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0. INTRODUCTION 

The design process of intergrated electronic circuits require~ circuiL 

simulation facilities. The circuit analysis program, which computes 

the transient response of the designed circuit, is the hasic sirnula­

tion tool. 

The processing of the circuit analysis program requires much computing 

time. In order to speed up the design process it is necessary to re­

duce the computing time. There are two possibilities: the improvement 

of the organization of the analysis program itself or a faster com­

puter. 

The obvious way is to replace the computer hardware by faster hardware 

however, very much improvement is not possible because of physical 

limi ts. Another way is the application of more hardware to do things 

in parallel. 

The organization of a circuit analysis program on such a computer 

configuration is the subject of the thesis. 

In order to achieve higher t11roughput computer configurations 

with multiple 'central' processors have been proposed and built [0.1]­

[0.4]. !f the processors are able to co-operate in processing a single 

job then the computer configuration will be called a "parallel compu­

ter" and the joh will be called to be "processed in parallel". The job 

indicates the computation or process which is required by the user. 

If parallel processing is going to be applied the following questions 

and problems arise: 

- What kinds of jobs will he offered. 

How to construct algorithms suited for parallel processing. In order 

to make parallel processing possible the job must be decomposed into 

a set of tasks. These tasks must be processed by the processors 

according to an ordering, specified by the algorithm. 

What is an appropriate architecture. The various resources as 

processors, memories, buses, registers, etc., must be specified as 

well as the way they are interconnected. 

- What is the appropriate system software. 

These questions and problems should be answered and solved such that 

the desired performance is optimized as much as possible. Quantities 

to judge on performance are for instance: throughput, cost for hard-



ware etc. 

It will be clear that the above stated problems and questions are not 

independent of each other. The difficulty of the optimization problem 

depends highly on the first item 'what kinds of jobs will be dffered'. 

Here they will be restricted to the above mentioned circuit analysis 

programs which leads to the design of a special purpose computer. 

The performance which will be optimized is the average processing 

time of the jobs belonging to the considered class under the condition 

that the user has not to supply any additional commands to the 

computer. 

In order to 'solve' the above stated optimization problem to each 

of the stated questions and problems an answer or a solution will be 

formulated depending on the previoµsly taken decisions. This is mainly 

accomplished in chapter 2, after in chapter l the structure of a cir­

cuit analysis program is considered. Chapter 2 consists of three 

parts. 

Firstly a parallel algorithm will be derived directly from the results 

of chapter 1. A speèdup analysis will be given. It shows which tasks 

will be further considered for parallel processing. 

Secondly the special purpose computer and its organization are presen­

ted. 

Thirdly the job and the parallel computer are brought into one model, 

the scheduling model. The system software uses this model to accomplish 

an optimal match between the resources of the special purpose computer 

and the resource demands. The system software is extended by decompo­

sition and scheduling-procedures. 

In chapter 3 the task, which solves the set of linear equations resul­

ting from the discretized and linearized circuit equations, is regard­

ed as the primary job which must b~ decomposed into tasks. This is 

because in section 2.1 it is shownl that the required processing time 

to solve the set of linear equations limits the speedup which can be 

achieved. 

In chapter 4 the scheduling is demonstrated for the parallel solution 

of the set of linear equations, because the scheduling of this job is 

the most critical problem. 

In chapter 5 some results of the decomposition and scheduling of the 

solution job for the set of linear equations are presented. 
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Finally, in chapter 6 sol'le rer..arks are made about the remaining tüsl:s 

and the· conclusions are gi ven. 
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1; CIRCUIT ANALYSIS 

1.0 Introduction 

Each circuit analysis method [1.1] starts with setting up a set of 

equations (1.0.1) which describes the circuit with excitation ~(t) to 

be analysed: 

0 = x 
-1 

(1.0.1) 

These time dependent equations are in general nonlinear. The desired 

solution ~(t) for t E [tb,te] will be given at the discrete time 

instants t 1 ~,t2 , ••. ,t~ te. To this end an approximation ~n for 

~(tn) will be determined at each discrete time instant tn. The time 

derivatives at each discrete time instant are replaced by some 

appropriate approximation in the form of a differentiation formula 

depending on the current value ~n+l and past values of x: 

(1.0.2) 

By these substitutions for each discrete point of the time axis a set 

of nonlinear difference equations is obtained: 

0 n E 0,1" •• ,~-1 (1.0.3) 

The solution of (1.0.3) for ~n is obtained by solving first for 

~2 ,~ 3 , ••• ,~n because the differentiation formula requires past values 

of x. 

The nonlinear difference equations are solved for ~n+l by an iteration 

method. The Newton-Raphson (N-R) iteration, given by (1.0.4), serves 

this purpose. 

The iteration is started with !n+l'which is supposed to be an 

appropriate prediction for x +l' A(j)l is the Jacobian, see (1.0.5) 
-n n+ 

Aj = ~ f (x)I 
n+l dX -d -

! 

4 

(0) 
~n+1 ~n+l for n 0,1, ••• ,~-1 

( 1.0.4) 

(1.0.5) 



In the next sections the time discretization, the circuit description 

and some aspects of complexity and organization will be presented. 

1.1 

The total amount of computational work depends highly on the number 

of time steps. The number of necessary time steps depends on the 

differentiation formula applied, the circuit itself and the time 

interval, TT te - tb. In genera! the circuit is stiff .This requires 

differentiation formulas with the property that the time step and 

order can be adjusted easily. To be concrete, the prediction-based 

differentiation formulas (PBD) [1.2] are chosen and will be restated 

here. The superscript of the variables denotes the order of the 

PBD formula. 

The prediction formula for xn+i of order i+l is defined recursively 

by: 

+ 
-i 

(x -x ) and 
n n 

x 
n 

(1.1.1) 

with di defined by 

where 

h. 
J_ 

and h' 
i 

t 
n 

The k-th order differentiation formula is given by: 

k 
d (xn+l) (1.1.2) 

Evaluation of needs the recursive calculation of the predictions 

for xn+l given by (1.1.1). 

The time step is variable and increasing or decreasing the order is 

simply performed by changing the number of terms in (1.1.2). 

The performance is measured by the local truncation error 
k c 

En+l~h 1 ) = x(tn+l) -xn+l' where is the solution of (1.0.3) if 

x ,xi,i=2, .•• ,k are exact. Estimates for the truncation error 
n n 

depending on the order are given by: 
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Ek+u(h ) 
n+1 1 

for u e: {-1,1} 

(1.1.3) 

(1.1.4) 

The local truncation error is used to control the order as well as 

the time step. Let 8(v) denote the maximum allowed error of component 

v of ~ over the interval TT. This requirement is assured to be met if 

the local truncation error per time unit is smaller than 8(v)/TT. Let 

Em(h,v) denote the truncation error of component v. The maximum time 

step hm(v) for component v made by a PBO formula of order m is given 

by: 

m m 
8(V)h (v)/(TT.En+l (h 1 ,vl) 

where 

m m 
K~+l (h) =-h ·i·=JJ

2
(h+hj__ 1}/(1/h + l: 1/(h+hf.>l with hi,h2•···,h~ 

i=2 

at time tn+l. 

(1.1.5) 

Let hm min({hm(v) 1 VE:I }), where I is the set of the controlled 
, XC k k+l XC 

components, and h) max(hk-1,h ,h ), then the new time instant 

tn+2 = tn+l + h will be calculated with PBO formulas of order j. 

1.2 Circuit description 

The Modified Nodal Analysis (MNA) approach [1.3] will be used to state 

the circuit description in this thesis. 

Assume a circuit with (p+l) nodes and q elements (an r terminalelement 

with r > 2 is counted as r elements and is described by r relations as 

given by (1.2.1) or (1.2.2)). 

Let v = (v 1 , ..• ,v )Tand ib = (ib1 , ••• ,ibq)T denote the node 
-n n np -

voltages with respect to the reference node and the (branch) currents, 

respectively. 

The structure of the circuit and the orientation of the currents are 

given by the incidence matrix K. 
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The elements are described by the constitutive relations given by: 

g 0 (~ ,{b,v ,ib,t) 
" -n - -n -

0 for i ( {1,2, ••. ,qL (1.2.1) 

If the branch current can be given explicitly the relation is given 

by: 

for tE{l,2, ... ,q} (1.2.2) 

where (ibl, ... , . . ) T 
(t-1) ' 1 b(i+l) , ..• ,lbq . 

The output variables in the MNA approach are given by: 

The components of i are those branch currents which cannot be given 

by (1.2.2) or are desired as an output variable or are used to 

control other elements. (The current ibt controls an element k if the 

constitutive relation of this element depends on ibî!,) . The currents 

appearing in i are called "output currents". Let u denote the number 

of output currents. Assume the elements are renumbered such that 

elements, whose branch current is an output current, have got a 

number )!, such that p < t $ p+u. 

The MNA equations, consisting of the p Kirchhoff 's current equations 

and the u constitutive relations of elements, whose branch currents 

are output currents, are given by: 

K • 

,t) 

f (v ,y ,v ,y ,t) 
s -n -s -n -s 

i 

g 1 (~ ,lb,v ,ib,t) 0 p+ -n - -n -

g (~ ,lb,v ,ib,t) 0 p+u -n - -n -

0 

(1.2.3) 

Time discretization and substitution of the time derivatives followed 

by linearization by means of the N-R method results in (1.0.4). 

consider an element t between the nodes m and n with a current 

direction from m to n. The contribution of this element to the MNA set 

7 



of linear equations for the jth iteration at time t 

~ ~n~l is given by: 

if is not an output current. 

a!l (m,!l) -a!l (n,9..) = 1 

a!l (!l,j) a! g9.. (~<::::> ,~(~l •::'.·~,tl 
j 

b9.. (9..) -gil(~(::'.),~(~) •::'.·~·t) 

if i!l is an output current 

tn+i and 

(1.2.4a) 

(1.2.4b) 

(1.2.4cl 

(1.2.4d) 

(1.2.4el 

The coefficient a(i,j) and right hand component b(i) are given by: 

a(i,j) + a(i,j) + a!l(i,j) and b(i) + b(i) + b9..(i), 

for 1 ::;; 5l q. This process is called updating of the matrix entries. 

The resulting matrix will be regarded as a structural symmetrical 

matrix, with a dominant diagonal. The dominant diagonal is assured by 

a suitable pivoting [1.3]. 

In case of bipolar circuits, where the transistors are modelled by a 

Ebers Moll model, these assumptions are (almost) true. 

In chapter 6 some further remarks will be made to these points. 

1.3 Aspects of complexity and organization 

In this section some aspects concerning the complexity and organiza­

tion of a circuit analysis program will be considered. This will give 

information at which instances parallel processing will be considered 

in later chapters •. 

A circuit analysis program consists of two phases: the setup- and com­

putation phase. 

Setup phase. The user specifies his circuit to the analysis 
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program in its input language. The statements of the input language 

must be·interpreted in order to generate the data structure and the 

procedures required for the actual execution in the computation phase. 

To this end for each specified element its model must be retrieved 

from the element library. Such a model contains the procedures to 

obtain its contribution given by (1.2.4) to the MNA set of linear 

equations. 

In the computation phase the data structure and the procedures remain 

unchanged. 

Computation phase. Table (1.3.1) gives a summary of the various 

coef ficients and variables which must be computed in one pass through 

the time loop and one N-R iteration. 

In this table the following assumptions are made. 

The MNA set of linear equations consists of N equations. 

The contribution of an element, l, to the MNA set of linear equations, 

given by (1.2.4), is calculated by two procedures: vart(l} and 

varx(lè). 

vart(l\} evaluates the coefficients which depend on the time step and 

varx(l) evaluates the coeff icients which depend on the x vector. 

Let the sets of indices I nd' Ild and I denote the indices of the 
nr 

nonlinear dynamical, linear dynamical and nonlinear resistive 

elements respectively. 

Let the sets of components of x, Ixd and Ixp denote the components to 

which the PBD formula is applied and which are predicted respectively. 

The already defined set Ixc contains the controlled components 

( I d c I and I c I ) . 
X xp XC - xp 

Some of the quantities concerning the operations count which 

are reported in [1.4] are cited. 

The number of time denoted by nt, is about a thousand, evenfor 

small circuits (typical value 1000) • 

The number of required N-R iterations, denoted by nl\, varies from 3 

to 4 per time step (typical value 3) . 

The solution of the linear equations requires about 10-20%, denoted 

by rlin, of the total execution time necessary to execute one N-R 

iteration (typical value 15%) • 

The reported values depend highly on the size and function of the 

offered circuit and the desired accuracy. 
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The values given above for nt and nR, are the justification for the 

strategy to do a lot of preprocessing to construct an optimal data­

structure for the execution of the time and N-R iteration loops. 

In the f ollowing the preprocessing will be extended to take advantage 

of a computer configuration with a number of processors operating in 

parallel. 

Î 
N-R 

iteration 

time l 
loop 

10 

1. determine: 

2. determine: 

3. evaluate 

4. update 

s. evaluate 

6. update 

7. solve 

8. decide 

9. determine: 

10. determine: 

11. solve 

12. determine: 

13. determine: 

14. decide 

-1 -k 
X!I xn+1•···•xn+l xp 

k 
d (xn+1) 

vart (9.) 

b (i)' a (i,j) 

varx (R,J 

b(i), a(i,j) 

A LI x = b 

convergence 

XC + Xj 
-n+l -n+l 

k 
En+l (hl ,v) 

(h
1 

,v) 

(1.1.5) for 

hm 

hm(v) 

XEIXd 

fEinduifd 

i,jE{1 ,2, •.• ,N} 

fEinduinr 

i,jE{l,2, •.• ,N} 

VEI XC 

VEI xc' mdk-1,k+l} 

VEI 
XC 

mdk-1,k-"k+l} 

s i s k+l 

s i '."; k+1 

Table (1.3.1) One pass through the time loop and 

Newton-Raphson iteration. 



2. PARALLEL PROCESSING MODEL FOR THE CIRCUIT ANALYSIS PROGRAM. 

2.0 Introduction 

In this chapter the parallel algorithm (program) for the circuit 

analysis program will be outlined and a parallel computer organization 

will be stated in order to execute this algorithm (program). The 

parallel algorithm (program) and parallel computer organization are 

brought together in the scheduling model. The scheduling model will 

be used by the system software to accomplish a matching between the 

offered job and the available computer system. 

2 .1 Task graph 

A problem is solved by some algorithm which is accomplished by a 

computer program. Consider a computer program, written in Algol, 

consisting of a sequence of statements which operate on the variables, 

these will be called global variables. The statements are not allowed 

to be conditional or for-statements. The algorithm or its computer 

program will be called the "job" and a statement will be called a 

"task". A task itself may vary from a simple assignment statement to 

a bleek in which all kinds of statements are allowed. A task operates 

on a subset of the global variables and possibly on a set of local 

variables which are declared in the program block of the task. 

To obtain a correct solution the tasks must be executed according to 

a certain partial ordering after the global and local variables 

have been initialized with the proper values. The sequence in which 

the tasks are given is one of the possible sequences which are 

allowed by the partial ordering. 

If the job is to be executed by a parallel computer the ordering 

must be made explicit in the program (algorithm), in which case it 

will be called a "parallel program" (algorithm). 

Let T {u
1
,u

2
, ••. ,un} denote the set of n tasks of the 

considered job. Let the partial ordering of the tasks be given by: 

PO = { (u,v) 1 (u,vET) /\ PO(u,v) }, where the relation PO(u,v) is 

defined by: PO(u,v) ~ u must precede v. The job will be represented 

by a graph (T,S), the "task graph", where s = { {u,v) IPO(u,v) VPO{v,u)}. 

The precedence relation of (u,v) E S is given by PO(u,v). The task 
+ 

graph together with the precedence relations is denoted by (T,S) • 

11 



If PO(u,v), then u will be called a "predecessor task of v" and v 

will be called a "successor task of u". 

A proper parallel algorithm will be represented by a task graph (T,S) 

without loops. 

A task u will be called "free" if all its predecessor tasks have been 

executed. If between two tasks u,v E T does not exist a path in 
.... 

(T,S) they can be processed in parallel after they have been made 

free. 

.... 
consider the execution of a job with task graph (T,S) by a 

fictitious "ideal parallel computer". The ideal parallel computer 

consists of: 

- A large memory, which contains the tasks and all variables. The 

access to this memory takes no time. 

- A set of m identical processors capable of executing any of the 

tasks. The execution of a task starts with taking a copy of the task 

and all variables on which it operates. The execution ends by 

replacing the old values of the copied variables by the new values. 

- An operating system which schedules the tasks. The scheduling 

determines for each task during which time interval and by which 

processor it will be processed. 

Let Iu and ou denote the set of input and output variables of task 

UE:T, 

The sets are defined by: 

I = {x 1 x is a global variable to which is referred by any of the 
u 

statements of task u} 

O = {x 1 x is a global variable to which a value is assigned by 
u 

any of the statements of task u}. 

In order to avoid data interleaving, the PO must assure that for any 

two tasks u and veT, which are allowed to be processed in parallel 

holds: 

(( ou ()IV= ijl) " (Ov() Iu) =ijl) " (Ou ()ov=$)) (2.1.1) 

The performance of a parallel algorithm depends on the applied 

parallel computer .and the applied scheduling of the tasks. The ideal 

parallel computer is often used to evaluate the performance. This is, 

of course, far from realistic; for instance no attention is paid to 

the memory access at all. 

12 



Two performance measures are considered here: 

- the tótal elapsed time or schedule length to process the job on a 

parallel computer with m processors, to be denoted by w w(m), 

- the speedup ratio, to be denoted by SR = SR(m), which is given by 

SR(m) = w(l)/w(m). 

To achieve a fair value of SR(m), w(1) must be ohtained from the best 

known sequential algorithm. If no other convention is made the sequen­

tia! execution of the parallel algorithm will be used to obtain w(l). 

Let T{u) denote the required processing time to execute a task uET, 
+ 

then the length of the critica! path in ('I,S), hased on the required 

processing times, gi ves the minimum achievable u'. 

In genera! different algorithms may be applied to solve a par­

ticular problem. The choice of the algorithm to be selected depends 

on the opera tions coun t, weigh ted by the respecti ve execution times, 

numerical aspects and the demand for storage. By the introduction of 

the parallel computer a new aspect has to he taken into consiGeration. 

Namely, the partial ordering of the tasks can become more important 

than the operations count. The behaviour of the function SR = SR(m) 

for the various algorithms must be compared. Further a degradation 

of the w and SR may be expected due to the architecture and its 

parameters of the actual parallel computer configuration in as much 

as it deviates from the ideal parallel computer. 

The parameters of the parallel computer organization will influence 

the design of the parallel algorithm {program) which will be used to 

solve a problem, "the decomposition of the job into tasks". 

Parallel algorithms can be obtained in two ways: 

By recognizing the parallelism which is aften in a sequentia! 

algorithm, called "inherent parallelism". The algorithms in linear 

algebra contain often a great deal of inherent parallelism. 

- By the construction of entirely new algorithms. For instance, 

linear recurrence systems are transformed into equations on which the 

recursi ve doubling technique may be applied [ 2. 1] . However, in [ 2. 2] 

it is shown that for nonlinear recurrence systems a speedup can only 

be achieved by the parallel execution of the recurrence equation 

itself. This result is important because in the circuit analysis 

program the iteration loops (recurrence equations) contain in general 

nonlinear functions. Hence, the only speedup which can be achieved is 

given by the speedup ratio that can be obtained by parallel processing 
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of the program inside the time and the N-R iteration loop. 

Finally, a decoroposition for the circuit analysis job will be 

considered. One pass through the time loop and N-R iteration will be 

regarded as the job. The decoroposition is simply found by inspection 

of the job, given by table (1.3.1). The resulting task graph is shown 

in fig. (2.1-1). The labels at the tasks refer to the entries in 

table (2.3-1). Two eropty tasks are added. The task with label 15 in­

dicates the beginning and the task with label 16 is introduced to 

obtain the sarne task graph for the 1-th as well as for the j-th N-R 

iteration (j > 1). 

If the evaluation of tasks, labeled with the same label, is assumed 

to take the same time and T(i) denotes the required processing time 

of a task with label i, then the critica! path length is given by 

t\ (i). 
i=l 
In practice, the number of processors is far smaller than the number 

of components of the unknown vector x. Hence w exceeds the critica! 

path length. If m << N then it is reasonable to suppose that the total 

required processing time of all tasks with the same label is propor­

tional to 1/m, except for the tasks with label 7, 8, 12, 13 and 14. 

The task with label 14, the decision whether to initialize a new time 

iteration or not, will be left out of consideration because 
13 

T (14) « I: T (i). The task with label 7 will be considered as a. job 
i=l 

which is further decomposed into subtasks. In chapter 6 it will be 

shown that the processing times of the tasks labeled with 8, 12 and 

13, are also proportional to 1/m. 

Suppose the required processing time, denoted by wlin' to solve the 

set of linear equations on a parallel computer is given by (2.1.2). 

Let m
0 

denote the number of processors where all parallelism of the 

parallel algorithm is exploited. (Further increase of the number of 

processors does not decrease w anymore). The function a(m) denotes 

how efficient the m processors are used. The a(l) = 1 and a(m) is 

supposed to have a constant value c, for 1<m:>m
0

• This function is a 

rough approximation of the functions given in chapter 5. 

/ (a (m) *m) a(l) = 1, a(m) = c, for 1<m<m
0 

(2.1.2) 

14 



.j.J 
M 

~ 
-Ul 

§ 
..; 
.j.J 
<tl 
..; 
.j.J 
i:: 

~ 
Cll 

14-1 
11-l 
•n 
'O 

-Ul 

§ 
:;:J 
0 
..; 
'O 
(Il 
!-< 
P. 

§ 
·n 
'lil 
M 

2l 
..; 

p:: 
1 
:z 

!-< 

~ 
!-< 
0 

ä 
2l 
Ul 

~ 
rJ 

') varx(t),R.Eind 

- - ...._ ~ varx ( t) , R.Einr 

Fig.(2.1-1) Task graph for one pass through time loop 

and N-R iteration. 

15 



50 

SR 40 

30 

20 

10 

16 

\ 

1 1 curve mn SF.lin (mn) SR(oo) 

! 
+ 1 B, Il 

• 6 3 26,7 

0 8 4 35,6 

0 12 6 52, s 
x 24 12 107,0 

x"' 

0--

·-
x 

#-&~ 
",,/ -+-----------+-
• ·+-

~+~ 

0-

0 6 10 12 20 24 30 40 50 

m 

Fig. (2. t-2) Expected speedup as a function of m for the . 

computation phase with formula (2.1.2) for 

wlin as paral'leter. 



Let ttime and tNR denote the time necessary to evaluate the tasks 

outside ·the N-R i teration and inside the N-R i teration on a single 

processor respectively. 

llnèer the assumptions gi ven above and wi th the notations of section 

1.3 the following speedup ratio can be expected: 

SR (2.1. 3) 

(tNR'"nt (rlin*(wlin(n)/wlin(l)) + (1-rlin)/m)+ 'tim/mlnt 

Sequential evaluation requires nt times the execution of the time 

loop and inside the time loop the N-R iteration must be executed 

nR, times. 

Parallel evaluation reduces the time necessary to evaluate the tasks 

inside the loops. The processing time to solve the set of linear 

equations is given by (2.1.2). The processing time of the other tasks 

is proportional to 1/m. 

Fig. (2.3-2) shows the speedup function given by (2.1.3) with 

ttime = tNR and the typical values given in section 1.3, for five 

different w
11

n(m) functions. 

This analysis serves to establish quantitative estimates of the 

achievable speedup and the nur'lber of required processors. Under the 

assumption that m << N it is shown that the obtained speedup depends 

highly on the speedup which can be achieved for the solution of the 

set of linear equations. Hence, the solution of the set of linear 

equations by the parallel computer is extremely important. 

2.2 The asynchronous array computer 

In this section a parallel computer organization which is more 

realistic than the ideal parallel computer will be defined. Actually 

the design is completed to so rnuch detail that predictions about the 

performance are fairly dependable. 

The proposed parallel computer, "the asynchronous array computer", 

consists of a host computer, m computer modules and a connection net-

work, see fig.(2.2-1). 

- The host (computer) is a genera! purpose computer. The host can 

gain control of each computer module in order to access its memory. 

The host may be interrupted by the computer modules by a signal on 
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the line "ready". 

- A computer module, CM
1 

as shown in fig.(2.2-2), consists of a pro­

cessor, Pi' and a memory Mi' for iE{l, ••• ,m}. The computer module is 

especially equipped to perform floating point operations. 

To communicate with the outside world k IO ports are provided. To be 

concrete let the IO port consist of a simple bidirectional register. 

To provide the necessary synchronization facilities the following 

signal lines are provided: "and", "or", "ready", "time". The and 

and or signal values are T(rue) or F(alse). The time signal value 

is a non-negative integer. 

The instructions set(signal) and the reset(signal) cause the value 

of the signal to be T or 0 and F or 0 respectively. 

The time signal is provided by a counter which is part of the connec­

tion network. A reset instruction starts the counter again with a 

zero value. 

The instruction test(signal,xl operates on the time signal, where x 

is a non-negative integer which is supplied by the programraer. Execu­

tion of a test(signal,x) by a computer module results in active 

waiting until the value of the signal is larger or equal to the 

supplied value of x. 

The synchronization tools are sumrnarized in table (2.2.1). 

1 siqnal supplied instructions transi tien caused by: 

, set of values to execu ted by Ct! i 

and signal all CM set (and) F+T:after all CM have e>cecuted 

{T,F) the set (and) 

reset(and} T-+-F: af ter the execution of the 

reset(and} by any CM 

or signal all CM set(or) F4'1': after the execution of the 

set(or) by any CM 

{T,F) reset (or) 'J:"'+F:after the execution of the 

reset (or) by any CM 

ready signal host set(ready) F'"+T;after all CM have e:xecuted 

{T,F} the set {ready} 

T+F: only possible by the host 

time siqnal all CM reset{time) current value +O:after the execu-

{0,1,2 .•• ) test(time,x) tion of reset (time} by any CM 

Table(2.2.1) Synchronization tools. 
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The communication is accomplished with the following instructions: 

(1) IO port-h + source 

(2) send IO port-h 

{3) take IO port-h 

(4) destination + 10 port-h 

where: hE{1,2, ••• ,k} 

Only the instructions (2) and {3) need some further explanation. 

They interact on the bus h and the "bus-h signal" line. The bus-h 

signal value is either F(alse) or T(rue) for hE{1, ••• ,k}. 

Instruction (2) connects the register to bus h and makes the bus-h 

signal T during its execution. 

Instruction (3) forces processor Pi to wait until the bus-h signal is 

T, then the 10 port-h is connected to bus-h. The instruction ends 

with disconnecting IO port-h of bus h. 

If the time between two successive broadcast instructions is larger 

than the time between two successive receive instructions, no further 

synchronization is necessary. 

The connection network connects the m computer modules and the 

host computer. The connection network consists of k buses: 

{bus 1, ••• , bus k}, the signal lines, set and reset lines and also 

the implementation of the signal functions. 

A bus h consists of the data lines which are connected with IO port-h 

of all computer modules, for hE{1, ••• ,k}. 

The operating system of the asynchronous array computer resides 

completely in the host computer. The system software accomplishes the 

necessary preprocessing before the actual job, the computation phase, 

is executed by the computer modules. In section 1.3 it was already 

mentioned that doing a lot of preprocessing is justified. 

The system software consists of: 

- the conventional setup phase. This part is already described in 

section 1.3 

- the decomposition of the job into tasks. Besides the decomposition 

resulting into the task graph shown in fig.(2.1-1) in chapter 3 the 

job which solves the set of linear equations will be decomposed into 

tasks 

- the scheduling of the tasks. This part assigns each task to a 

processor and determines the time interval during which it has to be 
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executed. A task is called "assigned" toa processor Pi or a computer 

CMi if its instructions are stored in Mi and will be processed by Pi. 

The scheduling assurnes that the necessary processing time of the tasks 

can be determined in advance. In chapter 6 remarks will be made for 

the case where this assumption is unrealistic. 

In the next section the scheduling rio<lel is presented by which the 

assignment of the tasks and the time intervals will be determined. 

- the assembly of the data structure and codes. The necessary syn­

chronization instructions are inserted in the code. To assure that a 

task will be executed during the determined time interval, say [x,y), 

it will be preceded hy a test(time,x) instruction. 

For the computation job this is achieved as fellows. By the three 

sets of labels: {15,1,2,3,4},{16,5,6,7,8} and {9,10,11,12,13,14} three 

sets of tasks are determined. The necessarY synchronization times for 

tasks of the first two sets are given with respect to the start of 

the tasks 15 and 16 respectively. The synchronization times for tasks 

of the third set are given with respect to the end of the task with 

label 8. For each new time loop or N-R iteration the time signal must 

be reset.To this purpose at the reference places reset(time) instruc­

tions are placed. 

- the loading and unloading of the computer modules. 

During the computation phase the host computer will be free until all 

processors signal that they are ready. 

Because of the necessary data exchange between different computers 

over the connection network the set of tasks is extended by communica­

tion tasks. The procedures which accomplish the data exchange hetween 

computer modules will be considered now. 

Let X denote a data set with coefficients x{ix), for ixEDX, where DX 

is the set of indices ix of the data set. P..ssum1' the array IS>: con-­

tains the indices of these coefficients of X which must be transni ttecl. 

Further, let the array IPX contain the indices of these locations in 

X in which received coefficients must be stored. In the following in 

the above notations X will be replaced by the actual name. 

Consider two data sets A and B which are allocated to computer module 

CM. and CM. respectively. The array ISA contains the indices of these 
l. J 

coefficients of A which must be transmi tted to CM .• The array IRB 
J 

contains the indices of those locations of B in which the transmitted 
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coefficients must be stored. After the communication b(IRB(k)) 

= a(ISA(k)), for k€{1, ••• ,lrsAj} must hold. 

This communication will be accomplished by a procedure 

"broadcast (A,ISA,h)" and procedure "receive (B,IRB,h)" which are 

executed by CMi and CMj respectively. To assure synchronization they 

are precedeä by a synchronization instruction, test(time,tx),with tx 

the time at which the communication is planned. 

1. procedure broadcast(A,IBA,h); 

2. begin 

cor:.ment A is allocated to this CM, IB contains the indices of coef­

ficients to be broadcasted, h is the used bus; 

3. for u step 1 until IIBA! do 

4. 

5. 

6. 

7. 

(l. end; 

begin 

IO port-h + a(IBA(u)); 

send IO port-h; 

end; 

1. procedure receive(B,IRB,h); 

2. begin 

comment B is allocated to this CM, IRB contains the indices of coef­

ficients to store received data, h is the used bus; 

3. for u = 1 step 1 until lrRBI do 

4. 

s. 
6. 

7. 

8. end; 

begin 

take IO port-h; 

b(IRB(u))+ IO port-h; 

end; 

To ohtain a correct communication process the number of coef ficients 

in the arrays IBA and IRB must be the same. Further, assume that if 

IRB(k)i DB then the received coefficient will be stored nowhere. 

If the received coefficients have to be stored in two different data 

sets this will be accomplished by an analogous procedure. 

Let "procedure receive (B,IRB,C,IRC,k)" denote that the first lnml 
coefficients have to be stored in data set B in the locations given 

by IRB and the next jrRCI coefficients in data set c in the locations 

given by IRC. 
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In order to avoid data interleaving and memory conflicts the 

following coCllllunication rules are given. 

A comrnunication task will be considered as an indivisihle action. The 

cornmunicating computer modules are completely devoted to the cornmuni­

cation task. The broadcasting computer module will be regarded as 

master and the receiving conputer modules are regarded as slaves. 

2.3 Scheduling model 

The operating system has to assign the tasks to the computer modules 

and has to determine time intervals for the processing of each task 

such that some performance measure is optimized. This optimization 

problem is called the "scheduling problem". Here the performance 

measure will be the elapsed time w to process all tasks. 

First a detailed description of the scheduling model based on the 

model as presented in [2.3], will be given. In chapter 4 a heuristic 

solution method for a scheduling model derived from the job which 

solves the set of linear equations will be given. The scheduling 

model consists mainly of two parts: the resource system and the job 

systern. 

- The resource system. 

Everything that may be required for the processing of any task is 

called a "resource". The set of resources establishes the "resource 

system". The resource system is partitioned into two sets, the set P 

of processors and the set R of "additional" resources. 

Let P = {P
1

, P2, ••• ,Pm} be the set of processors. The functional 

capability and the processing speed of the individual porcessors are 

not necessarily equal. 

Let R = {R
1

,R
2

, ••• ,Rs} be the set of additional resources. For each 

resource R
1 

E R a restricted amount is availahle, to be denoted by 

rm(Ri). 

Resources in the set R are for instance buses and memories. Some of 

the resources in the set R may be artificial resources. For instance 

consider two tasks u and v which are not allowed to be processed at 

the same time, however the sequence of execution is arbitrary. These 

tasks may occur in the task graph as tasks to be executed in parallel. 

In order to avoid parallel processing of u and v an additional 

resource R with amount rm(R ) = 1 will be introduced. The resource 
q q 

demands of tasks u and v are extended by a demand for resource R by 
q 
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an amount of 1. By this parallel execution of the tasks u and v is 

impossible but the sequence of execution is left free. The condition 

given by (2.1.2) which avoids data interleaving is not necessary in 

this case. 

- The job system • 
.... 

The task graph (T,S) together with the resource demands of each task 

is called the "job system''. 

The required processing time and the required additional resources 

may tlepend on the assignment of the tasks to the processors. Let 

be a mapping defined by: 

F {u) =P. 
A l. 

for u c T and P. E P 
l. 

(2. 3. la) 

(2.3.lb) 

The required processing time of a task u € T, "the task duration", 

executed by a processor Pi E P and with art assignment of the tasks 

given by FA will be denoted by: ;(u,Pi,FA). Iff all processors are 

the same then the task duration is independent of r
1

• In that case the 

second argument will be deleted. 

The amount of resource R E R which is required by a task u E T 
q 

during the entire execution time and with an assignment of the tasks 

given by F will be denoted by: r(R ,u,FA). If the task durations and 
A q 

resource demands are independent of the assignment the argument FA 

will be dropped in the expressions. 

If a task requires more than one processor, one of the processors 

will be regarded as the master of the ether required processors. This 

situation can be modeled by treating the processors also as additional 

resources. The set of additional resources becomes 

R = {R1, ••• Rs,P1, ••• ,Pm}. The resource amount rm(P
1

) = 1, for 1SiSm. 

The resource demand of a task u for the newly introduced additional 

resources is given as follows: 

{

1 if Pi equal to FA(u) and for all Pi which 

(p F) _ of F~(u) during the execution of task u 
r i,u, A - " 

0 otherwise 

are slaves 

The task duration is determined by the master which is given by the 

mapping FA. 
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Once the resource system and the job system are defined the 

scheduling problem can be stated formally. 

Assurne the time interval for execution of task u E T is given by 

[ O'(u}, Ó(u)), where cr(u) and o(ul denote the time instants of starts 

and finish of task u respectively (cr(u) 

ó (u) (. [cr (u) ,ó (u))). 

[o(u) ,ó (u)) and 

Let T denote the time axis: T 
a a 

[O,~) and let I denote the set of 

time intervals: I = {[ ts, tf) 1 ts ~ tf and ts, tf E T }. Let 
a 

FI T + I (2.3.2a) 

be a mapping defined by: 

F
1

Cu) = [cr (u) ,o (u)) for u E T (2.3.2b) 

A schedule will be defined by FA and F
1

. In defining FA and F
1 

certain 

constraints have to be observed. Before going in more details two more 

mappings are àefined. Let 

f 
p 

be a time dependent mapping defined by: 

(2. 3. 3a) 

f (t,P,) {ue:T 1 ((F (u) "'P,) v (r(P,,u,F) # 0)) A (tEFI(u))}, 
p i A i l. A 

for Pi E P (2.3.3bl 

The mapping f (t,P.) defines the task which is processea at tir.1e t by 
p l. . 

processor Pi (or coprocessed if Pi is used as a slave). A graphical 

representation of fp(t,P
1

) is aso called "Gantt chart"[2.4]. Further 

let 

f : Ta + M(T) 

be a time dependent mapping defined by: 

f (t) u 
PiEP 

f (t,P.). 
p l. 

(2. 3.4a) 

(2.3.4b) 

The mapping f(t) defines the set tasks which are processed at time t 

by any of the processors. 

Now a schedule is proper if: 

'i [((u,v)ES) + cr(v} ;:>: ó(u)] 
u,vET 

that is, the precedence relations are satisfied, 

y [F (u) "'Pl..• o(u) ;:>: cr(u} + T(u,P,,F )1 U€T A l A -

(2. 3. 5) 

(2.3.6) 
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that i,1;1,, a,ny itask ,is, g.i;ven· enpµgh. prçp~f3?ii~<il;,A;;,ime.",, 

'Il RiE:R iitE:T"'.,,:[ l: r (Ri,u,FA):;:!i'fm(Ril] 
, ""' uE:f{t) , 

(2. 3. 7) 

that is, the allocated additional resources are at any time instant t 

smaller or equal than their given amount. 

The scheduling task is to minimize w, the schedule length(elapsed time) 

under the constraints given by (2.3.5), (2.3.6) and (2.3.7). 

If the scheduling model contains identical processors, no additional 

resources and each task uET requires only one arbitrary processor for 

a time interval î (u) then it will be referred to as the "basic model". 

If to a basic model a set of resources R is added and the resource 

demand for any RvER of each task u is given by r(Rv1 u) it will be 

referred to as an "augmented basic model". If the durations and re­

source demands are also dependent of FA the model will be referred to 

as a "general model". 

Further sequencing constraints may be imposed on the schedule. 

By these constraints the set of proper schedules is partitioned into 

classes. Two important classes are distinguished: "preemptive" and 

"nonpreemptive schedules". 

- In a preemptive schedule it is allowed to stop the execution of a 

task on a processor and to postpone the remainder of the task. This 

is called a "preemption", The remainder of the task may be processed 

by a different processor and again preemption may occur. If preemption 

is allowed the task can be split into a chain of smaller tasks. 

- In a nonpreemptive schedule each task which is started must run 

until conpletion is achieved without interruption. 

Other sequencing constraints may also be imposed to limit the number 

of proper schedules. For instance any task will be started as soon as 

possible. List schedules, as defined in chapter 4, use this sequencing 

constraint. Sequencing constraints may reduce the efficiency of the 

result. Of course, sequencing constraints will be considered only if 

their impact on the performance is tolerable. 

In chapter 4 the f inally proposed scheduling will be specified. 
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3. SOLUTION 

3.0 Introduction 

A set of linear equations is given by (3.0.1), where Ais a non­

singular square matrix of dimensi.on n. To solve equation (3 .0.1) 

Ax b (3. 0.1) 

direct or indirect methods may be used [3.0]. 

- The direct methods compute the solution x in a fixed number of 

operations. If no truncation errors are made then the solution is 

exact. 

- The indirect (iterative) methods compute successive approximations 

to the solution x. The required number of operations depends on the 

desired accuracy. 

Indirect methods will not be considered here because of possible con­

vergence difficulties. Though the procedure which must be executedfor 

one iteration may result in a highly parallel algorithm [3.1], [3.2], 

the resulting speedup depends also on the number of required itera­

tions. 

The procedures which will be considered, obtain the solution by 

L\U-decomposition, forward substitution and back substitution. By this 

solution procedure the matrices may remain sparse. 

Matrix A may be expressed as the product of two matrices L and U: 

A L U (3 .0.2) 

where L is a lower triangular and U an upper triangular matrix. The 

solution can now be obtained in two steps. The first step solves 

(3.0.2) for ~, an auxiliary vector, by a forward substitution. 

Le b (3.0.3) 

The second step solves (3.0.4) for ~ by a back substitution 

Ux c (3 .o .4) 

The coefficients of A, U and L are denoted by a(i,j), u(i,j) and 

~(i,j) for i,jE{l, ..• ,n}. The coefficients can be determined by the 
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formulas [3.0] given by (3.0.5). 

il(j,j) u(j,j} 

9., (i, j} (a(i,j) 

U (j 1 i) (a(j,i) 

j-1 
a(j,j) - L il(j,k) u(k,j) 

k=l 

j-1 
L 9., (i ,k) u(k,j))/u(j,j) 

k=l 

j-1 
- L 9., (j ,k) u(k,i)) /il(j ,j) 

k=l 

s j s n 

(3.0.5) 

1 s j < i s m 

The determination of the L and U matrices, L\U-decomposition, is ac­

complished by the procedures"Gauss" or "Crout" which are given below. 

In both procedures the diagonal coefficients of L are chosen to be 1. 

1. procedure Gauss; 

2. begin 

3. for i + 1 step 1 until n do 

begin 4. 

5. 

6. 

7. 

for each kE{i+l,,",n} do a(k,i} + a(k,i)/a(i,i); 
. 2 

for each (k,h)E({i+l, ..• ,n}) do a(k,h) +a(k,hl -a(k,i) *a(i,b); 

end; i loop 

8. end; procedure Gauss 

1. procedure Crout; 

2. begin 

3. for i + 1 step 1 until n do 

4. begin 

5. for each jE{i, ••• ,n} do 

6. for k+ 1 step 1 until (i-1) do 

7. a(i,j) + a(i,j) - a(i,k} * a(k,j}; 

8. for each jE{(i+l), ••• ,n} do 

.9. begin 

10. for k + 1 step 1 until (i-1) do 

11. a(j,i) + a(j,i) a(j,k) * a(k,i); 

12. a(j,i) + a(j,i)/a(i,i}; 

13. end; j loop 

14. end; i loop 

15. end; procedure Crout 
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The coefficients a(i,j) in the procedures are initially equal to the 

matrix coefficients a(i,j) of A for i,jE{l, ••• ,n}. After theexecution 

of the procedures the coefficients a(i,j) and a(k,m) are equal to the 

matrix coefficients i(i,j) and u(k,m) respectively, for 1 $ j i 

and 1 :S k m n. The coefficients ~(i,i) are not stored, for 

iE{l, ... ,n}. 

The forward substitution may be done in combination with the L\U­

decomposition procedure. Assume coefficient a(i,n+l) is initially 

equal to component b(i) and after the execution of the L\U-decompo­

sition procedure the coefficient is equal to component c(i), for 

ic{l, .•• ,n}. In the Gauss procedure the index set at line 6 from 

which the indices k and h are chosen must be replaced by 

{i+1, ... ,n} x {i+l, •.. ,n,n+l . In the Crout procedure the index set 

at line 5 must be extended by the index n+l. 

The back substitution is performed by the following procedure back­

solve. 

1. procedure backsolve; 

2. begin 

3. for i + n step -1 until 1 do 

4. begin 

5. a(i,n+l) + a(i,n+l)/a(i,i); 

6. for each jc!1, ... , (i-1)} do 

7. a(j,n+1) +a(j,n+l) -a(j,i) "ra(i,n+l); 

8. end; i loop 

9.end; procedure backsolve. 

n 

This procedure backsolve assumes that the coefficients of L and ~ are 

given by a(i,j) and a(i,n+l) respectively, for ic{1, ... ,n] and 

j {i, ... ,n}. 

The number of required operations (multiplications, additions, sub­

stractions and divisions) to perform the L\U-decomposition is approxi-
3 2 

mately 2n /3-n /2+n/2 for both methods. The number of required opera-

tions for the forward substitution and back substitution is n(n-1) and 

respectively. In order to solve b for full matrices 
3 2 3 

2n /3+3n /2-n/2 operations are required, thus O(n ). 

In general the numerical stability of the method depends on the 

given ordering of the linear equations and the components of the solu­

tion vector x. To assure a numerically stable solution a pivot 
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strategy may be necessary. 

After having introduced general aspects in the next section 3.1 

the solution process will be considered for sets of equations where A 

is sparse. A graph model will be introduced to describe the structure 

of the matrices during the decomposition process. The graph model is 

useful to study pivoting. 

In section 3.2 the parallel processing of the solution process will 

be studied. With the aid of the graph structure a parallel algorithm 

is constructed. The properties of the data structure (e-tree) which 

guides this alg.orithm are considered. 

In section 3.4 a block decomposition method is described which brings 

the matrix into the doubly bordered block diagonal form [3.2]. 

3.1 

The set of linear equations which results from a circuit analysis 

program has in genera! the following characteristics: 

the nurnber of equations may be very large (about thousand); 

- the average number of nonzero matrix coefficients per row is much 

smaller than the dimension of the matrix. 

Matrices which exhibit the last property are called "sparse matrices". 

Further, due to the choice of the MNA method used to formulate the 

circuit analysis equations the set of linear equations is assumed to 

have the following properties: 

- the matrices are structurally synnnetric, thus a(i,j) ;tQ-a(j,i) zo. 
- numerical stability is assured if only diagonal coefficients of A 

are regarded as pivot candidates. 

The sparsity of the matrices requires an efficient data structure and 

special attention as to the pivoting, because a straightforward im­

plementation of the ordinary solution procedures would result into a 

huge amount of storage locations containing zeros and a lot of 

operations on zero value coefficients. An adequate sparse data struc­

ture has proved to be a "row-pointer-column-index"-structure such as 

given in fig. (3.1-1), which illustrates the corresponding locations 

of various matrix coefficients in the sparse matrix. 

The number of required operations to solve the linear equations 

depends of course on the degree of sparsity. During the solution 

procedure coefficients which are initially zero may become nonzero 
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coefficients; such coefficients are called "fill-ins".The generation 

of fill~ins depends on the pivot sequence which is chosen during the 

solution procedure. If no special attention is paid to reducing the 

number of fill-ins, the resulting decomposition matrices L and U may 

be non sparse. 

2 

6 

10 

array index 

row pointer 

column index 

upper off. 

diag. coeff. 

lower off. 

diaq~coeff. 

diag. 

coefficients 

a(2,3J a(2,4) a (2, 5) 

a (3 ,3) a(3,4) a (3,5) 

! a (4,4) : a(4,5) 

a(5,3) a (5,4) 

a(6,4) 

: a(7,4) 

a(S,4) 

4 

8 9 10 

a(4,6) a(4, 7) : a(4,8) 

: a(S,6) a(S,9) a (5, 10) 

a(6,6) i a(6,!0): 

: a(7, 7) 

a(8,6) ia (8, 7) a(8,8) 

6 8 9 10 

Fig. (3.1-1) Illustration of a sparse data structure fora 

structurally symmetrie matrix 

The matrix A and its data structure can be associated with a 

11 

graph (V,E) [3.3], with lvl n and IEi equals the number of nonzero 

off-diagonal pairs. The definitions of the graph notations are given 

in appendix Graph notations. Assume a bijective mapping 

g: {a(1,1),a(2,2), .•. ,a(n,n)} +V. This mapping associates with each 

diagonal coefficient a{i,i) a vertex g(a(i,i)). To each pair of non­

zero off-diagonal coefficients a(i,j) and a(j,i) corresponds an edge 

(g(a(i,i)) ,g(a(j,j)))EE. The graph (V,E) is called the "associated 

graph" of matrix A. 

The sets inc(v,E), adj(v,E) and def(v,E) can easily be given a meanin::r 
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in terms of sets of matrix coefficients. If g-1 (v) is some diagonal 

coefficient then the set inc(v,E) corresponds to the nonzero off-dia­

gonal coefficients in the respective row and column. The set adj(v,E) 

identifies a set of diagonal coefficients which determines a submatrix 

of A. This submatrix is associated with the subgraph 

(adj(v,E), E(adj(v,E))). The zero off-diagonal coefficients in this 

submatrix are identified by def(v,E). 

In order to solve the set of linear equations by Gaussian elimi­

nation a pivot sequence must be selected. Only diagonal coefficients 

are considered as pivots. After reordering the rows and columns of A 

in accordance with the selected pivot sequence a matrix A' is obtained, 
T 

A' PAP , where P is a permutation matrix. In the associated graph 

structure this amounts to a reordering of vertices. Assume the special 

ordering a. of (V,E) such that a.-
1 (g(a(i,i))) = i for iE{l,2, ••• ,n}, 

this ordering corresponds to the initia! matrix A.If the graph (V,El 

is ordered by S the corresponding matrix A' is given by: 

A' = [a' (i,j)] = [a(a.-1 (S(i)), a.- 1 (S(j)))]. It is clear that the as­

sociated graph (V,E) represents the class of matrices PAPT where P is 

any permutation matrix. 

Consider now the L\U-decomposition using the Gaussian process. 

Assume pivot a(p,p) is selected. The pivot-row is converted into a row 

of the u-matrix and the pivot-column which is divided by a(p,p) is 

converted into a column of the L-matrix. The matrix A without this 

pivot row and -column is used for selecting further pivots.This matrix 

is updated by the dyadic product of the L-matrix column and U-matrix 

row. In general this causes fill-ins. 

In the graph model two graphs (V,E) and (V,E) are introduced to account 

for this process. The graph (V,ËJ corresponds to the L\U matrix con­

structed so far and (V,Ê), the "elimination graph" corresponds to the 

remaining matrix. Before the first elimination step (V,Ê) (V,E) and 

(V,Ë) = ($,$). The structural updating of these graphs induced by the 

associated Gaussian elimination step can be described as fellows: 

1. procedure update(u); 

2. begin 

3. V +vu {u} uadj (u,Êl; E + E uinc (u,Êl; 

4. V + V\{u}; Ê + !Êudef(u,Ê))\inc(u,Ê); 

5. end; 
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The set def(u,Ê), the set of "fill-in-edges", represents the fill-ins 

which a~e generated. 

The L\U-decoroposition, according to the Gaussian elimination 

scheme, which takes account of the sparsity, is formally described by 

"orocedure Gauss". It is assumed that some ordering S has been defined 

prior to the execution of "procedure Gauss". 

1. procedure Gauss; 

2. begin 

3. (v ,Êl <- (V ,E); (v ,ËJ + (<j>,<j>); 

4. for i +· step 1 until n do 

5. begin 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

-1 
u + B (il; i + a (ul; 

for each v E adj (u,E) do 

begin 
-1 

j + a (v); 

a(j,i) + a(j,i)/a(i,i); 

for each w E adj (u,Êl do 

end; 

begin 
-1 

k + a (w); 

a(j,k) + a(j,k) - a(j,i)*a(i,k); 

end; 

update(u); 

end; i loop 

19. end; procedure Gauss 

Similarly, the Crout decomposition can be described. 

1. procedure crout; 

2. begin 

3. (V,Ê) + (V,El ; (V,Êl + (<j>,<j>l; 

4. for i + step 1 until n do 

5. begin 

6. u + s (i) 
-1 

9, + a (u); 

7. for each v adj(u,E) u {u} do 

8. 

9. 

10. 

begin 

k + a-
1

(v) 

for all w adj (v,Ê) :l adj (u,Ê) do 
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11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

end; 

begin 
-1 

m + a (w) ; 

a(l!.,k) + a(l!.,k) - a(l!.,m) * a(m,k); 

end; 

for each v E adj (u,Êl do 

begin 
-1 

k + a (v) ; 

for all WEadj(v,Ë) nadj(u,Ë) do 

begin 

end; 

-1 
m + a (w); 

a(k,t) + a(k,t) - a(k,m) * a(m,l!.); 

a(k,tl + a(k,l!.) / a(Q,,l!,); 

end; 

26. update(u); 

27. end; i loop 

28.end; procedure Crout. 

An ordering with the property that for i = 1, ••• ,n always 

def(S(i),E) = ~ during execution of procedure Gauss or Crout is a 

"perfect ordering". A graph (V,El permitting such a perfect ordering 

is called a "perfect elimination graph". Rose [3.4],[3.5] has proved 

the equivalence between a perfect elimination graph and atriangulated 

graph in the sense of Berge [3.6]. Hence the pivoting problem is 

equivalent to finding a suitable triangulation of the associated 

graph (V,E). 

Two objectives are possible: either to find a minimum triangulation 

or a triangulation which results in a minimum number of required 

arithmetic operations for the L\U-decomposition. 

Heuristic strategies [3.7] have been developed such as Berry's 

criterion [3.8], which 'minimizes' the triangulation and the minimum 

degree criteriQn [3.9] which 'minimizes' the number of required ope­

rations. 

Rose proved also various properties of triangulated graphs. Some 

which are important for the parallel algorithm are stated below. 

34 



=-;;;;;;:.;_,.;;;_1 [3.4] 

[(V,E) is triangulated] +.- ['\f [any minimal u,v-separator is a 
U 1 VEV 

] . 

Lemma 2 [3.4] 

Let (V,E) be triangulated. Then V can be partitioned into twodisjoint 

subsets v
1 

and v2 (V
1 

u 

- '\f [def(v,E) q,J 
VEVl 

v, v
1 

n v
2 

= q,J such that 

'\f [v is in some minimal u,w-separation 
VEV2 

==-'-_;;_3 [3.4] 

In any triangulated graph (V, E) there is at least one vertex v E V 

such that def(v,E) = q,. 

Lemma 4 [3.5] 

Let (V,E) be triangulated and let S c V be some separation clique. 

Let c V, i=l, ... ,k be the components with respect to S.Then in any 

component there is at least one vertex vi E Di such thatdef(vi,E) =ij>. 

Assume a triangulated, connected graph (V,E) where Vis nota clique. 

Then there must be at least one minimal u,v-separation clique. 

proef: 

Since V is not a clique there are at least two nonadjacent vertices u 

and v. Then any chain between u and v is of length >2 and can be 

broken by removing one of its "inner" vertices. Select a minimal set 

of vertices such that S is a minimal u,v-separator. Since (V,E) is 

triangulated Sis a minimal u,v-separation clique. (end of proof). 

Lemma 5 

Assume a triangulated, connected graph (V ,E) . Consider v E V such that 

def(v,E) q,. Then (v\{v}, E ) is triangulated and connected. 

proef: 

The statement follows from the fact that adj (v,E) is a clique. (end 

of proof) . 
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Lemma 6 [3.4 J 

For some triangulated graph (V,E) all perfect orderings are equivalent 

in that they result in the same number of multiplications,additions, 

substractions and divisions for the L\U-decomposition process. 

Assume S is some perfect ordering. The operations count for the nume­

rical operations stated in lemma 6 is given by (3.1.1). Hence the 

operations count 

n 
l: 

i=l 
(21madj(S(i})1

2 
+ lmadj(S(i)) I> 

2 2 
is of order O(n d ) where d gem gem 

(3.1.1) 

n 

1 madj <S (il) 1
2

. 
n i=l 

The essence of the above statements can be summarized as follows. 

Once a triangulated graph is obtained by the insertion of the neces­

sary fill-in-edges many other perfect orderings can be obtained. For 

this purpose it is only necessary to select as pivots at any instant 

such vertices exhibiting zero deficiency. All orderings obtained by 

this principle will be equivalent in that they all result in the same 

number of numerical operations for the L\U-decomposition. 

2 
Csanky [3.10] presented an algorithm which requires O(log n) parallel 

operations to evaluate with 0(n
4
/log n) processors.The solution ~ 

can also be obtained by 0(log
2

n) parallel operations.This algorithm 

is only of theoretical value because of the sensitivity for rounding 

errors and the large amount of processors which are required (For in­

stance if n = 8, approximately one thousand processors are required 

to reach the cri tical path length) ',The necessary communication between 

this huge amount of processors may cause a severe degradation of the 

potential parallellism. 

To obtain parallel algorithms which are numerically stable only a 

standard solution method, L\U-decomposition (Gauss) followed by for­

ward- and backsubstitution, will be considered. 

Fig.(3.2-la) shows a matrix which will be considered. Fig.(3.2-lb) 

shows the sequence of operations which will be executed by the Gauss 

procedure to decompose the given matrix. The operations are numbered 

according to their order. Each operation will be considered to be a 
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task. The set of tasks is : T = {u1 , ••• ,u20 }. The sets Oj and Ij 

denote the set of output variables of task u. and the set of input 
J 

variables of uj respectively, for 1 $ j $ 20. The edges of task graph 
-+ 

(T,S) are given by: 

(u.,u.) E~ iff [pEI. Aj=max(O,lpEO,A!l<i})], for 1 J ]_ ]_ , IC 
i $ 20 

order operation or task 

!. a(2, 1) ""' a(2t1) / a(I, 1) 

2. a(3, 1) ... a(3, tl / a(!, 1) 

3. a(4, 1) + a(4,1) / a(I, 1) 

[ "'"" a (1,2) a{!, 3) 

•0 "'] a(2, Il a(2,2) a(2,3) a(2,4) 
A ~ 

a(3,2) a(3, !) a(3,3) a(J,4) 

a(4, 1) a(4,2) a{4,3) a(4,4l 

4. a(2,2) + a(2,2) - a(2,1) x a(l,2) 
Fig. (3.2-la) The matrix whic:h serves 

5. a(2, 3) <- a(2, 3) - a (2, 1) xa(l,3) 

6. a(2,4) + a(2.4) - a (2, 1) x a(l ,4) 
the example. 

7. a(3,2) + a(3,2) a (3, 1) x a(1,2} ... "coefficient update operation•• or 
8. a(3,3) <- a(3, 3) - a(3,1l x a(l,3) short uodate. 
9. a(3,4) <- a(3,4) - a(3,1) x a(! ,4) 

10. a(4,2l + a(4,2) - a (4, 1) x a(l,2) 

11. a(4,3) ... a{4,3) - a(4,I) x a(l,3) 

12. a{4,4l +- a(4,4) - a(4,1l x a(! ,4) 

13. a(3,2) + a(3,2) / a(2,2) 

14. a(4,2) + a{4,2} / a(2,2) 

15. a(3,3) + a(3,3l - a(3,2) x a(2,3) 

16. a(3,4) + a(3,4) - a(3,2) x •(2,4) 

17. a(4,3) + a(4,3) - a(4,2) x a(2,3) 

!8. a(4,4) <- a(4,4) - a(4,2l x a(2,4) 

19. a(4,3) + a(4,3) I a(3,3) 

x a(3,4) j 20. a(4,4) + a(4,4) a(4,3) 

Fiq. (3.2-lb} Sequence of operations executed 

by the Gauss procedure. 

Fig. (3.2-lc) Task graph for 

the example. 

The resulting task graph is shown in fig. (3.2-lc). The task graphmay 

be executen in six parallel operations with 9 processors. In general 
2 

2(n-1) parallel operations executed by (n-1) processors are required 

to decompose a matrix with dimension n. 

Two possible implementations of the algorithm on the asynchro­

nous array computer will be presented. 

A straight forward implementation [3 .11] is obtained if the processors 

are werking synchronously. To this end it is assumed that each task 

requires the same amount of time to be executed. The time axis is 

divided in time intervals, "time-slots", with equal length. The 
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scheduler assigns each task to a processor and to a time-slot. (This 

can be accomplished by a list schedule; see chapter 4). Each computer 

module is loaded with a copy of the matrix and the tasks assigned to 

it, together with the time-slot number. 

A processor can be in one of two states; the execution state and the 

communication state. At any time instant the state of all processors 

is the same. During the i-th execution state a processor will execute 

the task with time-slot i or if none, it will be idle. During thei-th 

communication state each processor broadcasts in turn the matrix co­

efficient which was computed during the i-th execution state, while 

all others receive this coefficient and store it. 

Assume a task requires T time units and to broadcast a single coeffi­

cient requires Tb time units. The actual time necessary to execute 

the i-th time slot will be increased by M * Tb if M coeffcients have 

to be broadcasted.This causes a severe degradation of the potential 

speedup. 

The implementation given in [3.12]operates also synchronously. In its 

simplest form the number of processors is equal to the dimension of 

the matrix. In computer module CMi the i-th row of the matrix is 

stored. 

Assume the first (i-1) U-rows and L-columns have been determined. 

During the next communication state CMi broadcasts a(i,i) to CMi+l' 

CM1+2 , .•• ,CMn which will receive this coefficient. During the next 

execution state CMi+t' CMi+2 , ••• ,CMn compute the new L-column.During 

the next communication states CMi broadcasts the remaining coeffi­

cients a(i,i+1), ••. ,a(i,n) while CMi+l'''.,CMn receive these. After 

a(i,j) is received by C~ the operation a{k,j) +a{k,j}-a(k,i)~a(i,j) 

is performed during the execution state, for k,j E {i+1, ••• ,n}. Fig. 

(3.2-2) shows the resulting task graph, where the tasks u
21 

- u
29 

are communication tasks. 

The resulting task graph can be derived from the task graph given in 

fig.(3.2-2) by imposing the sequence constraints due to the row wise 

organization on the task graph of fig.(3.2-lc) and insertion of the 

broadcast tasks. 

In the first implementation method the required communication 

will decrease the potential speedup. Improvement is possible if 

asynchronous operation is allowed, because not all processors need 

the same coefficients. The communication may be spread.However, the 
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number of tasks which must be scheduled is of the same order as the 

number of numerical operations. 

In the second implementation the number of active processors during 

the computation states may be reduced if the matrix is sparse. 

a ( 1, !) 

ui are the tasks of für. (3.2-1) 

for 1 s i s 20" 

uj broadcasts a matrix coefficient 

for 21 s j 29. 

a(2
1
2) _,,_____the coefficient which is broadcasted. 

a(2, 3) 

a (2,4) 

Fig. (3.2-2) Task graph for one row stored per computer module. 

3.3 The elimination tree 

3.3.1 ê!~~!~~Y_!~-~~~~~-~~~!~~~~ 
In the previous section attention was paid to the parallelism which is 

in the L\U-decomposition procedure itself, the inherent parallelism. 

Here the attention will be focussed on the observation that in asparse 

matrix the computations which are associated with certain pivots can 
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be executed simultaneously. These associated computations depend on 

the applied procedure. The Gauss procedure will be used .for this pur­

pose. Later it will become apparent that the derived results alsohold 

for the Crout procedure. The computations which are associated with a 

pivot are given by the compound statement in lines 5-18 of the Gauss 

procedure in section 3.1. 

The parallelism due to the sparsity has been studied by variousauthors 

[3.13], [3.14]. In fact methods [3.15]-[3.19] known as "tearing" and 

decomposition into "bordered block diagonal form" or "bordered block 

triangular form" are in close relation to this item. 

The inherent parallelism of the L\U-decomposition is accounted for by 

assuming that whatever work is involved by processing one pivot can be 

done is a fixed time-slot. In fact the parallel algorithm is developed 

for the ideal parallel computer model where each processor itself is 

again a parallel comnuter, able to exploit all parallelism associated 

with a pivot. This processor model is realistic to some extend because 

the computer modules may be equiped with several arithmetic units. The 

length of the time-slot is equal to the time necessary to accomplish a 

divide and a coefficient update ope~ation (coefficient update opera-

tion a + a b * c}. 

The parallel algorithm will be developed by applying the associa­

ted graph (V,E) of the matrix. 

Parallel processing of two pivots a(i,i) and a(j,j) with 

a(i) Eadj(a(j) ,E) is impossible. Namely if a(i,i} has been chosen as a 

pivot than a(j,j) can be a pivot only after the updating step 

a(j,j) + a(j,j) - a(i,j) * a(j,i) / a(.i,i) has been completed. During 

the updating memory conflicts may occur if the two submatrices indi­

cated by adj(a(i) ,E) and adj(a(j),E) have coefficients in common. 

However, this will be allowed because it is possible to store the 

dyadic product temperarily. 

A method to parallel processing, described in graph terms may be 

as fellows. A mapping y:V ~ {1,2, ••• ,k} assigns to each vertex a 

"label",with k =" n. On basis of these labels "label classes" are de­

fined to be denoted by X. "" {x E V \ y (x) = i}. A label class X. will 
. 1 1 

contain vertices which can be processed in parallel after all vertices 

of the previous classes have been pi:-ocessed. Procedure "classwise 

L\U-decomposition" describes symbolically the decomposition on the 

basis of these classes. The operations implied by line 7 may be 

executed in parallel. 
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1. procedure classwise L\U-decomposition; 

2. begin· 

3. (V,E) + (V,E); <v,Ël+(qi,~), 

4. for i + step 1 until k do 

5. begin 

6. X + {x V 1 y(x) = i}; 

7. for each u E: X do update (u); 

8. end; 

9. end; 

The graphs (V,Êl and (V,Ê) constructed by the compound statement in 

lines 5-8 after the i-th turn will be denoted by (ViEi) and (Vi,Êi). 

The graphs (V,Êl and (V,Ë) in line 3 are denoted by (v
0

,Ê
0

J and 

(v0 ,E
0
). The set x in line 6 corresponds to the already defined setxi. 

Now the label class x
1 

may be constructed as follows. Initializex
1

+ qi. 

Each vertex v c v
0 

will be inspected. If adj (v,Ê
0

) n Xi ~ then v will 

be inserted into x
1

. After completing x
1 

all its vertices are elirnina­

ted from (v
0

,E
0

) to obtain (v
1

,E
1
). The whole process is repeated un­

til all vertices are inserted into a label class. The last label class 

is assumed to be xk. 
However, this strategy to construct the label èlasses may cause an 

enormous amount fill-in edges. This rnay result in a demand for an un­

acceptable number of storage locations and also ·the operations count 

may be extremely large because the operation count is given by 
2 

O(nd ) . 
gem 

The number of operations must be lirnited because in practice the com-

puter modules of the asynchronous array computer will have a limited 

processing power. To deal with this fact it will be assumed thatduring 

preprocessing a pivot sequence was constructed which minirnized the 

fill-ins and or the number of operations. The associated graph (V,E) 

of the matrix in which the fill-ins are inserted is a triangulated 

graph. If in the above strategy during the selection of label class 

Xi only vertices v will be labeled i with def(v,Ei-l) ~ then no new 

fill-ins are introduced. Hence the number of fill-ins and theoperations 

count of the L\U-decomposition is determined by the applied pivot cri­

terion during preprocessing. 

Procedure "e-tree" accomplishes the above given strategy to label 

the vertices and constructs a graph (V,B) on basis of these labels. 
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The graph (V,B), which is defined by the procedure e-tree, will be 

called "elimination-tree" ("e-tree") .In the next sections it will be 

proved that (V,B) is a spanning tree of (V,E) where the edges together 

with the labels represent the partial ordering by which the vertices 

must be eliminated to obtain a perfect elimination graph. In [3.20] 

a formal definition is given of an e-tree followed by a procedure to 

obtain an e-tree. The operational definition of the e-tree is used 

here because it is more in accordance with the strategy to label the 

vertices. 

1. procedure e-tree; 

2. begin 

comment (V,E) is supposed to be triangulated; 

3. (V,Ê) + (V,E); i + 1; 

4. while V ~ $ do 

5. begin 

6. U + V; 

7. while U ~ $do 

8. begin 

9. pick some v € U; U + U\{v}i 

10. if def(v,Ê) = $ then 

11. begin 

12. y(v) + i; 

comment y(v) is the label of v; 

13. u + U\adj(v,Ê); 

14. V + V\{v}; Ê + Ê\inc(v,Ê); 

15. end; 

16. end; 

17. i + i+l; 

18. end; 

19. B + $; 

comment (V,B) will be the e-tree; 

20. for each v € V do 

21. begin 

22. R. (v) + {yM 1 (v,w) ,€ E A y (w) > y(v)}; 

23. B+Bu{(v,wl EE 
1 

y(w) = min(R.(v))}; 

24. end; 

25. end; 
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3.3.2 Procedure e-tree 

The algcritt_m generates a graph (V ,B) . By proving the following 

lemma's it is shown that (V,B) is a spanning tree of (V,E). 

7 

During the execution of procedure e-tree on a connected triangulated 

graph (V ,E) any v E V is assigned to exactly one label-class. 

proof: 

By lemma 3 there will be a nonempty subset x
1 

c V gi ven label "1" in 

line 12 of the algorithm. Any time a vertex is assigned to x
1 

it is 

removed from the graph in line 14, this it cannot be assigned ~o any 

other label class. Arriving at line 18 (V,Ê) = IV\X1 ,E(V\X1Jl with 

V c V is obtained. (V ,Ê) is again connected and triangulated (lemma 5). 

Thus the procedure can continue with nonempty sets x2,x3 , ... ,Xk 

(lemma 3) until V V\ (X
1 

u x
2 

u ••• u Xk) is empty meaning that all 

vertices have been labeled. (end of proof} 

With respect to line 23 of procedure e-tree w is called the 

"successor of v" and va "predecessor of w". 

Lemma 8 

Any vertex in some label class , i<k, has at least one successor. 

proof: 

For i=O, .•• ,k-1 (Vi is triangulated, connectE-d anà nonflnpty. Thus 

for v E Xi, i<k, the set adj (v ,Êi-l l is nonempty. Since all these ver­

tices will be labeled in later executions of line 12 one of them must 

be a successor to v. (end of proof) 

The lemma implies that only the vertices in Xk may have no successor. 

In fact they will have no successor since for some 

Lemma 9 

All vertices of a clique X will be assigned to different label classes. 

proof: 

Assume XEX is the first vertex of the clique which receives a label, 

say i. Then by line 13 of procedure e-tree X\{x} is deleted from U 

which prevents that any vertex yE:X\{x} will get the same label i. As 
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X\{x} is again a clique the same reasoning will hold. (end of proof} 

Lemma 10 

For any vertex v E V in a connected triangulated graph (V ,E} there is 

at most one successor. 

proof: 

For v E Xi the successor (if it exists} will be in the vertex set 

adj(v,Êi_
1
). Since this set must be a clique no two vertices fromthis 

set will be in the same label class (lemma 9}. Since the set isfinite 

there is exactly one vertex w E adj (v ,Ê. 
1

) wi th smallest label 
i-

y (w) > y(v) assigned as the unique successor to v. (end of proof) 

Lemma 11 

Xk contains exactly one vertex. 

proof: 

Assuming that (Vk,Êk) 

con~ected. Suppose theilJ is more than one vertex in ~ then because 

of the connectedness there must be ·at least two vertices v,w E xk such 

that w E adj (v ,Êk-l) • This means that v and w cannot be in the same 

label class and consequently Vk # ~ contrary to the assumption. The 

single vertex r E Xk is called the "root". (end of proof) 

Theorem 1 

The graph (V,B) generated by procedure e-tree executed on a connected 

triangulated graph (V,E) is a spanning tree. 

proof: 

Any vertex except the root is assigned one edge connecting it withits 

unique successor. Along those edges a chain can be established from 

any vertex to the root. That means {V,B) is connected. Since for any 

vertex except the root there is a tjnique successor IBI = lvl - 1 is 

obtained. Thus {V,B) is connected and has lvl - 1 edges implying that 

it is a spanning tree. (end of proof) 

3.3.3 ~~eE~~!!~~-~~-!~~-~=~~~~ 
Assume (as indicated earlier) that all pivots in the same label class 

can be processed in parallel and that the processing of one pivot 

takes one fixed time slot. Then the critical path through the e-tree 
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indicates the number of time slots necessary to complete the L\U-de­

composition. 

The following lemmas and theorems have the purpose to show that given 

some triangulated connected graph (V,E) 

all orderings S such that \! V [x is a successor of y + 
-l x,yE 

-+ B (x) > (y) J are oerfect orderinqs; 

the length of the critical path in some e-tree is identical with the 

label of the root,y(r); 

all possible e-trees fora given graph (V,E) exhibit critical paths 

of identical length. 

12 

Let v and w E: adj (v ,Ei-l) • Then w is a vertex in the chain from 

v to r in (V,B). 

proof: 

The proof works by induction on the label classes. Consider label 

classes x
1 

and x2 . Any two vertices in label class x
1 

cannot be ad­

jacent. Consider w E x
2

• If w adj (v ,E
0

) for some v x
1 

then w will be 

the unique successor of v. Thus w is in the chain from v to the root 

and the lemma holds for the first two label classes. 

Assume the lemma is true for label classes up to and including Xn and 

consider X 
1

• Suppose w E: X 
1 

and v E X
1
. , i:Sn. Ei ther there is some 

~+ n+ 
u

1 
Eadj(v,Ei_

1
) such that i y(v) <y(u

1
) <y(w) = n+l or not. In the 

second case w is in the label class with the smallest label of all 

vertices in adj(v,Ei-l). So wis the successor of v and the lemma 

holds. In the first case since y(u
1

) s n the lemma holds for v and u 1 
by induction. The same argument is repeated for some E: adj 

such that y(u
1

) < y(u 2) < y(w). This way of reasoning comes to an end 

for some u. Eadj(v,E. 
1

) since this set is finite. The vertices J . l-

v, u
1

, u
2
,... ,w obviously are all on the same chain in (V,B) from 

v to r. (end of proof) 

Let T(v) (V(v) ,B(v)) be the subtree of (V,B) with root v. 

Corollary 2 

Assume two disjoint subtrees (V(v),B(v)) and (V(w),B(w)) of (V,B). 

Then in (V,E) there is no edge (x,y) with x V(v) and y E: V(w). 
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proof: 

Assume there is such an edge. Then x and y cannot be in the samelabel 

class. Say y(x) > y(y). Since x adj(y,Êy(y)-l) x must be in thechain 

from y to the root (lemma 12) . This however, implies that y E v (v) 

contrary to the assumption that T(v) and T(w) are disjoint. (end of 

proof) • 

By the labeling the graph (V,E) is converted into a palm tree [3.21]. 

Namely the edge set E of (V,E) is partitioned into the edge sets 

El B and E2 E\B. Due to the corollary 2 the edges of El andE2 can 

be identified as the tree edges and fronds respectively. 

3 

Let (V,E) be a connected triangulated graph with an e-tree (V,B). An 

ordering 8 for which 

'r;/ [x is successor of y ~ 13-1 (x) > 13-t(y)] is a perfect ordering. 
x,yEV 

proof: 

The obtained ordering 8 is a perfect ordering if 
-1 -1 

'r;/XEV [ {y (y ,x) E E /\ 8 (x) < 13 (y) } is a 

consider a chain in the tree from vertex z to the root with vertex 

set , ••. ,z root}. For J1,E{2,3, ••• ,m} holds y(zJl,_ 1) < y(zJI,} and 
1 -1 m 

8- ) < S (zJI,) because zJI, is successor of zJl, .. 1 • Hence y(z) < y(zj} 
-1 } and (z) < 13 (zj) for j E {2, ... ,m. 

Asstime x Xi for i e: {1, ... ,k-1}. Lèt C (x) be the vertex set of the 

chain from x to the root. Due to corollary 2 adj(x,E) L(x) UU(x) 

with L(x) = {y 1 (y,x) EEAyEV(x)} and U(x) = {y 1 (y,x) EEAyEC(x). 

For any y E V (x) \ {x} holds y (x) > y (y) and for any z E C (x) holds 

y(x) < y(z) because of the chain from y to x respectively from x to 

the root. Hence U(x) = adj(x,Ei-l)~ which is a clique by the con­

struction of the label classes. 

For each y E adj (x,E) either y E U(x) or y E L(x}. In the first case 
-1 -1 -1 -1 S (y) > S (x) because y E c (x) • In the second case 13 (y) < 8 (x) 

because of the chain from y to x in T(x). 

Hence {y 1 {x,y) E E A 13-l (y) > 13-l (x)} = U (x) . (end of proof) 
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Lemma 13 

Assume vEXi, i>1, such that vis in a minimal u,w-separation clique 

in (V.Ê.J, j=O, ..• ,i-2. Then there is at least one vertex, say y,such 
J J A 

that y(y) < i and vc:adj(y,Ey(y)-l). 

proef: 

Let the minirnalu,w-separation clique be S and Du and Dw be the compo­

nents with respect to S containing u and w respectively. As long as 

and Dw are not empty there is a vertex in Du and Dw with zero de­

ficiency according to lemma 4, which will be labeled on execution of 

line 12 of procedure e-tree, whereas v cannot be labeled according to 

lemma 2. Either Du or Dw will finally shrink to one vertex, say y, 

which will be labeled y(y) i-1. Since S was minimal 

v adj(y,Êy(y)-l). (end of proof) 

Obviously all vertices in label class x1 have no predecessors since 

is the smallest label issued. The contrary is not so obvious andneeds 

a proef. 

Lemma 14 

All vertices with no predecessors are in label class x1 . 

proef: 

Suppose v E Xn, n> 1 and v has no predecessor. Thus while i <n durin<J 

execution of procedure e-tree v is not assigned a label in line 12. 

Therefore either v does not satisfy the zero-deficiency condition or 

v is adjacent to some ether vertex, say w, that gat his label. In the 

second case v is on the chain frorn w to the root (lemma 12) meaning 

that it has a predecessor contrary to the assumption. In the first 

case due to lemma 2, lemma 13 applies. Thus there is some vertex y 

such that v is on the chain in (V,B) from y to the root implying that 

v has a predecessor contrary to the assumption. 

Corollary 4 

A vertex is in label class x 1 if and only if it has no predecessors. 

In ether words all "tree-tops" are in label class x
1

. 

Corollary 5 

Assume all label classes x1 , ..• ,Xi removed from (V,B). Thus (Vi,Êil 

and (V.,B(V.)) are obtained. Then a vertex is in label class Xi+l if 
l. l. 
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and only if it has no predecessor in (V.,B(V.)). 
l. l. 

proof: 

The proof follows from the fact that after removal of the label clas­

ses x1 , ••• ,xi from (V ,E) .the residual graph is still connected and 

triangulated. If the labeling is started with "i+l" instead of 111" 

the statement is obtained. (end of proof) 

Any vertex vin some label class Xi, i>l, has at least one predeces­

sor from label class xi_
1

• 

proof: 

From lemma 14 it fellows that any vertex in x2 has a predecessor in 

x
1 

otherwise it would have no predecessor at all. So consider the 

case that i>2 and all predecessors of vare in label classes Xj, 

jsi-2. Remove all label classes up to and including • Then v 

will have no predecessors. This is a contradiction since only Xi_
1
can 

have vertices with no predecessors. (end of proof) 

2 

For any v E: V, y (v) is the length of the critical path in T (v) • 

proof: 

The proof is by induction on the label classes. The case is clear 

for x 1 and x 2 • So assume that the statement is true for all label 

classes up to and including Xn and consider some v E Xn+l. The truth 

of the statement follows now from the observation (lemma 15) that v 

has at least one predecessor in xn, say w. By induction the critical 

path in T(w) has length n. Traversing from w to v adds one edge to the 

critical path which proves the statement. (end of proof) 

The immediate consequence of theorèm 2 is of course that y(r) is the 

length of the critical path in (V,~). 

Procedure e-tree need not yieid a unique result. To see this 

consider the example in fig.(3.3-1). For this example if i=2 both v3 
and v4 have zero deficiency and the vertex encountered first in line 

9 will be inserted into x 2 • In the example the length of the critical 

path is independent of the choice. There arises the question whether 

this is generally so. The question will be answered in the positive 
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sense as indicated earlier. 

V1 V2 V1 Vz 

X1 X1 

X2 X2 

X3 X3 • 
-- -

V5 

--~· X4 - --
% __ Xs Vs _!s -- --
V7 

..!_6 "" -- -- -- -- --

Lemma 16 

Assumeaconnectedtriangulatedgraph (V,E) andU: {v V 1 def(v,E) <j>} 

then u consists of a set of cliques which are disjoint. 

proof: 

Define on U the relation R(u,v) as follows 

V [R(u,v) ++uE:adj(v,E) u {v}]. It is obvious that for any pair of 
u,vE:U 

vertices u,v EU, R(u,u) and R(u,v) +R(v,u) holds. Hence the relation 

is reflexive and symmetrie. 

Assume R(u,v) and R(v,w) hold with u,v,w U. If u v or v = w or 

u = w then R(u,w) holds. If u F v and v F wand u 1 v then (u,v)EE and 

(v,w) E:E. The def(v,E) = <f> means that (u,w) EE and R(u,w) holdsagain. 

Hence the relation is also transitive. The relation is an equivalence. 

Consequently this equivalence induces a partition of U into the 
m 

equivalence classes u1 ,u2 , •.. ,urn with u i~l and ui n uj = <P for 

all i,j where iFj. Each set is a clique, according to the relation, 

which consists of one or more vertices. (end of proof) 

Lemma 17 

Assume a connected triangulated graph (V,E). Suppose y,z V such that 
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def(y,E) = qi, def(z,E) = 4> and y E: adj (z,E). 

Then the graphs (Y;E(Y)) and (Z,E(Z)) with Y 

isomorphic. 

proof: 

v\{y} and Z V\{z} are 

The bijection À : Y ~ Z with À(z) y and for all XEV\{y,z} À(x) = x 

satisfies the required conditions because adj(y,Z) = adj(z,Y). Fig. 

(3.3.-2) illustrates this. (end of proof) 

Corollary 5 

Assume a connected triangulated graph (V,E). Let Xi and XÏ ~e :wo dif­

ferent choices of the first label class. Then (Vi,Êil and (VÏ,EÏ) 

(which are the elimination graphs after removing Xi or Xï) are iso­

morphic. 

proof: 

Obviously the first label class is established by selecting one vertex 

from every equivalence class Ui, which are defined in lemma 16 by the 

relation [R(u,v) ++uEadj{v,E) u {v}], i=1, ••• ,m. The effect of elimi­

nating the first label class can be studied by considering the members 

of the various equivalence classes ui independently since these clas­

ses are disjoint. 

Assume for some i Xi n ui = y and XÏ n ui = z. If y = z then the same 

elimination graphs are obtained and the isomorphism is obvious. If 

however, y F z lemma 17 applies bec~use y and z are adjacent sincethey 

are in the same equivalence class. (end of proof) 

Lemma 16 says that for any triangulated connected graph (V,E) 

the first label class has a fixed cardinality. From corollary 5 fel­

lows that for all possible choices of x 1 _::. U the obtained elimination 

graphs are isomorphic. Lemma 16 and 17 hold for each eliminationgraph 

cv1,Ê1), ••• ,(Vk,Êk). This implies that also the number of label classes 

is constant for any given (V ,E). So theorem 3 is obtained. 

3 

Fora triangulated connected graph (V,E) the length of the critical 

path in some e-tree is a property of the graph. 

This statement assures that the construction of the e-tree is optimal 

under the present assumptions {the most important one being that the 

processing of one pivot takes a fixed time slot). 

so 



adj(y,E)\{z} 

·z 

z 

G (V,E) G' = (V\{z},E(V\{z})) G" = (V\{y},E(V\{y})) 

Fig. (3.3-2) Illustration of the isomorphism property. 

3.4 

Let C denote a set of h clusters in e-tree (V,B); the clusters are 

denoted by ei for i E {1, ... ,h}. Assume the set ~f clusters is a parti-

tien of the vertex set V that is to say : V 

for i , j { 1 , ... , h} and i t j . 

and C . n C . = f , 
1 J 

The cluster graph of (V,B) with respect to C, denoted by (C,B), con­

tains the clusters as vertices and the edges are given by: 

) EB ++3 [(v,w) EBAy(v) <y(w)]. 
VECi 1 WECj 

Let v denote the vertex for which (x) y(v)J then this 

vertex will be called the root of ei, by , for i {1, ... ,h}. 

Lemma 18 

Let be an ordering for the clusters S: {1, ••. ,jcj}-+ such that: 

is a successor of c.-+S-1 (c.) >S-1 (c.)]. 
1 J 1 

An ordering $ such that: 

(i) 
. -1 -1 
[w is a successor of u + B (w) > B (u) ] ] 

- 1 --1 -1 -1 
[S- (C.) > 8 {C.) +S (v) > $ (u)J 

J 1 

is a perfect ordering. 
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Proof: 

For any edge (u,v) EB where vis successor of u, there are two possi­

bilities. Firstly u,v E ei then due to (i) corollary 3 holds, 

iE{1, ... ,h}. Secondly, uEC. and VEC. with i,;, j means (C.,C.) EB 
L J L J 

where C. is successor of C. due to the ordering S which induces by 
J i 

(ii) the s-1 (v) > s- 1 (v) such that corollary 3 holds again, for 

i,j E {1, ... ,h}. (end of proof) 

The partition c and ordering according to lemma 18 yields a matrix 

structure given by fi~. (3.4-1) .The coefficients Alj of A' are matrices 

['i1 AÎ2 "ihl A' A?l A22 • A~h 

~1 ~2 A~h 
Fig. (3.4-1) Matrix structure associated with (C,B) 

itself, for i,j E {1, .•• ,h}. The diagonal matrix Ali is associated with 
--1 --1 

the subgraph of (V ,E) given by (S (i) ,E U3 (i)), for i E { 1, ••. ,h}. 

The off diagonal matrices 

edges defined by { (u,v) E E 

i,j {1, ••• ,h}. 

and A!. are associated with the set of 
--1 JL --1 

u E S (i) and v E S (j)}, for 

Due to corollary 2, A~. and A!. are zero matrices if in the cluster 
LJ JL --1 --1 

graph (C,B) there is no path between S (i) and S (j). 

The cluster graph (C,B) may be seen as having the same meaning as the 

e-tree if instead of single diagonal coefficients, diagonal matrices 

are taken as a pivot. 

Many different partitions into clusters are possible.A partition 

may be obtained as fellows. 

Choose some vertex v E V and consider the chain from v to the root r in 

the e-tree (V,B). This chain defines a cluster, which will be denoted 

by S{v). Assume the set adj(S(v) ,B) is given by: {r1 , •.. ,rh}. Each 
! 

vertex r i E adj (S (v) ,B) defines a clpster V (ril • If h > 1 then S (v) is a 

separator in (V,E) due to corollary 2. The h distinct components are 

given by: {(V(r1),E(V(r 1))) , ••• ,(V(rh) ,E(V(rh)))}. 

For each component (V(ri) ,E(V(ri))), with (V(r1) ,B(ri)) as e-tree,the 

above process may be repeated. 

The clusters obtained this way depend on the choice of v in each com­

ponent. The choice of v can be based on various criteria.In chapter 4 
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parti tionirn:r will be used to support the scheduling of tasks. 
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4. SCHEDULING 

4.0 Introduction 

In this chapter the scheduling strategy is presented for the solution 

job of the set of linear equations. The scheduling model as presented 

in section 2.3 will be used. 

In section 4.1 the scheduling model in case of an ideal parallel com­

puter is given in order to demonstrate the methods which will be used. 

In section 4.2 the job system for the asynchronous array computer is 

derived. 

Finally in section 4.3 the proposed schedu~ing strategy is presented 

and applied to a L\U-decomposition job. 

4.1 Scheduling model for the ideal parallel computer 

By means of the associated graph and the e-tree (V,B), the job systems 

of the L\U-decomposition and forward substitution job ("lu-job") and 

the back substi tution job ( "bs-job") are defined for the ideal parallel 

computer. 

The resource system, containing the limited resources,is given 

by: 

- P {P1 , ••• ,Pm} m identical processors, which are able to exploit 

all parallelism associated with any pivot. 

- R = {R1 , •.• ,R
5

} s artificial resources with each an amountrm(Ri) 1, 

for R1 ER. The purpose of these additional resources will be ex­

plained shortly. 

Before defining the tasks some data sets will be defined which 

will be stored in the memory. 

Wi th every vertex v e: V will be associated the data sets : Av and ~. 

The data set A contains the coefficients a(i,k), a(k,i) and a(i,n+l), 
-1 v 1 

for i = a. (v) and k E fo - (w) 1 we: rriadj (v) U {v}}. Uith the notational 

convention used in the L\U-decompo~ition procedures of section 3.0. 

The data set Qv contains the coefftcients 'iy(h,k), 'iy(h,n+l), for 

k,h e: {a. -l (w) 1 w E madj (v)}, to store intermediate results. The coeffi­

cients of o are initialized with zero. 
'"v 

The job system for the lu-job. 

For every vertex u E V is defined a task which accomplishes the L\U­

decomposition and forward substitution on u. The task. is calledpartial 
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L\U-decomposition and forward substitution, and will be denoted by: 

plui-task(u). The i indicates the ideal parallel computer. The 

plui-task(u) is given by the procedure "plui(u)" which operates on 

the associated data sets of u and its successor. 

1. procedure plui(u); 

2. begin 

comment This task operates on the data sets of u and its succes­

sor v. The statements given in lines 4-9 accomplish the 

actual task. The statements given in lines 10-13 accom­

plish the 'data transport' between the data sets asso­

ciated with u and v; 
-1 -1 -1 

3. k <- a (u) ; j + a (v) ; I + fo (w} 1 w € madj (u) } ; 

4. fm: each i EI do 

5. begin 

6. a(!l,k) +a(!l,k) / a(k,k); 

7. for each m E I u {n+ 1} do 

8. qu (2,m) +- qu (i,m) - a (t,k) * a (k,m); 

9. end; 

10. for each i EI do 

1 . for each m € I u {n+l} do 

12. if (,\è=k Vm=j) then a(t,m) +a(lt,m) + qu (.~ 1 m) 

13. else ( ,m) + {t,m) + qu (2,m); 

14. end; procedure plui(u) 

.,. 
The resulting task graph (T,S) for the lu-job is equal to the e-tree 

(V,B). The precedence relations amonq the tasks are qiven by: 

\;/( ) [plui-task (u) is the successor of plui-task (v) iff y (u) > y (v) 
u,v o::B 

(4.1.1) 

Consider two tasks: plui-task(x) and plui-task(y) which are allowedto 

be processed in parallel by However, if madj (x) n madj (y) # cjJ 

then update conf licts are possible during execution of the statements 

given in lines 10-13 of procedure plui(u). Due to the introduction of 

the data sets Q this can only happen if x and y have a COIDI1lon succes-

sor. 

To avoid the update conflicts it is sufficient to exclude plui-task(x) 

and plui-task{y) from being executed at the same time if theyhave the 

same successor. This is accomplished by the set of artificial re-

sources; for each vertex u a resource with an amount rm 
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is introduced. 

Each task will demand a processor and an amount of one of the addi­

tional resource which is associated with the successor task. 

The task system for the lu-job is given by: 

- the set of tasks 

- the task graph 

- the task durations 

T {plui-task (u) 1 u E V} 

(T,S) is equal to (V,B) with precedence re­

lations of (4.1.1) 

time slot for u E V\ {r} 

î (plui-task (u) 

time slots for u = r 

if (u,v)EBAy(u)<y(v) 

- the resource demands 
. 11 

plui-task(u)) = 

0 if otherwise 

The job system for the bs-job. 

For every vertex u E V is defined a task which accomplishes the back 

substitution on u. The task is called partial back substitution and 

will be denoted by 

procedure "pbs(u)". 

1. procedure pbsi(u); 

2. begin 
-1 

3. i -<- a. (u) ; 

pbsi-task(u). The pbsi-task(u) is given by the 

4. a(i,n+l) -<- a(i,n+l) / a(i,i); 

5. for each R-E {a.-l (w) 1 w E adj (u) \ madj (u)} do 

a(t,n+l) -<-a(J1,,n+l) - a(i,n+l) * a(J1,,i); 

6. end; 

The job system of the bs-job is distinguished from the task system of 

the lu-job by an accent if neccessary. 

- the set of tasks T' {pbsi-task (v) 1 VEV}. 

- the task graph (T',S'l is equal to (V,B) with precedence rela-

tions : "\/( l B[pbsi-task (u) is the successor of 
U,V E 

pbsi-task (v) y (u) < y (v)]. 

- the task durations: T (pbsi-task (v)) = 1 time slot for UEV \ X1 • 

The parallel processing of the lu-job is demonstrated in fig. (4.1-1) 

by a simple example (Without forward substitution). A schedule for 3 

processors is obtained by a list schedule strategy which will be 
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presented in section 4.3.1. 

X5 

Fi<J. (4.1-a) Triangulated connected graph with e-tree. 

-+ 
Fig. (4.1-b) (T,S) for the lu-job. 

p = {PI' ' P3} 

R = {R4' R6} with rm(R.) 1' for R. R. 
J. J. 

Fig. (4.1-lc) Resource system. 

T ul u2 U3 U4 US u6 u7 UB Ug u10 

·r(u.) 
l. 

1 1 1 0 1 1 1 1 

r(R4 ,ui) 0 0 0 0 0 0 0 0 

r(R6 ,ui) 0 0 0 0 0 0 0 0 1 

-1 
'Il (u.) 

:L 
1 4 7 9 10 8 2 5 3 6 

Fi<J. (4.1-Id) Input tabel for list schedule. 
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Pl j ui ) ~~~ 1----1' 

P ' uB u3 
2 1-------i t-----=--4 

' P3 ' u9 

R4 :- - - f-_:j-H_'JL4 
t u8 u10 
Rs:-----~~ 

Fig.{4.1-le) Gantt chart of the schedule 

a (1, 1) a(l,2) a(l,3) a(7, 7) 
r ---- -1 

a(2,1) 1q
1 

(2,2) q
1 

(2,3), a(B,7l 

a(3,1) [.:iLC3,:! _ 'I..t t2·~ a(4,7) 

a(2,2) a(2,3J a(2,4) a(2,5) 
r: - -a(3,2l q 2 C3,3) 

a(4,2): q2 C4,3) 

a(S,2) 

q2(3,4) -;j)3,5)1 
1 

q2(4,4) q2(4,5l 1 

q2 (5,4) q2 (5,5) 1 

---- ...J 

a(3,3) 

a{4,3) 

a(3,4) a(3,5) 
r- - - - - :-i 
:q3(4,4) q3{4,5l 1 

a(S,Jl :q (5,4) q 

Fig. (4.1-lf) Data sets determined by thee-tree and its flow. 

4.2 Job and resource system for the solution of the linear equations 

on the asynchronous array computer. 

In the previous section job and resource systems for the solution of 

the linear equations on the ideal parallel computer have been given. 

By means of the associated graph and the e-tree a set of tasks was 

defined and the e-tree could be conpidered as the task graph. 

The model of the asynchronous array computer as presented in chapter 

2 accounts for the limited computation power of the processors and the 

restricted capacity of communication channels. Due to the non ideal 

computer model the job systems which are derived in the previous sec­

tion have to be modified. 
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The corrununication between the computers depends on the interdependence 

of the tasks, the assignment of the tasks to the computers and on the 

rules according to which the data are distributed to the memory mo­

dules. Some data will be stored in all memory modules and others in 

one particular memory. The purpose is to store the data such that the 

increase of the schedule length due to the communication will be 

minimized. 

An intuitive way to achieve this is to store the data, on which the 

task operates, in the memory of the computer to which the task is 

assigned. 

Nearly the same organization will be used as in the case of the 

ideal parallel computer. The L\U-decomposition and forward substitu­

tion on pivot u will be accomplished by three tasks: 

the plu-task(u) which is a modification of the plui-task(u) in case 

of the ideal computer; 

- the com-task(u) (communication task); 

- the add-task(u) (addition task). 

Before the tasks are specified the data allocation and structure will 

be given. 

The data allocation and structure are determined by the assignment of 

the plu tasks and the associated graph. 

A vertex will be called "assigned to computer C" if the plu-task(u) 

is assigned to computer c. The relation R(u,v) in V defined by 

\;/ V[R(u,v) ..+u and vare assigned to the same computer and between 
u,vE 

u and v exists a chain in (V,B)], 

partitions V into a set of p clusters {u1 ,u2 , •.. ,UP}, such that 

p 

V and n q,, for i = j and i,j E {1, ... ,p}. 

The vertex v U. is called the "root of U " to be denoted by J j , 

\;/'.IEU. [ y (r j) 
J 

y (u) ]. 

The "predecessor set of U. 11
, to be denoted by , is defined by: 

J 
Fj = {x 1 XEadj(Uj,B) nV(rj)}. 

, if 

A cluster is called "assigned to computer C" if is assigned to 

this computer C. 
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With every cluster Uj will be associated a graph (Wj,Ej) where 

w. = U. u madj (r., E) and E. = E (W.) • Further with every cluster UJ. are 
J J J J J 

associa ted the fol lowing data sets Ar. , <2r . and Dur . , for u E 
J J J 

The data set Ar. contains the coefficients a(k,i), a(t,k) and a(t,n+l), 

for k E {a -l (w) IJ WEW.} and ~ E {a -l (w) 1 WEU.}. 
J J 

The data set Qr· contains the coefficients qr· (k,~) and qr. (k,n+l), 
-1 J 1 1 

for k,tE {a (w) lwEmadj(u,E)}. 

The data set Dur. contains the coefficients dur. (k,i) and dur.(k,n+1), 
-1 J 1 J J 

for k,9 rfo (w) 1w Emadj (u,E) 

The data sets Ar. and <2r. were already introduced in section 4.1. Then 
J J 

coefficients of Qr. are again initialized with zero. 
J 

The data set Dur. will be used to store the coefficients Qu which must 
J 

be 'transported' from cluster Ui with u to cluster Uj. The coef-

ficients of Dur are initialized with zero. 
j 

The graph (W. 
J 

) is the associated graph of the submatrices which 

are determined by the data sets Ar and o . 
j ·r. 

If a cluster is assigned to a computer c tfle associated data sets are 

allocated to this computer. 

The plu-task(u) can now be specified. The procedure "plu(u)" ac­

complishes the plu-task(u). The procedure operates only on the data 

structure which is determined by (Wj,Ej) where u E Uj 

1. procedure plu(u); 

2. begin 

comment u E U. , a (n+l} ,/ V; 
-1 J -1 

3. k+-a (u); I+-fo (w) lwEmadj(u,E)}; 

4. for each i E I do 

5. begin 

6. a(t,k) +-a(t,k)/a(k,k); 

7. for each m E I u {n+1} do 

8. if (a(~) EU. or a.(m) EU.) 
J J 

9. then aa,m) +a(~,m) - a(t,k) *a(k,m) 

10. else q a,m) +-q (t,m) - a(t,k) *a(k,m); 
r. r. 

11. end ; ~ loq:i J J 

12. end; procedure plu(u) 
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Consider the plu-task(u) and plu-task(v), where v is the succes­

sor of i.:r. Assume plu-task(u) and plu-task(v) have been assigned to 

computer Ck and cl',, respectively. Further let u Uj and v Ui .The data 

sets which are associated with and are allocated to computer 

and , respectively. 

To accomplish the L\U-decomposition and forward substitution on pivot 

u two situations must be regarded. 

- The tasks have been assigned to the same computer. In this case 

Uj Ui and the desired process will be accomplished by the 

plu-task(u), which will be executed by computer 

The tasks have been assigned to different computers. 

In thi.s case u is the root of U .. The first part is accomplished by 
J 

the plu-task(u), which will be executed by computer .Subsequently 

the intermediate results, stored in Qr.' are transmitted to computer 
J 

by computer This is assomplished by com-task (u) .In the memai::y 

MQ, of the computer et the data set is used to store the re-

ceived data. Finally, computer CQ, has to add the intermediate re-

sults, stored in , to the data sets and Qr.· This is ac-
i 

complished by the add-task(u). 

The com-task(u) is given by the procedures broadcast(Qr·'IBQr.'h) 

and receive , IRDur. ,h) whi.ch are thought to be exe6uted ~y the 
l 

computers Ck and respectively. The array is equal to 

IRDur. and contains the set of indices given by I u {n+l}, where 
,1-1 1 l I = 'J'l (w) w E madj (u,E) , . 

The add-task(u) is given by procedure "add(u)", which will be executed 

by computer Cl\. 

1. procedure add(u); 

cornment u E Uj, a (n+1) /. V; 

2. begin 

3. k + (u); I+ (w) 1 w E madj (u,E)}; 

4. for each t E I do 

5. begin 

6. for each m <' I u {n+l} do 

7. 

8. 

if (a(.0 

9. end; ~ loop 

10. end 

or a (m) then a(t,m) +a(i'.,m) +dur. (t,m) 
l 

else (t,m) (Q,,m)+du (t,M); 
rj 
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The set of tasks 

{plu-task (u) 1 u E U.} u {add-task (u) 1 u E F.} u {com-task (r.) } are asso-
J J J 

ciated with cluster uj. The set of tasks will be executed by computer 

ck if Uj is allocated in memory ~· 

Because the assignment of the plu-task(u) is not known inadvance 

the tasks com-task(u) and add-task(u) are concatenated to every 

plu-task (u) , for u E V \ {r}. If v is the successor of u and both verti­

ces are assigned to the same computer then the com-task(u) and 

add-task(u) are empty. 
+ 

The modified task graph (T,S) for the lu-job can now be given. The 

set of tasks is given by: 

T = {plu-task (u) , com-task (u) , add-task (u) I u E V \ {r}} u {plu-task (r) } , 

+ 
and the set of edges S is given by: 

S = {(plu-task(u), com-task(u)), (com-task(u), add-task(u)), 

(add-task (u) / plu-task (v)) 1 (u,v) EBA y (u) < y (v)}, 

where com-task(u), add-task(u) and plu-task(v) are the successortasks 

of plu-task(u), com-task(u) and add-task(u) respectively. 

Fig. (4.2-1) shows the task graph of the lu-job for the considered 

sparse matrix example. 

4.2.2 !~~-~~!-~~-!~~~~-~~~-!~~~-~E~E~-~!_!~~-è~:i~è-~~E_!~~-~~X~~~E~: 

~~~~-~EE~~-~~~E~!~E· 
The back substitution on a pivot v E V will be accomplished by two 

tasks: 

- pbs-task(v), which is a modification of the pbsi-task(u) in case of 

the ideal parallel computer; 

- com-pbs-task(v). 

The tasks will operate on the data .structure and allocation as given 

in the previous section 4.2.1. Hence the pbs-task(v) will beassigned 

to the same computer as to which the plu-task(v) has been assigned. 

The pbs-task(v) will be given by procedure "pbs(v)"; note the row­

instead of the column-wise organization. 
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1. procedure pbs(v); 

2. begin 

comment v 

3. 
-1 

k" a (v); I+ {a.-l (w) 1 w E madj (v ,E) } ; 

4. for each Q, I do 

5. if (a(,Q,) EU.i)then a(k,n+1) +a(k,n+l) a(k,Q,) *a(,Q,,n+1) 

6. else a(k,n+l) +a(k,n+l) - (ll,n+l) *a(k,ll); 

7. a(k,n+l) +a(k,n+l) / a(k,k); 

8. end; 

The pbs-task(v) may be executed if the coefficients a(k,n+l) and 

qr. (t,n+l) 

m Ei fo -l (w) 

-1 
k {a (w) 

contain the components x(m) of~' for 
. ,. . . -1 f ) 1 } w madJ (v) r, x, E ta ,w ! w madj (v) n madj (r.) and 

1. 

Consider a vertex v E U .i and let F i (v) be def.ined by: 

(v) {x I (x A (v is the successor of x) } 

To accomplish the back substitution on pivot v two s.ituations must be 

regarded: 

- The set (v) is empty. In th.is case the desired process will be 

performed by the pbs-task(u). 

The set (v) .is not empty. In this situation data exchange wil! be 

necessary between the computer c,Q,, to which v has been assigned,and 

the computer , to which u
5 

E F i (v) has been assigned for 

1,,; s (v) [. 

After complet.ion of the pbs-task(v) computer has to transmit the 

coefficients a(m,n+l) to computer , form -1 1 {a (w) madj (u ,E) }. 
s 

computer receives and stores the coefficients in the correspon-

ding locations of Ou . 
s 

It is proposed to organize this data exchange by a single communica-

tion task called com-pbs -task (v) . 
-1 

The components x(m) of~, for IDE {a (w) 1 w madj (x) 1 x E F. (v) } } ,have 
l 

to be broadcasted. These components are stored in the data sets Ari 

and in computer CQ,. The array IBAr. contains the indices of the 
-1 1. 

coefficients in Ar. g.iven by {a (w) 1 w E madj (v) n U.}, and array 
l l 

contains the indices of the coefficients in Or. given by 
l 

{a (w) 1 w madj (v) n madj (r) } . The procedure 

broadcast , Qr., IBQr.' k) accomplishes the desired broad-
l l 

cast when it is executed by computer 

63 



Let IRQu contain the indices of the coefficients in Qu given by 

fo-1 (w} ÎwEmadj(v) n (U. umadj(r.))}. s 
J. J. 

Each computer Ck receives and selects the required coefficients by 
s 

execution of procedure receive (Qu , IRQu , k) for 1 $ s s 1 F. (v) ! . 
. s s J. 

Because the assignment of the vertices u E V is not known in ad­

vance to every pbs-task (u) , u E V \ x
1

, a com-pbs-task (u) is concate­

nated. 

The new set of tasks T' for the bs-job is given by: 

T' = {pbs-task(u), com-pbs-task(u) 1 uE:V\X1J u{pbs-ta.sk(u) h,:EX
1

}, 

.... 
and the new set of edges S' is given by: 

.... 
S' = { (pbs-task(v),com-pbs-task(v)),(com-pbs-task(v),pbs-task(u)) 1 

1 (u,v) EB A(y(u) <y(v}l}, 

where com-pbs-task(v) is the successor task of pbs-task(v) and 

pbs-task(u) is a successor task of com-pbs-task(v). 

Fig. (4.2-2) shows the task graph for the considered sparse matrix 

example. 

tpl tp7 tpg 

tc1 tc7 
ts1 ts7 

= plu-task (ui) 
tp2 tpa tpi 

tc2 tc8 
tc1 com -task (u . ) 

J.. 

ts2 
tsi add-task (ui) 

tp3 
for 1 s i s 10 

tc3 
ts3 
tp4 

. tc
4 

ts4 
tps 

.... 
Fig. (4.2-1) Modified task graph (T ,S) for lu-job. 
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tb
5 

te
5 

tb4 

te
4 

tb3 tb6 

te
3 

tb2 

pbs-task (ui) 

tei com-pbs-task (ui), 

for ~ i 10 

+ 
Fig.(4.2-2) Modified task graph (T',S') for bs-job. 

If the necessary synchronization between the computers is obtained by 

the proposed timing instructions it is desirable to have the exact 

values for the task duration. If this is not possible estimates of the 

duration have to be used. These estimates must be upper limits forthe 

task durations. 

The duration of a task depends on the value of the operands in the 

task instructions, the data structure and organization of the hard­

ware. Note that the time necessary to perform an arithmetic operation 

may depend on the values of the operands. Assume the durations of the 

tasks, occurring during the execution of the lu-job and bs-job, are 

determined with sufficient accuracy by counting only the floating 

point operations. 

The operations which are involved with column (n+1) will be out of 

consideration. 

The time needed for a divide, multiply and add or substract 

operation is given by: Tdiv''mul and Taad· 

The communication time to exchange k floating point values is given 

by: 

communication time k * T + com 
(4. 2 .1) 

where Tcom is the communication time to transport one value and Toverh 
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is the required overhead time which occurs every time the communica­

tion task is started to transmit a vector of k values. 

The duration of the tasks of the lu-job. 

If all tasks would be assigned to a single computer then the dura­

tions of the com-tasks and add-tasks are zero and the duration o.f any 

plu-task(u), denoted by T1(u), is given by: 

Tl (u) "' lmadj (u) 1 * 'a· + 1 (madj (u) 1
2 * (-r 1 + '!" dd) • iv mu a 

(4 .2 .2) 

If the tasks are assigned to two or more computers the task durations 

cannot be obtained in this simple way. If an update operation is per­

formed on a coefficient of some data set q· it is necessary to dis­

tinguish whether the coefficient is zero or not. Hence the duration 

of the tasks will also depend on the assignment of the tasks and the 

sequence in which they are processed. 

Consider a cluster Ui {u1, ••. ,un} with ri = un and Fi = {u0} 

where (Ui, B (Ui)) is a chain from u1 to un in the e-tree. Let u0 E uj. 

The durations of the tasks which are associated with the cluster Ui 

are now determined. 

First the add-task(u0), as given by procedure add(u0),has to update 

the coefficients qu (k,t) by the coeffcients du u (k,t) for 
-1 O 0 n 

k, tda. (w) 1 w E madj (u0) } • 

Distinction must be made whether the update operation is performed on 

a zero or nonzero coefficient. At this moment all lmadj(un) 1
2 

coeffi­

cients of data set Qu are zero. The number of update operations on 
n 2 

coefficients which are initially zero is given by lmadj(u0 ,un) 1 • 

Hence only lmadj(u0) 1
2 

- lmadj(u0 ,un) 1
2 

add operations are necessary. 

The duration for add-task(u0) is given by: 

'!" (add-task (u0 )) (4.2.3) 

Now lmadj(u) 1
2 

- lmadj(u0 ,un} 1
2 

locations of Qu are still zero. 
n n 

The next task, plu-task(u1}, as given by procedure plu(u1}, has to 

perform lmadj(u1) 1
2 

update operations from which lmadjCu1 ,un) 1
2 

on co­

efficients of Qun· However lmadj(u0 ,un} 1
2 

of those coefficients have 

become nonzero. The resulting number of update operations on zero co­

efficients is given by: lmadj (u1 ,un)1
2 

- lmadj (u0 ,un) 1
2 

•. The dura.tion 

of plu-task(u1) is given by: 
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T (plu-task (u
1

)) 

The above reasoning can be repeated for u,Q, E {u2 ,u
3
,".,un}, (4.2.4) 

gives the duration of a plu-task (u 
2
). 

T (plu-task (u
2

J) Tl(u 2) + (-lmadj(u
2

,un) 1
2

+ lmadj(u
2

_1 ,un) l
2

JTadd. 

(4.2.4) 

The durations of add-task(u
2

) and com-task(u
2

) are zero for 

E {u1 ,." ,un-l}. 

The duration for the com-task(un) is given by: 

The total duration for the plu-tasks for the chain u
1

,u
2

, .•. ,uk with 

k ~ n is given by: 

k 

lmadj (u0 ,un) 1
2

Tadd + I Tl (ui) 
i=l 

(4.2.5) 

The second term is the duration in case of one computer, the third 

term accounts for the zero coefficients of Qu , which would beupdated, 
n 

and the first term gives the number of coefficients in Qu which have 
n 

been made nonzero by u0 . 

Consider a cluster Uj_ uu;: = {u1 ,".,un} u {vi 1 .",v2} with 

ri = un and Fi = {u0 ,v0 such that ',B(Uj_)l and (u;:,B<u;:)) are 

chains in (V,B) from u
1 

to un and v
1 

to v,Q,, respectively. The chains 

are connected by (vi,uk) EB. Let u0 Uj, v0 Eum' (u0 ,u1) EB and 

(v0 ,v
1

J EB. Fig. (4.2-3) shows the considered ui. 

' 
' U.', / \ - ,,, 

J -~o -- - - - -' ' 
I 

",,.,,.., u1 
VOi 

uk-1 j 

1 

uk 
..,...,-

t 
\ 

/ 

- - -... 

Fig. (4.2-3) The considered cluster Ui. 

u 
m 
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If madj(u
8

,vt,un} -F <!>• for any usE {u0 , ••• ,uk_1} and vt" {v0 , ..• ,va,} 

it is evident that the durations of the associated plu-tasks interfere 

with each ether by means of the number of nonzero coefficients in data 

set Qu • 
n 

If a submatrix, defined by madj(uk_
1

,va,,un) is used to store the inter-

mediate update results produced by the tasks {add-task(v0J} u 

u {plu-task(vtl 1 1 ~t ~ a,}, this interference is avoided. Due to this 

extra submatrix the already stated equations (4.2.1) - (4.2.5}° hold 

for the tasks associated with {u0 , ••• ,uk_
1

} and {v0 , •.. ,vt}. 

The plu-task(uk) starts with adding the intermediate update results 

stored in the submatrix to the coefficient~ defined bymadj (uk_1 ,v tun) 

of Qu ; this takes a time lmadj(uk-l'vt,un) 1
2
Tadd" Besides the divide 

and m~ltiply operations Jmadj(~) 1
2 update operations have to be per­

formed. Jmadj(~,un) J2 
update operations have to be performed on coef­

ficients of Qu • Of these Jmadj(uk,u) J
2 

coefficients lmadj(uk-l'u >J
2

+ 
n2 n2 . n 

+ lmadj(vt,un) J - Jmadj(uk-l'vt,un) J coefficients are nonzero and 

hence have to be taken into account for calculation of the task dura­

tion. The duration of the task plu-task(uk) is given by: 

<lmadj(uk-1'un) 12 + Jmadj(vt,un) 12)Tadd + 

(4 .2 .6) 

Equation (4.2.6) is obtained from (4.2.4) by addition of the factor 

Jmadj(vt,un} 1
2

Tadd" This can be extended to the genera! case of a 

vertex with m predecessors. 

Now assume the vertices v
1

, ••• ,vt do not exist. The duration for the 

add-task(v0) is given by (4.2.3); if the coeffcients of the data set 

DvOun' defined by madj(v0 ,~_1 ,un), are processed by the plu-task(uk). 

It is now possible to state the expressions for the general case. 

Consider a cluster u .. The duration of the tasks which are associated 
J 

with this cluster are given by the equations (4.2.7) - (4.2.9) ~ 

l 
= ( Jmadj (u) 1

2 
- lmadj (u,rj) 1

2
> 

T (add-task (u)) 

0 
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(4.2. 7) 

for 



) [
2

Tadd + T1(u) - [madj(rj,u[
2

Tadd T(plu-task(u)) = Z[madj(v, 
v I 

where I = {w 1 (w,u) BAy(u) >y(u)} for uEU. (4.2.8) 
J 

T(com-task(r.)) 
J 

T + [madj(r.) 
overh J 

(4 .2. 9) 
com 

The duration of the tasks of the bs-job. 

In contrast to the previously considered tasks the durations of the 

pbs-tasks are independent of the assignment. The duration of a 

pbs-task(u) is given by: 

T (pbs-task (u)) = [madj (u) [ * (T + T ) + T 
mul add div 

(4.2 .10) 

if it is assumed that the component of ~ determined by u is nonzero. 

The duration of a com-pbs-task(u) is given by: 

T(com-pbs-task(u)) 1 {madj (x) x E (v)} + 

(4. 2 .11) 

4.2.4 demands 

The asynchronous array computer model accounts only for the nu.'llber of 

computers, their processing capacity and communication resources. 

The'resource system of the proposed parallel computer is given by: 

P {P 1 , ••. ,Pm} m identical processors with limited computing ca­

pacity. 

- R = {R1 , ••. ,Rm,Rm+l} (m+l) additional resources with amount: 

rm(Ri) 1, for 1 :s; i mand rm(Rm+l) = k. 

A processor and its memory Mi can be regarded as one unit, due to 

the communication rules, and may be denoted by processor or computer. 

The resources: R. 
1. 

i :s; m, have been added to the additional 

resources to describe the master slave construction during execution 

of the communication tasks. Resource Rm+l accounts for the k buses. 

The resource demand is determined by the assignment of the tasks. 

From the assignment of the plu-task (u) , u E V, the assignment of all 

other tasks is determined. 

FA (com-task {u)) FA (plu-task (u)) u v 

(add-task (u)) (plu-task (v) ) (u,v) B and y (u) < y (v) 

(pbs-task (u)) (plu-task (u)) UEV 

(com-pbs-task(u)) FA(plu-task(u)) UEV 
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The demand for the additional resources is determined by FA. The 

resource demand of any task p = T' u T is given by: 

- if the considered task pis any plu-task(u) or pbs-task(u) then 

j 
1 for Rl, E {FA (p) } 

r(RR, 1 p) = 
0 otherwise 

- if the considered task p is any com-task (u) with (u,v) EB and 

y (u) < y (v) then 

j 
1 for Rt E {FA (p) , FA ( (plu-task (V)) , Rm+l} 

r(R.t,p) = 
0 otherwise 

- if the considered task 'p is any com-pbs-task(u) then 

1 for Rt E {FA (p), Rm+l} u {FA (plu-task(v)) lu is the suc-

cessor of v} 

0 otherwise 

4.3 Scheduling of the solution job 

After the1scheduling model as stated in section 2.3 has been completed 

the actual scheduling can start. The problem is to determine the two 

mappings FA : T u T • + P and F I : T u T' + I, the assignment of tasks to 

resources and to time intervals respectively, such that allconstraints 

are satisfied, such that the object function, the schedule length w, 

is minimized. 

The above schedule problem is divided into two parts: the lu-job 

scheduling and the bs-job scheduling. 

Attention will be paid only to the lu~job scheduling. The assignment 

FA is determined by minimizing the schedule length w
1
u instead of 

(wlu + °bs). The lower script indicates to which job the w belongs. 

This may result in a non optimal schedule for the lu-job and bs-job 

together. But a near optimal schedule is assumed because w
1

u is mini­

mized and °bs is much smaller than w
1
u. Namely, consider the case 

where the number of processors is large enough to exploit all paral­

lelism, then the critical path length is a good estimate for the 

schedule length. From the equations (4.2.8) and (4.2.10) it may be 

concluded that wbs << w
1
u. 

The resource demands and the duration of the tasks depend on the 

task assignment (general schedule model) • Already without this depen-
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dency, in the case that the communication aspects would be neglected, 

the stated scheduling problem belongs to the class of NP-complete 

problems [4.1]. To keep the required preprocessing within acceptable 

limits heuristics will be used to determine a near optimal schedule. 

The schedule which will be considered belongs to the class of non­

preemptive list schedules [2.3]. 

4.3.1 ~~~E~=~~E~~~~-!~~~-~~~~~~!~~ 
The performance of list schedules is in general quite adequate and 

the computational complexity is polynomial bounded. First an opera­

tional description of the list scheduling will be given for the 

augmented basic model. According to some strategy an ordering 

1f : { 1, •.. , J T 1 } + T is determined. The tasks are inserted in to a list, 

denoted by L, according to the ordering L 

"Scanning" the list L means that the tasks are inspected one by one 

in the sequence imposed by the ordering. 

A task u E T wi th predecessor tasks { u 1, u2 , ... , uk} is free at time t 

if o (ui) ~ t for {u1 , ... ,uk}. 

The mappings and will be constructed. The mappings under con-

struction are distinguished by a bar : and 

Consider the assignment to the time intervals : T + I; task u c T 

will be called "covered" if F
1

(u) cl q, otherwise this task u will be 

cal led "uncovered". If all u ET are covered then F I will be cal led 

"complete", otherwise it will be called "partial". 

The same notations hold for FA. If (u) then task u is covered 

by Pi. The functions and f are derived from (2.3.3) and (2.3.4) by 

replacing F
1 

and by and FA respectively. Assurne the partial 

mappings FA and A task u will be called "ready" at time t if: 

- u is free and uncovered by F
1 

-'\::/R R[r(R.,u) 
• E :L 

rm(R,) - l: r(R.,v)] 
1. 1 

1. 
V E f (t) 

A processor will be called "idle" at time t if f (t,P.) ~ ~- The p J_ 

FA and F
1

, which are determined by the procedure "list schedule", re­

present the required schedule. 

Relatively much is known about list schedules for the basic sche­

dule model. Some results which are important for the purpose here are 

cited. 
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1. procedure list schedule; 

2. begin 

comment schedule will be represented by FA= FA and F
1 

F
1 

3. t + O; V'uET[FA(u) +O; F1 (u) +<f>;] 

4. while (F
1 

partial) do 

5. begin 

6. while ( (t/ idle processors ,; 0) A (t/ ready tasks t/: 0) ) do 

7. begin 

8. u + scan L for a ready task; 

9. Pi + arbitrary idle processor; 

10. FA(u)+Pi; 

11. F1 ~D + [t,t + (T(Pi,u))); 

12. end; 

13. t + min ( { ö (w) I FA (wl t/: <f> A ( ê (w) :<: t} } ) ; 

14. end; 

15. end; 

Consider two identical schedule models A and A' which are equalexcept 

for one of the following items: the list L, the precedence relations 
.... 
S, the task durations r and the nUlllber of processors m. The items of 

the two models are distinguished by a dash if necessary. Formula 

(4.3.1) [4.2] gives an upper bound by which the ratio w'/w maychange. 

w' ::;; 1 + m-1 
w m' 

(4.3.1) 

Sometimes the result is counter intuitive namely even if m' > m or 
::+:: + s' c s or r • ( u) ::;; T ( u) , for u E T, then a schedule length w' > w may re-

sul t. (Scheduling anomalies). Consider the case where model A has a 

list which produces the minimal w, to be denoted by w0 and where A' 

has an arbitrary list L. Formula (4.3.2) [4.2] illustrates the neces­

sity to pay attention to the construction of the list L. 

w' ::;; 2 - .!.. 
m 

(4.3.2) 

Consider a ta<sk system where the task graph is an in-tree. For 

each task u ET a "level", denoted by Q. (u), will be defined. The level 

Q,(u) is equal to the sum of the duration of the task itself and all 

the tasks on the path to and the root task. Now a mapping 
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'IT: {1, ... , !T!}-+T is determined such that 1-('IT(i)) 2(1f(j)), for i < j. 

List scttedules with a list determined by the levels as in the above 

way, are called level schedules. 

If the task durations are equal the level schedule will be optimal 

[4.3]. If the task durations are not equal a schedule length w will 

result which in genera! is not optimal. An upper bound for the ratio 

between w and w
0 

is given by [4.4]. 

n 
1+ (m-1).max({T

1
,".,Tn})/ l: 

i=l 
(4. 3. 3) 

The bound given by (4.3.3) is only of importance if the number of 

processors m is not large enough to obtain the minimal schedule 

length. 

4.3.2 Determination of FA and 

To obtain a near optima! schedule the problem of f inding the two map-

pinqs FA and will be treated separately, although they are not in-

dependent of each other. (The lower script lu in w
1

u is deleted be­

cause only the lu-job is considered). 

The job system in case of the ideal parallel computer without the 

additional resources and with task durations given by eq. (4.2.2) will 

be used to this purpose. Hence the possible update conflicts and the 

effects due to the data distribution are out of consideration at this 

stage. The scheduling model reduces to the basic model. The items be­

longing to this model will be indicated by the superscript b if ne-

cessary. 
b 

From the mapping FA the mapping FA may be derived according to the 

rules stated in section 4.2.4. On the general schedule model stated 

in section 4.2 this 

only schedules with 

will be imposed as a constraint. This means 

determined by F~ will be allowed. From the task 

system the tasks with duration zero will be deleted.The scheduling 

problem is reduced to f inding the mapping for an augmented sche-

dule model. The items of this model will be referred to without a 

superscript. 

For the purpose at hand, a 

with being derived from 

mapping F~ will be called (near) optimalif 
b 

FA also a (near) optimal can be ob-

tained. The·quality of the resulting schedule may be measured by the 
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ratio given by (4.3.4) if the ratio i]iven by (4.3.5) 

(4.3.4) 

is known to be small. Because of the task graph being a tree and, if 

level scheduling is applied an estimate for (4.3.5) is given by 

(4.3.3). 

(4.3.5) 

Nonpreemptive list schedule for the basic schedule model. 

The list is determined by the task levels because the task graph is 

an in-tree. The level schedule strategy is performed by the procedure 

list schedule, where the schedule model is the basic schedule model 
. b b of section 4.1, and the two mappings FA and F

1 
are generated. 

The mapping FA which is derived from F~ is imposed as a constraint 

on the schedule model of "Section 4.2 by which it reduces to an aug­

mented schedule model. 

Again the nonpreemptive level schedule strategy will be applied to de-

termine the mapping The procedure list schedule, where the sche-

dule model is the augmented model, generates the mapping F
1

. 

The whole scheduling process is applied to the sparse matrix 

example in order to illustrate the scheduling; see fig.(4.3-1). 

plui-task(vil for 0 < i s 10 

Fig. (4.3-la) The task graph (Tb ,;ib) for the lu-job. 
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u. 
l. ui u2 u3 u4 US u6 UB u9 u10 

Tl (u.) 
l. 

10 21 10 3 0 10 10 10 10 10 

.t (ui) 44 34 13 3 0 13 33 23 33 23 

-1 
1T (u.) 

l. 
1 2 7 9 10 B 3 5 4 6 

Fig. (4.3-lb) Table with input for list schedule on basic model, 

where T = mul 
1 unit. 

(t, p 1) 

ul 

·O 10 
U2 U3 U4 Uc: 

!--------='-------~ .... 1 -~~-)t-1 --~-),)"---------
31 41 l 

1 

:f (t, P
2

) 
,p 

u7 
1 

US 

10 10 

lf (t, P
3

} 
,P 

Ug 

,0 10 20 

-time 

Fig.(4.3-1c) Gantt charts for the basic scheduling. 

ul u7 u9 

u2 UB u10 u. plu-task (v.) 
l. 1. 

xlO x. com-task (v.) 
1. 1. 

u3 w10 
add-task {v.) w. 

1. 1. 

for i dl, ... ,10} 
u4 

Fig.(4.3-ld) Modified task graph 
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yi ul u2 u3 U4 US u6 u7 UB U9 ulO i 
1 

x6 x10 w6 wlO 

b • 
FA(yil pl pl pl pl pl p2 p2 p2 p3 p3 1 

1 
1 

FA (y il p1 pl pl p1 pl p2 p2 p2 p3 p3 1 p2 p3 p1 p2 
! 

T (y i} 10 21 10 3 0 8 9 10 9 7 1 2 2 4 3 1 
1 

r (R1 ,y i) 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 
1 

r(R2 ,y il 0 0 0 0 0 1 1 1 0 0 1 
1 

1 1 0 1 
1 

r(R3,yi) 0 0 0 0 0 0 0 0 1 1 ' 0 1 0 0 
1 

r (~us'yi) 0 0 0 0 0 0 0 0 0 0 
1 

1 1 0 0 • 
1 

R. (y il 44 34 13 3 0 17 36 27 38 29 1 9 22 7 20 
• 
1 

-1 1 4 10 13 14 9 3 6 2 5 1 11 7 12 8 îf (y' ) 
1 

Fig.(4.3-le) Table with input for list schedule on augmented 

model, where T com 0. 5 units and T overh = 0. units. 

u2 µ3 X5 w6 U4 US 
1-------'lt------------11-I -----)l•W>HH- - - -

10 31 41 43 45 48 

1 

f C-1:: I P2) 

.,.' ---u"'-7--11----u-"8---!~~ 1 u6 
9 19 21 24 

)---- -- - --~i-- - - ---

f(t,p
3

) 
1 u9 
1 
1 

1 

de~nd for 
1 ·- - -

R4 x10 
• - - -YIY!h- - - -

19 21 

32 41 43 

x6 
- - -- - - -Wiit>- - - - - -

41 43 -time 

Fig. (4.3-lf) Gantt .charts for the resulting schedules. 

4.3.3 Modification on the strategy to determine FA 

-------------------------------------------5 
The schedule length w is in general larger than w due to the intro-

duced communication tasks, modified task duration and the resource 

demands of tasks; the difference (w - wb) will be called the "commu­

nication overhead". The strategy which was pointed out in section 

4.3.2 may be improved considerably if during the construction of 
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F~ attention is paid to the communication overhead which may be intro­

duced. The overhead will be reduced in two ways: 
b 

- "local strategy". If during determination of FA the predecessor 

tasks have been assigned to different computers then it will be tried 

to minimize the overhead by a proper assignment of the successor task. 

- "global strategy". The nurnber of communication tasks which might 

become active will be reduced. 

Local strategy. 

During the list scheduling to obtain the assignment of a ready 

task is done to an arbitrary processor if there are more idle proces-

sors. The schedule length is independent of which processors will 

be chosen. However the resulting schedule length w will be dependent 

of which idle processor has been chosen, even if durations of the 

communication tasks are neglected. 

In case of sufficient many processors the critica! path length of 
+ 

(T,S) is a measure for w. The dependency of the assignment for the 

critica! path length is demonstrated in the following. 

Consider a vertex u with predecessors {w1 , ... ,wn} and a successor v. 

Let v Ui. Assume all vertices given by V\V(u) have already been as­

signed to some processor. The level of plu-task(v) does not depend 

on the assignment of any vertex x V(u) because the duration of the 

tasks does not depend on the assignment of the predecessors, see 

eguations (4.2.7) and (4.2.8). 

If U E Ui then the level Of plu-task (u) becomes: )(, (plu-task (v)) + 

+ T(plu-task(u)), which is given by: 

2 (plu-task (u)) 

w 
n 

2 (plu-task (v) ) + d (u) + l: !rnadj (w,r.) 
l 

lrnadj (u 

(4.3.6) 

If u 1 Ui then the level of plu-task (u) becomes: 2. (plu-task (v)) + 

+ T(add-task(u) + Tl(plu-task(u) 1 which is given by: 

2 (plu-task (u)) 2(plu-task(v)) + <lmadj(u) 1
2 

- !madj(u,ri) !
2

lTadd + 

w 
n 

+ Tl (u) + l: !madj (w,u) 1 

w=w
1 

lmadj (u,u) !
2

Tadd (4.3.7) 
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In case of u /. Ui the level of plu-task (u} is increased by the amount 

given by: 

change in level 

w 
n 
z clmadj(w,u) 1

2 
- lmadj(w,ri) l

2
>tadd 

w=w1 

(4.3 .8) 

The critical path is equal to the highest level. If plu-task(u) lies 

on the critical path, then the critical path length is increased by 

the above amount. 

The critical path length does not take into account the resource 

demands some tasks are forced to be executed one after another, this 

in contrast to the precedence relations. Ássume all tasks on the cri­

tical path in the task graph of the augmented schedule model are as­

signed to the same computer er and all other tasks to computers ei, 

for i # r and 1 ~ i ~ m. Let uj be the cluster assigned to er. The 

tasks add-task (u) for u € F j will be assigned to er, hence this com­

puter requires an extra amount of processing time given by: 

(4.3.9) 

This amount will be indicated as "addition overhead". The schedule 
+ 

length w is the sum of the critical path length in (T,S) and the ad-

dition overhead. 

The local strategy tries to reduce the addition overhead.The critical 
+ 

path length in (T,S) may be increased. 

Assume at time t the ready task u is obtained from the list scan. Let 

PI(u) denote the predecessor tasks of u which have been assigned to 

one of the processors which are idle at timet. If PI(u) is empty, 

select an arbitrary processor out of the idle processors.Otherwise 

select the task v E PI (u) which is finished first, and take the idle 

processor given by FA(v). 

Line 9 in procedure list schedule is replaced by: 

9.1 if (PI (u) = <fi) then pick some l:'i E {idle processors} else pick some 

9.2 pi E {FA(v) 1 VEPil:x) A (Ö(v) = ~in({o(w) 1 WEPI(u)})) 

This criterion will be called "switch criterion" because consecutive 

tasks which belong toa critica! path of a (sub)-tree tend to be as­

signed to distinct computers if the task has more than one predecessor 
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task. 

Fig. (4.3'-2) shows the influence of the switch criterion on the sche­

dule by means of a simple example. 

At time instant during construction of F~ the plu-task(u
4

)b must be 

assigned while all three computers are idle. Due to the switch crite-

rion plu-task(u
4
)b will be assigned to P

3
. This because of and 

being expected to be idle, apart from com.munication tasks andadd-task, 

in the schedule during the time intervals (c(plu-task(u
2
)), 

o (plu-task (u
1
))) and (o (plu-task (u

3
), 5 (plu-task (u

1
))). 

The longest interval is chosen and will be used to perform the data 

exchange and add-tasks as much as possible. In the g.i.ven example this 

is possible, hence the only overhead is due to the com-task(u
1
). 

Fig.(4.3-3) shows the scheduling process with the switch criterion for 

the sparse matrix example. The communication overhead is reduced by 

two time units. 

b 
(T , 

Fig. (4.3-2a) 

-+ 
(T,S) obtained without 
switch criterion 

u 
1 

\T,S) obtained with 
switch criterion 

Fig.(4,3-2b) Gantt charts for schedule of the basic model. 
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u1 c2 c 3 a .8J. u4 L-----------1.)~'t:.i~rr \--

--- __ JJ ,1~L _i_l ___ _:__ 
1 
1 

!'-13 

1 
1 
1 
1 
1 

1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 1 
1 !C 1 1 1 

ui = plu-task(u1) 

ei = com-task(ui) 

ai = add-task(u1 ) 

- - - ...J -+·~---1-1- - - - -,--
1 1 H---

:~_._·----------L------------....1..---'--I..----'--'--------"---..... time 
-,- -

0 

Fig.(4.3-2c) C.antt charts for schedule without switch criterion. 

cl . 
~-------
' 1 

u 2 c : ~ : 2 1 1 1---..;.._--lr,=J- -,- r - - - - - -

:i ! 1 
• 1 i 1 
; u3 ~2.. a2 • cl ' al u4 
t--i- - - - --Hl )._::...;1 )} 
~: ____________ i' ____ -..1''-----'-'------~'------'------+ time 

Fig.(4,3-2d) Gantt charts for schedule with switch criterion. 

fig,(4.3-2) Example to demonstrate the influence of the switch criterion 

f(t,P
1

J 

ul (.;). u2 
9 u3 r---1 10 31 

1 

1 
t f(t,P

2
J . 

U7 ua 9 ')i' u6. -~)-u..?_ 
!b 20 30 41 44 

: f(t,P3J 

! u9 r.:-. u10 - ----
10 20 

'-------------------------------- time 

Fiq,(4.3-3a) Gantt charts for the basic schedule with "èwitch mode", 

Task eystem is given in fig.(4.3-la,b) 
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C, 

ui pdfstask (v i) 

ei = com-task(v
1

) 

s!O s. = add-task (V. j 
i i 

îadd 7 mul Tdiv = 

= O,S 1overh 

u 
4 

US 
Fi<J. (4. 3-3b) Modified task graph. 

v ul u2 ll~ \)9 UIO CJ c10 j 

pl P, pl p3 

FA (v) D pl pi "2 p2 p2 p2 p2 p3 P3 pl p3 
., 

T(V) 10 17 10 0 10 10 10 9 

r (R
1 

,v) 0 0 0 

r:R21 v) 0 0 

r(R31 v) 0 0 0 0 0 

r (Rbus'v) 0 0 0 0 0 0 

l (v) 46 19 33 23 35 26 19 

rr-1 
7 13 14 10 11 

Fig. (4. 3-3c) Tabl.e with input for list schedule 

fp(tlPl) 

1 

1 

: R4 demand 

1-

on augmented model. 

-~--

Fig. (4.3-3d) Gantt chart. 

___,..time 

$3 3
10 

p2 P2 

4 

0 0 

0 0 

17 

12 
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Global strategy. 
b 

By means of the mapping FA and the e-tree (V,B) the clusters Ui have 

been determined for 1 s i s p. The number of communication tasks 

(com-tasks) is (p-1), hence the number of clusters must be minimized. 

Consider the proposed procedure to determine F~. During execution of 

the "while"-statement, lines 6-12, the next ready task u is selected 

by a scan of the list L. 

lf the switch criterion is not used the selected task will be as­

signed to an arbitrary idle processor Pi. So no attention is paid to 

the question whether it would have been possible to extend some 

cluster or not. 

If the switching criterion is used, there are two possibilities: 

PI(u) F $, in this case the task u will be assigned to 

E {Fb (w) I w EPI (u)} which leads to the extension of a cluster. 

PI(u) = $1 in this case an arbitrary processor is chosen which 

gives rise to a new cluster. 

Due to the above observations it may be expected that the determined 

F~ will generate many clusters if during the list scheduling the num-
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u6 u, ua u9 u10 °11 °12 ut3 ut4 °1s ul6 

8 9 13 16 
""": 
/ 

L is determined by ~ (i) = v 1 
odd numbered clusters are assigned 

to P1 

Fig.(4.3-4) Illustration of a poor clustering if the number of 

ready tasks is larger than the number of processors. 



of ready tasks is large compared to the nlXtber of processors. 

Consider a task system where all tasks have an equal duration and the 

task as given in fig. (4.3-4). In this figure the assignment of 

tne tasks is given for the case of two processors. number of re-

sulting clusters is far from minimal. 

In general the number of processors not large enough to exploi t 

all parallelism which is in the task tree. In the beginnü1g of the 

construction of a by the level scteduling the number of ready tasks 

is far larger than the nunber of processors which results in many 

small clusters and hence many commur::ication tasks. 

In order avoid 'unnecesssary conmiunication tasks' as ::nuch as 

possible the task system will deri.ved from a cluster (C,BÎ 

instead of directly from the e-tree i tself. 'l'he tasks are P.OW asso-

ciated with the clusters 

plu-task ~ {plu-task(u) 

, for instance 

E c, } / for 1 ~ i 
l 

The nur.Jber of clusters J result after determination of the as-

signment is reduced but precaution must be taken that the schedule 

length uP will not be increased. 

To obtain a suitable partitioning of vertices into clusters the 

method, which was proposed in section 3.4, will be ;.ised. Tl-ie 

S(v) will be determined by a strategy which is accomplished by pro­

cedure "trunk(V,B)". 

To this purpose a weight will be determined for each vertex u é V. The 

weight of u, denoted by w(u), is given by: 

w(u) l: (x) 

xEV(u) 
(4. 3 .10) 

w(u) is equal to the duration of all plu-tasks which are associated 

with V(u). The weight w(u) is called the "workload" of V(u). 

The procedure trunk constructs a chain from the root of (V,B) to some 

vertex v. The vertices of this cluster are denoted by S(v). Let u 

denote the predecessor of v with the largest weight. Unless the pro­

cess is terminated the chain is extended with u and the process is 

repeated with v u. 

The process is terminated in two ways: 

- the selected predecessor u of v is a top vertex. This stop cri.terion 

is not likely to occur. 

the selected predecessor u of v is not the vertex with the largest 
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weight in the set adj(S,B). 

The procedure trunk results in the cluster S{v). The set 

adj {S (v) ,B) {r, ••• ,rh} defines a set of clusters {V(r1l, ... ,V(rh) }. 

The cluster S(v) will be called the "trunk" cluster and VCr1l will be 

called a "leaf" cluster, for 1 s i s h. The procedure trunk may be 

used again for each leaf cluster until all leave clusters have aweight 

smaller than a given value; called "max". This recursive process will 

be called "clustering". 

1. procedure trunk(V,B); 

2. begin 

comment given a graph (V,E), lvl ~ 2, and its e-tree (V,B) ,which 

is not a chain, a cluster S will be generated such that S is a 

separator of (V,E). pred(x) denotes the predecessor set of x in 

(V ,B). 

3. x + r; s + $; max branch + O; 

4. y+e.rbitrary vertex of {z 1 ZEpred(x) Aw(z) =max({w(u) 1 UEpred(x) })}; 

5. while ((w(y) > max branch) and (pred{x) ~ $)) do 

6. 

7. 

8. 

9. 

10. 

11. 

12. 
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end; 

begin 

S + S u {x}; 

max branch + max ({w(z) 1 z E adj (S,B) \ {y} }) ; 

x + y; 

y arbitrary vertex of {zlzEpred{x)Aw(z) max({w(u) lu€pred(xl }J}; 

end; 

figures denote the weights 
"""' = 8. 

Fig.(4.3-5) Shows the result of the clustering applied on the 

task graph of figure (4.3-4). 



Figure (4.3-5) shows the result of the clustering where max is set 

equal to eight task durations. 

In case of a nice tree structure (the critical path length weight 

of the root and asymmetrie structure), such as given by fig.(4.3-4), 

the procedure trunk constructs a trunk with a number of leaves which 

have equal weights. Although, in practice a nice tree structure will 

be rare it may be expected that the leaves with the largest workload 

have approximately the same workload. 

The critical path of the task graph derived from the cluster tree 

(C,B) may be lengthened compared to the task graph which has been 

derived directly from the e-tree due to two effects: 

- the parallelism which is in the leaf clusters is neglected. The in­

crease of the critical path length is bounded by the para~eter max. 

However this parallelism would also be lost because the number of 

available processors is too small to exploit all parallelism at the 

highest levels. The parameter max should be chosen such that the 

number of large leaf clusters is of the same order as the number of 

processors to avoid an unnecessary schedule length increase. 

- the trunk clusters are not responsible for any increase because the 

tasks of these clusters are already forced to be executedsequentially 

due to the precedence relations. In some cases increase of the criti­

cal path may occur due to the precedence relations among the clusters 

which_are more severe, see fig.(4.3-5). If an edge (u
6

,u
11

) is added 

to (V,B) the same precedence relations as in the cluster graph are 

obtained. 

The resulting assignment can also be thought to be obtained 

directly from the e-tree. A set of edges is added to B to account for 

the sequence of the clusters. Further, if execution of the first task 

of a cluster is started, all other tasks of the cluster must be pro­

cessed without·delay by the same processor, which can be accomplished 

by an appropriate list. Sometimes a shorter schedule may be obtained 

which is due to the already stated anomalies. 

The resulting strategy to determine FA consists of the clustering 

with a proper value for the parameter max followed by the list sche­

duling. 
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(V,B) 

(u6 ,u
11

J is introduced by the 

clustering 

T(plu task(ui)) 1 for 1SiS17 

' 

(C,B)obtained by procedure 

trunk (V,B) 

Fig.(4.3-5) Increase of the critica! path length due to 

clustering. 

4.3.4 Modification on the strategy to determine FI 

Sometimes it may be favourable to interrupt a task, which is no com­

munication task, by a communication task. This will be called 

"interrupt mode". 
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5. RESULTS 

5.0 Introduction 

In this chapter some results concerning the parallel processing of the 

lu-job are presented and discussed. These results are obtained by a 

sirnulation of the asynchronous array computer. 

The results concern mainly the associated graph of the MNA matrix 

which is derived from the electronic circuit µA758 [5.1], shown in 

fig. (5.1-1). The circuit is thought to be representative for the 

class of electronic circuits which are going to be simulated on the 

asynchronous array computer. 

5.1 e-tree results 

The associated graphs of the circuits considered are directly obtained 

from the topology of the given circuit where the bipolar transistors 

are replaced by the Ebers Moll r;iodel. 

Besides the associated graph of the µlö.758 the associated graphs of 

two power networks are considered, the standard power network 

AEP 118 [5.2] and a large power network USNET [5.3]. 

Two triangulation criteria are used: Berry's criterion [3.8] and the 

minimum degree criterion [3.9]. 

Table (5.1.1) shows the main characteristics of the investigated 

associated graphs and e-tree results. The first example will be re­

ferred to as t.he "example" in the sequel. The "sparsi ty factor", the 

ratio given by t.he number of vertices and the number of classes, 

indicates the parallelism due to the sparsity. The total workload and 

the cri tical path length are determined wi th help of ( 4. 2. 2) . The 

duration of the parameters 'mul' Tdiv and are all equal to one 

time unit. (Due to this choice the operations count and the duration 

of each task except for the communication tasks have the same value) • 

The speedup, the ratio between the total workload and the critical 

path length, varies between 3.20 and 5.14. 

Table (5.1.2) gives the cardinalities of the label classes and work­

load respectively for the example. Tahle (5.1.2) shows that after 8 

classes have been eliminated an almost full matrix remains which is 

16 x 16 representing a workload of 1398 units. That is about 22% of 

the total workload. 
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Figure (5.1-2) shows the e-tree for the example. 

5.2 Clustering results 

Figure (5.2-1) shows the cluster graphs of the e-tree for the example, 

which are obtained by the clustering with parameter max equal to a 

half, a quarter and an eighth of the total workload. For each cluster 

ei, the root ri' the duration of the plu-task(Ci) and lmadj(ri) 1 is 

given. 

Figures (5.2-2) and (5.2-3) show the partitions of the circuit for 

max is equal to a half and a quarter of the total workload respective­

ly. Only those nodes which are associated with the vertices of the 

leaf clusters are shown. 

Finally, the histograms in fig/(5.2-4) show the ciistribution of the 

workload over the leaf clusters which are obtained for the different 

values of parameter max. Only the workload of the leaf clusters is 

shown. 

5.3 Results of scheduling 

Some results of scheduling for the lu-job of the example considered 

are presented. 

The schedule length w depends on the parameters of the scheduling 

model. In the 

as a function 

tation of the 

following w = w(x1, ••• ,xp) denotes that wis regarded 

of the parameters x
1

, ••• ,xp. In the graphical represen­

c.onsidered functions the successive points of each 

function are connected by straight line pieces. In genera! the obtain­

ed curves will not be smooth due to the probl~m itself and anomali-

ties, 

Four schedule modes are determined by whether the switch criterion is 

used or not and whether interrupt is allowed or not. The modes are 

denoted by a boolean vector (x,y) where x is true if the switch 

criterion is used and y is true if interrupts a:i:·e allowed. Let m
0 

denote the number of processors necessary to obtain the optimal 

schedule length wob in the basic scheduling model. wob is equal to 

the critical path length of (Tb,Sb), 

The influence of the schedule mode and < • com 
Fig. (5.3-1) shows the following entities as a function of the number 

of computers for the specified parameters: 
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b b w =w (m), 

w = w(m)', 

the schedule length of the basic scheduling model. 

the schedule length for each scheàule mode. 

w =total workload/m,the lower bound of the schedule length. 

The parameters tcom and toverh are chosen to be zero in fig.(5.3-1). 

The increase of the schedule length relative to the respective 

schedule length for teem 0 is denoted by 6w. Fig.(5.3-2) and fig. 

(5.3-3) show ów = öw(tcom) for each of the four schedule modes for a 

number of computers of 4 and 64 respectively. Hence, the schedule 

length for m=4 and m=64 can be obtained from the figures (5.3-1) and 

(5.3-2) for each of the values of t • 
com 

The four modes of scheduling will be compared. 

For small values of teem the 6w = ów(tcom) is grossly the same for 

the different modes. 

For large .values of Teem the ~w 6w(Tcom) differs significantly if 

m > m
0 

depending whether the assign criterion is used or not. 

To compare the w = w(rn) with T ~ 0 for the four schedule modes 
com 

small and large values of tcom are treated separately. 

- small values of t • com 
The relative position of the curves w=w(m) for the different Modes is 

given by fig.(5.3-1). 

Two cases are distinguished: 

m < m
0

• The value of w depends mainly on whether interrupt is allowed 

or not in faveur of allowed interrupt. 

m > m
0

• The w depends mainly on the switch criterion in faveur of the 

switch criterion. 

- large values of tcom· 

TWo cases are distinguished: 

m < m
0

• The relative position of the curves w = w(m) for the different 

modes is given by fig.(5.3-1). Again the value of w depends mainly on 

whether interrupt is allowed or not in faveur of allowed interrupt. 

m > m
0

• The relative position of the curves w = w(m) for the different 

modes is no longer equal to the position given by fig.(5.3-1). The w 

also depends mainly on the switch cri terion, howcver, in favour of the 

mode without the switch criterion. 

The difference hetween the schedules is determined by the commu­

nication overhead w(m} - wb(m}, because wb does not depend on the 

applied modification. 
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The communication overhead consists of three parts: 

1. -change of the task durations due to FA. Fig. (5.3-4) shows the 

critical path length in (T,S) for the mappings FA determined with and 

without switch criterion as a function of the number of computers. 

2. -tasks with a common successor task are excluded from being pro­

cessed in parallel. Let w= denote the schedule length of a schedule 

with m/2 buses, allowed interrupt and T = T = O. For m > m 
com overh O 

an estimate of this contribution is given by the difference between 

w= and the critical path length in (T,S) where Tcom = Toverh = 0. To 

this purpose wm = w
00

(m) with and without switch criterion is shown 

form> mo in fiq.(5.3-4). 

3. -co:r.ununication tasks may introduce overhead by the duration of the 

tasks and by the time spent to wait until the necessary resources are 

available. Fig.(5.3-5) shows the increase of the critical path length 
~ 

in (T,S) for both mappings FA due to the com-tasks lying on this path 

as a function of the number of computers. 

The influence of the switch criterion is significant for m > m
0 

as shown in the figures (5.3-4) and (5.3-5). 

For small values of t the increase due to the contributions of the 
com 

first and third part is more than compensated by a lower contribution 

due to the second part. 

For large values of Tcom the expected idle time interval of the ad­

dressed computer is too small such that the assumptions of the switch 

criterion do not hold any longer. The com-tasks become part of the 

critical path (due to the resource demands). The number of com-tasks 

is for both modes the same, but in general the number of transmitted 

words will be larger in case of the switch criterion, which explains 

the curves in fig.(5.3-3). The nUmber of words to be exchanged is 

expected to be larger because the communication occurs between the 

tasks lying on the critical path in (Tb,Sb). 

The influence of the interrupt on the schedule length. If m < m0 
t:hen at the beginning of the schedule for each computer there is a 

large number of ready tasks and there are com-tasks which would be 

ready if the required bus is available and if the addressed computer 

is idle. A ready task with a lower level will be started and when the 

addressed computer becomes idle it will start to execute also a ready 

task with a lower level. Hence, the com-tasks are blocked by tasks 

with a lower level. If m > m0 the above process will be restricted 
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because the number of ready tasks will be small. 

Fig. (5. 3-6) shows the schedule length as a function of parameter 

max for the specified parameters. If the value of 'com is small the 

clustering may be favourable if the nunber of computers is small com­

pared to t_r:ie number of tasks. Howcver, if the value of T cor.J is large 

even for a large number of computers the clustering may J:;c favourable. 

In these cases only a part of the available computers will be used. 

If the size of the offered circuits varies, it will be necessary to 

determine for each job an appropriate value of parameter max. It is 

proposed to do this automatically by some heuristic formula, for in-

stance: max (total workload of the lu-job) / {2*m) . 
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triangulated number number number dimension sparsity total* critital• spelllèl'upo 

grapb of of of Of factor operation pa tb 
vertices edges classes class one count lengtll 

flA 758 

{193v,358e) 193 658 20 86 10 6234 1534 

Berry 

LuA 1s0 

(! 93v, 358e) 193 673 22 81 9 6583 1665 

min degree 

AEP 118 

{118v, 179e) 118 264 17 48 7 1572 390 

Berry 

AEP 118 

{11Bv, 179e) 118 265 15 49 8 1579 307 

min deqree 

USNET 

{1637v,2237e) 1637 4474 48 719 34 48938 15311 

min degree 

*-tadd = Tmul = îdiv c 1 

Table (5.1.1) Characteristics of the investigated associated graphs 

and the e-tree results. 

4.06 

3,95 

4.03 

5.14 

3.2 

CLASS 1 2 3 4 5 6 7 8 9 10 11 12 13-20 

DIMENSION 86 38 16 12 9 7 5 4 2 2 2 2 1 

WORKLOAD - - - - - - - - 360 276 342 272 308 
per class 
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Table (5.1.2) Dimension of the label classes and workload of 

example 1. 



Fig. (5.1-1) µA 758 

81 2~ 

11 

Fig. (5.1-2) e-tree (V,B) 
Il 
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6. FIHAL REMARKS 

6.0 Introduction 

The first section of this chapter deals with the implerientation of the 

N-R conver9ence test and the ini tialization of a new tim.e step. 

The second section deals briefly with the scheduling of the remaining 

tasks and finally in the last section the conclusions and concluding 

rernarks are given. 

6.1 Implementation of the N-R convergence test and the new time step 

ini tialization 

The implementation of the tasks with labels 8, 12, 13 and 14 of table 

(1.3.1) is considered in this section. The task with label 8 tests 

whether the N-R iteration converged or not. The set of tasks, deter­

mined hy the labels 12, 13 and 14, determines the new time step and 

order of the PBD formulas. 

The convergence test is accomplished by all computers together. 

To this purpose computer has to execute the procedure "N-R conver-

gence test(Vi)" where the set Vi denotes the vertices which have 

been assigned to computer c., for 1E{1, ••• ,m}. The time instant t8 has 
l. 

been determined by the scheduling. 

1. procedure N-R convergence test(Vi); 

2. begin 

colll!llent This procedure resides in computer ei, E is the allowed 

deviation; 

3. if (3 V [6x(a(u)) > E]) set(or); 
UE , 

4. test(tim~,t8); 

connnent All computers are synchronized to give them the opportunity 

to set the or signal; 

5. nonconvergence + or; 

6. reset(or); 

7. if (nonconvergence} go to N-R iteration; 

8. end; 

The duration T(8) is equal to the maximum time which is required by 

any of the computers ei to execute the procedure N-R converqence 

test(v
1
J. If the statement in line 3 determines almost completely the 

required execution time then the task duration T(8) is proportional to 
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1/m (with the assumption that the same arr~unt of vertices has been 

assigned· to all computer modules) • 

The determination of the new time step and order will also be 

accomplished by all computers together. The tasks with labels 12, 13 

and 14 are combined in to a simple task wi th label 17. The task wi th 

label 17 is the successor of all tasks with label 11. To execute the 

task with label 17 cor.puter ei has to execute procedure "new time 

step(Ixci)", 1vhere tb.e set \wi denotes a subset of Ixc the set of 

controlled components, for 1E{1, ••• ,m}. 

1. procedure new time step(Ixci); 

2. begin 

comment This procedure resides in computer ei, k is the order of 

the PBD, h is the time step, time step is a label; 

3. K(l) ,K(2) ,K(3) ,L(l) ,L(2) ,L(3) + 0; I(l)+l; I (2)+2; I(3)+3; 

4. for j=l step 

5. for j=l step 

6. begin 

until 3 do K(j)+min({hm(v) 1 (m=k-2+j)AwI i}); 
XC 

until m do; 

7. if (j=i) then broadcast(K,I,bus) else receive(L,I,bus); 

8. for 9,=1 step 1 until 3 do if (K(9,)>L(9,)) then K(~) + L(9,); 

9. end; 

10. pick some pd9-IK!9-l max({K(l) ,K(2) ,K(3) }) }; 

11. h ... K(p); 

12. k ... k+p-2; 

13. t ... t+h; 

14. if (t<te) then go to time step; 

15. end; 

The duration <(17) will be equal to the maximum time which is required 

by any of the computers to execute its procedure new time step. If the 

statement in line 4 determines almost completely the required execution 

time then the duration is again proportional to 1/m (with the assump­

tion that 1 I . 1 is equal for all computer modules) • xci 

6.2 Scheduling of the total computation phase 

In the preceding chapters only the scheduling of the L\tl-decomposition 

job has been treated, here the scheduling of the whole computation 

phase will be considered. 

The determination of the schedule is again split into the determina-
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tion of the assignment of the tasks to the computers and the determi­

nation of the time intervals during which the tasks must be processed. 

The assignment of the tasks to the computers. 

A straightforward way is to apply again list scheduling. The list is 

determined by the levels of the tasks. (Note that the durations T(7), 

T(8) and T(17) are not neccesarily to be known). However, a large 

number of communication tasks rnay arise. By recognizing that the tasks 

with labels 3 and 5 have the largest time duration it will be accept­

able to let these tasks determine the assignment of the remaining 

tasks. 

Thus the following assignment rules are used: 

- tasks, which are associated with the same component of ~· are assign­

ed to the same computer. A task with a label 1,2,~,10 or 11, which 

evaluates variables for component x of vector !• is called to be 

associated with component x; 

- tasks with t.~e labels 3 and 4 and evaluating functions which are 

associated with the same element t are assigned to the same computer. 

The assignment starts with assigning the tasks with label 5 to the 

computers. The tasks are considered as independent tasks. The list 

scheduling strategy is applied. The list is determined by the task . 

levels which are equal to the task durations. 

In exactly the same way the tasks with label 3 are assigned to .the 

computers. The partial assignment, obtained by the assignment of the 

tasks with label 5 and the assignment rule, is made complete. 

The tasks with labels 3 and 4 which are assigned to computer ei re­

quire the prediction of a set of components of ~· This set is the 

already mentioned set Ixci' for ic{l, ••• ,m}. Note Ixci n Ixcj is not 

necessarily empty, for 1,jc{l, •• ;,m}. The tasks with labels 1,2,9,10 

and 11, which are associated with Ixci' are assigned to e1 • Some 

redundant tasks are created by this strategy in order to avoid commu­

nication tasks. 

The tasks with labels 4 and 6 which update the matrix entries a(k,t) 

and a(k,n+1) are associated with ve~tex a(k) and will be assigned to 

the same computer as to which vertex a(k) has been assigned. 

The determination of the time intervals during which the tasks 

must be processed. 

lt is assumed that each computer contains all components of the x vec­

tor. This is assured if during the bs-job all components are broad-
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casted. The only places where communication tasks can be inserted are 

given by the edges of the task graph of fig.(2.1-1). By the above 

assignment the only communication which may be necessary is between 

tasks witk the labels 3 and 4 and between tasks with the labels 5 and 

6. In order to reduce the nurnber of communication tasks the communica­

tion tasks between the computers C. and C. , arising from tasks wi th 
l. J 

the same labels which are assigned to computer , are packed together 

into one communication task between the computers c
1 

and ej, for 

i,jdl, ••• ,m}. 

Again list scheduling for the augmented basic scheduling model is 

applied in order to determine the time intervals. The start and 

finishing time of the time intervals are determined with respect to 

the tasks with the labels 15,16 and 8. 

The program "computation phase ei" gives the procedures and 

synchronization instructions which accomplish the tasks of the compu­

tation phase being assigned to computer ei. The time instants tkR are 

determined by the scheduling during the setup phase, the index k èe­

notes a task label and index i denotes a computer. 

1. 

2. 

3. 

4. 

5. 

6. 

7.1 

8.1 

9 .1 

10. 

program computation phase 

begin 

reset(time); 

evaluation of the tasks with 1abels 1 and 2; 

evaluation of the tasks with label 3; 

test(time,t
3
jl; 

broadcast results of the tasks with label 3 to 

computer e, ; 
J 

test(time,t
3
kl; 

recei ve re sul ts of the tasks wi th lahel 3 of 

computer ck; 

evaluation of the tasks with lahel 4; 

11. N-R iteration reset(time); 

12. 

13.1 

14. 1 

evaluation of the tasks with label 5; 

test(time,t
5
j); 

broadcast results of the tasks with label 5 to 

computer ej; 
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15.1 

lf. t 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

test (tirr.e, t 5kl ; 

receive results of the tasks with label 5 of 

evaluation of the tasks with label 6; 

solve the set of linear equations; see chapter 4 

N-R convergence test{V
1
l; 

reset(time); 

evaluation of the tasks with label 9,10 and 11; 

new time step(Icxi); 

set (ready) ; 

end; 

Of the m possible broadcast and receive tasks in lines 6-9 and 13-16 

only one broadcast task to computer c. and one receive task of compu­
J 

ter ck is given in the above 'listing' of the program. 

The proposed computer organization requires a tight upper bound 

for the task durations. Whether this is possible depends on the 

applied hardware. If the upper bounds for the task durations are not 

tight enough then the schedule strategy and synchronization must be 

adjusted. 

The assignment of the tasks to the computers will remain the same but 

the tir.ie intervals during which they will be processed will be deter­

mined while the computation phase is executed. This will be called 

"on-line scheduling". Because the task durations are reasonable well 

known the following scheduling is applied. 

After the assignment of the tasks has been determined the scheduling 

of chapter 4 is again applied. on basis of the mean task durations 

for each computer the sequence by which the tasks, assigned to this 

computer, will be processed is determined instead of the exact time 

interval. For each bus the communication tasks which use this bus are 

labeled according to the sequence they use the bus. The procedures 

which accomplish the tasks are stored according to the determined 

sequence in the memory of the computers. 

To make on-line scheduling possible for each bus h a signal line 

"sequence-h" is provided. The sequence-h signal value is a non-ne9a-
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tive integer. Three instructions can operate on the signal sequence-h: 

test(sequence-h,sx), increase(sequence-h) and reset(sequence-h). 

Execution of test(sequence-h,sx) results in active waiting until the 

value of the signal line sequence-h ~ sx, where sx is a non-negative 

integer. 

Execution of increase(sequence-h) increases the value of sequence-h 

with one. 

Execution of reset(sequence-h) makes the value of sequence-h zero. 

The required synchronization is obtained if the test(time,x) instruc­

tion which proceeds a broadcast (A, IBJl.,h) is replaced by the first 

column of fig{6.2-1) and the test(time,x) instruction which preceè.es 

the receive(B,IRB,h) by the instructions of the last column. In fig. 

(6.2-1) it is assumed that i computers must be synchronized. If inter­

rupt is allowed the computers have to test the sequence lines perio­

dically with the value sx of the next to execute test(sequence-h,sx} 

instruction. 

test(sequence-h,sx); 

increase(sequence-h}; 

test(sequence-h,sx+i+l); 

increase(sequence-h); 

hroadcast(A,IBA,h); 

Fig. (6.2-1) synchronization. 

test(sequence-h,sx+l); 

increase (sequence-h); 

test(sequence-h,sx+i+2); 

receive(B,Iru3,h); 

6.3 Conclusions and concluding remarks 

In this thesis a parallel computer organization is outlined to 

process circuit analysis prohlems in parallel. The guidance of the 

parallel processing is done automatically without referring to the 

user. 

The parallel computer system, the asynchronous array computer, con­

sists of a general purpose computer which performs the setup phase 

and an array of computer modules which performs the computation phase. 

The normal setup phase is extended by the decomposition and scheduling 

procedures. 

The proposed decomposition and scheduling strategies allow a speedup 

ratio of about 20 on the asynchronous array computer with 40 computer 

modules. 

This performance is reasoned as follows. In section 2.1 it has been 
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shown that the success of the parallel processing of the circuit ana­

lysis job {computation phase) depends mainly on the speedup which can 

be obtained by a parallel solution of the set of linear equations. The 

parallel organization of the solution job (mainly L\U-decomposition) 

can be regarded as the most critical part of the total job with res­

pect to the scheduling and cornmunication demands. Due to this obser­

vation the parameters for the scheduling strategy and the connection 

network of the asynchronous array computer can be obtained from the 

simulation results for the L\U-decornposi tion method as presented in 

chapter S. The decomposi tion of this job in to tasks resul ts in a cri­

tica! path length of 1534 units (potential speedup of 4.06) with the 

given values of 'aaa' 'mul and 'aiv' Due to the chosen organization 

the schedule length and speedup becomes 1644 units and 3. 79 respecti­

vily. This is given by w
00

=w,.,(m) with allowed interrupt and switch 

criterion shown in fig. (5.3-4). By a one bus network with 'corn=•overh= 

=O the schedule length is only slightly increased as can be seen by 

comparing figures (5.3-1) and (5.3-4). The simulation results given 

by figures (5.3-1) and (5.3-2) show that this one bus connection 

network gives only an increase of the schedule length of about 10% if 

it allows data exchange at the rate of two coefficients in a time 

equal te 'mul' 

The ahove rnentioned results allow to choose a single bus connection 

network which mak.es the parallel computer highly rnodular. Removing or 

adding a computer module requires only the change of the parameters 

in the scheduling procedures. 

lf the schedule length as a function of m is approximated by formula 

(2.1.2) wit'1 c = 0.5 and m
0 

= 7.6 then fig.(2.1-2) shows the expected 

speedup for the computation phase which lies somewhere between the 

curves 3 and 4. Further if at least an effecti ve use of the conputer 

modules iG required of 50% then the maximum speedup which can be ex­

pected is given by the intersection, of the SR=SR{m) curve with the 

curve SR=m/2 in fig.(2.1-2). 

The computer modules are very simple since they have only to perform 

floating point instructions and a few other instructions. To get an 

impression of the computing power the computer modules are thought to 

be built around the components of the Am2900 series [6.1] and a 

floating point processor of HP [6.2]. The floating point processor 

consists of three chips: a floating point add/substract chip (1,2µs), 
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a floating point multiplication chip (1,2µs) and a floating point 

division chip (2,4µs) which perform the operation on 64 bits operancls 

in the time given within the parenthesis. The l\.m2900 series contains 

components which allow a µ-programmable computer organization. 

The effective computing power for the 40 modules will be about 20 

million 64 bits floating point operations per second (scalar opera­

tions) • 

The expected speedup can be degradatea by the introduction of cor:imu­

nication tasks and if the assumptions which are made in section 2.1 

do not hold. As long as m << N, the nur:fuer of components of ~, the 

assumptions will hold and the scheduling strategy is capable to keep 

the commWlication overhead low. 

The obtained speedup is exclusively due to the parallel organization 

of the computation phase. The speedup for the circuit analysis job 

will be almost equal to the speedup of the computation phase because 

the preprocessing takes about the same time to accomplish one pass 

through the time loop and N-R iteration. 

The setup phase is extended with the decomposition and scheduling 

procedures and loading and Wlloading of the computer modules. The 

decomposition procedure has the same complexity as the pivoting 

procedure O(Nd 2 ) while the scheduling has a O(n2) complexity, where gem 
n is the number of tasks which is less or equal to the nUl"ber of 

components N. Hence the preprocessing time for the parallel organiza­

tion will be of the same order as the original preprocessing time. 

Some further remarks are made. 

Firstly a few remarks are made about the e-tree construction. 

A suitable pivoting assured a dominant diagonal. To preserve this 

some vertices must be inserted into a label class with a higher label 

as would be possible hy the selection criterion. 

The matrix after the pivoting is considered as a structural symmetrie 

matrix. If a(i,j) i 0 and a(j,i) 0 this leads to a superfluous entry 

in hte data structure however due to the class of circuits considered 

the number of these empty entries in the data structure is lireited. 

The pivoting problem and the decomposition problem are treated inde­

pendent of each other. The objective of reordering to minimize fill­

ins usually competes with the objective of reordering to minimize the 

number of label classes [6.3]. Also the computation power of the 

applied computer may influence the pivoting strategy. If the computers 
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have indeed infinite processinq power the objective is to minimize 

the number of classes. 

Secondly a few remarks are made about the organization of the 

solution job on the asynchronous array computer. 

The definition of the tasks. 

A choice is made between the two solution procedures Gauss and Crout. 

Consider a full matrix with dimension N. The majority of the required 

operations are performed during the first pivot steps, given by the 

compound statement in lines 4-7 of procedure Gauss in section 3.0, if 

the Gauss procedure is applied. If the Crout procedure is applied 

then the majority of the required operations is performed during the 

pivot steps, given by the compound statement in lines 4-14 of proce­

dure Crout in section 3.0, in and around the N/2-th pivot step. In a 

sparse matrix this is not so clear hut by applying the Gauss procedure 

the number of operations which are associated with the first label 

classes will be larqer than in case of applying the Crout procedure. 

The dimension of the label classes is independent of the applied 

procedure. Hence it may be expected that the Gauss procedure results 

in a shorter critical path in the e-tree if the computers have a 

limited computing power. 

Thirdly the organization of the communication may require more 

attention. The IO ports can be equipped with an IO processor and a 

small memory. The computers of the communicating modules can continue 

with processing while their IO ports are communicating. The simulta­

neous access of the buffer by the IO processor and processor must be 

excluded. 

The obtainable speedup can be increased if a mixed organization is 

applied. First an organization às described in chapter 4 can be 

applied. When those label classes which contain for instance three or 

four vertices are reached, then the organization can be changed to 

the rowwise organization as given in chapter 3. 

Another way to increase the obtainable speedup is to use computer 

modules with different processing power. A few co~puter modules may 

be equipped with several arithmetic processors. These arithmetic 

processors can operate according to the first implementation scheme 

given in section 3.2. 
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Graph notations 

A "graph" G = (V ,E) is defined by a set v of elements called 

"vertices" and a set E of unordered distinct vertex pairs cal led 

"edges" thus E .s { (u, v) 1 u,v E V; u i v}. 

If (u,v) E E, u and v are "adjacent" vertices and the edge (u,v) 

"incident" to u and v. 

The set "inc(v,E)" denotes the set of edges incident to vertex v. 

Thus inc(v,E) := { (u,v) E E 1 u E V}. 

is 

The set "adj (v,El" denotes the set of vertices adjacent to vertex v. 

Thus adj(v,E) := {u E V 1 (u,v) E E}. 

P. set W .s V identifies a "subgraph" G (W) (W,E(W)) of G (V,E) with 

E(W) := {(u,v) € E 1 u,v E W} such that G(W) .s G. 

The set vertices given by {uEV\WI ((u,v)EE)A(vEW) }, is adjacent to Vi. 

It will be denoted by adj(W,E). 

The set edges given by { (u,v) EE 1 (u€V\W) A (vEW)}, is incident to W. 

This set will be denoted hy inc (W ,E) • 

A "chain" is a subgraph (C,E(C)) .S (V,E) with C = {v
1
,v

2
,".,vk}, 

where vi #vj if i ij, ordered such that vi+l E adj(vi,E) for 

i E {1,2, ••• ,k-1}. The "length" of the chain is !cl. 
A "cycle" is a chain such that v

1 
E adj (vk,E). Its length is also : ei. 

A "chord" of a chain (C,E(C)) c (V,E) is an edge (vi,vj) E E\E(C) 

with vi,vj E c. A chord connects two nonadjacent vertices of a chain. 

A "clique" C .S V wi th respect to (V ,E) is a vertex set wi th the 

property that all its mernbers are mutually adjacent, thus 

[Cis a clique]++ [v Cv C [(u,v) E E]]. 
U€ VE 

The "deficiency" of a vertex u, denoted by àef(u,E), is the set of 

edges that lacks to make adj(u,E) a clique. Thus 

def(u,E) := { (v,w) 1 (v,w € adj (u,E)) A ( (v,w) f_ E)}. 

A graph (V ,E) is cal led "connected" if there exists a chain between 

any two vertices of V. 

A "separator" S c V ( (V,E) being a connected graph) is a set of 

vertices such that (V\S, E(V\S)) is nota connected graph, that is to 

say it consists at least of two distinct nonempty subgraphs called 

"components". Assume some separator S such that u,v E Vare in 

different components. Then S is called an "u,v-separator". If S is an 

u,v-separator such that no subset of S has the same property then s 
is a "minimal u,v-separator". 

A graph (V,E) is called a "tree" if (V,E) is a connected graph with-
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out any cycles. 

The graph (V ,B) is called a ''spanning tree" of (V ,E) if (V ,B) is a tree. 

A set wcv is called a "cluster" with respect to (V ,E) if (W,E (W)) is 

connected. 

A "triangulated graph" is a graph such that any cycle of lenqth <?:4 

has a chord. 

A set of edges T, such that (V,EUT) is a triangulated graph, is 

called a "triangulation" of (V,E}. 

The triangulation is "minimal" if no subset of it is also a triangu­

lation. 

The triangulation is "minimum" if T contains the minimum m.unber of 

edges. 

A graph (V,E) is called an "ordered graph" if a bijection 

a: {1,2, ••• , !vil• Vis defined. The bijection ais called the 

"ordering" of {V ,E) • 

Two graphs (V,E) and (V' ,E') are "isomorphic" if there is a bijection 

l : V • V'with E' = {(l(u), l(v)) I (u,v) e E}. 

Given a graph (V,E) and an anti reflexive relation R(u,v) in V, such 

that v( ) E[R(x,y}VR(y,x)]holds. If {x,y)eE and R(y,x} hold then x,y E 

the edge (x,y) is called "directed" from y to x. 

The relation R(u,v} will be called the "precedence relation" of 

(u,v}eE. To denote the precedence relation (u,v) is noted as an 

ordered pair such that R(u,v) holds; with this convention the graph 
• will be denoted by (V,E}. 

The set {veadj(u,E) !R(u,v)} is called the set of "descendants of u". 

The descendants of u are denoted by madj(u,E,R} and let 

madj(u1, ••• ,un,E,R) denote iBl madj(ui,E,R). 

A "path" is a chain (C,E(C)) in (V,E} with C = {v1,.",vk} such that 

R(vi,vi+t)' for 1Si<k. 

A "loop" is a path such that v
1
eadj (vk,E} and R(vk,v1) holds. 

Let w(u) denote the "weight" of u€V. The "path length", based on the 

weights, of a path (P,E(P)) in (V,E} is given by: u~Pw(u). 

A path called a "critica! path", based on the weights, if no other in 

(V,E) has a larger path length. 

A tree (V,B) is called an "in-tree" if each vev has at most one 

descendant. 

If no confusion is possible the vertex set E will be dropped in 

adj(u,E} and also the relation willbe dropped in madjCu1, ••• ,un,E,R). 
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Notations 

M(V) 

x 
T 

x 

cll/l 

power set of V. 

vector with px cornponents. 

transposed vector x. 

transposed vector with the first px cornponents 

given by ~ and the last p components given by y. 
y 

# number. 

111 



INDEX 

A 54, v 60 I!ld 9 gb 74 'l:NR 17 

adj 109 Ind 9 SR 13 Tadd 65 

B 110 I 9 
nr S (v) 52 1: 65 

com 
B 51 I 12 T 11 'rdiv 65 u 

Tb B(v) 45 I 6 74 1: mul 65 
XC 

101 + 
65 c 51, 60 I xcl (T,S) 11 1: overh 

c. 51, 61 Ixd l. 
9 25 'rtime 17 

CM 19 I 9 xp T{v) 45 1:1 66 

CM. 19 inc 109 u 27 w 13 
l. 

b (C,Bl 51 k 5, 20 u. 59 w 73 
l. 

D 60 L 27, 71 v 109 11\,s 70 vu 
d 60 !l (u) 72 

/\ 
32 14 v wlin vu 

def 109 M. 19 v 32 wlu 70 
l. 

109 12 
/\ 

41 72 E m vi WO 
/\ 

32 14 41 89 E mo v. àw 
l. 

E 32 madj 109 (V ,B) 110 w,,, 90 
/\ 

41 84 (V ,E) 109 b E. max 
75 l. wo 

E. 41 n!l 9 <v,Ë> 32 
l. 

E(W) 109 nt 9 (-OJ> 32 

FA 24 0 12 <v i ,Ëi> 41 u 
FA 71 p 23 c-Oi,~i, 41 

F~ 73 pi 23 
V{v) 45 

PI 78 
FI 25 vart 9 

PI 71 PO 11 
9 varx 

0 54, 60 
Fb 73 -v· w(u) 110 

I <Iv 54, 60 
41 59 x 

R 23 
40 

Fj(u) 63 X. 
Ri 23 l. 

f 25 a. 110 
R 23 

f 25 u a. {m) 14 
·p r 24 

6 32 

f 
r. 51, 59 B 51 71 l. 

rlin 9 
40 f 

y 
71 rm 23 p ö 25 

r(u) 24 
71 h 5 1f 

s 11 
25 + (J 

I 25 s 11 
1: 14, 24 
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1. Bij de complexiteitsanalyse van parallel algoritmen dient me~ terdege 

rekening te houden met de struktuur van de toegepaste machine. 

2. Naarmate de pakkingsdichtheid van de ic•s toeneemt vergt het data 

transport in computers meer aandacht. 

3. Bij parallel processing dienen twee doelstellingen onderscheiden te 

worden, nl. optimalisatie naar snelheid of naar kosten. 

4. Alleen bij onafhankelijke taken is bij toepassing van parallel verwerking 

de verwerkingssnelheid van de processoren uitwisselbaar met het aantal 

processoren. (Uitwisselbaar in die zin dat het produkt van verwerkings­

snelheid en aantal konstant blijft), 

5. Naarmate de graad van specialisatie toeneemt zal ook de bereikbare 

versnelling en kostenperformance voor parallel processing toenemen. 

6. De economische wetenschap is er nog niet in geslaagd (reken)modellen 

te ontwikkelen, welke in een groot gebied geldig zijn. 

E.J. Bomhoff, "De noodzaak van het bezuinigen", Intermediair 10, 

12 maart 1982. 

7. Het aantal werklozen wordt teveel als graadmeter voor de economie 

gebruikt. 

8. We moeten er op bedacht zijn niet onze "eigen" neergang te financieren 

door de aankoop van geavanceerde wapens in het "buitenland". 


