;Y 



2 
and Vµ is a constant, which for small values of Y can be approximàted by 

'\) 

v r (-v+ .!.) 
Vµ (Y) = ~ (~) . ~ 
" r (v + 2> 

2 
(1 - O(Y )) • (4.61) 

The connection path can be split into two parts. 

First we turn around ç = 1 through -2ir. In MS it is proved that: 

µ [ -211T] Ps 1 + (ç-1) e 
\) 

(4.62) 

accordingly 

(4.63) 

Next we turn around ç = O through +ir, which gives 

(4.64) 

Inserting (4.63) into (4.64) yields 

Qsµ(-~) = _ cosµir Qsµ(~) _ 1 sin(v-µ)tt r(µ-v) eivw Qsµ_"_ 1 (~). ( 4•65 ) 
'\) cosvw '\) COS'V1T r(v+µ+1) v 

In the same way an expression for Qs~v-1 (-ç) may be derived. 

S
µ ( 3,") 

With the help of (4.59) and (4.60), we can go back to and the result 
'\) 

is the following circuit relation: 

(4.66) 

with 

2cosµtt sinvir + i [v+ e-ivir 
a = 2 (4.67) 

2 i cos \)tt 

and 
i e-ivw [2cosvir - V+ e-2 ivw 

6 = 2 
(4.68) 

2 i cos \)1T 
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where 

v+ 
r (µ+v+1) vµ (Y) 

sin ( v+µhr 
\) (4.69) 

r (µ-v) v~v-1(Y) 

and 

.r (µ-v) v~v-l (Y) 
v sin (v-µ hr ( 4. 70) 

r (µ+v+l ) vµ (Y) 
\) 

If we let ç + ~ equation (4.66), with the asymptotic forms (4.55) and (4.56), 

represents a relation between plane waves. 

If we take into 
wave and Sµ(') 

\) 

transmlssion T 

R = a 
eiV'lf B 

and 

T 
eiv'lf B 

with a and f3 

µ(") 
account that for negative ç, S represents the incident 

\) 

the reflected one, the coefficients of ref lection R and 

become 

(4. 71) 

(4.72) 

defined above. 

The parameters are µ, Y and A, but the number may be reduced using the fact 

that the horizontal phase velocity of the wave c is much smaller than the 

velocity of sound. A good approximation for the velooity of sound in the 
2 2 

atmosphere is V = 4 N H , and with this approximation it is possible to s 
write: 

À 
-2J = ............. 
s 

where 

2 2 
N D 

J = -,-
u 

0 
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µ 
2 

1 ----
S (1-S) 

and s c 

2 

and Y 

=-

J(1-S) 
§ 

s 
(4.73) 



Note that this approximation, which can be interpreted as the incompressible 

fluid approximation (H ~ m), has not been used elsewhere in this study. It 

is only adopted to simplify the presentation and interpretation. 

Thus, essentially, only two parameters are involved: J and the ratio S between 

the phase velocity and the maximum velocity of the background flow. 

Another useful parameter is the minimum Richardson number of the flow Rim, 

which corresponds to S = 0.75 and is equal to (~)
1 

J. 

In figures 4.10 and 4.11 the variations of IRI and ITI are indicated as a 

function of S for some values of Rim. Note that the values of S for which the 

maximum of IRI and ITI are reached are greater than 0.75, i.e. Ri0 > Rim. 

IRI 
1.5 

1.0 

0.5 

0 0.25 

.. . . 
!\ . . . . . . . . . . . . . . . . . . . . 
: \ . . : .... , : 
: , ' ':. ., . 
: \ ~ 
:1 \\ 
il \ · .. :. , ... 
:1 ' 

0.50 0.75 1.00 
S=c/U0 

Figure 4.10 Variation of the reflection coefficient 1 RI as a function of 
S = c/U 0 , for three different values of the minimum Richardson number of the 
mean flow:--, Rim = 0.143; ---, 0.1; ••• , 0.07. 
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ITI 
1.5 

1.0 

0.5 

0 0.25 0.50 0.75 1.00 
S=c/U0 

Figure 4.11 Variation of the transmission coefficient ITI as a function of 
S = c/U0 , for three different values of the minimum Richardson number of the 
mean flow:-, Rim = 0.1.113; ---, 0.1; ••• , 0.07. 

Overreflection starts with Rim = 0.143, while at the critical level 

Ric = 0.169. Lower values are found for one critical level. Jones (1968) 

calculated Ri0 = 0.113; Eltayeb & McKenzie (1975) obtained 0.115 and Van Duin 

& Kelder (1982) 0.132. The background mean flow considered by Jones and 

Eltayeb & McKenzie was formed by matching constant ahear layers, whicn implies 

that the Richardson number is constant in each layer. The value given by Van 

Duin & Kelder for the hyperbolic tangent profile corresponds to Ri
0 

= Rim. The 

higher value found with two critical levels can be explained by the fact that, 

as we shall show, the upper critica! level acts as a source of wave energy. 
" 
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In regions where U • 0 , (4.58) does not represent the total vertical energy 

flux. Another term which represents the advection by the wave field of the 

kinetic energy of the nean flow is needed (Hines & Reddy, 1967; Lindzen, 1973) 

and this leads to: 

F = p +w + E o (4.74) 

In fact, what we need is a quantity whose flux is conserved across the jet 

e~cept at critica! levels. We could as well use other quantities such as 

horizontal wave momentum (Eliassen and Palm, 1962) or wave action (Bretherton, 

1969; Andrews & Mcintyre, 1978; Grimshaw, 1984). In the present case the flux 

of these quantities agrees with the flux of total energy as defined above up 

to a multiplicative constant. 

1be horizontal perturbation velocity {4.43) reads: 

which allows us to write the vertical energy flux as follows 

{ 4. 75) 

Near the upper critica! level where ç-1 > O and Ri0 > t, +(ç) can be written 

as 

l::..!J! 1 - iu 

+ = exp [ 0~~] [P(ç-1) 2 
+ Q(ç-1) 2 ], 

where P and Q are complex constants. 

1bis last expression used in (4.75) gives 

+ where FE is the vertical energy flux above the critica! layer. 
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The analytica! continuation of ~ for ç-1 < 0 through -v is 

1+iµ 1-iµ 
~ = [-i P eµv (1-ç) 2 - i Q e-i.m (1-ç)_2_] exp [ 0~~] 

which gives 

where F; is the vertical energy flux evaluated below the critica! level. 

With the condition of only an upward propagating wave above the upper critical 
+ level, FE has to be positive and this implies FE negative: the upper 

critica! level acts as a source of energy. 

For Ri 0 < t it is not possible to prove the same statement, but numerical 
- + 

calculation shows that FE always remains smaller than FE (Teitelbaum & 
Kelder, 1985}. Hence there is again a netto positive flux of vertical energy 

at the upper critica! level. 

The propagation of an internal gravity wave through a jet type flow 

encountering two critica! levels has also been solved numerically (Teitelbaum 

& Kelder, 1985). The results are in case of overlap consistent with those 

obtained analytically. We quote here some interesting results from these 

numerical calculations. If the profile which gives IRI = 1 (Ric = 0.169; 

Rim = 0.143) is modified in its upper part by taking a constant mean flow 

above lts maximum, the upper critica! level is suppressed. In that case, the 

reflection coefficient becomes IRI = 0.91. 

The transmission coefficient depends on Ric and on the profile of the flow. If 

the mean shear of the flow below the critica! levels is not very strong, the 

absolute value of the transmission coefficient ITI can be closely 

approximated by ITI = exp [-2v(Ri - t>~] . This is consistent with Booker & c 
Bretherton's results in the sense that the two critica! levels are apparently 

acting independently and each critical level is transmitting the wave with the 

Booker & Bretherton transmission factor exp [-v (Ri -t>~J. If the shear is c 
strong (low value of Rim), then even for large values of Ri0 , ITI becomes 

lower than the product of the transmission coefficients because the wave is 

partially reflected below the critica! level. As an example, the case 

90 



-~ _a 
Rim = Ric = 5 gives IRI = 2.9 x 10 , ITI = 1.29 x 10 Note that this 

value of ITI corresponds to the product of two separated critical levels. 

With the same Ri0 = 5, but Rim = 0.12, the results are IRI = 0.86 and 
_" 

ITI = 3 x 10 • 
Comparison of our reflection coefficients with those found by Drazin et al 

( 1979) for the triangular jet shows that our values are ruch lower. This can 

be explained by the reflection at the knees of their broken-line profile ( see 

e.g. Jones, 1968; Eltayeb & McKenzie, 1975). 

4.7. One critical level 

When the horizontal phase velocity of the wave equals the maximum of the mean

flow velocity there is only one critical level. Mathematically, the two 

regular .singularities of (4.51) are merging in one irregular singularity. 

However, when a small dissipation term is added the irregular singularity 

splits into two regular ones. Thus the case of one critical level has been 

reduced to the case of two merging critica! levels. 

Let us start with two critical levels and let c + U
0

, i.e. S + 1. From 

(4.73) it is clear that Y2 + O, µ + i~ and À + -2J. We calculated the values 

of R and T in this limit. 

From Stirling's formula for gamma functions it follows that 

-µ µ+v+Y. 
f(µ+v+1) = e µ 2 (2'1f) 2 (4.76) 

and 

(4. 77) 

for µ + 1~. From (4.61) it may be inferred that for Y + 0 

(4. 78) 
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Moreover, if we put µ = iM then 

(M-i"Vhr sin(v+µ)ir = ~ie , 

From (4.76) - (4.81) it can be derived that 

2v+1 2 

v+ _ Yaie(M-iv)ir (~) · (r(-\)+~)) • 
r(v+2> 

Taking into account that µ = i ND/U d and Y + Dld, we can write 
0 

( 4. 79) 

(4 .80) 

(4.81) 

eMir 
V - - 2F (4.84) 

where 

ND2l 2"V+1 r( J!:) 2 
F = ( liiJ) ( -v+ 2 ) 

o r(v+~) 
(4.85) 

Introducing (4.83) and (4.84) in (4.67) and (4.68) to calculate a and a , and 

using these results in (4.71) and (4.72), we obtain for the reflection and 

transmission coefficients 

R =sin 'V1T + ti [F-1e1\)1T - F e-ivir] 
i[l + ~(F-1e2ivir + F e-2ivir)] 

In the limit S + 1, that is Y + 0, we can deduce from (4.53a) that 

Y. Y. 
\) + -Ya -~(1 + 4>.) 2 = -Ya -~(1 - 8J) 2 , 

which shows that v takes on a finite value in this limit. 
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From (4.87) it is clear that as S + 1, the transmission coefficient T + o. 
nie wave is not transmitted. This result is consistent with Booker & 

Bretherton's result, as, for S + 1, Ri + ~. c 

Numerical calculation with (4.86) shows that IRl 2 ~ 1. 

Hence a wave propagating through a jet with two merging critical levels will 

not be overre.flected, but only partially reflected and not transmitted. 

Figure 4.12 shows that IRI decreaaes with increasing values of Ri • m 

IRI 

0.5 

0 os 1.0 15 2D 
Rim 

Figure 4.12 Variation of the absolute value of the reflection coefficient as 
a function of the minimum Richardaon number of the mean flow in the case of 
two merging critical levels. 
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4.8. Conclusion 

This work was motivated by the frequent observations of jet-type background 

winds in the atmosphere and the fact that planetary waves are seen as 

stationary jets by short-period gravity waves. 

In such a background flow a gravity wave can have two critical levels or only 

one with specific characteristics. In this study we have shown that the two 

critical levels do not act independently to determine the behaviour of the 

travelling wave. In fact, some of the energy transmitted through the lower 

critical level can be reflected at the upper one, which acts as a source of 

wave energy. Then the downward energy flux is added to the energy already 

reflected at the lower critica! level and can produce overreflection, with Ri0 

higher than in the case of only one critica! level. We found overreflection 

with Ri0 • 0.169, the critica! levelt located at S 0.86. On the other hand, 

even for values of Ric as low as 0.1, and with Ri 0 = Rim (S = 0.75), neither 

overreflection nor overtransmission occurs. 

The transmission coefficient is different from the product of the transmission 

coefficients of the two critical levels when 0.25 ~ Ri < 1 because the wave m 
is partially reflected below the critica! levels by the strong shear. 

The results found for asymmetrie jets show that the upper critical level can 

affect the reflection of the wave. 

The case of a wave having only one critica! level at the maximum of the 

background flow has been solved as the limit of two m=rging critica! levels. 

In this case the transmission becomes zero and no overreflection can occur. 

94 



4.9. References 

Andrews, D.G. & Mcintyre, M.E., 1978 - On wave action and its relatives. J. 

Fluid Mech. 89, 647-664. 

Baldwin, P. & Roberts, P.H., 1970 The critical layer in stratified shear 

flow. Mathematika ll• 102-119. 

Booker, J.R. & Bretherton, F.P., 1967 - The critical layer for internal 

gravity waves in a shear flow. J. Fluid Mech. g]_, 513-529. 

Boussinesq, J., 1903 - Théorie Analytique de la Chaleur, 2. Gauthier Villars, 

Par is. 

Bretherton, F.P., 1969 - Momentum transport by gravity waves. Quart. J.R. Met. 

Soc. 95, 213-243. 

Brown, S.N. & Stewartson, K., 1980 - On the nonlinear reflection of a gravity 

wave at a critical level. Part 1. J. Fluid Mech. 100, 577-595. 

Brown, S.N. & Stewartson, K., 1982a - On the nonlinear reflection of a gravity 

wave at a critica! level. Part 2. J. Fluid Mech • ..l.12.• 217-230. 

Brown, S.N. & Stewartson, K., 1982b - On the nonlinear reflection of a gravity 

wave at a critical level. Part 3. J. Fluid Mech. 115, 231-250. 

Drazin, P.G., Zaturska, M.B. & Banks, W.H.H., 1979 - On the normal modes of 

parallel flow of inviscid stratified fluid. Part 2. J. Fluid Mech. 95, 

681-705. 

Eliassen, A. & Palm, E., 1961 - On the transfer of energy in stationary 

mountain waves. Geofys. Publ. 22, 1-23. 

Eltayeb, I.A. & McKenzie, J.F., 1975 - Critical-level behaviour and wave 

amplification of a gravity wave incident upon a shear layer. J. Fluid 

Mech. 72, 661-671. 

95 



Erdelyi, A., Magnus, W., Oberhettinger, F & Tricomi, F.G., 1953 - Higher 

Transcendental Functions. Vol. I, II and III. McGraw-Hill. 

Fritts, o.c., 1978 - 'nl.e nonlinear gravity wave critical-level interaction. J. 

Atmos. Sci. 35, 397-413. 

Fritts, O.C •. , 1982 - 'nl.e transient critical-level interaction in a Boussinesq 

fluid. J. Geophys. Res. 87, 7997-8016. 

Fritts, o.c. & Geller, M.A., 1976 - Viscous stabilization of gravity wave 

critical level flows. J. Atmos. Sci. 11• 2276-2284. 

Geller, M.A., Tanaka, H. & Fritts, O.C., 1975 - Production of turbulence in 

the vicinity of critical levels for internal gravity waves. J. Atmos. Sci. 

32, 2125-2135. 

Gill, A.E., 1982 - Atmosphere-Ocean Dynamica. Academie Press. 

Grimshaw, R., 1980 - A genera! theory of critical level absorption and valve 

effects for linear wave propagation. Geophys. Astrophys. Fluid Dyn. ~. 

303-326. 

Grimshaw, R., 1984 - Wave action and wave-mean flow interaction, with 

application to stratified shear flow. Ann. Rev. Fluid Meoh • ..!§_, 11-44. 

Hazel, P., 1967 - The effect of viscosity and heat conduction on internal 

gravity waves at a critical level. J. Fluid Mech. 30, 775-783. 

Hines, e.o. & Reddy, C.A., 1967 - On the propagation of gravity waves through 

a region of wind shear. J. Geophys. Res. 72, 1015-1034. 

Holton, J.R., 1972 - An Introduction to Dynamic Meteorology. Academie Press. 

Jones, W.L., 1968 - Reflexion and stability of waves in stably stratified 

fluid with shear flow: a numerical study. J. Fluid Mech. 34, 609-624. 

96 



Lindzen, R.S., 1973 - Wave mean flow interaction in the upper atmosphere. 

Boundary-Layer Met • .!!_, 327-343. 

Lindzen, R.S. & Rosenthal, A.J., 1983 - Instabilities in a stratified fluid 

having one critical level. Part III: Kelvin Helmholtz instabilities as 

overreflected waves. J. Atmos. Sci. 40, 530-542. 

Meixner; J. & Schäfke, F.W., 1954 - Mathieusche Funktionen und 

Sphilroidfunktionen. Springer. 

Oberbeck, A., 1979 - Uebèr die Wärmeleitung der Flussigkeiten bei 

BerUcksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. 

Physik l• 271-292. 

Rosenthal, A.J. & Lindzen, R.S., 1983 a - Instabilities in a stratified fluid 

having one critica! level. Part I: Results. J. Atmos. Sci. 40, 509-520. 

Rosenthal, A.J. & Lindzen, R.S., 1983 b - Instabilities in a stratified fluid 

having one critica! level. Part II: Explanation of gravity wave 

instabilities using the concept of overreflection. J. Atmos. Sci. 40, 

521-529. 

Teitelbaum, H. & Sidi, C., 1979 - Discontinuity formation due to gravity wave 

propagation in a shear layer. Phys. Fluids 22, 209-213. 

Teitelbaum, H. & Kelder, H., 1985 - Critica! levels in a jet type flow. 

J. Fluid Mech. 159, 227-240. 

Tolstoy, I. & Pan, P., 1970 - Simplified atmospheric models and the properties 

of long-period internal and surface gravity waves. J. Atmos. Sci. 27, 

31-50. 

Van Duin, C.A. & Kelder, H., 1982 - Reflection properties of internal gravity 

waves incident upon a hyperbolic tangent shear layer. J. Fluid Mech. 120, 

505-521. 

97 



Van Duin, C.A. & Kelder, H., 1986 - Internal gravity waves in shear flows at 

large Reynolds number. J. Fluid Mech. 169, 293-306. 

98 



CllAPTER 5 

PROPAGATION OF INTERNAL GRAVITY WAVES IN A ROTATING FLUID WITH SHEAR FLOW 

5.1. Introduction 

Over the past few decades many authors have studied the phenomenon of 

overreflection in a stratified fluid in shear motion. Overreflection is 

defined as an absolute value of the reflection coeff icient larger than one. 

This phenomenon in relation to internal gravity waves in a non-rotating 

fluid was first treated by Jones (1968). He found that overreflection does 

not occur for values of the Richardson number at the critical level Ric larger 

than 0.115 at least when the transmitted wave is a propagating one. Eltayeb & 
McKenzie (1975), in an analytical study, obtained results fora braken-line 

wind profile, consisting of a constant shear layer imbedded in two layers of 

constant wind. Van Duin & Kelder (1982) later made an analytical study of a 

hyperbolic tangent or Epstein type wind profile, a model without the 

disadvantages of discontinuities in the derivatives of the wind field. They 

found that overreflection does not occur for values of Ri 0 above 0.132. 

Acheson (1976) has given a review of the phenomenon of overreflection. 

Teitelbaum & Kelder (1985) have studied a jet-type wind profile in which the 

wave encounters more than one critical level. Their results show that in that 

case no overreflection occurs for values of the minimum Richardson number of 

the flow above 0.143 while Ri0 = 0.169. Instability as a consequence of 

multiple overreflection was investigated in a series of papers (Rosenthal & 

Lindzen part I, part II, 1983; Lindzen & Rosenthal part III, 1983 and Lindzen 

& Barker, 1985). 

In a rotating fluid there appear to be three critical levels. These levels are 

encountered by the wave at the heights where the background wind is such that 

the Doppler-shifted frequency is equal to zero or to plus or minus the 

rotation frequency. Hence rotation causes a splitting up of critica! levels 

analogous to the Zeeman splitting of spectral lines by a magnetic field. This 

case was also first studied by Jones (1967). He found that the vertical flux 
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of angular momentum is constant everywhere in the fluid except at the critical 

levels. By ignoring rotation the resulting solutions appear to be in error 

only at levels where the Doppler-shifted and Coriolis frequencies are 

comparable. He considered numerically only the case that the Richardson number 

is equal to 1. 

Yamanaka & Tanaka (1984) made an analytica! study of these so-called internal 

inertio-gravity waves (waves with frequencies near the rotation frequency) in 

an inoompressible rotating flow with a constant shear layer. Tai (1983) has 

investigated the relation between overreflection and instability in a rotating 

fluid. In all the studies cited above the Boussinesq approximation was used. 

Our objective was to calculate overreflection and overtransmission in a 

rotating fluid and to analyse the sensitivity of the results for certain 

approximations. 

A large part of this chapter has been published previously (Teitelbaum, Kelder 

& Van Duin, 1986). 

5.2. The wave equations in the Boussinesq and hydrostatic approximations 

We shall adopt a model which was used by Jones (1967). The model is a planar 

one. Viscosity is ignored and the adiabatic equation of state is used. The 

fluid is supposed to be rotating around the vertical axis (the z-axis) with 

angular velocity f/2 where f is the so-called Coriolis parameter. 

A geostrophioally balanced mean flow U (z) is directed along the x-axis and 
0 

varies with z only 

êpo 
-• -fUp. 3y 0 0 

This is valid only if U0 /R < f where R is the radius of the earth. 

The background pressure p
0 

is assumed to be in hydrostatic balance 

êpo 
ä'Z = - g Po· 
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The vertical structure of the background density p
0 

is given by 

alnp
0 --az- = - B. 

From (5.1), (5.2) and (5.3) it follows that 

(5.3) 

(5.4) 

Assuming that there are perturbations superimposed on the background state so 

small that the equations may be linearized, applying the Boussinesq 
. . 

approximation and looking for solutions of the form 

A(x,y,z,t) - A (z) ei(wt - kx - ly) 

Jones (1967) derived for the vertical veloci ty w the following ordinary 

differential èquation: 

dU 
[na - ra] g + [2ifl - 2fak] ~ dw + 

dz n dz dz 

d2 U 
[nk + ifl] dz2° } w = o. (5.5) 

Here k and 1 are horizontal wave numbers, w is the wave frequency and n is the 

Doppler-shifted frequency def ined by 0: = w - k U
0

• 

N2 is the square of the Brunt-Väisälä frequency, in the Boussinesq 

approximation equal to gB. 

In deriving equation (5.5) Jones apparently assumed that B is independent of y 

on the basis of the Boussinesq approximation. However, we shall show that this 

is a separate assumption based on an approximation which is independent of the 

Boussinesq one. 
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Differentiating equations (5.3) and (5.4) with respect to y and z respectively 

two expressions are obtained which must be equal i.e. 

A Taylor expansion of B(z,y) around y=O yields 

B(z,y) • B(z,o) + ~~(z,o) y + •••• 

The y dependency of B(z,y) may be neglected if 

An expression for ~~(z,o) is obtained from (5.6) 

d2 U dU 
- ~(z o) = f (--0 - ae (z,o) U (z) - B (z o) --2) öy , g dz 2 az 0 , dz • 

Hence the condition (5.8) is satisfied if 

At a good approximation it is true that 

d 2 U dU
0 

ldz2ol << IBCz,o) dz 1 

and 

l
as ctu 
-azCz,o) U

0
(z)I « IBCz,o) dz

0 1. 

(5 .6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

From (5.10) and (5.11) the condition that the y dependency of B(z,y) may be 

neglected reads 

f dUo 
lg ""dZ"" y 1 << 1 • (5.12) 

A reasonable value of :~o is 10-
4 s-1 , then li :~0 1 is smaller than 10-1 if y 

is smaller than 1000 km. 
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In the derivation of Jones it is assumed that the Coriolis frequenoy is 

constant, this is the so-oalled f-plane approximation. In fact f is a function 

of y and this approximation gives another restriction on the range of values 

of y. 

The hydrostatic approximation was discussed in chapter 4. Here we will include 

rotation. The derivation of the equations is only sllghtly different from that 

in ohapter 4 and thèrefore the formulas will be given without oomments. The 

symbols have the same meaning as before (cf. 4.1 ). 

The momentum equations now reads 

au + u au + au + * au at v- w + - - fv 0 at . ax ay * ax 
and az 

(5.13) 

av + av + av + * av at + fu • o. u- v- w --* + at ax ay az ay (5. 14) 

The continuity equation beoomes 

* ~u + ~v + aw * - WH = 0 • 
oX oY ()z 

(5.15) 

Finally the thermodynamic energy equation reads 

< aat + u ~x + v L + w * _a_) 
(,1 ay az * (5.16) 

where N is the Brunt-Väisälä frequency. 

* * Suppose a development around a statie solution U
0

(z ),t
0

(z ,y) that is 

u U + u 1 

0 
v 0 + yl 

* w - 0 + w 

• • + tl> 
0 
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The statie solution has to satisfy the geostrophic balance 

* - f U
0

(z ) 

and the hydrostatic condition 

at RT 
0 0 

iî" H · 
az 

(5. 17) 

(5. 18) 

The first order perturbations have to satisfy the following set of equations 

(the prime and asterisk are from now on omitted) 

au + 
dU 

u au + w --2 + .li - fv = 0 , (5. 19) 
at 0 ax dz ax 

av + 
at 

u av + ].!I! + 
0 ax ay fu • O , (5 .20) 

au + av + aw - ~ " 
ox öy az H 0 , (5.21) 

a a .li duo 
+ N2 w = 0 • (5 .22) (- + u -) - f - v 

at 0 ax az dz 

The only y-dependent coefficient is the Brunt-Väisälä frequency N, given by 

dT KÎ 
N2 R (--2 + --2) 

= H dz H • (5 .23) 

We wil! derive a condition under which it is only slightly dependent on y. 

From (5.23) it is clear that N2 depends on y through a dependency of T0 only. 

Combining the equations (5.17) and (5.18) yields 

aTo H fdUo 
ay = - iî dZ"· (5.24) 

A Taylor expansion of T0 (z,y) around y=O yields 

ar 
T

0
(z,y) == T

0
(z,o) + oz0 (z,o) y + •••• (5. 25) 

The y dependency of T0 may be ignored if 

ar 
1ay

0
(z,o) YI << T

0
(z,o). (5.26) 
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()T 
0 Equation (5.24) yields an expression for ay (z,o): 

The scale height H was defined in chapter 4 and is taken in this case as 

R T
0

(z,o) 
H = .• This implies that condition (5.26) reads 

g 

f dU 
lg dz o Y 1 « 1. 

(5 .27) 

(5 .28) 

With this condition the y-dependency of the Brunt-Väisälä frequenoy may be 

ignored. 

Notice that the condition (5.28) is exactly the same condition as Jones used 

(cf. 5.2.1). Here the f-plane approximation has also been used implicitly. 

Hence the remark made after (5.12) is also valid here. 

With ~hls approximation solutlons can be found of the form 

f(x,y,z,t) f(z) ei(wt - kx - ly) + .!.. 
2H 

If thls form of solutlon is inserted into equations (5.19) - (5.22), an 

ordinary differential equation for the vertical veloclty can be derived. 

cn2 - r2) d2~ + [2ifl- 2r2k] dUo dw 
dz n dz dz 

dU dU 
2iflk (----2) 2 d 2 U k(0 2 + f 2 ) o 

+ { N2 ( k2 + 12) + dz + ( ilf + Ok) __ o + dz 
n dz 2 Hn 

g2-f2 } w = o. ( ) -~ 5.29 

The difference between this and the Boussinesq equation (5.5) lies in the term 

between the parentheses. In (5.29) the term contains N2 (k2 + 12 ) lnstead of 

(N2 - 02 ) (k2 + 12 ) as in the Boussinesq case. As was argued in chapter 4 the 

hydrostatlc approximation ia in fact a low-frequency approxlmatlon that is 

02 << N2 and this explalns the difference. Furthermore in equation (5.29) two 

k (g2 + f2) dUO g2-f2 
extra terms appear: Hn dz and ~· 
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These terms take into account the background var!ation and are ignored in the 

Boussinesq approximation (scale height H tends to infinity). 

5.3. The singularities of the equation 

For a background wind profile that is a monotonie function of height, Jones's 

equation and the hydrostatic equation both have three s!ngularities, one for 

zero shifted frequency as in a non-rotating system and the other two where the 

Doppler-shifted frequency equals !f. The first s!ngularity was studied by 

Booker & Bretherton (1967) and will be referred to hereinafter as the B.B. 

singularity. The other two were studied by Jones (1967) and will be referred 

to as the J. singularities. 

When compressibility is taken into account two new singularities appear and, 

moreover_, the B.B. singularity is split up into two as was shown by Eltayeb & 

Kandaswamy (1979). In the hydrostatio approximation oompressibility is also 

taken into account but these singularities do not appear as the aooustio 

branch of the acoustic-gravity waves is suppressed (see ohapter 4.1 ). Hence 

the acoustio waves cause these extra singularities. 

lt has been shown by Jones (1967) that in a rotating system the vertioal flux 

of angular momentum is independent of height, exoept at the critica! levels. A 

way to obtain such a fixed quantity is outlined below for a second-order 

linear differential equation in the Helmholtz form 

•" + q(z) • 0 , (5.30) 

where ' denotes differentation to z. 

The derivative of the Wronskian of the solutions • and lts complex conjugate 
* • have to satisfy the following equality 

(5 .31) 

If the function q(z) takes on real values only and 1•1 2 is finite then the 

* Wronskian W(w,w ) is independent of height. 

106 



A differential equation of the form 

•" + a(z) •' + b(z) + = O , (5 .32) 

can be transformed in the form (5.30) with the Liouville transformation 

(5.33) 

The analogue of (5.31) for equation (5.32) reads 

d f zRe a ( z' ) dz' * 
dz ( e0 {° - Im a(z) 14>1 2 + W(.,+)} ] 

fzRe a(z')dz' 
- 2 Im (b(z) - ä~z) - aa~z)) eo 1•12· (5.34) 

Hence if 

Im (b(z) - à(z) - a2(z)) = 0 , 
2 4 (5.35) 

then the quantity G defined by 

G: 0
/zRe a(z')dz' * 

e {-Ima(z) 1•1 2 +W(Q>,. >}, (5.36) 

is independent of height. 

Straightforward calculations show that equations (5.5) and (5.29) both satisfy 

condition (5.35) and the quantity G turns out to be the same. G can be written 

as 

(5.37) 

Tai (1983) has proved that the quantity G is proportional to the vertical flux 

of angular momentum. 

The changes in this flux across the critica! levels have been calculated by 

Tai (1983) for Jones's equation. 

This author has shown that for the J. oritioal levels there is a jump. 

However, for the B.B.-critioal level this is not always the oase. 

107 



The B.B.-critlcal level at z=z0 corresponds wlth a regular s1ngular1ty in the 

differential equation. With the Frobenius method a solution can be found of 

the form 

(5 .38) 

where ~c = z - z
0

, E1 and E2 are arbitrary constants, W and W are analytlc 
C1 C2 

functions which equal unity when ~ =0, and c 

) 1 z•z (5 .39) 
c 

If Y1 =0, z is an apparent singularity. In Tai (1983) it is shown that, with c 
the branch cuts taken as discussed there, the jump in the flux is equal to 

12 
G _ - G + = ir ( 1 + k2 ) 1E 1 l 2 Y 2 , (5.40) 

c c 

where G is the value of G for z < ZC and G + is the value of G for z > z0 , 

and c c 

2NdN 
d2U d2U 

dU 0 N2 __ 0 

Y2 (k _o) dz dz 2 dz 2 
] lz=z (5.41) - sgn dz dU dU dU 

(--2.)2 0 (--2.)3 c 
dz dz dz 

Hence, if Y2 =0 then there is no jump in the vertical flux of angular momentum 

at the B.B.-critical level. 

In the hydrostatic equation the J. singularities are the same as in Jones's 

equation. In fact these singularities are determined by the coeff icients of 

the first derivative and these are the same in both equations. 

However, the condition for having an apparent singularity in the hydrostatic 

equation is not the same. Working analogously, we found this to be 

d2 U 
Nz -dz20 dU 

+ .!. (N2 - (-2)2) j 
dU H dz z=z 

0 c 
"' o. (5.42) 

dz 
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1 dU 2 
Compared with (5.41) an extra term H (N 2 

- (dz0
) ) appears. This is due to 

taking into account the background variation of the density. 

It will be shown that the difference in the type of singularity can cause 

differences in the reflection and transmission coefficients. 

5.4. The method of solution 

To solve the hydrostatic or Jones 1 s equation analytically is relatively 

difficult. Yamanaka & Tanaka (1984) were able to express solutions in terms of 

the hypergeometric functions for a special case with a constant wind shear and 

applying both the hydrostatic and the Boussinesq approximations. For a 

reflection and transmission problem these solutions are not useful because 

these solutions far from the critical levels cannot asymptotically be 

approximated by plane waves. Here we take a numerical approach. We have chosen 

a,tangent hyperbolic background wind profile with the B.B.-critical level at 

the inflection point. 

Aocordingly, Jones's equation has there an apparent singularity while the 

hydrostatic equation has a logarithmic one. 

We used two different numerical approaches. In the first we introduoe a small 

imaginary component for the frequency, the singularities have then shifted 

from the real axis and integration along the real axis is possible. We start 

the calculations above the critical levels, far enough to give a good 

approximation of a constant background wind, with an upward-propagating plane 

wave. The equation is then integrated backwards by the method used by Bulrisch 

& Stoer (1966) down to a distance below the critica! levels where the 

solutions are again closely approximated by plane waves. Only then can the 

solution be broken down to give an incident and reflected wave and the 

reflection and transmission coefficients caloulated. The integration step 

length is automatically changed when the desired accuracy is not obtained. For 

example, the minimum step length near the critioal levels can be as low as 

10-10 of the total integration path with in total not more that 500 steps. 

The second numerical method is similar to the first but instead of using an 

imaginary component for the frequency, a Frobenius expansion is made at each 

critica! level to match the solutions by analytic continuation. 
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Owing to the accuracy and efficiency of the integration routine only two terms 

in the Frobenius expansion were needed. The difference between the results 

obtained by the two different methode turns out to be less than 1%. 

5.5. Results 

With Jones's equation overreflection and overtransmission were found even for 

values of Ric above 0.25. Ri 0 is the Richardson number at the B.B.- critical 

level located at the inflection point and it is also the minimal value of the 

Richardson number for the tangent hyperbolic wind profile. 

Tai (1983) found, by analytica! methods, overreflection regardless of the 

value of the Richardson number when only two of the critical levels were 

present. In contradiction to our results the same author found by numerical 

methods that overreflection for layers with three critical levels is possible 

only for values of the Richardson number lower than 0.2~02. This result was 

obtained subject to the condition that the transmitted wave was a propagating 

one. We suppose that the difference with Tai's result is due to the fact that 

he has not fully explored the influence of the different parameters. 

We found that overreflection and overtransmission are very sensitive to the 

value of the ratio f between the Coriolis parameter f and the wave frequency 

w • For certain values of f resonant overreflection occurs; i.e. the 

reflection and transmission coefficients tend to infinity and there is no 

incident wave. This resonant overreflection occurs even for values of Ri0 

higher than 0.25. Figure 5.1 shows the values off as a function of Ri 0 for 

which resonant overreflection occurs. 

The results obtained using the hydrostatic equation differ from the above. For 

example we found no resonant overreflection. Overreflection and overtrans

mission again occurred for values of Ric larger than 0.25. 

Some of the results obtained using the two equations are illustrated in figure 

5.2. For two values of the Richardson number at the critica! level at the 

inflection point of the hyperbolic tangent wind profile, i.e. Ri0 • o.~o and 

Ric = 0.65, the values of the reflection coefficient as a function off are 
A 

demonstrated for both approximations. For small f's the reflection 

coefficients tend to the same values. 
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Figure 5.1 The values off, as a funotion of Ri 0 , for which resonant 
overreflection ocours. 

Hydrostatio approximation 

Boussinesq approximation . . 
Ri0 0.30 
Ri0 = 0.65 
R10 • 0.30 
Ri 0 = 0.65 

Figure 5.2 Variation of the absolute valueAof the reflection 
ooefficient IRI, as a funotion of the ratio f between the angular velocity f 
and the wave frequency w .Conventions as in the previous f igure. 

111 



Caloulating the refleotion coefficients without rotation with the help of 

formulas given in Van Duin & Kelder (1982) values are obtained of IRI = o.43 

for Ri 0 = 0.30 and IRI = 0.13 for Ri0 = 0.65. From !igure 5.2 it is clear that 

these values correspond to the limiting values for f + 0. This is reasonable 

beoause this limit means that the rotation frequency becomes muoh smaller than 

the wave frequency. 

For larger values of f the difference between the two approximations 

increases with a maximum at the value for which resonant overreflection occurs 

in the Boussinesq approximation. From figure 5.2 it can be inferred that the 

range of values of f for which overreflection occurs decreases with increasing 

Ri0 • 

The difference in the results is due to the fact that, at the B.B. critical 

level, Jones's equation has an apparent singularity and the hydrostatic 

equation a logarithmic one. This difference is caused by the variation with 

height of the background density which is neglected in the Boussinesq 

approximation. This is confirmed by taking, in the hydrostatic approximation, 

the limit for very large values of the scale height. At this limit, expression 

(5.42) becomes identical to (5.41) and the singularity likewise beoomes an 

apparent one. Numerically the results of Jones's equation are then obtained, 

as should be expected. 

5.6. Conclusions 

Overreflection and overtransmission of a gravity wave propagating in a layer 

with a sheared wind field in an inviscid, adiabatic, stratified and rotating 

fluid was studied. Our results show that, in contradiction to the non-rotating 

case, overreflection occurs for values of R10 above 0.25. 

The transmission and reflection ooefficients appear to be strongly dependent 

on the ratio between the rotation frequency and the wave frequenoy. For the 

range of this ratio for whloh overreflection occurs, different results are 

obtained using the Boussinesq and hydrostatic approximations. For example, 

resonant overreflection was found in the Boussinesq approximation only. 
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The results obtained here indicate that care must be taken in applying certain 

approximations to atmospheric problems. We are inclined to the opinion that 

the hydrostatic approximation is better in describing the propagation of 

gravity waves through a critical layer certainly if the rotation of the fluid 

is taken into account. 
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CHAPTER 6 

ON THE REFLECTION OF TIDES IN THE UPPER ATMOSPHERE 

6.1. Introduction 

Observations of winds in the upper atmosphere indicate the presence of strong 

tidal movements. The classica! theory of atmospheric tides, that is without 

the inclusion of mean winds and meridional temperature gradients, is able to 

explain some major features of the observations (Chapman & Lindzen, 1969; 

Kato, 1980). 

Some problems, however, are still not completely solved. One of them is the 

structure of the semidiurnal tide at and above 100 km height. Observations 

show a strong influence of the higher order modes (Fellous et al., 1975; Ahmed 

& Roper, 1983), whereas the theory predicts the dominance of the 2.2 mode 

(Chapman & Lindzen, 1970). One way to solve this discrepancy is indicated by 

Lindzen & Hong (1974). They introduce a zonal wind profile, and the 

interaction of the semidiurnal modes with the wind leads to a weakening of the 

2.2 mode and an enhancement of the higher order modes. 

Another way to explain the observations is to take into account the reflection 

of the semidiurnal modes, Fellous et al. (1975), Stening (1977), Stening et 

al. (1978). In this paper we will pursue the theory of reflection on a 

realistic temperature profile. The same problem was treated earlier, e.g. by 

Teitelbaum (1973), whose solution of the reflection problem leads, via the 

Mathieu equation, to qualitative results. However, the method followed here 

provides a basis for more comprehensive conclusions, because the results are 

quantitative. Vial et al. (1985) used a numerical method. They also discussed 

the influence of different standard profiles on the reflection of tidal waves. 

The scheme of this chapter is as follows. In section 6.2 a short account is 

given on the derivation of the differential equation describing the vertical 

propagation of the semidiurnal modes. 
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In section 6.3 the calculation of the reflection coefficients for a class of 

refractive index profiles is discussed. In section 6.4 the method is applied 

to the reflection of the semidiurnal modes. 

6.2. The differential equation for the vertical propagation 

An extensive discussion of the derivation of the differential equation for 

tidal waves can be found in Chapman & Lindzen (1969) and Kato (1980). Here, 

only a sketch will be given. It is convenient to introduce the quantity 

( ) __ 1_~ 
G z, 0, ip, t = dt , Ypo 

(6 .1 ) 

where p
0 

is the unperturbed pressure, 

p iS the tidal perturbàtion in pressuri;, 

'Y =~ is the ratio of the specific heats, c 
t isvtime, 

z is height, 

e is colatitude 

<I> is longitude 

Suppose that the longitude and time dependency is periodic and, moreover, that 

the restriction is made to consider only tides migrating with the sun; then G 

can be written as 

G(z, e, ip, t) 

with a = 1, 2, 3, 

" r 
o=1 

a0 
( z, e) e 

. (211' t + .i.) 
10 24 'f 

and t is in hours. 

The function G0 (z, 0) has to satisfy a linear second-order partial 

differential equation that can be solved by separation of variables. 

Therefore, 

" 
G0 (z, e) = r Ln"<z> en"<e> , 

n=1 

(6 .2) 

(6 .3) 
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where each en° satisfies th~ Laplace's Tidal Equation: 

F(e °Ce)) 
n 

where 

a2 
+ sin 2e), 

(6.3a) 

a is the radius of the earth and 

equivalent depth. 

is the separation constant, called the 

The solutions 

2 
d L a 

H--}- + (dH 
dz dz 

where H 

K = 

J 0 
n 

0 a 
n are known as Hough functions. The Ln°(z) satisfy 

dL a 
1) _n_ + 

dz h a 

scale height, 

Y-1 
y 

n 

(dH + K) L 0 
dz n 

K J (J 

= + __ n_ 

YgHh o 
n 

thermal excitation of the tides. 

The equation (6.4) is often called the vertical structure equation. 

(6.4) 

This equation can be transformed into a Helmholtz equation by introducing the 

reduced height x defined by 

z dz1 
x = f H( z 1 ) 

0 

and by using instead of Ln° the function yn° defined by 

x 
- 2 (J 

e L
0 

(z(x)) • 

The Helmholtz equation reads then 

a a 
d Yn 
--2 + 

dx 
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KJ 0 e- 2 
n 

Ygh o 
n 

(6 .5) 



The particular solution of this equation can be written as 
xo ... 

y 0 ( x) "' _ic::_ J G 0 
( x, x ) J 0 

( x ) e 2 dx
0

• ( 6 • 6 ) 
n a 0 non o 

'Yghn 

where on°(x,x
0

) is the Green's function for the mode and the temperature 

profile in question. 

The excitation, however, takes place predominantly below 50 km height (see 

fig. 6.1). Therefore, tidal waves above this height can be considered as 

freely propagating waves. 

~ -..... 
-5,ao 
~ 
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20"-~---L~~-'-~~~~~.&--~--1~~--'---~~~~ 

0 ~ ~ ~ ~ 

mW/kg 

Figure 6.1 Height profile of the Hough component of the heating for the J~ 
mode (Graves, 1982). 

The propagation equation then takes the form 
2 a 

d y __ n_ + 
dx2 

r 1 dH 1] t- (ic::H + -) - -
h a dx 4 

n 

(6. 7) 
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Let µ(x) be the invariant of differential equation (6.7), that is 

dH 1 µ(x) " (icH + -) - ij • 
h a dx 

n 

(6 .8) 

µ can be interpreted as the square of the refractive index. If the refractive 

index is constant, then the differential equation (6.7) has two kinds of 

elementary solutions, namely if µ > 0 then 

and for µ < 0 

o (-µ)~x (-µ)~x 
y " Ge + Be • 

n 

(6. 9) 

(6.10) 

If µ is not constant, the solutions of (6.7) generally cannot be expressed in 

elementary functions. In that case the WKB approximation can be a good 

substitute. Anyway, if strong reflections occur, the WKB method fails (Nayfeh, 

1973). Because strong reflections can be expected we looked fora method not 

suffering from this restriction. 

First we will discuss the behaviour of the refractive index for tidal waves in 

a model atmosphere. As most important model we have chosen the Mean Reference 

Atmosphere of the CIRA (1972). This model is suitable for heights between 30 

and 500 km and is independent of season. It is considered to be representative 

for middle latitudes. The height dependence of µ in (6.8) appears in the 

term 

H + dH 
K dX ' (6 .11) 

formed by the scale height and its derivative. In figure 6.2 the value of 

(6.11) is given as function of the reduced height for the Mean Reference 

Atmosphere. The flattening of the curve between 30 and 50 km and above 200 km 

is characteristic. From this curve the profiles of the refractive index for 

each of the tidal modes can be determined. We shall restrict ourselves to the 

semidiurnal modes. In figure 6.3 the graph of µ is drawn for the 2.2 mode. 
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Figure 6.2. KH + ~~ versus the reduced height for the Mean Reference 

Atmosphere of CIRA 1972. The real height is given in parentheses • 
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Figure 6.3. The value of the square of the refractive index for the 2.2 mode 
versus the reduced height. 
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The curve for the 2.2 mode shows negative values over a large height interval. 

At these heights only evanescent waves can exist, and strong partial 

reflection can be expected. 

In the next section an analytica! approach to describe reflection in an 

inhomogeneous medium will be outlined. 

6.3. Reflection of waves in an inhomogeneous medium 

An analytica! description of wave propagation in an inhomogeneous medium is 

possible for a limited number of profiles of the refractive index, see e.g. 

Ginzburg (1961) and Brekhovskikh (1980). One of these is the Epstein-Eckart 

profile, Epstein (1930) and Eckart (1930), in formula 

dx) x - 2 x a 1 + a 2 tanh 21 + as cosh 21 , (6.12) 

where e is the square of the refractive index, a 1 , a 2 and a 3 are constants 

and l is a length scale. 

There are two obvious special cases of this profile namely 

x O, g(z) • a 1 + a2 tanh 21 

called the transitional Epstein profile and 

O, e(z) 
_2 

a 1 + a 3 cosh x 
21 ' 

called the symmetrie Epstein profile. 

(6.13) 

{6.14) 

A characteristic of the profiles is that for large values of x, E takes on 

constant values, while in the neighbourhood of z = 0 the greatest change in 

value takes place in a domain with a width determined by 1. 

If the square of the refractive index is described by the Epstein profile then 

the wave equation can be solved analytically. Here, only a sketch of the 

solutions will be given; the complete treatment of the problem can be found in 

the original literature (Epstein, 1930; Eckart, 1930). 
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Epstein and Eckart start with 

d2y + dX2 t(x) y(x) = 0 • 

Define k1 and k2 as 

and 

lim 
x+ -co 

dx) , 

lim dx) 
x+ +co 

(6.15) 

(6.16) 

(6.17) 

The equation (6.15) can be transformed into a hypergeometrical differential 

equation. 

By putting 

p = Î , u = ep and y = (1 + u)d ua f, 

one obtains 

u(1 + u) ~~; + [C2d + 2a + 1)u + 2a + 1] ~~ + (a+b+d)(a-b+d)f = 0, 

where a = il la1 - a2 , 

b = il la1+ a2 , 

d = ~ - ~ 11 + 1612 a 3 • 

(6.18) 

(6.19) 

The second order linear differential equation in (6.19) has three regular 

singularities at 0, -1 and co respectively and is known as the 

hypergeometrical differential equation. In the neighbourhood of the 

singularities solutions exist in the form of power series. Hence we obtain the 

following solutions f1 to f & : 

around u • 0 f1, f2 va lid for lul < 1 • 
around u = -1 fu f" val id for 1 u+1 I < 1 • 
"around" u = " fs, f6 va lid for lul > 1 . 
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Explicit expressions for the functions f 1 to f 6 can be found in e.g. Erdelyi 

et al. {1953). 

For these solutions analytical continuation can be found, and solutions can be 

constructed that are everywhere defined. The way of analytical continuation 

has to be found on physical grounds. The starting point, however, was a second 

order linear differential equation, which can have no more than 2 independent 

solutions. Therefore, linear relations exist between the solutions. These 

relations, called circuit relations, have been calculated by Gauss (Epstein, 

1930). One of these relations is 

(6.20) 

where A and B are gamma functions and are given in Erdelyi et al. (1953). 

To interpret relation (6.20) we will consider the asymptotic behaviour of the 

solutions involved. Let y1 , ••••• , y6 be the solutions corresponding to 

f 1 , •••• , f 6 respectively. For very large negative values of x, that means, 

according to (6.18) for u approaching zero: 

d a ik x Y1Cx) = (1+u} u f 1 (u)(:) e 1 
, 

which can be interpreted as an incoming plane wave from below. The same 

asymptotic procedure applied to y2 yields 

-ik x 
Y2(:) e i ' 

and this can be interpreted as a downward reflected plane wave. 

If x, and according to (6.18} also u, take on very large positive values, then 

which represents an upward propagating plane wave. Hence, equation (6.20) can 

be interpreted as a relation between the incoming, the reflected and the 

transmitted waves. This implies that a reflection coefficient R can be defined 

as the ratio between the asymptotic values of the reflected and incoming 

waves. 
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The result is: 

R 
r(2a) r(-a-b+d) r(-a-b-d+1) 
rC-2a) r(a-b+d) r(a-b-d+1} ( 6. 21 ) 

We have obtained an expression for the reflection coefficient in terms of 

gamma functions, that are simpler than the hypergeometrical functions 

The work of Epstein was later extended by many authors. One extension, that of 

Rawer (1939), is very suitable for describing tidal wave propagation. The 

profile of Rawer has the form 

e:(x} • - (,!!E) 2 [K + 1t - K exp p{x} - K3 exp p{x) ] + 
dx 1 11+ 2 1+exp p{x) {1+exp p(x)) 2 

2 

+ ~ [ H i dp - J ( H- i dp) J 
dx dx 2 dx dx ' 

where K1 , K2 and K3 are constants 

and 

p(x) 

(6 .22) 

(6.23) 

If A1 = 8 1= 0 then equation (6.22) again represents the Epstein profile. 

For the Rawer profile (6.22), the reflection coefficient equals 

R = r(Y-1) r(l-6) r{1+a-Y) 
r(1-Y) rCY-a) r(a) 

with 

(6.24) 
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Formulae (6.22) and (6.23) define a large class of profiles of the refractive 

index for which analytical solutions are possible. In the next section we will 

look for the best approximation of the refractive index profiles of the tidal 

waves by (6.22) and then apply the results of this chapter. 

6.4. Results 

The approximation of the refractive index profiles of the semidiurnal tidal 

modes by the functions described in (6.22) and (6.23) requires some 

calculations. The approximation is done in least squares sense. Two examples 

of the curves obtained are shown in figures 6.4 and 6.5. In figure 6.4 the 

square of the refractive index of the 2.2 mode and lts approximation are 

drawn. 
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Figure 6.4. Solid line: the square of the refractive index of the 2.2 mode. 
Dashed line: the approximation by Rawer's function. 
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Figure 6.5 Solid line: the square of the refractive index for the 2.4 mode. 
Dashed line: the approximation by Rawer's function. 

In figure 6.5 the same has been done for the 2.4 mode. The agreement between 

the approximations and the profiles computed from the Mean Reference 

Atmosphere is rather good. Henoe it is permissible to substitute the 

approximating functions into the Helmholtz equation for the propagation of the 

tidal modes. The reflection coeff icients can then be calculated. The absolute 

values of some reflection coefficients are given in Table 6.1: 

mode 

2.2 

2.3 
2.4 

Table 6 .1 

0.98 

0.31 

0.08 
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These values indicate that for this temperature profile the 2.2 mode is nearly 

completely reflected, that the 2.3 mode is also strongly reflected, but the 

2.4 mode is only slightly reflected. Higher order modes are so weakly 

reflected that their reflected wave can be ignored. 

The temperature profile, however, is dependent on season, latitude and 

exospheric temperature. To test these dependencies we calculated the 

temperature profiles for July and January from the CIRA 1972, for 50°N and an 

exospheric temperature of 1000 K. 

The absolute values of the corresponding reflection coefficient are summarized 

in Table 6.2. 

Table 6.2 

mode jRI 

July January 

2.2 

2.3 

2.4 

0.99 

0.88 

0.74 

0.89 

0.42 

0. 19 

Hence, in summer the reflection, especially of the higher modes, is 

substantially higher. The influence of the latitude was determined by 

calculating the values of IRI for January and 1000 K exospheric temperature 

for 0° (the equator) too. The values of IRI were somewhat higher: 0.96, 0.55 

and 0.30 for the 2.2, 2.3 and 2.4 modes respectively. Finally, we varied the 

exospheric temperature and calculated the reflection coefficient for January 

for 50°N and an exospheric temperature of 1500 K. We found 0.81, 0.06 and 0.02 

for the 2.2, 2.3 and 2.4 modes respectively. 
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Hence, a higher exospheric temperature leads to lower values of the reflection 

coefficient, especially for the higher order modes. 

6.5. Conclusions 

In this paper analytical solutions has been given for the equation describing 

the vertical propagation of the semidiurnal modes through the mesosphere and 

lower thermosphere. 

These analytical solutions offer the possiblity to calculate the wave functlon 

for every helght. We restrlcted ourselves to the calculation of the reflection 

coefficients. It was shown that the reflection coefficients can be expressed 

in gammafunctlons. 

The Mean Reference Atmosphere of the CIRA 1972 was used as a model. For thls 

model it turns out that the 2.2 semldiurnal tidal mode is nearly completely 

reflected whereas the 2.3 mode is reflected for 31% and the 2.4 mode for only 

8%. The reflection of the higher order modes appears to be negligible. This 

implies that with increasing height the character of the semidiurnal tidal 

wave gradually shifts to the higher order modes. In the mesosphere 

interference by a superposition of tidal modes will be important. This agrees 

with observations see e.g. Stening (1977, 1978) and Ahmed & Roper (1983), but 

is not predicted by the classical theory of atmospheric tides (Chapman & 

Lindzen, 1970). The results are valid for the Mean Reference Atmosphere that 

is thought to be representative for middle latitudes and is independent of 

season. 

However, the dependence on season, latitude and exospheric temperature proved 

to be considerable as was demonstrated by calculating the value of IRI for 

other reference atmospheres. Consequently, this sensitivity of the reflection 

for the temperature profile causes a large variability in tidal structure in 

the mesosphere and thermosphere. 
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SAMENVATTING 

Dit proefschrift handelt over golven in de atmosfeer en dan met name in dat 
deel van de hogere atmosfeer dat ionosfeer heet. Het betreft zowel electro
magnetische golven als atmosfeergolven. 
De meeste plaats is ingeruimd voor de theorie van deze golven, maar ook is 
aandacht besteed aan de interpretatie van ionosfeergegevens, verkregen met 
behulp van signalen van bakensatellieten en radio-astronomische waarnemingen. 

In het eerste hoofdstuk worden enkele eigenschappen van de hogere atmosfeer 
belicht en vervolgens wordt een overzicht gegeven van verschillende 
atmosfeergolven. Inwendige zwaartegolven en atmosfeergetijden worden meer 
uitvoerig gelntroduceerd. 

Electromagnetische golven van hoge frequentie worden beschouwd in het volgende 
hoofdstuk. Uitgaande van een uitdrukking voor de brekingsindex worden enige 
benaderingen nader geanalyseerd. De eerste orde correctie voor een niet koud 
plasma wordt berekend en tenslotte worden nog enkele aspecten van de voort
planting van electromagnetisohe golven in de ionosfeer belicht. 

Het derde hoofdstuk is experimenteel van aard. Behandeld wordt hoe uit de 
signalen van bakensatellieten informatie over de electronendichtheidsverdeling 
kan worden verkregen. Ditzelfde wordt gedaan voor radio-astronomische 
waarnemingen. Vervolgens wordt nader ingegaan op de kenmerken van de gemeten 
ionosfeerverstoringen. 

De beschrijving van de voortplanting van zwaartegolven door een hoogte
afhankelijk windveld is het onderwerp van het volgende hoofdstuk. Eerst wordt 
aandacht besteed aan enkele benaderingen. Daarna worden in de hydrostatische 
benadering en voor een jet-type windveld enige resultaten gepresenteerd. 

Hoofdstuk vijf is gewijd aan de invloed van de rotatie van de aarde op de 
voortplanting van zwaartegolven door windscharen. Het blijkt dat deze invloed 
soms aanmerkelijk is. 

De voortplanting van getijden door een niet-isotherme atmosfeer vormt het 
onderwerp van het laatste hoofdstuk. Variaties in het temperatuurprofiel van 
de hoge atmosfeer blijken de vertikale voortplanting der getijden aanzienlijk 
te kunnen veranderen. 

SUMMARY 

This thesis deals with waves in the atmosphere and more particularly in that 
part of the upper atmosphere which is named ionosphere. It concerns both 
electromagnetic waves and atmospoheric waves. The largest part is devoted to 
the theory of these waves. Attention is also paid to the interpretation of 
ionospheric data, obtained with the help of signals of beacon satellites and 
radio-astronomical measurements. 
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In the first chapter some properties of the upper atmosphere are elucidated. 
Subsequently, a survey is given of different atmospheric waves. Internal 
gravity waves and atmospheric tides are treated in some detail. 

Electromagnetic waves of high frequency are considered in the next chapter. 
Starting with an expression for the refractive index, some approximations are 
more fully analysed. The correction up to first order for a tedious plasma is 
calculated and finally some aspects of the propagation of electromagnetic 
waves in the ionosphere are elucidated. 

The content of the third chapter is experimental in character. A way to obtain 
information about the distribution of the electron density trom the signals of 
beacon satellites is described. The same is done for radio-astronomical 
observations. Subsequently, the characteristics of the measured ionospheric 
irregularities are treated. 

The propagation of gravity waves in a height-dependent windfield is the 
subject of the next chapter. First attention is paid to some of the 
approximations. Subsequently some results are presented for a jet-type 
windfield and the hydrostatic approximation applied. 

Chapter five is devoted to the influence of the rotation of the earth on the 
propagation of gravity waves in windshears. It appears that in some cases this 
influence is considerably. 

The propagation of atmospheric tides in a non-isothermal atmosphere is the 
subject of the last chapter. Variations in the temperature of the upper 
atmosphere seems to be a cause of considerable changes in the vertical 
propagation of tides. 
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S T E L L I N G E N 

I Bij de berekening van de voortplanting van zwaartegolven door 
hoogte-afhankelijke windvelden is het van belang te weten of 
het een monotoon toenemende wind is, dan wel een wind die na 
een zeker maximum weer afneemt. 

II 

(Dit proefschrift.) 

De invloed van de rotatie van de aarde op 
zwaartegolf door een hoogte-afhankelijk 
altijd te verwaarlozen. 

(Dit proefschrift.) 

de passage van een 
windveld is niet 

III De Boussinesq benadering leidt voor sommige golfvoort
plantingsproblemen in de atmosfeer tot resultaten die sterk 
afwijken van die welke met andere benaderingen worden 
verkregen. 

(Dit proefschrift.) 

IV Slechts combinaties van ionosferische meetgegevens kunnen 
karakteristieken van zich voortplantende verstoringen in de 
ionosfeer onthullen. 

(Dit proefschrift.) 

V Resonante overreflectie treedt alleen maar op als de kritieke 
laag in een symmetrisch windveld zich in het vlak van 
symmetrie bevindt. 

(Teitelbaum, H., Vial, F. & Kelder, H., 1986. 
Submitted to Advances in Space Physics.) 

VI De reflectie en transmissie van een zwaartegolf aan een 
zogenaamd kritieke laag verandert niet wezenlijk als aan de 
vloeistof in beperkte, doch voor de atmosfeer in realistische 
mate, moleculaire viscositeit en het vermogen tot 
warmtegeleiding wordt toegekend. 

(Van Duin, C.A. & Kelder, H., 1986. 
J. Fluid Mech • .!.22.• 293-306.) 

VII Dat Bougeret met zijn oost-west opstelling van radiotelescopen 
tot de conclusie komt, dat ionosfeerverstoringen zich oost
west bewegen, is wellicht niet verwonderlijk maar wel onjuist. 

(Bougeret, J.L., 1981, Astron. Astrophya. 96, 259-266.) 



VIII Evans & Wand beweren in de ionosfeer een nieuw soort zich 
voortplantende verstoring gevonden te hebben, die zich alleen 
manifesteert bij satellietwaarnemingen onder hoeken van kleine 
elevatie. Dit verschijnsel is echter met grote 
waarschijnlijkheid toe te schrijven aan interferentie tussen 
de directe straal en de stralen die een of meer reflecties aan 
het aardoppervlak hebben ondergaan. 

(Evans, J. V. & Wand, R.H., 1983, J. atm. terr. Phys. 115, 
255-265. -
Sukumar, S" Spoelstra, T.A.Th. & Kelder, H., 1986. 
Accepted for publication by J. atm. terr. Phys.) 

IX Aan het pionierswerk van Elias over de verklaring van het 
ontstaan van de ionosfeer wordt ten onrechte in de literatuur 
nauwelijks aandacht besteed. De Chapman-theorie voor de 
vorming van ionosfeerlagen dient eigenlijk Elias-theorie of 
tenminste Chapman-Elias-theorie te worden genoemd. 

(Elias, G.J., 1925, Elektrische Nachrichten, 351-358.) 

X De conclusie van Lupini & Pellacani dat niet-lineariteit en 
diffusie het gedrag van zwaartegolven in een jet-type windveld 
domineren is onvoldoende gefundeerd. 

(Lupini, R. & Pellacani, c., 1975, Il Nuovo Cimento 29B, 
no. 1, p. 47.) --

XI Precieze kennis van de ionosfeer is voor satellietgeodetlsche 
waarnemingen van belang voor een nauwkeurige interpretatie van 
hun meetgegevens. 

(Souriau, A., Piuzzi, A., Etchegorry, M., Machitel, P., 
1984. Bull. Géod. 58, 53-72.) 

XII De regel bij de C.N.R.S.* in Frankrijk om directeuren van 
research laboratoria ten hoogste drie keer 4 jaar aan het 
bewind te laten, verdient ook in Nederland aanbeveling. 

XIII Een van de speciaal op de overheid gerichte aanbevelingen in 
het rapport 'Aardwetenschappen, een knooppunt in onze 
samenleving' luidt: "bevorder dat specifiek Nederlandse 
aardkundige kennis via ontwikkelingssamenwerking ten nutte 
komt aan arme landen". Voor wat betreft het aardmagnetisme en 
de aêronomie moeten wij echter hopen dat er arme landen zullen 
zijn die Nederland in de toekomst van kennis ter zake zullen 
willen voorzien. 

(Aardwetenschappen, een knooppunt in onze samenleving, 
1985.) 
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