

Dynamic server assignment in an extended machine-repair
model
Citation for published version (APA):
Dorsman, J. L., Bhulai, S., & Vlasiou, M. (2012). Dynamic server assignment in an extended machine-repair
model. (Report Eurandom; Vol. 2012020). Eurandom.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/4a94c9e4-879f-4c23-8414-a02eb17f3678

EURANDOM PREPRINT SERIES
2012-020

November 22, 2012

Dynamic server assignment in an extended machine-repair model

J.L. Dorsman, S. Bhulai, M. Vlasiou
ISSN 1389-2355

1

Dynamic server assignment in an extended machine-repair model

J.L. Dorsman ∗ †

j.l.dorsman@tue.nl

S. Bhulai ‡ †

s.bhulai@vu.nl

M. Vlasiou ∗ †

m.vlasiou@tue.nl

November 22, 2012

Abstract

We consider an extension of the classical machine-repair problem. The machines, apart from receiving
service from a single repairman, now also supply service themselves to queues of products. The extended model
can be viewed as a two-layered queueing network, in which the queues of products in the first layer are generally
correlated, due to the fact that the machines have to share the repairman’s capacity in the second layer. We are
concerned with the dynamic control problem how the repairman should allocate his capacity to the machines at
any point in time so that the long-term average (weighted) sum of the queue lengths of the first-layer queues is
minimised. Since the optimal policy for the repairman cannot be found analytically due to the correlations in the
queue lengths, we propose a near-optimal policy. We do this by combining intuition and results from queueing
theory with techniques from Markov decision theory. Specifically, we study the relative value functions for
several policies for which the model can be decomposed in less complicated subsystems, and we combine the
results with the classical one-step policy improvement algorithm. The resulting policy is easy to apply, scalable
in the number of machines and is shown to be highly accurate over a wide range of parameter settings.

1 Introduction

In this paper, we study a queueing model that consists of two layers. The first layer of the model contains two
queues of products, see Figure 1. Each of these queues is served by its own machine. At any point in time, a
machine is subject to failure, irrespective of the number of products in each of the queues. When a failure occurs,
the service of a product in progress is interrupted. Upon failure, the machine temporarily stops fulfilling its server
role in the first layer and becomes a customer in the second layer of the model. The second layer of the model
consists of a single repairman capable of repairing failed machines. When the repair of a machine in the second
layer has finished, the machine assumes its server role in the first layer again.

This model has wide applicability. Evidently, it has immediate applications in manufacturing systems. However,
this model is also of interest in less obvious application areas, such as telecommunication systems. For instance,
this model occurs naturally in the modelling of middleware technology, where multi-threaded application servers
compete for access to shared object code. Access of threads to the object code is typically handled by a portable
object adapter (POA) that serialises the threads trying to access a shared object. During the complete duration
of the serialisation and execution time a thread typically remains blocked, and upon finalising the execution, the
thread is de-activated and ready to process pending requests [12]. In this setting, the application servers and the

Funded in the framework of the STAR-project “Multilayered queueing systems” by the Netherlands Organization for Scientific Research
(NWO). The research of M. Vlasiou is also partly supported by an NWO individual grant through project 632.003.002.
∗EURANDOM and Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB

Eindhoven, The Netherlands
†Probability and Stochastic Networks, Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
‡Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

1

Layer 1 Layer 2

M1

Q1

RM2

2Q

Figure 1: The two-layered model under consideration.

shared object code are analogous to the machines and the repairman. Likewise, several service systems can be
modelled in this way.

This model is an example of a layered queueing network. In such networks, there exist servers which, while ex-
ecuting a service, may request a lower-layer service and wait for it to be completed. Layered queueing networks
occur naturally in information and e-commerce systems, grid systems, and real-time systems such as telecom
switches, see [7] and references therein for an overview. A layered queueing network is characterised by simulta-
neous or separate phases where entities are no longer classified in the traditional role of ‘servers’ or ‘customers’,
but they may also have a dual role of being either a server to upper-layer entities or a customer to lower-layer
entities. Think for example of a peer-to-peer network, where users are both customers when downloading a file,
but also servers to users who download their files. In our model, the machines are the entities fulfilling the dual
role. They act as a server to the products in the first layer, but may interrupt service to request a second-layer
service from the repairman.

The model we consider is also motivated by an extension of the classical machine-repair problem. The machine-
repair problem, also known as the computer terminal model (cf. [1]) or as the time sharing system (cf. [13, Section
4.11]), is a well-studied problem in the literature. In the machine-repair problem, there is a number of machines
working in parallel, and one repairman. As soon as a machine fails, it joins a repair queue in order to be repaired
by the repairman. It is one of the key models to describe problems with a finite input population. An extensive
survey of the machine-repair problem can be found in [11]. We extend this model in two different directions.
First, we allow different machines to have mutually different failure or repair rates. As observed in [9], this leads
to technical complications. Second, we assume that each of the machines processes a stream of products, which
leads to an additional layer in the model.

An important feature of the classical machine-repair problem and the two-layered model under consideration is the
fact that the machines have to share the repair facilities offered by the repairman. When both of the machines are
down, this may result in the repair of each of the machines occuring at a much slower rate or in one machine having
to wait for the other machine to be repaired before its own repair can be started. Because of this, significant positive
correlations may arise in the downtimes of the machines. As a consequence of the dual roles of the machines, this
leads to correlations between the lengths of the queues of products in the first layer. Due to these correlations, it
is extremely hard to obtain expressions for the distribution or even the mean of these queue lengths. Even when
machines are repaired in the same order as they break down, the queue lengths are notoriously difficult to analyse
(see e.g. [5] or [6]).

We are concerned with the problem how the repairman should allocate his capacity dynamically to the machines at

2

any point in time, given complete information on the lengths of the queues of products and the state of the machines
at all times. This must be done in such a way that the long-term average (weighted) sum of the queue lengths of
the first-layer queues is minimised. The identification of the repairman’s optimal policy is very hard, due to the
general intractability of the analysis on the queue lengths because of their interdependence. When formulating this
problem as a Markov decision problem, one may be able to obtain the optimal policy numerically for a specific
set of parameter settings by truncating the state space. However, these numerical methods lack transparency and
provide little insight into the effects of the model’s parameters. Moreover, due to the multi-dimensionality of the
model, the computation time needed to obtain reliable and accurate results may be infeasibly long.

In this paper, we aim to derive a near-optimal policy for the repairman. A novel point in our technique is that
we use insights and results from queueing theory in order to overcome difficulties that appear in this Markov
decision problem. We apply the classical approximation method of one-step policy improvement. This method
requires a relative value function of an initial policy, which can be obtained analytically by solving the Poisson
equations known from standard theory on Markov decision processes. The result is then used in one step of the
policy iteration algorithm from Markov decision theory to obtain an improved policy. Although the relative value
function of the improved policy is usually hard to compute, the improved policy itself is known explicitly as a
function of the state and the parameters of the model. Moreover, it is known that the improved policy performs
better in terms of costs than the initial policy, so that it may be used as an approximation for the optimal policy.
The intrinsic idea of one-step policy improvement goes back to Norman [15]. Since then, this method has been
succesfully applied to derive nearly optimal state-dependent policies in a variety of applications, such as the
control of traffic lights [10], production planning [19] and the routing of telephone calls in a network or call center
[3, 16, 18]. In our case, we use both a state-independent policy and a priority policy as input for the one-step
policy improvement method. Computing the relative value function for the priority policy seems to be intractable.
However, we use insights from queueing theory in order to describe the asymptotic behaviour of the relative value
function, which we use as input for the one-step policy improvement method. Based on the resulting improved
policies, we propose a near-optimal policy for the repairman.

The paper is organised as follows. Section 2 gives a mathematical description of the control problem and intro-
duces the notation required. Although the optimal policy for this control problem cannot be obtained explicitly,
several of its structural properties can be derived. As we will see in Section 3, the optimal policy makes the re-
pairman work at full capacity whenever there is at least one machine down, and behaves like a threshold policy.
Subsequently, we focus on finding a policy which generally performs nearly as well as the optimal policy. As input
for the one-step policy improvement algorithm, we study two policies in Section 4, for which the system decom-
poses into multiple subsystems, so that the system becomes easier to evaluate. The first of these policies, which
we will call the static policy, is state-independent, and always reserves a certain pre-determined fraction of repair
capacity to each machine, regardless of the state of the machines. Therefore, the machines behave independently
of each other under this policy, which allows us to derive an exact expression for the relative value function. The
second policy that we study in Section 4 is the priority policy, in which the repairman always prioritises the repair
of a specific machine over the other when both machines are down. Under this policy, the repairman assigns his
full capacity to the high-priority machine when it is down, irrespective of the state of the low-priority machine.
This makes the system easier to analyse. Nevertheless, it is hard to obtain the relative value function for this policy
exactly, but we are able to identify most of its behaviour. Although analytic results on the relative value functions
of these policies are of independent interest, we use these results in Section 5 in combination with the one-step
policy improvement algorithm. This ultimately results in a well-performing, nearly optimal policy, which is given
in terms of a few simple decision rules. The resulting policy turns out to be scalable in the number of machines and
corresponding first-layer queues in the model, so that the policy can be readily extended to allow for a number of
machines larger than two. Finally, extensive numerical results in Section 6 show that the proposed policy is highly
accurate over a wide range of parameter settings. We also identify the key factors determining the performance of
the near-optimal policy.

3

2 Model description and problem formulation

The layered model consists of two machines M1 and M2 and a single repairman R, see Figure 1. Each machine
Mi serves its own first-layer queue Qi of products. The products arrive at Qi according to a Poisson process with
rate λi. The service requirements of the products in Qi are exponentially distributed with rate µi. The service of
these products may be interrupted, since the machines are prone to failure. After an exponentially (σi) distributed
uptime or lifetime, denoted by Ui, a machine Mi will break down, and the service of Qi inevitably stops. When
this happens, the service of a product in progress is aborted and will be resumed once the machine is operational
again. To be returned to an operational state, the machineMi needs to be repaired by the repairman. Whenever the
repairman allocates his full repair capacity to Mi, its repair takes an exponential (νi) distributed time. However,
the machines share the capacity of the repairman. At any moment in time, the repairman is able to decide how to
divide his total repair capacity over the machines. More specifically, it can choose the fractions of capacity q1 and
q2 that are allocated to the repair of M1 and M2 respectively, so that the machines are getting repaired at rate q1ν1

and q2ν2 respectively. We naturally have that 0 ≤ q1 + q2 ≤ 1, and that qi = 0 whenever Mi is operational. The
objective of the repairman is to allocate his repair capacity dynamically in such a way that the average long-term
weighted number of products in the system is minimised.

In order to describe this dynamic optimisation problem mathematically, one does not only need to keep track of
the queues of products, but also of the conditions of the machines. To this end, we define the state space of the
system as S = N2 × {0, 1}2. Each possible state corresponds to an element s = (x1, x2, w1, w2) in S, where
x1 and x2 denote the number of products in Q1 and Q2 respectively. The variable w1 and w2 represents whether
M1 and M2 are in an operational (1) or in a failed state (0). The repairman bases his decision on the information
s, and therefore, any time the state changes can be regarded as a decision epoch. At these epochs, the repairman
takes an action a = (q1, q2) out of the state-dependent action space As = {(q1, q2) : q1 ∈ [0, 1 − w1], q2 ∈
[0, 1−w2], q1 +q2 ≤ 1}, where qi denotes the fraction of capacity assigned toMi, i = 1, 2. The terms 1−w1 and
1−w2 included in the description of the action set enforce the fact that the repairman can only repair a machine if
it is down. Now that the states and actions are defined, we introduce the cost structure of the model. The objective
is modelled by the cost function c(s,a) = c1x1 + c2x2, where c1 and c2 are positive real-valued weights. Thus,
when the system is in state s, the weighted number of customers present in the system equals c(s, ·), regardless of
the action a taken by the repairman.

With this description, the control problem can be fully described as a Markov decision problem. To this end we
uniformise the system (see e.g. [17, Section 11.5]), i.e., we add dummy transitions (from a state to itself) such
that the outgoing rate of every state equals a constant parameter γ, the uniformisation parameter. We choose
γ = λ1 + λ2 + µ1 + µ2 + σ1 + σ2 + ν1 + ν2 and we assume that γ = 1 without loss of generality, since we can
always achieve this by scaling the model parameters. Note that this assumption has the intuitive benefit that rates
can be considered to be transition probabilities, since the outgoing rates of each state sum up to one. Thus, for
i = 1, 2, any action a ∈ As and state s ∈ S, the transition probabilities P are given by

Pa(s, s + ei) = λi, (product arrivals)
Pa(s, s− ei) = µiwi1{xi>0}, (product services)
Pa(s, s− ei+2) = σiwi, (machine breakdowns)
Pa(s, s + ei+2) = qiνi, (machine repairs)
Pa(s, s) = 1− λi − wi(µi1{xi>0} + σi)− qiνi, (uniformisation)

where 1{E} denotes the indicator function on the event E and ei represents the unit vector of which the i-th entry
equals one. All other transition probabilities are zero. The tuple (S, {As : s ∈ S}, P, c) now fully defines the
Markov decision problem at hand.

Define a deterministic policy π* as a function from S toA, i.e., π*(s) ∈ As for all s ∈ S, and let {X *(t) : t ≥ 0}
be its corresponding Markov process taking values in S, which describes the state of the system over time when
the repairman adheres to policy π*. Furthermore, let

u*(s, t) = E[

∫ t

z=0

c(X *(z), π*(X *(z))) dz|X *(0) = s]

4

denote the total expected costs up to time t when the system starts in state s under policy π*. Observe that
for any stable policy, the Markov process has a single recurrent class, so that the average costs per time unit
g* = limt→∞

u*(s,t)
t is independent of the initial state s. This number may also be interpreted as the long-

term average sum of queue lengths under policy π, weighted by the constants c1 and c2. Any policy π* can be
characterised through its relative value function V *(s). This function is a real-valued function defined on the state
space S given by

V *(s) = lim
t→∞

(u*(s, t)− u*(sref, t)),

and represents the asymptotic difference in expected total costs accrued when starting the process in state s instead
of some reference state sref. The optimal policy πopt with relative value function V opt minimises the long-term
average weighted sum of queue lengths, thus gopt = minπ* g*. The long-term optimal actions are a solution of the
Bellman optimality equations gopt + V opt(s) = mina∈As{c(s,a) +

∑
t∈S Pa(s, t)V opt(t)} for all s ∈ S. For

our problem, this constitutes

gopt + V opt(x1, x2, w1, w2) = Hopt(x1, x2, w1, w2) +Kopt(x1, x2, w1, w2)

for every (x1, x2, w1, w2) ∈ S , where Hopt and Kopt are defined in the following way. For an arbitrary policy π*

with relative value function V *, the function H * is given by

H *(x1, x2, w1, w2) =c1x1 + c2x2

+ λ1V
*(x1 + 1, x2, w1, w2) + λ2V

*(x1, x2 + 1, w1, w2)

+ µ1w1V
*((x1 − 1)+, x2, 1, w2) + µ2w2V

*(x1, (x2 − 1)+, w1, 1)

+ σ1w1V
*(x1, x2, 0, w2) + σ2w2V

*(x1, x2, w1, 0)

+
(

1−
2∑
i=1

(
λi + wi(µi + σi)

))
V *(x1, x2, w1, w2), (1)

and it models the costs and the action-independent events of product arrivals, product service completions, ma-
chine breakdowns and dummy transitions respectively. The function K* given by

K*(x1, x2, w1, w2) = min
(q1,q2)∈A(x1,x2,w1,w2)

{q1ν1(V *(x1, x2, 1, w2)− V *(x1, x2, 0, w2))

+ q2ν2(V *(x1, x2, w1, 1)− V *(x1, x2, w1, 0))} (2)

models the optimal state-specific decisions how to allocate the repair capacity over the machines and includes
corrections for the uniformisation term.

As already mentioned in Section 1, these equations are exceptionally hard to solve analytically. Alternatively,
the optimal actions can also be obtained numerically by recursively defining V n+1(s) = Hn(s) +Kn(s) for an
arbitrary function V 0. For n → ∞, the minimising actions converge to the optimal ones (see [17, Chapter 8] for
existence and convergence properties). We use this procedure called value iteration or successive approximation
for our numerical experiments in Section 6.

3 Structural properties of the optimal policy

As mentioned before, it is hard to give a complete, explicit characterisation of the optimal policy for the prob-
lem sketched in Section 2. Therefore, we derive a near-optimal policy later in Section 5. Nevertheless, several
important structural properties of the optimal policy can be obtained. It turns out that the optimal policy is work-
conserving, always dictates the repairman to work on one machine only and can be classified as a threshold policy.
In this section, we inspect these properties more closely.

5

3.1 Work-conserving property

The optimal policy is work-conserving, which means the repairman always repairs at full capacity whenever a
machine is not operational, i.e. q1 + q2 = 1− w1w2. Intuitively, this makes sense, as there are no costs involved
for the repairman’s service. On the other hand, having less repair capacity go unused has decreasing effects on
the long-term weighted number of products in the system. There is no trade-off present, and therefore the repair
capacity should be used exhaustively whenever there is a machine in need of repair.

This property can be proved mathematically. Note that the minimisers of the right-hand side of (2) represent the
optimal actions. From this, it follows that the optimal action satisfies q1 + q2 = 1 − w1w2 for every state s ∈ S
(i.e., the optimal policy satisfies the work-conserving property), if both V opt(x1, x2, 0, w2)− V opt(x1, x2, 1, w2)
and V opt(x1, x2, w1, 0)− V opt(x1, x2, w1, 1) are non-negative for all (x1, x2, w1, w2) ∈ S. The next proposition
proves the latter condition. For the sake of reduction of the proof’s complexity, it also concerns the trivial fact that
under the optimal policy, the system incurs higher costs whenever the number of products in the system is increas-
ing (i.e., V opt(x1 + 1, x2, w1, w2) − V opt(x1, x2, w1, w2) and V opt(x1, x2 + 1, w1, w2) − V opt(x1, x2, w1, w2)
are non-negative).

Proposition 3.1. The relative value function V opt(s) corresponding to the optimal policy satisfies the following
properties for all s ∈ S:

1. V *(x1, x2, 0, w2)− V *(x1, x2, 1, w2) ≥ 0 and V *(x1, x2, w1, 0)− V *(x1, x2, w1, 1) ≥ 0,

2. V *(x1 + 1, x2, w1, w2)− V *(x1, x2, w1, w2) ≥ 0 and V *(x1, x2 + 1, w1, w2)− V *(x1, x2, w1, w2) ≥ 0.

Proof. The proof is based on induction and the guaranteed convergence of the value iteration algorithm. We
arbitrarily pick a function V 0(s) = 0 for all s ∈ S. Obviously, this function satisfies properties 1 and 2. We show
that these properties are preserved when performing one step of the value iteration algorithm. In mathematical
terms, we show for any n ∈ N that the function V n+1 defined by V n+1(s) = Hn(s) + Kn(s) also satisfies the
properties if V n does. Because of the guaranteed convergence, V opt then satisfies properties 1 and 2 by induction.
For an extensive discussion of this technique to prove structural properties of relative value functions, see [14].

The induction step is performed as follows. We assume that properties 1 and 2 hold for V n (the induction as-
sumption). We now show that property 1 holds for V n+1. Observe that by interchanging the indices of the model
parameters, one obtains another instance of the same model, since the structure of the model is symmetric. There-
fore, the left-hand side of property 1 implies the right-hand side. To prove the first part of property 1, we expand
V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2) into V n:

V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2)

=Hn(x1, x2, 0, w2)−Hn(x1, x2, 1, w2) +Kn(x1, x2, 0, w2)−Kn(x1, x2, 1, w2). (3)

By rearranging the terms arising from (1) and applying the induction assumption, we have that

Hn(x1, x2, 0, w2)−Hn(x1, x2, 1, w2)

≥(1− λ1 − λ2 − σ1 − w2(µ2 + σ2))(V n(x1, x2, 0, w2)− V n(x1, x2, 1, w2)). (4)

Furthermore, since V n(x1, x2, w1, 1) − V n(x1, x2, w1, 0) and V n(x1, x2, 1, w2) − V n(x1, x2, 0, w2) are both
non-positive numbers, we can limit the set of possible minimising actions in Kn (see (2)) to {(q1, q2) : q1 ∈
{0, 1− w1}, q2 ∈ {0, 1− w2}, q1 + q2 = 1− w1w2}. By this and (2), we obtain

Kn(x1, x2, 0, w2)−Kn(x1, x2, 1, w2)

= min{ν1(V n(x1, x2, 1, w2)− V n(x1, x2, 0, w2)),

(1− w2)ν2(V n(x1, x2, 0, 1)− V n(x1, x2, 0, 0))}
− (1− w2)(V n(x1, x2, 1, 1)− V n(x1, x2, 1, 0)), (5)

where the second equality holds because of the induction assumption. Let E1 denote the event that the last
minimum is only minimised by its first argument and let E2 be its complementary event. As a conclusion, we find

6

by combining (3)–(5) that

V n+1(x1, x2, 0, w2)− V n+1(x1, x2, 1, w2)

≥(1− λ1 − λ2 − σ1 − w2(µ2 + σ2)− 1{E1}ν1 − 1{E2}(1− w2)ν2)

(V n(x1, x2, 0, w2)− V n(x1, x2, 1, w2))

+ 1{E1}(1− w2)(V n(x1, x2, 1, 0)− V n(x1, x2, 1, 1))

+ 1{E2}(1− w2)(V n(x1, x2, 0, 1)− V n(x1, x2, 1, 1))

≥0.

The last inequality holds by applying the induction assumption on each term of the expression in front of it and
observing, for the first term, that (1−λ1−λ2−σ1−w2(µ2 +σ2)−1{E1}ν1−1{E2}(1−w2)ν2) is non-negative
due to uniformisation.

This proves that property 1 holds. By similar techniques of expanding V n+1 into V n and termwise elimination,
one can also show that V n+1 satisfies property 2 under the induction assumption, which completes the proof.

By proving that V opt satisfies property 1 as stated in Proposition 3.1, we have established that the optimal policy
is work-conserving, implying that q1 + q2 = 1 − w1w2 at all times. We finish this section by pointing out
that the optimal policy always dictates the repairman to focus all his attention on one machine. That is, at all
times, the optimal action reads (q1, q2) = (1 − w1, 0) or (q1, q2) = (0, 1 − w2). This is easily derived from
(2) in combination with property 1 in Proposition 3.1. Even when there are states for which w1w2 = 0 and
ν1(V *(x1, x2, 1, w2) − V *(x1, x2, 0, w2)) = ν2(V *(x1, x2, w1, 1) − V *(x1, x2, w1, 0)), the actions (q1, q2) =
(1 − w1, 0) and (q1, q2) = (0, 1 − w2) will be optimal (although they are uniquely optimal), so that there are
always optimal policies that concentrate all repair capacity on one machine. Therefore, Kopt can be simplified to

Kopt(x1, x2, w1, w2) = min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V opt(x1, x2, 1, w2)− V opt(x1, x2, 0, w2))

+ q2ν2(V opt(x1, x2, w1, 1)− V opt(x1, x2, w1, 0))}.
(6)

This is a welcome simplification when one wants to evaluate the optimal policy numerically, since now the
minimum-operator only involves two arguments.

3.2 Threshold policy

Now that we know that the optimal policy is work-conserving and always dictates the repairman to focus his
attention on a single machine, the question arises which machine this should be. In the event both machines are
down, this question is hard to answer explicitly, since the relative value function V opt pertaining to the optimal
policy defies an exact analysis. However, by inspection of numerical results, one can derive a partial answer.

To this end, we numerically examine the model with the settings c1 = c2 = µ2 = σ1 = ν1 = 1.0, λ1 = 0.1, λ2 =
0.2 and µ1 = σ2 = ν2 = 0.5. By using the simplified version (6) of Kopt in the value iteration algorithm, we
numerically obtain the optimal actions for the states (x1, x2, 0, 0), x1 ∈ {0, . . . , 50}, x2 ∈ {0, . . . , 100}. Figure
2 shows the optimal actions in the form of a scatter plot. Given that both machines are down, a marked point
(x1, x2) in the scatter plot indicates that it is optimal for the repairman to repair M2. If a certain point (x1, x2) is
not marked, then the optimal action is to repair M1 at full capacity.

Judging by Figure 2, it seems that the optimal policy falls in the class of threshold policies. That is, if the
optimal action for the state (x1, x2, 0, 0) is to repair M1 at full capacity, then this is also the optimal action for the
states (x1 + k, x2, 0, 0), k ∈ N. Meanwhile, if it would be optimal to repair M2 when the system is in the state
(x1, x2, 0, 0), then the optimal policy also prescribes to repairM2 if there are fewer products waiting inQ1, i.e., in
the states (x1− k, x2, 0, 0), k ∈ {0, . . . , x1}. Thus, for any number x2, the number of products in Q1 from which
the optimal policy starts taking the decision to repairM1 can be seen as a threshold. Similar effects and definitions

7

0 20 40 60 80 100
x10

10

20

30

40

50
x2

Figure 2: The optimal actions for the model instance studied in Section 3.2.

apply for varying number of products in Q2. The figure clearly exposes a curve that marks the thresholds. At first
glance, this threshold curve may seem linear. However, especially near the origin, this is not quite true.

One can reason intuitively that for any instance of the model, the optimal policy is a threshold policy. This is easily
understood by the notion that an increasing number of products in Q1 makes it more attractive for the repairman
to repair M1. Then, if it was already optimal to repair M1, this obviously will not change. Similar notions exist
for a decreasing number of products in Q1 and varying numbers of products in Q2. Although the threshold effects
are easily understood, they are hard to prove mathematically. A possible approach to this would be to show that
the difference between the arguments in (6) is increasing in x1 using the same techniques as used in the proof of
Proposition 3.1. However, this turns out to be very challenging.

4 Relative value functions

Recall that for any policy π*, we defined V * and g* to be its corresponding relative value function and long-run
expected weighted number of products in the system respectively. The main reason why one cannot obtain the
optimal policy πopt other than through numerical means, is because its corresponding relative value function V opt

does not allow for an exact analysis. As an intermediate step, we therefore study the relative value functions of
two other policies, for which explicit expressions can be obtained. We first examine the static policy in Section
4.1, where each machine is assigned a fixed part of the repair capacity regardless of the system’s state. Then,
we observe the priority policy in Section 4.2, which dictates the repairman to prioritise a specific machine (the
high-priority machine), in case both machines are not operational; i.e., in such a case, all repair capacity is given
to the high-priority machine. In Section 5, these two policies and their relative value functions act as a basis for
the one-step policy improvement to obtain nearly optimal heuristic policies.

4.1 Static policy

As the name of the static policy suggests, the actions taken under this policy do not depend on the state the system
is in. Under the static policy, the repairman always has a fraction p ∈ (0, 1) of his repair capacity reserved for the
repair ofM1, regardless of whetherM1 (orM2) is down or not. Likewise, the remaining fraction (1−p) is reserved
for M2. Therefore, repair on M1 at rate pν1 starts instantly the moment it breaks down, and the same holds for
M2 at rate (1− p)ν2. Thus, under this policy, the repairman always takes the action (p(1−w1), (1− p)(1−w2)).
In the sequel, we will refer to p as the splitting parameter. It is evident that this policy is not optimal, since the
repairman does not use his repair capacity exhaustively when exactly one of the two machines is down, i.e., the
static policy does not satisfy the work-conserving property studied in Section 3.1. However, when the splitting

8

parameter is chosen well, this policy is not totally unreasonable either. When analysing this policy, we assume
that the system is stable when adhering to it. That is, for each queue the rate of arriving products is smaller than
the rate at which the corresponding machine is capable of serving products:

λ1 < µ1
pν1

σ1 + pν1
and λ2 < µ2

(1− p)ν2

σ2 + (1− p)ν2
, (7)

where the two fractions denote the fractions of time M1 and M2 are operational respectively.

Observe that the capacity that M1 receives from the repairman is now completely independent of that received by
M2 at any given time, and vice versa. Analysis of the relative value function of the static policy is tractable, since
the machines do not compete for repair resources anymore under this policy, making the queue lengths in each of
the queues uncorrelated. In a way, it is as if each machine has its own repairman now, repairing at rate pν1 and
(1 − p)ν2 respectively. Therefore, the system can be decomposed into two components, which do not interact.
Each of these components can be modelled as a single-server queue of M/M/1 type with server vacations occuring
independently of the amount of work present in the queue. Because of this decomposition, the relative value
function V sta(x1, x2, w1, w2) of the total system can be seen as the weighted sum of the relative value functions
V com

1 (x1, w1) and V com
2 (x2, w2) corresponding to the two components. As a result, the long-term average cost

gsta is also a weighted sum of the average costs gcom
1 and gcom

2 :

gsta = c1g
com
1 + c2g

com
2 and V sta(x1, x2, w1, w2) = c1V

com
1 (x1, w1) + c2V

com
2 (x2, w2). (8)

To derive gcom
1 , gcom

2 , V com
1 (x1, w1) and V com

2 (x2, w2), we focus on the relative value function corresponding to
one component in Section 4.1.1. We then finalise the analysis on V sta in Section 4.1.2.

4.1.1 Relative value function for the components

We now derive the relative value function of one component of the model under the static policy, and omit all
indices of the parameters. Thus, we regard a single-server queue of M/M/1 type, in which products arrive at rate λ
and are processed at rate µ if the machine is up. Independently of this process, the server takes a vacation after an
exponentially (σ) distributed amount of time, even when there is a product in service. The service of the product is
then interrupted and resumed once the server ends its vacation. A vacation takes an exponentially (ν) distributed
amount of time, after which the server will process products again until the next vacation. This system can be
interpreted as a Markov reward chain with states (x,w) ∈ Scom representing the products present in the system
and the state of the server being in a vacation (w = 0) or not (w = 1), where Scom = N×{0, 1} is its state space.
The system is said to accrue costs state-dependently at rate c(x,w) = x per time unit. After uniformisation at rate
one, the transition probabilities P com(s, t) from a state s ∈ Scom to a state t ∈ Scom are given by

P com((x,w), (x+ 1, w)) = λ, P com((x,w), (x− 1, w)) = µw1{x>0},
P com((x, 1), (x, 0)) = σ, P com((x, 0), (x, 1)) = ν,
and P com((x,w), (x,w)) = (1− λ− w(µ1{x>0} + σ) + ν(1− w)),

while all other transition probabilities are zero. By the above description, the Poisson equations for this Markov
reward chain with long-term average costs per time unit gcom and relative value function V com(x,w) are given by

gcom + V com(x,w) =x+ λV com(x+ 1, w) + µwV com((x− 1)+, w)

+ σwV com(x, 0) + ν(1− w)V com(x, 1)

+ (1− λ− w(µ+ σ)− ν(1− w))V com(x,w) (9)

for all (x,w) ∈ N× {0, 1}.

To solve these equations, we first observe that the completion time for a product from the moment its service
is started until it leaves the system consists of an exponentially (µ) distributed amount of actual service time and
possibly some interruption time due to server vacations. When interruption takes place, the number of interruptions
is geometrically (µ

µ+σ) distributed, due to the Markovian nature of the model. Combined with the fact that every

9

interruption takes an exponential (ν) amount of time, this means that the total interruption time, given that it is
positive, is exponentially (µν

µ+σ) distributed. Thus, the completion time consists of an exponential (ν) repair phase
and also, with a probability σ

µ+σ that there is at least one interruption, an exponential (µν
µ+σ) interruption phase.

The above implies that the distribution of the completion time falls in the class of Coxian distributions with order
2. Due to this observation, the average costs per time unit gcom incurred by a component can be calculated by the
use of standard queueing theory, see Remark 4.2. However, we are also interested in the relative value function
of the component. If the server would only start a vacation if there is at least one product in the queue, the
component could in principle be modelled as an M/Cox(2)/1 queue, by incorporating the interruption times into
the service times (that is, by replacing the service times with the completion times). For the M/Cox(2)/1 queue, it
is known that the relative value function can be expressed as a second-order polynomial in the queue length (cf.
[2]). However, in our case, a server may also start a vacation during an idle period, so that products arriving at
an empty system may not be served instantly. Nevertheless, it is reasonable to conjecture that the relative value
function V com is of a second-order polynomial type too.

If this conjecture holds, substituting V com(x, 0) = α1x
2 + α2x+ α3 and V com(x, 1) = β1x

2 + β2x+ β3 in (9)
should lead to a consistent system of equations and give a solution for the coefficients. After substitution, we find
the equations

gcom + α3 = λ (α1 + α2) + (1− ν)α3 + νβ3,

gcom + β3 = σα3 + λ (β1 + β2) + (1− σ)β3,

gcom + α1x
2 + α2x+ α3 = ((1− ν)α1 + νβ1)x2 + (1 + 2λα1 + (1− ν)α2 + νβ2)x

+ λ (α1 + α2) + (1− ν)α3 + νβ3,

gcom + β1x
2 + β2x+ β3 = (σα1 + (1− σ)β1)x2 + (1 + σα2 + 2(λ− µ)β1 + (1− σ)β2)x

+ σα3 + (λ+ µ)β1 + (λ− µ)β2 + (1− σ)β3

for all x ∈ N+. One can easily verify that the system of equations is indeed consistent. By solving for the
coefficients, a solution for gcom and V com up to a constant can be found. The constant can be chosen arbitrarily,
e.g. by assuming that V com(0, 1) = 0, but is of no importance. In principle, there may exist other solutions to
(9) that do not behave like a second-order polynomial in x. In fact, when the state space is not finite, as is the
case in our model, it is known that there are many pairs of g and V that satisfy the Poisson equations (9) (see e.g.
[4]). There is only one stable pair satisfying V (0, 1) = 0 that is the correct stable solution, however, and we refer
to this as the unique solution. Showing that a solution to (9) is the unique solution involves the construction of a
weighted norm so that the Markov chain is geometrically recurrent with respect to that norm. This weighted norm
imposes extra conditions on the solution to the Poisson equations, so that the unique solution can be identified.
The next lemma summarises the solution resulting from the set of equations above, and states that this is also the
unique solution.

Lemma 4.1. For a stable component instance, the long-term average number of products gcom and the relative
value function V com are given by

gcom =
λ((σ + ν)2 + µσ)

(σ + ν)(µν − λ(σ + ν))
, V com(x, 0) = α1x

2 + α2x+ α3 and V com(x, 1) = α1x
2 + α1x, (10)

for x ∈ N, where

α1 =
σ + ν

2(µν − λ(σ + ν))
, α2 =

2µ+ σ + ν

2(µν − λ(σ + ν))
and α3 =

λµ

(µν − λ(σ + ν))(σ + ν)
,

when taking V com(0, 1) = 0 as a reference value.

Proof. One simply verifies by substitution that the solution given in (10) satisfies V com(0, 1) = 0 and the Poisson
equations in (9). It is left to show that the above solution is the unique solution. To this end, we use [4, Theorem 6].
Suppose that there exists a finite subset of statesM and a weight function u : Scom → {0, 1}, such that the Markov
chain, which satisfies the stability and aperiodicity conditions needed for the theorem to hold, is u-geometrically
recurrent, i.e.,

RM,u(x,w) :=
∑

(x′,w′)/∈M

P com((x,w), (x′, w′))u(x′, w′)

u(x,w)
< 1

10

for all (x,w) ∈ S and

||c||u = sup
s∈Scom

|c(s)|
u(s)

<∞.

Then, this theorem implies that a pair (g, V) satisfying the Poisson equations (9) is the unique solution when

||V ||u = sup
s∈Scom

|V (s)|
u(s)

<∞.

To invoke this theorem, we set M = {(0, 0), (0, 1)} and u(x,w) = (1 + δ)x(1− ε)w, with

δ ∈
(

0,
µ+ ν + σ −

√
(λ− µ− ν − σ)2 + 4 (λν − µν + λσ)

2λ
− 1

2

)
and

ε ∈
(λ
ν
δ,

δµ− λδ(1 + δ)

δµ− λδ(1 + δ) + σ(1 + δ)

)
.

Then, we have that

RM,u(x,w) = λ(1+δ)+w(µ1{x>1}
1

1 + δ
+σ

1

1− ε
)+ν(1−w)(1−ε)+(1−λ−w(1{x>1}µ+σ)−(1−w)ν).

For all x ∈ N, the lower bound on ε ensures that RM,u(x, 0) < 1, while the upper bound guarantees that
RM,u(x, 1) < 1. The upper bound of δ is derived by equating the two bounds of ε, and thus warrants that the
lower bound of ε does not exceed the upper bound of ε. In its turn, the stability condition λ < µ ν

σ+ν (see (7))
guarantees that the upper bound of δ is positive. Observe that for the assessment of the validity of the conditions
||c||u < ∞ and ||V com||u < ∞, the value of w does not play an essential role, as it can only influence the value
of u(x,w) up to a finite factor (1− ε) for any x ∈ N. We clearly have that the cost function c(x,w) = x satisfies
||c||u < ∞, since it is linear in x, and the weight function u is exponential in x. Likewise, the function V com as
given in (10), satisfies ||V com||u <∞, since it behaves as a quadratic polynomial as opposed to exponential in x.
Hence, by [4, Theorem 6] the solution given by (10) is the unique solution to the Poisson equations.

This concludes the derivation of the relative value function for a component with parameters λ, µ, σ and ν.

Remark 4.1. For σ = 0 and w = 1, the component model degenerates to a regular M/M/1 queue. As expected,
gcom and V com(x, 1) then simplify to the well-known expressions gM/M/1 = λ

µ−λ and V M/M/1(x) = 1
2(µ−λ)x(x+ 1).

For the general case, we may rewrite V com(x, 1) = 1
2(µ ν

σ+ν−λ)x(x + 1). Observe that µ ν
σ+ν is the maximum

rate at which the server is able to process products in the long term. When interpreting this as an effective service
rate, we may conclude that the structure of the relative value function V com is similar to that of the regular M/M/1
queue.

Remark 4.2. As observed above, the component can be modelled alternatively as a single-server vacation queue
with the Coxian completion time C of a product regarded as the service time and with server vacations occuring
exclusively when the queue is empty. As a result, the average costs per time unit, or rather, the average queue
length gcom (including any possible product in service) can also be obtained by applying the Fuhrmann-Cooper
decomposition (cf. [8]):

gcom = E[V] + E[LM/Cox/1],

where E[V] represents the expected queue length when observed during a server vacation (at the start of which
there are no products in the queue) and E[LM/Cox/1] = λE[C] + λE[C2]

2(1−λE[C]) is the well-known expectation of the
queue length LM/Cox/1 of a similar single-server queueing system with Poisson (λ) arrivals and the completion
times as service times, but excluding any server vacations. The term E[V] equals the probability σ

σ+ν that a
product arriving in an empty system finds the server in a vacation, times the mean number of Poisson (λ) arrivals
during a residual exponentially (ν) distributed vacation time, and thus amounts to λσ

ν(σ+ν) . The moments E[C] and
E[C2] can be determined by studying the relation between the completion time and the service requirement of a
product. When substituting these expressions, we obtain gcom as given in Lemma 4.1.

11

4.1.2 Resulting expression for V sta

We now turn back to the relative value function of the model as described in Section 2 under the static policy
with parameter p. As mentioned before, this model consists of two components with rates λ1, µ1, σ1, pν1 and
λ2, µ2, σ2, (1−p)ν2 respectively. Now that we have found an expression for the relative value functions pertaining
to one such component, we readily obtain an expression for the relative value function for the complete system.
Combining (8) with Lemma 4.1 results in the following theorem.

Theorem 4.2. Given that the stability conditions in (7) are satisfied, the long-term average costs gsta
p and the

relative value function V sta
p (x1, x2, w1, w2) corresponding to the static policy with parameter p are given by

gsta
p = c1

λ1((σ1 + pν1)2 + µ1σ1)

(σ + pν1)(µ1pν1 − λ1(σ1 + pν1))
+ c2

λ2((σ2 + (1− p)ν2)2 + µ2σ2)

(σ2 + (1− p)ν2)(µ2(1− p)ν2 − λ2(σ2 + (1− p)ν2))

and

V sta
p (x1, x2, w1, w2) =α1,1c1x

2
1 + c1(α2,1(1− w1) + α1,1w1)x1 + α3,1c1(1− w1)

+ α1,2c2x
2
2 + c2(α2,2(1− w2) + α1,2w2)x2 + α3,2c2(1− w2)

for all (x1, x2, w1, w2) ∈ S, where

α1,1 =
σ1 + pν1

2µ1pν1 − λ1(σ1 + pν1)
, α1,2 =

σ2 + (1− p)ν2

2µ2(1− p)ν2 − λ2(σ2 + (1− p)ν2)
,

α2,1 =
2µ1 + σ1 + pν1

2µ1pν1 − λ1(σ1 + pν1)
, α2,2 =

2µ2 + σ2 + (1− p)ν2

2µ2(1− p)ν2 − λ2(σ2 + (1− p)ν2)
,

α3,1 =
λ1µ1

(µ1pν1 − λ1(σ1 + pν1))(σ1 + pν1)
, and

α3,2 =
λ2µ2

(µ2(1− p)ν2 − λ2(σ2 + (1− p)ν2))(σ2 + (1− p)ν2)
.

4.2 Priority policy

In the previous section, we have derived the relative value function for the static policy explicitly. In Section 5,
this policy will act as an initial policy for the one-step policy improvement algorithm to obtain a well-performing
heuristic policy. However, for certain instances of the model, there may be no static policy available for which
stability holds, whereas the optimal policy does result in stable queues. Then, one-step policy improvement based
on the static policy is not feasible, since the initial policy for this procedure must result in a stable system. In these
cases, a priority policy may still result in stability and thus be suitable as an initial policy, so that a heuristic policy
can still be obtained. For this reason, we study the relative value function V prio of the priority policy in the current
section.

Under the priority policy πprio, the repairman always prioritises a specific machine, which we will call the high-
priority machine. This means that in case both machines are down, the repairman allocates his full capacity to
the high-priority machine. If there is only one machine unoperational, the repairman dedicates his capacity to
the broken machine, regardless of whether it is the high-priority machine. In case all machines are operational,
the repairman obviously remains idle. Without loss of generality, we assume in this section that M1 is the high-
priority machine. Thus, the repairman always takes the action ((1 − w1), w1(1 − w2)). In the remainder of this
section, we also assume the system to be stable. That is, for each queue the rate at which products arrive is smaller
than the effective service rate of its machine under the priority policy:

λ1 < µ1
ν1

σ1 + ν1
and λ2 < µ

eff
2 , (11)

where µeff
2 refers to the effective service rate of M2. The right-hand side of the first inequality represents the

effective service rate of the high-priority machine M1, and consists of the actual service rate µ1 times the fraction

12

of time M1 is operational under the priority policy. The effective service rate of M2 analogously satisfies

µ
eff
2 = µ2

1
σ2

1
σ2

+ z
ν1

+ E[R2]
. (12)

The expression z
ν1

+ E[R2] in the right-hand side represents the expected downtime of M2. The constant z refers
to the probability that M2 observes the repairman busy on M1 when it breaks down, so that z

ν1
represents the

expected time M2 has to wait after its breakdown until the start of its repair as a result of an M1 failure. The
probability z is computed by the fixed-point equation

z =
σ1

σ1 + σ2

(σ2

ν1 + σ2
+

ν1

ν1 + σ2
z
)
⇒ z =

σ1

σ1 + σ2 + ν1
. (13)

Likewise, E[R2] represents the expected time from the moment the repairman starts repair on M2 until its finish,
and is computed by the fixed-point equation

E[R2] =
1

σ1 + ν2
+

σ1

σ1 + ν2

(1

ν1
+ E[R2]

)
⇒ E[R2] =

1

ν2
+

σ1

ν1ν2
.

Deriving an expression for the relative value function V prio of the priority policy is hard. Before, in the case of
the static policy, the model could be decomposed into several components which exhibit no interdependence. This
allowed us to obtain an explicit expression for V sta. In contrast, a similar decomposition under the current policy
does lead to interacting components. The first component, which contains the high-priority machine M1 and its
corresponding queue, acts independently of any other component, since M1 is not affected by M2 when accessing
repair resources. However, M2 is affected by M1. This interference causes the second component, which contains
the other machine and its queue of products, to become dependent on the events occurring in the first component.
Therefore, there exist correlations, which make an explicit analysis of V prio intractable. Nevertheless, we are still
able to derive certain characteristics of the relative value function.

When decomposing the model in the same way as was done in Section 4.1, we have, similar to (8), that the long-
term average costs gprio per time unit and the relative value function V prio pertaining to the priority policy can be
written as

gprio = c1g
prc + c2g

nprc and V prio(x1, x2, w1, w2) = c1V
prc(x1, w1) + c2V

nprc(x2, w1, w2), (14)

where gprc and V prc(x1, w1) are the long-term average costs and the relative value function pertaining to the first
component, which we will also call the priority component. Similarly, gnprc and V nprc(x2, w1, w2) denote the
long-term average costs and the relative value function of the second component, which we will also refer to as
the non-priority component. In both of these subsystems, the products present are each assumed to incur costs
at rate one. Note that the function V nprc(x2, w1, w2) of the second component now includes w1 as an argument,
since the costs accrued in the second component are now dependent on the state of M1 in the first component. In
Section 4.2.1, we obtain an expression for V prc. While V nprc defies an explicit analysis due to the aforementioned
dependence, we make several conjectures on its form in Section 4.2.2. In Section 5, it will turn out that these
conjectures still allow us to use πprio as an initial policy for the one-step improvement algorithm.

4.2.1 Relative value function for the priority component

In the priority component, the machine M1 faces no competition in accessing repair facilities. If M1 breaks down,
the repairman immediately starts repairing M1 at rate ν1. Thus, from the point of view of M1, it is as if M1 has
its own dedicated repairman. Therefore, the priority component behaves completely similar to a component of the
static policy studied in Section 4.1.1, but now with λ1, µ1, σ1 and ν1 as product arrival, product service, machine
breakdown and machine repair rates. As a result, we obtain by Lemma 4.1 that, when products in the queue incur
costs at rate one, the long-term average costs gprc and the relative value function V prc are given by

gprc =
λ1((σ1 + ν1)2 + µ1σ1)

(σ1 + ν1)(µ1ν1 − λ1(σ1 + ν1))
, V prc(x1, 0) = υ1x

2
1+υ2x1+υ3 and V prc(x1, 1) = υ1x

2
1+υ1x1, (15)

13

for x1 ∈ N, where

υ1 =
σ1 + ν1

2(µ1ν1 − λ1(σ1 + ν1))
, υ2 =

2µ1 + σ1 + ν1

2(µ1ν1 − λ1(σ1 + ν1))
and υ3 =

λ1µ1

(µ1ν1 − λ1(σ1 + ν1))(σ1 + ν1)
,

when taking V prc(0, 1) = 0 as a reference value.

4.2.2 Relative value function for the non-priority component

As mentioned earlier, the relative value function V nprc of the non-priority component defies an explicit analysis,
due to its dependence on the priority component. In this section, we conjecture that V nprc asymptotically behaves
like a second-order polynomial in x2 as x2 →∞. Building on this, we also make certain conjectures on the first-
order and second-order coefficients of this polynomial. The plausibility of the conjectures and claims presented in
this section were verified by numerical results. For the sake of brevity, we omit the presentation of this numerical
study. We also present an approximation for the long-term expected costs gnprc.

In the non-priority component, products arrive at rate λ2, and are served at rate µ2 by M2 when it is operational.
Independently of this, M2 breaks down at rate σ2 when it is operational. In case M2 is down, it gets repaired at
rate ν2 if M1 is operational, and at rate zero otherwise. Obviously, if M1 is operational, it breaks down at rate σ1,
and gets repaired at rate ν1 if it is down. The resulting system can again be formulated as a Markov reward chain
with states (x2, w1, w2) ∈ Snprc, representing the number of products in the component (x2), and the indicator
variables corresponding to each of the machine’s operational states (w1, w2), where Snprc ∈ N × {0, 1}2 is its
state space. This chain is said to accrue costs state-dependently at rate c(x2, w1, w2) = x2. After uniformisation
at rate 1, the transition probabilities P nprc(s, t) from a state s ∈ Snprc to a state t ∈ Snprc are given by

P nprc((x2, w1, w2), (x2 + 1, w1, w2)) = λ2, P nprc((x2, w1, w2), (x2 − 1, w1, w2)) = µ2w21{x2>0},
P nprc((x2, 1, w2), (x2, 0, w2)) = σ1, P nprc((x2, w1, 1), (x2, w1, 0)) = σ2,
P nprc((x2, 0, w2), (x2, 1, w2)) = ν1, P nprc((x2, 1, 0), (x2, 1, 1)) = ν2, and
P nprc((x2, w1, w2), (x2, w1, w2)) = (1− λ2 − σ1w1 − w2(µ21{x2>0} + σ2)− ν1(1− w1)− ν2w1(1− w2)),

while all other transition probabilities are zero. For this Markov reward chain, the Poisson equations are given by

gnprc + V nprc(x2, w1, w2)

=x2 + λ2V
nprc(x2 + 1, w1, w1) + µ2w2V

nprc((x2 − 1)+, w1, 1)

+ σ1w1V
nprc(x2, 0, w2) + σ2w2V

nprc(x2, w1, 0)

+ ν1(1− w1)V nprc(x2, 1, w2) + ν2w1(1− w2)V nprc(x2, 1, 1)

+ (1− λ2 − σ1w1 − w2(µ2 + σ2)− ν1(1− w1)− ν2w1(1− w2))V nprc(x2, w1, w2). (16)

Conjecture 4.3. Assume that the stability conditions in (11) are satisfied. Then, the relative value function
V nprc(x2, w1, w2) of the non-priority component asymptotically behaves as a second-order polynomial in x2

with second-order coefficient φ1 = 1
2 (µ

eff
2 − λ2)−1 as x2 → ∞ for each w1, w2 ∈ {0, 1}, where µeff

2 represents
the effective service rate of M2 as given in (12).

Argument. Recall that V nprc(x2 + 1, w1, w2) − V nprc(x2, w1, w2) represents the long-term difference in total
expected costs accrued in the non-priority component when starting the system in state (x2 + 1, w1, w2) instead
of (x2, w1, w2). Since every customer generates costs at rate one per time unit, it is easily seen by a sample path
comparison argument that this difference asymptotically (for x2 → ∞) amounts to the expected time it takes
for the queue to empty when the system is started in the state (x2 + 1, w1, w2). For small values of x2, this
difference may depend slightly on w1, since the event of M1 being down at the start of the process may have
a relative significant impact on the time to empty the queue, as the first repair on M2 is likely to take longer
than usual. However, as x2 becomes larger, the time needed for the queue to empty becomes larger too, so that
the process describing the conditions of the machines is more likely to have advanced towards an equilibrium in
the meantime. As a result, the initial value of w1 does not have a relatively significant impact on the difference
(i.e., the time for the queue to empty) for larger x2-values. In fact, the extra delay in the time to empty imposed

14

by an initial failure of M1 is expected to converge to a constant as x2 increases. Based on these observations,
we expect that asymptotically, the value w1 will only appear in front of x2-terms (and not higher powers) in
V nprc(x2, w1, w2). This asymptotic linear effect is studied in Conjecture 4.4. We also expect that V nprc starts to
exhibit this asymptotic behaviour very quickly as x2 increases, since the process describing the conditions of the
machines regenerates every time M2 is repaired, and thus moves to an equilibrium rather quickly.

Now that we have identified the contribution of w1, we study the behaviour of V nprc in the direction of x2 that
is not explained by w1. When ignoring the interaction with the priority queue (thus ignoring w1), the queue of
products in the non-priority component may be interpreted as an M/PH/1 queue, by incorporating the service
interruptions (consisting of M1 and M2 repairs) into the service times of the products. Thus, queueing-theoretic
intuition suggests that the relative value function for our problem may behave similarly to that of the M/PH/1
queue, particularly if the degree of interdependence between the queue lengths of Q1 and Q2 is not very high.
It is known that the relative value function of such a queue is a quadratic polynomial (see e.g. [2]), so that
asymptotically, V nprc is likely to behave as a quadratic polynomial too. The second-order coefficient of the
relative value function of the M/PH/1 queue satisfies the form 1

2 (µ
eff
2 −λ2)−1, where λ2 is the arrival rate and µeff

2

is the effective service rate; i.e., the long-term rate at which the products leave the system. As observed in Remark
4.1, the second-order coefficient α1 of the static component in Lemma 4.1 is also of this form, independent of
the value of w2. Therefore, it is reasonable to assume that the second-order coefficient of V nprc also satisfies this
form, independent of the values for w1, w2. The involved effective service rate of M2, µeff

2 , is given in (12). By
combining all arguments above, the conjecture follows.

Note that the first-order coefficient of the polynomial, unlike the second-order coefficient, is expected to be de-
pendent on w1 as mentioned in the argument of Conjecture 4.3, but also on w2, in line with the results on the
components of the static policy. The first-order coefficient is studied in the next conjecture.

Conjecture 4.4. Suppose that Conjecture 4.3 holds true, so that asymptotically

V nprc(x2, 0, 0) = φ1x
2
2 + φ2x2 + φ3, V nprc(x2, 1, 0) = φ1x

2
2 + ψ2x2 + ψ3,

V nprc(x2, 0, 1) = φ1x
2
2 + χ2x2 + χ3, and V nprc(x2, 1, 1) = φ1x

2
2 + ω2x2 + ω3

(17)

as x2 →∞. Then, ψ2 = φ2 −∆1,0, χ2 = φ2 −∆0,1, ω2 = φ2 −∆1,1, where

∆0,1 =
µ2 (ν1 + σ1) (ν1 + ν2 + σ1 + σ2)

µ2ν1ν2 (ν1 + σ1 + σ2)− λ2 (ν1 + σ1) (ν1 (ν2 + σ2) + σ2 (ν2 + σ1 + σ2))
,

∆1,0 =
µ2ν2 (ν1 + σ1 + σ2)

µ2ν1ν2 (ν1 + σ1 + σ2)− λ2 (ν1 + σ1) (ν1 (ν2 + σ2) + σ2 (ν2 + σ1 + σ2))
and

∆1,1 =
µ2 (ν1 + ν2 + σ1) (ν1 + σ1 + σ2)

µ2ν1ν2 (ν1 + σ1 + σ2)− λ2 (ν1 + σ1) (ν1 (ν2 + σ2) + σ2 (ν2 + σ1 + σ2))
.

Argument. The relative value function V nprc is expected to satisfy the Poisson equations (16), also asymptotically
for x2 →∞. When substituting (17) into (16) for x2 > 0, the constraints on φ2, χ2, ψ2 and ω2 mentioned above
are necessary for the first-order terms in x2 on both sides of the equations to be equal.

Remark 4.3. As costs in the non-priority component are generated primarily by having customers in the queue, we
expect the values of φ3, χ3, ψ3 and ω3 in (17) to be of very moderate significance compared to the second-order and
first-order coefficients. As mentioned before, we also expect that V nprc starts to exhibit its asymptotic behaviour
very quickly as x2 increases. Although we have not found an explicit solution for the first-order coefficients φ2,
χ2, ψ2 and ω2, we can therefore still obtain accurate approximations for expressions such as V prio(x1, x2, 1, 0)−
V prio(x1, x2, 0, 0) and V prio(x1, x2, 0, 1) − V prio(x1, x2, 0, 0) based on the information we have obtained. In
particular, we have by combining the results in (14), (15), Conjecture 4.3 and Conjecture 4.4 that

V prio(x1, x2, 1, 0)− V prio(x1, x2, 0, 0) ≈ c1((υ1 − υ2)x1 − υ3)− c2∆1,0x2

V prio(x1, x2, 0, 1)− V prio(x1, x2, 0, 0) ≈ −c2∆0,1x2 (18)

with the parameters υ1, υ2, υ3, ∆1,0 and ∆0,1 as defined in Section 4.2.1 and Conjecture 4.4 respectively. These
two accurate approximations allow us to apply the one-step policy improvement algorithm based on the priority
policy in Section 5.1.2.

15

In the two conjectures above, the long-term expected costs per time unit gnprc was not regarded. However, in
deciding which of the two possible priority policies (i.e., the policies corresponding to M1 and M2 being the
high-priority machine) to use ultimately as an initial policy for the one-step policy improvement algorithm, an
expression for this quantity is needed. Therefore, we end this section with an approximation for the expected costs
per time unit gnprc, again assuming that M1 is the machine having priority.

Approximation 4.5. An accurate approximation for the long-term expected costs per time unit gnprc is given by

gnprc ≈ λ2E[Γapp] +
λ2

2E[Γ2
app]

2(1− λ2E[Γapp])
+ λ2

σ2E[D2]

2(1 + σ2ED)
(19)

where

E[Γiapp] = (−1)i
di

dsi

(µ2

µ2 + s+ σ2(1− D̃(s))

)∣∣∣
s=0

, E[Di] = (−1)i
di

dsi
D̃(s)

∣∣∣
s=0

and

D̃(s) =
(

(1− z) + z
ν1

ν1 + s

) ν2

ν2 + s+ σ1(1− ν1
ν1+s)

,

with z as defined in (13).

Justification. This approximation is obtained by ignoring the interaction between the two components. Inspired
by Remark 4.2, we approximate gnprc by studying the queue length in an M/G/1 queue with server vacations,
with completion times denoted by Γ instead of service times, which incorporate the time lost due to service
interruptions as a result of a breakdown of M2 during service. The server vacations, which start each time the
queue becomes empty, include the down-periods ofM2 following a breakdown occuring when the queue is empty.
Let D̃(s) = E[e−sD] be the Laplace-Stieltjes transform (LST) of the duration D of an M2 down-period. This
periodD consists of an exponential (ν2) repair timeR2 with LST R̃2(s) = ν2

ν2+s , and a Poisson (σ1R2) number of
interruptionsN , each caused by a breakdown ofM1. SinceM1 has priority, these interruptions take an exponential
(ν1) repair time R1 with LST R̃1(s) = ν1

ν1+s . Finally, when M2 breaks down, it will have to wait for an M1-repair
to finish before repair on M2 can start with probability z as defined in (13). Since the repair time of M1 is
memoryless, this waiting time also has the LST R̃1(s). Thus, we have that

D̃(s) =
(
(1− z) + zR̃1(s)

) ∫ ∞
t=0

e−st
(∞∑
n=0

R̃n1 (s)P(N = n)
)
ν2e
−ν2tdt

=
(
(1− z) + zR̃1(s)

) ∫ ∞
t=0

e−st
(∞∑
n=0

e−σ1t
(σ1tR̃1(s))n

n!

)
ν2e
−ν2tdt

=
(
(1− z) + zR̃1(s)

)
R̃2(s+ σ1(1− R̃1(s)))

=
(

(1− z) + z
ν1

ν1 + s

) ν2

ν2 + s+ σ1(1− ν1
ν1+s)

.

The completion time Γ of a product, of which the distribution is represented by its LST Γ̃(s), consists of an expo-
nentially (µ2) distributed service timeB2 with LST B̃2(s) = µ2

µ2+s , and a Poisson (σ2B2) number of interruptions,
each caused by a breakdown of M2. Due to the interaction between the components, we know that at the start of
the first completion time after a vacation period, both machines are operational, biasing the duration of the first
breakdown of M2 after that time. When ignoring this effect of interaction, and assuming that each breakdown has
a duration distributed according to D, we obtain similarly to the computations above that

Γ̃(s) ≈ B̃2(s+ σ2(1− D̃(s))). (20)

An application of the Fuhrmann-Cooper decomposition similar to Remark 4.2 suggests that

gnprc ≈ E[LM/G/1] + E[Lvac],

16

where E[LM/G/1] = λE[Γ] + λ2E[Γ2]
2(1−λ2E[Γ]) is the mean queue length of the number of products in an M/G/1 queue

with Poisson (λ2) arrivals and service times distributed according to the completion times Γ. Approximations for
the moments of Γ follow by differentation of (20) with respect to s. The term E[Lvac] represents the expected
queue length observed when the server is on a vacation, which is initiated any time the queue empties. This
vacation lasts until the time of the next product arrival in case M2 is operational at that point or otherwise, until
the first time a repair of M2 completes after that time. When conditioning on the former case, the expected queue
length as observed by a vacation is obviously zero. When conditioning on the latter, this expectation resolves to
the expected number of Poisson (λ2) arrivals during the past part of a down-period D. The duration of this past
part has expectation E[D2]

2E[D] , of which the moments of D can be computed by differentation of D̃(s) with respect
to s. The probability of the latter event occurring is hard to compute, as the durations of the vacation periods are
weakly interdependent, due to the interaction between the components. By ignoring this dependence, we have
by a renewal argument that this probability is well approximated by E[D]

1
σ2

+E[D]
, where 1

σ2
is the expected duration

of an up-period of M2. As a result, E[Lvac] ≈ λ2
E[D2]
2E[D]

E[D]
1
σ2

+E[D]
= λ2

σ2E[D2]
2(1+σ2E[D]) . By combining the results

above, we obtain an approximation for gnprc as summarised in (19). Note that the application of the Fuhrmann-
Cooper decomposition requires that the completion times are mutually independent. However, in our case, this
requirement is not met, again due to the interaction between the components. For example, a very long completion
time may imply that the last actual service period of M2 has been longer than usual. This in its turn implies that
M2 has been in operation for some time, so that if a M2-breakdown occurs in the next completion time, it is
likelier than usual that M1 is also down at that point. This obviously has effects on the completion time. Due to
this interdependence, the application of the Fuhrmann-Cooper decomposition also results in a computation error.
However, all computation errors made share the same source, namely the interaction between the components,
and in particular the role of M1. As we already saw in Conjecture 4.3, the influence of M1 on the relative value
function is limited, especially for states with a large number of products in the queue. Therefore, we expect this
approximation to be accurate, especially for the purpose of deciding which of the two priority policies available
performs best. A numerical study, omitted for the sake of brevity, verifies the plausibility of this statement.

5 Derivation of a near-optimal policy

Based on the explicit expressions for the relative value functions of the static policy and the priority policy as
obtained in the previous section, we derive a nearly optimal dynamic policy. We do so by applying the one-step
policy improvement method on both the static policy and the priority policy in Section 5.1. The resulting improved
policies πoss and πosp can then be used to construct a nearly optimal policy, as discussed in Section 5.2.

5.1 One-step policy improvement

One-step policy improvement is an approximation method that is distilled from the policy iteration algorithm in
Markov decision theory. In policy iteration, one starts with an arbitrary policy πinit for which the relative value
function V init is known. Next, using these values, an improved policy πimp can be obtained by performing a policy
improvement step:

πimp(s) = arg min
a∈As

{
∑
s′∈S

Pa(s, s′)V init(s′)}, (21)

i.e., the minimising action of K init(s) as defined in (2). If πimp = πinit, the optimal policy has been found.
Otherwise, the procedure can be repeated with the improved policy by setting πinit := πimp, generating a sequence
converging to the optimal policy. However, as the relative value function of the improved policy may not be known
explicitly, subsequent iterations may have to be executed numerically. To avoid this problem, the one-step policy
improvement consists of executing the policy improvement step only once. In this case, the algorithm starts with
a policy for which an expression for the relative value function is known. The resulting policy is then explicit and
can act as a basis for approximation of the optimal policy. We now derive two one-step improved policies based
on the results of the static policy and the priority policy as obtained in Section 4.

17

5.1.1 One-step improvement based on the static policy

In Section 4.1, we have found the relative value function V sta for the class of static policies, in which each policy
corresponds to a splitting parameter p ∈ (0, 1). As an initial policy for the one-step policy improvement, we take
the policy which already performs best within this class with respect to the weighted number of products in the
system. Thus, we take as an initial policy the static policy with splitting parameter

poss = min
p
{gsta
p : p ∈ P}, (22)

with gsta
p as defined in Theorem 4.2 and where P ⊂ (0, 1) is the set of splitting parameters which satisfy the

stability conditions in (7). Then, by performing one step of policy improvement as given in (21), we obtain

πoss(x1, x2, w1, w2) = arg min
(q1,q2)∈A(x1,x2,w1,w2)

{q1ν1(V sta
poss(x1, x2, 1, w2)− V sta

poss(x1, x2, 0, w2))

+ q2ν2(V sta
poss(x1, x2, w1, 1)− V sta

poss(x1, x2, w1, 0))}. (23)

It is easily seen that V sta
poss(x1, x2, 1, w2)−V sta

poss(x1, x2, 0, w2) and V sta
poss(x1, x2, w1, 1)−V sta

poss(x1, x2, w1, 0) are
non-positive for any (x1, x2, w1, w2) ∈ S by observing that α2,i ≥ α1,i and α3,i ≥ 0, i = 1, 2. This means that
πoss satisfies the properties mentioned in Section 3.1. Therefore, we can simplify (23) to

πoss(x1, x2, w1, w2) = arg min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V sta
poss(x1, x2, 1, w2)− V sta

poss(x1, x2, 0, w2))

+ q2ν2(V sta
poss(x1, x2, w1, 1)− V sta

poss(x1, x2, w1, 0))}.

Substituting V sta
poss as obtained in Theorem 4.2 in this expression yields the following one-step improved policy:

πoss(x1, x2, w1, w2) =


(0, 0) if w1 = w2 = 1,

(1, 0) if w1 = 1− w2 = 0, or if w1w2 = 0 and
c1ν1((α1,1 − α2,1)x1 − α3,1) ≤ c2ν2((α1,2 − α2,2)x2 − α3,2),

(0, 1) otherwise

(24)

for (x1, x2, w1, w2) ∈ S, where expressions for the α-coefficients are obtained by substituting the value for p
in the expressions given in Theorem 4.2 by its optimised counterpart poss. Thus, whenever both machines are
not operational, the repairman repairs the machine Mi for which ciνi((α1,i − α2,i)xi − α3,i) is smallest, when
adhering to πoss.

Remark 5.1. If P is empty, there is no static policy available which results into a system with stable queues. In
such circumstances, the static policy cannot be used as an initial policy for the one-step improvement approach.
The priority policy as studied in Section 4.2, may however still result in a stable system. If this is the case, the
priority policy may act as an initial policy for the one-step policy improvement method, as explained in the next
section.

Remark 5.2. Whenever P is not empty, the optimal splitting parameter poss is guaranteed to exist. As gsta
p is a

continuous function in p for p ∈ P , the optimal splitting parameter poss is then a root of d
dpg

sta
p in the domain P .

This derivative, which forms a sixth-order polynomial in p, defies the possibility of deriving an explicit expression
for poss. For implementation purposes, however, this poses no significant problems, as such roots can be found
numerically up to arbitrary precision with virtually no computation time needed.

5.1.2 One-step improvement based on the priority policy

Although an explicit expression for the relative value function V prio is not tractable, we have identified enough of
its characteristics in Section 4.2 to allow the use of a priority policy as an initial policy. In particular, we will use
the approximations obtained in Remark 4.3 in this section to apply the one-step policy improvement algorithm
on a priority policy. As was the case in the previous section, we first decide which policy within the class of

18

priority policies to take as an initial policy, by checking which policy performs best with respect to gprio, the
weighted number of products in the system. In this case, however, there are only two priority policies available,
each prioritizing their own machine. By combining (14), (15) and (19), we already have an approximation of
gprio for the priority policy with M1 as the high-priority machine. A similar approximation for the priority policy
where M2 is the high-priority machine, is easily obtained by interchanging indices. Consequently, we select
the priority policy with the smallest approximated value for gprio as an initial policy for the one-step policy
improvement. The fact we base this decision on approximations rather than exact values poses no problems, since
the approximations are accurate and share the same source of approximation error. Moreover, we only check
which of the approximated values is smallest, so that any reasonable approximation error is not likely to alter the
outcome.

Now that the initial policy is selected, we perform the improvement step. In the sequel, we will show how to
compute the one-step improved policy based on the priority policy where M1 is the high-priority machine. For
the one-step improved policy based on the other priority policy, one again simply interchanges the indices of the
model parameters of the following computation. The improvement step as given in (21) implies, after performing
the same simplification as in the case of the static policy, that

πosp(x1, x2, w1, w2) = arg min
(q1,q2)∈{(1−w1,0),(0,1−w2)}

{q1ν1(V prio(x1, x2, 1, w2)− V prio(x1, x2, 0, w2))

+ q2ν2(V prio(x1, x2, w1, 1)− V prio(x1, x2, w1, 0))}. (25)

The simplification is justified by the fact that V prio(x1, x2, 1, w2)−V prio(x1, x2, 0, w2) and V prio(x1, x2, w1, 1)−
V prio(x1, x2, w1, 0) are obviously non-positive, since also under the priority policy it is always beneficial for
the system to have a machine operational. Due to this, it is clear that πosp(x1, x2, w1, w2) in (25) resolves to
((1− w1), (1− w2)) in case w1 = w2 = 1, w1 = 1− w2 = 1 or 1− w1 = w2 = 1. For the case w1 = w2 = 0,
expressions for V prio(x1, x2, 1, 0)− V prio(x1, x2, 0, 0) and V prio(x1, x2, 0, 1)− V prio(x1, x2, 0, 0), are however
not available. Due to their general intractability, we use the approximations for these differences as derived in
(18) instead. By plugging these approximations into (25) in case w1 = w2 = 0, we obtain, with a slight abuse of
notation, that

πosp(x1, x2, w1, w2) =


(1, 0) if w1 = 1− w2 = 0, or if w1w2 = 0 and

ν1(c1((υ1 − υ2)x1 − υ3)− c2∆1,0x2) ≤ −c2∆0,1ν2x2,

(0, 1) otherwise,
(26)

where the parameters υ1, υ2, υ3, ∆1,0 and ∆0,1 are as defined in Section 4.2.1 and Conjecture 4.4 respectively.

Remark 5.3. We have based πosp on approximations for the relative value function V prio, rather than exact expres-
sions. Nevertheless, we have already argued in Section 4.2.2 that these approximations are accurate. Moreover,
the argmin-operator in (25) only checks which of the two arguments is smallest. Therefore, the improvement step
is very robust against approximation errors, especially since both arguments share the same source of approxima-
tion error. Numerical results confirm that the policy πosp based on approximations thus differs little to not at all
from the policy which we would have obtained if explicit expressions for V prio had been available.

5.2 Resulting near-optimal policy

In the previous section, we have constructed improved policies based on the static policy and the priority policy
respectively. However, the question remains which of these policies should be followed by the repairman, given
a particular case of the model. In this section, we suggest a near-optimal policy, which chooses either of the two
policies based on the model parameters. We do so by comparing the two improved policies as given in (24) and
(26) as well as their initial policies.

First, we observe that the two improved policies satisfy the structural properties of the optimal policy. Both πoss

and πosp always instruct the repairman to work at full capacity whenever at least one of the machines is down, and
therefore satisfy the work-conserving property as derived in Section 3.1. Furthermore, when both of the machines
are down, the two improved policies base the action on threshold curves (or, in this case, threshold lines), so that

19

they both also satisfy the properties discussed in Section 3.2. As both of the improved policies satisfy the required
properties, we base the decision on which of the improved policies to follow on their respective initial policies.

In terms of feasibility, the static policy and the priority policy complement each other. For any model instance,
one can construct an improved static policy, if there exists a static policy that results into stable queues, i.e., there
exists a value p ∈ (0, 1) such that (7) holds. Similarly, an improved priority policy can be constructed if either (11)
holds, or its counterpart corresponding to takingM2 as the high-priority machine. There are cases of the model for
which the construction of an improved static policy is possible, whereas the construction of an improved priority
policy is not possible. There are also cases for which the reverse holds true. In these cases, it is clear which of the
two improved policies to take as a near-optimal policy. However, when both of the approaches are adequate, we
base our decision on other characteristics of the initial policies.

A static policy would be optimal in a similar model, where the repairman has no information to base his decision
on (i.e., it has no knowledge about the queue lengths and the state of the machines). It is not optimal in the current
model, as it is not work-conserving; i.e., the server works only at partial capacity when exactly one of the machines
is down. However, this problem does not arise in the improved version of the static policy. A priority policy is
intuitively easily seen to be optimal in another similar model, where the arrival streams of products are such that
the queues of the products are never exhausted. The possibility of having a machine in an operational but idle
state then disappears, so that the optimal policy always gives priority to one machine over the other, due to faster
service of products, a slower breakdown, faster repair times, or a higher cost rate. We therefore expect the priority
policy (and thus also its improved version) to work particularly well in our model when the model parameters
are skewed in the favour of repair of a certain machine and where the queues of products are particularly heavily
loaded. The performance of the improved static policy, however, is not expected to be as sensitive to the amount
of workload, since the static policy balances the repair fractions based on, among other things, the load offered to
each of the queues.

Based on the observations above, we suggest a near-optimal policy that prescribes to follow the improved static
policy as derived in Section 5.1.1, if there is a static policy available that results into a stable system. If this is
not the case, the queues of products are relatively heavily loaded, so that an improved priority policy with the
appropriate machine selected as high-priority machine should be followed. More concretely, the near-optimal
policy is given by the following scheme:

1. As defined earlier, let P ⊂ (0, 1) be the set of values for the splitting parameter p for which the static policy
results into a stable system, i.e., the values for p which satisfy the stability conditions in (7). If this set is
non-empty, the near-optimal policy is given by πoss as expressed in (24), i.e., the one-step improved version of
the static policy with splitting parameter poss as defined in (22). If P is empty, go to step 2.

2. Check whether the priority policy with M1 being the high-priority machine is stable by seeing whether its
stability conditions in (11) hold. Equivalently, check whether the priority policy with M2 as the high-priority
machine is stable, by checking whether its stability conditions, the equivalent of (11) obtained by interchanging
indices, holds. If both policies are stable, go to step 3. If exactly one out of these policies is stable, then mark
this one as the selected initial policy, and go to step 4. If neither are stable, there is no suggested policy
available, as all possible initial policies result into unstable queues.

3. Approximate the average costs per time unit of the priority policy with M1 as the high-priority machine by
combining (14), (15) and Approximation 4.5. Do the same for the priority policy with M2 as the high-priority
machine, by evaluating the expressions with the parameter indices interchanged. Mark the policy with the
lowest approximated average costs as the selected initial policy, and go to step 4.

4. In case the policy with M1 as a high-priority machine is marked as the selected initial policy, then the near-
optimal policy is given by (26). In the opposite case, the near-optimal policy is also given by (26), but again
with the indices of the model parameters interchanged.

We end this section with several remarks concerning the obtained nearly optimal policy.

Remark 5.4. In theory, it is possible that there is no static policy or priority policy available which results into
stable queues, whereas ‘stable policies’ exist in general. Then, the approach given in this section is not adequate
to solve the assignment problem considered. In such a case, the set of stable policies is usually very small, so that

20

finding a stable policy is already hard, considerably complicating the search for a near-optimal one. However, in
general, this is not likely to happen, as the stability conditions (7) and (11) combined for all possible static and
priority policies cover a wide range of parameter settings. As we will see in Section 6, the derived policy may
even be applied in model instances where the policy of repairing the machines in a first-come-first-served order
does not keep both queues stable.

Remark 5.5. Many optimisation approaches in Markov decision theory suffer from the curse of dimensionality.
When dimensions are added to the state space, e.g. by adding more machines to the problem, the size of the
state space increases considerably, so that numerical computation techniques break down due to time and resource
constraints. Note, however, that the approach presented in this paper generally scales well in the number of
machines and the corresponding queues of products. The one-step improved policy based on the static policy is
easily modified to allow for models with N > 2 machines, since a decomposition of the system in the fashion
of (8) can then be done into N components. After finding a vector of splitting parameters (poss

1 , poss
2 , . . . , poss

N),
the execution of the one-step improvement algorithm will then still result into a simple decision rule similar to
(24). Likewise, the priority policy may be used to derive near-optimal policies in a model with larger dimensions.
The current approximation for the relative value function V prio in the case of N = 2 already accounts for the
components containing the two most prioritised machines in a model with N > 2 machines, as the repair capacity
assigned to a machine is not affected by the breakdown of a machine with lower priority. When approximations
for the relative value function pertaining to lower prioritised components can be found, a nearly optimal policy
follows similarly to the case of N = 2.

6 Numerical study

In this section, we numerically assess the performance of the near-optimal policy obtained in Section 5 with
respect to the optimal policy. We do this by comparing the average costs per time unit of both policies applied to
a large number of model instances. We will see that the near-optimal policy performs very well over a wide range
of parameter settings. Moreover, we observe several parameter effects.

The complete test bed of instances that are analysed contains all 1944 possible combinations of the parameter
values listed in Table 1. This table lists multiple values for the cost weights of having products in Q1 and Q2 (c1
and c2), the service rates at which M1 and M2 serve products when operational (µ1 and µ2, their breakdown rates
(σ1 and σ2) as well as their repair rates (ν1 and ν2). Finally, the product arrival rates λ1 and λ2 are specified by
the values of the parameters ρFCFS

1 and ρFCFS
2 given in the table, where ρFCFS

i represents the workload offered to Mi, if
the repairman would repair the machines in a first-come-first-serve (FCFS) manner. More specifically, the arrival
rates are taken such that the values of the workload

ρi
FCFS =

λi
µi

1

θFCFS
i

would coincide with those given in Table 1, if the repairman were to follow a FCFS policy. In this expression,
θFCFS
i represents the fraction of time that Mi is operational under a FCFS policy, and can be obtained by modelling

the second layer of the model (cf. Figure 1) as a continuous-time Markov chain with a finite state space. The
values for ρFCFS

i , σi and νi are varied in the order of magnitude through the values aρi , aσi and aνi as specified in
the table and in the imbalance through the values bρj , bσj and bνj . For example, the workload values (ρFCFS

1 , ρFCFS
2)

run from (0.25 · 2
3 , 0.25 · 4

3) = (1
6 ,

1
3), being small and putting the majority of the load on the second queue, to

(0.75 · 4
3 , 0.75 · 2

3) = (1, 0.5), being large and putting the majority on the first queue. Observe that in the latter
case, ρFCFS

1 takes the value of one. Thus, we also consider cases where not all of the queues would be stable, if the
repairman would repair the machines in a FCFS fashion.

For the systems corresponding to each of the parameter combinations in Table 1, it turns out that there is always
at least one static policy or priority policy available as an initial policy, so that the near-optimal policy is feasible.
We numerically compute the average costs gn-opt incurred per time unit by the system if the repairman would
follow the near-optimal policy as suggested in Section 5.2, as well as the average costs gopt incurred per time unit
if the repairman would follow the optimal policy. We do this by using the value iteration algorithm (see e.g. [17]).

21

Parameter Considered parameter values
c1 {0.25, 0.75}

c2 {1}

(ρFCFS
1 , ρFCFS

2) aρi · b
ρ
j ∀i, j

where aρ = {0.25, 0.5, 0.75} and
bρ = {(2

3 ,
4
3), (1, 1), (4

3 ,
2
3)}

(µ1, µ2) {(0.75, 1.25), (1.25, 0.75), (1., 1.)}

(σ1, σ2) aσi · bσj ∀i, j
where aσ = {0.1, 1} and

bσ = {(1
2 ,

3
2), (1, 1), (3

2 ,
1
2)}

(ν1, ν2) aνi · bνj ∀i, j
where aν = {0.1, 1} and

bν = {(1
2 ,

3
2), (1, 1), (3

2 ,
1
2)}

Table 1: Parameter values of the test bed.

0-0.1% 0.1-1% 1-10% 10-25%
% of rel. differences 38.37% 28.50% 32.66% 0.46%

Table 2: Relative differences between gn-opt and gopt categorised in bins.

Subsequently, we compute the relative difference between these approximations, i.e.

∆ := 100%× gn-opt − gopt

gopt .

Obviously, ∆ cannot take negative values, and the closer the value of ∆ is to zero, the better the near-optimal
policy performs. In Table 2 the resulting 1944 relative differences are summarised. We note that the vast majority
of relative differences do not exceed 10%, and more than half of the cases constitute a difference lower than 1%.
These results show that the near-optimal policy works very well for typical systems. The worst performance of
the near-optimal policy encountered in the test bed is the exceptional case with parameters (c1, c2) = (0.25, 1),
(ρFCFS

1 , ρFCFS
2) = (1, 0.5), (µ1, µ2) = (0.75, 1.25), (σ1, σ2) = (0.15, 0.05) and (ν1, ν2) = (0.05, 0.15), as well as the

results gopt = 26.37, gn-opt = 32.70 and consequently ∆ = 24.05%. For this instance, any static policy, as well as
the FCFS policy, results into unstable queues, due to the high workload. Moreover, this instance is characterised
by highly asymmetric model parameters, but in such a way that neither of the machines would be a clear candidate
for the role of the high-priority machine in the priority policy.

To observe any further parameter effects, we also give the mean relative difference categorised in some of the
variables in Table 3. Based on these results, four factors determining the quality of the near-optimal policy can be
identified:

• Table 3(a) suggests that the closer the value of c1 is to the value of c2, the better the quality of the near-optimal
policy becomes. A similar effect can be observed in Table 3(c) with the values ρFCFS

1 and ρFCFS
2 . These effects

suggest that the level of asymmetry in the parameters plays a role in the effectiveness of the near-optimal
policy. Intuitively, this makes sense, as the optimal policy gets easier to predict when the system becomes more
symmetric. For example, in the case of a completely symmetric model (i.e., λ1 = λ2, µ1 = µ2, etc.), the
threshold curve of the optimal policy is easily seen to be the line x1 = x2 by a switching argument. In that
case, the improved static policy also attains this curve, which suggests that the near-optimal policy is optimal in
symmetric systems if the workloads are not too high.

• Judging by Table 3(b), the performance of the near-optimal policy with respect to the optimal policy becomes
worse when the workload of products offered to the queues increases. This can be explained by the fact that in

22

(a)

c1 0.25 0.75
Mean rel. diff. 1.36% 1.16%

(b)

aρi 0.25 0.5 0.75
Mean rel. diff. 0.60% 1.01% 2.16%

(c)

bρj (2
3 , 4

3) (1, 1) (4
3 , 2

3)

Mean rel. diff. 1.35% 1.17% 1.26%

(d)

(µ1, µ2) (0.75, 1.25) (1,1) (1.25, 0.75)
Mean rel. diff. 1.36% 1.24% 1.17%

(e)

aσi 0.1 1
Mean rel. diff. 0.48% 2.04%

(f)

aνi 0.1 1
Mean rel. diff. 2.10% 0.41%

(g)

bσj (1
2 , 3

2) (1,1) (3
2 , 1

2)

Mean rel. diff. 1.02% 1.24% 1.51%

(h)

bνj (1
2 , 3

2) (1,1) (3
2 , 1

2)

Mean rel. diff. 1.60% 1.17% 1.00%

Table 3: Mean relative difference categorised in each of the parameters as specified in Table 1.

case of a smaller workload, products on average encounter less waiting products in their respective queue, and
therefore are less influenced by the downtimes of their machines, which occured before their arrival. In its turn,
this means that the sojourn time of products in the system is less sensitive to any sub-optimal decisions taken in
the past, improving the accuracy of the near-optimal policy. In the extreme case where the workload offered to
each queue equals zero (i.e., there are no products arriving), any policy is optimal, as the system does not incur
any costs in that case.

• From Tables 3(e) and 3(f) it is apparent that the quality of the near-optimal policy is influenced by the values
of aσi and aνi . This can be mainly explained by the fact that these values determine the level of competition
between the machines for access to the repairman. When breakdowns do not occur often and repairs are done
quickly, the event of having both machines down is exceptional, so that any sub-optimality of the policy used is
expected to have a relatively little impact on the average costs.

• Tables 3(d), 3(g) and 3(h) seem to contradict with the first factor mentioned, as the near-optimal policy seems to
perform better whenM2 has more ‘favourable’ characteristics with respect toM1; i.e., the fast product services,
slow breakdowns and fast repairs make it lucrative to repair M2 at the expense of additional downtime for M1.
However, note that this effect occurs because the cost weights are already taken in favour of the repair of M2 in
every instance of the test bed. When the workloads are such that the static policy becomes infeasible, a priority
policy with M2 as the high-priority machine will then already be close to optimal. Therefore, its improved
version also works particularly well. However, if, as opposed to the cost weights, the rates of product services,
breakdowns and repairs are in favour of M1, a priority policy works less well, since there is no clear candidate
for the high-priority machine anymore. This leaves room for sub-optimality of the improved priority policy.

Acknowledgements

The authors wish to thank Onno Boxma for valuable comments on earlier drafts of the present paper.

References

[1] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood Cliffs, New Jersey, 1992.

[2] S. Bhulai. On the value function of the M/Cox(r)/1 queue. Journal of Applied Probability, 43:363–376,
2006.

23

[3] S. Bhulai. Dynamic routing policies for multiskill call centers. Probability in the Engineering and Informa-
tional Sciences, 23:101–119, 2009.

[4] S. Bhulai and F. M. Spieksma. On the uniqueness of solutions to the Poisson equations for average cost
Markov chains with unbounded cost functions. Mathematical Methods of Operations Research, 58:221–
236, 2003.

[5] J.L. Dorsman, R.D. Van der Mei, and M. Vlasiou. Analysis of a two-layered network with correlated queues
by means of the power-series algorithm. Technical Report 2012-05, Eurandom Preprint Series, 2012.

[6] J.L. Dorsman, M. Vlasiou, and O.J. Boxma. Marginal queue length approximations for a two-layered net-
work with correlated queues. Technical Report 2011-43, Eurandom Preprint Series, 2011.

[7] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced modeling and solution of layered
queuing networks. IEEE Transactions on Software Engineering, 35:148–161, 2009.

[8] S.W. Fuhrmann and R.B. Cooper. Stochastic decompositions in the M/G/1 queue with generalized vacations.
Operations Research, 33:1117–1129, 1985.

[9] D. Gross and J.F. Ince. The machine repair problem with heterogeneous populations. Operations Research,
29:532–549, 1981.

[10] R. Haijema and J. Van der Wal. An MDP decomposition approach for traffic control at isolated signalized
intersections. Probability in the Engineering and Informational Sciences, 22:587–602, 2008.

[11] L. Haque and M.J. Armstrong. A survey of the machine interference problem. European Journal of Opera-
tional Research, 179:469–482, 2007.

[12] M. Harkema, B.M.M. Gijsen, R.D. Van der Mei, and Y. Hoekstra. Middleware performance: A quantitative
modeling approach. In Proceedings of the International Symposium on Performance Evaluation of Computer
and Communication Systems (SPECTS), pages 733–742, 2004.

[13] L. Kleinrock. Queueing Systems, Volume II: Computer Applications. Wiley, New York, 1976.

[14] G.M. Koole. Monotonicity in Markov reward and decision chains: Theory and applications. Foundations
and Trends in Stochastic Systems, 1:1–76, 2006.

[15] J.M. Norman. Heuristic Procedures in Dynamic Programming. Manchester University Press, 1972.

[16] T.J. Ott and K.R. Krishnan. Separable routing: A scheme for state-dependent routing of circuit switched
telephone traffic. Annals of Operations Research, 35:43–68, 1992.

[17] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons Inc., 1994.

[18] S. A. E. Sassen, H.C. Tijms, and R.D. Nobel. A heuristic rule for routing customers to parallel servers.
Statistica Neerlandica, 51:107–121, 1997.

[19] J. Wijngaard. Decomposition for dynamic programming in production and inventory control. Engineering
and Process Economics, 4:385–388, 1979.

24

