EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

The organization of circuit analysis on array architectures

Citation for published version (APA):

Kees, H. G. M. (1982). The organization of circuit analysis on array architectures. [Phd Thesis 1 (Research TU/e
/ Graduation TU/e), Electrical Engineering]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR112705

DOI:
10.6100/IR112705

Document status and date:
Published: 01/01/1982

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR112705
https://doi.org/10.6100/IR112705
https://research.tue.nl/en/publications/36de5ad2-618f-423e-bc68-3a5b0fbaced3

THE ORGANIZATION OF CIRCUIT
ANALYSIS ON ARRAY ARCHITECTURES

. HGM KEES

THE ORGANIZATION OF CIRCUIT
ANALYSIS ON ARRAY ARCHITECTURES

PROEFSCHBRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF.IR. J. ERKELENS,VOOR EEN
COMMISETIE AANGEWEZEN DOCR HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEDIGEN CP
DINSDAG 25 MEI 1982 TE 16.00 UUR

DOGR

HENDRIKUS GERARDUS MARIA KEES

GEBOREN TE BUDEL

DIT PROEFSCHRIFT IS GOEDGEKEURD DOOR DE PROMOTOREN:

Prof.dr.ing. J.A.G. Jess
en

Prof.dr. P.M. Dewilde.

CONTENTS
0. INTRODUCTION

i. CIRCUIT ANALYSIS

1.0 Introduction
1.1 Time discretization
1.2 Circuit description

1.3 Aspects of complexity and organization

2. PARALLEL PROCESSING MODEL FOR THE CIRCUIT ANALYSIS PROGRAM

2.0 Introduction
2.1 Task graph
2,2 The asynchronous array computer

2.3 Scheduling model

3. SOLUTION OF THE LINEAR EQUATIONS

3.0 Introduction
3.1 Sparse matrices and their associated graph model
3.2 The parallel solution of linear egquations
3.3 The elimination tree
3.3.1 Strategy to order vertices
3.3.2 Procedure e-tree
3.3.3 Properties of the e-tree

3.4 Partitioning

4. §§HEDULING
4.0 Introduction
4.1 scheduling model for the ideal parallel computer
4.2 Job and resource system for the sclution of the linear
equations on the asynchronous array computer
4.2.1 The set of tasks and task graph of the lu-job for
the asynchronous array computer
4.2.2 The set of tasks and task graph of the bs-job for
the asynchronous array computer
4.2.3 Task duration of tasks of the lu- and bs-job
4.2.4 Resource system and resource demands
4.3 scheduling of the solution job
4.3.1 Nonpreemptive list schedules

4.3.2 Detexrmination of FA and F‘I

[t= I A T -

11
11
i1
17
23

27
27
30
36
39
39
43
44
51

54
54
54

58

59

62

69

70

71
73

4,.3.3 Modification on the strategy to determine FA

4.3.4 Modification on the strategy to determine PI
5. RESULTS
5.0 Introduction
5.1 e~tree results
5.2 Clustering results
5.3 Results of scheduling
6. FINAL REMARKS
6.0 Introduction
6.1 Implementation of the N-R Convergence test and the
new time step initialization

6.2 Scheduling of the total computation phase

6.3 Conclusions and concluding remarks

Graph notations
Notations
Index

References

76
86

87
87
87
88
88

100
100

100
101
105

109
111
112
113

0, INTRODUCTION

The design process of intergrated electronic circuits requires circuit
simulation facilities. The circuit analysis program, which computes
the transient response of the designed circuit, is the hasic simula-
tion tool.

The processing of the circuit analysis program requires much computing
time. In order to speed up the design process it is necessary to re-
duce the computing time. Therxe are two possibilities: the improvement
of the organization of the analysis program itself or a faster com-
puter.

The obvious way is to replace the computer hardware by faster hardware
however, very much improvement is not possible because of physical
limits. Another way is the application of more hardware to do things
in parallel.

The organization of a circuit analysis program on such a computer

configuration is the subject of the thesis.

In order to achieve higher throughput computer configurations
with multiple 'central’ processors have been proposed and huilt [0.1]-
[0.4]. If the processors are able to co-operate in processing a single
job then the computer configuration will be called a "parallel compu-

ter"

and the job will be called to he "processed in parallel". The job
indicates the computation or process which is required by the user.

If parallel processing is going to be applied the following questions
and problems arise:

-~ What kinds of jobs will be offered.

- How to construct algorithms suited for parallel processing. In order
to make parallel processing possible the job must be decorposed into
a set of tasks. These tasks must be processed by the processors
according to an ordering, specified by the algorithm.

- What is an appropriate architecture., The various resources as
processors, memories, buses, registers, etc., must be specified as
well as the way they are interconnected.

- What is the appropriate system software.

These questions and problems should be answered and solved such that
the desired performance is optimized as much as possible. Quantities

to judge on performance are for instance: throughput, cost for hard-

ware etc. ‘

It will be ciear that the above stated problems and quésticns are not
independent of each other. The difficulty of the optimization problem
depends highly on the first item 'what kinds of jobs will be offered'.
Here they will be restricted to the above mentioned circuit analysis
programs which leads to the design of a special purpose computer.

The performance which will be optimized is the average processing

time of the jobs belonging to the considered class under the condition
that the user has not to supply any additional commands to the

computer.

In order to 'solve' the above stated optimization problem to each
of the stated questions and problems an answer cor a solution will be
formulated depending on the previously taken decisions. This is mainly
accomplished in chapter 2, aftex in chapter 1 the structure of a cir-
cuit analysis program is considerea. Chapﬁer 2 consists of three
parts.

Firstly a parallel algorithm will be derived directly from the results
of chapter 1, A speedup analysis will be given. It shows which tasks
will be further considered for parallel processing.

Secondly the special purpose computer and its organization are presen-
ted.,

Thirdly the job and the parallel computer are brought into one’modal,
the scheduling model. The system software uses this model to accomplish
an optimal match between the resources of the special purpose computer
and the resource demands. The system software is extended by decompo-
sition and scheduling procedures. '

In chapter 3 the task, which solves the set of linear equations resul-
ting from the discretized and linearized circuit equations, is regard-
ed as the primary job which must be decomposed into tasks. This is
hecause in section 2.1 it is shownfthat the required processing time
to solve the set of linear equatiobs limits the speedup which can be
achieved,

In chapter 4 the scheduling is demonstrated for the parallel solution
of the set of linear equations, because the scheduling of this job is
the most critical problem.

In chapter 5 some results of the decomposition and scheduling of the

solution job for the set of linear equations are presented.

Finally, in chapter 6 some remarks are nmade about the remaining tasks

and the conclusions are given.

1. CIRCUIT ANALYSIS

1.0 Introduction

Each circuit analysis method [1.1] starts with setting up a set of
equations (1.0.1) which describes the circuit with excitation e(t) to
be analysed:

fxlt),x(t),e(t),8) =0 telt,t] =x(t) =x {1.0.1)
These time dependent equations are in general nonlinear. The desired
solutieon x{t) for t ¢ [tb,te] will be given at the discrete time
instants t1 = tb,tz,...,t£ = te. To this end an approximation %, for
x(t)) will be determined at each discrete time instant t . The time
derivatives at each discrete time instant are replaced by some
appropriate approximation in the form of a differentiation formula

depending on the current value % and past values of x:

+1

Rowp % G % ex 4yeel) =dx) (1.0.2)

By these substitutions for each discrete point of the time axis a set

of nonlinear difference equations is obtained:

)} =0 mne0,1,...,8~1 (1.0.3)

Eqlx '§n+1’gn+1'tn+1 -

=a —n+1) - g{g'(}—sn-i-l)

The solution of (1.0.3) for % is obtained by solving first for

52,§ ""'§n because the differentiation formula requires past values

3
of x.

The nonlinear difference equations are solved for x by an iteration

~n+l
method. The Newton-Raphson (N-R) iteration, given by (1.0.4), serves
this purpose.

The iteration is started with x iwhich is supposed to be an

-n+1,
. C e (3) R
appropriate prediction for Xoe1® Aﬁ+1 is the Jacobian, see (1.0.5)
3y, G+ Gy _ (3, . o _ - _ _
An+1(§n+1 et ™ gd(}-{n+1)' Enet © Fppt TOF RS Orlyenert-d
(1.0.4)
33
Bt T ox 2 _ (1.0.5)
-)
= X
- n+1

In the next sections the time discretization, the circuit description

and some aspects of complexity and organization will be presented.

1.1 Time discretization

The total amount of computational work depends highly on the number
of time steps. The number of necessary time steps depends on the
differentiation formula applied, the circuit itself and the time
interval, TT = te - tb. In general the circuit is stiff.This requires
differentiation formulas with the property that the time step and
order can be adjusted easily. To be concrete, the predicticn-based
differentiation formulas (PBD) [1.2] are chosen and will be restated
here. The superscript of the variables denotes the order of the

PBD formula.

The prediction formula for X of order i+l is defined recursively

n+l
by:
A e R A k) and x, = x (1.1.1)
with di defined by
dp =hy/hyp i dgyy = dpehy /iy
where
hi = tn+1 - tn+1—i and hi = tn - tn-l'

The k-th order differentiation formula is given by:

. k -i : k

n+l .E (xn+1'ﬁxn+1)fhi =d (Xn+1) (1.1.2)
i=1

Evaluation of §n+1 needs the recursive calculation of the predictions

for X ,q given by (1.1.1).

The time step is wvariable and increasing or decreasing the order is
simply performed by changing the number of terms in (1.1.2).
The performance is measured by the local truncation error
<
; where x

k y - c
n+1 Enet n+i

E (h,) = x(t is the solution of (1.0.3) if
xn,Q;,i=2,...,k are exact. Estimates for the truncation error

n+l1 1

depending on the order are given by:

k

k I 0 '

Bt () = Gy =G0/ T /) (1.1.3)
k+u

k+u ~ =kt+il+u [_ Lk

Brer) = g —x En+1(h1)”(iilhk+u+1/hi’ (1.1.9)

for u ¢ {-1,1}

The local truncation error is used to control the order as well as

the time step. Let e(v) dencte the maximum allowed error of component
v of x over the interval TT. This requirement is assured to be met if
the local truncation error per time unit is smaller than e(v)/TT. Let
Em(h,v) denote the truncation error of component v. The maximum time
step hm{v) for component v made by a PBD formula of order m is given

by:
m m m _ m m
Ko (v)/Kn+1{h1) = g(v)h (v}f(TT.En+1(h1,v}) (1.1.5)

where

m m
mn e 1 s ¥]]
KoM= h“ﬁg(h+hi_1)/(1!h + '221/(h*hi}) with hi,hl, ... ,h"
1= 1=

»

at time tn+1

Let h" = min({h" (v} | veIxc}), where I_ is the set of the controlled

components, and hj = max(hk’l,hk,hk+1), then the new time instant
t =t + h will be calculated with PBD formulas of order j.
2 n+1

1.2 Circuit description

The Modified Nodal Analysis (MNA) approach [1.3] will be used to state
the circuit description in this thesis.

Assume a circuit with (p+1) nodes énd g elements (an r terminal element
with ¥ > 2 is counted as r elements and is described by r relations as
given by (1.2.1) or (1.2.2)}.

)T denote the node

T .
Let v = (vnl,...,v)7 and i

n np b {ibl""'lbq
voltages with respect to the reference node and the (branch) currents,
respectively, :

The structure of the circuit and the orientation of the currents are

given by the incidence matrix X.

The elements are described by the constitutive relations given by:

9, (v sl v i ,t) =0 for & {1,2,...,q} (1.2.1)

If the branch current can be given explicitly the relation is given

by
£,V ¥, ¥ vy, t) =4 for ke {1,2,...,q] (1.2.2)
here : = {1 i i 10"
where @y, = (i reeerdy oy iy ey o bq °
N . . T T . .T
The output variables in the MNA approach are given by: x = (Yn pim.

The components of 1 are those branch currents which cannot be given
by (1.2.2) or are desired as an output variable or are used to
control other elements. (The current iba controls an element k if the

constitutive relation of this element depends on i .). The currents

bl
appearing in i are called "output currents". Let u denote the number
of output currents. Assume the elements are renumbered such that
elements, whose branch current is an output current, have got a
number £ such that p < £ < ptu.

The MNA equations, consisting of the p Kirchhoff's current equations
and the u constitutive relations of elements, whose branch currents
are output currents, are given by:

r —

fl(Yn'zl'Yn'gl't)

_________________ (1.2.3)
i
qp+1(Yn'£b'Yn’}b't) =0
gp+u (anfb:‘_’nrfblt) =0

Time discretization and substitution of the time derivatives followed

by linearization by means of the N-R method results in {(1.0.4).

Consider an element { between the nodes m and n with a current

direction from m to n. The contribution of this element to the MNA set

of linear equations for the jth iteration at time t = t 1 and

n+
X = gnil is given by:
3
Y = -) = e (1.2.4a)
ag(mlj) ag‘(nyj) axj fﬂ.(g'(‘—’) IQ(XR) rY_rert)
= - = - | 1.2.4b
b, (m) = -b,(n) £,(d(y) ,dly,) vy,) ()

if i is not an output current.

%
a,(m) = —a,(n,2) =1 (1.2.4¢)
a,(2,3) = 5%3- 9,@(v),a(5) ,v,5,8) « (1.2.4q)
by (0 = =g, (@(v),d(i),v,1,8) (1.2.40)

if ig is an output current

The coefficient a(i,j) and right hand component b(i) are given by:
a{i,i) + a(i,) + al(i,j) and b(i} < b{i) + bﬁ(i),

for 1 € & £ g. This process is called updating of the matrix entries.
The resulting matrix will be regarded as a structural symmetrical

matrix, with a dominant diagonal. The dominant diagonal is assured by

a suitable pivoting [1.3].

In case of bipolar circuits, where the transistors are modélled by a

Ebers Moll model, these assumptions are {almost) true.

In chapter 6 some further remarks will be made to these points.

1.3 Aspects of complexity and organization

In this section some aspects concérning the complexity and organiza-
tion of a circuit analysis program will be considered. This will give
information at which instances parallel processing will be considered
in later chapters. .

A circuit analysis program consists of two phases: the setup- aﬁd com-
putation phase.

Setup phase. The user specifies his circuit to the analysis

program in its input language. The statements of the input language
must be-interpreted in order to generate the data structure and the
procedures required for the actual execution in the computation phase.
To this end for each specified element its model must be retrieved
from the element library. Such a model contains the procedures to
obtain its contribution given by {1.2.4) to the MNA set of linear
equations.

In the computation phase the data structure and the procedures remain
unchanged.

Computation phase. Table (1.3.1) gives a summary of the various
coefficients and variables which must be computed in one pass through
the time loop and one N-R iteration.

In this table the following assumptions are made.

The MNA set of linear equations consists of N equations.

The contribution of an element, &, to the MNA set of linear equations,
given by (1.2.4), is calculated by two procedures: vart(l) and

varx (L) .

vart (L) evaluates the coefficients which depend on the time step and
varx (£} evaluates the coefficients which depend on the x vector,

Let the sets of indices I I and Inr denote the indices of the

nd’ “£d
nonlinear dynamical, linear dynamical and nonlinear resistive
elements respectively.

Let the sets of components of x, I and pr denote the components to

xd
which the PBD formula is applied and which are predicted respectively.
The already defined set Ixc contains the controlled components

(1 cI and I cI .
- Xp X

xd c -~ Xp

Scme of the quantities concerning the operations count which
are reported in [1.4] are cited.
The number of time steps, denoted by nt, is about a thousand, even for
small circuits (typical value 1000).
The number of required N-R iterations, dencted by n,. varies from 3
to 4 per time step (typical value 3}.
The solution of the linear equations requires about 10-20%, denoted
by rlin, of the total execution time necessary to execute one N~R
iteration (typical value 15%).
The reported values depend highly on the size and function of the

offered circuit and the desired accuracy.

The values given above for By and n, are the justification for the
strategy to do a lot of preprocessing to construct an optimal data-
structure for the execution of the time and N-R iteration loops.

In the following the preprocessing will be extended to take advantage

of a computer configuration with a number of processors operating in

parallel,
1 determine: §1 gk xel
’ S ¢S I s Xp
. k ’
2, | determine: d (xn+1) xelxd
3. | evaluate : vart(L) 261ndUIza
4, | update : b(i), al(i, i,9¢{1,2,...,N}
5. | evaluate : varx(g) eI .Ul
nd" “nx
6. | update : b{i), a(i,d) i,jeft,2,...,N}
N-R 7. | solve tAbdx=Db
iteration j j+t
Ent1 © Enat
8. | decide ¢ convergence
xC ., < xj
. =n+1 “n+1
time
Jloop]
. . k
9. | determine: En+1(h1,v) veIXc
. m
10. | determine: En+1(h1,v) veIxc, me{k-1,k+1}
m
11. | solve . (1.1.5) for h (v) veIxc
12. | determine: hm‘ me{k-1,k+k+1}
13. | determine: h ; k
new’ ~new
k'hl'fn+14.knew"hnew’tn+1+hnew
- »-1 ¢ i e
xn hs gn+1 1 €31 £ k+1
<
hi+1 + hi 1 £41 % k+1
14. geCLde : tn+1 > te

Table (1.3.1) One pass through the time loop and

Newton-Raphson iteration.

10

2. PARALLEL PROCESSING MODEL FOR THE CIRCUIT ANALYSIS PROGRAM.

2.0 Introduction

In this chapter the parallel algorithm (program} for the circuit
analysis program will be outlined and a parallel computer organization
will be stated in order to execute this algorithm (program). The
parallel algorithm (program) and parallel computer organization are
brought together in the scheduling model. The scheduling model will

be used by the system software to accomplish a matching between the

offered job and the available computer system.

2.1 Task graph

A problem is solved by some algorithm which is accomplished by a
computer program. Consider a computer progfam, written in Algol,
consisting of a sequence of statements which operate on the variables,
these will be called global variables. The statements are not allowed
to be conditional or for-statements. The algorithm or its computer
program will be called the "job" and a statement will be called a
"task". A task itself may vary from a simple assignment statement to
a block in which all kinds of statements are allowed. A task operates
on a subset of the global variables and possibly on a set of local
variables which are declared in the program block of the task.

To obtain a correct solution the tasks must be executed according to
a certain partial ordering after the global and local variables

have been initialized with the proper values. The sequence in which
the tasks are given is one of the possible sequences which are
allowed by the partial ordering.

If the job is to be executed by a parallel computer the ordering
must be made explicit in the program (algorithm}, in which case it

will be called a "parallel program” (algorithm).

et T = {ul,uz,.‘..un} denote the set of n tasks of the
considered job. Let the partial ordering of the tasks be given by:
po = {{u,v) | (u,veT) A PO(u,v)}, where the relation PO(u,v) is
defined by: PO(u,v) +* u must precede v. The job will be represented
by a graph (T,8), the "task graph", where S = {{u,v) [PO{u,v)vPO(v,u) }.
The precedence relation of (u,v} ¢ § is given by PO(u,v). The task
graph together with the precedence relations is dencted by (T,g) .

11

1f PO(u,v), then u will be called a "predecessor task of v" and v
will be called a "successor task of u".

A proper parallel algc:ithm will be represented by a task graph (T,g)
without loops.

A task u will be called "free" if all its predecessor tasks have been
executed. If between two tasks u,v ¢ T does not exist a path in
(T,g) they can be processed in parallel after they have been made

free.

Consider the execution of a job with task graph (T,g} by a
fictitious “ideal paralliel computer™. The ideal parallel computer
consists of:

- A large memory, which contains the tasks and all variables. The
access to this memory takes no time.

- A set of m identical processors capablerf executing any of the
tasks. The execution of a task starts with taking a copy of the task
and all variables on which it operates. The execution ends by
replacing the old values of the copied variables by the new values.
~ Bn operating system which schedules the tasks. The scheduling
determines for each task during which time interval and by which
processor it will be processed.

let Iu and Ou denote the set of input and output variables of task
UEeT.

The sets are defined by:

Iu = {x | x is a global variable to which is referred by any of the
statements of task u)}

Ou ={x | xis a global variable to which & value is assigned by

any of the statements of task ul.

In order to avold data interleaving, the PO must assure that for any
two tasks u and veT, which are al;owed to be processed in parallel
holds: ;

((ou01v=¢) A {ovnxu) = 4) A (ounov=¢)} {2.1.1)

The performance of a parallel algorithm depends on the applied
parallel computer and the applied scheduling of the tasks. The ideal
parallel computer is often used to evaluate the performance. This is,
of course, far from realistic; for instance no attention is paid to

the memory access at all.

12

Two performance measures are considered here:

~ the toétal elapsed time or schedule length to process the job on a
parallel computer with m processors, to be denoted by w = wim),

- the speedup ratio, to be dencted by SR = SR{m), which is given by
SR(m) = w{l)/wm).

To achieve a fair value of 5R{m}), w{l) must be cobtained from the best
known sequential algorithm, If no other convention is made the seguen-
tial execution of the parallel algorithm will he used to obtain w(l).
Let 1{u) denote the required processing time to execute a task ueT,
then the length of the critical path in (T,g), hased on the required
processing times, gives the minimum achievable w.

In general different algorithms may he applied to solve a par-
ticular problem. The choice of the algorithm to be selected depends
on the operations count, weighted by the fespective execution times,
numerical aspects and the demand for storage. By the introduction of
the parallel computer a new aspect has to bhe taken into consicderation.
Namely, the partial ordering of the tasks can become more important
than the operations count. The behaviour of the function SR = SR{m)
for the various algorithms must be compared. Further a degradation
of the w and SR may he expected due to the architecture and its
parameters of the actual parallel computer configuration in as much
as it deviates from the ideal parallel computer.

The parameters of the parallel computer organizétion will influence
the design of the parallel algorithm (program) which will be used to
solve a problem, "the decomposition of the job into tasks".

Parallel algorithms can be obtained in two ways:

- By reccgnizing the parallelism which is often in a sequential
algorithm, called "inherent parallelism". The algorithms in linear
algebra contain often a great deal of inherent parallelism.

- By the construction of entirely new algorithms. For instance,
linear recurrence systems are transformed inte egquations on which the
recursive doubling technigue may be applied [2.1]. However, in [2.2]
it is shown that for nonlinear recurrence systems a speedup can only
be achieved by the parallel execution of the recurrence eguation
itself., This result is important because in the circuit analysis
program the iteration loops (recurrence equations) contain in general
nonlinear functions. Hence, the only speedup which can be achieved is

given by the speedup ratio that can be obtained by parallel processing

13

of the program inside the time and the N-R iteration loop.

Finally, a décomposition for the circuit analysis job will be
considered. One pass through the time loop and N~R iteration will be
regarded as. the job. The decomposition is simply found by inspectioh
of the job, given by table (1.3.1). The resulting task graph is shown
in fig. (2.1-1). The labels at the tasks refer to the entries in
table {2.3~1). Two empty tasks are added. The task with label 15 in-
" dicates the beginning and the task with label 16 is introduced to
obtain the same task graph for the 1-th as well as for the j-th N-R
iteration {j > 1).

If the evaluation of tasks, labeled with the same label, is assumed
to take the same time and tv(i) denotes the required processing time
of a task with label i, then the critical path length is given by
%ig(i) .

In practice, the number of processors is far smaller than the nusbexr
of components of the unknown vector x. Hence w exceeds the critical
path length., If m << N then it is reasonable to suppose that the total
required processing time of all tasks with the same label is propor-
tional to 1/m, except for the tasks with label 7, 8, 12, 13 and 14.
The task with label 14, the decision whether to initialize a new time
iteration or not, will be left out of consideration because

T(14) << %iir(i). The task with label 7 will be considered as a. job
which is further decomposed into subtasks. In chapter 6 it will be
shown that the processing times of the tasks labeled with 8, 12 and
13, are alsc proportiocnal to 1/m.

Suppose the required processing time, denoted by © to solve the

’
set of linear equations on a parallel computer is éizen by (2.1.2).
Let mO denote the number of processors where all parallelism ¢of the
parallel algorithm is exploited., (Further increase of the number of
processors does not decrease w anymore). The function a{m) denotes

how efficient the m processors are used. The a(l) = 1 and a{m) is

supposed to have a constant value ¢, for 1<mSm0. This function is a

rough approximation of the functions given in chapter 5.

wlin(l) / (a(m*m} a(l) =1, a{m) = ¢, for 1<m<m0
w50 = (2.1.2)
wlin(l) / (d(mo) * mo) for mzm,

14

predictions, differentiations, vart

i

'éf‘-‘ % Py | Y <= S \ varx(ﬁ),ﬁeInd
NN e Gt O TS oL o RREES. o bl

NI 4 W 2
P T
3 T~
o e
g -

Ry

Q ~
s é O L0 PP 1o ~ varx (R) 'kInr
©
i
=

o
g

time step and order

Fig.(2.1-1) Task graph for one pass through time loop

and N-R iteration.

15

SR

16

curve m, SRlin(mﬂ) SR (=)
50+ + 1 1 n,0
L € 3 26,7
o 3 4 35,6
0 12 6 52,5
A0+ x 24 12 107,0
x/
30~
20
104
E T T T T ™
0 6 10 12 20 24 30 40 50

Fig.(2.1-2) Expected speedup as a function

of m for the

computation phase with formula (2.1.2) for

[

lin

as parameter.

d im
Let Ttime and TNR enote the time necessary to evaluate the tasks

outside -the N~R iteration and inside the N-R iteration on a single
processor respectively.
Under the assumptions given above and with the notations of section
1.3 the fellowing speedup ratio can be expected:

{7 . .*n, +)

T, . n
IR 7
SR = ¥ 2 time t (2.1.3)

(TNRf:n2 (rlin*(wlin(m)/wlin(l)) + (1-xlin)/m)+ Ttime/m)nt

Sequential evaluation requires nt times the execution of the time

loop and inside the time loop the N-R iteration must be executed

7% times.
Parallel evaluation reduces the time necessary tc evaluate the tasks
inside the loops. The processing time to solve the set of linear
equations 1s given by (2.1.2). The processing time of the other tasks
is proportional to 1/m.

Fig. (2.3-2) shows the speedup function given by (2.1.3) with

= T

T
time NR

diff t i .
ifferen wlin(m) functions

This analysis serves to establish guantitative estimates of the

and the typical values given in section 1.3, for five

achievahle speedup and the number of required processors. Under the

assumption that m << N it is shown that the obtained speedup depends
highly on the speedup which can be achieved for the solution of the

set of linear equations. Hence, the solution of the set of linear

equations by the parallel computer is extremely important.

2.2 The asynchronous array computer

In this section a parallel computer organization which is more
realistic than the ideal parallel computer will be defined. Actually
the design is completed to so much detail that predictions about the

pexformance are fairly dependable.

The proposed parallel computer, “the asynchronous array computer”,
consists of a host computer, m computer modules and a connection net-
work, see fig, {2.2-1).

-~ The host (computer) is a general purpose computer. The host can
gain control of each computer module in order to access its memory.

The host may be interrupted by the computer modules by a signal on

17

host C::j connection network
computer

fig.(2.2-1) The asynchronous array computer.

y) N\ b X
us

$.)

g : N bus 2
1%

< /

(> bus 1
to signal —» <

hardware ([

LA~

reset/set andi r- L b g™ Ny 7
| 10 port-1[I0 port-2 + « [I0 port-k
reset/set or, “~*~T‘§_ OF o ‘

Wil 1L

reset timei

N

set readyi

|
reset/set bus—hi |

|

|

|

|

AT |

signal and ‘ |

o | |
time

I

l

|

|

bus-h : processor ?i <: > memory Mi
I
I

- - -]

£ig.(2.2-2) Computer module M,

18

the line "ready".

- A computer module, CM, as shown in fig.(2.2-2), consists of a pro-

cessor, Pi, and a memori Mi' for ie{i,...,m}. The computer module is
especially equipped to perform floating point operations.

To communicate with the outside world k IO ports are provided. To be
concrete let the IO port consist of a simple bidirectional register.
To provide the necessary synchronization facilities the following
signal lines are provided: “and", "or", "ready", "time". The and

and or signal values are T(rue) or F(alse). The time signal value
is a non-negative inteqger.

The instructions set(signal) and the yreget{signal) cause the value
of the signal to be T or 0 and F or 0 respectively.

The time signal is provided by a counter which is part of the connec-
tion network. A reset instruction starts the counter again with a
zero value.

The instruction test(signal,x) operates on the time signal, where x
is a non-negative integer which is supplied by the programmer. Execu~
tion of a test(signal,x) by a computer module results in active
waiting until the value of the signal is larger or equal to the
supplied vaiue of x.

The synchronization tools are summarized in table (2.2.1).

signal supplied | instructions transition caused }ay.:
set of values [to exscuted by Cr!i
and signal all CM set {and) F*riafter all CM have exccuted
{r,r} the set(and)
reset{and} TsF:after the execution of the

reset(and) by any CM

or signal all cM jset{or) P+T:after the execution of the
get{or}) by any CM

{r,F}) reset(or) T+F:after the execution of the
reset (or) by any CM

ready signal host set{ready) F#T:after all CM have executed
{r,r} the set{ready)
T+F:aonly possible by the host

time signal all oM reset{time} current value -»0:after the execu-—

{0,1,2...} test {time,x) tion of reset(time} by any CM

Table(2.2.1) Synchronization tools.

19

The communication is accomplished with the following instructions:
{1) IO port~h « source
{2) send I0 port-h
(3) take IO port-h
(4) destination + IO port-h

where: he{1,2,...,k}
Only the instructions (2) and (3) need some further explanation.
They interact on the bus h and the "bus~h signal" line. The bus-h
signal value is either F{alse) or T{rue) for he{i,...,k}.
Instruction (2) connects the register to bus h and makes the bus-h
signal T during its execuiion.

Instruction (3) forces processor P, to wait until the bus-h signal is

T, then the IO port-h is connected;to bus-h. The instruction ends
with disconnecting IO port-h of bus h.
If the time between two successive broadcast instructions is larger
than the time between two successive receive instructions, no further
synchronization is necessary.

The connection network connects the m computer modules and the
host computer. The connection network consists of k buses:
{bus 1,..., bus k}, the signal lines, set and reset lines and also
the implementation of the signal functions.
R bus h consists of the data lines which are connected with IO port-h

of all computer modules, for he{l,...,k}.

The operating system of the asynchronous array computer resides
completely in the host computer. The system software accomplishes the
necessary preprocessing before the actual job, the computation phase,
is executed by the computer modules. In section 1.3 it was already
mentioned that doing a lot of preprocessing is justified.

The system software consists of:

- the conventional setup phase. This part is already described in
section 1.3

- the decomposition of the job into tasks. Besides the decomposition
resulting into the task graph shown in fig.(2.1-1) in chapter 3 the
job which solves the set of linear equations will be decomposed into
tasks . »

- the scheduling of the tasks. This part assigns each task to a

processor and determines the time interval during which it has to be

20

executed., A task is called "assigned" to a processor Pi or a computer
CMi if its instructions are stored in ﬁi and will be processed by Pi.
The scheduling assumes that the necessary processing time of the tasks
can be determined in advance. In chapter 6 remarks will be made for
the case where this assumption is unrealistic.

In the next section the scheduling model is presented by vwhich the
assignment of the tasks and the time intervals will he determined.

- the assembly of the data structure and codes. The necessary syn-
chronization instructions are inserted in the code. To assure that a
task will be executed during the determined time interval, say [x,y),
it will be preceded by a test(time,x) instruction.

For the computation job this is achieved as follows. By the three

sets of labels: {15,1,2,3,4},{16,5,6,7,8} and {9,10,11,12,13,14} three
sets of tasks are determined. The necessary synchronization times for
tasks of the first two sets are given with respect to the start of
the tasks 15 and 16 respectively. The synchronization times for tasks
of the third set are given with respect to the end of the task with
label 8. For each new time loop or N-R iteration the time signal must
be reset.To this purpose at the reference places reset(time) instruc-
tions are placed.

- the loading and unloading of the computer modules.

During the computation phase the host computer will be free until all

processors signal that they are ready.

Because of the necessary data exchange between different computers
over the connection network the set of tasks is extended by communica-
tion tasks. The procedures which accomplish the data exchange between
computer modules will be considered now.

Let ¥ denote a data set with coefficients x{ix), for ixeDX, where DX
is the set of indices ix of the data set. Assume the array ISX¥ con-
tains the indices of those coefficients of X which must be transnitted.
Further, let the array IRX contain the indices of those locations in

X in which received coefficients must be stored. In the following in
the above notations ¥ will be replaced by the actual nane.

Consider two data sets A and B which are allcocated to computer module
CMi and CMj respectively. The array ISA contains the indices of those
coaefficients of A which must be transmitted to CMj. The array IRB

contains the indices of those locations of B in which the transmitted

21

coefficients must be stored. After the communication b(IRB(k)) =
= a(ISA(k)), for ke{l,...,|ISa|} must hold.

This communication will be accomplished by a procedure

"proadcast (A,ISA,h)" and procedure "receive (B,IRB,h)" which are

executed by CH, and CMj respectively. To assure synchronization they

are preceded bi a synchronization instruction, test(time,tx),with tx
the time at which the communication is planned.
1. procedure broadcast(A,IBA,h);
2. begin
comment A is allocated to this CM, IB contains the indices of coef-
ficients to be broadcasted, h is the used bus;

3, for u = 1 step 1 until |IBA{ do

4, begin
5. I0 port~h + a(IBA{w));
6. send 10 port-h;
7. end;
8. end;

1. procedure receive{B,IRB,h};

2. begin
comment B is allocated to this CM, IRB contains the indices of coef~
ficients to store received data, h is the used bus;

3. for u=1 step 1 until 1IRB| do

4, begin

5. take IO port-~h;

6. b{IRB{u))* I0 port-h;
7. end;

8. end;

To obtain a correct communication process the number of coefficients
in the arrays IBA and IRB must be fhe same. PFurther, assume that if
IRB(k)¢ DB then the received coefficient will be stored nowhere.

If the received coefficients have to be stored in two differenﬁ data
sets this will be accomplished by an analogous procedure.

Let “procedure receive (B,IRB,C,IRC,k)" denote that the first |ImB|
coefficients have ﬁo be stored in data set B in the locations given
by IRB and the next [IRC! coefficiénts in data set C in the locations
given by IRC. ‘

22

In ordexr to avoid data interleaving and memory conflicts the
following copmunication rules are given.
A communication task will be considered.as an indivisible action. The
communicating computer modules are completely devoted to the communi-
cation task. The broadcasting computer module will be regarded as

master and the receiving computer modules are regarded as slaves.

2.3 Scheduling model

The operating system has to assign the tasks to the computer modules
and has to determine time intervals for the processing of each task
such that some performance measure is optimized., This optimization
problem is called the "scheduling problem". Here the performance
measure will be the elapsed time @ to process all tasks.

First a detailed description of the scheduling model based on the
model as presented in [2.3], will be given. In chapter 4 a heuristic
solution method for a scheduling model derived from the job which
solves the set of linear equations will be given. The scheduling
model consists mainly of two parts: the resource system and the job
system.

- The resource system.

Everything that may be required foy the processing of any task is
called a "resource". The set of resources establishes the "resource
system". The resource system is partitioned inte two sets, the set P
of processors and the set R of "“additional® resources.

Let P = {Pl, P2""'Pm} be the set of processors. The functional
capabllity and the processing speed of the individual porcessors are
not necessarily egual.

Let R = {R1'R2""'Rs} be the set of additional resocurces. For each
resource Ri ¢ R a restricted gmount is availabhle, to be denoted by
rm(Ri).

Besources in the set R are for instance buses and memories. Some of
the resources in the set R may be artificial resources. For instance
consider two tasks u and v which are not allowed to be processed at
the same time, however the seguence of execution is arbitrary. These
tasks méy occur in the task graph as tasks to be executed in parallel.
In order to avoid parallel processing of u and v an additional .
resource Rq with amount rm(Rq) = 1 will be introduced. The resource

demands of tasks u and v are extended by a demand for resource Rq by

23

an amount of 1. By this parallel execution of the tasks u and v is
impossible but the sequence of execution is left free. The condition
given by (2.1.2) which avoids data interleaving is not necessary in
this case.

- The job system.

The task graph (T,g) together with the resource demands.of each task
is called the "job systenm".

The required processing time and the required additional resources

may depend on the assignment of the tasks to the processors. Let

FA : T+ P {(2.3.1a)

be a mapping defined by:
F_{u}) =P, for u e T and P, ¢ P (2.3.1b)
A i i

The required processing time of a task u ¢ T, fthe task duration”,

executed by a processor P, € P and with arn assignment of the tasks

i
given by FA will be denoted by: T(U,Pi;FA). Iff all processors are
the same then the task duration is independent of ?i. In that case the

second argument will be deleted.

The amount of resource Rq € R which is required by a task u ¢ T
during the entire execution time and with an assignment of the tasks
given by FA will be denoted by: r(Rq.n,FA). If the task durations and
resource demands are independent of the assignment the argument FA
will be dropped in the expressions,

If a task reguires more than one processor, one of the processors

will be regarded as the master of the othexr required processors. This
situation can be modeled by treating the processors also as additional
resources. The set of additional resources becomes

R = {Ri""Rs’P1'°”'Pm}' The resource amount m(p,) = 1, for isism.
The resource demand of a task u for the newly introduced additional

resources is given as follows:

1 if Pi equal to FA(u) and for all Pi which are slaves

r(Pi'u'FA) o of FA(u) during the execution of task u

0 otherwise

The task duration is determined bﬁ the master which is given by the

mapping FA'

24

Once the resource system and the job system are defined the
scheduling problem can be stated formally.
Assume the time interval for execution of task u € T is given by
Lo}, 8(uw), where of{u) and 8§(u) denote the time instants of starts
and finish of task u respectively (o{u) ¢ [o(u},8(u)) and
§(u) £ Lo, 8wy,
Let T denote the time axis: T, = [0,#) and let I denote the set of

time intervals: I = {[ts,tf) | ts £ tf and ts, tf ¢ Ta}. Let

F. : T>1 {2.3.2a)
be a mapping defined by:

Fo(a) = Loqu),8) for u e T (2.3.2b)

A schedule will be defined by FA and FI. In defining FA and FI certain
constraints have to be observed. Before going in more details two more

mappings are defined. Let
£f :PxT_ *+ T (2.3.3a)
P a
be a time dependent mapping defined by:
= = 1
£,(6P) = {ueT | () = P) v (x(® ,u,F) #0)) A (teF (u)},
for Pi P (2.3.30)

The mapping fp(t'Pi) defines the task which 1is processed at time t by
processor Pi(or coprocessed if Pi is used as a slave). A graphical
representation of fp(t'Pi) is a so called "Gantt chart"[2.4]. Purther
let

£ Ta -+ M(T) (2.3.4a)
be a time dependent mapping defined by:

£(t) = u £ (£,P). ‘ (2.3.4p)
P eP * '
i
The mapping £{(t) defines the set tasks which are processed at time t
by any of the processors.

Now a schedule is proper if:
<>
vu,veTE((u.v)eS) > g(v) z §{u)] (2.3.5)

that is, the precedence relations are satisfied,

yueT[FA(u) = Pi -+ d{u} 2 ofu) + r(u,Pi,FA)] (2.3.6)

25

that ig, any task.is given enough processing timer .. -

[£ r (R ,u,F) < ¥i(R,)] (2.3.7)

¥ s v
Qiesg 2Z?QQ uef {t) * A t '

that is, the allocated additional resources are at any time instant t

smaller or equal than their given amount.

The scheduling task is to minimize w, the schedule length(élapsed time)
under the constraints given by (2.3.5), (2.3.6) and (2.3.7).

If the scheduling model contains identical processors, no additional
resources and each task ueT requires only one arbitrary processor for
a time interval t(w) then it will be referred to as the "basic model"”.
If to a basic model a set of resources R is added and the resource
demand for any RVeR of each task u is given by r(Rv,u) it will be
referred to as an "augmented basic model". If the durations and re-

' source demands are also dependent of FA thg model will be referred to

ag a "general model".

Further sequencing constraints may be imposed on the schedule.
By these constraints the set of proper schedules is partitioned into
classes. Two important classes are distinguished: "preemptive®” and
"nonpreemptive schedules".
- In a preemptive schedule it is allowed to stop the execution of a
task on a processor and to postpene the remainder of the task. This
is called a “"preemption"”, The remainder of the task may be processed
by a different processor and again preemption may occur. If preemption
is allowed the task can be split into a chain of smaller tasks.
- In a nonpreemptive aghedule each task which is started must run
until completion is achieved without interruption.
Other sequencing constraints may'also be imposed to limit the number
of proper schedules. For instance any task will be started as soon as
possible. List schedules, as defined in chapter 4, use this sequencing
constraint. Sequencing constraints may reduce the efficiency of the
résult. Of course, sequencing constraints will be considered only if
their impact on the performance is tolerable.
In chapter 4 the f;nally proposed scheduling will be specified,

26

3. SOLUTION OF THE LINEAR EQUATIONS

3.0 Introduction

A set of linear equations is given by (3.0.1), where A is a non-

singular square matrix of dimension n. To solve equation (3.0.1)
Ax =D (3.0.1)

direct or indirect methods may be used [3.0].

- The direct methods compute the solution x in a fixed number of
operations. If no truncation errors are made then the solution is
exact.

- The indirect (iterative) methods compute successive approximations
to the solution x. The required number of operations depends on the
desired accuracy.

Indirect methods will not be considered here because of possible con-
vergence difficulties. Though the procedure which must be executed for
one iteration may result in a highly parallel algorithm [3.1], [3.2],
the resulting speedup depends also on the number of required itera-

tions.

The procedures which will be considered, obtain the solution by
L\U-decomposition, forward substitution and back substitution. By this
solution procedure the matrices may remain sparse.

Matrix A may be expressed as the product of two matrices L and U:
A=1LU (3.0.2)

where L is a lower triangular and U an upper triangular matrix. The
solution can now be obtained in two steps. The first step solves

(3.0.2) for c, an auxiliary vector, by a forward substitution.

ILc =Db . (3.0.3)

The second step solves (3.0.4) for x by a back substitution

Ux = ¢ (3.0.4)

The coefficients of A, U and L are denoted by a(i,j), u(i,d) and

£(i,3) for i,3e{1,...,n}. The coefficients can be determined by the

27

formulas [3.0] given by (3.0.5).

L1,

-1
£43,3) w3, 3 =al3,3) - I 403
k=1
-1
= {a(i,3) - T L(i,k) u
k=1
j-1

u(j,i) = @f{j,i) - I L{j,k) u

(k) ulk,3) 1

A
Cde
In
=

k,3)y/ui, (3.0.5)

1£3<i<m

{(k,1))/%03,3)

The determination of the L and U matrices; L\U-decomposition, is ac~-

complished by the procedures"Gauss" or "Crout" which are given below.

In both procedures the diagonal coefficients of L are chosen to be 1.

.,n}}2 do a(k,h) «atk,h) -~a{k,i) *a(i,h;

- ali,k}) » alk,3);

1. procedure Gauss;

2. begin

3. for i « 1 step ! until n do

4, begin

5. for each ke{i+l,...,n} do atk,i) « atk,i)/a{i,i);
6. for each (k,h)e({i+l,..

7. end; 1 loop

8. end; procedure Gauss

1. procedure Crout;

2. begin

3. for 1 « 1 step 1 until n do

4. begin

5, for each je{i,...,n} do

6. for k<1 step 1 until (i-1) do

7. ali,3) = afli,j)

8. for each je{(i+1),...,n} do

9. begin

10. for k + 1 step 1 until (i-1) do
11. a{i,i) < a(j, iy - ali,k) » alk,i);
12. alj,i) <« a(j,i)/ali,i);

13. end; j loon

14, end; i loop
15. end; procedure Crout

28

The coefficients a(i,]j) in the procedures are initially equal to the
matrix coefficients a(i,j) of A for i,je{l,...,n}. After the execution
of the procedures the coefficients a(i,j) and a(k,m) are egqual to the
matrix coefficients 2{i,3) and u(lk,m) respectively, for 1 < j < i1 £ n
and 1 £ k € m 2 n. The coefficients L4(i,i) are not stored, for

ie{1,...,n}.

The forward substitution may be done in combination with the L\U-~
decomposition procedure. Assume coefficient a(i,n+l) 1s initially
equal to component b{i) and after the execution of the L\U-decompo-
sition procedure the coefficient is equal to component c(i), for
ie{l,...,n}. In the Gauss procedure the index set at line 6 from
which the indices k and h are chosen must be replaced by
{i+1,...,n} x {i+!,...,n,n+1}. In the Crout procedure the index set
at line 5 must be extended by the index n+l.

The back substitution is performed by the following procedure back-

solve.
1. procedure backsolve;
2. begin

3. for i « n step -1 until 1 do

4, begin

5. a(i,n+1) « af{i,n+l)/a(i,i);

6. for each jeil,...,(i-1)} do

7. a(j,n+l) ca(j,n+l) —a(j,i) #a(i,n+l);
ag. end; i loop

9.end; procedure backsolve.

This procedure backsolve assumes that the coefficients of L and c are
given by afi,j) and a(i,n+l) respectively, for ie{il,...,n} and
jefi,...,n}.
The number of required operations (multiplications, additions, sub-
stractions and divisions} to perform the L\U-decomposition is approxi-
mately 2n3/3—n2/2+n/2 for both methods. The number of required opera-
tiong for the forward substitution and back substitution is n{(n-1} and
nz respectively. In order to solve Ax = b for full matrices
2n3/3+3n2/2—n/2 operations are required, thus O(nE}.

In general the numerical stability of the method depends on the
given ordering of the linear equations and the components of the solu-

tion vector x. To assure a numerically stable solution a pivot

29

strategy may be necessary.

After having introduced general aspecté in the next section 3.1
the solution process will be considered for sets of equations where A
is sparse. A graph model will be introduced to describe the structure
of the matrices during the decomposition process. The graph model is
useful to study pivoting.
In section 3.2 the parallel processing of the solution process will
be studied. With the aid of the graph structure a parallel algorithm
is constructed. The properties of the data structure (e-tree) which
guides this algorithm are considered.
In section 3.4 a block decomposition method is described which brings

the matrix into the doubly bordered block diagonal form [3.2].

3.1 Sparse matrices and their associated graph model

The set of linear equations which results from a circuit analysis

program has in general the following characteristics:

- the number of equations may be very large (about thousand);

- the average number of nonzero matrix coefficients per row is much
smaller than the dimension of the matrix.

Matrices which exhibit the last property are called “"sparsematrices".

Further, due to the choice of the MNA method used to formulate the

circuit analysis equations the set of linear eguations is assumed to

have the following properties:

- the matrices are structurally symmetric, thus a(i,j) #0<a(j,i) #0.

- numerical stability is assured if only diagonal coefficients of A
are regarded as pivot candidates.

The sparsity of the matrices requires an efficient data structure and

special attention as to the pivoting, because a straightforward im-

plementation of the ordinary solution procedures would result into a

huge amount of storage locations containing zeros and a lot of

qperations on zero value coefficients. An adequate sparse data struc-—

ture has proved to be a "row-pointer-column-index"~-structure such as

given in fig. (3.1-1), which illustrates the corresponding locations

of various matrix coefficients in the sparse matrix.

The number of required operations to solve the linear equations‘

depends of course on the degree of:sparsity. During the solution

procedure coefficients which are initially zero may become nonzero

30

coefficients; such coefficients are called "fill-ins".The generation
of fill-ins depends on the pivot sequence which is chosen during the
solution procedure. If no special attention is paid to reducing the
number of fill-ing, the resulting decomposition matrices L and U may

be non sparse.

1 2 3 4 5 6 7 8 g 10
1 [a, D a2 lan,n
2 | a2ty a(2,2) |at2,3) | at2,4) | a(2,5)
3| a3, | a(3,2) |a(3,3) | a3,4 | al3,s)
4 a(4,2) a{4,3) |a(d,4) | a{4,5 |a(4,6) |a(4,7) | a(4,8)
3 a(5,2) |a(5,3) |at5,4) | a(5,5) |a(5,6) a(5,9) a(5,10)
3 al6,4) |al6,5) |ats,6) a(6,8) a(6,10)
7 a(7,4) a{7,7) a(7,8)
8 a(8,4) a(8,6) a(8,7) |a(8,8)
2 a{9,5) al{38,9) {a(9,10)
10 at10,5) ja(10,8) 2(10,9) [a(10,10)
array index 1 2 3 4 -1 6 7 8 9 10 11
row pointer [1 |3 | € I 2] I12 I
column index |2 B EE [s [4 [s & le [B 1
upper off. at1,2) 1 a(1,3) |a2,3 a{2.4)l a(2,5) |a(3,4) | at3,%5 [a4,5 |a(4,6) | al4,7) [a4,8) L,
diag.coeff. -~
Lower off. a(2,1) {aG,1) | at2,2) | a(d,2) | a5, [5(4,3) a(5,3 | ats,4 a(6,;;1 a(?,4) | a(8,4)
diag.coeff.
i : !
49 afl,1) 1a(2,2} |a(3,3) | a(4,4) |a(5,5 {a(6,6) [a(7,7) |a(8,8) |a(9,9) |allC,10)
cvefficients L
Fig.(3.1-1) Illustration of a sparse data structure for a
structurally symmetric matrix
The matrix A and its data structure can be associated with a
graph (v,B) [3.3], with |v] = n and |E| equals the number of nonzero

off-diagonal pairs. The definitions of the graph notations are given
in appendix Graph notations. Assume a bijective mapping

g : {a(1,1),a2(2,2),...,a(n,n)} > V., This mapping associates with each
diagonal coefficient a(i,i) a vertex g(a(i,i)). To each pair of non-
zerc off-diagonal coefficients a(i,j) and a(j,i) corresponds an edge
{gla{i,i)},gla(j,3)))eE. The graph (V,E) is called the "associated
graph" of matrix A.

The sets inc(v,E}, adi(v,E) and def(v,E) can easily be given a meaning

31

in terms of sets of matrix coefficients. If g°1(v) is some diagonal
coefficient then the set inc(v,E) corresponds to the nonzero off-dia-
gonal coefficients in the respective row and column. The set adj(v,E)
identifies a set of diagonal coefficients which determines a submatrix
of A. This submatrix is associated with the subgraph

(adj(v,E}, E(adj{v,E}})}. The zero off-diagonal coefficients in this
submatrix are identified by def (v,E).

In order to solve the set of linear equations by Gaussian elimi-
nation a pivot sequence must be selected. Only diagonal coefficients
are considered as pivots. After reordering the rows and columns of A
in accordance with the selected pivot sequence a matrix A' is obtained,
Al = PAPT, where P is a permutation matrix. In the associated graph
structure this amounts to a reordering of vertices. Assume the special
ordering o of (V,E) such that a-l(g(a(i,i)}) =i for ie¢{1,2,...,n},
this ordering corresponds to the initial matrix A.If the graph (V,E)
is ordered by B the corresponding matrix A' is given by:

A' = [a'(i,9)] = [a(@-l(B(i)), u—l(B(j}))]. It is clear that the as-
sociated graph (V,E) represents the class of matrices PAPT where P is
any permutation matrix.

Consider now the L\U-decomposition using the Gaussian process,
Assume pivot a{p,p) is selected. The pivot-row is converted into a row
of the U-matrix and the pivot-column which is divided by a(p,p) is
converted into a column of the L-matrix. The matrix A without this
pivot row and -column is used for selecting further pivots.This matrix
is updated by the dyadic product of the L-matrix column and U-matrix
row. In general this causes fill-ins.

In the graph model two graphs {V,E) and (G,ﬁ) are introduced to account
for this process. The graph (V,E) corresponds to the L\U matrix con-
structed so far and (6,&}, the "elimination graph” corresponds to the
remaining matrix. Before the first;elimination step (G,ﬁ) = (V,E) and
(V,E) = ($,4). The structural updaﬁing of these graphs induced by the

associated Gaussian elimination step can be described as follows:

1. procedure update (u) ;

2. begin

3. ¥« Vu{u) vadj(uE); E « E vine (u,B);
4. ¥ < W\{u}l; E « (Eudef(u,B))\inc (u,B) ;

5. end;

32

The set def(u,ﬁ), the set of "fill-in-edges", represents the fill-ins

which are generated.

The L\U-decomposition, according to the Gaussian elimination

scheme, which takes account of the sparsity, is formally described by

"procedure Gauss". It is assumed that some ordering B has been defined

prior toc the execution of "procedure Gauss”.

.
.
.

1
2
3
4
5.
6
7
8
9

.

i0.
11,
12.
13.
14.
15.
16.
17.
18.
19.

procedure Gauss;
begin
VB « (V,E); (T,B) < (§,4);
for i « 1 step 1 until n do
begin
a8 L < a (u);
for each v<zadj(u;é) do
begin
3 «a b
a(j,8) «alj,2)/a(r,);
for each W<zadj(u,é) do
begin
k <« &—1 (W) ;
alj,k) «a(d,k} - ali,*a(l,k);
end;
end;
update (u) ;
end; i loop

end; procedure Gauss

Similarly, the Crout decomposition can be described.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

procedure Crout;
begin
(V,B) « (V,B) ; (V,E) + (¢.4);
for i « 1 step 1 until n do
begin
we Bl 5 8o
for each v e¢adj(u,E) v {u} do
begin
k <« anl(v);

for all we adj(v,E} nadj(u,E) do

33

11. begin

12. m <ot ;

13, al(2,kx) + a(a,k) - a(e,m} * a{m,k);
14. end;

15, end;

16. for each v ¢ adj (u,E) do

17. begin

18. ke a s

19. for all we adj(v,ﬁ) nadj{u,ﬁ) do

20. begin ‘

21. m < a-l(w):

22, a(k,2) <« alk,8) - atk,m} » a{m,);
23, alk,8) « atk,2) / all,8);

24, end;

25, end;

26. update (u) 5
27, end; i loop

28.end; procedure Crout.

An ordering with the property that for i = 1,...,n always

def (B(i),E)} = ¢ during execution of procedure Gauss or Crout is a
"perfect ordering". A graph (V,E)} permitting such a perfect ordering
is called a "perfect elimination graph". Rose [3.41,03.5] has proved
the equivalence between a perfect elimination graph and a triangulated
graph in the sense of Berge [3.6]. Hence the pivoting problem is
equivalent to finding a suitable triangulation of the associated
graph (V,E).

Two objectives are possible: either to find a minimum triangulation
or a triangulation which results in a minimum number of required
arithmetic operations for the L\U~decomposition.

Heuristic strategies [3.7] have béen developed such as Berry's
criterion [3.8], which 'minimizes' the triangulation and the minimum
degree criterion [3.9] which 'winimizes' the number of required ope-
rations.

Rose proved also various properties of triangulated graphs. Some

which are important for the parallel algorithm are stated below,

34

Lemma 1 [3.4]

fany minimal u,v-separator is a

[(v,BE) is triangulated] < [V
u,vev

cliquell.

Lemma 2 [3.4]

Let (V,E} be triangulated. Then V can be partitioned inte two disjoint

subsets Vv, and V (V1 uv, =V, V, A V2 = ¢) such that

1 2 2 1
- VV€V1 [def(v,E) = ¢]
- V;ev [v is in some minimal u,w-separation cligquel.
2

Lemma 3 [[3.4]

In any triangulated graph (V,E) there is at least one vertex veV

such that def (v,E) = ¢.

Temma 4 [3.5]

Let (V,B) be triangulated and let £ ¢ V be some separation cligque.
Let Di < V, i=l,...,k be the components with respect to S.Then in any

component there is at least one vertex v, € Di such thatdef(vi,E)= $.

Corollary 1

Assume a triangulated, connected graph (V,E) where V is not a cligue.

Then there must be at least one minimal u,v-separation clique.

proof:

Since V is not a cligue there are at least two nonadjacent vertices u
and v. Then any chain between u and v is of length »2 and can be
broken by removing one of its "inner" wvertices. Select a minimal set
of vertices such that S is a minimal u,v-separator. Since (V,E) is

triangulated S is a minimal u,v-separation clique. (end of proof).

Lemma 5

Agssume a triangulated, connected graph (V,E). Consider v €V such that

def (v,E) = ¢. Then (VMiv}, B(v\v})) is triangulated and connected.

proof:
The statement follows from the fact that adj(v,E) is a clique. (end.

of proof).

35

lemma 6 [3.4]

For some triangulated graph (V,E) all perfect orderings are eguivalent
in that they result in the same number of multiplications,additions,

substractions and divisions for the L\U-decomposition process.

Assume B 1s some perfect ordering. The operations count for the nume-
rical operations stated in lemma 6 is given by (3.1.1). Hence the

operations count

(2 | mad3(B(i)) % + |madj(8(i)) |) (3.1.1)
1

0oe1 3

i

| madj(S(i))Iz.

e

is of order O(n 4 2) where d 2 =
gem gem

[=1

i=1

The essence of the above statements can be summarized as follows.
Once a triangulated graph is obtained by the insertion of the neces-
sary fill~in-edges many other perfect orderings can be obtained. For
this purpose it is only necessary to select as pivots at any instant
such vertices exhibiting zero deficiency. All orderings obtained by
this principle will be equivalent in that they all result in the same

number of numerical operations for the L\U-decomposition.

3.2 The parallel solution of linear eguations

Csanky [3.10] presented an algorithm which requires O(logzn} parallel
operations to evaluate A-l with O(h4Xlog n) processors.The solution x
can also be obtained by 0(10g2n) parallel operations.This algorithm
is only of theoretical value because of the sensitivity for rounding
errors and the large amount of processors which are required (For in-
stance if n = 8, approximately one thousand processors are required
to reach the critical path length).The necessary communication between
this huge amount of processors mayécause a severe degradation of the
potential parallellism.

To obtain parallel algorithms which are numerically stable only a ;
standard solution method, L\U—decomposition (Gauss) followed by for-
ward- and backsubstitution, will be considered.

Fig.(3.2-1a) shows a matrix which will be considered. Fig.(3.2-1b)
shows the sequence of operations which will be executed by the Gauss
procedure to decompose the given matrix. The operations are numbered

according to their order. Each operation will be considered to be a

36

task. The set of tasks is : T = {ul,...,uzo}. The sets Oj and Ij
denote the set of output variables of task uj and the set of input
variables of uj respectively, for 1 £ j < 20. The edges of task graph

(T,g) are given by:

A

(uj,ui) €3 iff [pe Ii/\j*:max({ﬁ!peo AL<ily], for 1 s i 2 20

&

order operation or task . a{l,1) a{i, 2y af{1,3) a(i,d)
a(2,1} 2{2,2) af2,3) a2, 4
a{3, 1) a{3,2} a(3,3) a3,4)
af4,1} al(4,2) a(4,3) at(4.4)

1. a{2,1) * a{2,1) / a{t,1} A=
2. a(3, 1) « al3, 1 /a1,

3. al4,1}) « at4,1) / a1, 1)

4. a{2,2) « a{2,2) - a(2,1) x a(1,2)
5. a(2,3) < a(2,3) - al2,1) afl,d)
6. al2,4) « a{2,4) - at2,1} a{l,4)

Fig.{3.2~1a) The matrix which serves
the example.

X

X

7. a(3,2) « 2a{3,2) - a(3,1) 2 all,2}).] *coefficient update operation” or
8, a(3,3) * a(3,% -~ af{3i, 1} x a{1,d) short update. u u
9. al3,4) +« a(3,4) - a(3,1) % a(1,4)
10, al{4,2) « a{4,2) ~ al4,1) x a(1,)
1. | al(4,3) « a4,3) ~ a{4,1) x ati,3) Y4
12. a{4,4) + a{4,4) - at4,1) x a({,4)
13. a(3,2) + a(3,2) a(2,2)

14, al4,2) + a(4,2) a(2,2)

15. a{3,3) «. a{3,3 - a{3,2) x a2,
16. a(3,4) + a(3,4) - a(3,2) x a(2,4)
17. af4,3) « a{4,3) -~ a{4,2) x a(2,3)
18. a{4,4) « a{4,4) - a(4,2) % al2,4)
19. a(4,3) « al4,3) / a(3,»

20. af4,4) « a{4,4) - a({4,3) x a(3,4)

u
20
Fig. (3.2-1b) Sequence of operations executed Fig.(3.2-1c} Task graph for

by the Gauss procedure. ‘the example.

The resulting task graph is shown in fig.(3.2-lc). The task graph may

be executed in six parallel operations with 9 processors. In general
‘ 2

2{n-1) parallel operations executed by (n-1) processors are reguired

to decompose a matrix with dimension n.

Two possible implementations of the algorithm on the asynchro-
nous array computer will be presented.
A straight forward implementation [3.11] is cbtained if the processors
are working synchronously. To this end it is assumed that each task
reguires the same amount of time to be executed. The time axis is

divided in time intervals, "time-slots", with equal length. The

37

scheduler assigns each task to a processor and to a time~slot. (This
can be accomplished by a list schedule; see chapter 4). Each computer
module is loaded with a copy of the matrix and the tasks assigned to
it, together with the time-~slot number.

A processor can be in one of two states; the execution state and the
communication state. At any time instant the state of all processors
is the same. During the i-th execution state a processor will execute
the task with time-slot i or if none, it will be idle. During the i~th
communication state each processor broadcasts in turn the matrix co-
efficient which was computed during the i-th execution state, while
all others receive this coefficient and store it.

Assume a task requires T time units and to broadcast a single coeffi-

cient reguires 1, time units. The actual time necessary to execute

b
the i-th time slot will be increased by M * T if M ceeffcients have
to be broadcasted.This causes a severe degradation ofkthe potential
speedup.

The implementation given in [3.12] operates also synchronously. In its
simplest form the number of processors is egual to the dimension of
the matrix. In computer module CMi the i-th row ¢of the matrix is
stored.

Assume the first (i-1) U-rows and L-columns have been determined.
During the next communication state CMi broadcasts a{i,i) to CMi+1'
CMi+2""'CMn which will receive this coefficient. During the next
execution state CMi+1' CMi+2,...,CMn compute the new L~column.During
the next communication states CMi broadcasts the remaining coeffi-

cients a{i,i+1),...,a(i,n) while CM 1,...,CMn receive these. After

a{i,3) is received by CM the operai;on a(k,3) <atk,jr-alk,i)xali, i
is performed during the execution state, for k,je¢ {i+i,...,n}. Fig.
(3.2-2) shows the resulting task graph, where the gasks Uyy 7 Uag
are communication tasks.

The resulting task graph can be de&iveé from the task graph given in
fig.(3.2~2) by imposing the sequence constraints due to the row wise
organization on the task graph of fig.(3.2-1c) and insertion of the

broadcast tasks.

In the first implementation method the required communication
will decrease the potential speedup. Improvement is possible if
asynchronous operation is allowed, because not all processors need

the same coefficients. The communication may be spread.However, the

38

number of tasks which must be scheduled is of the same order as the
number of numerical operations.
In the second implementation the number of active processors during

the computation states may be reduced if the matrix is sparse.

Yay a(i, i)

u; ¢ are the tasks of fig.(3.2-1)
for { § 1 £ 20,

“j s broadcasts a matrix coefficient
for 21 = § < 29.

e the coefficient which is broadcasted.

Fig. (3.2~2) Task graph for one row stored per computer module.

3.3 The elimination tree

In the previous section attention was paid to the parallelism which is
in the L\U-decomposition procedure itself, the inherent parallelism.
Here the attention will be focussed on the observation that in a sparse

matrix the computations which are associated with certain pivots can

39

be executed simultaneocusly. These associated computations depend on
the applied procedure. The Gauss procedure will be used for this pur-
pose. Later it will become apparent that the derived results also hold
for the Crout procedure. The computations which are associated with a
pivot are given by the compound statement in lines 5-18 of the Gauss
procedure in section 3.1.

The parallelism due to the sparsity has been studied by various authors
£3.131, [3.14]). In fact methods [3.151-[3.19] known as “tearing" and
decomposition‘into "bordered block diagonal form" or "bordered block
triangular form" are in close relation to this item.

The inherent parallelism of the L\U—decompqsition is accounted for by
assuming that whatever work is involved by processing one pivot canbe
done is a fixed time-slot. In fact the parallel algorithm is developed
) for the ideal parallel computer model where each processor itself is
again a parallel comnuter, able to exploit all parallelism associated
with a pivot. This processor model is realistic to some extend because
the computer modules may be equiped with several arithmetic units. The
length of the time-slot is equal to the time necessary to accomplish a
divide and a coefficient update operation (coefficient update opera-

tiona +a - b * c).

The parallel algorithm will be developed by applying the associa~
ted graph (V,E) of the matrix. ‘
Parallel processing of two pivots a(i,i) and a(j,j) with
a{i) eadj(a(i),E) is impossible. Namely if a(i,i) has been chosen as a
pivot than a(j,j) can be a pivot oniy after the updating step
a(j,3) <« a(3,jy - a(i,3) > a(i,i) / a(i,i) has been completed. During
the updating memory conflicts may occur if the two submatrices indi-
cated by adj(d(i},E) and adj (a(j),E) have coefficients in common,
However, this will be allowed because it is possible to store the
dyadic product temperarily.

A method to parallel processing, described in graph terms may be
as follows. A mapping v:V - {1,2,...,k} assigns to each vertex a
"label",with k < n. On basis of these labels "label classes" are de-
fined to be denoted by X; = {xev | y(® =1i}. A label class X, will
contain vertices which can be processed in parallel after all vertices
of the previous classes have been processed. Procedure “classwise
I\U~decomposition” describes symbolically the decomposition on the
basis of these classes. The operations implied by line 7 may be

executed in parallel.

40

1. procedure classwise L\U-decomposition;
2. begin

3. (V,E) < (V,E);: (V,B) < (§,4);

4. for 1 « 1 step 1 until k do

5. begin

6. X<« {xev ! yix) = i};

7. for each ue X do update (u) ;
8. end;

9. end;

The graphs (§,ﬁ) and (G,ﬁ) constructed by the compound statement in
lines 5-~8 after the i-th turn will be dencted by (ﬁiéi) and (§i,§i).
The graphs (G,é) and (G,EB in line 3 are denoted by (§O,é0) and

{60’50)' The set X in line 6 corresponds to the already defined setxi.

Now the label class X1 may be constructed as follows. Initializexlé-¢.

Each vertex vsz%o will be inspected. If adj(v,ﬁg)f1xl = ¢ then v will

be inserted into Xl' After completing x1 all its vertices are elimina-
ted from (VO,EG) to obtain (Vl,El). The whole process is repeated un-
til all vertices are inserted into a label class. The last label class
is assumed to be Xk.

However, this strategy to construct the label classes may cause an
enormous amount fill-in edges. This may result in a demand for an un-
acceptable number of storage locations and also the operations count
may be extremely large because the operation count is given by

o (ndiem} .

The number of operations must be limited because in practice the com-
puter modules of the asynchronous array computer will have a limited
processing power. To deal with this fact it will be assumed that during
preprocessing a pivot sequence was constructed which minimized the
fill-ins and orvthe number of operations. The associated graph (V,E)
of the matrix in which the fill-ins are inserted is a triangulated
graph. If in the above strategy during the selection of label class

Xi only vertices v will be labeled i with def(v,Ei_ } = ¢ then no new

1
fill-ins are introduced. Hence the number of fill-ins and the operatiors
count of the L\U-decomposition is determined by the applied pivot cti-

terion during preprocessing.

Procedure "e-tree" accomplishes the above given strategy to label

the vertices and constructs a graph (V,B) on basis of these labels.

41

The graph (V,B), which is defined by the procedure e-tree, will be
called "eliminatidn—tree" ("e-tree") .In the next sections it will be
proved that (V,B) is a spanning tree of (V,E) where the edgeé together
with the labels represent the partial ordering by which the vertices
must be eliminated to obtain a perfect elimination graph. In [3.20]

a formal definition is given of an e-tree followed by a procedufe to
obtain an e-tree. The operatiocnal definition of the e-tree is used
here because it is more in accordance with the strategy to label the

vertices.

1. procedure e-tree;
2. begin
comment (V,E) is supposed to be triangulated;
3. (0B « (v,E); 1«1
4. while V # ¢ do

5. begin
6. U <« §;
7. while U # ¢ do
8. begin
9. pick some v eU; U + U\{v};
10. if def(v,B) = ¢ then
11. begin
12. () < i;
comment y(v) is the label of v;
13. U « U\adj (v,E) ;
14. ¥« N{v}; E « E\inc(v,B);
15. end;
16, end;
17. i« i+1;
18. end;
19. B <« ¢;

comment (V,B) will be the e-tree;

20. for each veV do

i

21. begin

22, L) < {yw) | (v,2w.eEAYM) > y(¥)};
23. B«Buy{(v,w) ¢E | y(w) = min(g(v))};
24. end;

25. end;

42

3.3.2 Procedure e-tree

The algorithm generates a graph (V,B). By proving the following

lemma's it is shown that (V,B) is a spanning tree of (V,E)}.
Lemma 7
During the execution of procedure e-tree on a connected triangulated

graph (V,E} any veV is assigned to exactly one label-class.

‘proof:

By lemma 3 there will be a nonempty subset X, ¢V given label "1" in

1
line 12 of the algorithm. Any time a vertex is assigned to X1 it is
removed from the graph in line 14, this it cannot be assigned to any
other label class. Arriving at line 18 {ﬁ,é) = fv\xl,E{V\Xl)) with
VcV is obtained. (V,E) is again connected and triangulated (lemma 5).
Thus the procedure can continue with nonempty sets x2,x3,...,xk
{lemma 3) until V = V\{X1UX2 Uens uXk) is empty meaning that all

vertices have been labeled. (end ¢f proof)

With respect to line 23 of procedure e~tree w is called the

"successor of v" and v a "predecessor of w".

Lemma 8
Any vertex in some label class Xi’ i<k, has at least one successor.

proof:

For i=0,...,k~1 (Gi,éi) is triangulated, connected and nonempty. Thus
for V’Exi, i<k, the set adj(v,ﬁi_l) is nonempty. Since all these ver-
tices will be labeled in later executions of line 12 one of them must

be a successox to v. (end of proof)

The lemma implies that only the vertices in X, may have no successor.

k
In fact they will have no successor since for some

veX, aﬁj(v.Ek_ } o= 4.

1
Lemma 9

All vertices of a cligque X will be assigned to different label classes.

proof :
Assume xeX is the first vertex of the clique which receives a label,
say i. Then by line 13 of procedure e-tree X\{x} is deleted from U

which prevents that any vertex veX\{x} will get the same label i. As

43

x\{x} is again a clique the same reasoning will hold. (end of proof)

Lermma 10

For any vertex v eV in a connected triangulated graph (V,E) there is

at most one successor.

proof:
For v<£Xi the successor (if it exists) will be in the vertex set
adj(v,éi_l). Since this set must be a cligque no two vertices from this

set will be in the same label class {(lemma 9). Since the set isfinite
there is exactly one vertex wazadj(v,éiﬁl) with smallest label

y{w) > y(v) assigned as the unigue successor to v. (end of proof)

Lemma 11

Xk contains exactly one vertex.

proof:
= Xk. But (vk—l'Ek—l
connected. Suppose thegﬁ is more than one vertex in Xk then because

Assuming that (Gk,ék) = (¢,¢) implies Gk } is

of the connectedness there must be at least two vertices v,wazxk such

that wczadj(v,é). This means that v and w cannot be in the same

k-1 -
label class and consequently Vk # ¢ contrary to the assumption. The

single vertex rizxk is called the "root". (end of proof)

Theorem 1

The graph (V,B) generated by procedure e-tree executed on a connected

triangulated graph (V,E) is a spanning tree,

proof:

Any vertex except the root is assigned one edge connecting it withits
unique successor. Along those edges a chain can be established from
any vertex to the root. That means (V,B) is connected. Since for any
vertex except the root there is a unique successor IB' = ivi -1 1is
obtained. Thus (V,B) is connected énd has]Vi - 1 edges implying that

it is a spanning tree. {end of proof)

Assume (as indicated earlier) that all pivots in the same label class
can be processed in parallel and that the processing of one pivot

takes one fixed time slot. Then the critical path thrquqh the e~tree

44

indicates the number of time slots necessary to complete the L\U-de-
composition.
The following lemmas and theorems have the purpose to show that given

some triangulated connected ¢graph (V,E)

- all orderings 8 such that b; [% is a successor of v »
¥

-1 -1 yeV
+ B (x) » B (v)] are perfect orderings;

- the length of the critical path in some e-tree is identical with the
label of the root,y{(r);

- all possible e-trees for a given graph (V,E) exhibit critical paths

of identical length.

Lemma 12

Let vgzxi and w::adj(v,éi_l). Then w is a vertex in the chain from

v to r in {(V,B).

proof:
The proof works by induction on the label classes. Consider label

classes X, and X2' Any two vertices in label class X, cannot be ad-

1 1

jacent. Consider WfEX2. if W(Eadj(v,ﬁo) for scme v e X, then w will be

1
the unique successor of v. Thus w is in the chain from v to the root

and the lemma holds for the first two label classes.
Agsume the lemma is true for label classes up to and including xn and

Suppose w«zXn and v-exi, ifn. Either there is some

1° +1
ulefadj(v,Ei_1§ such that i = Y{v}<iyﬁu1)‘<y(w) = n+l or not. In the

consider X
n+

second case w is in the label class with the smallest label of all
vertices in adj(v,ﬁi_l). S0 w is the successor of v and the lemma
holds. In the first case since Y(ul) < n the lemma holds for v and uy

by induction, The same argument is repeated for some u éadj(v,ﬁi“)

P 1
such that y(ul) < y(uz} < y{w). This way of reasoning comes to an end
for some “j eadj(v,ﬁi_i) since this set is finite. The vertices

Vi Uy u2,...,uj,w obviously are all on the same chain in (V,B) from

v to r. (end of proof)

Let T{v) = (V(v),B(v}) be the subtree of (V,B) with root v.

Assume two disjoint subtrees (V{(v),B{v)) and (V{w),B(w)) of (V,B).

Then in (V,E) there is no edge (x,y) with x € V{(v) and y ¢ V{w).

45

proof:
Assume there is such an edge. Then x and y cannot be in the same label

class. Say y(x) > yly). Since x eadj(y,é } x must be in.thechain

v (y) -1
from y to the root (lemma 12). This however, implies that v e V(v)
contrary to the assumption that T(v) and T(w) are disjoint. (end of

proof) .

By the labeling the graph (V,E} is converted into a palm tree [3.217].
Namely the edge set E of (V,E) is partitioned into the edge sets
El = B and E2 = E\B. Due to the corollary 2 the edges 0ofEl and E2 can

be identified as the tree edges and fronds respectively.

Corollary 3

Let (V,E) be a connected triangulated graph with an e-tree (V,B). An
" ordering B for which

V; yev [x is successor of y + B—I(X) > Sml{y}] is a perfect ordering.
’

proof:
The obtained ordering B is a perfect ordering if

Vv [l | (y,2) eBA 87) < s”lty‘)} is a cliquel.

Consider a chain in the tree from vertex 2z to the root with vertex
set {z=21,...,zm = voot}. For £¢{2,3,...,m} holds y(z, ;) < Y(z,) and
-1

-1 :
8 (zi-l) <B (zl) because z, 1s successor of Zg 4 Hence vy(z) <y(zj)

and B (z) <e‘1(zj> for je{2,...,m}.

Assume xeX, for ief{l,...,k=-1}. Lét C{x) be the vertex set of the
chain from x to the root. Due to corollary 2 adj(x,E) = L(x) vU(x)
with L{x) = {y | (v,x) e EAyeVx)} and U(x) = {y f (v, x) cEAyeC(x) .
For any vy e V(x)\{x} holds y(x) > y(y) and for any z ¢ C{x) holds

v{x) < y(z) because of the chain from y to x respectively from x to
the root. Hence U(x) = adj(x'éi—l}f which is a clique by the con-

struction of the label classes.

For each vy € adj (x,E) either yeU(x) or yeL{x). In the first case
B—l(y} > S—lix) because v ¢ C{x). In the second case Bwl(y) < B_l(x)
because of the chain from y to x in T(x).

Hence {y l (%x,y) eE‘AB-1(y) > B_l(x)} = U(x). (end of proof)

46

Lemma 13

Assume v<sxi, i>1, such that v is in a minimal u,w-separation clique
in (éjéj)' j=0y...,1i-2. Then there is at least one vertex, say v,such

that y(y) < i and v eadj{y,é).

viy)-1
proof:

Let the minimalu,w-separation clique be S and Du and Dw be the compo-
nents with respect to $§ containing u and w respectively. As long as
Du and Dw are not empty there is a vertex in Du and Dw with zero de-
ficiency according to lemma 4, which will be labeled on execution of
line 12 of procedure e-tree, whereas v cannot be labeled according to
lemma 2. Either Du or Dw will finally shrink to one vertex, say y,
which will be labeled y(y) £ i-1. Since S was minimal

vezadj(y,ﬁ). (end of proof)

v{y)-1

Obviously all vertices in label class X, have no predecessors since 1

1
is the smallest label issued. The contrary is not so cobviocus and needs

a proof.

Lemma 14

All vertices with no predecessors are in label class Xl'
proof:

Suppose vesxn, n>1 and v has no predecessor. Thus while i<n during
execution of procedure e-tree v is not assigned'a label in line 12.
Therefore either v does not satisfy the zero-deficiency condition or
v is adjacent to some other vertex, say w, that got his label. In the
second case v is on the chain from w to the root (lemma 12} meaning
that it has a predecessor contrary to the assumption. In the first
case due to lemma 2, lemma 13 applies. Thus there is some vertex y
such that v is on the chain in (V,B) from y to the root implying that

v has a predecessor contrary to the assumption.

© Corollary 4

A vertex is in label c¢lass X1 if and only if it has no predecessors.
In other words all “tree-tops" are in label class Xl'
Corollary 5

Assume all label classes Xl""'Xi removed from (V,B). Thus (Gi,ﬁi}

and (§i,B(§i)) are obtained. Then a vertex is in label class X;,¢ if

47

and only if it has no predecessor in (Gi,B{Gi)).

proof:

The proof follows from the fact that after removal of the label clas-
ses xl,...,xi from (V,E) the residual graph is still connected and
triangulated. If the labeling is started with "i+1" instead of "1"

the statement is obtained, (end of proof)

Lemma 15

Any vertex v in some label class xi, i>1, has at least one predeces-

sor from label class Xinl'

proof .

From lemma 14 it follows that any vertex in X, has a predecegsor in

2

X1 otherwise it would have no predecessor at all. So consider the
cage that i>2 and all predecessors of v are in label classes X.,

j<i-2. Remove all label classes up to and including Xi_ Then v

2"
will have no predecessors. This is a contradiction since only Xi {Fan

have vertices with no predecessors. (end of proof)

Theorem 2
For any veV, y{v) is the length of the critical path in T(v).

proof:
The proof is by induction on the label classes. The case is clear
for x1 and X,. So assume that the statement is true for all label

classes up to and including Xn and consider some v~eXn . The truth

, +1
of the statement follows now from the observation (lemma 15) that v
has at least one predécessor in Xn, say w. By induction the critical
path in T(w) has length n. Traversing from w to v adds one edge to the

critical path which proves the statement. (end of proof)

The immediate consequence of theor?m 2 is of course that y{r}) is the
Length of the critical path in (V,é).]
Procedure e-tree need not yieid a unigue result. To see this
consider the example in fig.(3.3-1). For this example if i=2 both Vg
and Vg have zero deficiency and the vertex encountered first in line
9 will be inserted into X2. In the example the length of the critical
path is independent of the choice. There arises the question whether

this is generally so. The question will be answered in the positive

48

sense as indicated earlier. Y v

Lemma 16

Assume a connected triangulated graph (V,E) and U := {v eV !def(v,E) = ¢}

then U consists of a set of cliques which are disjoint.

proof:

Define on U the relation R{u,v) as follows

b;,v&U [R{u,v) <+u ¢ adj{v,B) U{v}]. It is obvious that for any pair of
vertices u,ve U, R(u,u) and R{u,v) +R{v,u) holds. Hence the relation
is reflexive and symmetric.

Assume R{u,v) and R{v,w) hold with u,v,weU. If u = v or v = w O

u = w then R{u,w) holds. If u # v and v # w and u # v then (ua,v)cE and
(v,w) ¢ E. The def(v,E) = ¢ means that (u,w) ¢ E and R(u,w} holds again.
Hence the relation is also transitive. The relation is an equivalence.
Consequently this equivalence induces a pargition of U into the

equivalence classes Ul'UB""’Um with U = Ui and Uir\Uj = ¢ for

U
i=1
all i,3j where i#j. Each set Ui is a clique, according to the relation,

which consists of one or more vertices. {(end of proof)

Lemma 17

Assume a connected triangulated graph (V,E). Suppose v,z ¢V such that

49

def(y,E) = ¢, def(z,E) = ¢ and y ¢ adi(z,E).
Then the graphs (Y,E(¥}) and (Z,E{Z)) with ¥ = v\{y} and 2 = V\{z} are

isomorphic.

proof:
The bijection X : ¥ » 2 with A(z) = y and for all xeV\{y,z} A(x) = x
satisfies the required conditions because adj(y,Z) = adj(z,Y¥). Fig.

(3.3.~-2) illustrates this. (end of proof)

Corollary 5

Assume a connected triangulated graph (V,E). Let xi and x{ be two dif-
ferent choices of the first label class. Then (ﬁi,éi) and (G;,ég)
(which are the elimination graphs after removing Xi or x;) are iso-

morphic.

" proof:
Obviously the first label class is éstablished by selecting one vertex

from every equivalence class U,, which are defined in lemma 16 by the

relation [R(u,v)***u.eadj(v,E)iJ{V}], i=1,...,m. The effect of elimi-
nating the first label class can be studied by considering the members
of the various equivalence classes éi independently since these clas~-
ses are disjoint.

Assume for some i Xif\Ui =y and fo\Ui = z., If v = 2 then the same
elimination graphs are obtained and .the isomorphism is obvious. If
however, v # z lemma 17 applies becouse y and z are adjacent since they

are in the same equivalence class. {(end of proof)

Lemma 16 says that for any triangulated connected graph (V,E)
the first label class has a fixed cardinality. From corollary 5 fol-

lows that for all possible choices of X, ¢ U the obtained elimination

1
graphs are isomorphic. Lemma 16 and 17 hold for each elimination graph
(Gl,él),...,(ﬁk,ﬁk). This implies that also the number of label classes

is constant for any given (V,E). So theorem 3 is obtained.

Theorem 3

For a triangulated connected graph (V,E) the length of the critical

path in some e-tree is a property of the graph.

This statement assures that the construction of the e-tree is optimal
under the present assumptions {the most important cne being that the

processing of one pivot takes a fixed time slot).

50

adj(y,E)\{z}

G = (V,E) G' = Nz}, E(vi{z})) G" = (WWiy},E(v\{y})

Pig. (3.3-2) Illustration of the isomorphism property.

3.4 Partitioning

Let C denote a set of h clusters in e-tree (V,B); the clusters are
denoted by Ci for ic {1,...,h}. Assume the set gf clusters is a parti-
tion of the vertex set V that is to say : V = _gl Ci and Cif\Cj = ¢,
for 1,3¢{1,...,h} and i # 3. *

The cluster graph of (V,B) with respect to C, denoted by (C,ﬁ), con-
tains the clusters as vertices and the edges are given by:

(Ci’cj) ¢B ﬁaveci,wecj[(v’w) eBAYV) <y(w)] .

Let v denote the vertex for which holds V;ec [y(xy <y(v)] then this

i
vertex will be called the root of Ci’ denoted by ri, for ie{1,...,h}.

Lemma 18

Let B be an ordering for the clusters B: {1,‘*.,1Ci}->c such that:

; -1 1,
Vzi,cjéctcj is a successor of C, +8 (Cj} > B (Ci)]’

an ordering # such that:

. . - -1
(i) V%iécfvh'weciLw is a successor of u=+B “{w)>8 " {(ul]

, =1 —-1 -1 -1
{ii) V%i'cjgc[kﬁéci’vccj[B (Cj) > B (C) B () > B (u)]

is a perfect ordering.
51

Proof:

For any edge (u,v) ¢ B where v is successor of u, there are two possi-
bilities. Pirstly u,veci then due to (i) corellary 3 holds,
ie{l,...,h}. Secondly, u €c, and v*ecj with i # j means (Ci'cj) €B
where Cj iilsucceSf?r of Ci due to the ordering B which induces by
{ii} the B ~{v) > B8 " (v) such that corollary 3 holds again, for
i,jef{1,...,h}. {end of proof)

The partition C and ordering according to lemma 18 yields a matrix

structure given by fic.(3.4-1).The coefficients Aij of A' arematrices

v A L
All A12 PO Alh

LI ¥ 1 1
A A?l A;E S Agh

Mt Ph2 v P

Fig.(3.4-1) Matrix structure associated with (C,B)
itself, for i,je¢{1,...,h}. The diagonal matrix Aii is associated with
the subgraph of (V,E) given by (é-i(i),E(E_l(i)), for ie{1,...,h}.
The off diagonal matrices Ai and A!i are assoclated with the set of
edges defined by {{u,v) ¢E \us E"l(i) and vczg-l(j)}, for
i,je{l,...,h}
Due to COfollary 2, Aij and Aéi are Zfi? matricef—if in the cluster
graph (C,B) there is no path between 8 (i) and B ~(j).
The clustexr graph (C,ﬁ} may be seen as having the same meaning as the
e~tree if instead of single Jdiagonal coefficients, diagonal matrices

are taken as a pivot.

Many different partitions into élusters are possible.A partition
may be cbtained as follows.
Choose some vertex v €V and consider the chain from v to the root r in
the e~tree (V,B). This chain defineg a cluster, which will be denoted
by §{v). Assume the set aﬁj(S(v),B)%is given by : {rl,...,rh}. Bach
vertex rie:adj(S(v},B) defines a clpster V(ri). If h>1 then S(v) is a
separator in (V,E) due to corollary 2. The h distinct components are
given by: {(V{rl),E(V(rl))),...,(V(rh),E(V(rh)))}.
For each component (V(ri),E(V(ri))), with (V(ri),B(ri)} as e-tree,the
above process may be repeated.

The clusters obtained this way depend on the choice of v in each com-

ponent. The choice of v can be based on various criteria.In chapter 4

52

partitioning will ke used to support the scheduling of tasks.

53

4, SCHEDULING

4.0 Introduction

In this chapter the scheduling strategy is presented for the solution
job of the set of linear equations. The scheduling model as presented
in section 2.3 will be used.

In section 4.1 the schedulingvmodel in case of an ideal parallel com-
puter is given in order to demonstrate the methods which will be used.
In section 4.2 the job system for the asynchronous array computer is
derived.

Finally in section 4.3 the proposed scheduling strategy is presented
and applied to a L\U-decomposition job.

4.1 Scheduling model for the ideal parallel computer

By means of the associated graph and the e-tree (V,B), the job systems
of the L\U-decomposition and forward substitution job ("lu-job") and
the back substitution job ("bs-job") are defined for the ideal parallel
computer.
The resource system; containing the limited resources,is given
by:
- P = {Pl""'Pm} m identical processors, which are able to exploit
all parallelisem associated with any pivot.
- R = {Ri" ..,Rs} s artificial resources with each an amount rm(Ri) =1,
for‘Ri € R. The purpose of these additional resources will be ex-

plained shortly.

Before defining the tasks some data sets will be defined which
will be stored in the memory.
With every vertex v ¢ V will be associated the data sets : A and Q .
The data set A contains the coefficients a{i, k), alk,i) and a(i,n+l),
for i = (v) and k¢ {a’ (w) {w‘smadjtv)lJ{v}}. Yith the notational
convention used in the L\U—decomposition procedures of section 3.0.
The data set O contains the coefficients qv(h k), qv(h mn+1), for
k,h e{a (w) !wezmadj(v)}, to store intermediate results. The coeffi-

cients of Qv are initialized with zero.

The job system for the lu-job.
For every vertex ueV is defined a task which accomplishes the L\U~

decomposition and forward substitution on u. The task is called partial

54

L\U~decomposition and forward substitution, and will be denoted by:
plui~-task(u). The 1 indicates the ideal parallel computer. The

w

plui-task{u) is given by the procedure "plui(u)" which operates on

the associated data sets of u and its successor.

1. procedure plui(u);
2. begin
comment This task operates on the data sets of u and its succes-
sor v. The statements given in lines 4-9 accomplish the
actual task. The statements given in lines 10-13 accom-
plish the ‘'data transport' between the data sets asso-
ciated with u and v;

3. kea T Jea W) Tl g | wemadj (u)};

4. for each 2¢I do

5. begin

6. a(%,k) «a(2,k) / alk,k);

7. for each meI U {n+i} do

8 qu(a,m)4~qu(i,m) - a(f,k) * alk,m};

9 end;

10, for each L eI do

11. for each me I u {n+l} do

12. if (=k vm=j) then a{l,m) «al{l,m) + qu(ﬁ,m)
13. else qv(ﬁ,m)<-qv(£,m) + qu(ﬁ.m);

14. end; procedure plui{u)

The resulting task graph (T,gf for the lu~job is equal to the e~tree
(v,B). The precedence relations among the tasks are given by:
(u’v)iB[plui—task(u) is the successor of plui-task{v) iff v{u) > v{v)]
(4.1.1)
Consider two tasks: plui-task(x) and plui-task(y) which are allowed to
be processed in parallel by (T,gﬁ. However, if madj{(x) nmadi(y) # ¢
then update conflicts are pessible during execution of the statements
given in lines 10-13 of procedure plui{u). Due to the introduction of
the data sets Q this can only happen if x and y have a common succes-
sOr.
To aveoid the update conflicts it is sufficient to exclude plui-task{x)
and plui-task(y) from being executed at the same time if they have the
same successor. This is accomplished by the set of artificial re-

sources; for each vertex u a resource Ru with an amount rm{R } = |}
a

55

is introduced.
Each task will demand a processor and an amount of one of the addi-
tional resource which is associated with the successor task.

The task system for the lu~job is given by:

- the set of tasks : T = {plui-task(u) 111 eV}
~ the task graph : (T,g} is egual to (V,B) with precedence re-
lations of (4.%1.1})

1 time slot for uev\{r}
- the task durations : f(plui—task(u) =

0 time slots for u = r

1 if (u,v)eBAay(u)<y(v)

- the resource demands : r(RV, plui-task(u)) =

0 if otherwise

The job system for the bs~job.
For every vertex ueV is defined a task which accomplishes the back
substitution on u. The task is called partial back substitution and
will be denoted by : pbsi-~task(u). The pbsi-task(u) is given by the

procedure “"pbs{u)".

1. procedure pbsi (u);

2. begin

3. 1« a_l(u);

4. a{i,n+1l) <« a(i,n+l) / a(i,i);

5. for each Le{a " (w) | weadj(a) \madj(w) } do
a(f,n+1) ~a{f,n+l) - a(i,n+l) *a(l,i);

6. end;

The job system of the bs-job is distinguished from the task system of

the lu-job by an accent if neccessary.

- the set of tasks : T' = {pbsi-task(v) | vev}.

- the task graph : (T',g') is equal to (V,B) with precedence rela-
tions : ‘Qu,v)eB[pb51-ta5k(u) is the successor of

pbsi-task (v} iff y(u) <y(v) 1.
- the task durations: t(pbsi-task{v)) = 1 time slot for uéV\Xl.

The parallel processing of the lu-job is demonstrated in fig. (4.1-1)
by a simple example (Without forward substitution). A schedule for 3

processors is obtained by a list schedule strategy which will be

56

presented in

section 4.3.1.

1

Fig.(4.1-b) (T,8) for the lu-job.

P = {Pl, P, p3}

R = {R4, R6} with rmfRi) = 1, for R, €R.

Fig.(4.1-1c) Resource system.

T u1 u2 u3 u4 u5 u6 u7 ugk u9 u10
T(u,) 1 1t 1 0o 1 1 1 1 1
r®,u) [0 0 1 0 0 1t 0 0 0 O

1
r(Rgeu) [0 0 0 0 0 0 O 1 0 1
L 1 4 7 9 10 8 2 5 3 6
1

Fig.(4.1-18) Input tabel for list schedule.

57

¥
. u, u
Pz' 7 3% 8 3t 3 e o - o s o
+ 3 F I]
'
P!
Py ey e ——— =
+
f u u
Rgjm = — = — -~ ety —~ - —
. ug . Yy
L | it
i 1 A time
1 2 ' 3 4 5

Fig.{4.1-le) Gantt chart of the schedule

a(l,1) a{l,2y ali,3y &(7,7 a(7,8 a(7,4 a(9,9 al%,10) a(9,5)

a2 a2, q @3 2@ g6 o 6,4 2009 g (10,100 g 10,5

22,0 a@,m | 22,4 a@5 |aw8]aee [a6,s] [auo,10] ano,6 [an0,5]
23,2 13,603 Jo, 030 "q, 351 at6,8) [ag6,6) q, (6,411 a(6,10) g 16,61y (6,511

H
a2 1 a, @3 0,48 6,45 ’fa_“"_s’ 35U D)t [a65,10]1aq(5,6) [g, 5. 5]

t
5.2 (5,3 (5,4 qy(5,5)

a3, al3,4 a(3,5 . a(6,4) a(e,s;]

- | 20T d
24,3 ay(4,4) q3(4,5)—i a(4,6) lg @, | q50a,5) |

a(5,3) 1q,(5,4) a4(5,5 | a(5,6)]lag(5,4) [ac(5,5)] i
[S 4

RidD sdn) o T
a (5,5 [0 (3,5]

Fig.(4.1-1f) Data sets determined by the e-tree and its flow.

4.2 Job and resource system for the solution of the linear egquations

on the asynchronous array computer.

In the previous section job and resource systems for the solution of
the linear equations on the ideal parallel computer have been given.
By means of the associated graph and the e-tree a set of tasks was
defined and the e-tree could be considered as the task graph.

The model of the asynchronous array computer as presented in chapter

2 accounts for the limited computation power of the processors and the
restricted capacity of communication channels. Due to the non ideal
computer model the job systems which are derived in the previous sec-

tion have to be modified.

58

The communication between the computers depends on the interdependence
of the tasks, the assignment of the tasks te the computers and on the
rules according to which the data are distributed to the memoryv mo-
dules. Some data will be stored in all memory modules and others in
one particular memory. The purpose is to store the data such that the
increase of the schedule length due to the communication will be
minimized.

An intuitive way to achieve this is to store the data, on which the
task operates, in the memory of the computer to which the task is
assigned.

Nearly the same organization will be used as in the case of the
ideal parallel computer. The L\U~decomposition and forward substitu-
tion on pivot u will be accomplished by three tasks:

- the plu-task(u} which is a modification of the plui-task(u} in case
of the ideal computer;

- the com-task (u) (communication task}:

- the add-task{u} (addition task).

Before the ﬁasks are specified the data allocation and structure will

be given.

The data allocation and structure are determined by the assgignment of
the plu tasks and the associated graph.
A vertex will be called "assigned to computer C" if the plu-task(u)

is assigned to computer C. The relation R(u,v) in V defined by

V; vev[R(u,v} <1y and v are assigned to the same computer and between
¥

u and v exists a chain in (v,B) 1,
partitions V into a set of p clusters {Ul,UZ,...,Up}, such that

P .
iEIUi = ¥V and Uinuj = ¢, for i = 3 and i,3¢{l,...,p}.

The vertex veng is called the “root of Uj", to be denoted by rj, if

\'/,Mj[y(rj) =y (w .

The "predecessor set of Uj"' to be denocted by Fj’ is defined by:
F. = {x|xeadj(U,,B) nV(r.)}.
5 (x| 3 (uy.B) nE
A cluster Uj is called "assigned to computer C" if rj is assigned to

this computer C.

59

With every cluster U, will be associated a graph (Wj,Ej) where

3
W, = thjmadj(rj,E) and'Bj = E(Wj). Further with every cluster Uj are

agsociated the following data sets A, , OQp. and Dy, . for u.eFj.
The data set Ar containsg the coefflclents a(k,8), a{e,k) and a(g,ntl),
for ke {a - (w) |wew } and g e{a (w) iweU.}.
The data set 0, 5 contaxns the coeff1c1ents qr (k,2) and qr {k,n+1),
for k,8 e {o (w) | wemadj (u,B) 1,
The data set D, contains the coefficients dur‘(k,ﬁ} and dur,(k,n+1),
for k,¥ s{u_I(W)J!w emadi (u,E) . J
The data sets Ay and O, were already introduced in section 4.1. Then
coefficients of érj are ggain initialized with zero.
- The data set Dy, will be used to store the coefficients Qu which must
be ‘'transported' from cluster Ui with u = r, to cluster Uj. The coef-

ficients of Dyy are initialized with zero.

The graph (Wj,Ej) is the associated graph of the submatrices which
are determined by the data sets A, and @

.

If a cluster is assigned to a computer C tge associated data sets are

allocated to this computer.

The plu~task(u) can now be specified. The procedure "plu{u)” ac~
complishes the plu-task(u). The procedure operates only on the data

structure which is determined by (W.,E.} where u sUj
1. procedure plu(u);
2. begin

comment ueU., a{n+l) {V;

3. kea TW; I« {a W) | wemad(u,E)};

4, for each £¢71 .do

5. begin

6. a{g,k) +alg,k)/atk,k);

7. for each me I u {n+l} do

8. if (a(2) €Uy or alm) €U,)

g, then a(g,m} «a(l,m) ~ a(g,k) xalk,m)

10. else q_ (%,m) <q, (4,m) - a(,k) xalk,m);
11. end; £ loop” J

12. end; procedure plu(u)

60

Consider the plu-task{u} and plu~task(v), where v is the succes-
gor of u. Assume plu-~task(u) and plu-task({v) have been assigned to

computer €, and CR’ respectively. Further let uéin and veiUi.Thedata

k
sets which are associated with Uj and Ui are allocated to computer C

k
and Cg, respectively.
Ta accomplish the L\U-decomposition and forward substitution on pivot
u two situations must ke regarded,
- The tasks have been assigned to the same computer. In this case
Uj = Ui and the desired process will be accomplished by the
plu~task(u), which will be executed by computer Ck’
-~ The tasks have been assigned to different computers.
In this case u is the root of Uj. The first part is accompliéhed by
the plu-task (u), which will be executed by computer Ck.Subsequently
the intermediate results, stored in Q. , are transmitted to computer
C£ by computer Ck. This is assomplished by com-task (u}.In the memay
M, of the computer C

2 2
ceived data. Finally, computer C, has to add the intermediate re-
X

the data set Duy. is used to store the re-
i

sults, stored in Duri' to the data sets Ari and Qri. This ig ac-
complished by the add-task(u).
The com-task{u) is given by the procedures broadcast (0 ‘,IBQI_,h)
and receive(Duri,IRDuri,h) which are thought to be exetuted %y the

computers C, and Cg’ respectively. The array IBQ, 1is equal to

k
-3
IRD,, and contains the set of indices given by I IV {n+1}, where
A1
I = 4o “{w) lw € madj (u,E) }.
The add-task(u) is given by procedure "add(u}", which will be executed

by computer C_ .
X

1. procedure add(u);
comment uéUj, aln+1) £v;
2. begin
3. k ¢ Ot_l(u) ; 1< {a7! () | wemaas,m b

4. for each L€1I do

5. begin

6. for each me I U {n+1} do

7. if (a(2) €Uj or ao{m) sUj} then a(f,m) «a{l,m) + duri(Q,m}
8. else qri(Q,m)‘qri(Q,m)+durj(&,M);
9. end; & loop

10, end

61

The set of tasks .
{plu-task () |ue Uj}LJ{add—task(u) |ue:Fj} u{com—task(xj}} are asso-
ciated with cluster Uj. The set of tasks will be executed by‘computer

Ck if Uj is allocated in memory Mk.

Because the assignment of the plu-task(u) is not known in advance
the tasks com-task(u) and add-task(u} are concatenated to every
plu-task(u), for uev\ {r}. If v is the successor of u and both verti~
ces are assigned to the same computer then the com~task(u) and
add-task (u) are empty.

The modified task graph (T,g) for the lu-~job can now be given. The
set of tasks is given by:

T = {plu-task{u), com-task(u), add-task (u) iu ev\ {r}}u {plu-task(r)},
and the set of edges § is given by:

g = {(plu-task (u}, com~task(u)), (com-task(u), add-task(u)),
(add-task (1), plu-task(v))| (u,v) eBay(u) <y},

where com~task{u), add-taék(u) and plu-task(v) are the successor tasks
of plu—-task(u), com-task(u) and add-task(u) respectively.
Fig. (4.2-1) shows the task graph of the lu~job for the considered

sparse matrix example.

4.2.2 The_set of tasks and task graph of the bs-job for the asynchro-

nous array computer.

The back substitution on a pivot v € V will be accomplished by two

tasks:

-~ pbs-task(v), which is a modification of the pbsi-task(u) in case of
the ideal parallel computer;

- com-pbs~task (v) .

The tasks will operate on the data structure and allocation as given

in the previous section 4.2.1. Hence the pbs-task(v) will be assigned

to the same computer as to which the plu~task(v) has been assigned.

The pbs-~task(v) will be given by procedure "pbs(v)"; note the row-

instead of the column-wise organization.

-62

1. procedure pbs(v);
2. begin

comment v €U, ;

3. k<~a-1(v); I*-{m_ltw} §w<zmadj(v,E)};

4. for each 2¢1I do

5. if (a(2) € U, then a(k,n+1) «alk,n+tl) ~a(k,8) *a{l,n+i}

6. else a(k,n+1)4~a(k,n+1}4-qr‘(2,n+1}*'a(k,2):
7. alk,n+1) <a(k,n+l) /alk,k); J

8. end;

The pbs~-task(v) may be executed if the coefficients a(k,n+1) and

dy (&,nt+1) contain the components x(m) of x, for - o

mc?{&_l(w) lwemadin) ¥, & e{a—l{w) ?we{madj(v)fﬁmadj(ri)} and

kez{a_i{w) EWezmadj(v)r1Ui}.

Consider a vertex ve:Ui and let Fi(v} be defined by:

Fi(v) = {Xl {ngFi} A {v is the successor of x)}

To accomplish the back substitution on pivot v two situations must be

regarded:

- The set Fi(v) is empty. In this case the desired process will be
performed by the pbs-task(u}.

- The set Fi(v) is not empty. In this situation data exchange will be
necessary between the computer Cz, to which v has been assigned,and
the computer Ck, to which ug eFi(v) has been assigned for

s
les< |F (v,

After completion of the pbs-task{v) computer CK has to transmit the

coefficients a(m,n+1) to computer Cp , for mez{u-l(w) |madj(uS,E)}.

Computer Cp receives and stores thescoefficients in the correspon-

ding locations of @ -

It is proposed to organize this data exchange by a single communica-

tion task called com-pbs-task(v}).

The componentsvx(m} of x, for mf:{a_l(w) §Wezmadj(x} §x<;Fi(v)}},have

to be broadcasted. These components are stored in the data sets Ari

and Qri in computer C - The array IBAri contains the indices of the
coefficients in Ari given by {a_l(w) |w<:madj(v)f10i}, and array

IBQ, contains the indices of the coefficients in Q, gilven by
i] . o
{a " {w) iwezmadj(v){1madj(r)}. The procedure

broadcast{Ay , IBA,. . Qp . IBOy , k) accomplishes the desired broad-
i i i

i

cast when it is executed by computer Cg'

63

Let IRQ, contain the indices of the coefficients in Qg given by
{a (w) fw emadj (v) n (U U madj (r).
Each computer Ck receives and selects the required coefficients by

execution of procedure rece:we 0y « IRQu , k) for 1582 fF’ .
s

Because the assignment of the vertices ueV is not known in ad-
vance to every pbs—task{u), ueVy\ Xl’ a com-pbs-task(u) is concate-
nated.

The new set of tasks T' for the bs~job is given by:
= {pbs-task(u), com-pbs-task(u) I ue v\ Xl] ¢ {pbs ~tasktu) f‘u € «Xl}.
P
and the new set of edges $' is given by:

= { (pbs-task (v) ,com-pbs-task (v)}, {(com-pbs-task (v} ,pbs~task (u)) i
| a,v) eB Aly(w) <y},

where com~pbs-task(v) is the successor task of pbs-task(v) and
pbs-task(u) is a successor task of com-pbs-task(v).

Fig.(4.2-2) shows the task graph for the considered sparse matrix

example.
tpl :
t01
ts1
tpi = plu-task (ui)
tci = com-task(ui}
tsi = adc}~task(ui)

for 1 £1i 5 10

Fig.(4.2-1) Modified task graph (T,5) for lu-job.

64

o
o
ot
o

1

pbs~task(ui)

tei comupbs-task(ui)

for 1 £ 1 5 10

e
Fig.{4.2~2) Modified task graph (T',S') for bs-job.

4.2.3 Task duration of tasks of the lu- en bs-job.
If the necessary synchronization between the computers is obtained by
the proposed timing instructions it is desirable to have the exact
values for the task duration. If this is not possible estimates of the
duration have to be used. These estimates must be upper limits for the
task durations.
The duration of a task depends on the value ©of the operands in the
task instructions, the data structure and organization of the hard-
ware. Note that the time necessary to perform an arithmetic operation
may depend on the wvalues of the operands. Assume the durations of the
tasks, occurring during the execution of the lu-job and bs-job, are
determined with sufficient accuracy by counting only the floating
point operations.
The operations which are involved with cdlumn (n+t1} will be out of
consideration.

The time needed for a divide, multiply and add or substract

operation is given by: T and T,

div’ “mul ad
The communication time to exchange k floating point values is given

by:

communication time = k#* 1 + T (4.2.1)

com overh

where T is the communication time to transport one value and T
com overh

&5

is the required overhead time which occurs every time the communica-

tion task is started to transmit a vector of k values.

The duration of the tasks of the lu-job.
If all tasks would be assigned to a single computer then the dura-
tions of the com-tasks and add-tasks are zero and the duration of any

plu~task (u) , denoted by t1{u), is given by:

t1(w) = |madj () |t | (magj () |2 % (x__+1_). (4.2.2)

div + mal “add

If the tasks are assigned to two or more computers the task durations
cannot be cbtained in this simple way. If an update operation is per-
formed on a coefficient of some data set @ it is necessary to dis-
tinguish whether the coefficient is zero or not. Hence the duration
of the tasks will also depend on the assignment of the tasks and the

sequence in which they are processed.

Consider a cluster U, = {ul,...,un} with r;, = u_ and F, o= {uo}

where (Ui' B(Ui)} is a chain from ul to un in the e-tree., Let B, €U

The durations of the tasks which are associated with the cluster Uij
are now determined.

First the add—task(uo), as given b§ procedure add(uo),has to update
the COffficients 4y (k,L) by the coeffcients duoun(k,k) for
k,2e{a " {(w) |wezmadj(u0}}.
Distinction must be made whether the update operation is performed on
a zero or nonzerco coefficient. At this moment all Imadj(un)[2 coeffi-
cients of data set @, are zero. The number‘of update operations on
coefficients which arg initially zero lS given by |madj(u0,u)!

Hence only fmadj(u)| imadj(ug,u)l add operations are necessary.

The duration for add—task(uo) is-given by:

2 . 2
t(add~task (ug)) = (|madj(uy) |” - |mad3(u0,un)[) * 1 (4.2.3)

add

Now Imadj(u)§ imadj(uo,u)‘ locations of Ou are still zero.

The next task, plu-task(u), as given by procedure glu(u Y, has to
perform fmadj(u)| update operations from which [madj(ui,u)] on co-
efficients of Ou . However !madj(uo,u)| of those coefficients have
become nonzero. The resulting number of update operations on zeroc co-
efficients is given by: imaaj(ul,un)tz - }maaj(uo,un}iz,whe duration

of plu~task(u1) is given by:

66

. 2 . 2
T(plu—task(ul)) = Tl(ul)-+(-¥madj(u1,un)f +lnad3(uo,un}§ Yt

add

The above reasoning can be repeated for uk €{u2,u3,...,un}: {(4.2.4)
gives the duration of a plu—task(ug).
t{plu-task(u)) = t1{u,) + (-|madi(u,,u)§2<+imadj(u u)jz)* .

) |3 2 °n 2-1""n “add

{(4.2.4)

The durations of add-task(uﬁ) and com-task(ui} are zero for
u, € {ul,...,un_l}.
The duration for the com—task(un} is given by:
T(com-task(u_)) = |madj(u)IET + T .

n i n com overh
The total duration for the plu-tasks for the chain Uyl ree oty with
k € n is given by:

2 K 2

ESESCIRY Toaga * i§1ti{ui) - \madg(uk,un)l T ad. (4.2.5)

The second term is the duration in case of one computer, the third
term accounts for the zero coefficients of Oy , which would be updated,
n
and the first term gives the number of coefficients in §, which have
‘ n

been made nonzero by -

Consider a cluster U, = Ui UUE = {ul,...,un} U {Vi"“’vg} with

;o= uy and F,o= {uo,vo

chains in (v,B) from uy to u and vy to Vo respectively. The chains

are connected by (vg,uk}czB. Let uo éUj, vOerm, (uo,ul} ¢ B and

} such that (Ui,B(Ui)) and (U;,B(U;)) are

(Vo,v1)<58_ Fig. (4.2~-3) shows the considered Ui'

i~aunl
o u
.
4 _ m
S e A, T
Y
! k-14
!
\
' Yy
! /
t /
' ’ 7
Y e
#
\ P
N Yne -

Fig.(4.2-3) The considered cluster Ui'

67

Iif madj(ug,v ,un) f ¢, for any u € {uo,...,uk_l} and v, ¢ {VO,..‘,VK}

it is evidenz that the durations of the associated pluit&sks interfere
with each other by means of the number of nonzero coefficients in data
set Q, .
If a sgbmatrix, defined by madj(uk_l,vg,un) is used to store the inter-
mediate update results produced by the tasks {add—task(vo)} u
u {plu-task(vt) | 1<t £ ¢}, this interference is avoided. Due to this
extra submatrix the already stated equations {(4.2.1) - (4.2.5) hold
for the tasks associated with {uo,...,uk_l} and {VO""’Vz}‘
The plu—task(u) starts with adding the intermediate update results
stored in the submatrix to the coefficients deflned bymadj(u 1ﬁ7fun)
of ~un; this takes a time]madj(u I,VQ,a)i Taad” Besides the divide
and multiply operations [mad](uk)|2 update operatlons have to be per-
. formed. Imadj(uk,u)]2 update operatlons have to be performed on coef-
ficients of ou . Of these Imadj(uk,u)[coefficients |madj(u _qruy H
[madj{VQ,u)I imadj(uk_l,vm,un)(coefficients are nonzero and
hence have to be taken into account for calculation of the task dura-
tion. The duration of the task plu—task(uk) is given by:

. 2 . 2
t{plu-task(u)) = (|madj(u _,u)|" + |mad3<v£,un>§ YTaag *

) \
+ tl(u) - |madjtu)|t .. (4.2.6)

Equation (4.2.6) is obtained from (4.2.4) by addition of the factor

2
}madj(vg,un)| Tadd‘ This can be extended to the general case of a

vertex with m predecessors.
Now assume the vertices vl,...,vl do not exist. The duration for the
add-task(vo) is given by {4.2.3); if the coeffcients of the data set

Dvounl defined by madj(vo,uk_l,un), are processed by the plu—task(uk).

It is now possible to state the expressions for the general case.

Consider a cluster Uj. The duration of the tasks which are associated

with this cluster are given by the equations (4.2.7) - (4.2.9).
=(’madj(u)§2-§madj(ur)|2)*r for ueF
. y add 3
T (add-task (u)) - 4.2.7)
= - £ U,
Q or ue 3

68

T (plu-task(u}) = Zlmadj(v,r.}l2r
] ad
vel
where I = {w| (w,u) eBAY@) >y(u)} for ueu, (4.2.8)

+ tl{u) - 1madj(rj,uf21

a add

12
T -task (r. = T + di{r.) T 4.2,
{com (rj)} overh |ma J(rj) com (9}

The duration of the tasks of the bs-job.

In contrast to the previously considered tasks the durations of the
pbs~tasks are independent of the assignment. The duration of a
bpbs—task(u) is given by:

y + T (4.2.10)

b - ; *
T (pbs~task (u}) ‘madj(u)* (Tmul + Tadd div

if it is assumed that the component of ¢ determined by u is nonzero.

The duration of a com-pbs-task{u) is given by:

- - = | f . I . - "
T (com-pbs~task (u)) f~mad]{x) X éFi(v)} Tcom-* overh for u cUi

(4.2.11)

4.2.4 Resource system and resource demands

The asynchronous array computer model accounts only for the number of

computers, their processing capacity and communication resources.

The "resource system of the proposed parallel computer is given by:

- P = {Pl,...,Pm} m identical processors with limited computing ca-
pacity.

} {(m+1) additional resources with amount:

) = k.

- R = {Rl,...,Rm,Rm+1

rm(R,)= 1, for 1 < i £ m and rm(R

i m+1
A processor Pi and its memory Mi can be regarded as one unit, due to
the communication rules, and may be denoted by processor or computer.
The resources: Ri = Pi, 1 £ i £ m, have been added to the additional
resources to describe the master slave construction during execution

of the communication tasks. Resource Rm+1 accounts for the k buses.

The resource demand is determined by the assignment of the tasks.
From the assignment of the plu-task(u), u ¢V, the assigmment of all

other tasks is determined.

FA(com—task(u)} = FA(plu—task(u)) ueV
FA(add—task(u)) = FA(plu—task(v)} {u,v) ¢ B and v (u) <v(v)
FA(pbs—task(u}} = FA(plu—task(u)) ueV

FA(comvpbs—task(u)) = FA(plu-task(u}} uegVv

69

The demand for the additional resources is determined by F

A The

resource demand ofvany task p = T'u7T is given by:

- if the considered task p is any plu-task(u) or pbs-task(u) then
1 for Rge {FA(p)}
r (RR:P) =
0 otherwise
- if the considered task p is any com-task(u) with (u,v) ¢B and
y{ua) <y{v) then
1 for R, € {FA(p), FA({plu~task(v)); Rm+1}
r(Rﬁ,p) =
0 otherwise
- if the considered task p is any com-pbs-task{u} then
1 for Rge {FA(p), Rm+1} U{FA(plu—task(v))|u is the suc~

r(Ry,p) = cessor of v}

0 otherwise

4.3 Scheduling of the solution job

After thescheduling model as stated in section 2.3 has been completed
the actual scheduling can start. ?he problem is to determine the two
mappings FA : TUT'+P and FI ' TKJT‘-+I, the assignment of tasks to
resources and to time intervals respectively, such that all constraints
are satisfied, such that the object function, the schedule length w,
is minimized.

The above schedule problem is divided into two parts: the lu-job
scheduling and the bs-job scheduling.

Attention will be paid only to the lu-~job scheduling. The assignment

FA is determined by minimizing the schedule length w " instead of

1
(wlu + mbs)' The lower script indicates to which job the w belongs.

This may result in a non optimal schedule for the lu-job and bs-job
together. But a near optimal schedule is assumed because @y is mini=-

mized and Wy is much smaller than w, . Namely, consider the case

lu
where the number of processors is large enough to exploit all paral-
lelism, then the critical path length is a good estimate for the
schedule length. From the equations (4.2.8) and (4.2.10) it may be

concluded that w, << w
bs

.

1u
The resource demands and the duration of the tasks depend on the

task assignment {general schedule model) . Already without this depen-

70

dency, in the case that the communication aspects would be neglected,
the stated scheduling problem belongs to the class of NP-complete
problems [4.1]. To keep the required preprocessing within acceptable
limits heuristics will be used to determine a near optimal schedule.
The schedule which will be considered belongs to the class of non-

preemptive list schedules [2.37.

- The performance of list schedules is in general guite adequate and

the computational complexity is polyncmial bounded. First an opera-
tional description of the list scheduling will be given for the
augmented basic model. According to some strategy an ordering

Tt {1,...,!T|}—+T is determined. The tasks are inserted intoc a list,
denoted by L, according to the ordering L = (n(l),ﬁ(Z),...,w(lTE}}.
"Scanning" the list L means that the tasks are inspected one by one
in the sequence imposed by the ordering.

A task ue T with predecessor tasks {ul,ug,...,u } is free at time t

k
if é(ui) < t for uie:{ul,...,uk}.

The mappings FI and FA will be constructed. The mappings under con-
struction are distinguished by a bar : FI and FA'

Consider the assignment to the time intervals FI :T+1I; task ueT
will be called "covered” if FI(u) # ¢ otherwise this task u will be
called "uncovered". If all u €T are covered then FI will be called
"complete", otherwise it will be called "partial".

The same notations hold for %A' If gA(u) = Pi then task u is covered
by Pi. The functions fp and f are derived from (2.3.3) and {2.3.4) by
replacing FI and FA by FI and FA respectively. Assume the partial
mappings FA and FI' A task u will be called "ready" at time t if:

- u is free and uncovered by fI

€ - L
VR. ER[r(Ri,\;) rm(R,) r(R{,v)]
1 vef(t)
A processor P, will be called "idle" at time t if fp(t,?i) = $. The
EA and 51, which are determined by the procedure "list schedule", re~
present the required schedule.
Relatively much is known about list schedules for the basic sche-

dule model. Some results which are important for the purpose here are

cited.

71

1. procedure list schedule;
2. begin A
comment schedule will be represented by FA =F and F_ = F

3.t +«0; V [m)«o;EIm)+¢ﬁ

ueT A
4. while {FI partial) do
5. begin
6. while ((# idle processors # 0) A (# ready tasks # 0)) do
7. begin
8. u <+ scan L for a ready task;
9. Pi + arbitrary idle processor;
10, FA{u) * Py;
11. Fz(u) « [t,t + {T(Pi,u)));
12. end;
13. t « min({8{w) | §A(w) ZenSw2t) s
14. end;
15. end;

Consider two identical schedule models A and A' which are equal except
for one of the following items: the list L, the precedence relations
g, the task durations t and the number of processors m. The items of
the two models are distinguished by a dash if necessary. Formula
(4.3.1) [4.2] gives an upper bound by which the ratio w'/w may change.
Wlogq Bt (4.3.1)
® m

Sometimes the result is counter intuitive namely even if m' >m ox
§'CZ§ or t'(u) £t{u), for ueT, then a schedule length w' > w mey re-
sult. (Scheduling anomalies). ansider the case where model A has a
list which produces the minimal @, to be denoted by Wy and where A'
has an arbitrary list L. Formula (4.3.2) [4.2] illustrates the neces-
sity to pay attention to the construction of the list L.

ol g, L (4.3.2)
m .
Consider a task system where the task graph is an in-tree. For
each task ueT a "level”, denoted by %{u), will be defined. The level

2{u) is egual to the sum of the duration of the task itself and all

the tasks on the path to and the root task. Now a mapping

72

T {1,...,§T!}~>T is determined such that £(w(i)) = 2(w{3})}), for i<j.
List scHedules with a list determined by the levels as in the above
way, are called level schedules.

If the task durations are equal the level schedule will be optimal
[4.3]. 1f the task durations are not equal a schedule length w will
result which in general is not optimal. An upper bound for the ratio
between w and w,. is given by [4.4].

0

n
Lot w1y omax ({1, ,...,T. 1/ LT, (4.3.3)
@ 1 n 1=1 i

The bound given by (4.3.3) is only of importance if the number of
processors m is not large enough to obtain the minimal schedule

length.

4.3.2 Determination of FA and FI.

To obtain a near optimal schedule the problem of finding the two map-
pings FA and FI will be treated separately, although they are not in-
dependent oﬁ each other. (The lower script lu in ®y 4 iz deleted be-
cause only the lu-job is considered).

The job system in case of the ideal parallel computer without the
additional resources and with task durations given by eqg.(4.2.2) will
be used to this purpose. Hence the possible updéte conflicts and the
effects due to the data distribution are out of consideration at this
stage. The scheduling model reduces to the basic model. The items be~-
longing to this model will be indicated by the superscript b if ne-
cessary.

From the mapping FZ the mapping FA may be derived according to the
rules stated in section 4.2.4. On the general schedule mocdel stated
in section 4.2 this Fy will be imposed as a constraint. This means
only schedules with Fg determined by Fg will be allowed. From the task
system the tasks with duration zero will be deleted.The scheduling

problem is reduced to finding the mapping F_ for an augmented sche-

I
dule model. The items of this model will be referred to without a
superscript.

For the purpose at hand, a mzpping Fi will be called (near) optimal if
with FA being derived from FA also a (near) optimal FI can be ob-

tained. The -quality of the resulting schedule may be measured by the

73

ratio given by (4.3.4) if the ratio given by (4.3.5)

W - &)

——) (4.3.4)
w

is known to be small. Because of the task graph being a tree and, if

level scheduling is applied an estimate for (4.3.5) is given by

(4.3.3).

(4.3.5)

Nonpreemptive list schedule for the basic schedule model.
The list is determined by the task levels because the task graph is
an in-tree. The level schedule strategy is performed by the procedure
list schedule, where the schedule model is the basic schedule model

b
of section 4.1, and the two mappings FA and F? are generated.

The mapping FA which is derived from Fz is imposed as a constraint
on the schedule model of 'section 4.2 by which it reduces to an aug-
mented schedule model.
Again the nonpreemptive level schedule strategy will be applied to de~
termine the mapping FI' The procedure list schedule, where the sche-
dule model is the augmented model, generates the mapping FI'

The whole scheduling process is applied to the sparse matrix

example in order to illustrate the scheduling; see fig.{4.3-1).

u; = plui-task(v,) for 0 <4 <10

‘Fig.(4.3-1a) The task graph (T°,8°) for the lu-job.

74

U,

* b T S SV R S S S B SR P 1)
T1(uy) 10 21 10 3 0 10 10 10 10 10
atuy) 44 34 13 3 o 13 33 23 33 23
w_l(ui) 1 2 7 9 10 8 3 5 4 3

Fig.{4.3-1b) Table with input for list schedule on basic model,

where Toad = Tmutl = Tdiv = 1 unit.
fp(t, Pl)
! u u
e e [2 3 Y4 G5
0 10 31 41 |
B 1
. !
£ {t, P
| P 2) :
N BN - SN S S f
0 10 20 30 |
\]
| |
i£_(t, Py)
1{ 3 !
b ug 5t ulo 3 :
,0 10 20 =44

i LS

Fig.(4.3~1c) Gantt charts for the basic scheduling.

Fig. (4.3-1d) Modified task graph (T,3).

=
il

X
I

for 1 ef{1,..

plu-task(v,)
com-task(vi)
w, = add—task(vi)

., 10}

75

¥y U ¥y U3 Wy Vg Ug Ug Ug Uy Wy,

b
F}& (yi) P P P P P P P P P P

]
]
1
s
]
1 71 Tt 1 Tt T2 f2 T2 T3 Tz
. 1
'FA(Yi) P1 P1 P1 91 Pl P2 P2 92 93 P3 ;p 93 1=1 P2
Tly,) 10 21 10 3 0 8 9 10 9 7 ; 2 2 4 3
1
rRey) 11 1 1 1 0 0 0 0 01 1 0 1 O
1
r(Rz,yi)OOOO()lllOO:liOl
v
r(R3,yi)oooooooo11:o1oo
r(Rbus,yi)ooooooooco:11oo
i
Ly 44 34 13 3 0 17 36 27 38 29 ' 9 22 7 20
1]
-1 f
i

T " (y,) 1 4 10 13 14 9 3 6 2 5 it 7 12 8

Fig.(4.3-1e)} Table with input for list schedule on augmented

model, where Tcom = (0.5 units and Toverh = 0. units.

£(t,P) u Sou u X, W u, u

K 3 1 . 2 ' 3 5 76 4- -5__‘

} ¢ 3 | WO -3

; 10 31 41 43 45 48

1
f(*{’:,Pz) u, ug Xy QW ug x

} 31)‘mﬂ——?i }‘,W—---'"W/g”——*-«-

‘ 9 19 21 24 32 41 43
£(t,p,)

3 ug U0

X ---_g;/?_.,-_-__.. ———— - —

denmand for R4 x1 . x6
(R —-«—-——Y///b—--- ———— e VU~ —— ~-
19 41 43 ey time

Fig.(4.3-1f) Gantt charts for the resulting schedules.

4.3.3 Modification on the strategy to determine F

A

The schedule length w is in general larger than wb due to the intro-
duced communication tasks, modified task duration and the resource
demands of tasks; the difference (w - wb) will be called the "commu-
nication overhead". The strategy which was pointed cut in section

4.3.2 may be improved considerably if during the construction of

76

Ei attention is paid to the communication overhead which may be intro-
duced. The overhead will be reduced in two ways:

~ "local strategy". If during determination of Fi the predecessor
tasks have been assigned to different computers then it will be tried
to minimize the overhead by a proper assignment of the successor task.
- "glcobal strategy”. The nunmber of communication tasks which might

become active will be reduced.

Local strategy.
During the list scheduling to obtain Fi the assignment of a ready
task is done to an arbitrary processor if there are more idle proces-~
sors. The schedule length mb is independent of which processors will
be chosen. However the resulting schedule length p will be dependent
of which idle processor has been chosen, even if durations of the
communication tasks are neglected.
In case of sufficient many processors the critical path length of
(T,g) is a measure for w. The dependency of the assignment for the
critical path length is demonstrated in the following,
Consider a vertex u with predecessors {wl,...,wn} and a successor v.
Let v<:Ui. Agssume all vertices given by V\V(u) have already been as-
signed to some processor. The level of plu-task(v) does not depend
on the assignment of any vertex x ¢ V(u) because the duration of the
tasks does not depend on the assigmment of the predecessors, see
equations {(4.2.7) and (4.2.8).
If U<5Ui then the level of plu-task{u) becomes: §(plu-task(v)) +

+ ti{plu~task(u)), which is given by:

W
n

Li{plu-task (u)) = R(plu-task(v)) +tl(u) + 2 \madj(w,ri)ﬁzradd -
W=W
1

, 2
|madj(u,ri) T.aa

{4.3.6)
If uét&_then the level of plu-task(u) becomes: 2(plu-task(v}} +
+ 1 (add-task (u) + tl(plu~-task(u), which is given by:

2 (plu-task (1)} = & (plu-task(v)) + (|maaj<u)12 - tmadj(u,ri)§2;radd'+
v

n
+ Tl + 3 |madj(w,u)|2ra a- [madj(u,u}|21ad

WEW 1

(4.3.7)

d d

77

In case of uit%_the level of plu-task(u) is increased by the amount

given by:

w

change in level = X (‘madj(w,u)‘2 - Imadj(w,ri)lz)Tad {4.3.8)

W=W 1

a

The critical path is egual to the highest level. If plu-task{u) lies
on the critical path, then the critical path length is increased by
the above amount.

The critical path length does not take inteo account the resource
demands some tasks are forced to be executed one after another, this
in contrast to the precedence relations. Assume all tasks on the cri-
tical path in the task graph of the augmented schedule model are as-
signed to the same computer Cr and all other tasks to computers Ci’
for i # r and 1 € 1 € m. Let Uj be the c}uster assigned to Cr' The
tasks add-task{u} for u‘st will be assigned to Cr’ hence this com—

puter requires an extra amount of processing time given by:

5 (!madj(u)|2 Toom + Taad

uEFj om add ! (4.3.9)

T
overh

This amount will be indicated as "addition overhead"”. The schedule

=S
length @ is the sum of the critica; path length in (T,S8) and the ad~

dition overhead.

The local strategy tries to reduce the addition overhead.The critical
path length in (T,§} may be increaéed.

Assume at time £ the ready task u is obtained from the list scan. Let
PI(u) denote the predecessor tasks of u which have been assigned to
one of the processors which are idle at time t. If PI(u) is empty,
select an arbitrary processor out of the idle processors.Otherwise
select the task v ¢ PI(u) which is finished first, and take the idle
processor given by gA(v}.

ﬁine 9 in procedure list schedule is. replaced by:

9.1 if (PI{u) = ¢) then pick some ?ie {idle processors)else pick some

9.2 B € {ﬁA(v) | vePIfu) A (8(v) = min({8(w) | wePT(u) 1)) ;

This criterion will be called "switch criterion” because consecutive
tasks which belong to a critical path of a (sub)~tree tend to be as-

signed to distinct computers if the task has more than one predecessor

78.

task.

Fig. (4,3-2) shows the influence of the switch criterion on the sche~
dule by means of a simple example.

At time instant t* during construction of Fi the plu—task(u4)b must be
assigned while all three computers are idle. Due to the switch crite-
rion pluutask(u4)b will be assigned to P3. This because of P2 and P3
being expected to be idle, apart from communication tasks and add-task,
in the schedule during the time intervals (S(plu—task(uz)),
6{plu-task(u1)}) and (5(plu—task(u3), §(plu—task(u1))).

The longest interval is chosen and will be used to perform the data
exchange and add-tasks as much as possible. In the given example this
is possible, hence the only overhead is due to the com«task(ul).

FPig. {4.3-3) shows the scheduling process with the switch criterion for
the sparse matrix example. The communication overhead is reduced by

two time units.

uy u, Uy
o
(Tb,s) (T,g) obtained without {T,%) obtained with
switch criterion switch criterion

Fig. (4.3-2a)

[ul % U4 3
f(t,Pl} f ¥] ———

| | \

{ u, i { “without switch criterion
£(t,Py) ¢ : }_-__r_f_‘___

f | | | with switch criterion

| ! /

tu i | u

v 3 4

i '
: . ! L time
0 t* (.ob

Fig. (4.3-2b) Gantt charts for schedule of the basic model.

79

. 1 w02 %3 % A S

i " | ” 4 1=

! ; 17 1 { u, = plu-'task(ui)
; u, ic ,1 : : : | = com-task (u,)
p—--—— - - = - rm——- |-- a, = ada-task(u,)
. i | [l { i i
' : } 1 [f

uy 1041 1

. I {- B -

- | : |- o { > time

0 W

u o4
: i \: J o e i e s e
1 ’\ K
] 1 1
\ ! !

i

' o {
: u-2 \|2§ ! !
¥ AT T - ™= - =
N ' ‘ '
M f i 1
] f ’ '
« U a <
e P28 4% o« 2 Y
!""""’}"”‘""l L] }f LA 4]
! : { } H H y time

Fig. (4.3-2d) Gantt charts for schedule with switch criterion.

fiqg, (4.3-2) Example to demonstrate the influence of the switch criterion

£(t,,)
' u i u
; : Gy 2 o 3 N
¥ 4l 7t s o Rl
: 10 31 4
t
|f(t,1>2)
' u u,
7) s o e u, u,
: }l): } ---- 4 _»__5
: 10 20 30 FYRY
:ftt,P3)
3
I S
f ry v e o s i s
' 10 20
3
i

time
Fig.{4.3-3a) Gantt charts for the basic schedule with "switch mode”.
Task system is given in fig.{(4.3-1a,b)

80

]

pdfstask (vi)

com-task I_vi }
add~-task {vi)

o

=T .t =
‘mul div

=95 Toverh

task graph.

T
M BT T Ry s My Sy g up Loy o s s
b oo
ngv) P1 P, Pl Pz Pz PZ P2 FZ ?3 P3 !
I
FA(V) P} Pl P1 ?2 P2 92 P2 P2 P3 93 | Pl P3 ?2 PZ
T{v) 1017 10 3 0 10 16 10 9 7 | 2 =2 4 4
r(R,,v) i1t 0 0 6 9 o o o | 1 o 0 o
Ry, v} ¢ 0 0 1 1t 1 1 1 ¢ o | [1 1
TRy, v) o 0o ¢ o o 0 ¢ 0 1 1 1 0o 1 a0
|
(R ,v) a ¢ 0 0 0 ¢ 8o o g ¢ 1t o 0
bus I
3 (v) 46 36 19 3 0 13 33 23 35 26 | & 19 717
7o 12 7 13 14 10 4 & 3 5 Ez: 8 12 g

Fig. (4.3~3c) Table with
on augment

input for list schedule
ed model.

£ {t.p) a o
pol, u 3
b ! I 2) W~ e o o e e
o fo 27 37 39
b l(t b=d) JJ/
o 12 < 3 u
= n u 10 “1wo a s3 , 5
'; i) Ay -
{ 10 20 22 26 37 39 43 46
' i
£ 1P}
By 3 1, u ‘10 R
i g % EQ_} _____ A - e e
i is
|
!
|
'R, demand

14 c

Fig. (4.3-3d4) Gantt chart.

81

Global strategy.

By means of the mapping Fi and the e~tree (V,B) the clusters Ui have
been determined for 1 £ 1 £ p. The number of communication tasks
(com-tasks) is (p~1), hence the number of clusters must be minimized.
Consider the proposed procedure to determine FX. During execution of
the "while"-statement, lines 6-12, the next ready task u is seleéted
by a scan of the list L.
If the switch criterion is not used the selected task will be as-
signed to an arbitrary idle processor Pi' So no attention is paid to
the question whether it would have been possible to extend some
cluster or not. .
If the switching criterion is used, there are two possibilities:
- PI{u) # ¢, in this case the task u will be assigned to

Pi e{gb(w) fWeapr(u)} which leads to the extension of a cluster.
- PI{(u) = ¢, in this case an arbitrary processor is chosen which

gives rise to a new cluster.
Due to the above observations it may be expected that the determined

Fz will generate many clusters if during the list scheduling the num~

L is determined by w{i) = v
odd numbered clusters are assigned

i

to Pl

Fig. (4.3-4) Illustration of a poor clustering if the number of

ready tasks is larger than the number of processors.

82

per of ready tasks is large compared to the number of processors.
Congider a task system where all tasks have an egual duration and the
task graph as given in £ig.(4.3-4). In this figure the assignment of
the tasks is given for the case of two processors. The number of re-
sulting clusters is far from minimal.

In general the number of processors is not large enough to exploit
all parallelism which is in the task tree. In the beginning of the
construction of F: by the level scheduling the number of ready tasks
is far larger than the number of processors which results in many
small clusters and hence many communication tasks.

In order to avoid 'uannecesssary communication tasks' as much as
possible the task system will be derived £rom a cluster graph {C,B)
instead of directly from the e-tree itself, The tasks are now asso-
ciated with the clusters Ci’ for instance
plu—task(ci) = {plu-task{u) u eci}, fFor 1 € 1 < I,

The number of clusters U which result after determination of the ag-
signment is reduced but precaution must be taken that the schedule
length wb will not be increased.

To obtain a suitable partitioning of vertices into clusters the
method, which was proposed in section 3.4, will be ugsed. The cluster
S(v) will be determined by a strategy which is accomplished by pro-
cedure "trunk (V,Bj".

To this purpose a weight will be determined for each vertex ue V. The

weight of u, denoted by w(u), is given by:

w(u) = L 7(x}

eV (1) (4.3.10)

wl{u) is equal to the duration of all plu-tasks which are associated

with V(u). The weilght w{u) is called the "worklcad" of V{(u).

The procedure trunk constructs a chain from the root of (V,B) to some

vertex v. The vertices of this cluster are denoted by S{v}. Let u

denote the predecessor of v with the largest weight. Unless the pro-

cess is terminated the chain is extended with u and the process is

repeated with v = u.

The process is terminated in two ways:

- the selected predecessor u of v is a top vertex. This stopcriterion
is not likely to occur.

- the selected predecessor u of v is not the vertex with the largest

83

weight in the set adj($,B).
The procedure trunk results in the cluster S{v). The set
adi(s(v),B) = {r,...,rh} defines a set of clusters {V(rl),...,V{rh)}.
The cluster S(v) will be called the “trunk" cluster and V{ri) will be
called a "leaf” cluster, for 1 < i £ h. The procedure trunk may be
used again for each leaf cluster until all leave clusters have aweight
smaller than a given value; called "max". This recursive process will

be called "clustering®.

1. procedure trunk(V,B);

2. begin
comment given a graph (V,E), |v| > 2, and its e-tree (V,B),which
is not a chain, a cluster $ will be generated such that § is a

separator of (V,E). pred{x) denotes the predecessor set of x in

{v,B).
3. x «r; 8 « ¢; max branch <« 0;
4, y<arbitrary vertex of {z | zepred(x) Aw(z) =max{{w(u) | uepred(x) H};
5. while {((w(y) > max branch) and (pred(x) # ¢)) do
6. begin
7. s + su{x);
8. max branch <+ max ({w(z)i zeadj(s,8) \{v}D;
9. X < y; .
10. y arbitrary vertex of‘{z}zepred(x)Aw(z)==max({W(u)[uepred(xj})};
11, end;

Fig.(4.3-5) Shows the result of the clustering applied on the
task graph of figure (4.3-4}.

24

Figure (4.3-5) shows the result of the clustering where max is set
equal to eight task durations.

In case of a nice tree structure (the critical path length << weight
of the root and a symmetric structure), such as given by fig.(4.3-4),
the procedure trunk constructs a trunk with a number of leaves which
have equal weights. Although, in practice a nice tree structure will
be rare it may be expected that the leaves with the largest workload
have approximately the same workload.

The critical path of the task graph derived from the cluster tree
(C,é) may be lengthened compared to the task graph which has been
derived directly from the e-tree due to two effects:

- the parallelism which is in the leaf clusters is neglected. The in-
crease of the critical path length is bounded by the parameter max.
However this parallelism would alsc be lost because the number of
avallable processors is too small to exploit all parallelism at the
highest levels. The parameter max should be chosen such that the
number of large leaf clusters is of the same order as the number of
processors to avoid an unnecessary schedule length increase.

- the trunk clusters are not responsible for any increase because the
tasks of these clusters are already forced to be executed sequentially
due to the precedence relations. In some cases increase of the criti-
cal path may occur due tc the precedence relations among the clusters

which are more severe, see fig.{(4.3-5). If an edge (u) is added

6%11
to (V,B) the same precedence relations as in the cluster graph are
obtained.

The resulting assignment can also be thought to be obtained
directly from the e-tree. A set of edges is added to B to account for
the sequence of the clusters. Further, if execution of the first task
of a cluster is started, all other tasks of the cluster must be pro-
cessed without-delay by the séme processoy, which can ke accomplished
by an appropriate list. Sometimes a shorter schedule may be obtained
which is due to the already stated anomalies.

The resulting strategy to determine F, consists of the clustering

A
with a proper value for the parameter max followed by the list sche-

duling.

85

<

(ué'ull) is introduced by the
Yg clustering
ug | tlplu task(u;)) = 1 for 1sist7 _ ¥
v,B) ' (c,B)obtained by procedure

trunk (V,B)

Fig. (4.3-5) Increase of the critical path length due to

clustering.

4.3.4 Modification on the strateqy to determine FI

Sometimes it may be favourable to interrupt a task, which is no com-
munication task, by a communication task., This will be called

"interrupt mode".

86

5. RESULTS
5.0 Introduction

In this chapter some results concerning the parallel processing of the
lu-job are presented and discussed. These results are obtained by a
simulation of the asynchronous array computer.

The results concern mainly the associated graph of the MNA matrix
which is derived from the electronic circuit pa758 [5.11, shown in
fig. (5.1~1). The circuit is thought to be representative for the
class of electronic circuits which are going to be simulated on the

asynchronous array computer.,

5.1 e~tree results

The associated graphs of the circuits considered are directly cbtained
from the topology of tﬁe given circuit where the bipolar transistors
are replaced hy the Ebers Moll nodel.

Besides the associated graph of the p2758 the associated graphs of

twvo power networks are considered, the standard power network

AEP 118 [5.2] and a large power network USNET [5.3].

Two triangulation criteria are used: Berry's criterion [3.8] and the
minimum degree criterion [3.9].

Table (5.1.1) shcws the main characteristics of the investigated
associated graphs and e-tree results., The first example will be re-
ferred to as the "example”" in the sequel. The "sparsity factor", the
ratio given by the number of vertices and the number of classes,
indicates the parallelism due to the sparsity; The total workleocad and
the critical path length are determined with help of (4.2.2). The
duration of the parameters 7

t.. and T are all equal to one

mil’ “div aa
time unit. (Due to this choice the operations count and the duration
of each task except for the communication tasks have the same value).
The speedup, the ratio between the total workload and the critical
path length, varies between 3.20 and 5.14.

Table (5.1.2) gives the cardinalities of the label classes and work-
load respectively for the example. Table (5.1.2) shows that after 8
classes have been eliminated an almost full matrix remains which is

16 x 16 representing a workload of 1398 units. That is about 22% of
the total workload.

87

Figure (5.1-2) shows the e-tree for the example.

5.2 Clustering results

Figure (5.2-1) shows the cluster graphs of the e-tree for the example,
which are obtained by the clustering with parameter max equal to a
half, a quarter and an eighth of the total worklcad. For each cluster
Ci' the root L the duration of the plu—task(ci) and lmadj(ri)l is
given, '
Figures (5.2-2) and (5.2-3) show the partitions of the circuit for
max is equal to a half and a quarter of the total workload respective-
ly. Only those nodes which are associated with the vertices of the
leaf clusters are shown. f

Finally, the histograms in fig5}5.2-4) show the distribution of the
workload over the leaf clusters which are obtained for the different
values of parameter max. Only the workload of the leaf clusters is

shown.

5.3 Results of scheduling

Some results of scheduling for the lu-job of the example considered
are presented.

The schedule length w depends on the parameters of the scheduling
model. In the following w = w(xl,...,xp} denotes that w is regarded

as a function of the parameters xl,...,xp, In the graphical represen-
tation of the considered functions the successive points of each
function are connected by straight line pieces. In general the obtain-
ed curves will not be smooth due to the problem itself and anomali-
ties.

Four schedule modes are determinéd by whether the switch criterion is
used or not and whether interrupt is allowed or not. The modes are
denoted by a boolean vector (X,y) where x is true if the switch
criterion is used and y is true if interrupts are allowed. Let mo
denote the number of processors necessary to obtain the optimal

in the basic scheduling model. w b

schedule length b 0

0
the critical path length of (Tb,ﬁb}.
The influence of the schedule mode and Tcom'

Fig.(5.3~1) shows the following entities as a function of the number

is equal to

of computers for the specified parameters:

88

mb=wb(m), the schedule length of the basic scheduling model.
w = wim), the schedule length for each schedule mode.
w =total workload/m,the lower bound of the schedule length.
The parameters T and T are chosen to be zero in £ig.(5.3-1).
com overh
The increase of the schedule length relative to the respective
schedule length for Tcom = 0 is denoted by Aw. Fig.(5.3-2) and fig.
(5.3-3) show Aw = Aw(Tcom) for each of the four schedule modes for a
number of computers of 4 and 64 respectively. Hence, the schedule
length for m=4 and m=64 can be obtained from the figures (5.3-1) and
{5.3-2) for each of the values of 7t .
con
The four modes of scheduling will be compared.
For small values of 1 the Aw = Awl(T } is grossly the same for
com com
the different modes.
For large .values of T the Aw = AwlT } differs significantly if
com com
m > mO depending whether the assign criterion is used or not.
To compare the w = w{m) with T com # 0 for the four schedule modes
small and large values of Tcom are treated separately.
~ small values of 1 .
com
The relative position of the curves w=w{m} for the different modes is
given by fig.(5.3-1).
Two cases are distinguished:

0
or not in favour of allowed interrupt.

m < m. . The value of w depends mainly on whether interrupt is allowed

m > mO. The « depends mainly on the switch criterion in favour of the
switch criterion.

~ large values of Tcom'

Two cases are distinguished:

m < mo. The relative position of the curves w = w(m) for the different
modes is given by fig.{5.3~1){ Again the value of u depends mainly on
whether interrupt is allowed or not in favour of allowed interrupt.

m > mo. The relative position of the curves w = w{m) for the different
modes is no longer equal to the position given by fig.(5.3-1). The w
also depends mainly on the switch criterion, however, in favour of the

mode without the switch criterion.
The difference hetween the schedules is determined by the commu~

b
nication overhead w(m) - wb(m). because w does not depend on the

applied modification.

89

The communication overhead consists of three parts:
1. -change of the task durations due to FA. Fig. (5.3-4) shows the
crit;cai path length in (T,g) for the mappings FA determined with and
without switch criterion as a function of the number of computers.
2. ~tasks with a common successor task are excluded from being pro—-
cessed in parallel. Let w denote the schedule length of a schedﬁle
with m/2 buses, allawed‘interrupt and tcom = Toverh = 0, For m > m0
an estimate of this contribution is given by the difference between
W, and the critical path length in (T,g) where Tcom = Toverh = 0. To
this purpose w = w (m) with and without switch criterion is shown
for m > mo in fig. (5.3-4).
3. -communication tasks may introduce overhead by the duration of the
tasks and by the time spent to wait until the necessary resources are
. available. Fig.(5.3~5) shows the increase of the critical path length
in (T,g) for both mappings FA due to the com-tasks lying on this path
as a function of the number of computers.

The influence of the switch criterion is significant for m > mo
as shown in the figures (S5.3-4) and (5.3-5).
For small values of 1com the increase due to the contributions of the
first and third part is more than compensated by a lower contribution
due to the second part.
For large values of Tcam the expected idle time interval of the ad-
dressed computer is too small such that the assumptions of the switch
criterion do not -hold any longer. The com-tasks become part of the
critical path {(due to the resource demands)., The number of com-tasks
is for both modes the same, but in general the number of transmitted
words will be larger in case of the switch criterion, which explains
the curves in fig. (5.3~3). The number of words to be exchanged is
expected to be larger because the communication occurs between the
tasks lying on the critical path in (Tb,sb).

The influence of the interrupt on the schedule length. If m < m0
then at the beginning of the schedule for each computer there is a
large number of ready tasks and there are com~-tasks which would be
ready if the required bus is available and if the addressed computer
is idle. A ready task with a lower level will be started and when the
addressed computer becomes idle it will start to execute also a ready
ﬁask with a lower level. Hence, the com-tasks are blocked by tasks

with a lower level. If m > mo the above process will be restricted

90

hecause the number of ready tasks will be small.

Fig.{5.3~6) shows the schedule length as a function of parameter
max for the specified parameters. If the value of Teom is small the
clustering may be favourable if the number of computers is small com-
pared to the number of tasks. However, if the value of rc - is large
even for a large number of conmputers the clustering may he favourable.
In these cases only a part of the available computers will be used.

If the size of the offered circuits varies, it will he necessary to
determine for each job an appropriate value of parameter max. It is
proposed to do this automatically by some heuristic formula, for in-

stance: max = {total workload of the lu-jcb) / (2xm).

triangulated | number number | number Aimension | sparsity| totalw crititalx dup:
of of of of wperation | path
graph vertices| edges classes |class one factor count length
MA 758
{193v,358e) 193 658 20 g6 10 6234 1534 4.06

Berry
ua 758 .

{193v,358e} 193 573 22 81 9 6583 1665 3,95
min degree

AEP 118

{118v,179e} 118 264 17 48 T 1572 390 4.03
Berry

AEP 118

{118v,17%) 118 265 15 49 8 1579 307 5.14
min degree

USNET

(1637v,2237e) 1637 4474 48 719 34 48938 15311 3.2
min degree

* = =
“ata = “mur ” faiv ° !

Table (5.1.1) Characteristics of the investigated associated graphs

and the e-~tree results.

CLASS 1 2 3 4 5 &€ 7 8 9 10 11 12 13-20
DIMENSION |86 38 16 12 g 7 5 4 2 2 2 2 1
WORKLOAD - = = = m = - - 360 276 342 272 308
per class

Table (5.1.2) Dimension of the label classes and workload of

92

example 1.

Fig.(5.1~2) e-tree (V,B}

24

25

TV ERFETTR
m

127

93

Loomexven I M-
1T IR e —
1F GETETION T o
& @36
38 3s
19 & 120
24
EL] ®
43% A3t 23 135 32 4 137 hge 121 12
® ® & ® ® @
sz = 23 &
G & 3% 5 & &
23 126 1
329
) ®

(el

v6

max = 3117 2 number of clusters
total workload 2250 mean workload
- of leaf clusters ,87
9y gy 2528 T
25 13 85: \sc)lS v

Imad)

relative

Y 126 workload 0.4
{C,B) obtained by max = 3117
. : 0.2 |)

441 150 303 508 1ot weé T !

4% 8 3 B 87 as v 857
1

[92

imadj)t 0 2

9 24 48 97 194 389 779 1558 3117

572 0.6 - max = 1558
25 total workload 3 number of clusters
of leaf clusters ,73 1022 mean workload
relative -
by f3 . workload 0.4
(¢,B) obtained by max = 1558
0.2 2
$ 1 3 3 7 1 475
kot 3 W2 2
1 1 303
% w &0 92 150
OFOLOR0, .0 !
¥ 8 191 2] 2,
0 24 48 97 194 3BY9 779 1558
2 4 2 4 6

relative max = 779
workload 0.4 total workload
"1 of leaf clusters .6

Ghit 50 303 508 20 1732 0 57 zzdv
44 8 3 48 18 58 w1 Wb W8
188

O R R P REBR PP sl &

4. .number of clusters
445 mean workload

572

y oF ug 5 3
2 s 3\?32) us ?oa
8E
1 6) .0

¥ T ¥
G 24 48 97 194 389 779
(C.B) obtained by max = 779

Fig. (5.2-4) Histograms workload for various values of max.
Fig,{5.2-1) Cluster graphs for various values of max.

PO e

oy
-

R —g

-

-

O |

~

-~ s
—

Pig. (5.2-2) Torn circuit with max is a half of the totai'ﬁéiﬁioaa.

LI
LN
P
-

,,,,, o ol .
. ;

4 -
- 5 '
’ - L. Y 1l
L) t
W . :
t
A LY bl - b
3
YRt :
=7 ‘
Gt £ '
s\ ,
b -]
1
LA :
— - 1
S S T e '
e - Booe |
99t Vi
48 y
58 Ty i

JIU e :

e | fo
- i ‘ i
[
;
i
;
:
B C 5] i
:
:
:
o ;
L) WS :
A L’ o - ¥
TS e e - -——— ~ H
“v&- m H
W e ;

o0# raTIR
m

..
o ¢ —
- 1 B

I

Fig. (5.2~3) Torn circuit with max is a quarter of the total workload.

925

3500 -

T =
con

£
D

‘t =
overh
max =

)
DD

#
[

number of buses

[switch, interrupt]

3000

2500 ~

2000 -
FF .
T T < F,‘FT
w=total woxkload/m TF
TF
T = TETT
1500 1 : N 16 32 64 Q0

% m number of computers

Fig. (5.3-1) & = w(m)

96

Lo

A

aco

700

&00

500

400

300

200

100

w= 64

mag = 0.

T = 0,
overh

nunber of buses = 1

[switch, interrupt]

At

TT

TF

3/e 4/e

I s —
[

Fig.{5.3-2) Increase of the schedule length as a function of T

/8

oM

om”

8/8

TT

Ti1g.{5.3-3) Increasse of the schedule length as a function of 1 . ¥F
800 con
FT
TF
FF
T
800}
TF
¥ FT
700 T
F
600 5 T
¥F
500 T¥,
TF T
TF
400 tF
T
300
181 m= 4
max = 0,
200 Tovern © e.
number of buses = |
{AS [switch, interrupt’
100 f/////ATT
///////xf /////JYF~
4T F : "
0 1/8 2/8 3/8 4/8 5/86 6/6 /8 8/8

86

1824 | e e g
schedule length w with = 3

critical
rath length -
i r L E)

1660

|

1640]

1620_]

1600]

- 1580

1560 |

. u (F,T}
buses = % #computers

ritical path I1s

Teom = O ~ overhead introduced
Tavern = O- \d“e to the add-tasks

|

Bt 3

ength
with switch criferion

eritical path length
without switch criterion

3 2 4 a8 16 32

64

Fig. {5.3-4) Influence of the switch criterion.

g = 0,125

com
Taverh T 0.
& eritical max = 0.
path length
,%)
() number of coefficients
to be transmitted by com-tasks
(368} lying on the critical path.
40. {327} €313)
30,
20
10
)
& {{))

1 2 4 8 16 32 64
ey TGEDET Of computers

Fig.(5.3~58) Increase of the critical path length in ('I‘,g) due to the
com~-tasks lying on this path.

5000]

4800

Number of buses = 1
[switch,interrupt] = (7,T)

Teom = 0.125, Toverh ~

Teom = 1.00 , Toverh =

.

.

4600 \\\\\\

m=2

4400

4200

4000

3800

3600

3400

3200

3000

2800

2600 |

2400 |

2200
2000
1800,

16060

194 389 779 1558 3117

max

o

Fig.(5.3-6) The schedule length w as a function of parameter max.

99

6. FINAL REMARKS

6.0 Introduction

The first section of this chapter deals with the implementation of the
N-R convergence test and the initialization of a new tine step.

The second section deals briefly with the scheduling of the remaining
tasks and finally in the last section the conclusions and concluding

remarks are given.

&.1 Implementation of the N-R converdence test and the new time step

initialization

The implementation of the tasks with labels 8, 12, 13 and 14 of table
(1.3.1) is considered in this section. The task with label B tests
~ whether the N-R iteration converged or not. The set of tasks, deter~
mined hy the labels 12, 13 and 14, determines the new time step and
order of the PBD formulas.

The convergence test is accomplished by all corputers together.
To this purpose computer Ci has to execute the procedure "N-R conver-
gence test(Vi}“ where the set vi denotes the vertices which have
reen assigned to computer Ci' for 1e{l,...,m}. The time instant t8 has

been determined by the scheduling.

. procedure N-R convergence test(vi);
. begin

comment This procedure rxesides in computer C,, € is the allowed

deviation; :
3, if {Suevi[AX(G(u}} > e]) set(or);
4. test{time,t8);
comment All computers are synéhxonized to give them the opportunity
to set the or signal;
5. nonconvergence <+ or;
€. reset(or);
7. if {nonconvergence} go to N-R iteration;
8. end;

The duration t(8) is equal to the maximum time which is required by

any of the computers C, to execute the procedure N-R convergence

i
test(vi). If the statement in line 3 determines almost completely the

required execution time then the task duration t(8) is proportional to

100

1/m (with the assumption that the same armount of vertices has been
assigned to all computer modules).

The determination of the new time step and order will alsoc be
accomplished by all computers together., The tasks with labels 12, 13
and 14 are combined into a simple task with label 17. The task with
label 17 is the successor of all tasks with label 11. To execute the
task with label 17 corputer Ci has to execute procedure '"new time
step(Ixci)", where the set Ixci denotes a subset of Ixc the set of

controlled components, for 1e{i,...,m}.

1. procedure new time step{Ixci);

2. begin
comment This procedure resides in computer Ci' k is the order of
the PBD, h is the time step, time step is a label;

3. K(1) ,X(2),K(3),L(1),L(2),L(3) « O; I(i)*i; I(2)42; I{3}+3;

4. for =1 step | until 3 do K(j)+min{{n"(v)

m=k=-2+3 Avel 1) ;
(m=k-2+3) Ave xci)

5. for j=1 step 1 wuntil m do;

6. hegin

7. if (j=1i) then broadcast(X,I,bus} else receive(l,I,bus);

8. for =1 step 1 until 3 do if (X(2)>L(2)) then K(X} « L{(1);
Q. end;

10. pick some pe{f|K(1) = max({K(1),K(2) KD N};
11. h = %ip);

12, k <« k+p~-2;

13. t <« t+h;

14, if (t<te) then go to time step;

15. end;

The duration T(17) will be equal to the maximum time which is required
by any of the computers to execute its procedure new time step., If the
statement in line 4 determines almost completely the required execution
time then the duration is again proportional to 1[m {with the assump-

tion that glxcil is equal for all computer modules).

6.2 Scheduling of the total computation phase

In the preceding chapters only the scheduling of the L\U-~decomposition
job has been treated, here the scheduling of the whole computation
phase will be considered.

The determination of the schedule is again split into the determina-

101

tion of the assignment of the tasks to the computers and the determi-
nation of the time intervals during which the tasks must be processed.
The assignment of the tasks to the computers,
A straightforward way is to apply again list scheduling. The list is
determined by the levels of the tasks. (Note that the durations t(7),
T{8} and 1(17) are not neccesarily to be known). However, a large
number of communication tasks may arise. By recognizing that the tasks
with labels 3 and 5 have the largest time duration 1t will be accept—
able to let these tasks determine the assignment of the remaining
tasks.
Thus the following assignment rules are used:
~ tasks, which are associated with the same component of x, are assign-
ed to the same computer. A task with a label 1,2,9,10 or 11, which
evaluates variables for component x of vector x, is called to be
associated with component x;
- tasks with the labels 3 and 4 and evaluating functions which are
associated with the same element £ are assigned to the same computer.
The assignment starts with assigning the tasks with label 5 to the
computers. The tasks are considered as independent tasks. The list
scheduling strategy is applied. The list is determined by the task
levels which are equal to the task durations.
In exactly the same way the tasks with label 3 are assigned to the
computers. The partial assignment, obtained by the assignment of the
tasks with label 5 and the assignment rule, is made complete.
The tasks with labels 3 and 4 which are assigned to computer Ci re-
quire the prediction of a set of components of x. This set is the

already mentioned set I ., foxr ic{if...,m}. Note I nI is not
xci x x

ol (o3}
necessarily empty, for i,3je{1,...,m}. The tasks with labels 1,2,9,10

i’ are assigned to Ci‘ Some

redundant tasks are created by this'strategy in order to avoid commu-

and 11, which are associated with xx

nication tasks.
The tasks with labels 4 and 6 which update the matrix entries a(k,%})
and alk,n+l) are associated with vertex a(k) and will be assigned to
the same computer as to which vertex a{k) has been assigned.

The determination of the time intervals during which the tasks
nust be processed.
It is assumed that each computer contains all components of the x vec-
tor. This is assured if during the bs-job all components are broad-

102

casted. The only places where communication tasks can be inserted are
given by the edges of the task graph of fig.{2.1-1). By the above
assignment the only communication which may be necessary is between
tasks witk the labels 3 and 4 and between tasks with the labels 5 and
6. In order to reduce the number of communication tasks the communica-~
tion tasks between the computers Ci and Cj, arising from tasks with

the same labels which are assigned to computer C are packed together

‘
into one communication task between the computeri Ci and Cj, for

i delt,...,m}.

Again list scheduling for the augmented basic scheduling model is
applied in order to determine the time intervals. The start and
finishing time of the time intervals are determined with respect to
the tasks with the labels 15,16 and 8.

The program "computation phase Ci givés the procedures and

synchronization instructions which accomplish the tasks of the compu~

tation phase being assigned to computer Ci' The time instants t are

kR
determined by the scheduling during the setup phase, the index k de-

notes a task label and index % denotes a computer.

1. program computation phase Ci;
2. begin
3. reget(time) ;
4, evaluation of the tasks with labels 1 and 2;
5. evaluation of the tasks with label 3;
[test{time,t_.);
33
7.1 broadcast results of the tasks with label 3 to

computer Cj;

8.1 test(time,t3r);

9.1 receive results of the tasks with lahel 3 of

computer Ck;

.

10, evaluation of the tasks with label 4;

11. N-R iteration reset{time);

12, evaluation of the tasks with label 5;

13.1 test(time,tsj);

14.1 broadcast results of the tasks with label 5 to
computer Cj;

103

15, > im ;
5.1 ast(txre,tSk},

16.1 receive results of the tasks with label 5 of

computex Ck;

.
.
»

17. evaluation of the tasks with label 6;

18. solve the set of linear equations; see chapter 4
19, N-R convergence test{Vi}:

20. reset(time};

21. evaluation of the tasks with label 9,10 and 11;
22, new time steptlcxi):

23. set{ready);

24, end;

Of the m possible broadcast and receive tasks in lines 6-9 and 13-1¢
only one hroadcast task to computer Cj and one receive task of compu~

ter Ck is given in the above 'listing' of the program.

The proposed computer organization reguires a tight upper bound
for the task durations. Whether this is possible depends on the
applied hardware. If the upper bounds for the task durations are not
tight enough then the schedule strategy and synchronization must be
adjusted.

The assignment of the tasks to the computers will remain the same but
the time intervals during which they will be processed will be deter-~
mined while the computation phase is executed. This will be called
"on-line scheduling”. Because the task durations are reasonable well
known the following scheduling is applied.

Aftexr the assignment of the tasks has been determined the scheduling
of chapter 4 is again applied. On basis of the mean task durations
for each computer the sequence by which the tasks, assigned to this
computer, will be processed is determined instead of the exact time
interval. For each bus the communication tasks which use this bus are
labeled according to the sequence they use the bus. The procedures
which accomplish the tasks are stored according to the determingd
sequence in the memory of the computers.

To make on-line scheduling possible for each bus h a signal line

"gsequence~h" is provided. The seguence~h signal value is a non-nega-

104

tive integer. Three instructions can coperate on the signal sequence-h:
test(seduence~h,sx), increase(sequence-h) and reset(sequence~h}.
Execution of test(sequence-h,sx) results in active waiting until the
value of the signal line sequence-h 2 sx, where sx is a non-negative
integer.

Execution of increase{seguence~h) increases the value of seguence~h
with one.

Execution of reset(sequence-h) makes the value of sequence~h zero.

The regquired synchronization is obtained if the test(time,x) instruc-
tion which proceeds a broadcast{d,IBA,h) is replaced by the first
column of fig{6.2-1) and the test{time,x) instruction which precedes
the receive(B,IRB,h) by the instructions of the last colurn. In fig.
{6.2-1) it is assumed that i computers must be synchronized. If inter-
rupt is allowed the computers have to test the sequence lines perio-
dically with the value sx of the next to execute test{seguence-h,sx)

instruction.

test (sequence-h,sx) ;

increase (sequence~h) ; test {sequence-h,sx+l);
test {sequence~h,sx+i+1); increase (sequence~h) ;
increase {sequence-h}; test{sequence~h,sx+i+2);
hroadcast (A,IBA,h); receive(B,IRB,h);

Fig.(6.2~1) synchronization.

6.3 Conclusions and concluding remarks

In this thesis a parallel computer organization is outlined to
process circuit analysis problems in parallel. The guidance of the
parallel processing is done automatically without referring to the
user.

The parallel computer system, the asynchronous array computer, con-
sists of a general purpose computer which performs the setup phase
and an array of computer modules which performs the computation phase.
The normal setup phase is extended hy the decomposition and scheduling
procedures.

The proposed decomposition and scheduling strategies allow a speedup
ratioc of about 20 on the asynchronous array computer with 40 computer
modules.

This performance is reasoned as follows. In section 2.1 it has been

105

shown that the success of the parallel processing of the circuit ana-
lysis job (computétion rhase) depends mainly on the speedup which can
be obtained by a parallel solution of the set of linear equations. The
parallel organization of the solution job (mainly L\U-decomposition)
can be regarded as the most critical part of the total job with res-
pect to the scheduling and communication demands. Due to this cbser-
vation the parameters for the scheduling strézgg§_£;5_zﬂé“conhéction N
network of the asynchronous array computer can be obtained from the
simulation results for the L\U-decomposition method as presented in
chapter 5. The decomposition of this job into tasks results in a cri-
tical path length of 1534 units (potential speedup of 4.06) with the

given values of Ta and T . Due to the chosen organization

aa’ "mul div
the schedule length and speedup becomes 1644 units and 3.79 respecti-
vily. This is given by mwzwm(m) with allowed interrupt and switch

criterion shown in fig.{5.3-4). By a one bus network with T T

com ‘overh
=0 the schedule length is only slightly increased as can be seen by
comparing figures (5.3-1) and (5.3-4). The simulation results given
by figures (5.3-1) and (5.3-2) show that this one bus connection
network gives only an increase of the schedule length of about 10% if
it allows data exchange at the rate of two coefficients in a time
equal to Tmul'
The above mentioned results allow to choose a single bus connection
network vhich makes the parallel computer highly modular. Removing or
adding a computer mcdule requires only the change of the parameters
in the scheduling procedures.

If the schedule length as a function of m is approximated by formula
(2.1.2) with ¢ = 9.5 and mO = 7.6 then f£ig.{(2.1-2) shows the expected
speedup for the computation phase which lies somewhere between the
curves 3 and 4. Further if at least an effective use of the corputer
modules is regquired of 50% then the maximum speedup which can be ex~
pected is given by the intersection of the SR=SR(m) curve with the
curve SR=m/2 in fig.(2.1-2). '

The computer modules are very simple since they have only to perform
floating point instructions and a few other instructions. To get an
impression of the éomputing power the computer modules are thought to
be built around the components of the Am2900 series [6.1] and a
floating point processor of HP [6.2]. The floating point processor
consists of three chips: a floating point add/substract chip (1,2us),

106

a floating point multiplication chip (1,2us}) and a floating point
division chip (2,4us) which perform the operation on 64 bits operands
in the time given within the parenthesis. The Am2900 series contains
components which allow a y~-programmable computer organization.
The effective computing power for the 40 modules will be about 20
million 64 bits floating point operations per second {scalar opera-
tions) .
The expected speedup can be degradated by the introduction of commu-
nication tasks and if the assumptions which are made in section 2.1
do not hold. As long as m << N, the nurber of components of x, the
assumptions will hold and the scheduling strategy is capable to keep
the communication overhead low.
The obtained speedup is exclusively due to the parallel organization
of the computation phase. The speedup for the circuit analysis job
will be almost equal to the speedup of the computation phase because
the preprocessing takes about the same time to accomplish one pass
through the time loop and N-R iteration.
The setup phase is extended with the decomposition and scheduling
procedures and loading and unloading of the computer modules. The
decomposition procedure has the same complexity as the pivoting
procedure O(ngim} while the scheduling has a O(nz) complexity, where
n is the number of tasks which is less or egual to the number of
components N. Hence the preprocessing time for the parallel organiza-
tion will be of the same order as the original preprocessing time.
Some further remarks are made.

Firstly a few remarks are made about the e~tree construction.
2 suitable pivoting assured a dominant diagonal. To preserve this
some vertices must be inserted into a label class with a higher label
as would be possible by the selection criterion.
The matrix after the pivoting is considered as a structural symmetric
matrix. If a(i,j) # 0 and a(j,i) = 0 this leads to a superfluous entry
in hte data structure however due to the class of circuits considered
the number of these empty entries in the data structure is limited.
The pivoting problem and the decomposition problem are treated inde-
pendent of each other. The objective of reordering to minimize fill-
ins usually competes with the objective of reordering to minimize the
number of label classes [6.3]. Also the computation power of the

applied computer may influence the pivoting strategy. If the computers

- 107

have indeed infinite processing power the objective is to minimize
the number of classes.

Secondly a few remarks are made about the organization of the
solution job on the asynchroncous array computer.
The definition of the tasks.
A choice is made between the two solution procedures Gauss and Crout.
Consider a full matrix with dimension N. The majority of the required
operations are performed during the first pivot steps, given by the
compound statement in lines 4-7 of procedure Gauss in section 3.0, if
the Gauss procedure is applied., If the Crout procedure is applied
then the majority of the required operations is performed during the
pivot steps, given by the compound statement in lines 4-14 of proce-
dure Crout in section 3,0, in and around the N/2-th pivot step. In a
sparse matrix this is not so clear hut by applying the Gauss procedure
the number of operations which are associated with the first label
classes will be larger than in case of applying the Crout procedure.
The dimension of the label classes is independent of the applied
procedure. Hence it may be expected that the Gauss procedure results
in a shorter critical path in the e-tree if the computers have a
limited computing power. .

Thirdly the organization of the communication may require more
attention. The IO ports'can be equipped with an IO processor and a
small memory. The computers of the communicating modules can continue
with processing while their I0 ports are communicating. The simulta-
neous access of the buffer by the I0 processor and processor must be
excluded.
The obtainable speedu@ can be increased 1if a mixed organization is
applied. First an organization as described in chapter 4 can be
applied. When those label classes which contain for instance three or
four vertices are reached, then the organization can be changed to
the rowwise organization as given in chapter 3.
Another way to increase the obtainable speedup is to use compﬁter
modules with different processing power. A few computer modules may
be equipped with several arithmetic processors. These arithmetic
précessors can opefate according to the first implementation scheme

given in section 3.2.

108

Graph notations

& "graph" G = (V,E) is defined by a set V of elements called
"vertices" and a set E of unordered distinct vertex pairs called
"edges" thus E ¢ {{u,v) | u,v € v; u # v}.

If (u,v) ¢ E, u and v are "adjacent” vertices and the edge (u,v) is
"incident" to u and v.

The set "inc(v,E)})" denotes the set of edges incident to vertex v.
Thus inc(v,BE) := {(u,v) € E| u e v}.

The set "adj(v,E)" denotes the set of vertices adjacent to vertex v.
Thus adj(v,B) := {u e v | (u,v) e £}l

A gset W c V identifies a "subgraph"” G(W) = (W,E(W)) of G = (V,E) with
E(W) := {{u,v) € B] u,v € W} such that G{W) ¢ G.

The set vertices given by {uev\w|((u,v}€E)5(vew)}, is adjacent to ¥.
It will be denoted by adj(W,E).

The set edges given by {(u,v)eEI{uev\W)A(vew)}, is incident to W.
This set will be denoted by inc(W,E).

A “"chain" is a subgraph (C,E(C)) ¢

(V,E) with C = (vl,vz,...,vk},

1 € adj(vi,E) for

i e {1,2,...,k-1}, The "length” of the chain is [C].

where Vi # vj if i # j, ordered such that vy

A "cycle" is a chain such that v, € adj(vk,E}. Its length is also (C).

1
A "chord" of a chain (C,E(C)) ¢ (V,E} is an edge (vi'vj) € E\E(C)
with vi,vj € C. A choxd connects two nonadjacent vertices of a chain.
A "clique" C & V with respect to {(V,E) is a vertex set with the
property that all its members are mutually adjacent, thus

uee Yvec [{u,v) ¢ E1].

The "deficiency” of a vertex u, denoted by def(u,E}, is the set of

[Cc is a clique] > [y

edges that lacks to make adj(u,E) a clique. Thus

def(u,E) := {(v,w) | (v,w € adi(u,B)) A ({v,w) ¢ E}}.

A graph (V,E} is called "connected" if there exists a chain between
any two vertices of V.

A “"separator" § < V {{V,E) being a connected graph) is a set of
vertices such that (V\S, E(V\S)) is not a connected graph, that is to
say it consists at least of two distinct nonempty subgraphs called
"components”. Assume some separator S such that u,v € V are in
different components. Then S is called an "u,v-separator”. If § is an
u,v-separator such that no subset ¢f 5 has the same property then §
is a "minimal u,v-separator".

A graph (V,E) is called a "tree" if (V,E)} is a connected graph with-

109

out any cycles.

The graph (V,B) is called a "spanning tree" of (V,E) if (V,B) isa tree.
A set WcV is called a “"cluster" with respect te (V,E} if (W,E(W)) is
connected.

A "triangulated graph” is a graph such that any cycle of length 24
has é chord.

A set of edges T, such that (V,EUT) is a triangulated graph, is
called a “triangulation" of (V,E}.

The triangulation is "minimal" if no subset of it is also a triangu~-
lation.

The triangulation is "minimum" if T contains the minimum number of
edges.

A graph {V,E) is called an "ordered graph" if a bijection

a: {1,2,..., |v]l} » v is defined. The bijection o is called the
“ordering” of (V,E).

Two graphs (V,E) and (V',E') are "isomorphic" if there is a bijection
A s v vlwith E' = {(A(w, A(v}) | (uw,v) ¢ E}.

Given a graph (V,E) and an anti reflexive relation R{u,v) in Vv, such

that y [R(x,¥} YR(y,x) Jholds. If (x,y)€E and R{y,x) hold then

{x,y)€E
the edge {x,y) is called "directed" from y to X.

The relation R(u,v) will be called the "precedence relation” of
(u,v)€E. To denote the precedence relation (u,v) is noted as an
ordered pair such that R{u,v) holds; with this convention the graph
will be denoted by (V,E).

The set {veadj(u,E)fR(u,v)} is called the set of "descendants of u".
The descendants of u are denoted by madj{u,E,R) and let

madj(ul,...,un,E,R) denote madj(ui,E,R).

il
i=1
A "path" is a chain {(C,E(C)) in (V,E) with C = {vl,...,vk} such that
R{vi’vi+1)' for 1<i<k.

A "loop" is a path such that vleadj(vk,E) and R(vk,vl) holds.

Let w{u) denote the "weight” of ueV. The "path length", based on the
weights, of a path (P,E(P)) in (V,E} is given by: ugpw(u).

A path called a "critical path", based on the weights, if no other in

(V,E) has a larger path length.

A tree (V,B) is called an "in~tree" if each ve¢V has at most one
descendant.
If no confusion is possibkle the vertex set E will be dropped in

adj{u,E) and also the relation will be dropped in madj(u1,...,un,E,R).

110

Notations

M(V)

power set of V.

vector with Py components.

transposed vector x.

transposed vector with the first P, components

given by % and the last py components given by
number.

(C,B)

8" g

| Lo T A | 1| B b >t >
Hoo» D P mw va- Hg v
)

e
D -

¥, {u)

Tds

+h

it

112

54, 60
109
110

51

45

51, 60
51, 61
19

19

51

€0

60

109
109

32

32

41

41

109
24

71

73
25
71

73
59
63
25
25

71

71

25

] g% P? o dﬂ 40 8

rlin

r(u)

109
84

12
23
23
78
11
54, 60
54, 60
23
23
23
24
51, 59

a = o < Wi

&

SR
5{v)

(T,g)

3
o

o M
2

H

<S> < > A

w

-

74
13
52
11
74
11
25
45
27
59
109
32
32
41
41
110
108

110
41

40

110

14

32

51

40

25

71

25

14, 24

NR
Tadaa
T

com
Tdiv
Tmul
1'-c\werh

Ttime

lin

17
65
65
65
65
65

66
13
73
70
14
70
72
89
90

75

REFERENCES

[0.1]

[o.21

[0.3]

[0.4]

[1.1]

[1.2]

[1.3]

[1.4]

[2.1]

[2.2]

[2.3]

[2.4]

[3.0]

[3.1]

[3.2]

[3.3]

G.H. Barnes, R.M, Brown, M. Kato, D.J. Kuck, D.IL. Slotnick and
R.A. Stoker, “"The Illiac IV computer", IEEE Trans. Computers,
vol. C-17, pp. 746-757, Aug. 1968.

J. Rumbaugh, "A data flow multiprocessor", IEEE Trans. Computers,
vol, C-26, pp. 138-146, Febr. 1977.

R.J. Swan, S.H. Puller and D.P. Siewiorek, "CM*x - a modular,
multi-microprocessor™, Proc. AFIPS 1977 NCC, vol. 46, AFIPS Press,
Arlington Va., 1977, pp. 637-644.

K.E. Batcher, "STARAN/parallel processor system hardware", in
1974 Wat. Comput. Conf., AFIPS Conf. Proc., vol., 43, pp. 405-410.

L.0. Chua and P. Lin, "Computer Aided Analysis of Electronic
Circuits : Algorithms & Computational Techniques", Englewood
Cliffs, New Jersey: Prentice-Hall, inc., 1975.

W.M.G. van Bokhoven, "Linear implicit differentiation formulas of
variable step and order", IEEE Trans. Circuits Syst., vol. CaS-22,
pp. 109-115, Febr. 1975.

Chung-Wen Ho, A.E. Ruehli and P.A. Brennan, "The modified nodal
approach to network analysis", IEEE Trans. Circuits Syst., vol.
cAs5-22, pp. 504-509, June 1975.

L.W. Nagel, "Spice 2 : A computer program to simulate semiconduc-
tor circuits", Memorandum No. ERL-M 520, 9 May 1975, Electronics
Research Laboratory, College of Engineering University of
California, Berkeley.

H.S. Stone, "Problems of parallel computation", in "Complexity
of Sequential and Parallel Numerical Algorithms", J.F. Traub,
Ed. New York : Academic, 1973, pp. 1-16.

H.T. Kung, "New algorithms and lower bounds for the parallel
evaluation of certain rational expressions and recurrences”,
J. ACM, vol. 23, no. 2, pp. 252-261, April 1976.

E.G. Coffman, "Computer and job-shop scheduling theory", New
York: John Wiley & Sons, 1976.

M.J. Gonzalez, "Deterministic processor scheduling”, ACM
Computing Surveys, vol. 9, no. 3, pp. 173-204, Sept. 1977.

Wilkinson, J.H.,"The algebraic eigenvalue problem", Oxford,
Oxford University Press, 1965.

J.L. Rosenfeld, "A case study in programming for parallel
processors”, Communications of the ACM, vol.12, pp. 645-655,
Dec. 1969.

P.A.Gilmore, "Matrix computations on an associative processor”,
in"Lecture Notes in Computer Science 24 Parallel Processing",
G. Goos and J. Hartmanis, Ed. Berlin Heidelbery New York:
Springer Verlag, 1975, pp. 272-290.

8. Parter, "The use of linear graphs in Gauss elimination", SIAM
Rev., vol, 3, pp. 119-130, April 1961, 113

[3.41 p.J. Rose, "B graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations®, in "Graph
theory and computing", R. Read, Ed. New York: Academic, 1972,
pp. 183-217.

[3.5] D.J. Rose, "Triangulated graphs and the elimination process",
J. Math.Anal.Appl., vol. 32, pp. 597-609, 1970.

[3.61 ¢. Berge, "Some classes of perfect graphs", in "Graph Theory and
Theoretical Physics"”, F. Harary, Ed. New York: Academic, 1967,
pp. 155-166.

[3.71 1I.s. Duff, "A survey of sparse matrix research", Proc. IEEE, Vol.
65, pp. 500~535, April 1977.

[3.81 R.D. Berry, "aAn optimal ordering of electronic circuit equations
for a sparse matrix solution™, IEEE Trang. Circuit Theory,vol.CT-18,
pp. 40-50, Jan. 1971.

[3.9] H.M. Markowitz, "The elimination form of the inverse and its
application to linear programming®, Management Sci., vol. 3,
pp. 255-269, 1957.

[3.10] L. Csanky, "Fast parallel matrix inversion algorithms", SIAM J.
Comput., vol. 5, pp. 618623, Dec. 1976.

. [3.11] J.Ww. BHuang and O. Wing, "On minimum completion time and optimal
scheduling of parallel triangulation of a sparse matrix", IEEE
Power Engineering Society Summer Meeting, Los Angeles, July
16-21, 1978. IEEE PES Abstract no. A78-567-0.

[3.12] ¢. pottle and Y.M. Wong, "Nonlinear circuit simulation on a
parallel microcomputer system”, in Proc. 1976 IEEE Int. Symp.
Circuits and Syst., Rpril 1976, pp. 394-397.

£3.13] J.A.G. Jess, "Some new results on decomposition and pivoting of
- large sparse systems of linear equations", IEEE Trans. Circuits
Syst., vel. CAS-23, pp. 729-738, Dec. 1976.

[3.14] p.a. calahan, "Parallel solution of sparse simultaneous linear
equations" in "Proc. Eleventh Annual Allerton Conf. on Circuit
and Syst. Theory", October 1973, pp. 729-735.

[3.15] G. Kron, "A set of principles to interconnect the solutions of
physical systems”, J. Applied Phys., vol. 24, pp. 965-980,
Aug. 1953,

[3.16]1 F.H. Branin, "A sparse matrix modification of Kron's method of
piecewise analysis™, in "Proc. 1975 IEEE Int. Symp. on Circuits
and Syst., April 1975, pp. 383-386.

[3.17] £.0. Chua and L.K. Chen, "Diakoptic and generalized hybrid ana-
lysis", IEEE Trans. Circuits Syst., vol. CAS-23, pp. 694-705,
Dec. 1976.

[3.18] a.X. Kevorkian and J. Snoek, "Decomposition in large scale
systems: theory and application in solving large sets of non-
linear simultaneous eguations"™, in "Decomposition of large scale
problems™, D.M. Himmelblau, Ed. Amsterdam, The Netherlands:
North Holland, 1973.

[3.197 a.L. Sangiovanni-Vincentelli, "A graph theoretical interpreta-
tion of nonsymmetric permutation on sparse matrices", Int.J.
Circuit Theory and Appl., vol. 5, pp. 139-147, 1977.

[3.2071 J.7.M. Pieck, "Formele definitie van een e~tree", Memorandum
80-06 Technische Hogeschool Eindheven, Onderafdeling der
Wiskunde, April 1980.

[3.211 R. Tarjan, "Depth-first search and linear graph algorithms®,
SIAM J. Comput., vol. 1, pp. 146-160, June 1972.

[4.1] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan,
"Optimization and approximation in deterministic sequencing and
scheduling: a survey", Annals of Discrete Mathematics, vol. 5,
pp. 2B7-326, 1979.

[4.2] R.L. Graham, "Bounds on multiprocessing timing anomalies™, SIAM
J. Appl. Math., vol. 17, pp. 416~429, 1969,

[4.3] T.C. Hu, "Parallel sequencing and assembly line problems",
Operations Research, vol. 9, pp. 841-848, 1961.

[4.4] M.7T. Kaufman, "An almost-optimal algorithm for the assembly line
scheduling problem", IEEE Trans. Comp., vol. C-23, pp. 1169-1174,
Nov. 1974.

£5.1] Philips Data handbook, Signetics Integrated circuits Part 8,
May 1981, pp. 388-391.

[5.2] "AEP-118 Bus Test System", American Eléctric Power Service
Corporation, New York.

[5.3] W.L. Powell, private communication, Bonneville Power Administration,
Portland, Oregon.

[6.1] advanced Micro Devices, The Am2900 Family Data Book With Related
Support Circuits, 901 Thompson Place, P.O.Box 453, Sunnyvale,
California 94086.

[6.2] F. Ware and W. McAllister, "C-MOS chip set streamlines floating-
point processing”, Electronics pp. 149-152, Febr. 10, 1982.

[6.3] 0. wing and J. Huang, "A parallel triangulation process of sparse

matrices”, in Proc. 1977 Int.Conf. Parallel Processing, Aug. 1977,
pp. 207-214.

115

STELLINGEN
bi} het proefschrift van
H.G.M. Kees

25 mei 1982 Technische Hogeschool Eindhoven

Bij de complexiteitsanalyse van parallel algoritmen dient met terdege

rekening te houden met de struktuur van de toegepaste machine.

Naarmate de pakkingsdichtheid van de ic's toeneemt vergt het data

transport in computers meer aandacht.

Bij parallel processing dienen twee doelstellingen onderscheiden te

waorden, nl, optimalisatie naar snelheid of naar kosten.

Alleen bij onafhankelike taken is bij toepassing van parallel verwerking
de verwerkingssnelheid van de processoren uitwisselbaar met het aantal
processoren, (Uitwisselbaar in die zin dat het produkt van verwerkings«

snelheid en aantal konstant blijift).

Naarmate de graad van specialisatie toeneemt zal ook de bereikbare

versnelling en kostenperformance voor parallel processing toenemen.

De economische wetenschap is er nog niet in geslaagd (reken)modellen
te ontwikkelen, welke in een groot gebied geldig zijn.
E.J. Bomhoff, "De noodzaak van het bezuinigen', Intermediair 10,
12 maart 1982,

Het aantal werklozen wordt teveel als graadmeter voor de economie

gebruikt.

We moeten er op bedacht zijn niet onze "eigen" neergang te financieren

door de aankoop van geavanceerde wapens in het "buitenland".

