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C H A P T E R 1

COLLAGEN IS A SOFT MATERIAL

Advances in modern physics over the last century have been marked by
an increased theoretical understanding of the interactions of matter at ex-
tremely small (subatomic) and extremely large (cosmological) length scales.
These breakthroughs have led to the development of the popular sciences,
such as string theory, quantum physics, relativity and cosmology, in which
there is now a flurry of intense research. Interactions in matter occurring in
the ‘middle’ regime of length scales have received no less attention. These
are the domain of soft condensed matter physics which has had a long and
venerable history, and yet still abounds with a rich variety of many yet un-
solved physical phenomena which seem to arise chiefly from complexity in
these systems.
Using the principles of soft condensed matter physics, we have conducted
research in the computational modeling of the most abundant naturally-
occurring protein on earth, namely collagen, which is a typical example of
a soft biological material. In this thesis, we aim to present the new computa-
tional methods that have been developed in my research to aid in achieving
an understanding of the design principles for the mechanical behaviour of
collagen. In this chapter we review the essential features of collagenous tis-
sue that were used in this work, and present the outline for the rest of the
thesis.



2 Collagen is a Soft Material

1.1 Soft Condensed Matter Physics

Complexity is a term generally used to describe a system composed of numer-
ous interconnected parts that as a whole exhibit emergent properties not im-
mediately obvious from the properties of its constituent parts. It is an apt de-
scription of the so called ‘soft materials’ that form a crucial part of our daily
experience. These soft materials range from the food we eat, the clothes we
wear, the cleansing agents we apply on our bodies, to the very living tissue
that we are made of. Their physical properties, for instance their mechanical
behaviour, depend to various degrees on the interactions and organization of
their constituent macromolecules.

What remains perhaps an enduring mystery is that living organisms have
long possessed an uncanny ability to harness this complexity for their daily
survival (a process without which none of us would be alive), while the human
race, as sentient observers, is only now just beginning to develop a complete
theoretical understanding of how to manipulate these features to our advan-
tage.

Condensed matter physics provides a framework for describing and de-
termining what happens to large groups of particles when they interact via
presumably well-known forces [1]. This framework embodies the principles
that have guided me during this research. Matter occurring at extremely small
length scales is typically mediated by a very high interaction energy per de-
gree of freedom, measured in units greater than or equal to electron-volts
(1 eV ∼ 10−19 J), and is the domain of quantum mechanics and related the-
ories. In soft condensed matter, quantum aspects are generally unimportant
for phenomena occurring in the middle regime of length scales, which typi-
cally involve energies per degree of freedom in the thermal range, often quoted
in units of kBT , where kB is Boltzmann’s constant and T is the absolute temper-
ature. At room temperature, T = 25 ◦C thus kBT = 4.1164× 10−21 J, whereas at
physiological temperature in man, T = 37 ◦C thus kBT = 4.2800× 10−21 J.

Collagen, which we will describe in more detail in the following section, is
a common soft material occurring within the bodies of multicellular organ-
isms (that is, in vivo) where physiological temperature is often more relevant.
Still, many laboratory experiments can be performed on collagen outside the
body (that is, in vitro). So like many other soft materials, the physics of colla-
gen, particularly its mechanics, can be described using the principles of soft
condensed matter physics.

1.2 Introduction to Collagen

Among all naturally-occurring proteins found in the body of any animal or
human, collagen is the most plentiful, forming about 25% of the human pro-
teome. Collagen is also a highly functional material exhibiting a wide range of
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fascinating features that have been the subject of intense research for almost
a century [2]. These features include, among other things, its self-assembly
[3], structure [4], piezoelectric [5] and pyroelectric [6] properties, and effective
mechanical properties [7, 8].

There are 28 different types of collagens numbered with roman numer-
als I - XXVIII (classified according to their chemical or genetic composition)
which can be broadly categorized into the fibrillar and non-fibrillar collagens
[9]. Collagen occurs in many different places throughout the body. The five
most common types and where they may be found in the body are as follows:

• Type I collagen (fibrillar): skin, tendon, vascular ligature, organs, bone
(main component of the organic part of bone).

• Type II collagen (fibrillar): cartilage (main component of cartilage).

• Type III collagen (fibrillar): reticulate (main component of reticular
fibers), commonly found alongside Type I.

• Type IV collagen (non-fibrillar): forms bases of cell basement membrane.

• Type V collagen (fibrillar): cell surfaces, hair and placenta.

Over 90% of the collagen in the body, however, is Type I collagen. For this
reason, in the present work we focus on the effective mechanical properties of
Type I collagen fibrils and how these properties are related to its dimensions,
underlying structure, and intermolecular interactions.

The relevance of such a study is attested to by its numerous potential ap-
plications including the medical diagnoses of diseases, such as Ehlers-Danlos
syndrome and osteogenesis imperfecta1. Collagen-related diseases most com-
monly arise from genetic defects or nutritional deficiencies that affect the
biosynthesis, assembly, postranslational modification, secretion, or other pro-
cesses involved in normal collagen production.

This study is also important in understanding the material design princi-
ples exhibited in nature so as to guide and inspire the design of new synthetic
materials, including the so called ‘biomimetic materials’ in tissue engineering,
with particular prescribed properties and functionality.

1.3 Structure of Collagen

Let us now review the structural features of collagenous tissue which provide
cues for modeling collagen.

1Ehlers-Danlos is a genetic disease affecting the skin, muscles, ligaments, blood vessels and
visceral organs. It is due to a defect in the synthesis of Type I collagen. It is often characterized by
a significant decrease in resistance to deformation of these organs. For instance, it can result in
hyperelastic skin, that is, skin that can be stretched beyond what is considered normal. Osteoge-
nesis imperfecta is a genetic bone disorder in which bones are deficient in Type I collagen, so that
they become unusually brittle.



4 Collagen is a Soft Material

Figure 1.1: Illustrating the hierarchical organization of collagenous tissue. The photo-
graphic inset is an electron micrograph (source: FEITMimage gallery) of fibrous colla-
gen, about 2 µm × 2 µm, found in knee joint capsule tissue. Each fiber is an assembly
of long fibrils mediated by special proteins known as glycosaminoglycans (not shown).
Each fibril is thought to consist of thinner versions of fibrils called microfibrils. The en-
larged cuboid is a representation of the proposed triclinic unit cell of a perfectly crys-
talline microfibril [4] (which has been 10-times compressed along the horizontal) con-
taining specific sections of the tropocollagen molecule. Each tropocollagen molecule
is a right-handed triple-helix of left-handed polypeptide strands called α-helices.

Collagen tissue structure is characterized by the highly hierarchical organ-
ization of its molecules (see Figure 1.1). This complex organization extends
over many length-scales (from angstroms to millimeters), and involves numer-
ous degrees of freedom, which is part of the reason why up till now they have
proven to be so difficult to simulate, despite today’s computational advances.

Beginning at the nanometer-scale, the molecule tropocollagen, made up of
more than 50 000 atoms, about 1.5 nm in diameter, and 300 nm long, is the
main building block, which in the connective tissue of our bodies, is usually
produced by fibroblasts2. More precisely, tropocollagen is built out of three
parallel left-handed helical polypeptides, called alpha-helices. Each alpha-

2Strictly speaking fibroblasts produce and secrete procollagen, a precursor of tropocollagen.
After secretion from a fibroblast certain post-translational processes occur that convert procolla-
gen into tropocollagen. This production process is mimicked by the so-called de novo laboratory
production of collagen from a medium of cultured fibroblasts obtained from normal human skin,
and that can take place outside the body [10]
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Figure 1.2: (Left) Illustration of meridional and equatorial scattering from collagen fib-
rils (Source: Ref. [14]). (Right) Typical X-ray diffraction pattern obtained from rat-tail
tendon (collagen) with fibrils aligned along the vertical. (Source: [18]).

helix is a strand of more than 1 000 amino acid residues. These strands are
intertwined to form a right-handed helical structure known as a triple-helix
(see Figure 1.1).

The tight packing of the alpha-helices within the triple helix mandates that
every third residue be glycine (Gly), resulting in a repeating Xaa-Yaa-Gly se-
quence, where Xaa and Yaa can be any amino acid. This repeat occurs in
all types of collagen, although it is disrupted at certain locations within the
triple-helical domain of nonfibrillar collagens [11]. The amino acids in the Xaa
and Yaa positions of collagen are often Proline (Pro, 28%) and Hydroxyproline
(Hyp, 38%), respectively. Pro-Hyp-Gly is the most common triplet (10.5%) in
collagen [12].

Upon their secretion from fibroblasts, numerous tropocollagen molecules
spontaneously self-assemble and become packed and later cross-linked in a
roughly parallel but staggered formation, forming fine micrometer-long bun-
dles called microfibrils. A lot of effort has been concentrated in elucidating
the packing order of tropocollagen molecules within the microfibril [13, 14,
15, 4, 16, 17] chiefly by postulating models that simulate as closely as possi-
ble X-ray scattering from collagen fibrils (see, for instance, Figure 1.2). The
most detailed proposed arrangement of tropocollagen molecules within a mi-
crofibril, that results in an X-ray diffraction pattern that most closely matches
the experimental X-ray diffraction image obtained in the laboratory, has been
proposed by Orgel et al. [4] using synchrotron radiation. This proposed ar-
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rangement presents the microfibril as a liquid crystal3 with varying amounts of
well-ordered crystallite domains, each being a weakly twisted quasi-hexagonal
columnar array of tropocollagen molecules. The crystal structure of these do-
mains can be generated by the periodic repetition of a triclinic unit cell con-
taining specific sections of tropocollagen molecules (see Figure 1.1). Full con-
sensus over this proposed crystalline model has not been reached [19]. An-
other model, obtained by second harmonic generation (SHG) microscopy, sees
the microfibril as a quasi-crystalline array of tropocollagen molecules [20].

The dimensions of microfibrils depend on the location (within the body) of
the tissue of which the microfibril is a part of [21]. Furthermore, in vitro ex-
periments show that the size and strength of these microfibrils depend rather
sensitively on ambient conditions [22] as specified by the wetness, pH, temper-
ature, ionic strength, on the intactness of the tropocollagen molecules [23, 24],
and on the mechanism and extent of cross-linking between tropocollagen
molecules.

Cross-linking in collagen fibrils is a slow process that occurs after the self-
assembly is complete. The cross-linking agents in collagen microfibrils are
not external chemical entities but are relatively short non-helical polypeptide
chain appendages, not containing the Xaa-Yaa-Gly sequence, called telopep-
tides that occur at both ends of (and are part of) every tropocollagen molecule,
and that covalently bond (via Schiff base links4) to specific sites on the helical
regions of neighboring tropocollagen molecules. The exact cross-linking sites
on the helical regions of the tropocollagen molecule are not precisely known
[25]. But a number of different sites have been implicated for cross-linking [4],
and the mechanics of a microfibril will likely depend on which cross-linking
mechanism is chosen. Cross-linking is catalytically controlled by means of a
copper-containing enzyme known as lysyl oxidase.

Microfibrils go on to associate with one another, in vivo, to form thicker
fibrils, which in turn associate with one another to form fibers, the main struc-
tural unit of fibrous tissue. In contrast, in vitro, reconstituted fibrils often as-
sociate with one another to form network gels5.

3We note here that the collagen fibril should not strictly be looked upon as a liquid crystal
as it has not been observed to exhibit certain phase transitions, such as the smectic to nematic
phase transition, characteristic of true liquid crystals. However, the term ‘liquid crystal’ merely
hints at the orientational and positional order or disorder observed in the packing arrangement of
tropocollagen molecules.

4Schiff base formation involves an allysine residue and uncharged lysine residue of another
properly juxtaposed tropocollagen molecule.

5It is thought that the fibroblasts themselves aid in the formation of fibrils in vivo. It has also
been observed that in vivo special cross-linking proteins known as glycosaminoglycans link the
fibrils together to form fibers [26].
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1.4 Central Question and Organization of this The-

sis

So, collagen is a highly relevant, and intricately hierarchical biological mate-
rial. The central question we address in this thesis is whether we may under-
stand its mechanical response in a manner that respects and exploits its mul-
tiple length-scales. In order to achieve this, we first review the challenges in
multiscale modeling of biological materials (Chapter 2), and summarize the
essential concepts from statistical and continuum mechanics as required for
an accurate description of the physics at the smallest and largest length-scales,
that we will employ in this work. In Chapter 3, we review the available and
existing computational methods and motivate our choice for Markov Chain
Monte Carlo (MCMC) as our principal computational vehicle. In Chapter 4,
we outline the computational and practical challenges associated with using
MCMC in hierarchical architectures of cross-linked polymers, and present the
TRACTRIX algorithm that we have developed to address them. Also in Chap-
ter 4, we elaborate on the TRACTRIX method to adapt it to realistically complex
settings, including the ability to deal with excluded volume and trapped en-
tanglements (non-crossing) constraints. In Chapter 5, we apply TRACTRIX to
several arrangements of chains to assess its accuracy. In Chapter 6, we use
advanced TRACTRIX to simulate a mechanical experiment on a collagen fibril,
representing the fibrillar structure by its native, experimentally determined 3-
dimensional arrangement. We review this structure, its topology and the man-
ner in which the fibril is stabilized to retain its native shape, and finally ex-
ecute a tip-loaded cantilever experiment from which we extract the effective
mechanical parameters to be used in an effective coarse-grained mechanical
model of the collagen fibril. We compare these to values obtained in experi-
ment and different simulational settings. Finally, in the discussion, we outline
remaining modeling issues, present suggestions for further refinement and fu-
ture directions.
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C H A P T E R 2

MULTISCALE MODELING

We outline the first stages in the multiscale modeling of biopolymer mate-
rials, starting with the statistical mechanics of single stiff chains. In the first
coarse-graining step, we demonstrate how to integrate out the single poly-
mer degrees of freedom in supramolecular assemblies of such semi-flexible
polymers to arrive at an effective network mechanical model for the linear
and nonlinear behavior of cross-linked assemblies of such polymers. We re-
view the continuum mechanical description of bending beams, as this is the
specific loading condition we shall be applying to the fibrils later in the the-
sis.

The contents of this chapter have been published in:
Multiscale Materials Modeling Conference Proceedings MMM2010, 637-646 (2010).
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Intimately involved in the function of cells and tissues is the mechanics
of their constituent and surrounding elements. For instance, inside animal
cells, the cytoskeleton is a dynamic structure that maintains cell shape, protects
the cell, and enables cellular motion. The principal components of the cy-
toskeleton are intermediate filaments, microtubules and actin filaments, each
of which possess unique mechanical properties. The tissue that often sur-
rounds animal cells is called the connective tissue, its defining component be-
ing the extracellular matrix, which among other functions provides structural
support for the cell. The main ingredient of connective tissue is collagen and it
is the most abundant protein in mammals forming about 25% of total protein
content. Like many biological filaments, collagen structure is highly hierarchi-
cal - see Figure 1.1. One of the central goals in tissue and cell mechanics is to
understand and explain the constitutive behavior of these hierarchical mate-
rials, at macroscopic scales, in terms of the underlying microsctructural prop-
erties and architecture[4]. In biological materials, a jump across the scales of-
ten involves translating or re-interpreting results from statistical mechanics in
terms of effective, continuum-mechanical quantities such as the shear modu-
lus.

Our intention in this chapter is to provide a brief introduction to the subject
and demonstrate in some detail how to actually compute mechanical proper-
ties in various situations.

2.1 Single Polymer Mechanics

Modeling the mechanical properties of hierarchical biological structures rang-
ing from individual polymeric molecules such as tropocollagen to large-scale
macroscopic tissues is currently an active area of research[27, 28]. The primary
challenge is the very large number of degrees of freedom and the many differ-
ent length scales inherent in their structure that need to be taken account of
in order to perform a fully atomistic simulation of a sufficiently large sample
of tissue. But even for the fastest computers today atomic-level simulations of
such hierarchical polymeric systems is impossible, hence there is a need for
coarse-graining approximations at multiple scales in which only coarse-scale
features of the molecular conformations are tracked, while small-scale, fast dy-
namics are assumed to remain at local equilibrium, subject to the constraints
imposed by the

”
slow “variables being tracked[29]. The results gleaned at one

scale may be fed as input into the next highest scale in the hierarchy, and so
on until a complete analysis of the tissue sample at all its relevant multiple
scales has been characterized, hence the term multiscale. In biophysics, the
most commonly used coarse-grained models of polymer chains are the freely-
jointed chain (FJC) and the worm-like chain (WLC)[30, 31, 32, 33]. The FJC may
be described as a linear series of a large number N of connected rigid rods t1,
t2, . . ., tN of fixed length b interlinking the sequence of points r0, r1, . . ., rN , so
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Figure 2.1: Dynamic shear storage moduli measured at different strain amplitudes for
a series of cross-linked biopolymer networks. The real part, G′ , of the storage modulus
reduces to the shear modulus G at zero frequency. Data shown are G′ (at 10 rad s−1)
values for F-actin, fibrin, collagen, vimentin and polyacrylamide, and shear modulus G
for fibrin and neurofilaments, plotted as a function of the dimensionless strain γ (right
hand side, from [34]). Mechanical properties arise from the structure and properties at
molecular and supramolecular length scales. In the case of collagen (right hand side,
from H.A. Campbell Biology (1995)), the fibrillar hierarchy is particularly spectacular.

that the i-th bond ti = ri− ri−1. Each rod is free to rotate in any direction with
respect to its nearest neighbor(s). The FJC is often used to represent highly
flexible polymers for there is no correlation in orientation between any of the
rods. Though real polymers are not FJCs, an FJC will have the same equilib-
rium mean square end-to-end length 〈R2

0〉 and fully extended length ℓc as any
real polymer if the freely jointed step length b and the number of steps N of the
freely jointed chain are chosen appropriately.

Now imagine that the FJC is tethered to a fixed wall at one end while the
other end is pulled so that the end-to-end vector of the polymer is always in a
fixed orientation (This is a typical scenario in an optical bead pulling experi-
mental setup in the laboratory). The puller will experience an average reaction
that depends on the rate of change of the chain’s free energy with end-to-end
vector R of the chain. As each of the FJC’s rods are free to rotate thus costing
no energy, the free energy F (R) of the FJC is entirely entropic depending only
on the number of conformations Ω(R) that possess an end-to-end distance R:

F (R) = −kBT log Ω(R) = −kBT log(P (R;N, b)) + F0, (2.1)

where kB is Boltzmann’s constant and T is the absolute temperature. In the
second equality we have used the fact that the number Ω(R) is directly propor-
tional to the probability density P (R;N, b) of the chain having an end-to-end
vector between R and R + dR. In the limit of large N (N ∼> 30), it is is well
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approximated by a Gaussian distribution:

P (R;N, b) =

(
3

2πNb2

)3/2

exp

(−3R2

2Nb2

)

, (2.2)

where R = |R|. For Nb ≫ R the force-extension relation is straight-forwardly
obtained as

〈f(R)〉 = −∂F (R)

∂R
= kBT

3R

Nb2
, (2.3)

which corresponds to the expression for an entropic spring with spring con-
stant ke = 3kBT/(Nb2).

Note that the above expression is valid for the average force 〈f(R)〉 applied
by a puller in order to keep the FJC at a fixed end-to-end distance R from its
other end, the so-called Helmholtz ensemble. Another ensemble, namely the
Gibbs ensemble, instead fixes the external force f (with magnitude f ) and mea-
sures the average end-to-end distance 〈R(f)〉. The Hamiltonian of the Gibbs

ensemble for the FJC is H = −
N∑

i=1

f · ti, and it can be shown by computing the

configurational partition function Zf ≡
∑

{ti}

exp(−H/kBT ) that

〈R(f)〉 = kBT
∂ logZf

∂f
= NbL

(
fb

kBT

)

, (2.4)

where L(x) ≡ coth(x) − 1/x is the Langevin function. For small x, L(x) ≈ x/3
and thus for fb ≪ kBT we obtain

f = kBT
3〈R(f)〉
Nb2

, (2.5)

which is equivalent to the relation obtained for the Helmholtz ensemble in
Equation (2.3) for small extensions. From Equation (2.4) we deduce that for
large applied forces, the FJC exhibits R(f) ∼ 1 − kBT/(fb) asymptotic be-
haviour.

Even though the FJC force-extension relations are known to work well in
the small force/extension regime of many real polymers, they do not correctly
describe those of stiff polymers near full extension or with large applied forces
(fb ≫ kBT ). This discrepancy is demonstrated in the force-extension data plot
(see Figure 2.2) of double stranded DNA. To explain the discrepancy, we first
note that as the extensional force increases, it becomes more and more possi-
ble to straighten out the shorter wavelength fluctuations of the chain. How-
ever, the FJC does not describe chain fluctuations with wavelength shorter
than b. Therefore when the extensional force reaches fc ∼ kBT/b it amounts
to more extension in the chain than it would if there were still more fluctua-
tions of wavelength b or shorter to cancel out .
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Another polymer model, due to Kratky and Porod [30], which incorporates
these short wavelength fluctuations is the worm-like chain (WLC). The WLC
better describes the mechanics of stiff polymers. It is specified by a continu-
ously differentiable space curve r(s) of length ℓc parametrized by the arc length
parameter s. It is further endowed with a Hamiltonian that quantifies the cost
of bending the curve:

H [r(s)] =
κ

2

∫ ℓc

0

ds

(
d2r(s)

ds2

)2

, (2.6)

where κ is the bending modulus. Hidden in this definition is the constraint of
local inextensibility, that is, the local tangent magnitude

∣
∣̂t
∣
∣ = |dr/ds| is unity.

An important length-scale that arises from this model is the persistence length
ℓp which is the characteristic length governing the decay of tangent-tangent
correlations and provides a quantitative measure for a polymer’s flexibility.
The persistence length is defined through the relation

〈̂t(s) · t̂(s+∆s)〉 ≡ exp (−∆s/ℓp) = exp (−∆s kBT/κ) . (2.7)

Thus for the WLC ℓp = κ/kBT . Though the specification of the WLC model ap-
pears to be simple, the constraint of local inextensibility leads to considerable
mathematical difficulty when attempting to obtain a closed form expression
for its force-extension curve without making further simplifying assumptions.
One such assumption we will consider in the next subsection.

We can however, using Equation (2.7), obtain the average square end-to-
end distance:

〈R2
0〉 =

〈(∫ ℓc

0

ds t̂(s)

)2
〉

=

∫ ℓc

0

ds

∫ ℓc

0

ds′〈̂t(s) · t̂(s′)〉 = 2ℓ2p

(
ℓc
ℓp

+ e
− ℓc

ℓp − 1

)

.

(2.8)
It follows that for highly flexible WLCs where ℓc ≫ ℓp we have

〈R2
0〉 ≈ 2ℓpℓc. (2.9)

Comparing the right-hand-side of the above expression with the FJC result:
〈R2

0〉 = Nb2, and furthermore recognizing that ℓc = Nb we may obtain the
equivalent FJC of the flexible WLC by setting b = 2ℓp. Using Equation (2.5) the
small force-extension relation for the flexible WLC (ℓc ≫ ℓp) thus becomes

f = kBT
3〈R(f)〉
2ℓpℓc

. (2.10)

A semi-flexible chain model (SF-WLC) is the worm-like chain model which has
the further assumption that its persistence length ℓp is so large in comparison
with its contour length ℓc to the extent that, even when it is not under tension,
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the WLC’s backbone thermal undulations allow only infinitesimal deviations
from its fully extended state. In such a case, consider that the SF-WLC is teth-
ered at the origin while the other end is being pulled along the z−axis. Any unit
tangent vector t̂(s) at any point along the backbone thus has a z-component
tz close to unity while its transverse component t̂⊥(s) = {tx(s), ty(s)} is in-
finitesimal. With such assumptions and under the subjection of a constant
extensional force of magnitude f along the z-axis the Hamiltonian of the WLC
becomes, to leading order in t̂⊥(s),

H
[
t̂⊥(s)

]
≈ κ

2

∫ ℓc

0

ds

[(
dt̂⊥(s)

ds

)2

− f

(

1− 1

2
|̂t⊥(s)|2

)]

. (2.11)

As the inextensibility constraint is implicit in this formulation of the SF-WLC,
it lends itself very well to Fourier analysis. We will not detail all of the steps
here, but the end result is well known: the Equipartition Theorem yields the
Fourier spectrum of transverse fluctuations as

〈|tq|2〉 =
4kBT

ℓc

1

κq2 + f
, (2.12)

where tq is defined by tx(s)+ ity(s) ≡
∑

q tq sin(qs), q = nπ
ℓc

(n = 1, 2, 3, . . . ).

Summing all the modes to reconstruct 〈|̂t⊥|2〉, we find

〈|̂t⊥|2〉 =
2kBT

ℓc

∑

q

1

κq2 + f
=

2ℓc
ℓp

∞∑

n=1

1

(πn)2 + ϕ
=

(
ℓc
ℓp

)
1

ϕ
[
√
ϕ coth(

√
ϕ)− 1] ,

(2.13)
where ϕ = fℓc

2/κ. From this we infer the extension-force curve:

〈ℓ〉(ϕ) = ℓc

(

1− 1

2
〈|̂t⊥|2〉

)

= ℓc −
(
ℓc

2

2ℓp

)
1

ϕ
[
√
ϕ coth(

√
ϕ)− 1] . (2.14)

In the high force limit, f ≫ κ/ℓc
2, we obtain to leading order

〈ℓ〉(ϕ) ∼ ℓc

(

1− 1

2

√

kBT

ℓpf
,

)

, (2.15)

which turns out to be the correct behaviour for the high force limit of the
extension-force curve also for flexible WLCs (see inset of Figure 2.2) since the
only assumption we have made in this derivation is that transverse fluctua-
tions are infinitesimal, a situation that also occurs with low ℓp WLCs subjected
to high forces. An approximate interpolation formula that summarizes the
low-force and high-force limits of the WLC force-extension curve and gives a
maximum relative error of 10% in between these limits is

f(ℓ) =
kBT

ℓp

[
1

4(1− ℓ/ℓc)2
− 1

4
+

ℓ

ℓc

]

. (2.16)
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Figure 2.2: Fit of numerical exact solution of the WLC extension-force curve to ex-
perimental data of Smith et a1.l (97 004 bp DNA, 10 mM Na+). The best parameters
for a global least-squares fit are ℓc = 32.8 pm and ℓp = 53 nm. The FJC result for
b = 2ℓp ≈ 100 nm (dashed curve) approximates the data well in the linear low-force
regime but scales incorrectly at large f and provides a qualitatively poorer fit. Inset:
f−1/2 vs z for the highest forces; the exact WLC result (solid line) is in this plot a straight
line extrapolating to ℓc = 32.8 pm from which the experimental points begin to diverge
above z = 31 pm. [31]

From Equation (2.14) we can also compute the equilibrium length of the SF-
WLC:

ℓeq = lim
ϕ→0

〈ℓ〉(ϕ) = ℓc

(

1− ℓc
6ℓp

)

, (2.17)

and use this to extract the extension away from the equilibrium length at a
given force. Scaling this extension by ℓc

2/ℓp in order to make everything di-
mensionless we obtain

〈δℓ̃〉(ϕ) =
(
ℓc

2

ℓp

)−1

(〈ℓ〉(ϕ)− ℓeq) =
ϕ− 3

√
ϕ coth

(√
ϕ
)
+ 3

6ϕ
, (2.18)

which is the extension-force relation for a SF-WLC in universal form. For small
ϕ, that is, f ≪ κ/ℓc

2 we obtain

〈δℓ̃〉(ϕ) = ϕ

90
, (2.19)

which implies an effective linear entropic spring with spring constant kSF =
90kBTℓ

2
p/ℓc

4.
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Real polymers, and certainly all biologically relevant ones, are not perfectly
inextensible. Rather, they have a fairly high but nonzero modulus for the ex-
tension of the backbone itself. As we have seen, the entropic elasticity in the
WLC (see, for instance, Figure 2.2) displays a true divergence near full exten-
sion. At some point, therefore, no matter how energetically costly it might be,
the enthalpic stretching of the backbone will take over. Without going into de-
tails, we quote here the result for the modified force-extension relation of a
stretching and bending semi-flexible polymer [33]:

〈ℓ〉K(f) =

(

1 +
f

K

)

〈ℓ〉K=0

(

f

(

1 +
f

K

))

. (2.20)

2.2 Bulk Mechanical Properties

Now that we have outlined how to extract the force-extension behavior for sin-
gle, semi-flexible polymers, we are ready to assemble many such polymers into
a network. The key question is, obviously, what this network will behave like
when deformed. Clearly, the single-filament properties will feature crucially in
this response.

In the Lagrangian formulation of continuum mechanics, the deformation
of a material is fully characterized by the strain tensor

uij(x) =
1

2

[

Λ(x)
T
Λ(x)− 1l3

]

, (2.21)

with Λ(x) the Cauchy deformation tensor, and (x) is a point within the elas-
tic medium under consideration. In terms of this strain tensor, the harmonic
elastic free energy is

Fel =
1

2

∫

d3xCijkl uij(x)ukl(x) =
1

2

∫

d3xσij(x)uij(x) ≡
∫

d3xfel, (2.22)

where σij(x) is the Cauchy stress tensor, and fel is the elastic free energy den-
sity, and the integral is taken over the volume of the material. The fourth-rank
elastic constant tensor Cijkl, in principle, possesses 34 = 81 independent com-
ponents. Symmetries reduce this number to 21, and the requirement that for
an isotropic material, it should be invariant under arbitrary rotations and re-
flections leave only two components, so that

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.23)

Inserting this form into the expression for the free energy, we recover the Lamé
formula for the elastic energy density

fel =
1

2
λu2

kk + µuijuij (2.24)
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(here Einstein summation has been assumed). The coefficients λ and µ are re-
lated to the moduli of the material, which we recover upon splitting the strain
tensor into traceless and diagonal parts:

fel =
1

2

(

λ+
2µ

d

)

u2
kk + µ

(

uij −
1

d
δijukk

)2

≡ 1

2
Ku2

kk + µ

(

uij −
1

d
δijukk

)2

.

(2.25)
d is the dimension of space, K is the bulk modulus, and µ the shear modulus.
In rheology, it is common practice to designate the shear modulus with G, and
we shall follow this convention in the remainder. The constitutive equation, in
terms of the material moduli, reads

σij = Kδijukk + 2G

(

uij −
1

d
δijukk

)

. (2.26)

Let us consider the example of an isotropic 3D material, loaded in simple
shear, for which the (bulk) Cauchy deformation tensor the (bulk) strain ten-
sor and the stress tensor, respectively, read

ΛB(γ) =





1 0 γ
0 1 0
0 0 1



 ; uB =
γ

2





0 0 1
0 0 0
1 0 0



 ; σB = G γ





0 0 1
0 0 0
1 0 0



 . (2.27)

We see that the strain tensor u has ukk = Tr(u) = 0 and
∑

ij u
2
ij = 1

2γ
2 and

according to Equation (2.25), we may therefore write that fel(γ) = 1
2G γ2.

In (strain controlled) rheological experiments, the modulus in practice is
extracted from the shear stress tensor component σxz (which, from Equa-
tion (2.27), is equal to Gγ), and may be measured in two distinct and different
ways: the so-called secant shear modulus is defined as the ratio of instantane-
ous shear stress to strain GS = σxz/γ, while the differential or tangential mod-
ulus is defined as the instantaneous derivative GT = ∂σxz/∂γ, both moduli be-
ing constant for linear materials. For nonlinear materials, we generalize these
definitions to arbitrary strains: GS(γ) = σxz(γ)/γ and GT (γ) = ∂σxz(γ)/∂γ.

The object of all multiscale theories which seek to connect the molecular
and bulk length scales is to rederive the elastic free energy density in terms of
molecular properties and architecture. Note that, for notational convenience,
we will always consider simple shear deformations (Equation (2.27)) in what
follows. Formally, f(γ) is readily obtained from statistical mechanics. The free
energy of a network composed of many chains may be written in terms of a
spatial average of single molecule properties:

fel(γ) =
1

V

N∑

i=1

f1,i(r
0
i ,
{
r×ij
}
, ri; γ) −−−−→

N→∞
ρN 〈f1(r0,

{
r×j
}
, r; γ)〉, (2.28)

where V is the volume of the material under consideration, ρN is the num-
ber density of chains, and f1(r

0,
{
r×j
}
, r; γ) is the single-chain free energy as
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a function of the chain’s initial position r0, the positions of any cross-linkers
along its contour

{
r×j
}

, its original end-to-end vector r and the applied shear
strain γ. To keep things manageable in this chapter, we restrict ourselves to
systems where this full function may be approximated by a free energy f1(r; γ),
a function of the initial end-to-end length and the strain only. This we may
compute as the work done to stretch the single chain from a reference position
x0 (generally, the equilibrium position although in the case of rubber elasticity
it is not) to a deformed position x(γ):

f1(x(γ)) =

∫

P

dq · 〈ϕ1〉 (q), (2.29)

with P any path from x0 to x(γ). 〈ϕ1〉 (q) is the single polymer force-extension
curve from Section 2.1. You may note that this is, actually, the first example of
a coarse graining step: we are replacing the full, fluctuating single-chain be-
havior by that of a (nonlinear) spring with a force-extension curve identical to
that of the polymer. In doing so, we average over (or integrate out) the con-
figurational degrees of freedom along the single chains to compute a bulk free
energy density:

fel(γ) = ρN

∫

R3

dr P1(r) f1(R(r; γ)), (2.30)

with P1(r) being the end-to-end distance probability distribution of a single
polymer. This expression for f(γ)el does not yet assume anything regarding
the magnitude of the strain, the symmetries of the material, or the linearity
of the filament force-extension behavior. What it does neglect, however, is
persistence through cross-linkers. It is instructive to see how various limit-
ing behaviors may be extracted from it. To this end, we extend the defini-
tion of the Cauchy deformation tensor to include spatial variations, writing
R(r; γ)i = Λij(r; γ)rj . The new tensor Λ(r; γ) may be called the local Cauchy
deformation tensor. We are now ready to discuss three key questions that de-
termine how to actually compute the integral for a given system.

• Is the system affine? It is if Λ(r; γ) = ΛB(γ): the local Cauchy deformation
tensor is everywhere equal to the bulk deformation tensor. The deforma-
tion inside the material exactly tracks that that of the boundary. If not,
then it is non-affine.

• Is the system mechanical? It is if f1(R(r; γ)) = ε1(R(r; γ)), with ε1 the en-
ergy density rather than the free energy density. If not, then it is thermal
(and one needs to consider entropic effects).

• Is the system isotropic? It is if P1(r) = P1(|r|). If not, then it is an
anisotropic/ordered system and we need to consider more than two in-
dependent moduli.
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Let us consider some examples. Historically, the most important example
is the theory of rubber elasticity. Essentially, this is an affine, thermal and
isotropic model for the elastic response of a system of identical Gaussian
(ideal) chains. We evaluate the single-chain free energy, which for lack of in-
ternal energy is simply −TS, S being the entropy:

〈f1(r; γ)〉r = −T

∫

R3

dr P1(r)S1(ΛB(γ) · r). (2.31)

Using the expressions for the probability distribution and the entropy of ideal
chains, it is now completely straightforward to compute the free energy change
incurred upon shearing from γ = 0 to a finite γ:

∆fel(γ) = fel(γ)− fel(γ = 0) =
1

2
(ρNkBT )γ

2, (2.32)

from which we immediately read off that the shear modulus, in rubber elastic-
ity, is

G = ρNkBT =

(
ρ

λℓ0

)

kBT ∼ kBT

ℓ30
. (2.33)

In this last step, we express the result in more accessible quantities - ρ the mass
density, λ the linear mass density of the polymer and ℓ0 the typical length be-
tween cross-linkers. They are related via ρN = ρ

λℓ0
. This result shows the soft

nature of biopolymer materials: The typical energy per typical volume (ℓ30) is
kBT - much smaller than the∼ 10 eV per (lattice constant)3 in crystalline mate-
rials. As a second example, let’s consider now a network of ordinary, Hookean
springs, each of which has length ℓ0. The energy for such a spring is simply
ε = 1

2k(ℓ − ℓ0)
2, with k the spring constant. This system is an example of an

affine, mechanical and isotropic model. Each of the identical springs has rest
length ℓ0, and the initial orientations are uniformly distributed. Working out
Equation (2.30) now yields

fel(γ) =
ρN
4πℓ20

∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ

[
1

2
k
(
|ΛB · r| − ℓ0

)2
δ(r − ℓ0)

]

. (2.34)

In general, this needs to be evaluated numerically but for small γ, we can com-
pute the integral exactly:

fel(γ) ≈
1

2

(
1

15
ρNkℓ20

)

γ2. (2.35)

From which we read off, again, the small-strain shear modulus

G0 =
1

15
ρNkℓ20 =

1

15

(ρ

λ

)

kℓ0. (2.36)
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affinity in large networks. Upper left: The differential modulus as a function of strain of a 

Figure 2.3: (Source: Ref. [35].) Non-affinity reveals itself in various forms. (Upper left) A
plot of the shear modulus K against shear strain γ of a non-affine network model. The
typical nonlinear stiffening response is both delayed and attenuated in non-affine ma-
terials. Note, too, that even the linear modulus (modulus at the lowest shear strains) is
affected by the non-affinity. (Upper right) a histogram of the orientation (measured by
φ in radians) of inter-cross-linking filaments at the shear strain described by the inset.
Non affine deformations allow the material to order in response to strain. Locking in
this order may be an important patterning mechanism. (Lower panel) Non-affinity oc-
curs in burst-like events that closely resemble the coherently moving regions in glassy
materials. Shown from left to right are images of the network at three consecutive shear
angles. The thickness of the filaments indicates the magnitude of the local strain –
clearly, the strain field is highly heterogeneous.

This result also allows us to connect to the affine, linear theory of semi-flexible
filaments: as we have seen,

ℓeq = ℓc

(

1− ℓc
6ℓp

)

. (2.37)

We identify this equilibrium length with the ℓ0 of the Hookean springs. The
spring constant must be interpreted as the initial slope of the semi-flexible
force-extension curve Equation ((2.19)), from which we compute the appro-
priate linear spring constant. This immediately yields the correct result for the
G0 of a network of semi-flexible worm like chains

G0 = 6
(ρ

λ

)

kBT

(

ℓ2p

ℓc
3

)

. (2.38)
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Although we compute here only the linear moduli, the integral is straightfor-
wardly evaluated for arbitrary shear strains γ. In [34] it is demonstrated how
the universality of the force-extension curve translates into universal nonlin-
ear behavior of the modulus. Figure 2.3 (upper left panel) shows the predic-
tions from this affine, thermal, isotropic theory of networks of semi-flexible
filaments.

The extension of the modeling to anisotropic materials is straightforward.
At the level of Equation (2.30), these simply amount to a non-radially sym-
metric initial distribution P1(r). Some care must, however, be taken when in-
terpreting the results in terms of a shear modulus, as systems lacking isotropy
possess more than two independent elastic coefficients - the exact amount de-
pending on the number of remaining symmetries.

A far more challenging extension of the modeling is to include non-affinity.
For such systems, the local Cauchy strain tensor does vary from place to place.
That it is, ultimately, very important however is borne out by Figure 2.3, which
shows three important aspects of non-affinity from numerical simulations by
Huisman et al. [35]: (1) non-affinity can order filamentous networks, (2) non-
affinity can soften semi-flexible networks, and (3) non-affinity can take the
form of a highly localized, coherent deformation mode.

The above really only scratches the surface of the mechanical properties
of hierarchical biomaterials. Even for far more complicated structures, such
as collagen fibril meshworks or ordered composites like the blood vessel wall,
the general philosophy remains the same. First, identify the key physical de-
sign features of the individual filaments. Then, at the aggregate level, inte-
grate out the intrafilament degrees of freedom, and take the architecture into
account via the orientational distribution function. Non-affinity must be ac-
counted for by a spatially varying deformation tensor, which contributes to the
elasticity right from the very beginning [36, 37, 38]. In this thesis, we adopt a
simulational point of view, and apply it to the actual structure of the collagen
fibril. In our simulations, the geometry is highly anisotropic but known and
may serve as a starting point. Likewise, the bare mechanical response of the
constituent filaments is known. Finally, the TRACTRIX algorithm that we shall
present in Chapter 4 allows for a full, non-affine treatment of the fluctuations
and deformational behavior. As such, we work towards a complete and micro-
scopically faithful representation of the load-bearing elements of the collagen
fibril. In order, however, to connect this to bulk mechanical properties as out-
lined above we cannot simply shear a periodic volume, because the fibril is a
finite entity. Instead, what we will do is to subject the filament to a tip load,
and interpret the bent shapes in terms of continuum beam theory. In what
follows, we set forth the required theory as it applies to this particular loading
configuration.



22 Multiscale Modeling

2.3 Continuum Elasticity Theory of Beams

The theory of continuum elasticity provides a very powerful mathematical
framework for describing the strength of materials. Therefore, it is convenient
to seek a means of fitting our work within this framework. Moreover, many lab-
oratory experiments report the strength of collagen in terms of elastic moduli,
which are defined within the framework of linear elasticity theory. Hence, to
be able to discuss results of collagen fibril mechanics from our simulations
(which are of microscopic origin), we compare the deformation profile of the
fibril to a tip-loaded Timoshenko beam in a cantilever setup (which is a result
from continuum elasticity theory). The essentials of Timoshenko beam theory
are therefore discussed in the following

2.4 Elements of Continuum Elasticity Theory

This section gives a brief overview of the formulation of continuum elasticity
theory, also called nonlinear elasticity theory.

In essence, continuum elasticity theory models any solid material as a con-
tinuum of material coordinates1 r(t) occupying a region of space, and over
which a strain tensor field ε(r(t)) (which can be integrated to give the finite
displacements of the material coordinates, and satisfies compatibility condi-
tions2) and a (Cauchy) stress tensor field σ(r(t)) (which describes forces per
unit area in the bulk and on the boundary of the solid, and furthermore obeys
Newton’s laws) are defined. This picture of materials of course breaks down as
one zooms in, all the way down to the molecular length scales, so that structure
begins to emerge, and the discreteness of the material becomes more appar-
ent. At this point, a microscopic dynamic or statistical approach incorporating
the behaviour of the molecular constituents of the solid is better suited for its
mechanical description, as exemplified by the present work.

1Recently, it has been suggested that for some types of solid, such as bone and nematic elas-
tomers, material coordinates alone are not sufficient for a complete description of their mechan-
ics, but that an additional field with 3 degrees of freedom (related to the average orientation of
each generally biaxial mesogen, which need not coincide with the local rotation of the material
coordinate volume element at the same point of material) needs to be included. This inclusion
gives rise to a new theory of elasticity known as Cosserat Elasticity, in which the stress tensor is not
necessarily symmetric. A description of this theory is however beyond the scope of the present
work.

2The vector displacement field of the material coordinates is determined from the integration
of the components of the strain tensor field. This is an overdetermined system of equations, since
the number of independent strain tensor components is larger than the number of components
of the displacement field. Thus to ensure that the displacement field is single-valued and contin-
uous (as required by a simply-connected material that must not develop gaps nor overlaps during
deformation) it becomes necessary to impose certain conditions on ε(r(t)). These conditions are
known as the compatibility conditions.
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Continuum elasticity appears to have birthed two branches, namely lin-
ear elasticity (which assumes infinitesimal strains) and nonlinear elasticity (or
finite strain elasticity). The latter is actually a generalization of the former,
since the assumption of infinitesimal strains enables the linearization of the
the more general finite strain elasticity theory.

The two tensor fields of stress and strain are not independent of each other.
Indeed a constitutive law that relates them to each other needs to be provided,
usually by phenomenological means (incorporating the symmetries of the ma-
terial), or more completely, by considerations of the molecular constituents of
the solid and the energies of interaction between them. (See Section 2.2 for the
example of rubber elasticity.) And this is how a bridge may be formed between
continuum elasticity theory and statistical mechanics.

The constitutive law, together with Newton’s laws (or the variational prin-
ciple) and the compatibility conditions form a set of equations that enable
the prediction of the mechanical response of any solid material in an arbitrary
shape and under any given boundary conditions. Usually a numerical scheme,
namely the finite element method, is used to solve these equations. But in a
few simple cases, such as for an elastic rod, more easily accessible methods
may be employed, as demonstrated in the following section.

2.5 Elastic Beam Bending Theories

To predict the bending response of a solid in the shape of a slender and initially
straight elastic beam, elastic beam theories exploit its one-dimensional nature
and axial symmetry to reduce the equations of elasticity theory to a much more
simplified form involving only the axial deflection, and the force and moment
distributions along the axis of the rod.

The Euler-Bernoulli beam theory assumes that the beam is bent without
extension of the beam axis. Moreover, all cross-sections of the rod are assumed
to remain planar and also to tilt in such a way that they are always normal to
the bent axis.

Timoshenko beam theory improves on the Euler-Bernoulli theory by in-
cluding the effect of shear in the beam equations, meaning that the cross-
sections, though they remain planar, may develop a non-perpendicular tilt to
the bent axis [39]. Furthermore, there exist Timoshenko beam theories which
allow the axis of the beam to develop an extension or compression in addi-
tion to bending [40, 41]. We employ the latter theory to predict the shear and
Young’s moduli of a collagen fibril.
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2.6 Extensible Timoshenko Beam Theory

Many authors [40, 41, 42, 43] in the literature present slightly different deriva-
tions of Timoshenko beam theory that lead to the same result. In this section,
we follow the analysis due to Irschik et al. [43] because it shows how the me-
chanical balance equations of the beam follow from nonlinear elasticity theory
and the virtual work principle.

Kinematics

A beam is a solid body occupying a certain region of three-dimensional space,
where one dimension of this region, the axial length of the beam, is much
larger than the other two dimensions, which are called cross-sectional dimen-
sions. We make use of the material or Lagrangian description of continuum
mechanics, in which the straight undeformed configuration is taken as the ref-
erence configuration. We assume that the deformation is plane, that is, the
beam axis in the deformed and in the reference configurations are situated in
a common plane, and that no twist of the cross-sections about the beam axes
takes place.

We note the following definitions:

• r – the position vector,

• F – the deformation gradient (which is the same as Λ used for networks
in the preceding sections),

• J – the Jacobian determinant of the deformation gradient,

• G – the Green strain (whose components are the same as uij used for
networks in the preceding sections)

We choose a common Cartesian x-y-z coordinate system to describe the
beam deformation, see Figure 2.4 [43].

This common Cartesian frame is fixed in the reference configuration, and it
is oriented such that x represents the coordinate of the beam-axis in the refer-
ence configuration. The y axis is selected such that the deformed axis remains
situated in the x-z plane. Plane cross-sections of the beam in the reference
configuration therefore are spanned by the unit vectors ŷ and ẑ. The position
vector of a particle, which was located at the point xx̂+yŷ+zẑ in the reference
configuration, having the transverse distance |z| and out-of-plane distance |y|
away from the straight reference axis, in the deformed configuration can be
written in the following form:

r(x, y, z) = r0(x) + yŷ + zζ̂(x). (2.39)

The position vector of an axis point in the deformed configuration is denoted
by r0 (see Figure 2.4).
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Figure 2.4: (Top left) Section of the undeformed Timoshenko beam lying along the x-
axis. (Bottom) The same section of the now deformed Timoshenko beam in the zx-
plane where bending occurs. M refers to the bending moment, N the normal force,
and Q the shear force exerted at a cross-section of the beam. The cross-section is tilted
at angle χ to the deformed axis, while ϕ is the angle the cross-section make with the
vertical (z-axis).

Equation (2.39) reveals the Timoshenko assumption, namely that the de-
formed cross-section is assumed to remain plane and undistorted in compar-
ison to the reference configuration. The cross-section in the deformed config-

uration is spanned by the unit vectors ŷ and ζ̂, the latter vector being situated
in the x-z plane (see also Figure 2.4).

Thus the three-dimensional problem can be reduced to finding the dis-

placement field u0 of the beam axis, and the orientation field ζ̂ of planar cross-
sections along the beam axis. We define the displacement field as

u0(x) = r0(x)− xx̂ = u(x)x̂+ w(x)ẑ. (2.40)

The components u and w are referred to as axial displacement and deflection,
respectively.

Now the deformation gradient tensor can be obtained by partial spatial dif-
ferentiation of Equation (2.39) with respect to the reference coordinates, not-
ing that the common Cartesian frame is fixed in the reference configuration:

F = ∇r (2.41)

= r′ ⊗ x̂+ ŷ ⊗ ŷ + ζ̂ ⊗ ẑ (2.42)

= (r′0 + zζ̂
′
)⊗ x̂+ ŷ ⊗ ŷ + ζ̂ ⊗ ẑ, (2.43)
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Figure 2.5: A section of the deformed Timoshenko beam in the zx-plane where bending

occurs showing the quantities that describe the strain in the beam. We denote r
′
0 + zζ̂

′

and ζ̂ as deformation gradient vectors, representing the mapping of x̂ and ẑ via F onto

the deformed plane, for example, F ·x̂ = (r′0+zζ̂
′
). The principal stretch of the element

of the beam axis, that is, the ratio of the length of a differential axis element in the
deformed and in the undeformed configuration, is denoted by λx0 (that is, r′0 = λx0ê).

where the prime denotes the derivative with respect to the axial coordinate x,

and the symbol ⊗ stands for the dyadic vector product. We denote r′0+zζ̂
′

and

ζ̂ as deformation gradient vectors, representing the mapping of x̂ and ẑ via F

onto the deformed plane, for example, F · x̂ = (r′0 + zζ̂
′
).

To obtain a suitable kinematic description for the entity ζ̂, we denote the
angle, by which a reference cross-section with axial coordinate x is rotated
about the y axis into the deformed configuration, as ϕ(x). Hence, we may write

ζ̂ = sinϕ x̂+ cosϕ ẑ, (2.44)

from which it follows that

ζ̂
′
= ϕ′(cosϕ x̂− sinϕ ẑ). (2.45)

Since ζ̂ is a unit vector, ζ̂
′

is perpendicular to ζ̂, and we shall denote the unit
vector normal to ζ̂ as

ξ̂ = cosϕ x̂− sinϕ ẑ. (2.46)

For further reference, we note that the unit vector x̂ is rotated byϕ into the unit

vector ξ̂ (see Figures 2.4 and 2.5). The deformation gradient in Equation (2.41)
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now becomes

F =(r′0 · x̂+ zϕ′ cosϕ)x̂⊗ x̂+ sinϕ x̂⊗ ẑ (2.47)

+ ŷ ⊗ ŷ (2.48)

+ (r′0 · ẑ− zϕ′ sinϕ)ẑ⊗ x̂+ cosϕ ẑ⊗ ẑ, (2.49)

where we have projected r′0, which is tangent to the deformed axis, onto the
fixed x and z directions to obtain a formulation which can be directly assigned
with a matrix in the common frame. A suitable kinematic description can be
obtained for the latter projections by noting that r′0 in general will not be per-
pendicular to the deformed cross-section, and hence will not be perpendicular
to the vector ζ̂, because the tangent to the deformed axis generally encloses the
shear angle χ with the normal to the cross-section in the deformed configura-

tion (see Figures 2.4 and 2.5). Had the unit vector ζ̂ been perpendicular to the
deformed axis, such that no shear deformation were present, then one would
have had χ = 0, which is commonly denoted as the Euler-Bernoulli assump-
tion. In the following, however, we study the Timoshenko case of generally
non-vanishing shear angles χ. The angle to the tangent of the deformed axis,
and hence to r′0, measured from the x direction about the y-axis, is given by
(ϕ − χ). We denote the unit vector in the direction of r′0 by ê (see Figure 2.5),
such that we can write

r′0 = λx0ê, λx0 = ||r′0|| =
√

(1 + u′)2 + w′2. (2.50)

Therefore,

u′ = λx0 cos(ϕ− χ)− 1, (2.51)

w′ = λx0 sin(ϕ− χ). (2.52)

The principal stretch of an element of the beam axis, that is, the ratio of the
length of a differential axis element in the deformed and in the undeformed
configuration, is denoted by λx0. The projections of r′0 in Equation (2.47) now
become (see Figure 2.5):

r′0 · x̂ = λx0 cos(ϕ− χ), (2.53)

r′0 · ẑ = −λx0 sin(ϕ− χ). (2.54)

From this, we obtain the following matrix representation for F in the common
frame

F =





λx0 cos(ϕ− χ) + zϕ′ cosϕ 0 sinϕ,
0 1 0

−[λx0 sin(ϕ− χ) + zϕ′ sinϕ] 0 cosϕ



 . (2.55)

The Jacobian determinant J ofF in the framework of the Timoshenko assump-
tion follows to

J = λx0 cosχ+ zϕ′. (2.56)
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The symmetric right Cauchy-Green tensor is generally defined as

C = FTF. (2.57)

Within the Timoshenko assumption it has the matrix representation

C =





λ2
x0 + 2zϕ′λx0 cosχ+ (zϕ′)2 0 λx0 sinχ

0 1 0
λx0 sinχ 0 1



 . (2.58)

The Green strain tensor, which has the general definition,

G =
1

2
(C− 13) (2.59)

is thus found to have a matrix representation that reads

G =
1

2





λ2
x0 + 2zϕ′λx0 cosχ+ (zϕ′)2 − 1 0 λx0 sinχ

0 0 0
λx0 sinχ 0 0



 . (2.60)

Note that G in Equation (2.60) indeed reflects the Timoshenko kinematic as-
sumption, in the framework of which only axial strains Gxx and shear strains
Gzx = Gxz should be present.

We are now in the position to relate the above continuum mechanics-based
results to the generalized strains that are fundamental in Reissner’s structural
mechanics formulation [40]. Reissner introduced a bending strain as

κ = ϕ′ (2.61)

and generalized normal and shear strains in the form

ε = λx0 cosχ− 1, (2.62)

γ = λx0 sinχ. (2.63)

So that, from Equations (2.51)-(2.52),

u′ = (1 + ε) cosϕ+ γ sinϕ− 1, (2.64)

w′ = (1 + ε) sinϕ− γ cosϕ. (2.65)

It is to be emphasized that the expressions for J , C and G given in Equa-
tions (2.56), (2.58) and (2.60) can be completely expressed by the generalized
strains presented in Equations (2.61)-(2.63) and the transverse coordinate z.
This shows that Reissner’s generalized strains are proper strain measures also
in the sense of continuum mechanics, because J , C and G are known to be
material frame indifferent deformation measures, for which the components
of proper matrix representations must not change when the reference or the
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deformed configurations are subjected to rigid body rotations. In this case, this
becomes evident when kinematically interpreting the term λx0 cosχ as projec-

tion of the axial stretch to the direction of ξ̂ normal to the deformed cross-
section, and the term λx0 sinχ as projection onto the deformed cross-section,

in the direction of ξ̂. Moreover, the expression ϕ′ represents a proper curva-
ture measure, known from the geometric analysis of curves. The kinematic
entities in Equations (2.61)-(2.63), which describe the deformation of the ac-
tual configuration with respect to the reference configuration only, of course,
do not change when the rigid body rotations of the respective configurations
are superimposed. Note also that the cross-sectional coordinates y and z are
not stretched in the framework of the Timoshenko assumption3.

2.7 Internal Forces and Moments

The application of the principle of virtual work is basic for Reissner’s structural
mechanics theory presented in [40], in which he postulated a particular sim-
ple expression for the virtual work of the internal forces per unit length of the
undeformed axis as

δWint = Nδε+Qδy +Mδκ, (2.66)

where generalized static entities were introduced as normal force N , shear
force Q and bending moment M on a cross-section of the beam (see Fig-
ure 2.4). Reissner denoted these generalized static entities as stress resultants;
the exact relations to stress definitions from continuum mechanics, however,
were not addressed. In Equation (2.66) and in the following equations, δ de-
notes a variation, that is, a virtual change in deformation. In this section, we
show that when using the above Timoshenko-type expressions for the Green
strain, Equation (2.60), and defining the generalized static entities properly,
the virtual work expression, which is known to be generally valid for the mate-
rial description of continuum mechanics, does exactly lead to Reissner’s struc-
tural mechanics postulate for the virtual work (Equation (2.66)). We introduce
the symmetric second Piola-Kirchhoff stress S4 by writing its matrix represen-
tation in the common frame as follows:

S =





Sxx Syx Szx

Sxy Syy Szy

Szx Syz Szz



 . (2.67)

The virtual work of S done upon a virtual change of the Green strain G is
known to define the virtual work of the internal forces in the framework of the

3This assumption is corrected later in Section 2.9 by the introduction of a so-called shear coef-
ficient k which depends on the Poisson ratio ν of the material from which the beam is made.

4S is related to the Cauchy stress σij of Equation (2.22) by: σij = 1
J
F · S · FT.
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material description of continuum mechanics in the form:

δWint =

∫

A

dAS · δG, (2.68)

where the dot indicates the scalar or double-contracted tensor product, and
the integration is to be performed over the cross-sectional area A in the refer-
ence configuration. Using the Timoshenko-type matrix representation for F in
Equation (2.60), and noting that S in Equation (2.67) is symmetric, Szx = Szx,
we obtain

δWint =

∫

A

dA

(

Sxx
1

2
δ
(
λ2
x0 + 2zϕ′λx0 cosχ+ (zϕ′)2 − 1

)
+ Szxδ(λx0 sinχ)

)

.

(2.69)
Motivated by the fact that Equations (2.61)- (2.63) yield the variations,

δκ = δ(ϕ′), (2.70)

δε = δλx0 cosχ− δχλx0 sinχ, (2.71)

δγ = δλx0 sinχ+ δχλx0 cosχ, (2.72)

the virtual work expression in Equation (2.69) is identically expanded into the
form

δWint =

∫

A

dA [Sxx(λx0 cosχ+ zϕ′)(δλx0 cosχ− δχλx0 sinχ) (2.73)

+(Sxxλx0 sinχ+ Szx)(δλx0 sinχ+ δχλx0 cosχ) (2.74)

+ Sxxz(λx0 cosχ+ zϕ′)δϕ′] . (2.75)

Hence, defining the generalized static entities as

N =

∫

A

dASxx (λx0 cosχ+ zϕ′) =

∫

A

dASxxJ (2.76)

Q =

∫

A

dA (Sxxλx0 sinχ+ Szx) =

∫

A

dA (Sxxγ + Szx) (2.77)

M =

∫

A

dASxxz(λx0 cosχ+ zϕ′) =

∫

A

dAJz (2.78)

it follows that the continuum mechanics expression for the virtual work, Equa-
tion (2.68), in the framework of the Timoshenko assumption indeed yields
Reissner’s relation, Equation (2.66). As is seen from Equations (2.76)-(2.78),
the static entities N , Q and M represent generalized stress resultants. The
second Piola-Kirchhoff stress tensor is generally considered as a proper stress
measure to be related to the Green strain tensor in the form of constitutive
stress-strain relations, see below. A further continuum mechanics-based jus-
tification of Equations (2.76)-(2.78) nevertheless seems to be necessary. The
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Figure 2.6: Graphical interpretation of the second Piola-Kirchoff stress components
Sxx and Szx.

following arguments rest upon the sketch given in Figure 2.6. As is well known,
the Lagrangian stress vector, which is taken per unit area in the undeformed
state, is to be decomposed with respect to the generally non-orthogonal and
non-unit deformation gradient vectors, see, for example, Ziegler and Washizu.
For the Timoshenko case, these deformation gradient vectors are represented

by r′0 + zϕ′ξ̂ and ζ̂. The corresponding skew stress components are formed
by the second Piola-Kirchhoff stresses Sxx and Szx, respectively, see Figure 2.6.

Projecting onto the directions of ξ̂ and ζ̂, and forming the resulting force com-
ponents by integration over the undeformed cross-sectional area, yields Equa-
tions (2.76) and (2.77). That the continuum mechanics expression for the vir-
tual work, Equation (2.68), in the framework of the Timoshenko assumption,
yields Reissner’s structural mechanics relation, Equation (2.66), proves that the
definitions for the generalized static entities given in Equations (2.76)-(2.78)
are consistent with the local structural mechanics relations of beam equilib-
rium that were stated by Reissner. Moreover, we now have at our disposal re-
lations between the static entities N , Q and M and components of the second
Piola-Kirchhoff stress tensor S, which can be used to consistently introduce
constitutive models at the stress-strain level of continuum mechanics into the
boundary value problems for the generalized static entities and the general-
ized strains that were stated by Reissner.
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2.8 Mechanical Balance Equations

According to the principle of virtual work, the virtual work of the internal forces
δWint is balanced by the virtual work of the external forces δWext. In the present
chapter, only uniformly distributed loads are considered. Let px and pz denote
the components of the force vector per unit undeformed length in the horizon-
tal and vertical direction, p = pxx̂ + pz ẑ, then the virtual work of the external
forces is given by

δWext =

∫

L

dx p · δu0 =

∫

L

dx (pxδu+ pzδw), (2.79)

where the integral is over the lengthL of the beam. Consequently, the principle
of virtual work reads

δWint − δWext =

∫

L

dx (Nδε+Qδγ +Mδκ− pxδu− pzδw) = 0. (2.80)

Analogously to Reissner [40], the local form of the mechanical balance equa-
tions and the corresponding boundary conditions are obtained from the vari-
ational formulation Equation (2.80) by substituting the virtual changes of the
generalized strains δε, δγ and δκ [expressed as linear combinations of δ(u′),
δ(w′), and δ(ϕ′)] and subsequently integrating by parts. Then after using stan-
dard arguments, the balance equations are deduced as

(N cosϕ−Q sinϕ)′ + px = 0, (2.81)

(N sinϕ+Q cosϕ)′ + pz = 0, (2.82)

M ′ + (1 + ε)Q− γN = 0. (2.83)

Correspondingly, the boundary conditions for a beam with length L are de-
duced as

u = given or µ(N cosϕ−Q sinϕ) = fx, (2.84)

w = given or µ(N sinϕ+Q cosϕ) = fz, (2.85)

ϕ = given or µM = c. (2.86)

where fx and fz are the x- and z-components of the applied concentrated
loads at the end; c is the applied concentrated moment there, reckoned to be
positive when it is clockwise; µ is defined by

µ =

{

1 at x = L,

−1 at x = 0.
(2.87)
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2.9 Constitutive Relations

We assume a perfectly elastic material with no viscous effects whatsoever, and
the strains are assumed to be negligibly small when compared with unity. Al-
though constitutive relations have often been discussed in terms of the stress
resultants in conjunction with the strain energy, it may be straightforward to
specify them in terms of the stress components and their corresponding strain
measures. In the linear elastic case, they may be given by

Sxx = Eε, Szx = Gγ, (2.88)

where E and G are the elastic moduli. Although substitution of Equation (2.88)
into Equations (2.76)-(2.78) results in highly nonlinear expressions, we can lin-
earize these nonlinear constitutive relations using the small-strain assump-
tion, to obtain

N ≈ EAε, (2.89)

M ≈ EIϕ′, and (2.90)

Q ≈ GkAγ, (2.91)

where I is the moment of inertia of a cross-section, and the shear coefficient
k is introduced in Equation (2.91) to allow for the fact that the shear stress Szx

is actually not uniform over the cross-section. Numerous attempts have been
made to evaluate k theoretically or experimentally [44, 45, 42], but the general
consensus is that for beams of circular cross-section

k =
6(1 + ν)2

7 + 12ν + 4ν2
, (2.92)

which was first obtained by Timoshenko and is supported by experimental ev-
idence [44]. Here ν is Poisson’s ratio.

2.10 Dimensionless Expressions of Field Equations

For clear comparison, all the field equations, Equations (2.64)-(2.65), (2.84)-
(2.86), (2.89)-(2.90), can be expressed in terms of the dimensionless quantities
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[41] if the beam is uniform in shape and material. Let

z1 = (N cosϕ−Q sinϕ)L2/(EI), (2.93)

z2 = (N sinϕ+Q cosϕ)L2/(EI), (2.94)

z3 = ML/(EI), (2.95)

z4 = u/L, (2.96)

z5 = w/L, (2.97)

z6 = ϕ, (2.98)

y1 = z1 cos z6 + z2 sin z6, (2.99)

y2 = −z1 sin z6 + z2 cos z6, (2.100)

q1 = pxL
3/(EI), (2.101)

q2 = pzL
3/(EI). (2.102)

Then the field equations can be written from Equations (2.64)-(2.65), (2.84)-
(2.86) as

ż1 = −q1, (2.103)

ż2 = −q2, (2.104)

ż3 = −
[
1 + β2(1− α)y1

]
y2, (2.105)

ż4 = (1 + β2y1) cos z6 − αβ2y2 sin z6 − 1, (2.106)

ż5 = (1 + β2y1) sin z6 + αβ2y2 cos z6, (2.107)

ż6 = z3, (2.108)

where a superposed dot indicates differentiation with respect to the dimen-
sionless variable (x/L), and

α = E/(kG), β =
√

I/A/L. (2.109)

Given values for E and G, the solutions of Equations (2.103)-(2.108) are de-
termined numerically using MATLAB R© routine bvp4c5. The tolerance for the
iterations of this routine is set to 10−10.

By varying the moduli E and G for a beam of specific dimensions and
boundary conditions, we can find a displacement field (u, w, ϕ) which is close
to that determined from the simulations of a collagen fibril of the same dimen-
sions and boundary conditions of the beam. The values of E and G that give
the closest displacement field (in a least-squares sense) to that of the fibril are
taken to be the effective Young’s modulus and the effective shear modulus of
the collagen fibril. In the next chapter, we outline the simulation of the fibril.

5bvp4c is a finite difference code that implements the three-stage Lobatto IIIa formula [46].
This is a collocation formula and the collocation polynomial provides a C1-continuous solution
that is fourth-order accurate uniformly in the domain. Mesh selection and error control are based
on the residual of the continuous solution.
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2.11 Outlook

This completes our discussion of the multiscale modeling philosophy we
adopt, and the specific settings we shall use. We model the basic constituents
as discretized worm-like chains, arrange few or many of these constituents
into 3D cross-linked architectures, and analyze their collective mechanical
response in terms of appropriately chosen continuum models to obtain mi-
crostructurally determined effective mechanics. This modeling strategy must
now be implemented in a specific computational framework. We have chosen
Markov Chain Monte Carlo - a choice that is not without consequences as the
potential speed-up it offers is hindered by numerous practical hurdles. In the
next two chapters, we address these issues and present our solutions.
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C H A P T E R 3

COMPUTATIONAL METHODS

In this chapter we discuss computational methods in general, particularly,
the Markov Chain Monte Carlo method of simulation. The treatise is back-
ground information only. Yet it is not intended to be a complete discus-
sion of all existing methods of simulation, and in fact we touch on only the
most common methods, namely the Molecular Dynamics (MD) and Markov
Chain Monte Carlo (MCMC) methods, motivating their use, and noting their
limitations. We pay more attention to the Metropolis algorithm, which is
the traditional implementation of the MCMC method. In the next chapter,
we move on to describe specialized moves of the Metropolis algorithm that
were invented in this work to simulate cross-linked polymeric systems, and
whose acceptance ratios are evaluated by means of expressions presented in
this chapter.
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3.1 Why not Molecular Dynamics?

Ideally, we want to identify the sources of complex behaviour in the phys-
ical systems we encounter in biology by closely following their evolution in
time. Mathematically speaking, this means that we want to determine the mi-
crostate variables (r(t), p(t)) of the system as a function of time, where r(t)
denotes the positions, and p(t) the momenta of the particles that make up the
system. Then the properties that we wish to investigate are defined as func-
tions A(r(t), p(t)) of the microstate variables, and they can also be tracked as
the system evolves.

The most desirable approach to determining (r(t), p(t)) would be to solve
analytically the equations of motion of the system, as determined by New-
ton’s laws of motion, or by the Variational Principle (that is, the Lagrangian
or Hamiltonian formulation). Unfortunately, in only the simplest systems (for
example, two point particles connected by a spring) is it possible to obtain an
analytically closed form solution of the complete motion of the system. In par-
ticular, when the number of degrees of freedom of the system is very large, the
number of equations of motion is correspondingly large, and consequently,
the services of a computer program (for example, Mathematica R©) with the
ability to perform symbolic computation are employed for their solution. Still,
the non-linearities inherent in all but the simplest inter-particle interactions
(for instance, the harmonic interaction), filters down into the equations of mo-
tion, thereby making them very difficult to solve.

Another approach, more commonly resorted to, is the use of a modern digi-
tal computer to very quickly integrate the equations of motion numerically for
a particular set of initial and boundary conditions, and for a suitably chosen
discretization of time. This option is the realm of Molecular Dynamics (MD)
simulations, which has developed a strong following in the physicist commu-
nity, and in the past few decades has been very instrumental in simulating bi-
ological systems.

If all that was required was to follow the system’s trajectory in time, then
this would be the end of the story. However, the overwhelming majority of
biological systems under study are not isolated from their environment and
hence they are often already specified in terms of (and sometimes controlled
by) thermodynamic or macroscopic variables such as temperature, pressure,
chemical potential, and so on. Thermodynamic variables can only be intro-
duced into the above classical dynamics formalisms (that is, the Newtonian
and Variational formulations) in a nontrivial manner.

To address these issues, certain smart ad hoc methods have been devised,
such as the Berendsen and Nosé-Hoover thermostats that can maintain and
control the temperature of the system [47, 48]. Another is the Parrinello-
Rahman barostat used to maintain and control the pressure and stresses on
the system, which in turn determine size and shape [49]. But a full description
of these devices is beyond the scope of the present work.
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To see a more natural means (than the aforementioned thermostats and
barostats) by which classical dynamics connects with thermodynamics and
statistical mechanics, let us now turn our attention to the phase space P of the
physical system at hand. In the course of its evolution, and depending on its
energy, the representative point (r(t), p(t)) may spend more time in some re-
gions of phase space than in others. If one is able to devise a means of counting
the frequency with which a system visits any arbitrary region of phase space
relative to some other arbitrary region of phase space in a period of time t,
then one obtains the so-called phase-space distribution function πt(r, p) of
the system. As the time t → ∞ the shape of this distribution is expected to
approach its asymptotic form π∗(r, p) and remain invariant with time.

Another way of looking at this is to consider not only one system but an
asymptotically large numberN of identical systems (called an ensemble of sys-
tems) all sharing the same boundary conditions, and which at some instant
of time are spread over the entire phase space, according to some arbitrarily
chosen initial distribution π0(r(t), p(t)). All the systems in the ensemble are
then allowed to evolve, each according to its equations of motion and initial
conditions. Note that the only thing that then distinguishes one system from
another within the ensemble is its initial condition. Then as each system of the
ensemble evolves, this phase space distribution will also evolve in time, albeit
according to Liouville’s equation for distributions of classical systems.

As time approaches infinity the distribution asymptotically no longer
changes with time and a stationary-state (or equilibrium) distribution solu-
tion π∗(r(t), p(t)) to Liouville’s equation is reached. This stationary state so-
lution can be shown to be, in general, a function of the total energy E(r, p)
of the system. But its precise shape depends on the thermodynamic vari-
ables describing the systems of the ensemble: for the canonical ensemble (in
which T is constant), for instance, this stationary state solution turns out to
be the Maxwell-Boltzmann equilibrium distribution function π∗(r(t), p(t)) =
exp(E(r(t), p(t))/kBT ). Hence we establish a link between classical dynamics
and statistical mechanics.

It must be noted that these two viewpoints – the single system viewpoint
and the ensemble viewpoint – are not equivalent unless a single system be-
ginning at some point in phase space can, given enough time for evolution,
always reach all possible phase space points admitted by the system’s macro-
scopic conditions. A system that satisfies this equivalence is known as an er-
godic system.

One is often only interested in determining certain equilibrium properties
A(r, p) of the system which are averaged over long durations of the system’s
evolution. This time-averaging tends to wash out the details of the micro-
scopic trajectory of the system in phase space. Indeed, the ergodic hypothesis
states that for an ergodic system, asymptotic time-averaging of a property is
tantamount to taking the ensemble average of the property over the equilib-
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rium phase space distribution1:

lim
t→∞

1

t

∫ t

0

dt A(r(t), p(t)) =

∫

P

DrDpπ∗(r, p)A(r, p) ≡ 〈A(r, p)〉, (3.1)

where 〈. . .〉 denotes the ensemble average.

Here is where Monte Carlo simulations justify their use, that is, since for
the average properties 〈A(r, p)〉 of an ergodic system, the details of the mi-
croscopic trajectory of the system tend not to be important, so that an en-
semble average can rather be used, then one may instead resort to sampling
microstates of the system directly from the known equilibrium phase space
distribution without necessarily following the true dynamics of a single sys-
tem.

The theory of probability and statistics provides many established algo-
rithms, known as Monte Carlo methods, that enable one to sample states
directly from their distribution. Of these, the Markov Chain Monte Carlo
(MCMC) algorithm has won a major following in the physicist community
[50, 51]. In the present work we also adopt the MCMC methodology.

Through the MCMC method one achieves a more direct means, than MD,
of studying the quasi-static/adiabatic evolution of a system’s properties with
temperature and other macroscopic variables, for these merely feature as pa-
rameters of the equilibrium distribution.

It should be noted that over the years, the art of designing MCMC algo-
rithms has greatly advanced, and that many different algorithms have been
devised for many different purposes[50, 51]. In particular, not all of them are
restricted to sampling from equilibrium distributions alone, but some have
been designed to provide kinetic information, while others can simulate non-
equilibrium ensembles [51, 52]. But the description of these methods is be-
yond the scope of the present work.

3.2 Limitations

For both MD and MCMC simulations, the typical amount of available com-
puter memory resources becomes severely limited in the face of the system’s
sheer large number (N ∼ 1023) of degrees of freedom that would need to be
stored in memory, were their fully atomistic motion to be computed. Con-
sequently one is forced to simulate only a small representative portion (the
simulation box) of the entire system for a short evolution time, accompanied
by the imposition of artificial boundary conditions such as periodic boundary
conditions.

1It is difficult to prove that a particular system is truly ergodic, hence this statement cannot be
any more than a supposition.
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The problem with such an approach is that finite-size effects come into
play: first of all, the section of the system under study may just not be large
enough to represent the full system under study, since some properties of the
system are defined as averages of certain functions over a larger number of
system particles than exist in the simulation box, and over longer evolution
times than the computer can run for.

Secondly, by imposing periodic boundary conditions on the simulation
box, one invariably introduces an upper limit to the possible wavelengths of
thermal fluctuations that the system assumes during simulation. Yet long
wavelength fluctuations are thought to be important contributors to the me-
chanics of systems especially under low strains and stresses [53, 1].

An alternative, which forms a key part of the so-called ‘multiscale’ simula-
tion paradigm alluded to in the previous chapter, involves integrating out the
fastest varying and the shortest wavelength degrees of freedom thus reducing
the total number of state space variables to the few degrees of freedom that
vary slowly, both spatially and temporally. Following this procedure, it is some-
times possible to do away with the simulation box and the periodic boundary
conditions altogether. Such is the case for our simulations of collagen fibrils
described later in Chapter 6.

3.3 A Brief on Markov Chain Theory

The aim of Markov Chain Monte Carlo methods, in general, is to obtain a rep-
resentative set of sampled states from a target distribution whose functional
form over the state space is already known at least up to a multiplicative con-
stant. The tool employed, namely the Markov chain, is a well-defined abstract
object found in the theory of probability and statistics. However in this dis-
cussion we will limit ourselves only to those aspects of Markov chains that are
relevant to the present work. For a full treatment of the subject the reader is
referred to Ref. [54].

A Markov chain is a sequence of random variables X0, X1, X2, . . . whose
values are the outcomes of trials of a particular kind, namely the Markov trial.
For a trial to be defined as a Markov trial, the following condition (the Markov
property) must be satisfied: the probability of a particular outcome Xi in an
experiment is conditional only on the result of the outcome Xi−1 immediately
before it. In other words,

P (Xi | X0, X1, . . . , Xi−1) ≡ P (Xi | Xi−1). (3.2)

The value of the zeroth sample X0 is specified a priori. All the possible values
xr of Xi form a countable set S = {x0, x1, . . .} called the state space of the
Markov chain.

Equation (3.2) is defined for a discrete countable state space. Hence the



42 Computational Methods

conditional probabilities are usually represented as the components Trs =
P (xr | xs) of a matrix, namely the transition matrix T.

One approach to generalizing Markov chain theory to a continuous state-
space Q involves introducing a suitable infinitesimal subdivision of state-
space together with a conditional probability density p(y | x), so that

P (Xi+1 = y | Xi = x) = p(y | x) dy (3.3)

where p(y | x) is often taken as the value of a two point function called the
transition kernel defined for every pair of states x and y. The transition kernel
is a conditional probability density distribution function that represents the
probability per unit state space volume of moving from x to y. By virtue of its
being a distribution function, we have

∫

Q
p(y | x) dy = 1, where it is permitted

that the chain can make a transition from the state x to x, that is, p(x | x) dx is
not necessarily zero.

In analogy with the ensemble picture discussed in the previous section,
we may consider spreading an asymptotically large number of a priori out-
comes over the entire state space Q in the beginning according to some arbi-
trary distribution π(0)(x) dx which is defined as the probability of finding an a
priori outcome in state x. If each of these outcomes is set to correspond with
the zeroth outcome of its own Markov chain with a common transition ker-
nel p(y | x), then the ensemble of first outcomes in each Markov chain will in
general have a different distribution π(1)(x) dx, because for all n = 1, 2, 3, . . .

π(n+1)(y) =

∫

Q

dx p(y | x)π(n)(x). (3.4)

A Markov chain is called an ergodic chain if it is possible to go from every state
to every state (not necessarily in one move). And once again we recognize that
it is this property of ergodicity that makes the ensemble picture equivalent to
the single Markov chain picture.

A major concern of Markov chain theory is to determine conditions under
which there exists an invariant distribution π∗(x) and conditions under which
iterations of the transition kernel converge to the invariant distribution. The
invariant distribution satisfies

π∗(y) =

∫

Q

dx p(y | x)π∗(x). (3.5)

MCMC methods turn the theory around: the invariant density π∗(x) is
known (perhaps up to a constant multiple) and samples from it are desired,
hence the transition kernel needs to be solved for. We discuss how to this in
the following section.
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3.4 The Metropolis Algorithm

The way to obtain the representative set of samples is to devise an algorithm
that mimics a Markov process/chain stepping through state space and whose
transition probability matrix/kernel is constructed in such a way that it repro-
duces the target distribution as the limiting distribution of the Markov chain.

In this way, the algorithm produces a sample state with every step, and after
sufficiently many steps N these samples are distributed according to the target
distribution. Once the representative set of sampled states is obtained, the
sample mean of any property over this set is a good estimate for the ensemble
average of that property over the target distribution:

〈A(r)〉 ≈ 1

N

N∑

n=0

A(rn). (3.6)

In the present work, the state space is the configuration space (not the phase
space) of the system under study, and the target distribution is actually the
Boltzmann distribution exp(−E(r)/kBT ) over the configuration space, that is,
the momenta have been integrated out.

The Metropolis algorithm, in particular, mimics a reversible Markov chain.
Here, reversibility means that the Markov chain, in addition, obeys the detailed
balance condition for the target distribution; it is an imposition on the transi-
tion probability matrix/kernel. For systems with a discrete state space (such as
in lattice systems), this reads:

π∗
j Tij = π∗

i Tji. (3.7)

For continuous state-space (such as in off-lattice systems), one may general-
ize the above relation by introducing a suitable subdivision of state-space to-
gether with a state probability density, and subsequently taking the limit as the
subdivision becomes finer and finer:

π∗(x) dx p(y | x) dy = π∗(y) dy p(x | y) dx. (3.8)

Of course, the above equation reduces to a relation involving only the proba-
bility densities and the transition kernel, since we can immediately eliminate
the infinitesimal volume elements from both sides of the equation. However
we shall maintain Equation 3.8 in its present form, since, as we shall soon see,
the transition kernel is usually not explicitly known for the Metropolis algo-
rithm. Instead the products p(y | x) dy and p(x | y) dx are fully known.

Detailed balance is sufficient, but not necessary, for the limiting distribu-
tion of the Markov chain to equal the target distribution.2

2Note that it is merely a coincidence that detailed balance, which here is introduced only ad
hoc, also holds for a microcanonical ensemble of physical systems governed by classical dynamics.
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The step from state x to y may be, in general, described by a transformation
f : x 7→ y, that is,

y = f(x), (3.9)

where f(·) is an invertible function.3 Then the detailed balance equation may
be rewritten as:

π(x) p(y | x) dy =

∣
∣
∣
∣

∣
∣
∣
∣

∂y

∂x

∣
∣
∣
∣

∣
∣
∣
∣
π(y) p(x | y) dx (3.10)

where
∣
∣
∣
∂y
∂x

∣
∣
∣ is the Jacobian determinant of the transformation f . Note that it

is mandatory that f(·) possess an inverse, since, according to the detailed bal-
ance condition there has to be a non-zero probability p(x | y) dx of returning
to state x conditional on y being the current state.

With each step, the Metropolis algorithm proceeds in two stages, it begins
by proposing a new state y, and next it determines whether it should accept
the newly proposed state y as the next state, otherwise it rejects the proposed
state by taking the current state x as the next state. The Metropolis algorithm
achieves this process by separating the transition kernel p(y | x) into two fac-
tors: the acceptance probability accx→y and the a priori proposal probability
density Pgen(y | x):

p(y | x) dy = accx→y Pgen(y | x) dy. (3.11)

The latter factor, which is equal to the probability per unit state-space volume
of proposing y as the next state, given the current state is x is, in general, not
explicitly known, but it is implicit in the following form:

Pgen(y | x)dy = Pgen(∆)d∆, (3.12)

where the density Pgen(∆) is explicitly known, and ∆ is a computer-generated
random variable (of generally much lower dimension than that of x) that
roughly denotes the ‘displacement’ of the trial move x → y. Indeed ∆ is
used to ‘displace’ the current state x via parameterization of the transforma-
tion, that is, y = f∆(x). Furthermore, one is free to construct Pgen(∆) and f∆ at
will, as long as they cause the system being studied to be ergodic. The trans-
formation f∆ is called a ‘move type’, and it is typically randomly chosen from

For there, detailed balance is actually a consequence of the physical phenomenon of microscopic
reversibility (time-reversal symmetry of the equations of motion) among other things. Here, on the
other hand, the dynamics are quite different, being governed by the master equation for Markov
chains.

3In MD simulations, f(x) is completely determined after every time step by the Verlet algorithm
(or the particular adopted numerical scheme of the equations of motion) and all microstate co-
ordinates are transformed in the process, whereas in MCMC simulations f may be any invertible
function not necessarily corresponding to a physical move of the system. In fact, one may even
choose to restrict the move f to a small subset of the configuration coordinates of the system.
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among other move types in a set, called the ‘move set’ M. In the next chapter,
we will discuss certain move types that are especially suited for the simulation
of polymers.

The acceptance probability accx→y, on the other hand, is solved for at every
step so as to satisfy detailed balance. The solution is:

accx→y = min

(

1,
π(y)

π(x)

Pgen(x | y) dx
Pgen(y | x) dy

∣
∣
∣
∣

∣
∣
∣
∣

∂y

∂x

∣
∣
∣
∣

∣
∣
∣
∣

)

. (3.13)

The reader may verify that this is correct by substituting this expression into
the detailed balance condition Equation (3.8).

Now the Metropolis algorithm may be summarized as follows. Let the steps
be labeled by the integers t = 0, 1, 2, . . . . Then, given that the current state is
rt:

1. Proposal: choose an invertible move type f∆ at random from M; gen-
erate a random value for ∆ from the distribution Pgen(∆)d∆; and find
y = f∆(rt).

2. Acceptance: the proposed move rt 7→ rt+1 should be accepted with a
probability:

accrt→rt+1
= min

(

1,
π(rt+1)

π(rt)

Pgen(rt | rt+1) drt
Pgen(rt+1 | rt) drt+1

∣
∣
∣
∣

∣
∣
∣
∣

∂rt+1

∂rt

∣
∣
∣
∣

∣
∣
∣
∣

)

. (3.14)

Otherwise reject the move and set rt+1 = rt.

Note that Pgen is often constructed to be symmetric, that is, Pgen(∆)d∆ =
Pgen(−∆)d∆, which implies [see Equation (3.12)] that Pgen(y | x) dy =
Pgen(x | y) dx for any pair of states x and y. Then the second argument in
Equation (3.14) reduces to

α(t)→(t+1) =
π(rt+1)

π(rt)

∣
∣
∣
∣

∣
∣
∣
∣

∂rt+1

∂rt

∣
∣
∣
∣

∣
∣
∣
∣
, (3.15)

which is called the acceptance ratio of the move.
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C H A P T E R 4

MARKOV CHAIN MONTE CARLO FOR

POLYMERIC SYSTEMS

In this chapter we introduce novel moves for the Metropolis algorithm
to simulate cross-linked networks of freely-jointed and discrete worm-like
chains. These new moves are:

1. The Discrete Tractrix Transformation of a rigid bond [χ(δ)],

2. TRACTRIX for Free Linear Chains [TF(δ)], and

3. TRACTRIX for Anchored Linear Chains [TA(∆)].

In all cases, bond movement is based on the discrete tractrix construction
which preserves the fixed-length constraints of bonds. The Jacobians of
these moves are also computed in this chapter. The next chapter reports
on certain tests that were performed to validate these moves.

The contents of this chapter have been published in:
Physical Review Letters, 105, 248105 (2010).
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4.1 The Issues of Kinematic Constraints and Net-

work Connectivity

The Kratky-Porod worm-like chain (WLC) [30] has proven to be an indispens-
able model for the coarse-grained description of semi-flexible polymers. Bio-
physicists, in particular, have applied the model to glean the mechanics of a
large variety of biological filaments, including double-stranded DNA [31], un-
structured RNA, tropocollagen [7], and many other polypeptides. However, in
a living organism such filaments hardly ever occur or function alone as single
chains. Instead, they often occur cross-linked together with many other chains
thus becoming the building blocks of much larger bundles or networks. It is
therefore only natural to consider the supramolecular structures of WLC’s and
study the effect of cross-linking in them. The WLC is specified by a continu-
ously differentiable space curve r(s) of length ℓc parametrized by the arc length
parameter s. It is further endowed with a Hamiltonian that quantifies the cost
of bending the curve [55]:

H =
κ

2

∫ ℓc

0

ds

(
∂2r

∂s2

)2

, (4.1)

where κ is the bending modulus. Implicit in this definition is the constraint of
local inextensibility, that is, the local tangent magnitude |∂r/∂s| is unity. An
important length-scale that arises from this model is the persistence length
ℓp = κ/kBT which is the characteristic length governing the decay of tangent-
tangent correlations and provides a quantitative measure for a polymer’s flex-
ibility. Though the specification of the WLC model appears to be simple, the
constraint of local inextensibility inherent in the model leads to considerable
mathematical difficulty when attempting to obtain an analytical solution of
even the simplest of such thermally fluctuating network structures. Nonethe-
less, Wilhelm et al. [32] have obtained the radial distribution function for the
single stiff polymer (i.e., with ℓp & ℓc). Furthermore, Storm et al. [34] have pro-
duced elasticity estimates of affinely-deformed isotropic random networks of
WLC’s.

Laboratory experiments and computer simulations may have to pave the
way to investigate the properties of those biological network architectures that
remain analytically intractable. Even so, non-trivial complications arise since
one often, as a first step, needs to discretize the WLC reducing it to a chain of
tethers of fixed length. The widely used Molecular Dynamics (MD) constraint
algorithms, such as SHAKE and RATTLE [56, 57] have been developed to deal
with these fixed-length constraints. But these algorithms have been reported
as being limited to mechanical systems with tree-structures and rigid loops
[58]. (See Figure 4.1 b and c.)

Markov Chain Monte Carlo (MCMC) constraint algorithms offer a tantaliz-
ing alternative in that being purely stochastic, they allow for unphysical moves
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thus eliminating the need for time-step integration and quickly providing good
equilibrium statistics. Over the past 30 years, a number of ‘smart’ MCMC
moves have been advanced for the simulation of atomistic models of melts
of polymeric systems [50, 59, 60]. After a few modifications (for example, af-
ter removing the fixed bond-angle constraint inherent in many atomic-scale
models) most of these techniques can be carried over into the simulation of
the more coarse-grained discrete WLC models (where bond-lengths could be
0.25ℓp or less, stretching over many atomic bonds). However, these techniques
are limited in the variety of cross-linked architectures which they are able to
address [60, 61].

In this chapter we introduce a Metropolis algorithm sampling technique
that may be used to accurately simulate various cross-linked freely-jointed
(ℓp = 0) or discrete WLC architectures such as those shown in Figure 4.1 (d,
e, and f). The common feature of these networks that sets them apart from the
rest [a, b, and c in Figure 4.1] is the existence of conjoined closed loops that
share one or more polymer links, a feature which we wish to address. This very
feature is immediately apparent in biological gels when they are observed un-
der the microscope. These gels often have a density of chemical entities gener-
ally called cross-links that affect the mechanical properties of the gel. A cross-
link typically binds together two polymers at some point along their contours,
therefore often producing four-fold coordination at each cross-linking site.

Three main technical problems are to be addressed in the implementation
of our method: preservation of the connectivity of the network structure, con-
formance to the fixed-length constraints of the inter-linking tethers, and de-
tailed balance. For the latter requirement, we adhere to the recipe of the stan-
dard Metropolis algorithm, which is to ensure that each trial move is reversible,
and that its probability of acceptance – the so-called acceptance ratio – is cor-
rectly computed to eventually yield Boltzmann statistics. As pointed out by
Maggs [62], the computation of the acceptance ratio for trial moves in systems
whose phase space is a continuum (i.e., off-lattice systems) often requires the
computation of a Jacobian determinant, since in transforming from one state
of the system to another during a simulation, the infinitesimal volume element
in the vicinity of the state is also transformed, the measure of which, in general,
is not preserved during the transformation (see Section 3.4). In what follows,
we will describe the moves and the computation of their acceptance ratios.

The structure of networks requires the use of a set of specialized types of
moves, called the move set M, from which the algorithm may randomly select
a move as a proposal. Any desired probability distribution can be built over
M to increase the frequency of occurrence of some move types over others. In
the following sections we outline the types of proposal moves belonging to our
move set.
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a b c

d e f

Figure 4.1: Examples of polymeric architectures that the MCMC sampling technique
introduced in this chapter can address. Legend: (a) Linear chain, (b) loop-less
branched polymer, (c) closed-loop, (d), (e) and (f) are network structures which pos-
sess two or more closed-loops that share the same polymeric link.

4.2 Crank-Shaft C(θc)
The crank-shaft move type is not new. It has often been used in the simu-
lation of single linear chains because of its simplicity and ease of computa-
tion. It works as follows: first randomly select a pair of distinct points (called
mass-points) along the same linear chain, then rotate that section of the lin-
ear chain occurring between these two mass-points around the axis joining
the two mass-points and through an angle θc whose value is randomly se-
lected from a symmetric distribution over a given interval [−θmax, θmax] (see
Figure 4.2). The distribution of angles θc needs to be symmetric over the inter-
val so as to ensure that the condition of reversibility stipulated by the Metropo-
lis algorithm is obeyed. The Jacobian of such a transformation is unity. 1

Care should be taken to ensure that the algorithm does not randomly se-
lect a pair of mass-points whose intervening chain fragment goes through a
cross-link, because then the subsequent crank-shaft rotation would destroy

1Another variant of the crank-shaft move (not used in the present work) involves three linear
chains that terminate at one point. In this case, three points are randomly selected (one on each
chain). These three points define a plane about which those linear portions of the chains between
the mass-points and the terminus can be reflected. Unlike TRACTRIX (described in the following
sections), such a move offers little control over where to place the mass-points.
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Figure 4.2: The crank-shaft move: the fragment intervening the two randomly cho-
sen mass-points (represented by the red balls) on a linear chain is rotated by a random
angle about the axis (represented by the blue line) joining these mass-points. See Sec-
tion 4.2 for more details.

the cross-link, immediately compromising our model. Thus, crank-shaft ro-
tations must occur only for those linear chain fragments occurring between
cross-links. As a result, the cross-links of a network are never moved during a
crank-shaft move.

The foregoing discussion means that another type of move is required to
displace also the cross-links, enabling them to fluctuate while simultaneously
preserving the connectivity of the cross-linked system. Such a move would
prove useful in an investigation of the importance of long-wavelength fluctu-
ations to elasticity, which are mediated by cross-link fluctuations in a polymer
network (such as, for example, in rubber [53]).

It is for this reason that we formulate a novel type of move called TRACTRIX.
In the following sections, we outline this move.

4.3 The Idea: Tractrix

The tractrix is the answer to the following question [63]: “Given two points
linked by a rigid joint, if one point moves along a given curve, how does the
other point move?” Historically2, the tractrix was the name given to the path

2This problem is usually attributed to Leibniz (1646-1716). He states it in his 1693 Leipziger
Acta Eruditorum problem: “In the xy-plane drag a point P with a tightly strained string PZ of
length a. The ‘drag point’ Z shall propagate along the positive y-axis, and at the beginning P
shall be in (a, 0). Which curve is described by P ?” For comprehension Leibniz imagined a pocket
watch on a chain. But as source of the problem he mentions the Parisian architect Claude Perault.
The curve was also studied by Isaac Newton (1676) and Christian Huygens (1692), who gave it the
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Figure 4.3: The tractrix (red curve) of the x-axis: here the pulling point r0(t) moves
along the x-axis, while the pulled point r1(t) moves along the red curve, a distance of
one unit length away from r0(t). Another point r′(t), two unit lengths away from r0(t),
follows the blue curve, called the Darboux transform of the x-axis. When time t = 0,
r0(t) = (0, 0), r1(t) = (0, 1), and r

′(t) = (0, 2).

of pursuit along which an object moves, under the influence of friction, when
pulled on a horizontal plane by a piece of thread. For instance an initially
stationary water skier follows the path of a tractrix when he/she is pulled by
means of a taut rope attached to a boat moving in a straight line.

The key properties here are that the velocity of the object being pulled is
always directed along the rope towards the pulling object, and secondly, the
distance between the pulling object and the pulled object, that is, the length ℓ
of the rope, is constant (see, for example, Figure 4.3).

Thus the tractrix may be described by the following differential problem:
given r0(t) and ℓ, find r1(t) such that

∂r1(t)

∂t
∝ (r0(t)− r1(t)) and (4.2)

|r0(t)− r1(t)| = ℓ. (4.3)

In a discretization of this problem, the curve r0(t) on which the first point

moves would be a sequence of points r
(s)
0 with s = 0, 1, . . . . Now a straight for-

ward discretization of the tractrix would be the following: if r
(s)
0 moves (jumps)

to r
(s+1)
0 , then r

(s+1)
1 is chosen to be the point on the straight line through r

(s+1)
0

and r
(s)
1 that is a distance ℓ from r

(s+1)
0 and on the same side as r

(s)
1 . While

name ‘tractrix’.
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this discretization might work well and even converge to the smooth solution
eventually, it has a crucial drawback: in contrast to the smooth model the dis-

cretization is not time-reversible. That is, if r
(s+1)
0 = r

(s−1)
0 then r

(s+1)
1 need not

be equal to r
(s−1)
1 .

There is, however, a smooth result, due to Hoffmann [63], that leads to a
simple discretization that overcomes this. In the smooth case it turns out that
there is a third curve r′(t) at distance 2ℓ from r0(t) so that r1(t) =

1
2 (r0(t)+r′(t))

and r0(t) and r′(t) are arc-length related: |∂r0(t)∂t | = |∂r
′(t)
∂t |. This curve r′(t) is

usually called a Darboux transform of r0(t) [64].
The relation between r0(t) and r′(t) translates easily into the discrete realm:

|r(s+1)
0 − r

(s)
0 | = |r′(s+1) − r′(s)|. And since |r(s)0 − r′(s)| = |r(s+1)

0 − r′(s+1)| = 2ℓ

one sees that the four points r
(s)
0 , r

(s+1)
0 , r′(s+1), and r′(s) form a parallelo-

gram folded along one of its diagonals. The second solution is the one we
are interested in. The discrete tractrix of r0(t) can now be defined as simply

r
(s)
1 = 1

2 (r
(s)
0 + r′(s)), and since the construction of r′(s+1) from r

(s)
0 , r

(s+1)
0 and

r′(s) is completely symmetric in s and s + 1, time-reversibility is built in the
definition this time.

4.4 The Discrete Tractrix Transformation of a Rigid

Bond [χ(δ)]]

The foregoing discussion strongly suggests that one might employ the time-
reversible discrete tractrix construction to create a Metropolis move for a rigid
bond t of a discrete linear chain. The reason is because of the following re-
quirements that need to be met for the Metropolis move to be valid:

1. The length of the bond must not change after the move, and

2. the move must possess an inverse for detailed balance to hold.

Thus, if at some MCMC step s, we assign to the two ends of the rigid bond the

coordinates r
(s)
0 and r

(s)
1 , then these two requirements are exactly met in the

discrete tractrix construction through the constancy of the distance ℓ = |r(s)1 −
r
(s)
0 | and the time-reversibility of the construction, respectively. Moreover, the

displacement δ of the end, with coordinates r
(s)
0 , to the new position r

(s+1)
0

completely determines the new position r
(s+1)
1 of the other end.

We will coin this new move the ‘Discrete Tractrix Transformation’ (DTT)
χ(δ). The DTT χ(δ) is pictured in Figure 4.4, and it can be described as follows:

1. Rigidly translate the bond t by δ so that {r(s)0 , r
(s)
1 } is moved to

{r(s+1)
0 , r

′(s)
1 }.
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Figure 4.4: (a) Discrete tractrix transformation of the bond t: 1. Rigidly translate the

bond t by δ so that {r(s)0 , r
(s)
1 } is moved to {r(s+1)

0 , r
′(s)
1 }. 2. Form the parallelogram

spanned by δ0 and ft. (Here we set f = 2.) 3. To obtain r
(s+1)
1 reflect r

′(s)
1 in the

parallelogram’s diagonal which passes through r
(s+1)
0 . (b) Inverse of the transformation

in (a) showing that the tractrix transformation is reversible. In both cases the length of
the bond is preserved.

2. Form the parallelogram spanned by δ0 and ft, where f is some ad-
justable factor (f = 2 in Figure 4.4).

3. To obtain r
(s+1)
1 reflect r

′(s)
1 in the parallelogram’s diagonal which passes

through r
(s+1)
0 .

Figure 4.4b shows that following the same procedure for the inverse transform

χ(δ)−1 = χ(−δ), but this time starting from the initial position
{

r
(s+1)
0 , r

′(s)
1

}

we recover the original pair {r(s)0 , r
(s)
1 } thus demonstrating the transform’s

reversibility. The free parameter f featured in these equations has a nomi-
nal value of 2 which corresponds to the physical situation of an object being
dragged under the influence of friction. However, since the MCMC move need
not be a physical move, the value of f may be arbitrarily chosen before the
start of the simulation and thereafter held constant. Roughly, f controls the
amount of translation, as opposed to rotation, that the bond undergoes dur-
ing the move: the higher its value, the less the bond rotates and the more the
bond is merely translated.

For completeness, the proof of the reversibility of χ(δ) is given geometri-
cally in Figure 4.5, in which the parallelograms of Figures 4.4a and b are super-
imposed.
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Figure 4.5: Geometric proof of reversibility of χ(δ): the two parallelograms of Fig-

ures 4.4a and b are superimposed; P
(−)
2 is the reflection of P

(+)
2 in the diagonal

r
(s+1)
0 P

(+)
3 of parallelogram r

(s)
0 r

(s+1)
0 P

(+)
2 P

(+)
3 . Line P

(+)
2 P

(+)
3 is extended to point

N . A close look at the labeled angles of the diagram reveals that P
(−)
2 M is parallel to

P
(+)
3 P

(+)
2 , and that both lines have the same length |δ| as P

(−)
2 P

(+)
3 . Therefore the

parallelogram diagonals r
(s)
0 P

(−)
2 and r

(s+1)
0 P

(+)
3 are parallel. This leads to P

(+)
3 be-

ing the reflection of P
(−)
3 in r

(s)
0 P

(−)
2 . The two parallelograms are therefore dual to

one another. Since these relations are independent of the value of f , we conclude that
χ(δ)−1 = χ(−δ).

By writing out the transformation χ(δ) in vector form, it is automatically
generalized to any spatial dimension d > 1:

r
(s+1)
0 = r

(s)
0 + δ, (4.4)

r
(s+1)
1 = χ

T
(r

(s)
1 , r

(s)
0 , δ, f) ≡ p+ 2

[

(r
(s)
0 − r

(s)
1 ) ·w

w ·w

]

w, (4.5)

where p = r
(s)
1 + δ and w = f(r

(s)
1 − r

(s)
0 )− δ.

4.5 TRACTRIX for Free Linear Chains [TF(δ0)]

We now proceed to formulate a MCMC move for a linear chain which is rep-
resented by a sequence of jointed bonds of fixed length. We will start with a
linear chain for which both ends are initially free to move and we will deter-
mine its new position after we displace one end (here called the ‘driver node’)
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by δ0. In the next section, we will consider a linear chain which must have one
end (called the ‘anchor’) fixed during the move.

Without loss of generality, a linear chain may be discretized into a series
of NP bonds t1, t2, . . ., tNP

of fixed length t interlinking the sequence of ver-

tices P0, P1, . . . , PNP
(here called ‘mass-points’) with coordinates r

(s)
0 , r

(s)
1 , . . .,

r
(s)
NP

, so that the i-th bond ti = r
(s)
i − r

(s)
i−1. The coordinates thus obey a set of

constraints:
∣
∣
∣r

(s)
i − r

(s)
i−1

∣
∣
∣− t = 0 (t = const.), i = 0, 1, . . . , NP.

The choice of a suitable value for NP or t depends on such factors as the
persistence length ℓp in the case of a WLC, or the Kuhn length in the case of a
freely-jointed chain. The bending energy of the discretized WLC may be given

by E(rk) = −ε
∑NP−1

i=1 ti · ti+1, where ε = kBTℓp/t
3. This expression can be

shown to approach the energy for the continuous chain in Eq. (4.1) in the limit
of NP → ∞ and t → 0 while keeping constant NPt = ℓc and εt2/NP. However,
it is sufficient to discretize the WLC so that there are at least 3 bonds in one
persistence length [32].

Clearly, whatever move TF(δ0) we come up with for the entire chain should
maintain the connectivity of its rigid links. Then the most obvious way to effect

such a transformation on the entire chain is by displacing the polymer end r
(s)
0

by δ0 so that r
(s+1)
0 = r

(s)
0 + δ0, then successively applying the discrete tractrix

transformation χ(δi) with constant f to every bond t1, t2, . . ., tNP
in that order,

each time setting δi = r
(s+1)
i −r

(s)
i . The following are the recursive relations de-

scribing the move TF(δ0) : {r(s)0 , r
(s)
1 , . . . , r

(s)
NP

} 7→ {r(s+1)
0 , r

(s+1)
1 , . . . , r

(s+1)
NP

}:

r
(s+1)
0 = r

(s)
0 + δ0,

r
(s+1)
i = χ

T
(r

(s)
i , r

(s)
i−1, r

(s+1)
i−1 − r

(s)
i−1, f), 0 < i ≤ NP. (4.6)

None of the lengths of the bonds are changed by this process, but rather the
bonds are rotated and displaced causing the end-to-end vector of the chain
also to change, albeit not by the given displacement δ0, since the tail PNP

of
the chain is also displaced in the process. This particular feature of the trans-
formation is used to formulate a MCMC move for anchored linear chains in
the next section.

Evidently TF(δ0) is also reversible, since, to recover the original configura-
tion from the new one, all we need to do is apply TF(−δ0) to the new configu-
ration.

We recall that to compute the acceptance ratio for this move, its Jacobian
determinant detJTF(δ0) needs to be determined. To do so, first of all we recog-
nize that in d-dimensions the Jacobian matrix JTF(δ0) can be written down as
block matrix, each block being a d × d matrix. The square block located at the

i-th block row and j-th block column of JTF(δ0) is the matrix
∂r

(s+1)
i

∂r
(s)
j

, where r
(s)
j

is the position of the j-th mass-point in the current state s of the system, and



4.6 TRACTRIX for Anchored Linear Chains [TA(∆)] 57

Figure 4.6: Action of the transformation TA(∆): it moves one end of the chain r0 so that
its end-to-end vector is incremented by exactly ∆, while keeping the other end fixed in
space and respecting all the fixed bond-length constraints.

r
(s+1)
i is the position of the i-th mass-point in the newly proposed state s + 1

of the polymer.

Secondly, as far as TF(δ) is concerned, the new position r
(s+1)
i of any mass-

point Pi on the linear chain fragment is determined only by the positions of
all mass-points along the chain between Pi and the driver node P0 inclusive
(see Equation. 4.6). This dependency gives rise to a lower d-block-triangular
Jacobian matrix if the d-block rows and d-block columns are arranged in the
same order in which their corresponding mass-points appear along the linear
chain, beginning with the mass-point nearest the driver node, and going from
top to bottom (for the rows), and from left to right (for the columns). Then
detJTF(δ0) is simply the product of determinants of the d-block matrices along
the diagonal:

detJTF(δ0) =

NP∏

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂r
(s+1)
i

∂r
(s)
i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
, (4.7)

where the index i runs over all mass-points of the free linear chain (excluding
that of the driver node P0 which contributes a trivial factor of 1 to the deter-
minant). Each factor of the product in the latter equation can be obtained by
differentiating Equation (4.6) appropriately.

For further details, we refer the reader to the C++ codes implementing the
above formulae. These codes are provided as supplementary material and can
be found at Ref. [65].
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4.6 TRACTRIX for Anchored Linear Chains [TA(∆)]

As mentioned in the previous section, one important feature of TF(δ0) is that,

due to the concerted rotation of the bonds, the end-to-end vector R(s) = r
(s)
0 −

r
(s)
NP

of the linear chain changes, albeit not by δ0, since the other end rNP
is also

displaced in the process. However, suppose we wanted to change the end-to-
end vector of the polymer by exactly ∆, there may exist some δ0 = δ∗ for which

the application of TF(δ∗)makes this is possible, i.e., R(s)+∆ = r
(s)
0 +δ∗−r

(s+1)
NP

.
Therefore we may address the problem of an anchored polymer chain

by temporarily setting it free, next determining TF(δ∗) for which R(s)

is incremented by exactly ∆. Then, after applying TF(δ∗) to obtain

{r′(s)0 , r′
(s)
1 , . . . , r′

(s)
NP

}, we rigidly translate the entire chain by a displacement

r
(s)
NP

− r′
(s)
NP

so that the tail end which was temporarily set free coincides once
more with its previous position. We summarize the full transformation TA(∆) :

{r(s)0 , r
(s)
1 , . . . , r

(s)
NP

} 7→ {r(s+1)
0 , r

(s+1)
1 , . . . , r

(s+1)
NP

} of the anchored linear dis-
cretized chain as follows:

r
(s+1)
0 = r

(s)
0 + δ∗ − (r

(s)
NP

− r′
(s)
NP

) = r
(s)
0 +∆, (4.8)

r
(s+1)
i = r′

(s)
i − (r

(s)
NP

− r′
(s)
NP

), 0 < i < NP, (4.9)

where δ∗ solves the second equality in Eq. (4.8), and

r′
(s)
0 = r

(s)
0 + δ∗,

r′
(s)
i = χ

T
(r

(s)
i , r′

(s)
i−1, r

′(s)
i−1 − r

(s)
i−1, f), 0 < i ≤ NP. (4.10)

In d dimensions, Eq. (4.8) is a system of d nonlinear equations in d unknowns
which may be solved for δ∗. In practice, a numerical solver (e.g., a Newton-
Raphson routine) is employed for such a computation.

However, during a MCMC simulation, due to the nonlinearity of these d
equations, additional care should be taken to ensure that the numerical solver
employed also reproduces the inverse transformation. If at some step, the nu-
merical solver fails to produce an inverse configuration equal to the original
configuration, then the MCMC move must be rejected in accordance with the
Metropolis algorithm, that is, by setting the next state equal to the original con-
figuration (see Section 3.4).

Due to the inherent nonlinearity of Equations (4.8), and especially in the
case of very stiff chains, the numerical solver does not always succeed in find-
ing a solution δ∗, thus leading to low acceptance rates during the simulation.
(Note that TF(δ) is utilized by TA(∆) in the search for this solution.) Below we
provide a simple modification of TF(δ) that considerably increases the success
rate of the numerical solver.

The efficacy of TA(∆) depends on the success rate of the numerical solver
(for example, a Newton-Raphson routine) in solving the set of d non-linear



4.7 MCMC Simulation of Cross-linked Networks 59

algebraic equations involved. In some cases, such as for stiff chains, the suc-
cess rate is rather low, and an improvement of the yield of the solver is de-
sired. We can do this by subdividing δ into n equal parts, and successively
applying TF(δ/n) n times. Then using, instead of TF(δ), the modification
T n
F (δ) ≡ [TF(δ/n)]n, and by increasing n, the yield of the numerical solver can

be improved by as much as 10 times in some cases. However, this improve-
ment comes at the cost of more evaluations.

The Metropolis algorithm acceptance ratio of TA(∆) is given by

α(s)→(s+1) =
e−βE(r

(s+1)
k

)

e−βE(r
(s)
k

)

∣
∣
∣
∣
∣

∂(r
(s+1)
1 , . . . r

(s+1)
NP−1)

∂(r
(s)
1 , . . . r

(s)
NP−1)

∣
∣
∣
∣
∣
, (4.11)

the last factor being the Jacobian determinant det
(
JTA(∆)

)
of the transforma-

tion. Notice that we have used the fact that
∂r

(s+1)
0

∂r
(s)
k

= δ0k1d, where 1d is the d×d

identity matrix and δij is the kronecker-delta [see Eq. (4.8)], to eliminate the
first three rows and columns of JTA(∆) as they do not contribute to the value
of the determinant. The key to computing JTA(∆) lies in first differentiating

Eq. (4.8) with respect to r
(s)
k and solving it to obtain:

∂r′
(s)
0

∂r
(s)
k

∣
∣
∣
∣
∣
∆

=



1d −
∂r′

(s)
NP

∂r′
(s)
0

∣
∣
∣
∣
∣
{r

(s)
j

}





–1

·
∂r′

(s)
NP

∂r
(s)
k

∣
∣
∣
∣
∣
δ0=δ∗

+ (δ0k − δNPk)1d

where both derivatives in the right-hand-side may be found by differentiating

Eq. (4.10) appropriately. The other derivatives
∂r′

(s)
i

∂r
(s)
k

∣
∣
∣
∣
∆

for i = 1, . . . , NP follow

recursively from the latter equation after differentiating Eq. (4.10). Finally, one
may obtain all the matrix elements of JTA(∆) by differentiating Eq. (4.9) and
substituting these results. The determinant itself may be computed numeri-
cally by using LU-decomposition which has a complexity of O(NP

3). A suit-
able cut-off for the number of bonds taking part in the discrete tractrix move
may be chosen beforehand to suit the speed of the computer.

4.7 MCMC Simulation of Cross-linked Networks

In this section, we describe how the moves of the preceding sections enable us
to simulate cross-linked networks of polymers.

The basic unit of any network is the star which consists of ns linear chains
that terminate at a single central node (see Figure 4.7) by means of a cross-link.
Any positive integer value for ns constitutes a star, but typically for biological
networks ns = 4. Without loss of generality, let us consider the 3-arm star il-
lustrated in Figure 4.7b and assume that the ends A, B, and C of its arms are
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Figure 4.7: (a) Section of a network of WLC’s. (b) The basic unit of a network: the star.
When the central node O is displaced by a random vector ∆, each of the arms [e.g., link

ÃO in (c)] of the star may be treated independently.

temporarily fixed in space but that the central node O is free to move. To pre-
serve the network connectivity at all times we must, whenever O is displaced
by some vector ∆, move all the ends of the linear chains that terminate at O by
the same displacement. Typically ∆ is a random displacement chosen from a
spherically symmetric distribution during the simulation. We may thus treat
each of the linear chains independently so our focus may now narrow down to
a single linear chain anchored at one end but with the other end free to move.

The problem at hand may be set forth in two parts: firstly, given the initial
contour of the chain, how may we reversibly deform it so that its free end is
displaced by exactly ∆? 3 Secondly, with what probability must we accept this
deformation? From the preceding section, we have an answer to these two
questions, namely TA(∆) together with its acceptance ratio.

Typically, for one simulation step, a central node of a network is picked at
random and displaced by ∆. The corresponding δ∗ for each arm originating
from the central node is numerically solved to a specified precision and TA(∆)
applied. If no solution for δ∗ is found for an arm, or if the numerical solver
cannot reproduce the original configuration after the inverse transformation
TA(−∆) is applied, then the entire simulation step is rejected according to
the usual rules of the Metropolis Monte Carlo algorithm, otherwise the com-

3Coincidentally, this problem is equivalent to the so-called ‘Inverse Kinematics Problem’ which
arises in robotics.
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Figure 4.8: The Jacobian determinant of the move that displaces the central node of a
star is the product of its arms’ Jacobian determinants because the corresponding Jaco-
bian matrix may be rearranged by means of row/column operations in a block trian-
gular form with each block being the Jacobian matrix of one arm of the star, while the
central node of the star corresponds to the d-dimensional identity matrix at the top-
most and leftmost block of the Jacobian matrix.

plete acceptance ratio for the deformation of the star is found by computing
its total change in energy, the product of its arms’ Jacobian determinants (see
Figure 4.8), and finally plugging them into Eq. (4.11). To ensure ergodicity, a
few steps with random crank-shaft rotations, whose Jacobian determinants
are unity, can be applied to each arm between those steps that use the dis-
crete tractrix moves — the crank-shaft rotations will enable each linking linear
chain between nodes of the network to explore more of its possible conforma-
tions as the nodes remain fixed in space, while the discrete tractrix moves will
displace the nodes themselves. This is only one of the possible variations of
simulation. In Chapter 6 we will outline in greater detail several other efficient
variations which are based on the same mathematical formulation presented
in this chapter.

The reliability of TRACTRIX is attested to by the results of tests that we
performed to validate it. We applied these moves to simulate various freely-
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jointed architectures with both large and small numbers of bonds. In each
case, TRACTRIX reproduced the equilibrium end-to-end distance distributions
in exact agreement with their theoretical predictions (see next chapter) and
with near 100% acceptance rates.

Note that in all variants of TRACTRIX discussed in this chapter, there is no
requirement that all the bonds should be of the same length. Nor does it mean
that TRACTRIX is not useful for fluctuating bond-length simulations. Indeed,
other types of moves (not used in the present work) may be included in the
move set M that may randomly change the bond-lengths in the system, while
in turn TRACTRIX’s only task is to drag and rotate them.

It is also worth noting that the techniques introduced in this chapter lend
themselves well to parallelization strategies.

4.8 Trapped Entanglements

The methods described in the preceding section do not deal with the problem
of entanglement prevalent in Monte Carlo simulations of polymer networks.
As we shall see in Chapter 6, entanglement turns out not to be an issue for
the cross-linked polymers of a collagen fibril. Nevertheless, our intention is
to present a simulational method that is capable of treating the most general
setting, and in this section we suggest a solution which is based on the com-
putation of Gauss linking numbers for detecting and preventing topological
inconsistencies in MCMC simulations of polymeric networks.

4.9 Topological Constraints

Perhaps the simplest way to demonstrate the issue of trapped entanglements
is to consider 2 polymeric loops (shown outlined in bold in the network
meshes of Figure 4.9) that start out in an entangled configuration. Classically,
it is impossible for these loops to become unlinked, as in Figure 4.9, without
first severing one of them.

Transverse stretching of the sample in Figure 4.9 results in the formation of
a ‘physical cross-link’ at the intersection of the two meshes. In contrast to fixed
chemical cross-links discussed in the previous chapters, these physical cross-
links are able to slip along the chains during the deformation and may change
their position for the next deformation. But nevertheless they are trapped and
their number within the entire network is fixed unless some mesh is severed.

One advantage that MD simulations have over MCMC simulations is that
with the choice of a small enough value of the time step, such issues of en-
tanglement between polymers are dealt with in a natural way through the re-
pulsive forces of interaction between the particles and hence one never has
to worry about violating topological constraints. Thus in MD simulations the



4.9 Topological Constraints 63

Figure 4.9: A trapped entanglement in a polymer network (left). A proposed MCMC
move that results in the new state on the right must be disallowed since it corresponds
to a physically unattainable state.

loops on the left side of Figure 4.9 will remain linked in that way throughout
the duration of the simulation.

But with MCMC simulations of polymeric networks the situation is grave:
for even in the presence of repulsive potentials of interaction between the par-
ticles in the system, there is no built-in way of detecting violations of topologi-
cal restrictions after a move. Thus an extrinsic means of detecting, or prevent-
ing, violations of topological constraints after every MCMC step is required.
Unfortunately this problem, which is the central question in the mathematical
theory of knots and links, is still open having not yet been completely solved.

One suggestion for preventing violations of topological constraints would
be to restrict all Monte Carlo moves to those that are equivalent to Reidemeis-
ter move types [66] when viewed in a suitably chosen planar projection of the
network4. This approach is utilized in the Berg-Foerster-Aragao de Carvalho-
Caracciolo-Froehlich (BFACF) algorithm [68, 69] for lattice polymers. We know
of no similar approach for off-lattice polymers.

Other possible approaches could involve the computation of certain global
quantities, namely topological invariants, such as the Gauss linking number
(GLN), the Milnor invariants, Vassiliev invariants, Jones polynomial, HOMFLY
polynomials, etc to distinguish between different knots or links5. Any two
configurations of a link that have different values of a topological invariant
are indeed different6. However, the converse is not always true: that is, two
different knots may have the same value of an invariant. There is currently
no known universal link invariant that completely distinguishes all knots and
links. Therefore, by using any of the aforementioned invariants, some entan-
gled states are bound to escape detection.

A common example illustrating the ambiguity one faces when using the

4Kauffman [67] has extended the Reidemeister moves (which were originally applicable to ring
polymers) to four-fold and three-fold coordination networks.

5Knots refer to self-entangled loops, while links refer to entanglements between two or more
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Figure 4.10: Using the GLN alone to detect trapped entanglements can lead to error:
the unlink (left) and the Whitehead link (middle) have the same GLN, yet the White-
head link is entangled while the unlink is not. The GLN for each pair of rings of the
Borromean rings (right) is 0 yet the link cannot be undone without first severing one of
the loops.

GLN as an invariant to detect entanglements is the unlink and the Whitehead
link shown in Figure 4.10, which both have a GLN of zero. Another example
that demonstrates the inadequacy of the GLN to reliably identify links is the
Borromean rings (see Figure 4.10), which consist of three rings that are pair-
wise-unlinked, yet linked as a triple. Thus the GLN for any pair of rings in
the Borromean link is zero. For this case, the higher-order invariant, the Mil-
nor invariant for 3-component links generalizes the GLN to distinguish three-
component links.

To make matters worse, all the aforementioned topological invariants are
computationally very expensive to compute and are likely to heavily slow
down the simulation when computing the invariants after every MCMC step.
For instance, for the polynomial-valued invariants such as the Jones, Kauff-
man, and HOMFLY polynomials, the size of the memory necessary for com-
puting them will grow exponentially with respect to the number of bonds in
the link. Still we provide in this chapter an incomplete but nearly optimal so-
lution which uses the GLN, the simplest link invariant.

4.10 Another Problem: Loop Counting

In general, it is not very difficult to see how two network meshes entangle, but
it is almost impossible to count the right number of trapped entanglements
as part of a network. The reason is that most meshes share chains with other
meshes. These shared chains lead to multiple counting of the same entan-
glement. Furthermore the entanglement cannot be fixed at one chain due to
its mobility along the mesh. For investigations on the effect of entanglements

loops. The components of a link may contain self-intersections
6In the terminology of knot theory, two equivalent links are said to be link isotopic.



4.11 The Gauss Linking Number 65

during the deformation process of a polymer network and their comparison to
chemical cross-links it is necessary to determine the accurate number of these
entanglements and to determine their behavior during deformation [70].

4.11 The Gauss Linking Number

The GLN is a numerical invariant that describes the linking of two oriented
closed curves in three-dimensional space. Intuitively, the linking number rep-
resents the number of times that each curve winds around the other. The link-
ing number is always an integer, but it may be positive or negative depending
on the orientation of the two curves. It was Edwards [55] who begun to use the
GLN for a better description of entanglements and topology of single polymer
chains. The GLN between two oriented closed curves Ci and Cj is defined as a
double line integral

Lk(Ci, Cj) =
1

4π

∮

Ci

∮

Cj

dℓi × dℓj ·
ℓi − ℓj

|ℓi − ℓj |3
, (4.12)

where dℓi and dℓj are the infinitesimal elements of Ci and Cj respectively. The
line integrals above are taken along the directions given by the orientation of
the closed curves.

In computer simulations of polymers, loops are discretized into piecewise-

linear polymeric loops Ci = {r(i)m }M−1
m=0 and Cj = {r(j)n }N−1

n=0 with M and N bonds
respectively, so that the integral above is converted into the double sum:

Lk(Ci, Cj) =
1

4π

M−1∑

m=0

N−1∑

n=0

(r
(i)
m+1 − r(i)m )× (r

(j)
n+1 − r(j)n ) · (r(i)m − r(j)n )G(ij)

mn (4.13)

where, for loop closure r
(i)
M = r

(i)
0 and r

(j)
N = r

(j)
0 ,

G(ij)
mn =

∫ 1

0

ds
2

4ancmn(s)− bmn(s)2

(

2an + bmn(s)
√

an + bmn(s) + cmn(s)
− bmn(s)
√

cmn(s)

)

(4.14)
and

an = |r(j)n − r
(j)
n+1|2, (4.15)

bmn(s) = −2s(r(i)m − r
(i)
m+1) + r(i)m − r(j)n ) · (r(j)n − r

(j)
n+1), (4.16)

cmn(s) = |(s(r(i)m − r
(i)
m+1) + r(i)m − r(j)n )|2. (4.17)

The integral in Equation (4.14) can be computed numerically for every pair
of linear segments between the directed curves. However, these formulae are
computationally expensive to evaluate at every MCMC step, especially when
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Figure 4.11: Projection of the Hopf link on a plane perpendicular to the direction û

given by the arrow. The projection is ‘good’ as it contains no double points.

the number of bonds in each polymeric loop is large. Fortunately there is a
more efficient way.

The more efficient way makes use of an observation due to Hermann Karl
Brunn [71], that the GLN of a link between two curves can be obtained rather
easily from a ‘good’ planar projection (diagram) of the link. A planar projec-
tion of the link is obtained by first choosing a unit vector û so that orthogonal
projection of the link onto the plane perpendicular to û gives a link diagram
(see for example Figure 4.11). A good planar projection is given by a diagram
whose graph has at most double points, which means that at each intersection
no more than two strands cross. By an appropriate choice of the projecting
vector û, we can always select a good projection. Suppose the link has directed
closed curve components Ci and Cj , we consider any good projection of the
link and count each point at which Ci crosses (over or under) Cj as +1 if at that
point the curve element that passes over the other needs to be rotated anti-
clockwise to coincide with the direction of the element passing underneath it,
and as −1 if at that point the curve element that passes over the other needs
to be rotated clockwise to coincide with the element underneath it. The sum
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of these over all crossings of Ci and Cj divided by 2 is Lk(Ci, Cj). Note that the
GLN is insensitive to self-intersections of a curve. This fact causes errors in the
detection of entanglements (see for example Figure 4.10b).

The problem of computing the GLN of 2 piecewise-linear chains is thus re-
duced to the task of counting the number of signed intersections between the
projected images of these curve’s straight line bonds on a plane. Furthermore,
for most MCMC moves, only a small portion of the entire system is deformed
at each step while the rest of the system is left unchanged. Therefore one needs
only to count the change in the number of crossings in the vicinity of the por-
tion that is deformed in each step.

In computational geometry, the line segment intersection problem sup-
plies a list of line segments in the plane and asks to determine whether any
two of them cross. Naive algorithms examine each pair of segments, but for a
high number of possibly intersecting segments this becomes increasingly inef-
ficient since most pairs of segments are not anywhere close to one another in
a typical configuration. The most common, more efficient way to solve this
problem for a high number of segments is to use a ‘sweep-line’ algorithm,
where we imagine a line sliding across the line segments and we track which
line segments it intersects at each point in time using a dynamic data structure
based on binary search trees.

The Bentley-Ottmann algorithm works by this principle to list all intersec-
tions in logarithmic time per intersection. In this work we implemented the
Bentley-Ottmann algorithm described in reference [72] which is also able to
deal with multiple intersections (that is, when more than two line segments
pass through the same point) using data structures provided by the C++ Stan-
dard Template Library in order to count the number of signed crossings in a
planar projection of the vicinity of the moved portion of the system before and
after the move. By examining the coordinates of those line segments at each
crossing projected onto any line parallel to the projecting vector (see for exam-
ple the horizontal dashed lines in Figure 4.11), we can determine the the sign
of each crossing and subsequently the change of GLN during the MCMC move
for any pair of loops in the network.

4.12 Summary and Outlook

This concludes our presentation of the MCMC computational framework and
the modifications and add-ons it requires to deal with the most general archi-
tectures of cross-linked Worm-Like Chains. While the entire package is diffi-
cult to implement, we demonstrate in the next Chapter that indeed this may
be done, applying the TRACTRIX algorithm to simple and less simple architec-
tures of Freely Jointed and Worm-Like Chains, which compare very well with
known results in those cases that these exist, but also are capable of produc-
ing novel insights into the principles of supramolecular design in those cases
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where TRACTRIX allows the first glimpses into effective mechanical behavior.



C H A P T E R 5

VALIDATION OF TRACTRIX

The TRACTRIX algorithm is a crucial step towards our ambition to perform
MCMC on hierarchical polymers like collagen. To test it, we have applied it to
various freely-jointed and worm-like chain architectures with both large and
small numbers of bonds. In each case, TRACTRIX reproduced the equilibrium
end-to-end distance distributions in exact agreement with their predicted
analytical results. For systems where no such results exist, we conclude this
Chapter with a demonstration of TRACTRIX’ proper functioning and use.
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5.1 Freely-Jointed Chains

We performed simulations of freely-jointed chains using TRACTRIX. In these
simulations, one end of the chain was fixed while the opposite end was dis-
placed using TRACTRIX. Occasionally, crank-shaft moves were applied on the
rest of the vertices of structure. The freely-jointed architectures simulated were
a linear chain of 30 rigid bonds and the closed loop of 60 bonds. Since freely
jointed structures have no energy, the acceptance ratio (see Equation (3.13))
for the MCMC moves depend only on the Jacobian determinant of the moves.
Thus freely-jointed structures provide a crucial test for the validity of TRACTRIX.

Histograms of the end-to-end distance of the aforementioned structures
were obtained from these simulations and their plots are given in Figure 5.1.
The theoretical estimates of these curves fit exactly on these curves and are
given by formulae for the end-to-end vector probability density distribution
for a linear freely-jointed chain of N bonds each of length b [73]:

P (R) =

(
3

2πNb2

)3/2

exp

[

− 3R2

2Nb2

]

, (5.1)

where R ≡ |R|.
Now the central limit theorem tells us that as the number of bonds in-

creases, the distribution of the end-to-end distance must approach a normal
distribution. So we thought it necessary to check whether TRACTRIX would also
maintain its accuracy in the case of freely jointed architectures with a small
number of bonds. Thus we considered three simple freely-jointed architec-
tures with very few rigid bonds and for which the end-to-end distance distri-
butions have exact analytical expressions. The probability density distribution
of the end-to-end vector R of a freely-jointed linear chain of N inextensible
bonds, each of length b is [74, 73]

P (R) =
(N − 1)N

8πb2R

τ∑

t=0

(−1)t

t!(N − t)!

(
bN −R

2b
− t

)N−2

(5.2)

where R = |R|, τ = ⌊(Nb−R)/(2l)⌋ and ⌊x⌋ denotes the largest integer less
than x.

The normalized histogram of the end-to-end distance for a linear freely-
jointed chain with N = 3 of this structure is shown in Figure 5.2(c) which fol-
lows the theoretical prediction of Equation (5.2) (integrated over all directions
in space, that is, multiplied by 4πR2) exactly, thus proving the correctness of
the MCMC method particular the Jacobian determinant of TRACTRIX.

However, the power of TRACTRIX enables us to go even further: to ob-
tain similar statistics for the 6-bond freely-jointed ring shown in Figure 5.2(b),
which consists essentially of 2 linear freely-jointed chains joined end-to-end.
The theoretical prediction for the probability density distribution of the sepa-
ration vector between any two directly opposite ends of this ring must be equal
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Figure 5.1: Histograms (colored green) of the end-to-end distance probability density
distribution after ≈ 2 million MCMC steps for freely jointed chains: one being a linear
chain of 30 bonds each of length b, and the other being a closed loop of 60 bonds each
of length b. The histograms fit perfectly with their theoretical predictions (the orange
curves). The prediction for the linear chain was obtained by integrating Equation (5.1)
over all directions in three-dimensional space, thus obtaining W (R) = 4πR2P (R).
Likewise, the prediction for the closed loop was W (R) = 4πR2P (R)2.

to the square of Equation (5.2). Results for the ring also follow exactly the the-
oretical prediction for all pairs of opposite ends of the ring, even though the
TRACTRIX move was applied to only one end of the ring while its opposite end
was held fixed in space throughout the simulation.

A similar procedure was followed for three linear freely-jointed chains
joined end-to-end. The end-to-end distance distribution is Equation (5.2)
cubed. The results of the end-to-end distance distribution are shown in Fig-
ure 5.2(c) and they also follow the theoretical prediction exactly.

5.2 Worm-like Chains and Semi-flexible polymers

An exact closed-form expression for the probability density distribution of the
end-to-end vector R of a worm-like chain or a semi-flexible polymer has not
yet been found. Nonetheless, an asymptotic expansion for a semi-flexible
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W(R)

R / b

(a)

(b)

(c)

Figure 5.2: Results of the end-to-end distance probability density distributions for var-
ious freely-jointed architectures of 3-bond links after 10 million MCMC steps using
TRACTRIX. The simulation points are in exact agreement with their predicted theoretical
curves. LEGEND: (a) system of 3 polymers connected in parallel end-to-end, each with
3 freely-jointed bonds. (b) A six-bond freely-jointed ring. (c) A 3-bond freely-jointed
linear chain. The histograms fit perfectly with their theoretical predictions (the smooth
curves) [74]. The prediction for (a) was obtained by integrating Equation 5.2 over all
directions in three-dimensional space, thus obtaining W (R) = 4πR2P (R). Likewise,
the prediction for (b) was W (R) = 4πP (R)2, and (c) was W (R) = 4πR2P (R)3.

polymer (ℓp ∼> ℓc) has been derived by Wilhelm et al. [32]:

P (R) =
2ℓp

ℓc
2

∞∑

m=1

π2(−1)m+1m2 exp

[

−π2m2ℓp
ℓc

(

1− R

ℓc

)]

if R ≤ ℓc(1− 0.2ℓc/ℓp), (5.3)
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and

P (R) =

ℓp

2
√
πℓc

2

(
ℓp(1−R

L )
L

)3/2

∞∑

m=1

exp



−ℓc
(
m− 1

2

)2

ℓp

(

1− R
ℓc

)








4ℓc
(
m− 1

2

)2

ℓp

(

1− R
ℓc

) − 2





if R > ℓc(1− 0.2ℓc/ℓp). (5.4)

For a recent review of the end-to-end distributions of worm-like chains and
MCMC simulations of them see for example Ref. [75].

Our own simulations of discrete worm-like chains using TRACTRIX yield
curves that follow very closely with these expressions (see Figure 5.3). The dis-
crepancies for the smaller values of ℓp are due to the large error in the above
theoretical estimates, not TRACTRIX.

5.3 Bundles of Three Cross-linked Worm-like

Chains

Figure 5.4 shows the results of simulations of various cross-linked WLC ar-
chitectures, demonstrating an effect of some biological significance: cross-
linked supramolecular polymers show a rising effective persistence length ℓ∗p
with cross-linking density n×. Here ℓ∗p is defined as the persistence length of
that WLC which has the same ℓc and expected value of the end-to-end dis-
tance 〈r〉 ≡ [

∫
dr rP (r)/(4πr2)]/[

∫
dr P (r)/(4πr2)] as the n×-cross-linked bun-

dle [P (r) denotes the end-to-end distance distribution].
Using this design motif, Nature may create supramolecular filaments of

tunable effective stiffness with only two kinds of molecules at its disposal:
identical chains and cross-linkers applied in varying concentrations. Note,
too, that P (r) of an n×-cross-linked bundle is not the same as that of a sin-
gle WLC with ℓp = ℓ∗p(n×) — in fact, one may have to use an extensible WLC
variant to capture the complete effective mechanics. Though the stiffness of
a bundle in reality also depends on the cross-linkers’ stiffness and size [76],
we did not consider this dependence in this initial survey. Nor did we con-
sider the effect of excluded volume interactions between chains, which would
result in further stiffening each bundle while incurring the additional compu-
tational cost of having to reject all MCMC moves that cause filaments of now
finite cross-section to overlap or violate topological constraints.

Extensive simulations of the collagen fibril, a supramolecular assembly of
polypeptide triple helices will be reported on in Chapter 6. We emphasize that,
although this work was inspired by biopolymeric structures, TRACTRIX is in fact
capable of dealing with similar configuration-space constraints in much more
general settings and as such may find use well beyond biological polymers.
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5.4 Summary and Outlook

We have shown that TRACTRIX performs reliably, and is capable of accurately
and quickly reproducing non-trivial distributions in MCMC simulations of
supramolecular structures. Also, we have demonstrated how bundles of three
worm-like chains may display tunable effective mechanics if the extent of
cross-linking is controlled. Though it was obtained in an arguably oversimpli-
fied model system, this observation goes to the heart of our ambitions with this
work in general. Given a limited set of constituents (in this case, polymers and
cross-linkers) we may exploit the architecture (i.e., different arrangements of
many constituents) to create a much wider range of effective properties. These
effective properties, notably, may be much different from those of the con-
stituents themselves. In the current chapter, we demonstrate how three WLC’s
linked together produce a filament that is itself semi-flexible, but in addition
is extensible (contour length fluctuations of the effective, center-of-mass poly-
mer are allowed and present). This, after much work, is not fundamentally dif-
ferent from the conclusions we present towards the end of this work about the
collagen fibril. It, too, is a supramolecular arrangement of inextensible WLC’s.
It, too, is best captured by a model that is finitely extensible, but - and this is the
main surprise - the effective fibril turns out to be a helical structure, whereas
the constituent filaments are not: the helicity is embedded into the architec-
ture rather than the molecules themselves. This is the central added value of
the multiscale approach: we are able to let the microscopic structure speak
for itself, revealing effective properties at the macroscopic/continuum scales
without any bias imposed by the model adopted at the larger scale. Indeed, we
shall argue this the other way around, demonstrating that the effective prop-
erties borne out by the fibril model demand continuum descriptions beyond
simple linear elasticity.
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C H A P T E R 6

A 3D MECHANICAL MODEL OF A

FIBRIL

We propose a mesoscopic computational model for studying the mechan-
ics of fibrils or, in general, bundles of optionally cross-linked polymers. The
model offers a set of parameters whose values can be tuned to match the
properties or ambient conditions of the fibril under consideration, such as
the extent of cross-linking, the temperature, and the dimensions of the fib-
ril. Although it is fairly general in its applicability, the model is discussed
in the context of collagen fibrils. Monte Carlo simulation of this model is
made possible by means of a recently introduced move known as TRACTRIX

(described in Chapter 4), and we outline an adaptation of this technique for
bundles of many polymers. In particular, this adaptation enables the simul-
taneous deformation, in one simulation step, of several polymers spanning
the entire cross-section of the fibril. By subjecting our model fibril to exter-
nal forces that cause it to bend, estimates of the axial Young’s Modulus and
axial shear modulus of collagen fibrils can be made after comparing the bent
profile with a Timoshenko beam in a tip-loaded cantilever setup.
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6.1 Introduction

In this chapter, we focus on the effective mechanical properties of collagen
type I fibrils and how these properties are related to its dimensions, underly-
ing structure, and intermolecular interactions. For this purpose, we propose a
coarse-grained computational model that we use to simulate, and thus predict
the bending response of collagen fibrils. The model is fairly general and can
be modified by parameters whose values can be tuned to match certain con-
ditions and characteristics of the fibril under consideration. Indeed, it may be
applied to model bundles of various sorts, not only collagen fibrils.

By comparing the bent profile of our model fibril with a bent Timoshenko
beam (a beam which is both extensible and shearable), of circular cross-
section, and made up of a linear elastic solid continuum with isotropic sym-
metry 1, we are then able to estimate the mechanical constants of the collagen
fibril, namely the axial Young’s modulus and the axial shearing modulus.

As an example of its use, we put our model fibril in a tip-loaded cantilever
configuration, that is, one of its ends is kept fixed while the other is subjected
to a constant force perpendicular to its initial axis (see Figure 6.1). The result
is of course a bent fibril.

This model can be easily adapted to study other deformation modes of fib-
rils, for example, twisting and stretching. Moreover, we expect this model to
set the stage for incorporating the effects of different kinds of intermolecular
interactions and molecular organization within the fibril.

The helical structure of tropocollagen (TC), which was introduced in Chap-
ter 1), is an example of the ubiquitous coiled-coil motif found in biology. This
structure is a source of chirality which is likely to frustrate the columnar order-
ing of these molecules within well-ordered crystallite domains. In our coarse-
grained model we have largely ignored the effect of chirality, assuming it to be
a higher order effect, and thus treating the entire TC molecule as a homoge-
neous, inextensible, but bendable polymer.

On its own, tropocollagen is a very flexible polymer which behaves as a
worm-like chain [7, 77] at small extensions. This means that at room or phys-
iological temperatures its bending modes are so soft that they are susceptible
to thermal agitation. We may therefore assume that for the typical time du-
ration of an applied external force a TC molecule is instantaneously excited
through all its available bending modes. As such, the mechanical response of

1A collagen fibril is more accurately described as being transversely isotropic (uniaxial), that
is, it is isotropic in any plane perpendicular to the molecular axis. Hence it may be characterized
by five independent elastic constants. But in fact, even transverse isotropy is also an approxima-
tion, as the crystal structure of collagen is known to possess triclinic symmetry [4]. Nonetheless,
since the longest dimension of the crystal unit cell is roughly parallel to the molecular axis and
furthermore is nearly perpendicular to the shorter dimensions, one is fairly justified in treating it
as a transversely isotropic medium. Our bending setup, however, is able to probe only the axial
shear modulus and axial Young’s modulus and therefore it cannot distinguish between the differ-
ent types of isotropy.
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Figure 6.1: Snapshots of our model fibril early in the simulation fixed at one end (the
green colored region at the top left) and subjected to progressively larger forces (de-
noted by the arrows) at the other end. The green colored portions are frozen during the
simulation (i.e., they are not allowed to thermally fluctuate).

tropocollagen to stretching at small extensions is chiefly as a result of reduc-
tion in entropy as the thermal fluctuations of its contour line are accordingly
suppressed [31]. The mechanical response however tends to be energetic near
full extension as inter-atomic bonds begin to stretch, giving rise to a non-linear
force-extension curve (see Figure 6.2). The persistence length of tropocollagen
(Type I) in physiological conditions has been measured in laboratory pulling
experiments using optical tweezers to be about 14.1±7.6nm [7]. At even higher
extensions tropocollagen begins to unfold irreversibly [77]. However, we do
not incorporate bond stretching or protein unfolding in the present model,
since we confine ourselves to the low strain regime.

Within the fibril, a TC molecule is expected to be near full extension,
though not due to tension but rather due to confinement within a narrow
channel or cage formed by its surrounding neighbours whose intermolecular
interactions maintain a strong lateral compression.

Despite these severe caging restrictions inside the fibril, X-ray diffraction
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Figure 6.2: The force-extension curve for stretching a single Type I TC molecule. The
data were fitted to the Marko-Siggia worm-like chain entropic elasticity model [31]. The
molecule contour length and persistence length of this sample are 320 nm and 8.0 nm,
respectively. (Source: Ref. [7].)

strongly suggest that there are still some spacious regions within the fibril
[4], albeit very narrow, wherein we anticipate, especially considering its high
flexibility, that a TC molecule will thermally fluctuate giving rise to a certain
amount of entropic elasticity for the entire fibril at small strains. In the present
work we perform Monte Carlo simulations to investigate such entropic contri-
butions.

The cross-linking agents in natural collagen are not external chemical en-
tities but are rather short non-helical chain appendices called telopeptides
that occur at both ends of every TC molecule and that covalently bond via
Schiff base cross-links to specific sites on the helical regions of neighboring
TC molecules. These sites are not precisely known. However, a number of dif-
ferent sites have been implicated for cross-linking [25, 4], and the mechanics
of a fibril will depend on which cross-linking mechanism is chosen.

Partially cross-linked fibrils are often described as liquid crystals, with vary-
ing amounts of well-ordered crystallite domains [78, 13], reflecting the level of
disorder within the fibrils. We expect these considerations too to determine
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the mechanics of the collagen fibril, and as such we input the extent and mech-
anism of cross-linking in our model by means of a connectivity graph which
specifies the cross-links between the chains.

We also reckon that the intermolecular interactions that drive the self-
assembly of TC molecules into collagen fibrils are the same as those which
are responsible for the mechanical properties of collagenous tissue after for-
mation. The possible interactions are many and there seems to be little con-
sensus over which ones are dominant [79, 5, 80]. They include hydrophobic,
hydrophilic, electrostatic, chiral, and Van der Waals interactions.

In our modeling we account for the overall and averaged effect of these
intermolecular interactions with a finitely-ranged overlap potential endowed
upon all coarse-grained sections of the TC molecule that are short enough to
be assumed rigid (see Figure 6.4). It is an attractive, pairwise additive potential
that favors the mutual alignment of neighboring TC molecules. In addition, we
assign to each molecule a hardcore (infinite) potential that prevents any two
TC molecules from occupying the same volume. The procedure may be ad hoc,
but it is computationally convenient and is expected to capture the essential
features of the mechanics of the fibril.

To describe the computational challenges one faces when simulating a col-
lagen fibril using a fully atomistic description we refer the reader to the work
of Gautieri et al. [81] who have performed molecular dynamics simulations of
an atomistic model of a fibril using no more than 5 TC molecules surrounded
by fully atomistic water molecules (57 000 atoms in all) within a simulation box
with periodic boundary conditions. In doing so, they report having reached
the limit of their academic computational resources (a 32-CPU parallel com-
puter), with 6 hours per nanosecond of simulation time. Though their val-
ues for the elasticity of both wet and dry fibrils compare well with experiment,
the method raises some issues. For instance, given such restrictive periodic
boundary conditions, it is not possible to capture the long wavelength fluctu-
ations or deformations within the fibril, which could be a major contributor
to the elasticity of the fibril for small strains. Moreover, it is not possible with
such a method to investigate finite-size effects (such as the dependence on
fibril diameter and length) or surface effects which have recently been noted
to be significant contributors to the elasticity of nanometer-sized biomaterials
such as bone [82].

While we do not claim to have sufficiently incorporated all these effects
in our model, our methodology is in accord with the ‘multiscale’ approach
described by Buehler [27] which exploits an often recurring phenomenolog-
ical result of soft condensed matter physics: that effective (or macroscopic)
properties of a material are often the consequence of a renormalization of mi-
croscopic (that is, smaller length-scale) details; and that this renormalization
tends to be independent of the microscopic details.

This work is the first stage in an attempt to determine to what extent the
aforementioned phenomenological result carries over to collagen fibrils; it
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paves the way for later honing in on the relevant, or dominant, microscopic
contributions to collagen fibril mechanical behavior by adjusting the micro-
scopic interactions. Here we construct a mesoscopic model of a microfibril,
with fewer degrees of freedom per TC molecule than its fully atomistic ver-
sion, so that the entire fibril can be simulated on modest computational re-
sources. For instance, our model consists of more than 200 coarse-grained TC
molecules (see Table 6.1), each being a discretized worm-like chain with more
than 100 fluctuating rigid bonds.

Moreover, instead of MD we employ an off-lattice Markov Chain Monte
Carlo (MCMC) simulation technique in a constant temperature ensemble,
which is based on a recently published method for cross-linked polymers
known as TRACTRIX (Chapter 4). The unique ability of TRACTRIX to offer precise
control over the end-to-end displacement of any discretized linear polymer
chain is what makes our simulation possible. Note that because the underly-
ing algorithm (the Metropolis algorithm) is a non-kinetic one, we are unable
to capture the real-time dynamics of the collagen fibril, but instead we aim for
the fibril’s long-time, or thermally equilibrated quantities.

The organization of the rest of this chapter is as follows: in Section 6.2 we
describe the details of our model. In Section 6.3 we describe the MCMC tech-
nique based on TRACTRIX. There we also describe a special adaptation of TRAC-
TRIX (the collective move) which is specially suited for fibrils. In Section 6.4, we
present our results for the bending of a micrometer-sized fibril in a tip-loaded
cantilever arrangement, and we compare the conformation of the fibril with
that of a Timoshenko beam of the same length subjected to the same bound-
ary conditions in order to extract its mechanical constants. In Section 6.5, our
results are discussed.

6.2 The Model

Our model is specified by the sum of all free energy contributions imposed on a
suitable discretization of the fibril constituents, and the graph which specifies
the cross-links of the fibril. The contributing free energies are (i) the bending
energy, (ii) the interaction energy, and (iii) the external work. In this section
we detail these energies and describe a possible graph of the collagen fibril.
These are then fed as input into our Monte Carlo algorithm which is outlined
in the next section, and whose task is to compute the entropic contributions
to the elasticity.

6.2.1 The Bending Energy

As mentioned in the introduction, for computational reasons, although each
TC molecule (which, henceforth, we will often refer to as a TC molecule) con-
stituting the fibril is in reality a triple-helix containing more than 30 000 atoms,
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we choose to coarse-grain each one as a homogeneous discretized worm-like
chain (DWLC) made up of a single linear chain of N rigid bonds, with a bend-
ing free energy specified by:

E({tk}) = −ε

N−1∑

i=1

ti · ti+1, (6.1)

where ε = kBTℓp/t
3, ℓp is the persistence length, ti is the i-th bond (counting

sequentially from one end of the polymer) of fixed length t. T is the absolute
temperature and kB is the Boltzmann constant.

This energy expression can be shown to approach the bending energy for
the continuous worm-like chain in the limit ofN → ∞ and t → 0while keeping
constant the contour length ℓc = Nt and εt2/N . It is often sufficient to adopt a
discretization that allows at least 3 bonds in one persistence length [32]. 2

Optionally, one may remove this fixed-length constraint and instead in-
clude a Hookean or reactive bond-stretching potential as an additional term
to Equation (6.1), thus allowing the lengths of the bonds to fluctuate and re-
spond to external forces. However, we expect these considerations to be im-
portant only in the high strain limit, in which the triple-helix begins to untwist
and eventually fragment, and which we do not study in the present work. Such
considerations are analogous to a similar assumption that was made when
modeling double-stranded DNA (see for example Ref. [31, 33]) and which
was sufficient to capture the salient features of its force-extension behaviour.
This assumption is also motivated by an observation that has been reported
in stress-strain experiments of collagen fibrils conducted synchronously with
X-ray diffraction [84, 85]. These experiments reveal that fibril extension just
before failure results in only 40% of this lengthening being a contribution from
the extension of the triple-helical TC molecules. This implies that for a large
part of the force-extension curve most of the TC molecules remain intact.

The contour length of a TC molecule is ℓc = 300 nm, and for an isolated
TC molecule in physiological conditions ℓp can be as short as 8 nm, making
it rather flexible. Note that ℓp is a function of its bending modulus κ and T :
ℓp = κ/kBT . Additional contributions to ℓp arise with changes in pH and the
ionic strength of the ambient solvent [86, 87, 7]. Therefore ℓp is a parameter of
the model that is set by the ambient conditions of the fibril.

In short, Equation (6.1) penalizes any non-zero angles between consecu-
tive bonds, with an energetic cost proportional to ℓp and (to first order) the
sum of the squares of the angles.

Recent extensive MD simulations of the full human Type I collagen triple
helix [88] and X-ray diffraction studies [89] of the collagen fibril have shown

2We caution here that for worm-like chains confined inside narrow channels, which is the typ-
ical situation for TC molecules deep within a fine cylindrical fibril, a perhaps more suitable dis-
cretization should involve the so-called Odijk deflection length rather than the persistence length
[83]. However, in this thesis, we have not investigated the importance of this assertion.



84 A 3D Mechanical Model of a Fibril

the TC molecule to be axially heterogenous rather than homogenous. Fur-
thermore, mutations in the amino-acid sequence cause heterogeneity in the
triple-helix and modify the conformation statistics and mechanics of the TC
molecule which is believed to be the cause of various defective collagen-
associated diseases, such as Ehlers-Danlos syndrome, for example. Hetero-
geneity is expected to reflect in a variation of the TC molecule’s bending modu-
lus (and hence persistence length) along the contour of the TC molecule. In the
future, we hope to incorporate this property of heterogeneity into our model
in order to investigate its effect on the mechanics of the fibril as a whole.

6.2.2 The Excluded Volume Interaction

As no two TC molecules can occupy the same volume, we endow each bond
of every TC molecule with a short-ranged hardcore potential which acts to
exclude all other bonds except its nearest neighboring bonds lying along the
same TC molecule. The hardcore interaction is essentially a result of overlap-
ping molecular electron orbitals referred to as Pauli repulsion (from the Pauli
exclusion principle) whose origins lie deep in quantum mechanics.

Here, each bond is modeled as a hard spherocylinder of radius r and cylin-
der length t (see for example Figure 6.4). The radius r is the measured av-
erage diameter of the TC molecule, and is the same for all bonds of the TC
molecule in accordance with the assumption of homogeneity. Note that in re-
ality, the triple-helix is not cylindrical: the chemical side groups of its alpha
chains bulge outward radially from the TC molecule axis, giving its surface a
corrugated rather than smooth topography.

For wet fibrils (that is, fibrils with interstitial water molecules), the value of r
may be adjusted to a larger value to reflect the thickness of the hydration layer
that covers the extant hydrophilic patches on the surface of tropocollagen [80].

During the simulation, every sampled configuration of the fibril that results
in the overlap of any two spherocylindrical bonds must be summarily rejected.
This calls for a fast algorithm to check for bond overlaps after every proposed
MCMC move. Below we describe an efficient algorithm to check for overlap
between pairs of only neighboring bonds without having to check for overlap
between bonds that are very far apart3.

Supposing a new position of a particular bond P1P2 is proposed during a
MCMC step. Clearly, for a large system occupying a large region of space it
would be desirable to restrict the overlap tests to only the few other bonds that
are nearest this given bond P1P2 in its newly proposed position.

The three-dimensional space which contains the entire assembly of mass-
points of the system can be visualized as being tessellated into a grid of cubes
each with edges of length ∆h which are parallel to the Cartesian axes x, y, and
z. Each cube of the grid is indexed by a unique tuple of three integers (l, m, n),

3A slightly different algorithm can found in Ref. [90].



6.2 The Model 85

2r

r

P2

P1

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

x

y

l

m

9 10

-1

-2

Figure 6.3: Two-dimensional representation of a spherocylindrical bond P1P2 of radius
r of a TC molecule (here shown isolated from its neighbouring bonds on the same TC
molecule) in the xy-plane (or in the lm-grid) and in its newly proposed position. The
spherocylindrical region of radius 2r (colored in blue) surrounding this bond denotes
that region of space where it is absolutely necessary to test for the presence of other
spherocylindrical bonds that will overlap with bond P1P2. However, to identify these
overlapping bonds, the algorithm will test for overlap of all the spherocylindrical bonds
whose mass-points lie within the light-blue colored rectangular region enclosing the
bond P1P2. The entire region outside this shaded region need not be included in the
overlap test, thus effectively reducing the time required for overlap testing.

while each mass-point (here, a mass-point is defined as any end of a chosen
bond. For instance P1 is a mass point of bond P1P2.) is indexed by an integer
i. The cube (l, m, n) in which a given mass-point Pi with position coordinate
ri = (xi, yi, zi) is located can always be determined from the coordinates of Pi

through the following formulae: l = ⌊xi/∆h⌋, m = ⌊yi/∆h⌋, and n = ⌊zi/∆h⌋,
where ⌊x⌋ represents the greatest integer less than x.

In computer memory, an array A of lists, each indexed by the same integer
tuples (l, m, n) as the grid-cubes, can be maintained with each list containing
the indices i of all mass-points Pi located inside its corresponding grid-cube.
Therefore during the simulation, whenever any mass-point actually changes
its position the relevant lists in A must be promptly updated to reflect the
change.
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With the aforementioned scheme in place, clearly any given spherocylin-
drical bond PiPj , with hemispherical cap centers of radius r coinciding with
mass-points Pi and Pj , can overlap only with those other spherocylindrical
bonds with hemispherical cap centers located in cubes with indices (l, m, n)
within the following ranges:

min(xi − 2r − t/2, xj − 2r − t/2) ≤ l ≤ max(xi + 2r + t/2, xj + 2r + t/2),

min(yi − 2r − t/2, yj − 2r − t/2) ≤m ≤ max(yi + 2r + t/2, yj + 2r + t/2), and

min(zi − 2r − t/2, zj − 2r − t/2) ≤ n ≤ max(zi + 2r + t/2, zj + 2r + t/2),

where t = |PiPj | is the length of the bond. Hence the bond-overlap tests need
only be restricted to only those bonds found in these cubes (See Figure 6.3).

The width ∆h of the grid-cube may be chosen to be 2r. Note that the
smaller ∆h is, the more computer memory is needed to store the array A. On
the other hand, the larger ∆h is, the more unnecessary bond-overlap tests will
be made that slow down the simulation.

Our implementation for the test for overlap itself between a pair of neigh-
bouring spherocylindrical bonds of radius r involves finding the length a of
the shortest line segment linking their (hemispherical cap) center-to-center
axis-segments and comparing it to 2r. If a < 2r then the two bonds overlap,
otherwise they do not. A fast algorithm to find a has been outlined in Ref. [91]
which is essentially the same as ours.

6.2.3 The Attractive Interactions

The thermal stability of the fibril is due to many energetic and entropic in-
fluences also involving the solvent in which the TC molecules are immersed.
These interactions are not completely understood [79, 8]. Nonetheless, the
result of all these influences is a generally attractive and mutually-aligning in-
teraction between TC molecules which drives the self-assembly of the fibril,
maintains its high aspect-ratio shape, and contributes to its mechanical prop-
erties.

A variety of intermolecular interactions have been tagged to drive the self-
assembly of collagen TC molecules into fibrils, and could therefore provide the
required aligning effect between TC molecules. These include hydrophobic,
hydrophilic (via hydrogen bonding), electrostatic solvation (including dipolar)
[92, 93, 94], achiral dispersion (van der Waals) and chiral dispersion interac-
tions.

A complete treatment of all intermolecular interactions would involve an
extremely computationally expensive summation over all pairs of atoms mak-
ing up the different triple-helices and solvent water molecules. Note that there
are more than 30 000 atoms in a TC molecule. To make matters even worse,
some of these interactions are not pairwise-additive in general, nor do they
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Figure 6.4: (Left:) The spherocylindrical excluded-volume regions surrounding a pla-
nar 4-bond TC molecule backbone t1, t2, t3, t4. The dashed rectangles outline the
cylindrical region used to compute the overlap potential energies. (Right:) A three-
dimensional rendering of one bond isolated from the rest of the TC molecule.

act within spatial ranges4.
For this reason, our approach is somewhat ad hoc: we choose to circum-

vent all these issues by endowing each bond with an effective TC molecule-
aligning, achiral, pairwise-additive, and attractive overlap potential which is
of finite range, and acting within a specified cutoff distance rc from the axis
of each bond. The precise implementation is as follows: a cylindrical region
concentric with the spherocylindrical bond and of the same cylindrical height
as the spherocylinder, but of radius rc > r, is defined (see Figure 6.4) so that
the potential energy of attraction between any pair of bonds, ti and tj , is taken
to be a constant −vA multiplied by the volume of overlap VOij

between the
cylinders surrounding the two bonds:

V(ti, tj) = −vAVOij
. (6.2)

The total interaction energy of the fibril is then the sum of V(ti, tj) over all
neighboring bond-pairs ti and tj , except pairs of nearest consecutive bonds
that lie along the same TC molecule. vA is here called the cohesive energy
density whose (positive) value can be adjusted so that a fine slender fibril is

4For the simpler case of the computation of the thermal stability of a short tropocollagen-like
fragment with length only 1/30-th of the full triple-helix, which takes over 80 hours of computa-
tions, taking into account quantum mechanical considerations, see for example Refs. [95, 96].
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maintained. The same grid-scheme described in the previous subsection for
testing for overlap between neighbouring pairs of bonds may also be used to
determine which pairs of bonds need to be considered when computing their
overlap volumes.

In Section 6.4, we demonstrate how we arrive at the specific value of vA
which we use in our simulations. The parameter rc is called the ‘cohesive
distance’, whose value may be suitably adjusted. Equation 6.2 is reminis-
cent of the Asakura-Oosawa depletion interaction potential [97] between hard-
particles in a solution of penetrable spheres. Recently, the depletion interac-
tion has been implicated as a driving mechanism for protein assembly [98, 99]
and also the onset of helical formation of filamentous proteins [100, 98, 99]
in crowded environments. It has also been suggested as a surrogate for the
hydrophobic interaction [98, 100]. This is because both the depletion attrac-
tion and hydrophobic effect [101] tend to minimize the surface area exposed
to the solvent. They are also superficially similar in that one is purely, and the
other mainly, driven by entropic effects. However, an increase in free volume
available to a macromolecular solute drives the depletion attraction, whereas
an increase in hydrogen-bonding states available to water underlies the hy-
drophobic effect [101]. Indeed, if rc is only slightly larger than r, the overlap
volume VOij

becomes roughly proportional to the solvent-inaccessible surface
area of the TC molecules, and then V(ti, tj) approximates the hydrophobic-
like interaction of bonds whose entire surfaces are hydrophobic. 5.

An analytical expression for the volume of overlap between two infinite
cylinders each of radius r with minimum distance ℓ < 2r between their axes,
and angle θ (a non-integral multiple of π) between their axes can be deter-
mined analytically by integration and is given by:

VOV(ℓ, θ, r) =
4

sin θ
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, (6.3)

where E(∗|∗) is the elliptic integral of the second kind and F (∗|∗) is the elliptic
integral of the first kind.6 We know of no similar formula for finite cylinders.
But for θ = 0, that is, for two parallel cylinders of finite length s and with axes

5Another kind of overlap potential, but which is long-ranged, namely the Gay-Berne overlap
potential [102], is often used in modeling the Van der Waals interactions between axial molecules
such as in simulations of liquid-crystal mesogens.

6The integration was performed using Mathematica R©.
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Figure 6.5: A stack of 8 prisms whose polygonal bases bound the overlap region be-
tween two finite non-parallel cylinders (not fully shown here for the sake of clarity).
The total volume of these prisms approximates the volume of the overlap region it en-
closes.

a distance ℓ apart, the overlap volume is

VOV(ℓ, 0, r, s) = s



2r2 arccos
ℓ

2r
− rℓ

√

1−
(

ℓ

2r

)2


 . (6.4)

The volume Vovij
of overlap between two arbitrarily oriented finite cylin-

ders Ci and Cj can be quickly estimated numerically by the sum V
(n)
ovij of the

volumes of a parallel stack of n prisms constructed to bound the overlap re-
gion (see Figure 6.5), and whose polygonal cross-sections are perpendicular
to the shortest line segment joining the extended axes of the two cylinders.
The reader may recognize from the figure that the method mentioned above
for approximating the overlap volume is actually a one-dimensional Lebesgue
summation along the shortest line segment S joining the two (extended) axes
of the cylinders.
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Figure 6.6: Three orthogonal views of the overlap region between two non-parallel
cylinders of radius rc: the border of the overlap region is formed by the edges of all par-
allelograms (for example R1R2R3R4) formed by the intersection of contours, or level
sets x = constant on the surfaces of both cylinders. The red line is the shortest line
segment S joining the two (extended) axes of the cylinders. The length of S is ℓ.

Let us for the moment consider two intersecting non-parallel cylinders of
infinite length. Then each of the prisms has a base Qk in the shape of a paral-
lelogram whose edges lie on the surfaces of both cylinders, but whose plane is
perpendicular to S (see Figure 6.6). If S is along the x-axis, and the axis of Ci
along the z-axis, while the axis of Cj lies in the plane x = ℓ (ℓ being the length
of S), then the position vectors of the vertices R1k, R2k, R3k, and R4k of Qk are
given respectively by:

(
xk, y1(xk), −y1(xk) cot(θ) − y2(xk) csc(θ)

)
,

(
xk, y1(xk), −y1(xk) cot(θ) + y2(xk) csc(θ)

)
,

(
xk, −y1(xk), y1(xk) cot(θ) + y2(xk) csc(θ)

)
, and

(
xk, −y1(xk), y1(xk) cot(θ) − y2(xk) csc(θ)

)
,

where 0 ≤ xk ≤ ℓ, k = 0, 1, . . . , n, y1(x) =
√

r2c − x2, y2(x) =
√

r2c − (ℓ− x)2,
and θ is the angle between the axes of the cylinders as seen when viewing them
along S.
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However, for finite cylinders, one needs to find the intersections of these
parallelograms with the cylinders’ planar caps. This leads, in general, to trun-
cated parallelograms. C++ codes that implement these procedures and then go
on to compute the areas of these truncated parallelograms and the volumes of
their corresponding prisms, can be found in the supplementary material [65].

In the limit of n going to infinity, V
(n)
ovij approaches Vovij

. Unfortunately, a

large value of n will mean too much CPU time will be spent computing V
(n)
ovij .

Luckily, a shortcut can be exploited here: because the radius rc of the cylin-
drical region representing the attractive potential range is often only a little
larger than the radius r of the hardcore spherocylindrical region, the axes of
the cylinders never come very close together, and the overlap region thus re-
mains thin. In such circumstances n can be chosen to be quite small. In which

case, Vovij
≈ αnV

(n)
ovij , where αn is a constant scaling factor that will need to

be determined before the start of the simulation. Thus for example, when
rc = 1.5r, then n = 4 with α4 = 0.86 is enough to obtain values of the over-
lap volume close to Vovij

for almost all positions and orientations of Ci and Cj ,
as evidenced by the plots of Figure 6.7.

Our choice of the attractive interaction potential and excluded volume in-
teraction enables sliding of neighbouring TC molecules relative to each other
with a negligible shear force. This picture may not be an entirely faithful
representation, as in reality there also exist electrostatic bonds, direct hy-
drogen bonds, and hydrogen-bonded water-bridging molecules, between the
atoms of neighbouring TC molecules [80]. Therefore, whenever any two TC
molecules slide past each other along a certain distance, all these bonds would
have to be first stretched, or if the sliding force is large enough, they would
have to be broken and new ones formed in their place. Beuhler [27] has pos-
tulated that these effects would give rise to a resistive shear force between TC
molecules that, for small shear forces, would be proportional to the length of
the contact line between the molecules and would act uniformly along the
entire contact line. But for large shear forces, they would lead to the propa-
gation of slip pulses which is due to the localized breaking of intermolecular
bonds, and which evolves in a manner akin to the propagation of cracks in bulk
materials. Our intention in this work, however, is to assume that the effect
of shear (due to these non-covalent cross-links) between nearest neighbour-
ing TC molecules is negligible. So these additional contributions have been
neglected. In the next section, however, we introduce freely-jointed covalent
cross-links which prevent neighbouring TC molecules from sliding off com-
pletely past each other.

Furthermore, in the present work, despite the intrinsic chirality of the TC
molecules, we do not study the effect of their chirality on collagen fibril me-
chanics. But we suggest that the simplest means to include an effective chi-
ral interaction between TC molecules, without introducing any more degrees
of freedom, is to add the following term to the interaction between any two
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Figure 6.7: A plot of the negative of the overlap volume Vovij between two
cylinders of radius ra = 0.7 nm and height h = 3.80952ra versus cos θ, for
ℓ/ra = 1.42857, 1.5, 1.57143, 1.64286, 1.71429, 1.78571 (counting upwards from the low-
est curve). Here the shortest line segment S joining the cylinders’ (extended) axes also

joins their geometric centers. For this range of ℓ, Vovij ≈ V
(n)
ovij

for n ≥ 32. It is evident

from the plot that if n = 4 is chosen, then one need only multiply V
(4)
ovij by the scale

factor 0.86 to obtain a good estimate for the overlap volume for almost all values of θ
and for all ℓ in the given range. Similar results (not shown here) also hold even when
the ends of S are offset from the cylinders’ geometrical centers.

bonds, ti and tj [103, 104, 105]:

U(ti, tj) = uC (ti × tj · r̂ij) (ti · tj), (6.5)

which is allowed to act only when the achiral attractive overlap potential intro-
duced previously (in Equation (6.2)) between the same two bonds is nonzero.
Here r̂ij is the center-to-center displacement unit vector of bond ti relative to
bond tj , and uC is a chiral strength parameter whose (negative or positive)
value can be adjusted to produce mutual twist between two TC molecules.
This form of chiral interaction has been successfully used in simulating chiral
liquid crystals to obtain cholesteric phases [103]. It has its origins in second-
order perturbation theory of quantum mechanics for the coulombic interac-
tion between two axial molecules. The total chiral interaction energy of the
fibril would then be the sum of U(ti, tj) over all neighboring bond-pairs ti
and tj (except pairs of nearest consecutive bonds that lie along the same TC
molecule).
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Figure 6.8: Qualitative demonstration of all the free energy contributions, except those
of external forces. Bending, excluded volume, attractive, and chiral interactions in a
Monte Carlo simulation of three polymers that initially started out as being parallel to
each other produces an equilibrium state that looks like a triple-helical bundle.

As a qualitative demonstration of the effectiveness of all the different ener-
gies detailed so far (namely bending, hard-core, achiral attractive, and chiral
interactions), in Figure 6.8 we show a Monte Carlo simulation snapshot three
discrete worm-like chains, each with a 100 bonds, and which were initially ar-
ranged parallel to each other, but which later during the simulation settled
into the triple-helical state shown. The figure is reminiscent of bundles of chi-
ral polymers [106]. We hope to elaborate further on these findings in future
work.

6.2.4 The External Work

The change in free energy due to an external force, or traction, fk acting on a
selected mass-point Pk near the boundary of the fibril is taken to be the work
done by this force during a displacement ∆rk of Pk. Thus, in the spirit of the
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principle of virtual work, we construct the total work done by all such forces as

W = −
∑

k

fk ·∆rk. (6.6)

The set of external forces and the mass-points upon which they act can be
specified at the start of the simulation with the intent of producing a particular
deformation profile, such as a bent or stretched profile. A similar expression
can be constructed for external torques exerted on the fibril, which can be used
to produce a twisted profile of the fibril.

6.2.5 Cross-linking: The Connectivity Graph

In a collagen fibril, a TC molecule may be covalently cross-linked to another
TC molecule, which in turn is cross-linked to another, and so on. These are
the so-called Schiff base cross-links [8]. Natural cross-linking is achieved by
the TC molecules themselves: each of their ends possess short non-helical
chain appendages (called the N- and C-terminal telopeptides) about 1% of
the full length of a TC molecule, which bond covalently to specific sites on
the helical regions of neighboring TC molecules. One end of the TC molecule,
the C-terminus, provides one telopeptide for cross-linking. The other end of
the TC molecule, the N-terminus, provides two telopeptides for cross-linking.
Thus, there is a maximum number of natural cross-links any fibril might
have. This aspect of cross-linking is unlike in some other biofilaments where
cross-linking is achieved through foreign cross-linking agents (for example,
α-actinin for filamentous actin [107]) which attach themselves to the biofil-
aments at some random sites along their contour, so that cross-linking can
be controlled externally by adjusting the concentration of the cross-linking
agents. Instead, for collagen, an enzyme, known as lysyl oxidase, may be used
to induce cross-linking between TC molecules. Some cross-links start out as
divalent (linking a pair of TC molecules) and then upon further maturation
of the fibril react further with TC molecules in register from an adjacent fiber
forming stable trivalent cross-links (linking a triple of TC molecules) and fur-
ther increasing its mechanical strength.

The precise cross-linking sites on the helical region of the TC molecule are
unknown. However, a number of different cross-linking sites have been im-
plicated by researchers [25, 4]. The extent and manner of cross-linking can be
fed as input into our simulation by means of a graph. We choose the follow-
ing scheme, based on an analysis of the proximity of TC molecules within the
crystal structure given in Ref. [4] (also shown in Figure 6.9): the sites along the
collagen TC molecule where cross-linking are thought to occur are shown in
Fig. 6.10. The numbers at the sites denote the distances (in units of D = 67
nm) of the sites from the left end 0 of the TC molecule. The arrows denote the
“direction” of cross-linking. For example, the end 0 has two branches that can
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0
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2

4.5
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Figure 6.9: The triclinic crystallographic unit cell of the collagen fibril, due to Orgel et
al. [4], embedded in a slab of crystalline collagen fibril containing specific sections of
TC molecules here represented by the colored tubes. An entire fibril can be generated
by periodically repeating this unit cell. The cross-links are here represented by the thin
cylinders inter-linking the TC molecules. The cross-linking mechanism illustrated here
is slightly different from that of Figure 6.10 since here 4.5 links 3.5 (instead of 0.5 in
Figure 6.10).

attach to sites 2 and 4 on other TC molecules, while the end 4.5 can attach to
site 0.5 on yet another TC molecule. Conversely, the sites 0.5, 2 and 4 on this TC
molecule can receive attachments from the ends of other TC molecules (4.5, 0
and 0 respectively). Thus a collagen TC molecule may be linked to 6 other col-
lagen TC molecules.

In this thesis, we modeled each interlinking telopeptide as a rigid link
emanating from the end of a TC molecule and terminating at its respective
cross-linking site on the neighboring TC molecule. During the simulation,
each cross-link was treated as being freely-jointed with its interlinking TC
molecules.

6.2.6 Preparing the Fibril’s Initial State

Before the simulation, the initial fibril was constructed such that all TC
molecules took up their respective positions within a perfectly crystalline
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Figure 6.10: The precise cross-linking sites on the helical region of a TC molecule
are unknown. Here we outline a possible cross-linking mechanism for the collagen
TC molecule, based on an analysis of the proximity of TC molecules in the three-
dimensional crystal structure of Ref. [4] also shown in Figure 6.9. The numbers at the
sites denote the distances (in units of D = 67 nm) of the sites from the left end 0 of the
TC molecule. The arrows denote the “direction” of cross-linking of the telopeptides. For
example, the end 0 (the N-terminus) of the TC molecule has two branches that can link
to sites 2 and 4 on neighbouring TC molecules, while the end 4.5 (the C-terminus) can
link to site 0.5 on yet another TC molecule. Conversely, the sites 0.5, 2 and 4 on this TC
molecule can receive links from the termini of other TC molecules (4.5, 0 and 0 respec-
tively). Thus a collagen TC molecule may be linked to 6 other collagen TC molecules in
a fully cross-linked fibril.

fibril7 along contours that threaded parallel arrays of equidistant two-
dimensional hexagonal lattice planes (see Fig. 6.11), with inter-stack distances
and hexagonal lattice parameter aH ≈ 15 nm determined from the crystal unit
cell in Ref. [4] (see Figure 6.12). The entire fibril was constructed by generating,
one by one, many identical copies of one TC molecule in the molecular con-
figuration shown in Figure 6.12B. We began with a single TC molecule placed
at a lattice site, and then kept adding (recursively) an identical copy at neigh-
bouring lattice sites, always ensuring that each added copy was cross-linked
with one or more already placed TC molecules, according to the cross-linking
scheme outlined in Figure 6.10. We did this with the intention of making the
entire fibril one fully percolated (connected) cluster before the start of the sim-
ulation8.

7X-ray diffraction images of the collagen fibril show a significant amount of diffuse scatter (see,
for example, Figure 1.2) indicating that the fibril contains disordered regions. A disordered lateral
arrangement of TC molecules [13, 108, 109, 16] within the fibril is thought to be the main cause of
this diffuse scatter. In this work, only the starting configuration of the fibril is taken to be perfectly
crystalline. Then, during the simulation itself, this structure is allowed to thermally relax to a less
ordered state.

8In this thesis, we placed cross-links between TC molecules wherever admissible according the
prescribed cross-linking scheme. However, for investigations of the effect of the extent of cross-
linking on the mechanics of the fibril, one might instead opt to eliminate each cross-link with
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Figure 6.11: Constructing the initial state: collagen TC molecules thread a stack of
hexagonal lattices planes. The exact positions of the sites they pass through are de-
termined by Orgel et al.’s [4] crystallographic unit cell (see Figures 6.9 and 6.12). The
hexagonal lattice parameter was accordingly determined to be aH ≈ 15 nm.

However, it is interesting to note that while we were constructing the fibril
in the aforementioned manner, the TC molecules of the fibril filled up only half
of the available lattice sites of the crystal structure. As can be seen in a cross-
section of the fibril in a chosen lattice plane (see Fig. 6.13), the TC molecules
(colored red) rather formed sparse isolated rows or clusters of cross-linked TC
molecules leaving half the total number of available lattice positions empty.
But since according to Orgel et al.’s unit cell specification [4] for a perfectly
crystalline fibril, a TC molecule had to be located at every lattice position, this
meant that the empty sites had to be filled up with a second cross-linked clus-
ter of identical TC molecules (colored blue in Figure 6.13) interwoven with, but
completely disconnected and displaced (by a determinate lattice vector) from
the previous cluster. Therefore we grew a second percolated cluster of cross-
linked TC molecules in order to fill up the sites left empty by the first growth
process. The above finding strongly suggests that the cross-linking mechanism
will have important implications for the elasticity of a fibril.

Furthermore, to obtain an approximately cylindrical fibril we ensured that
all added TC molecules were completely enclosed in a fixed cylinder of pre-
specified radius R and height H , and whose axis was oriented parallel to the
end-to-end vector of the TC molecules and made to pass through one lattice

a prespecified probability p, so that p would be yet another parameter whose value reflects the
extent of cross-linking in the fibril. For example, for p = 0 the fibril would be fully cross-linked,
while for p = 1 the fibril would be completely uncross-linked. Once a cross-link has survived the
elimination process, it remains active throughout the rest of the simulation.
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Figure 6.12: (Source: Orgel et al. [4]) Lateral positions of neighboring TC molecules and
the molecular conformation of a single TC molecule. a, b and c are the unit lattice
vectors. The c-axis has been compressed 5 times for (A) and (B). The collagen seg-
ments are labeled as follows: 1 gray; 2 red; 3, green; 4, blue; 5, yellow. Part of seg-
ment 1 is colored cyan (the N-terminus), and part of segment 5 is colored magenta (the
C-terminus) to aid their identification in (A). (A) Alpha-helix carbons rendered as line
spheres showing the conformation of the staggered collagen segments within a single
unit cell. (B) Molecular path of a collagen molecule through successive unit cells in the
a-c plane. (C) Molecular conformation of a collagen molecule in the a-b plane, look-
ing down the c-axis (or roughly C- to N-terminus direction of the collagen molecule).
The relative lateral positions of the molecule as it passes through D = x.44 are marked
(where x = 0, 1, 2, 3, 4).

site. These values of R and H became the dimensions that the fibril finally
assumed upon completion of the generation process, that is, when no more
TC molecules could be added to the lattice that were wholly enclosed in the
cylinder.

At this point, the reader may be wondering how we would deal with
the problem of preserving possible entangled states of the cross-linked TC
molecules during our simulation. Surprisingly, we turns out that in the case
of collagen fibrils with the particular cross-linking mechanism chosen above,
entanglement is a nonissue, since the structure of the crystal lattice, coupled
with the graph structure of a fully cross-linked fibril does not create closed
loops anywhere in this network, but rather results in the topology of two
inter-digitated trees (representing the two disjoint clusters of cross-linked TC
molecules). It is however possible that some other cross-linking mechanism
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Figure 6.13: Lattice points (the black dots) within the drawn circular boundary of the
fibril cross-section mark available positions through which a TC molecule might possi-
bly pass (from beneath and out of the plane of the figure). The red dots mark the posi-
tions of TC molecules of a fibril that was generated beginning with a single TC molecule
threading the lattice point in the center of the circle. Every one of these TC molecules is
cross-linked to another to form a single percolated group. The cross-links (not shown)
occur within, above, and below this lattice plane. Clearly almost half the number of
lattice sites in this plane are empty. The blue dots mark the TC molecules of another
percolated group that is generated beginning with a TC molecule threading a lattice site
displaced one lattice unit to the right of the center of the circle. This group occupies
those sites left empty by the red dots. These findings suggest that a fully cross-linked
collagen fibril may consist of two inter-penetrating disjoint subsets of cross-linked TC
molecules. The remaining empty lattice sites within and near the circular boundary
exist because all the TC molecules that pass through them have contours that cross the
cylindrical boundary of the fibril somewhere above or below this lattice plane.

(not explored here) will give rise to closed loops that may further result in
permanently trapped entanglements of the TC molecules. In a non-kinetic
MCMC simulation method such as ours, real-time dynamics are absent and
thus all permissible processes, including even the slowest entangling or dis-
entangling moves between loop-less chains, are assumed to have had enough
time to have occurred.

6.3 The Monte Carlo Move Set M
As mentioned in the introduction, we employ an off-lattice Markov Chain
Monte Carlo simulation technique for our model in a constant temperature
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ensemble. For this technique, the configurational state of our model fibril
evolves according to Markov Chain dynamics governed by the master equa-
tion and detailed balance, rather than by Newton’s laws of motion. Thus, even
unphysical changes (moves, or transformations) of the current configuration
of the model may be proposed. But detailed balance determines which pro-
posed moves are eventually accepted, and thus permitted to change the con-
figuration.

Three main constraints are to be enforced during the simulation: (i) preser-
vation of the connectivity of the network structure of the fibril, (ii) preservation
of the fixed-length bonds of the TC molecules and cross-links, and (iii) detailed
balance.

For the latter requirement, we adhere to the recipe of the standard
Metropolis algorithm, which prescribes that each proposed transformation of
the system should possess an inverse transformation with the same proposal
probability as that of the transformation itself, and furthermore that its prob-
ability of acceptance — the so-called acceptance ratio — should be correctly
computed to eventually produce Boltzmann statistics. As pointed out, for in-
stance by Maggs [62], in off-lattice systems such as ours, the infinitesimal con-
figurational phase-space volume element in the vicinity of the current state is
also transformed after any move, and hence we must not neglect to compute
the Jacobian determinant of the transformation representing the move when
determining the acceptance ratio. See Section 3.4 for a detailed explanation.

Suppose, during the simulation, the current state of our model at step

s can be specified by the set {r(s)0 , r
(s)
1 , . . . , r

(s)
N } denoting the current posi-

tions of all the mass-points of the fibril, then for a proposal transformation

G∆ : {r(s)0 , r
(s)
1 , . . . , r

(s)
N }−→{r(s+1)

0 , r
(s+1)
1 , . . . , r

(s+1)
N } the Metropolis algo-

rithm acceptance ratio is

α(s)→(s+1) = e−β∆E(r
(s)
k

)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂(r
(s+1)
0 , . . . , r

(s+1)
N )

∂(r
(s)
0 , . . . , r

(s)
N )

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
, (6.7)

the last factor being the absolute value of the Jacobian determinant

| detJ (G∆)| of the transformation, and ∆E(r
(s)
k ) = E(r

(s)
k+1) − E(r

(s)
k ) is the

change in total energy of the fibril after the move.

The unique structure of our model fibril facilitates the use of a set of spe-
cialized types of moves, called the move set M, from which the algorithm may
randomly select a move as a proposal. Any desired probability distribution can
be built over M to increase the frequency of proposal of some move types over
others (see for example Table 6.2 for the proposal probability distribution over
the move set used in our simulations). In the following subsections we outline
the types of proposal moves belonging to our move set.
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6.3.1 Crank-Shaft C(θc)
The crank-shaft move type is popularly used in the simulation of single chains
because of its simplicity and ease of computation. It works as follows: first ran-
domly select a pair of mass-points belonging to the same TC molecule, then ro-
tate that section of the TC molecule occurring between these two mass-points
around the axis joining the two mass-points and through an angle θc whose
value is randomly selected from a symmetric distribution over a given inter-
val [−θmax, θmax] (see Figure 4.2). The distribution of angles θc needs to be
symmetric over the interval so as to ensure that the condition of reversibil-
ity stipulated by the Metropolis algorithm is obeyed. The Jacobian of such a
transformation is unity. 9

Care should be taken to ensure that the algorithm does not randomly select
a pair of mass-points whose intervening chain fragment spans a cross-link, be-
cause then the subsequent crank-shaft rotation would destroy the cross-link,
immediately compromising our model. Thus, crank-shaft rotations must oc-
cur only for those linear chain fragments occurring between cross-links. As a
result, cross-links are never moved during a crank-shaft move.

6.3.2 TRACTRIX for Free Chains TF(δ)

The foregoing discussion means that another type of move is required to dis-
place also the cross-links, enabling them to fluctuate while simultaneously
preserving the connectivity of the cross-linked system. Such a move would
prove useful in an investigation of the importance of long-wavelength fluctu-
ations to elasticity, which are mediated by cross-link fluctuations in a polymer
network (such as, for example, in rubber [53]).

We refer the reader to Chapter 4, where a novel type of move called TRAC-
TRIX was introduced for this very purpose. In the following couple of para-
graphs, we summarize its essentials.

The fundamental variant TF(δ) of TRACTRIX, for a free linear chain, receives
as input a random displacement vector δ that is used to displace one end (here
coined the ‘driver node’) of a linear chain and drag the rest of the chain with
it. For detailed balance to hold, δ is sampled from a point-symmetric distri-
bution, that is, Pgen(δ)dδ = Pgen(−δ)dδ, where Pgen(δ)dδ is the probability of
generating δ.

None of the lengths of the bonds are changed by this process, but rather
they are rotated and displaced causing the end-to-end vector of the chain also
to change, albeit not by the given displacement, since the other end (the ‘tail’)

9Another variant of the crank-shaft move (not used in this thesis) involves three linear chains
that terminate at one point. In this case, three mass-points are randomly selected (one on each
chain). These three points define a plane about which those linear portions of the chains between
the mass-points and the terminus can be reflected. Unlike TRACTRIX, such a move offers little
control over where to place the mass-points.
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of the chain is also displaced in the process. The movement of each bond is
determined by a recursive application of the so called ‘discrete tractrix trans-
formation’ [63], which is defined in Equations (4.4) and (4.5) of Section 4.4.

6.3.3 TRACTRIX for Anchored Chains TA(∆)

Another variant TA(∆) of TRACTRIX, for an anchored chain, fixes one end, the
‘anchor’, of the linear chain in space while it displaces the other, the driver
node, by the given random displacement ∆ while the intervening bonds are
collectively rotated and dragged to accommodate this change. Like δ, ∆ must
be sampled from a point-symmetric distribution for detailed balance to hold.

Again, none of the lengths of the bonds are changed by this process, but
the end-to-end vector of the linear chain is changed by exactly ∆. Thus, when
two or more linear chain fragments, each anchored at its own mass-point, all
terminate at the same mass-point (this is a typical situation at a cross-link, or
at a mass-point in the middle of a chain), then TA(∆) may be applied to each
fragment to displace that common terminus by ∆, while simultaneously fixing
each anchor and deforming all the intervening fragments so as to accommo-
date the move (see Figure 4.7).

In practice, the implementation of TA(∆) on a linear chain depends on the
use of a numerical solver to solve for δ = δ∗ so that the action of TF(δ∗) on the
linear chain under consideration will cause its end-to-end vector to be incre-
mented by exactly ∆ despite the fact that its tail is displaced in the process.
But afterwards the entire chain is rigidly translated so that its tail coincides
once more with its old position. The computation of the Jacobians resulting
after this modification follow in the same manner to that described in the Sec-
tion 4.6. In the supplementary information [65] accompanying this thesis we
provide computer codes written in C++ that implement and apply this modi-
fication.

6.3.4 TRACTRIX for Fibrils TAB(R)

Now we introduce a generalization TAB(R) of TA(∆), which is particularly use-
ful for simulating fibrils or bundles of polymers, and which does not require
the chains to terminate at a common mass-point. Indeed, in a single simula-
tion step, an entire assembly of distinct mass-points (called the driver nodes)
that extends over a (not necessarily planar) cross-section of the bundle, may be
simultaneously displaced by means of the rigid-body transformation R. R can
be a rotation (through a small random angle around a random axis) or a small
random translation. Immediately after these driver nodes are displaced, all the
linear chain fragments connecting these driver nodes to their corresponding
anchors must be deformed accordingly.
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By restricting the transformation of the driver node assembly in one cross-
section to rigid-body translations and rotations, the distances between any
pair of driver nodes in that assembly is preserved. The preservation of the dis-
tances between driver nodes is a crucial requirement especially when there ex-
ist some fixed-length cross-links lying in the (warped) cross-section and bridg-
ing a few pairs of driver nodes.

Therefore, at the start of the simulation, all possible driver nodes and an-
chors in the fibril can be assigned as a sequence {Dk} of a few designated
cross-sections of the fibril, and in such a way that each cross-link in the fibril is
located entirely within one of these cross-sections. The linear chain fragments
bridging successive cross-sections in this sequence are then cross-link-free.

During the simulation, if at some random step s TAB(R) is selected from
the move set M, then one cross-section Dk in the sequence may be selected at
random, and then a random R is applied to it.

If R is a rigid-body translation through a displacement ∆, the new posi-
tions of each driver node Pi are then

r
(s+1)
i = r

(s)
i +∆. (6.8)

Note that ∆ must be sampled from a point-symmetric distribution for detailed
balance to hold. If R is a rigid-body rotation through a random angle φ around
an axis along a random unit vector û which passes through a randomly se-
lected driver node Pc in Dk, then the new positions of each driver node Pi are

r
(s+1)
i = r(s)c +O(φ, û) · (r(s)i − r(s)c ). (6.9)

where O(φ, û) is a rotation matrix that rotates vectors through the angle φ
around an axis along û passing through the origin. Again, for the sake of de-
tailed balance, φ must be sampled from a symmetric distribution over an in-
terval [−φmax, φmax], where φmax can be specified at the start of the simulation,
while û can be sampled from a uniform distribution over the surface of the unit
sphere. In this way, the fibril is able to bend and twist in any direction. In gen-
eral, each driver node Pi of Dk is given its own displacement ∆ki.

Next, each of the linear fragments C∗
ki that connects the driver nodes of Dk

to D∗
k (a random selection of one of Dk’s two neighboring cross-sections: Dk−1

or Dk+1) is deformed by TA(∆ki), which treats all the mass-points in D∗
k as

anchors during this step. Alternatively, if some of the linear chain fragments
C∗

ki have free ends in D∗
k, then TF(∆ki) may instead be applied to deform these

free linear chain fragments while TA(∆ki) is applied to the other fragments.
This process temporarily severs the fibril.

Finally, to restore the fibril, the linear chains C ′
ki connecting Dk to the other

neighbouring cross-section D′
k (the one which was not chosen during the lat-

ter random selection) can also each be deformed by TA(∆ki) treating all the
mass-points in D′

k as anchors (or optionally by TF(∆ki) for those fragments
with free ends in D′

k).
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However, it may be that one end of the fibril is fixed while the other end
is free throughout the simulation. Then we may exploit this situation so that,
instead of the final step above, the entire part of the fibril on that side of Dk

opposite the fixed end of the fibril, may be appropriately transformed by R or
R−1 depending, respectively, on whether D∗

k is on the same side of the fixed
end or not, so as to heal the rift in the fibril previously created by the transfor-
mation of the linear fragments C∗

ki (see Figure 6.14).

Finally, recalling that for all these moves detailed balance must be obeyed,
we proceed to compute their corresponding Jacobians. But in order not to
overburden the main text, we postpone the computation of these Jacobians
until Appendix 6.A.

The power of TRACTRIX lies in its ability to keep all bond lengths and cross-
link lengths of the fibril constant while exploring configuration phase space.
Throughout our simulations, only ≈ 0.04% of all attempted TRACTRIX moves
failed due to the numerical solver’s inability to find a configuration to fit the
proposed end displacements. The value of f (from Equation (4.5)) used for
the TRACTRIX moves was set to 2 as this value yielded the least failure rate.
The maximum number of bonds in a linear chain taking part in any TRACTRIX
move type was set to 15.

A computer program was written in C++ using Intel R© MKL libraries to eval-
uate the Jacobian determinants, GNU Scientific Library for its nonlinear equa-
tion solvers, and FreePOOMA, a high-performance C++ library implementing
arrays and vectors. The program was compiled with Intel R© C++ Compiler and
each program instance could run on eight CPU’s simultaneously. Simulation
speed was found to be roughly 250 000 MCMC moves per hour.

6.4 Results

The dimensions of the fibril we simulated, and other relevant parameters are
listed in Table 6.1. Figures 6.15-6.23 show the results of our simulations.

Recall from Section 6.2.5 that before the simulation, the fibril was gener-
ated within a cylinder of specified radius and height. This cylinder’s dimen-
sions were eventually assumed by the fibril itself10. As a consequence of the
staggered arrangement of the TC molecules within the crystal and the restric-
tion we imposed that all added TC molecules must be wholly enclosed in this
cylinder, the number of TC molecules per cross-sectional area near the ends
was significantly less than that near the mid-section of the fibril. Therefore,
anticipating that the flexural rigidity of the fibril near its ends would conse-
quently be reduced relative to the flexural rigidity near its mid-section, we de-
signed the grafted end of the fibril to include all parts of those TC molecules

10The diameter of the fibril that we simulated (15 nm) is slightly less than the smallest collagen
fibril diameter (20 nm) observed experimentally in Ref [112].
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Figure 6.15: Plot of the average accumulated strain 〈ē〉 (a measure of the deviation from
perfect fibril crystallinity [defined in Section 6.4]) versus the cohesive energy density
vA. The insets are snapshots of the thermally relaxed fibril for the labeled values of vA
which qualitatively illustrate the meaning of 〈ē〉 — as vA decreases 〈ē〉 increases and the
fibril becomes more like a disordered isotropic network blob. Note the sharp transition
near vA = 5kBT nm−3. This value of vA ≈ 5kBT nm−3 was eventually the one chosen
for subsequent simulations of bending experiments because it yielded approximately
no deviation from perfect crystallinity (〈ē〉 ≈ 0). Recalling that our attractive overlap
potential [Equation (6.2)] mimics an Asakura-Oosawa depletion interaction potential
[110], vA = 5kBT nm−3 may be interpreted as the minimum ‘pressure’, exerted by the
depleting particles of an implicit solvent, required to prevent a high aspect-ratio fibril
from falling apart. Note also that during all simulations, both fibril ends were ‘frozen’
(see Section 6.4 for an explanation) and, in addition, one of them was grafted (held
fixed) in space.

extending from one extreme end to a cross-section located 4.5 × 67 nm away
where the fibril was just as dense as near its middle and therefore able to of-
fer the maximum resistance to bending stresses. These portions of the TC
molecules at the grafted end were kept ‘frozen’ throughout the simulation, that
is, they were not allowed to relax. Similarly, the other end of the fibril (of similar
length 4.5× 67 nm) was kept frozen. The only difference being that transverse
loads were applied at a point of the fibril just before that frozen end in order to
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Figure 6.16: Simulation snapshot. Side view of the relaxed unloaded crystalline fib-
ril obtained after the simulation. The wavy profile displayed is in fact right-handed
writhing of the bundle as also evidenced by the end view of this same fibril state dis-
played in Figure 6.17. Note that the profile of the fibril before the start of the simulation
was perfectly straight. The portions of the fibril near its ends (those colored green)
where not allowed to thermally relax. Each portion is of length 4.5 × 67 nm along the
fibril. The left end is the grafted end.

Figure 6.17: Simulation snapshot of the same fibril as in Figure 6.16. End view of the
relaxed unloaded crystalline fibril displaying its right-handed writhe. Note that the axis
of this writhing fibril is not oriented along the z-axis. The portions of the fibril near
its ends (those colored green) where not allowed to thermally relax. Each portion is of
length 4.5D along the fibril. The left end is the grafted end.

produce bending of the main stem of the fibril (that is, the part of the fibril be-
tween both frozen ends). The frozen fibril ends are often shown colored green,
for example in Figures 6.15-6.17. To further justify our decision to freeze the
fibril’s ends we mention that in an actual laboratory pulling experiment, one
fibril end is glued to some fixed substrate and the other to a force probe, such
as an AFM cantilever tip (see, for example, Refs. [113, 114]). Thus both of them
take little part in the deformation of the fibril itself while it is being stretched.

The first few simulations of the fibril were performed with zero load but
with cohesive energy density vA set to various chosen values starting from zero
in order to determine the least value necessary to maintain the starting dimen-
sions of the fibril throughout the simulation. As expected, for very small values
of vA the fibril degenerated into a random network blob despite the fact that
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Figure 6.18: An AFM micrograph from Ref. [111] clearly displaying the helical con-
formation of collagen fibrils: contact mode AFM error signal image of digital tendon
collagen fibrils (scale bar, 2.5 µm) (higher magnification, inset).

it remained fully cross-linked, while for larger values a stable slender fibril was
achieved (see Figure 6.15).

To gain a quantitative measure of how far from its perfectly crystalline state
the fibril evolved, we introduced a new quantity, 〈ē〉, called the average accu-
mulated strain which is described as follows: at the beginning of each simula-
tion, when the fibril was in its perfectly crystalline state, imaginary bonds were
designated between every pair of nearest-neighbouring lattice points within
each cross-section of the fibril. This was achieved using a standard Delaunay
triangulation routine [72]. Then the lengths of these imaginary bonds were
tracked throughout the simulation, and 〈ē〉 was computed as the sample mean
of:

ē ≡ Sum of imaginary bond lengths in deformed state

Sum of imaginary bond lengths in perfectly crystalline state
− 1. (6.10)
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This meant that values of 〈ē〉 ≤ 0 obtained at the end of the simulations in-
dicated that a slender cylindrical fibril was achieved, while values of 〈ē〉 > 0
indicated that an unstable fibrillar blob had developed.

Figure 6.15 shows the results of these simulations, which were intended to
search for a suitable value of vA. Notice the rather sharp transition in the value
of ē as vA changes near vA = 5kBT nm−3 (for which ē ≈ 0). This is the value we
chose and used for subsequent bending experiments.

The order of magnitude of vA = 5kBT nm−3 could be tentatively rational-
ized if we considered two straight and parallel TC molecules lying side by side
and at a distance dT apart. If dT < 2rc, where rc is the radius of the cylin-
drical attractive potential surrounding the bonds of each TC molecule, then,
by Equations (6.2) and (6.4), the binding energy between the TC molecules

is Eb = −vAℓc

(

2r2c arccos
dT

2rc
− dTrc

√

1−
(

dT

2rc

)2
)

, where ℓc is the length of

the TC molecules. Bending fluctuations of the TC molecules will therefore
need enough thermal energy to overcome this binding energy and drive the
molecules completely apart. Supposing one TC molecule remains fixed while
the other is allowed to fluctuate, we may invoke the equipartition theorem to
estimate how much thermal energyQ is required for complete unbinding, thus
multiplying kBT/2 by the number of independent degrees of freedom of the
fluctuating TC molecule. A WLC of persistence length ℓp may be considered
to be equivalent to a FJC of the same contour length but with bond length 2ℓp.
Since our model TC molecules had ℓp = 8 nm and ℓc ≈ 300 nm (see Table 6.1),
the number N of bonds of the equivalent FJC is 300 nm/(2 × 8 nm) ≈ 19. The
number of independent degrees of freedom of a FJC with N bonds is 2N + 3
(that is, the total number of translational degrees of freedom, which is 3 times
the number of vertices, minus the number of fixed length constraints of each
bond). Hence Q = (2N + 3)kBT/2, which must be greater than or equal to |Eb|
expressed above in terms of dT. For this to be true, we solve for dT and obtain
the condition dT ≤ 13.96 nm. The upper limit 13.9 nm of the distance dT be-
tween TC molecules compares well with the hexagonal lattice parameter of the
fibril crystal structure, aH ≈ 15 nm (see Figure 6.11).

With the value of vA now determined, we subsequently performed simula-
tions with zero applied transverse force. Snapshots of the resulting fibril con-
figuration are shown in Figures 6.16 and 6.17. In these snapshots, the fibrils
appear to have developed an effective right-handed writhe. We discuss this
unexpected result in the next section.

Values of relevant parameters used for the moves of the MCMC simulation,
and the typical acceptance rates obtained are listed in Table 6.2. The lowest
acceptance rates are due to the tight confinement of the TC molecules in the
narrow space occupied the fibril. Therefore many moves led to overlap be-
tween the TC molecules and their subsequent rejection. For fibrils with low
cohesive energy density, for which swollen random networks form (see Fig-
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ure 6.15), these acceptance rates are typically much higher and close to 70%.
In this study, only fibrils subjected to transverse bending forces were sim-

ulated. It is not difficult to use the same model to study other deformation
modes such as stretching and twisting. For stretching, one need only direct
the force along the z-axis, while for twisting, one needs to apply a torque in-
stead of a force while optionally constraining the movement of the fibril tip
along the z-axis. Figures 6.20, 6.22, and 6.21 show respectively the values, as
the simulation ran, of the x, y, and z coordinates of the point B near the end
of the fibril where the transverse force of magnitude F was applied to bend
the fibril. The other end A was grafted at the origin (see Figure 6.19). The cor-
responding values for the total sum of bending energies of the individual TC
molecules of the fibril are shown in Figure 6.23.

Parameter Value

Fibril Diameter ≈ 15.00 nm
Fibril Length ≈ 1.6272µm
Number of WLCs 219
Maximum Number of WLCs per Cross-section 58
Number of Bonds per WLC 113
Bond Length 8.0/3 nm
WLC Contour Length ℓc 301.333 nm
WLC Persistence Length ℓp 8.0 nm
Bond Radius r 0.5 nm
Cohesive Distance rc 0.7 nm
Cohesive Energy Density vA ≈ 5kBT nm−3

Table 6.1: Table of parameters of the simulated fibril. Each TC molecule was repre-
sented as a discrete WLC.

6.5 Discussion

We now collect and interpret the central findings from our mechanical experi-
ment on the collagen fibril.

6.5.1 Fibrillar Young’s Modulus

Values of the Young’s modulus of the fibril for the various bending forces con-
sidered are shown in Table 6.3. These values were obtained by using a least-
squares method to fit the bent profile of a Timoshenko beam of the same di-
mensions and isotropic medium subjected to the same bending forces as the
fibril. Values obtained are within the range of measured laboratory values of
Young’s moduli reported in the literature for hydrated reconstituted collagen
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Figure 6.24: The elastic constants of the fibril are estimated by means of a least-squares
fit of a similar sized Timoshenko beam of circular cross-section bent in the same way
by the force F as for the fibril. In this figure, the red points are projections onto the xz-
plane of selected points of the fibril. The smooth blue curve is the numerical solution to
the Timoshenko beam differential equations given in Section 2.10. The Young’s mod-
ulus E and shear modulus G, which parameterize these differential equations, were
varied using the MATLAB R© minimization routine lsqcurvefit so that their numeri-
cal solution might fit, in a least-squares sense, to the red points of the simulated fibril.
Some results are given in Table 6.3. Unfortunately, this procedure is not very sensitive
values of the shear modulus within a very large range: 10−5 MPa to 10−2 MPa.
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MCMC Move Type Distribution Proposal
Probability

Typical Acceptance
Rate1

Crankshaft Rotation
Angle

Uniform;
Range:
[−45◦, 45◦]

10.00% 85%

Driver Node
Displacement

Spherical;
Radius: 1 Å

12.50% 40%

Rigid Cross-section
Rotation Angle

Uniform;
Range:
[−0.5◦, 0.5◦]

50.00% 7%

Rigid Cross-section
Displacement

Spherical;
Radius: 1 Å

0.50% 1%

Rigid Cross-link Rotation
Angle

Uniform;
Range:
[−0.5◦, 0.5◦]

1.00% 24%

Rigid Cross-link
Displacement

Spherical;
Radius: 1 Å

1.00% 27%

Cross-link Drag
Displacement2

Spherical;
Radius: 0.5 Å

25.00% 94%

Table 6.2: Table of relevant parameters and acceptance rates for the MCMC move types.

aThis applies TRACTRIX to a randomly chosen cross-link, effectively pulling on it and dragging
the chains to which it is linked.

bThese rates are specific to the fibril in Table 6.1, and are defined as the percentage of proposed
moves that were accepted. For vA ≪ 5kBT nm−3 acceptance rates can be much higher (close to
70%) since then the TC molecules have more free space to move about without rejection.

fibrils [113, 115]. However, we also note that there have also been reports of
measurements of Young’s moduli as high as a few GPa for dried native fibrils
[113, 116, 117, 81]. Thus our simulations’ modulus values are towards the lower
end of the experimentally observed stiffnesses for collagen fibrils.

The shear moduli, which should also have been obtainable from the Tim-
oshenko beam analysis we employed have been omitted from Table 6.3 since
our fitting procedure was largely insensitive to the value of the shear modulus
- this may be a result of the fact that the fibril is actually not sheared very much
in the tip loaded configuration in our simulations. However, our values of the
shear modulus ranged from 10−5 MPa to 10−2 MPa.

Also since the fibril itself fluctuates, taking on different conformations
about an average bent profile, it was difficult to obtain satisfactory Timo-
shenko beam fits to any single fibril snapshot. Furthermore, none of the (en-
semble) average bent profiles themselves were confined to a single plane ei-
ther, as it is for a Timoshenko beam. Therefore the fits were made to the pro-
jection of the profile snapshots on the x − z plane. These issues reveal some
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force /pN E /MPa

0.21400 48.3± 0.1
0.42800 43.1± 0.1
0.64200 68.2± 0.1
0.85600 46.5± 0.1

Table 6.3: Table of elasticity constant estimates for various bending forces of the simu-
lated fibril. These estimates were found by a least squares fit of the bent profiles of the
fibril by those of a Timoshenko beam of the same dimensions subjected to the same
forces. Further simulations would need to be performed to ascertain the relationship
of the fibril’s Young’s modulus with applied force.

essential shortcomings of the conventional Timoshenko beam - indeed, we
conclude that it is not a satisfactory model, as it is unable to capture the full
mechanics of the collagen fibril.

6.5.2 Writhing and Residual Entropic Effects

With the exception of atomistic models [88, 81], almost all existing models of
bundles of polymers and collagen fibrils assume negligible fluctuations or no
entropic contributions to fibril elasticity by taking a variational approach. It is
our contention that the thermal fluctuations of the constituent TC molecules
and the long-wavelength fluctuations of the entire fibril are also important,
contributing to elasticity, at least for small strains and for small diameters of
the fibril. This behaviour is apparent from the simulation snapshots of Fig-
ure 6.19, which show that the unloaded fibril can fluctuate between various
wavy conformations [and also sometimes goes into a helical conformation
(Figure 6.17) and 6.16]. Also the undulations in the fibril are straightened out to
an extent depending on the magnitude of the bending force (see for example,
Figure 6.20). Figures 6.19 show that the magnitude of undulations of the fibril
axis are increasingly reduced as it is subjected to larger transverse tip loads.
In this sense, there are effective modes in the fibril that resemble the simple
bending modes in semi-flexible chains which are responsible, for instance, for
the entropic elastic response of actin and single tropocollagen chains. Even in
this fairly large supramolecular structure, collective long-wavelength modes
arise which remain subject to thermal fluctuations and continue to contribute
to the low-strain response.

Our findings, however, do not imply that the entire fibril behaves effectively
as a worm-like chain or a semi-flexible chain both of which have no internal
structure [113]. Rather our simulations also indicate that the cross-linked ar-
rangement alone of the TC molecules within the fibril may induce an intrinsic
curvature, twist or writhe within the fibril, even though the constituent model
TC molecules themselves contain no such intrinsic features. Recall that we
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modeled the TC molecules as homogeneous discrete worm-like chains. This
phenomenon hints at a possible design principle of Nature, that by means of
special arrangements of simple building blocks, new properties can emerge in
the larger scale structures made from these building blocks that are not neces-
sarily intrinsic to the building blocks themselves. This, indeed, is what was
already borne out by the simple architectures consisting of three WLC’s we
considered in Chapter 5. In contrast, recently a macroscale writhing effect in
bundles of polymers, originating from the helicity of the constituent polymers,
has been proposed [118]. Intrinsic curvature is apparent in our model from the
snapshots of Figure 6.19 where even though the fibril is bent, it is considerably
skewed to one side transverse to the bending force, and the one-sidedness of
this conformation persisted throughout the simulation. This observation of
intrinsic curvature appears also to be consistent with AFM images of fibrils
[111] obtained in the laboratory. We note however the possibility that in most
AFM slides the fibrils under observation are necessarily forced onto a flat plane
so that their intrinsic curvature is lost and may go undetected. The crystal
structure specified by Orgel et al. [4] which was determined by synchrotron
X-ray analysis of rat-tail collagen in situ, and that we used to generate the ini-
tial state of the fibril already has a chiral character to its arrangement. The
twist stored in this crystal structure could be the source of the intrinsic curva-
ture and twist of the fibril. However, we note that our model for tropocollagen
could be incomplete due to the fact that we used an achiral model for the TC
molecules which themselves could be intrinsically chiral.

6.5.3 Possible Additional Contributions to Fibril Mechanics

Due to the smooth continuous cylindrical geometry of the interaction poten-
tials used for our model TC molecules, the shear resistance in the fibril, which
is the force that nearest neighbouring TC molecules feel when they slide past
one another, is small, being proportional to the rate of change in overlap po-
tential with change in relative position of the TC molecules. The only things
keeping the TC molecules from sliding off past each other are the rigid, but
freely-jointed cross-links. In reality, shear resistance is a result of the discrete
intermolecular bonds between the TC molecules that break and reform when
TC molecules slide past one another. Thus, to first order, the shear force must
be proportional to the length of contact line between two nearest neighbour-
ing TC molecules. Using this picture, Buehler [27] has proposed a model of
collagen fibrils that takes these considerations into account, postulating two
regimes of intermolecular shear: first, a homogeneous shear regime, in which
the shear force is proportional to the contact length between parallel neigh-
bouring fibrils, and acts uniformly along the entire contact line, and second,
a slip-pulse propagation regime which is due to the nucleated breaking of in-
termolecular bonds, and which evolves in a manner akin to the propagation
of cracks in bulk materials. In future work we will consider homogeneous in-
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termolecular shear, for which it would be more advantageous to use spherical
overlap potentials located at various fixed positions along the contour of each
TC molecule. Or perhaps another way such shear forces could be built into
each TC molecule would be through a predetermined sequence of dipoles sit-
uated along the contour of the TC molecule, which coarse-grains the zwitteri-
onic arrangement of amino-acids along the TC molecule, and therefore intro-
duces some heterogeneity into the TC molecule. Studies of such charge clus-
ters along the contour of TC molecules have been undertaken and are thought
to lead to the staggered arrangement of the TC molecules with respect to each
other [94, 119]. Note also that dipoles are thought to be the source of the ob-
served piezoelectricity of collagen fibrils [5].

Understanding how bending occurs in fibrils in important for the biolog-
ical functions of cells, such as fibroblasts and chondrocytes which have been
observed to bend and pull on fibrils [120]. The results of our bending exper-
iments in the simulations indicate that our model fibril is very compliant to
transverse forces, that is, it takes forces of very little magnitude to bend it, de-
spite the fact that it is fully cross-linked. This may point to some significant
departures of actual values of molecular parameters from the ones we have
been using. A likely culprit is the persistence length ℓp of the TC molecule: we
have been using a nominal value of ℓp = 8 nm (see Figure 6.2) which is on the
lower end of the range of reported measured values (14.1 ± 7.6 nm [7]). In fu-
ture work, we will investigate the changes in bending modulus with changes
in persistence length of tropocollagen.

6.5.4 Molecular Crimp and Length Storage

One advantage that computer simulations offer is a higher resolution of the
conformations of the TC molecules within the fibril which would otherwise
be difficult to observe in the laboratory. We find that upon thermal relax-
ation and owing to their great flexibility, the individual confined TC molecules
adopt short-wavelength crimped conformations superimposed on a nearly
full-length end-to-end distance conformation (see Figure 6.25). We surmise
that they are able to afford this crimped conformation, first of all, due to
the ambient temperature, and secondly, by compensating for the increase in
bending energy with a lowering of the total fibril energy by sticking closer to
(or aligning with) their neighbours. This molecular crimping (as opposed to
the macroscopic crimp of entire collagen fibers) is unlikely to show up in X-ray
scattering images, but may nonetheless play a role in the low-strain mechan-
ical response. As such, they could be responsible for some of the softness of
our fibrils.
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Figure 6.25: A section of the simulated collagen fibril before (right) and after (left)
thermal relaxation. Upon thermal relaxation, and owing to their great flexibility, the
individual confined TC molecules adopt short-wavelength crimped conformations su-
perimposed on a nearly full-length end-to-end distance conformation.
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6.5.5 Appropriateness of Timoshenko Framework

As we have suggested, the Timoshenko beam model is neither complete nor
sufficient to represent the full mechanical analysis of the fibril. We suggest that
a good analytical model for collagen must account for the intrinsic curvature
and twist of the fibril, anisotropy and the possible coupling between stretch-
ing, twisting, and bending. It must also treat fluctuations of its constituent
TC molecules. This, to our knowledge, has not been achieved or attempted
and therefore, the appropriate continuum model to represent collagen does
not yet exist. However, with these simulations, we now nonetheless have ac-
cess to its full response. Existing theories of polymers that take some of these
features into account are the double-stranded DNA models [121] and the spe-
cial Cosserat elasticity models [122, 111], and these we suggest are promising
starting points for an effective model of the collagen fibril.

6.6 Summary and Outlook

In this chapter, we have described a MCMC computational framework that
enables various mechanical experiments to be performed on a mesoscopic
model of collagen fibrils. While we have achieved what we set out to do, yet,
at the same time we realize that our quest for a full understanding of the me-
chanics of collagen fibrils has only just begun. So far our focus has only been
on bending collagen fibrils. Further (numerical) mechanical experiments and
structural investigations will need to be performed on the collagen fibril in or-
der to establish the essential aspects of its mechanical behaviour.

Simulations of the collagen fibril were necessitated by the current lack of an
existing analytical model for collagen fibrils that captures all the relevant me-
chanical aspects of the fibril. This need for simulation has been only further
reinforced by our own inability to fit the mechanical behaviour derived from
the simulation of our model fibril with the Timoshenko beam model, which
features only bending, shear, and axial stretching moduli. Our results suggest
that a good coarse-grained model for the collagen fibril must also include he-
licity and transverse anisotropy. It is likely that more fit parameters will yield
better fits, but this work is not about minimal models, it is about a faithful
model.

TRACTRIX, the methodology set out here, is designed with collagen in mind.
But it is, in fact, much more widely applicable. In particular, with self-
avoidance and topological constraint algorithms to bolster it, it promises to
be even more powerful as a simulation technique whenever polymers are in-
volved. Several groups, recognizing the far-reaching possibilities of the moves
that TRACTRIX provides, have already expressed their interest in it, and we look
forward to seeing to what other uses it will be put in the future.



6.A Jacobian Calculations 123

6.A Jacobian Calculations

Here we outline the technicalities involved in the computation of the Jacobian
determinant detJAB for TAB(R).

Owing to the nonlinearity of the TA(∆)-based transformations, a simple
closed-form expression for their Jacobian determinants is hard to obtain. We
therefore choose to determine the elements of the corresponding Jacobian
matrices and then compute their determinants numerically, using for exam-
ple a fast LU-decomposition routine. However, in the case of TAB(R) a few
simplifying shortcuts can be exploited to minimize the total number of evalu-
ations.

First of all, we recognize that in d-dimensions the Jacobian matrix JAB can
be written down as block matrix, each block being a d × d matrix. The square
block located at the i-th block row and j-th block column of JAB is the matrix
∂r

(s+1)
i

∂r
(s)
j

, where r
(s)
j is the position of the j-th mass-point in the current state s

of the system, and r
(s+1)
i is the position of the i-th mass-point in the newly

proposed state s+ 1 of the system.
Next, we note that the number of block rows (or block columns) of JAB

need only be as large as the number of mass-points in the system that are ac-
tually moved during the simulation step, since the stationary mass-points only
contribute an overall factor of unity to the Jacobian determinant.

Furthermore, knowing that the absolute value of the determinant of a ma-
trix does not change when any two of its rows (or columns) are interchanged,
we may always rearrange the rows and columns of JAB so that its first few rows
and columns correspond only with the displaced driver nodes of TAB(R).

Recalling the transformation steps of TAB(R) from Subsection 6.3.4, we find
that the new position of each displaced driver node is completely independent
of all the other mass-points in the system. This independence assigns a zero
to each matrix component in these first few rows and columns, except for the
d × d blocks along the diagonal of a sub-matrix at the top-left corner of JAB.
Each block on the diagonal is equal to O(θ, û) if R is a rigid-body rotation [see
Equation (6.9)], or equal to the d-dimensional identity matrix 1d if R is a trans-
lation [see Equation (6.8)]. Consequently, this entire sub-matrix contributes a
trivial factor of unity to detJAB since detO(θ, û) = det1d = 1.

The above argument applies not only to the displaced driver nodes but also
to any other mass-point in the system whose position is transformed by the
direct application of R.

Now, with the driver nodes accounted for, JAB can be reduced in size so
that its rows and columns now correspond only with the positions of those
mass-points belonging to the TA(∆)-deformed linear chain fragments con-
nected to the driver nodes. Again, as far as TAB(R) is concerned, the new po-
sition of any mass-point belonging to a given linear fragment is completely
independent of any mass-point on any other chain in the system. Therefore,
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the rows and columns of this reduced Jacobian matrix may once again be re-
arranged in order to group together all block rows and block columns corre-
sponding to the same linear fragment. This process leads to yet another block-
diagonal matrix with the size of each square block on the diagonal being d
times one less than the number of mass-points (recall that each linear frag-
ment had one driver node which has already been accounted for above) on its
corresponding linear fragment. The determinant detJAB is therefore finally
reduced to the product:

detJAB =
∏

A

detJA

∏

F

detJF, (6.11)

where the first product is of all Jacobian determinants JA of the transforma-
tions TA(∆) on all anchored linear chain fragments A and the second product
is of all Jacobian determinants JF of the transformations TF(δ) on all free lin-
ear chain fragments F (see subsection 6.3.4).

The computation of the Jacobian determinant detJA of TA(∆) has already
been outlined in Chapter 4 while that of detJF is given below.

Now the Jacobian determinant detJF (for the TRACTRIX transformation for
a free chain) is relatively easy to find: for as far as TF(δ) is concerned, the new

position r
(s+1)
i of any mass-pointPi on the linear chain fragment is determined

only by the positions of all mass-points along the chain between Pi and the
driver node P0 inclusive (see Chapter 4):

r
(s+1)
0 = r

(s)
0 + δ,

r
(s+1)
i = χ

T
(r

(s)
i , r′

(s)
i−1, r

′(s)
i−1 − r

(s)
i−1, f), (6.12)

where here the index i runs over the mass-points from 1 toNf , andNf is the to-
tal number of bonds of the linear chain. The function χ

T
is the discrete tractrix

transformation defined by

χ
T
(r

(s)
i , r

(s)
i−1, δi−1, f) ≡ pi + 2wi

ti ·wi

wi ·wi
(6.13)

where pi = r
(s+1)
i−1 − ti and wi = fr

(s)
i + (1 − f)r

(s)
i−1 − r

(s+1)
i−1

11. This gives rise
to a lower d-block-triangular Jacobian matrix if the d-block rows and d-block
columns are arranged in the same order in which their corresponding mass-
points appear along the linear chain, beginning with the mass-point nearest
the driver node, and going from top to bottom (for the rows), and from left to
right (for the columns).

11The free parameter f featured in these equations is one whose value may be chosen before
the start of the simulation and thereafter held constant. Qualitatively, f controls the amount of
translation, as opposed to rotation, that each bond undergoes during the action of TF(δ): the
higher its value, the less each bond rotates and the more the chain is merely rigidly translated.
Thus, by adjusting the value of f to match the stiffness of the linear chain under consideration
one can, in principle, improve acceptance rates of the simulation.
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Then detJF is simply the product of determinants of the d-block matrices
along the diagonal:

detJF =

Nf∏

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂r
(s+1)
i

∂r
(s)
i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(6.14)

where again the index i runs over all mass-points of the free linear chain (ex-
cluding that of the driver node P0 which has already been accounted for above,
and which otherwise would have contributed a trivial factor of unity to the de-
terminant).

For further details, we refer the reader to the C++ codes implementing the
above formulae. These codes are provided as supplementary material and can
be found at Ref. [65].
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C H A P T E R 7

CONCLUSIONS AND OUTLOOK

The central question we wanted to address at the beginning of this thesis
was whether we may understand the mechanical response of collagen in a
manner that respects and exploits its multiple length-scales. In this chapter
we briefly highlight the successes we made towards achieving this goal, and
also suggest new directions for further research.
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7.1 Conclusions

In this thesis, we reviewed (in Chapter 2) the salient theoretical aspects of
the statistical mechanics and continuum mechanics of biopolymeric mate-
rials that were relevant to our cause: namely, the multiscale modeling of the
mechanics of collagenous tissue.

We also reviewed Markov Chain Monte Carlo methods (Chapter 3) and
successfully developed a new Markov Chain Monte Carlo technique, namely
TRACTRIX, for simulating the mechanics of cross-linked networks of polymers,
particularly networks of freely-jointed chains or discrete worm-like chains
(Chapter 4). This method is able to preserve, throughout the simulation, the
network’s topology (with or without closed loops), while at the same time pre-
serving the fixed contour length requirements and local inextensibility con-
straints of the linear chain fragments that make up the network. Thus one
is able to fully exploit the softest modes of deformation (that is, the bending
modes of the constituent linear chains of the network), which are most sus-
ceptible to thermal agitation and therefore most relevant for the low strain me-
chanics of these networks, without ever having to stretch the individual bonds
that should remain rigid during the deformation.

TRACTRIX was validated through particular tests we conducted: we simu-
lated various freely-jointed chain architectures whose properties could be pre-
dicted theoretically (Chapter 5). The results of these simulations were in ex-
act agreement with their theoretical predictions. Furthermore, for single stiff
worm-like chains we found close agreement of the end-to-end distance proba-
bility distribution (obtained through simulation) with its theoretical estimates
(Chapter 5) evaluated using the semi-flexible chain model [32].

Results of other simulations of bundles of a few discrete worm-like chains
hinted at a design principle underlying the cross-linked macromolecular
structures found in nature: that nature may create supramolecular filaments
of tunable effective stiffness by using only two kinds of molecules at its dis-
posal: long identical chain molecules and short cross-linking proteins applied
in varying concentrations.

Finally, in accordance with our central goal, we also used TRACTRIX to sim-
ulate a cross-linked collagen fibril, which is a special case of an anisotropic
network of polymers. This simulation demonstrated the unique capability of
TRACTRIX to effect moves that deform several polymers at once in a controlled
way. In this particular case, polymers spanning the entire cross-section of the
fibril could be deformed enabling the efficient transversal of phase space.

In order to do this simulation, we developed a mesoscopic computational
model for the collagen fibril which took into account a recently proposed [4]
crystalline structure governing the arrangement of tropocollagen molecules
within the fibril. The tropocollagen molecules were themselves represented as
discrete worm-like chains with nominal values for its dimensions and persis-
tence length, all of which were taken from experimental measurements (see
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Table 6.1). Furthermore, the bonds of the tropocollagen molecules were en-
dowed with a hardcore interaction potential to prevent any two tropocollagen
molecules from occupying the same region of space, and with an attractive
overlap potential which aided in maintaining the alignment of neighbouring
tropocollagen (TC) molecules with each other, thus effectively maintaining a
high aspect ratio collagen fibril. By performing numerical experiments that
mimicked the bending of the fibril and comparing the resulting bent profile
with that of a tip-loaded cantilever of the same dimensions, we were able to
obtain estimates of the bending modulus of the collagen fibril.

7.2 Outlook

Our research sets the stage for further investigation into the origins of the me-
chanics of collagen fibrils. In this section, we therefore suggest possible new
directions for further research. Along the way, we also outline some of the lim-
itations of TRACTRIX that may need to be examined and overcome.

7.2.1 Limitations and Suggestions for TRACTRIX (Chapter 4)

• We showed, in Chapter 4, that despite its advantages TRACTRIX, by
itself, is unable to maintain the ambient isotopy of three-dimensional
cross-linked networks which possess closed loops. This means that any
entanglements between closed loops, that ought to remain permanently
trapped within a network, can become ‘undone’ during the simulation
of the network by TRACTRIX. This unphysical feature can be prevented
by making use of a suitable topological invariant to determine whether
a MCMC move violates ambient isotopy or not. Though we suggested
an algorithm that uses the Gauss Linking Number as the topological
invariant, we admit that its use only partially solves this problem.
Therefore further research is required to identify or construct a universal
topological invariant that can be efficiently computed to fully address
this problem.1

• Another obvious limitation of TRACTRIX is that, having been designed
as a MCMC method, simulations that employ it are unable to provide
any dynamic information at all. Nevertheless, because TRACTRIX moves
are somewhat similar to truly physical moves (for example, the dragging
of a polymer), it is plausible that TRACTRIX could be calibrated against
real time so that TRACTRIX could then be used as input for Kinetic

1This problem has been submitted to certain members of the Mathematics Department at the
Eindhoven University of Technology, who have shown serious interest in the problem, resulting in
a research proposal aimed at solving this very problem.
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Monte Carlo algorithms that utilize this time calibration to provide time
rate information. This could turn out to be a viable alternative to MD
simulations of polymeric networks, and enable, for example, the study
of fibril deformation with loading rate and the measurement of the
viscoelastic properties of the fibril. MCMC time-calibrations have been
performed for some other types of moves often used in simulations of
point particle systems [50, 123].

• TRACTRIX is in essence a constraint algorithm, hence it is not designed
to efficiently avoid overlap between the different bonds of polymers. In-
deed we saw in Chapter 6 that when excluded volume interactions are
enforced, very low acceptance rates for TRACTRIX moves are obtained,
which led to long simulation times in order to obtain good statistics.
This undesirable feature is a consequence of the dense structure of TC
molecules within the fibril which increases the likelihood for overlap
with other TC molecules whenever any TC molecule is deformed.

We expect that by combining TRACTRIX with other specialized moves,
such as the Fixed-Ends Configurational-Bias moves or Recoil-Growth al-
gorithm [50], one might be able to improve these acceptance rates, since
these other moves are designed (exploiting the so-called super-detailed
balance principle) to more efficiently avoid overlap.

• TRACTRIX may provide an advantage over existing free-energy minimiza-
tion methods [124] for computing the mechanical response of polymeric
networks (such as random isotropic networks) to applied stress. This is
because the full network architecture is retained in the simulation along
with the conformations of the linear chains interlinking the cross-link
positions, hence no additional model need be introduced to describe
the free-energy of the network. Moreover, since cross-links are also al-
lowed to fluctuate about their average positions, the effects of both non-
affinity and cross-link fluctuations to the elasticity of the network can be
explored.

7.2.2 Collagen Fibril (Chapter 6)

• The values of the Young’s modulus of the collagen fibril obtained from
our simulation were of the order of a few 10 MPa. These values are in
qualitative agreement with those lying at the lower end of the range of
measured experimental values of Young’s moduli reported in the liter-
ature for reconstituted collagen fibrils [113, 115]. The question there-
fore arises as to what can be done in order to reach the values of Young’s
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modulus that lie at the higher end of the spectrum. Possible directions
include:

1. increasing the bending modulus κ of the TC molecules (see Sec-
tion 6.2.1),

2. tuning the radius rc or the cohesive energy density of the attractive
overlap potential (see Section 6.2.3),

3. tuning the radius r of the hardcore potential (see Section 6.2.2) to
decrease the spacing between the TC molecules within the fibril,

4. modifying the interaction potential between TC molecules so as to
produce a shear force proportional to the contact lengths between
neighbouring TC molecules, in a manner similar to the continuum
model of Buehler [27]. This may be done by using spherical over-
lap potentials centered at various fixed positions along the contour
of each TC molecule. This procedure will invariably introduce an
additional length scale — the average contour distance between
these attractive spherical centers — through which neighbouring
TC molecules will have to slide to overcome the energetic barriers
imposed by these potentials.

• Since the building blocks of tropocollagen molecules are amino acids,
which are dipolar or develop a partial charge separation when dissolved
in aqueous solution, one way to introduce shear forces between neigh-
bouring tropocollagen molecules without having to introduce additional
degrees of freedom, would be to assign to each tropocollagen molecule
a predetermined sequence of dipole moments directed along the bonds
of the TC molecule, which coarse-grains the zwitterionic arrangement of
amino-acids along the TC molecule, and therefore introduces some het-
erogeneity into the TC molecule. Various dipolar sequences have been
proposed for tropocollagen [94, 119] which could serve as a starting point
for such an investigation. Such a study could at the same time prove very
useful in determining the resulting pyroelectric and piezoelectric prop-
erties of collagen fibrils [5].

• So far our tests have mimicked only the bending deformations of the
fibril. Further tests that mimic the stretching of the fibril will need to be
performed in order to produce force-extension curves for comparison
with those obtained experimentally [114]. This would serve as a means
of further validating our computational model.
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• It is now easy to extend the current model to study the twisting response
of collagen fibrils. All that is required is to apply a torque instead
of a force. For these studies it will be instructive to also endow the
tropocollagen molecules with a chiral interaction potential reflecting
their intrinsic chirality which originates from their helical structure.
Recently, theoretical models of bundles of chiral or achiral polymers
[106, 118] have been proposed. These models could serve as a means of
comparison and validation for our computational model.

• A significant amount of backbone (or axial) fluctuations of the fibril were
observed during the simulation. This is most likely due to the small di-
ameter we chose for the fibril. It would be instructive to determine how
quickly these fluctuations are suppressed with the increase in diameter
of the fibril. However, the issue of lower acceptance rates will be a draw-
back to this investigation unless it is somehow addressed as suggested in
the last bulleted item of the previous subsection.
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SUMMARY

Multiscale Structure and Mechanics of Collagen

While we are 70% water, in a very real sense collagen is the stuff we are made
of. It is the most abundant protein in multicellular organisms, such as our-
selves, making up roughly 25% of our total protein content. If you have ever
wondered how the human body holds together all its different parts in shape,
here is your answer: it is largely due to collagen. Collagen is the main ingre-
dient of so called connective tissue which serves to hold the various parts of
the body together. In fact, without collagen we would quite literally fall apart.
Some genetic diseases, such as Osteogenesis Imperfecta (brittle bone disease)
and Ehlers Danlos syndrome (characterized by abnormally stretchy skin and
loose joints), are known to be the result of defective collagen.

One can see why it is necessary to achieve a good understanding of how
the strength or mechanical properties of collagen come about, and how it con-
tributes to the state of well-being of an individual. This is essentially the aim
of my research.

Despite its relative abundance and about a century of research by many sci-
entists, many features of collagen remain not fully understood. For example, it
has been difficult to ascertain the precise structure of collagenous tissue. Nev-
ertheless, a lot of progress has been made during the past couple of decades.
Understanding the internal structure of collagen is important since we expect
its strength to largely depend on its structure. The tools that physicists use
to figure out the structure of biological tissue include advanced microscopes,
such as the Atomic Force Microscope and the Electron Microscope, and X-ray
diffraction analysis, in which one tries to determine the collagen structure at
very small length scales (a billionth of a meter) by observing the fringe patterns
made when an X-ray beam is scattered by the atoms that make up collagen
(see Figure 1.2). These studies have revealed that there are 28 different types
of collagens. The types are numbered with roman numerals I - XXVIII.

In my work I have focused on the most common form of collagen, namely
Type I collagen, which occurs mostly in scar tissue, bone and tendon. Tissue
made from Type I collagen is made up of atoms that are arranged in such a
way that a clear hierarchical structure emerges. This hierarchical organization
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is illustrated in Figure 1.1. The hierarchy can be described as follows: approx-
imately 10-20 atoms are grouped together to form amino acids (there are 21
types of amino acids which, incidentally, nature also uses to encode our ge-
netic information). About a 1000 amino acids of mainly two types, Glycine
and Proline, are stringed together in a special repeating sequence to form poly-
mers, or strands, called alpha helices (which, as the name implies, are shaped
like helices, the shape of a spring) which are left-handed. Every three alpha
helices associate with one another in a braided conformation that is a right-
handed triple-helix called tropocollagen (see Figure 1.1 for an image)2. This is
the basic building unit of collagen tissue. Certain cells of our bodies, called fi-
broblasts, are responsible for manufacturing tropocollagen molecules. Inside
the body, after a fibroblast makes a tropocollagen molecule, it extrudes the
molecule and aids in laying the tropocollagen molecule among other already
existing tropocollagen molecules in order to form a long fine bundle known as
a fibril. This process can also occur outside the body in the laboratory, unaided
by fibroblasts but merely driven by thermal agitation at a particular range of
temperatures. This is an example of a process known as self-assembly. The ar-
rangement of tropocollagen molecules within a fibril is ‘staggered’, somewhat
similar to the arrangement of bricks in a brick wall.

In the body, many fibrils occur lying side by side and bundled together to
form fibers which are then cross-linked to form part of the connective tis-
sue. Special proteins, known as glycosaminoglycans (GAGs) are responsible
for binding the fibrils together. For fibrils self-assembled outside the body and
in the absence of GAGs, fibers do not form, but rather a network of fibrils with
a well-defined diameter emerges.

While the sequence of atoms that constitute collagen alpha-helices is pre-
cisely known, the precise arrangement of tropocollagen molecules within a
fibril is difficult to ascertain by experimental means. This is because tropocol-
lagen is a very light and flexible polymer, hence it is constantly changing its
bent conformation in response to the erratic bombardment of fast moving
atoms of the surrounding medium. This happens even within the closely
packed environment of a fibril. Indeed, as the temperature of the surround-
ing medium increases, the atoms move even faster causing the tropocollagen
molecule to wriggle even more. The consequence of this behaviour is that the
molecule’s resistance to a stretching force increases with increasing tempera-
ture, just as for a rubber band when it is heated for example.3 Therefore the
apparent randomness of the tropocollagen molecule’s wriggling form and mo-
tion affects the strength of collagenous tissue at its various levels within its
hierarchical organization. In order to quantify this behaviour, special mathe-
matical, or computational models, representing tropocollagen need to be pro-
posed.

2In contrast, DNA which is the polymer responsible for encoding our genetic information is a
double helix.

3Contrast this with a metal filament which offers less resistance to stretching when it is heated.
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Quantum Physics gives a precise mathematical description of the physical
laws that govern how moving atoms interact with each other. One might think
that the precise knowledge of all these atoms and how exactly they interact
with each other should straightforwardly lead to the explanation and predic-
tion of all possible phenomena in Nature. This may be true, in principle. How-
ever since all these interactions have been expressed in terms of mathemati-
cal theories and equations whose solutions can be difficult to compute, espe-
cially when such large numbers of atoms are simultaneously involved, physi-
cists propose simplistic models called ‘coarse-grained models’ that are easier
to manage computationally and that are assumed to encapsulate the essen-
tial properties of groups of these atoms. They go on to show by simulations of
these models that the phenomena exhibited by these models do not necessar-
ily have to depend on the internal details of the atoms they represent (nor on
their interactions).

In this thesis, we developed a coarse-grained model of the tropocollagen
molecule that captures the essential features of tropocollagen. These features
include its flexibility, its volume, and its tendency to stick to other tropocol-
lagen molecules that come near it. We then generated an entire collagen fib-
ril using many copies of this simplistic model of the tropocollagen molecule
and attaching (or cross-linking) them to each other at specific points on the
molecules. Then we simulated the entire cross-linked assembly of tropocolla-
gen molecules on a computer at a particular temperature and then attempted
to estimate the strength the fibril.

In our coarse-grained model, each tropocollagen molecule was trans-
formed into a chain of about 100 identical rigid sticks (called bonds) but ball-
jointed at their ends to one another in a linear sequence (see Figure 7.1). The
ease with which the joints could rotate depended on a single quantity known
as the bending stiffness of tropocollagen, which has been measured by exper-
iments in the laboratory. This model is called the ‘discrete worm-like chain’.

Because in reality the tropocollagen molecule is constantly wriggling, it is
difficult to follow precisely its full motion in time, even on a computer. So we
rather chose a statistical treatment. This is where statistical physics and Monte
Carlo methods become very useful. Simply put, Monte Carlo methods repeat-
edly generate sets of random numbers and use them to propose different con-
figurations of the tropocollagen monomers every time. This is somewhat like
throwing dice to obtain different numbers every time they are thrown. How-
ever, the Monte Carlo method that is employed should take care not to change
the lengths of the bonds of the simplistic model, also it must never destroy any
of the cross-links in the system.

Prior to this work it has not been possible satisfy all these constraints during
the simulation of an arbitrarily cross-linked assembly of coarse-grained poly-
mers. In this thesis, however, we invented a Monte Carlo method that over-
comes these issues. We named the method ‘TRACTRIX’, because it is based on
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Figure 7.1: The discrete worm-like chain model is essentially a ‘stick-and-ball-joint’
chain. In this thesis, the model was used to represent the tropocollagen molecule for
use in computer simulations. All the sticks (here colored blue) are of fixed length. The
ease of rotating these sticks with respect to their neighbours depends on the stiffness of
the ball-joints, which is related to the bending stiffness of the tropocollagen molecule.

the construction of a special curve which in mathematics is called a tractrix.
The tractrix is the answer to the following question: “Given two points linked
by a rigid joint, if one point moves along a given curve, how does the other
point move?” (See Figure 4.3 for an example of how a tractrix looks like.) The
details of this method are described in Chapter 4.

In Chapter 5, we demonstrated that TRACTRIX works, that is, it is accu-
rate and trustworthy, because it reproduced expected results for certain model
polymer networks for which we already knew the exact answers.

TRACTRIX was then used to simulate our model of the collagen fibril, and
we were thus able to estimate the strength of the collagen fibril. Other inter-
esting results were also established, such as the shape that the fibril finally set-
tled into, and also the average conformation of its constituent tropocollagen
molecules. Our model and simulations set the stage for further investigation
into the mechanics and other properties of collagen fibrils.

Also this exciting new method TRACTRIXpromises to be useful in simulating
many different types of biological networks, not only collagen.
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