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1 Introd netion 

1.1 Background 

Wave propagation phenomena in porous media are investigated by several 
research disciplines. In petrophysics, identification of oil and gas containing 
geological strata is a major point of interest. At theearth's surface, waves 
are produced by means of explosive charges or vibration tables. Analysis 
of reflected waves provides information about the geological subsoil. Using 
fast parallel computer facilities (Cray), crustal reconstruction is possible up 
toa depth of about 1 km. Exploitation of an oil wellis only possible when 
suffi.cient knowledge about permeability and porosity properties of the oil 
containing strata is available. This is even more the case for enhanced oil 
recovery, when techniques like water or steam injection are applied to fully 
exploit an oil well. The drilling ofbore holes, and the subsequent application 
of acoustic welllogging, is commonly practised to gain information about 
permeability and porosity properties ofthe earth's subsoil. Propagation and 
damping of Rayleigh and Stonely surface waves is measured (Hsui & Toksöz 
1986; Cheruvier & Winkier 1987). 

Civil engineers are occupied by different problems like the effects of wave 
impacts on dikes (Ruygrok & van der Kogel 1980; Ebbens, Molenkamp & 
Ruygrok 1988) or pile-soil interactions under static and dynamic loadings 
(Boulon 1988). Soil-water-structure interactions are of interest in offshore 
industry, where large oil platforms have to be constructed, often involving 
offshore pile driving techniques, or during earthquakes, where liquefaction 
of the soil may, in some cases, occur. 

In marine geophysics, acoustical techniques are used for studying sedi
mentary and crustal structures of the ocean basins. Research programmes 
are directed towards understanding the deep ocean processes that gener
ate oceanic sediments and crustallayers. These processes directly affect the 
physical and acoustic properties of the sea floor, and are the origin of bathy
metric, gravity and magnetic variations in the ocean basins. Acoustic and 
nonacoustic submarine and antisubmarine operations, inertial navigation 
and guidance, and a variety of other naval operations are directely influ
enced by the ocean floor. Questions about the continuity and souree of the 
prominent refracting and reflecting layers of the ocean floor are stuclied by 
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underway single ship investigations and ocean floor instrumentation. U se is 
made of echo sounders, sparker arrays and airgunsas sound sources, and de
tection is provided by multisensor towed arrays, sonobuoys or seismometers 
(Hampton 1974). 

The absorbtion and re:flection of sound waves is, obviously, of interest for 
lowering noise levels in industry, where for example the application of sound 
absorbing materials is studied, or in traffic, where, only recently, highly 
porous road covering is applied. Theoretica! studies about sound absorbing 
materials were already performed in 1949 (Zwikker & Kosten). 

In all the disciplines that we mentioned above, it has been noticed that 
the presence of small gasfractions in liquid-saturated pores has an immense 
effect on wave propagation, damping and re:flection phenomena (see e.g. An
derson & Rampton 1980). The aim of the present study is to verify and to 
improve models descrihing wave propagation and damping in partially sat
urated porous media. Doing so, we will first give a survey of the two-phase 
theory for wave propagation in fully saturated elastic media, which is usu
ally denoted as the Biot theory. This is done in chapter 2. Computational 
results for wave propagation and damping in a cylindrical porous sample are 
presented in chapter 3. Next, we will discuss the damping mechanisms of 
vibrating gas bubbles in aporous system. Darcy damping, thermal damp
ing, viscous damping and acoustic damping will be treated. The effects of 
oscillating gas bubbles on wave propagation and damping are considered. It 
appears that it is convenient to introduce a dynamic compressibility of the 
pore :fluid. All this is presented in chapter 4. A subject, which is of interest 
for wave propagation in both fully and partially saturated porous media, is 
the dynamic interaction between pore :fluid and solid. This is discussed in 
chapter 5. A dynamic permeability parameter is introduced. Experimental 
determination of the properties of the porous media, and the preparation 
of a partially saturated column are discussed in chapter 6. Moreover, an 
experimental determination of the dynamic permeability is presented. In 
chapter 7, finally, we discuss wave experiments, performed on saturated and 
partially saturated porous media. Two porous columns are used in the wave 
experiments. The first is a column with a lenght of 1.4 m and a diameter 
of 74 mm, made of sand grains in the range 0.3-0.6 mm, which are glued 
together by means of an epoxy resin. The other is a column of natura! 
Bentheim sandstone with a lengthof 1.1 mand a diameter of 75 mm. Use 
has been made of a vertical shock tube with a length of approximately 8 
m and an internal diameter of 77 mm. This means that there is a gap of 
approximately 1 - 1.5 mm between the the porous medium and the shock 
tube wall, to prevent any shear interaction. 
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The application of the shock tube technique has some advantages over other 
methods, like ultrasound experiments. First of all, a step loading of a one
dimensional plane wave is a well defined boundary condition in wave prop
agation experiments. Secondly, the amplitude of the incident pressure step 
may easily be varied over a wide range (0.5- 5 bar), which allows, in princi
ple, the study of nonlinear effects. The energy content of the incident wave 
may he varied, which is hardly possible for other experimental techniques. 
In this way, also strongly damped wave phenomena may be detected. Fi
nally, by means of the incident shock wave it is possible to measure the 
propagation, damping and re:H.ection properties of the porous system over a 
wide range of frequencies (10 Hz - 100kHz). 

The interpretation of wave experiments is based on linear, one-dimen
sional theory. This means that we ignore any lateral motion of the pore 
:Huid and of the porous skeleton. We consider the wave phenomena of both 
longitudinal compressional waves, that were described independently by Biot 
(1956) and by de Josselin de Jong (1956), and we ignore any shear wave 
effects. Some remarks on the in:H.uence of the gap between the porous column 
and the shock tube, on wave propagation and damping in the porous media 
are made in appendix B. 

1.2 Literature survey 

General balance equations for mass, momenturn and heat tranfer in multi
component, multi-phase porous systems have been discussed by Whitaker 
(1977, 1986) and Bear & Bachmat (1984, 1990). A theoretica! description of 
wave propagation in saturated porous media was already available in 1956 
by Biot and by de Josselin de Jong. They predicted the existence of two 
longitudinal (P) waves and one transverse (S) wave. For the first P-wave, 
the pore :Huid and the porous material are compressed simultaneously, but 
for the second P-wave, the porous material relaxes, while the pore :Huid 
is compressed. These two wave modes are therefore often denoted as the 
"in-phase" and the "out-of-phase" mode, respectively. However, it was not 
until 1980 that the first experimental observation of the second longitudi
nal wave was reported (Plona 1980). Since then, the Biot theory has been 
succesfully applied to various problems, such as fourth sound in a super
Huid system (Johnson 1980), :Huid diffusion through elastic porous media 
(Chandler 1981), and acoustic velocity dispersion and attenuation in ultra
sound experiments (Hovem & Ingram 1979). Using a shock tube technique, 
wave experiments were performed on air-filled and water-saturated porous 
media (Van der Grinten, van Dongen & van der Kogel1985). Quantitative 
information on wave speeds, pore pressure amplitudes and damping was ob-
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tained. In later experiments, also strain amplitudes of the porous material 
were measured (Van der Grinten, van Dongen & van der Kogel 1987). 

Soon, acoustical properties of fully liquid saturated and gassy porous 
media were observed to be significantly different. An extended literature 
survey on the acoustics of gas-hearing sediments has been given by Ander
son & Rampton (1980). Later, the two phase Biot theory has been modified 
to allow for the presence of a third phase, i.e. the gas phase. Garg & 
Nayfeh (1986) and Berryman, Thigpen & Chin (1988) presented rather gen
eral models, applicable to a wide variety of gas volume fractions. Bedford 
& Stern (1983) described the effect of a small amount of gas bubbles on the 
propagation and damping of the two longitudinal waves, but they only took 
into account the thermal damping mechanism. It appears to he convenient 
to introduce a dynamic, i.e. frequency dependent, compressibility of the 
pore :fl.uid. Experimental data on wave propagation in partially saturated 
porous media are scarce. They are given by Dontsov, K uznetsov & N ako
ryakov (1987), Sniekers, Smeulders, van Dongen & van der Kogel (1989) and 
Smeulders, De la Rosette & van Dongen (1992), whoall used a shock tube 
technique. 

A subject, which is of vital interest for the adequate interpretation of 
waveexperimentsin porous media, is the dynamic, i.e. frequency dependent, 
interaction between pore :fl.uid and solid. This point was aJready mentioned 
by Zwikker & Kosten (1949) and Biot (1956). They derived analytica! ex
pressions for a cylindrical duet and a rectangular slit, and showed that their 
results may he generalized for an arbitrary porous medium. Other analytica! 
work has been performed by Bedford, Costley & Stern (1984), who consid
ered a porous material with cylindrical pores of random orientation. On a 
formallevel, Lévy (1979), Auriault (1980) and Burridge & Keiler (1981) de
rived a two-scale averaging procedure to describe the dynamica! behaviour 
of a Newtonian :fl.uid within a porous, elastic, medium. Auriault, Borne & 
Chambon (1985) were the first to present both numerical and experimental 
data for a schematized, periodic, porous medium. They compared their re
sults to an asymptotic, high frequency, approximation. In 1987, Johnson, 
Koplik & Dashen described the dynamic permeability behaviour over the 
entire frequency range by a sealing function. It is shown that there is a 
transition from the low frequency behaviour, which is viscosity dominated, 
towards a high frequency behaviour, which is inertia dominated. Numerical 
calculations of the dynamic permeability for a variety of microstructures 
were presented by Sheng & Zhou (1988) and Yavari & Bedford (1990). Ex
perimental data were obtained by Charlaix, Kushnick & Stokes (1988). 
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2 Continuurn theory 

2.1 Isotropie deformation 

lt is well known to soil mechanics engineering practice, that a soil under 
load does not respond by instantaneous deflection, but rather setties grad
ually. Such settiement is caused by a slow-rate adaptation of the soil to the 
load variation, and this so called consolidation process is described by the 
stress-strain relations of the fluid-solid system. A one-dimensional treat
ment of this behaviour was :first presented by Terzaghi (1925). The general 
theory of the deformation of aporous elastic solid, containing a viseaus com
pressible fluid, was established by Biot (1941, 1955). In the fust paper the 
isotropie case is considered, whereas in the second the theory is generalized 
to allisotropie materials. Stress-strain relations are derived on the basis of 
energy considerations by applying and extending the classica! theory of elas
ticity. 
The elastic coeffi.cients, determining the deformation properties of fluid-solid 
systems, are related to measurable quantities by Gassmann (1951), Biot & 
Willis (1957), Geertsma & Smit (1961), Brown & Korringa (1975), Kor
ringa (1981), and Berryman (1981). In this section, we will introduce the 
isotropie stress-strain relations and corresponding elastic coeffi.cients. In the 
next section, measurable quantities are presented and a linkage to the elas
tic coefficients is made. Finally we will show that the stress-strain relations 
may also be derived from continuity and constitutive considerations. 

Consiclering a fluid-:filled elastic skeleton with a statistica! distribution 
of interconnected pores, the porosity is usually denoted by: 

<Po- V,p 
- vb' (2.1) 

where V,p is the volume of the pores contained in a sample of bulk volume 
Vb. It is understood that the term "porosity" refers to the effective porosity, 
thus including only the interconnected void spaces as opposed to those pores 
which are sealed off. In the following, the word "pore" will refer to the 
e:ffective pores, while the sealed pores will be considered as part of the solid 
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volume V". The stress tensor in the porous material is: 

(2.2) 

with the symmetry property Tij = Tji· 

lf we consider a cube of unit size of the bulk material, T represents the 
total normal tension force applied to the :O.uid part of the faces of the cube. 
Derroting by p the pressure of the :O.uid in the pores we may write: 

T = -</JoP· (2.3) 

The remaining components Tij of the stress tensor are the forces applied to 
that portion of the cube faces occupied by the solid. They are a result both 
of the :O.uid pressure pand the additional intergranular stresses Uij: 

(2.4) 

where the Kronecker symbol ~ij is obviously introduced because the pore 
:O.uid cannot exert nor sustain any shear forces. We notice that the addi
tional intergranular stresses Uij are defined negative in tension. They are 
called "additional" because they add up to the :O.uid pressure induced stresses 
in the solid (see equation 2.4). 
In the entire :O.uid-solid system chemica! reactions are assumed not to oc
cur. The solid skeleton is considered to have compressibility and shearing 
rigidity, and the :O.uid may he compressible. The deformation of a unit cube 
is assumed to he completely reversible and elastically linear. Each volume 
element is described by its averaged displacement of the :O.uid U(r, t) and of 
the solid parts u(r, t). The strain components for the solid and the :O.uid, 
respectively, are: 

(2.5) 

(2.6) 

In the case of complete isotropy, the stress-strain relations for the solid and 
the :fiuid component respectively may be written (Biot 1955): 

Tij = 2Geij + Aekk~ij + Qt:kk~ij 
T Qekk + &kk, 

(2.7) 

(2.8) 

where summation over repeated indices is assumed. A, Q and R are gener
alized elastic coeffi.cients which can he related to such measurable quantities 
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as the :fl.uid bulk modulus Kj, the skeletal frame shear modulus G and to Kb 
and Ka, which are the jacketed and unjacketed bulk moduli of the skeletal 
frame respectively. These relations will be treated in the next section. 

2.2 A survey of measurable quantities 

In literature, several different approaches and conesponding notations are 
used to describe the deformation behaviour of a :fl.uid-solid system. All rele
vant bulk moduli characterizing this porous medium deformation behaviour 
will now unambiguously be established by discussing some conventional soil 
mechanics measurement techniques. It is not our aim to present detailed 
derivations; relevant literature is being referred to. Skeletal frame bulk 
moduli are obtained by allowing the pore pressure p and the external pres
sure Pe to vary independently (Biot & Willis 1957). This may be achieved 
by enclosing a :fl.uid-saturated specimen of the porous material in a thin im
permeable jacket, and then subjecting it to an external :fl.uid pressure Pe· To 
ensure constant internal :fl.uid pressure, the inside of the jacket may be made 
to communicate with the atmosphere through a tube. Assuming a dry spec
imen exhibits the same properties as a fully saturated one, the conventional 
jacketed test is usually performed on a dry specimen. In the unjacketed com
pressibility test, on the other hand, a sample of the material is immersed 
and saturated in a :fl.uid to which is applied a pressure Pe = p, and defor
mation measurements are made over a time scale long enough for pressure 
equilibrium establishment throughout the pores. De:fining the differential 
pressure Pd = Pe - p, we may write: 

1 1 ( 8Vb) = Kb vb apd p 

1 1 (avb) (2.9) = Ka vb op Pd 

1 1 ( oVIP) = KIP v~P op Pd 

From these it is immediately obvious that Ka = K.p if the solid part is ho
mogeneous, because changing p with constant Pd means applying the same 
incremental pressure to the outer and inner pore surface, and in case of 
homogeneaus bodies, whether or not isotropic, the application of such in
cremental pressure leads to a linear mapping which does not change the 
porosity </J0 • 

We will now link these measurable bulk moduli to the generalized elastic 
coe:ffi.cients in the stress-strain relations (2.7, 2.8). From complicated but 
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straightforward equilibrium considerations, based on the isotropie equations 
(2.7) and (2.8), the generalized Gassmann equations may be derived (Biot 
& Willis 1957): 

(1- </>o)2 Ka.- (1- 2</>o)Kb + </>oKb(~- ~) 2 
A- I .p - -G 

- 1 - 4>0~ - ~+<Po~ 3 

<PoKa.(1- <Po-~) 

Q = 1 - <Po~ - ~ + <Pot 

R _ </>äKa 
. - 1 - <Pof: -~ + <Pot' 

(2.10) 

where we have defined the fluid bulk modulus K"t = pyi(öpJIIJp), PJ being 
the fluid density. Con:fining ourselves from now on to the homog.meous case, 
equa.tions (2.10) ma.y be simplified somewha.t: 

(1- </>o)2Ka- (1- 2</>o)Kb + </>oKb(~- 1) 2 
A= K K I - -G 

1 - <Po - *!" + <Po~ 3 

</>oKa(1 - </>o - ~) 
Q = 1- <Po- ~ + <Po~ 
R- </>~Ka. 

- 1 - <Po - ~+<Po~ 

(2.11) 

Obviously, in the homogeneaus case we may a.lso write Ka.= K., where we 
have introduced the skeletal grain bulk modulus: 

1 1 (öV") 
K. =-V" Öp Pd 

(2.12) 

Next assuming the porous skeleton and the pore fluid to be much more 
com pressible than the skelet al grains thelllBelves ( K 1/ K" <: 1 and also 
Kb/ K" <: 1 ), equationB (2.11) may be rewritten: 

(1 - 4>o)2 2 
A= <Po K1+Kb-3G 

Q = K 1(1- <Po) (2.13) 

R = </>oKJ 
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Another measurable quantity is discussed by Vermijt (1982). Considering a 
compression test on a saturated sample, with drainage being prevented by an 
impermeable membrane surrounding the sample, Skempton's coefficient B 
is defined to he the ratio of the pore pressure increment dp to the increment 
of external pressure dpe: 

(2.14) 

where the subscript m1 indicates that the :fluid is not allowed to flow across 
the outer boundaries of the sample, so the contained :fluid mass m1 is pre
served. We may also define a corresponding undrained bulk modulus K* 
(Brown & Korringa 1975): 

1 1 (öVb) 
K• =-Yb Öpe m

1 

(2.15) 

Both Skempton's coefficient and the undrained bulk modulus may he related 
to previously defined bulk moduli. We may write (Verruijt 1982): 

(2.16) 

and correspondingly (Biot & Willis 1957, Brown & Korringa 1975): 

(2.17) 

2.3 Continuity and constitutive relations 

We will now derive equations (2. 7) and (2.8) by application of continuity and 
constitutive relations for the isotropie homogeneaus case. In this section, 
we will make a strict distinction between quantities themselves and their 
infinitesimal variations. Quantities themselves will he zero-subscribed. So 
PJo and p11o denote :fluid and solid density respectively. Skeletal grains are 
considered incompressible, and deformations of the :fluid-solid system are 
assumed reversible and elastically linear. The linearized continuity equations 
then are: 

ö a/ </Jp J) + </Jap JO V. w = 0 (2.18) 

ö 
öt[(1- </J)p~~] + (1- </>o)ptiOV.v = 0, (2.19) 
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where we have de:fined the averaged veloeities w = ~ and v = ~~ of the 
fl.uid and solid parts of an arbitrary volume element. The corresponding 
constitutive relations are: 

dp. = 0 

1 1 Öpf ----
Kj PJo Öp 

(2.20) 

(2.21) 

From equations (2.19) and (2.20) a relation between porosity changes and 
skeletal deformation is found: 

8</> 
8t = (1 - </>o)V.v (2.22) 

Substitution of equations (2.21) and (2.22) into (2.18) yields: 

Öp 
- 4>o 8t = (1- </>o)KJV.v + <f>oKJV.w (2.23) 

This equation is merely the time deriva.tive of equation (2.8), substitnting 
expressions (2.13) for the Q and R parameters and using the identities: 

ö:;;~c = V.v (2.24) 

a;;'/= V.w (2:25) 

Additional constitutive equations are needed to describe porons skeleton 
deformation behaviour. They are obtained from Hooke's la.w, giving the 
stress-strain rela.tions in the case of smaJl strains in isotropie bodies (Love 
1944, p. 102): 

(2.26) 

The factor Kb - ~Gis often referred to as ..\, whereas p. is frequently used 
as a. different nota.tion for G. ..\ and p. are known as Lamé's coe:fficients. 
Multiplica.ting equa.tion (2.23) by the factor (1 - </>o)/</>o and then a.dding 
it to the time deriva.tive of equa.tion (2.26), we find the resulting equa.tion 
is the time deriva.tive of equa.tion (2.7). So equa.tions (2.23) and (2.26) are 
the full equivalents of equa.tions (2.7) a.nd (2.8), descrihing the deforma.tion 
beha.viour of the solid-fl.uid system. 
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2.4 Momenturn equations 

Consirlering a rigid fiuid-:filled porous medium at low Reynolds numbers, 
pressure gradients ought to he balanced by viscous forces: 

Öp 1]</>o 
0=----w· 

Öxj ko 3' 
(2.27) 

where 1J is the :Huid viscosity and k0 is the steady-state permeability. This 
expression is known as Darcy's law. In the case of oscillating :Huid motion, 
Da.rcy's la.w obviously only holds in the low frequency limit. At higher 
frequencies unsteady terms have to he added: 

(2.28) 

where we have defi.ned bo = 11</>U ko. Furthermore, a 00 ~ 1 is often referred 
to as the tortuosity parameter; a purely geometrical quantity independent of 
solidor :Huid density. The fust term on the left hand side of equation (2.28) 
is the inertia term, whereas the second term on the left hand side is the 
unsteady interaction term, originating from the pore :Huid being accelerated 
in a narrowing-widening microstructural porous geometry. So the direction 
of acceleration on microscale may very well differ from the macroscopie 
acceleration direction. lf this is not the case, consirlering a cylindrical duet 
for example, a 00 equals 1, and therefore the degree of tortuosity is described 
by the factor ( a 00 - 1 ). In the high frequency limit, we find that the steady 
interaction term may he ignored to arrive at: 

ÖWj Öp 
aoo<f>oPJ- = -</>o-

Ot öx· J 

(2.29) 

Resuming, we find pressure gradients are either balanced by viscous forces 
(low frequency limit) or by inertia forces (high frequency limit). Therefore a 
rollover frequeny Wc is discerned, when viscous forces are of equal magnitude 
as inertia forces. From equations (2.27) and (2.29) we may write: 

1]</>o 
Wc=-~-

koaooPJ 
(2.30) 

The introduetion of Wc obviously offers the opportunity to define dimension
less frequencies, which willlater proveto he of some convenience consirlering 
wave propagation and damping in porous media. 
lf next an arbitrary small motion of the porous solid material is allowed, 
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only minor modifications in the steady and unsteady interaction terms of 
equation (2.28) are required: 

8~ ~ 8 
4>oP!7ft = -ifJo 

8
x. + bo(v;- w;) + (aoo- 1)ifJoPJ 8t(v;- w;) (2.31) 

1 

For the fluid-saturated porous material as a whole we may subsequently 
write: 

8w; 8v; 8u1; 8p 
ifJoPJ- + (1 - ifJo)p.- = -- - -, 

8t 8t 8x, 8x; 
(2.32) 

where l7ij are the additional intergranula.r stresses, introduced in section 
2.1. They are defined negative in tension. Subtrading equa.tion (2.31) from 
(2.32) and rearranging terms we may finally write for the solid and fluid 
components respectively: 

- 8l7ij - (1 - 4>o) 8p = 
8x1 8x; 

8 
8t (Ptl Vj + Pt2Wj) + bo( t1j - Wj) (2.33) 

-4>o 8p = 
8x; 

!(P12"i + P22w;)- bo(v;- w;), (2.34) 

where we have defined the density term.s: 

Pt2 - -( aoo - 1 )ifJoP J 

Pt1 - (1 - 4>o)p. - Pu 

P22 = <PoP! - P12 

(2.35) 

The above equations (2.33, 2.34) are in exact analogy with thoee formulated 
by Biot (1956) and De Josselin de Jong (1956). 

2.5 Axial symmetry 

As experim.ents are performed on a porous column with lenght L0 and radius 
ro, cylindrical coordinates are obviously appropriate. In this section we 
will derive the dynamic and stress-strain equations descrihing the fluid-solid 
system. These equations will he averagedover the cross-sectional area of the 
porous sample. We assu.me plane wave propagation is described accurately 
by these averaged relations. We may write for the axial (z) direction: 

8Uzz 1 8 8p 8 
- ~--~(rUrz)-(1-</lo)~ = !l(PnVz +P12Wz)+bo(vz -wz) (2.36) 

UZ TuT UZ ut 

(2.37) 

12 



where we have a.ssumed a.xial symmetry. Now a.vera.ging over the cross
sectional area. of the sample we find equa.tion (2.37) rema.ins uncha.nged 
wherea.s equa.tion (2.36) ma.y be rewritten: 

ou zz ( ) op o ( ) ( ) - Tz - 1 - </>o OZ = lJt Pll Vz + Pl2Wz + bo Vz - Wz , (2.38) 

where we have a.ssumed no shea.r interaction to take pla.ce between the tube 
wall a.nd the sample, i.e. Urz = 0 a.t the sample wall. For the stress-stra.in 
rela.tions we praeeed in a.n identical wa.y, writing them in cylindrical coor
dina.tes a.nd a.pplying the same cross-sectional a.vera.ging technique. From 
equa.tions (2.26) a.nd (2.23) we find: 

OU zz _ (K 4 G) OVz (K 2 G) 2vc 
- 7ft - b + 3 oz + b - 3 ro (2.39) 

A,_ op - ( A--)K ( OVz 2vc) A._K ( OWz 2wc) 
- o/0- - 1 - o/0 J - + - + 'I'U J - + - ' lJt oz ro oz ro 

(2.40) 

where we have introduced Vc a.nd Wc a.s the lateral velocity of the skeletal 
material a.nd the lateral :fluid velocity a.t the wall, i.e. a.t radius r = r0 • The 
factor Kb+ ~Gis known a.s the "constra.ined modulus" KP. 
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3 Computational results 

3.1 Wave motion 

We will now consider the dilatation waves, defined by the dynamic equations 
(2.37, 2.38) and the stress-strain relations (2.39, 2.40). All essential features 
are brought out by discussing the one-dimensional situation, i.e. by neglect
ing all lateral velocities. We will describe the propagation of a plane wave 
parallel with the XY-plane, and thus assume an exp i( wt - KZ) dependenee 
for all relevant parameters. From equations (2.39) and (2.40) we find: 

(3.1) 

(3.2) 

Using these equations and introducing the inverse aquared complex velocity 
( = K2 fw 2, we may subsequently eliminate Ûzz and p from the dynamic 
equations (2.37) and (2.38) to find the following set for Vz and tÎ1z: 

Wz[ -R( + P22- ibfw] = Vz[ Q(- Pt2- ib/w] 
Wz[ Q( - Pt2- ibfw] = Vz[ -P( + Pn- ibfw] 

(3.3) 

Use has been made of the notation we introduced before: R = ~Kj, 

Q = (1- ~)KJ and a newly introduced parameter P = Kp + x1<t:tl
2

• 

We notice that the previously used steady-state parameter b0 has been re
placed by b( w), descrihing the frequency dependent interaction force between 
fl.uid and solid. At low frequencies, b(w) will show a Stokes-flow behaviour, 

whereas at higher frequencies, when the viseaus skin depth 6 = J2"1/WPJ 
decreases, inertial effects will become dominant. This effect was accounted 
for by Biot (1956), whomodelled porons media as an ensemble of cylindrical 
ducts. In chapter 5 we will attempt to give a thorough description of this 
frequency dependent behaviour on the basis of the theory of Johnson, Kop
lik & Dashen (1987), and we will show b(w) to be a function of the reduced 
frequency wfwc. The resulting frequency dependenee of b(w)/bo is given in 
figures 3.1. From the set (3.3) the dispersion relation is found: 

(3.4) 
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Figure 3.1: Real and imaginary partsof the interaction term b(w)fb0 as a 
lunetion of the reduced angular frequency wfwc. 

where we have used: 

PR-Q2 

-(Pp22 + Rpn- 2Qp12) + ib/w(P + R + 2Q) 

PnP22 - P~2 - ibpfw 

(3.5) 

Writing the dispersion relation in this way, we have introduced the bulk 
density p = Pn + P22 + 2P12· Equation (3.4) has two complex roots (I (2, 
and there are therefore two damped dilatation waves, also called P-waves. 
The properties of both waves were illustrated by Biot (1956), who showed 
that the fiuid and skeletal veloeities are of the same sign for one root, and 
are of opposite sign for the other root. This means that there is one wave in 
which fiuid and skeletal veloeities are in phase, and another in which they 
are in opposite phase. In the same paper, it is also shown that the wave 
which propagates fastest, i.e. which has the highest phase velocity, has 
in-phase fiuid and skeletal veloeities, whereas the slower propagating wave 
has those veloeities in opposite phase. As a matter of definition, the wave 
which propagates fastest will be denoted as the mode 1 wave, whereas the 
other one will be denoted the mode 2 wave. It is conceivable that mode 2 is 
damped more strongly than mode 1, because the out-of-phase character of 
mode 2 represents a highly effective dissipation mechanism. Dispersion plots 
of both phase velocity and damping are drawn in figures 3.2. The fiuid-solid 
velocity ratios !3i (j = 1,2) obviously follow from either one of the relations 
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in set (3.3). These ratios are depicted in figures 3.3. The in-phase behaviour 
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Figure 3.2: Dispersion plots of pha.se velocity (a) and damping (b) of both 
wave modes. Parameter values are listed in table 3.1 at the end of this 
chapter. 

of the mode 1 wave is neatly illustrated by the ratio {311 which is positive 
over the entire frequency range, whereas the mode 2 wave shows an overall 
out-of-phase behaviour. In the high frequency limit, the viscous skin depth 6 
tends to zero, and any dissipation may then he ignored, i.e. b = 0. The only 
coupling mechanism then left between :fl.uid and solid movements is by the 
tortuosity parameter a 00 , which is an inertial coupling mechanism. In the 
low frequency limit, on the other hand, there is a viscous coupling mechanism 
between :fl.uid and solid movements, represented by the b0-coeffi.cient or the 
corresponding permeability coeffi.cient k0 • This is illustrated by combining 
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Figure 3.3: fluid-solid velocity ratios f3 of both wave modes. Parameter 
values are listed in table 3.1 at the end of this chapter. 

the low frequency equation (2.27) with the fiuid continuity relation (2.23) 
fora rigid porons medium. In this so-called sti:ff frame limit, wethen fi.nd: 

&p _ K1kov2 (3.6) 
&t - TJ4>o p, 

which is clearly a di:ffusion type equation. Thus, at low frequencies, the 
mode 2 wave corresponds to a di:ffusive type of propagation, governed by 
the hydraulic di:ffusivity coe:ffi.cient K 1 kof TJ4>o, as was a.lso previously shown 
(Bourbié 1987, p. 81). 

In the case of high frequencies, we may ignore any viscosity effects. Com
bination of equations (2.29) and (2.23) fora rigid porous medium, yields the 
wave equation for the axial direction: 

lJ2p ClooPJ &2p 
&t,2 = KJ lJz2 (3. 7) 

From this, we find that the phase velocity of the second dilatational wave 
equa.ls the velocity of sound in the liquid c,, modified by a factor ~: 
Ca = ctf~. For the fust dilatational wave, Van der Grinten (1987, p. 
32) showed that a sti:ffer porous sample will increase the phase velocity. It 
will approache a limiting value. This so-called stiff frame velocity may he 
calculated from the dispersion relation (3.4), when the ratio KJfKp tends 
to zero: 

2- Kp 
c1 

- (1- 4>o)P~~ + (1- 1/aoo)l/>oPJ 
(3.8) 
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From this equation, it is easily seen that c1 equals the longitudinal wave 

velocity CL = J Kp/ p", when <Po = 0 (solid material). 
For an elastic porons medium, generally, the phase veloeities of both wave 
modes are found to he a function of the constrained modulus KP. Both 
mode 1 and 2 phase veloeities are depicted in fi.gures 3.4a and 3.4b as a 
function of the constrained modulus Kp. 

3.2 Step wave propagation 

The porons column is submitted to an incident pressure step wave Pin· Re
:ftection and transmission phenomena are calculated by means of straightfor
ward Fourier decomposition, as described by Van der Grinten, van Dongen 
& van der Kogel (1987). The incident wave partially re:ftects, denoted by Pr, 
and partially transmits into the porons sample. Within the column, the ini
tial step-wise pressure disturbance is distributed over the two wave modes. 
This process is obviously determined by boundary conditions, prescrihing 
the valnes of pressure and stress in the sample at z = 0. These valnes are 
indicated by Po and ûo, respectively. Using equations (3.1) and (3.2) we may 
now write (j = 1, 2): 

A K Vjo Ujo = p
Cj 

<l>oPio =KJ [c1- <Po) Vjo +<Po Wjo] , 
Cj Cj 

(3.9) 

(3.10) 

where we have de:fi.ned the complex :Huid velocity Cj = (j1
/

2
• The stress 

boundary condition is: 
(3.11) 

Using the relation Po = ÎJJ.o + p20, and combining the above equations (3.9-
3.11), we may compute the pressure distribution over both wave modes: 

P10 1 - </>o + <l>ofJI = Po <Po (/31 - /32) 

ÎJ2o 1 - <Po + <l>o/32 
Po <l>o(fJI - /32) 

From these relations it may he shown that, ignoring any viscosity effects, in 
the sti:ff frame limit the fust wave will not cause any pore pressure increase: 
PIO/Po --+ 0 and P2o/Po--+ 1. That is because in the non-viseaus sti:ff frame 
limit fJ1 --+ -p12/ P22 and fJ2 --+ oo. This behaviour is depicted in fi.gure 
3.4c, showing the gradually diminishing participation of the fust wave mode 
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Figure 3.4: High frequency limits of red u eed wave speeds (a., b ), pore pres
sure amplitudes (c) a.nd reileetion coeflicients (d) for a 00 = 1 (dra.wn lines) 
a.nd a 00 = 3 (da.shed lines). CL is the longitudinal wave velocity a.nd Ca is 
the modilied speed of sound in the liquid. They a.re defined in the text. 
Parameter values are listed in ta.ble 3.1 at the end of this cha.pter. 
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in the pore pressure built-up. Considering next the skeletal stresses, from 
equations (3.9 - 3.11) it may be found: û1o/fio = KpK't(f31 - /32)-1 and 
for the second wave mode, of course (equation 3.11), the opposite is found. 
Having established the z = 0 values, we may now write at a distance z from 
the top of the porons sample: 

fi(z,w) _ ~ Pio(w) (- .. ) 
A ( ) - L...J A ( ) exp u~.,z 

Po w i=l Po w 
(3.12) 

A similar relation holds for the stress wave propagation. 
Aga.in applying Fourier analysis, the above relation (3.12) may be illus

trated in the time doma.in. Computations are performed for several z-values 
and depicted in figures 3.5. The same is done for the stress wave propaga
tion. Considering the time dependent preesure behaviour at a fi.xed z-value, 
we notice the arrival of the fust, fast, wave mode, followed by a plateau, 
which ends u pon the arriva.l of the second, slow, wave mode. Th en, further 
preesure increase towards its end va.lue appears to be a much more gradual 
process, which is caused by the second wave mode having a diffusive type 
of propagation at low frequencies. The sudden increase towards a plateau 
value may also be recognized in the stress plot. This, aga.in, represents the 
in-phase behaviour of the fust mode. The out-of-phase behaviour of the 
second wave mode is illustrated by the fact that the stra.in plateau va.lue is 
followed by a gradual decrease, whereas at the same time the pore presstire is . 
still increasing. Comparing the computational results at several z-values, we 
notice the fust wave mode retains its step-like character, whereas da.ni.ping 
clearly changes the features of the second wave mode. 

3.3 Wave reflection 

AB the incident step-like preesure disturbance is not fully tra.nsmitted into 
the porons column, we will now consider the fio/Pi"-ratio, which is known 
as the transmission coeffi.cient. As shown in figure 7.1, the column is sur
rounded by a liquid filled gap of some millimeters width. In the cross section 
of the shock tube at z = 0, the surface fraction of the porons column is A 
and the gap surface fraction is 1 - A. We may now consider the continuity 
requirement for the veloeities at z = 0: 

Wi" - wr = A[(1- <Po)vo + <Powo] + (1- A)w0o, (3.13) 

where we have introduced the gap fluid velocity w0 • Defining the acoustic 
impedance zl = PlC[, with Cl being the velocity of sound in the liquid above 
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Figure 3.5: Computed pore pressure (a) and skeletal stress (b) fora step-wise 
pore pressure disturbance at the top of a B.uid-saturated porous medium. 
Parameter values are listed in table 3.1 at the end of this chapter. 
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and surrounding the column, the above continuity relation may be rewritten: 

Pin- Pr = AZ,[(1- <l>o)vo + </>owo] + (1- A)po, (3.14) 

where we have used the pressure-velocity relations z, =Pin/Win = Pr/Wr = 
p0 jw90• The above relation (3.14) may now be combined with the pressure 
boundary condition Po = Pin + Pr to yield: 

(3.15) 

or after some algebraic manipulations: 

Pin ( 1 ) 1 4>o [ Pw ÎJ-lo] -A-= 1- -A +-AZ,- Cl-A-+ C2-A-
Po 2 2 KJ Po Po 

(3.16) 

The re:ftection coe:fficient r may now be calculated from the relation r = 
Po/ Pin - 1. In tigure 3.4d, the re:ftection coe:fficient is drawn as a function of 
Kp. 

porosity <Po 0.29 
constrained modulus Kp 10.2 GPa 
tortuosity aoo 2.7 
permeability ko 90.91· 10-12 m2 
solid density p. 2650 kg/m3 

liquid density PI 1000 kg/m3 

liquid bulk modulus K, 2.2 GPa 
viscosity of water 'Tl 10-3 Pa.s 

Table 3.1 Parameter values used in computations. 
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4 Partially saturated pores 

4.1 Preliminaries 

It is not unlikely at all in soil mechanica engineering practice, to assume that 
porons media will hardly ever he fully liquid-saturated. One might envisage 
small gas remnants in oil saturated geological strata, or air bubbles trapped 
in marine sediments. In both cases, the saturating pore :fluid consists of 
a liquid phase and a, usually small, amount of gas. In this chapter, the 
presence of gas bubbles in liquid saturated porous media will he accounted 
for by decomposing the :fluid bulk modulus K1: 

1 s 1- s -=-+-x, K1 K 9 ' 
(4.1) 

where we have denoted the liquid fraction in the pores by s and, obviously, 
the pore gasfraction by 1- s. K1 is the liquid bulk modulus and K 9 is an 
effective bulk modulus of the gas phase, which relates the averaged bubble 
volume V9 to a change in liquid pressure p00 far away from the bubble: 

1 _ 1 oV9 

Kg - -Vg OPoo 
(4.2) 

This approach is similar to the treatment of wave propagation in bubbly 
liquids by, among others, Van Wijngaarden (1970). AB an illustration we 
will fust consider the effective :fluid velocity of sound, c 1, as a function of the 
amount of air added, without any porous material being involved. Writing 
the :fluid density p 1 = ( 1 - s )p9 + sp1, where by p9 we have denoted the gas 
density, from equation (4.1) we may write: 

1 [ Pll1 [ p9 ] 1 2 = (1- s) (1- s) + s- 2 + s s + (1- s)- 2 , 
~ ~ ~ ~ ~ 

with Cl and c9 denoting the speed of sound in the liquid and in the gas, 
respectively. Resulting calculations are depicted in figure 4.1. We find that 
relatively small gasfractions seriously affect the :fluid speed of sound, up to 
a degree where this speed of sound may even get lower than the speed of 
sound in air. lt is only natura! to assume that bubbles similarly control the 
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Figure 4.1: Speed of sound in water as a lunetion ofthe amount of air (1-s) 
added. 

acoustic properties of porous media. AJJ.y phenomenological description of 
wave propagation and damping in pa.rtially saturated porous media should 
also incorporate the dynamic gas bubble behaviour, which is omitted in the 
previous illustration, depicted in figure 4.1. Gas bubbles in liquid can vibrate 
and they have a fundamental resonance frequency. Damping mechanisms of 
vibrating gas bubbles have been reviewed by Van Wijngaarden (1972). We 
will now go over to the case of a liquid-saturated porous medium, contai.ning 
vibrating gas bubbles. 

4.2 General relations 

It may be clear that damping of oscillating gas fractions in a porous medium 
is depending upon the shape and structure of the gas fractiollB under con
sideration. From visualization experiments presented in cha.pter 6, we have 
learned that the occuring gas fractions commonly occupy several pores and 
ha.ve a rami:fied shape, e.g. like alveoli in the human lungs. Yet, the gen
eral feature of the gasfractions is still spherical, with part of the internal 
gasvolume being occupied by skeletal material and :fluid inclusiollB. There
fore, in the forthcoming sections, the analysis is based upon this assumption 
of sphericity. Our aim is to characterize gas bubble dynamica, relating the 
average gas bubble volumetoa change in liquid pressure far away from the 
bubble. We williet the origin of coordinates beat the bubble centre, which 
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is at rest. The radius ofthe huhhle at any timet is R(t) and ris the radius 
to any point in the gas or in the liquid. For liquid motion with spherical 
symmetry the continuity equation hecomes: 

Öwr + 2wr = O 
Ör r 

Solving this equation we find the liquid velocity equals ~ at r = R and 
vanishes at infinity: 

w = dR (R) 2 

r dt r 
(4.3) 

Considering the porous skeleton to he incompressihle, the liquid equation 
may he written: 

(
ÖWr Öwr) Öp bo 

aooPJ 7ft + Wr Ör = - Ör - </>o Wr (4.4) 

In order todetermine the equation of motion for the huh hle, equation ( 4.3) is 
suhstituted into equation (4.4), and equation ( 4.4) is suhsequently integrated 
over the liquid from r = R to infinity: 

{ 
d

2
R 3 (dR) 2

} b0 dR a P! R- + - - = -[p - p(R)] - -R-
oo dt2 2 dt 00 4>o dt 

(4.5) 

This is the well-known Rayleigh-Plesset equation (Plesset 1949; Van Wijn
gaarden 1970) with an extra term added to take into account the Darcy 
interaction mechanism. In order to eliminate the liquid pressure p(R) at the 
huhhle surface, we will now consider the pressure jump across this huhhle 
surface: 

41]dR 2u 
p(R) = Pg- Rdt- R' (4.6) 

where p9 is the gas huhhle pressure and u is the surface tension. In this 
equation ( 4.6) it is assumed that the huhhle radius is not affected hy the 
presence of the porons material. For a detailed description of the dynamic 
hehaviour of the air-liquid contact surface within a porous medium, it is 
important to notice that the dynamic contact angle </>d may differ signifi
cantly from the static contact angle <I> a, dep en ding on the capillary num.her 
Ca = TJf!./u. This is treated hy Boender, Chesters & van der Zanden 
(1991). Extra damping of the gas huhhle oscillations may also he caused 
hy the fact that the advancing contact angle is not necessarily equal to 
the receding contact angle, which is, in fact, a hysteresis effect. For hoth 
phenomena, the corresponding pressure jumps over the air-liquid contact 
surface are of the order u/ A, where A is an effective pore radius. 
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For the experiment al conditions described in chapter 7, however, it is found 
that u jA < p00 • For porous media with low A-values, or for small :fluid 
pressure amplitudes, on the other hand, it would be necessary though to 
take into account the effects mentioned above. This is, however, beyond the 
scope of the present study. 
Furthermore, the gas bubble pressure is assumed to be uniform throughout 
the bubble, which implies that the inertia and the viscosity of the gas are 
negligible. The :fluid surrounding the bubble provides the inertia for the 
bubble system as is seen in the fust term on the left hand side of equation 
( 4.5). The second term on the right hand side of the foregoing equation ( 4.6) 
is associated with the radial viscous stress Trr in the :Huid, which, in general, 
may be written: Trr = -2f18wrf8r + 2/3"1 div w (Bird, Stewart & Light
foot 1960, p. 89). As the :Huid is regarded incompressible the divergence 
term cancels. The sameapproach was aJso used by Dontsov, Kuznetsov & 
Nakoryakov (1987) but they ignored surface tension e:ffects. Now linea.rizing 
both equations ( 4.5) and ( 4.6) and substituting an exp( iwt) dependenee for 
all relevant quantities we :find: 

~ ~ 2u A 2 A • A ( "1 b ) 
Poo = Pg + Rg"R + a.ooPJW RoR- twR 4 Ro + </>o Ro , (4.7) 

where linea.rized quantities are ~ overscribed, and Ro is the equilibrium 
bubble radius. Furthermore, the steady-state parameter bo has again been 
replaced by the frequency dependent interaction term b( w ). Aiming to elim
inate the gas bubble pressure p9 from the above equation ( 4. 7) we may write 
the polytropic relation: 

ÎJg Îl 
-=-3n-, 
Pg0 Ro 

(4.8) 

where by n we have denoted the polytropic collBtant. Zero-subscribed quan
tities correspond to a fixed reference equilibrium state. Defining the thermal 
diffusivity a9 of the gas phase, we may assume bubble oscillation to occur 

isentropically when the thermal penetration depth 6T = J2a9 jw is much 
smaller than any characteristic pore radius A. The polytropic constant n 
will then be equal to the specific heat ratio ; = cp/cv, with c" and Cv be
ing the specific heats at constant pressure and volume, respectively. When, 
on the other hand, the conductivity of heat is so complete that isothermal 
conditions prevail, n is equal to unity. This is the case when 6T :::> A. In 
the intermediate case, however, p9 jpg0 is no longer in phase with Îl/ Ro; it 
is this di:fference in phase that gives rise to a thermal damping mechanism, 
which is described by n being a complex valued quantity. This will be the 
subject of discussion in section ( 4.3). 
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Substitution of equation ( 4.8) into ( 4. 7) yields: 

( 
20' ) Îl 2 A A ( 71 b ) 

Poo = Ro- 3np9o Ra+ O.ooPJW RoR- iwR 4 Ra+ 4>o Ra (4.9) 

We have now found a relation linking a change in gas bubble radius to 
a change in liquid pressure far away from the bubble. This gives us the 
opportunity to evaluate the importance of every term in equation ( 4.9), 
contributing to the damping of vibrating gas bubbles at resonance. This is 
done in section ( 4.5). In section ( 4.6) equation ( 4.9) is subsequently used 
to ca.lculate the dynamic :fluid bulk modulus over the frequency domain. 
At fust, however, weneed a more profound understanding of the thermal 
damping (section 4.3) and we will also describe the way compressibility 
effects of the pore :ft uid give rize to an acoustic damping mechanism ( section 
4.4). 

4.3 Thermal damping 

Thermal damping of oscillating gas bubbles, submerged in an infinitely ex
tended :fluid, has been investigated by Pfriem (1940), Spitzer (1943) and 
Devin (1959). These theories will now be modifi.ed and applied to the case 
of oscillating gas bubbles in a :fluid-saturated porous medium. We will fust 
describe the case of pulsating gas bubbles in a :fluid and then go over to the 
case of pulsating gas bubbles in aporous system. 

4.3.1 Pulsating gas bubbles in a ftuid 

As before we define a spherical coordinate system originating at the centre 
ofthe bubble. The bubble, which is in an alternating pressure field p00 , can
not be in equilibrium with this oscillating pressure but by pulsating itself. 
We will now consider a cycle of vibration of the bubble. As the bubble is 
compressed its temperature T rizes; when the rise of the temperature is ap
preciable, heat conduction beoomes important and the bubble tends to cool 
o:ff even before the expansion has started. When maximum compression is 
reached the temperature will already be decreasing as heat :flows from the 
bubble into the surrounding :fluid. It is obvious that in this case maximum 
temperature will be reached somewhat before maximum compression is es
tablished. Therefore the temperature of the bubble at a given volume will 
be somewhat greater during the compression part of a cycle than during 
the expansion part. Since there is a direct relation between volume and 
pressure of the gas bubble, at a given volume the pressure exerted on the 

27 



bubble during the compression will begreater than the corresponding pres
sure during the expansion. Hence more energy is required to compress the 
bubble than is regained in the subsequent expansion. The work done by the 
bubble during one cycle of its vibration is negative and represents a net flow 
of heat tl.Q (per unit mass of the gas phase) into the surrounding fluid. The 
process must obey the conservation of energy principle as stated in the first 
law of thermodynamica. When the gas is considered ideal we may write: 

dQ dT dpg 
dt = Cpdt - Vg dt ' (4.10) 

where c11 is the specific heat at constant pressure and v9 is the reciprocal gas 
density. The rate of heat accumulation is proportional to the divergence of 
the temperature gradient: 

(4.11) 

where >.9 is the thermal conductivity of the gas phase. In the previous 
equation we have considered the heat flow aresult of conduction alone. This 
is because convection is unimportant, as the time factor for establishment 
of this process is considerably larger than the time taken for a half-cycle 
vibration of the bubble. Now combining both foregoing equations we find: 

ö(rT) 82(rT) r dp9 
~=ag ör2 +-pc dt' 

g Jl 

(4.12) 

where, as before, a9 is the thermal diffusivity of the gas phase. The oscil
lations in the pressure, volume and temperature of the gas in the bubble 
are assumed small. Consequently we may write a linearized relation from 
equation (4.12) assuming an exp(iwt) dependenee for all relevant quantities: 

. ( T~) 82(r'Î') . r ~ 
tw r = a9 ö 2 + 'w-- p9 , 

r p9oc11 

(4.13) 

where, again, zer<rsubscribed quantities represent the equilibrium state and 
small deviations are ~ overscribed. A solution of this differential equation 
must satisfy the boundary conditions. At the centre ofthe bubble the change 
in temperature 'Î' must be finite and it must be zero at the bubble surface. 
The solution of equation ( 4.13) thus becomes: 

r'Î' = Rop9 [~ _ sinh( 'ljlr) ] 
c11p9o Ro sinh( 'f/IRo) ' 

(4.14) 

where 'Ijl= (1 + i).jwf2a9 , with the dimension ofreciprocallength. This re
lation was also found by Devin (1959). The temperature field within the gas 
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bubble is now known. Yet, we still need todetermine the relation between 
a change in bubble radius Îl (or correspondingly a change in bubble volume 
V9 ) and a change in gas bubble pressure p9 • We will therefore consider the 
total gas volume as the sum of all concentric shells with radius r and thick
ness dr. For each shell the temperature is known according to relation ( 4.14) 
and consequently also the internal energy dÊ = p9a c,/Î'41rr2dr. (The reason 
for consiclering the internal energy will become apparent). Subsequent sub
stitution of equation (4.14) and integration over the bubble volume yields: 

( 4.15) 

This change in internal energy must obey the fust law of thermodynamica, 
which is now written in the form : 

( 4.16) 

where a harmonie variation has been substituted for all relevant quantities. 
Furthermore, q denotes the heat flow rate (i.e. unit energy per unit time) 
through the fluid-gas interface. From this relation (4.16) it becomes obvious 
that a relation between the change in volume and the change in pressure of 
the gas bubble may be found once the heat flow rate q from the surrounding 
:fluid into the gas bubble is known. As this heat flowrateis proportional to 
the temperature gradient at the bubble surface: q = 41r~À9 [oTför]R01 we 
may write after substitution of equation ( 4.14): 

(4.17) 

Now substitution of both equations (4.15) and (4.17) into (4.16) yields an 
expression, which may be written in the same form as the polytropic relation 
which we stated previously ( 4.8) . Doing so, we find the polytropic constant 
n is given by the relation: 

{ 3(;-1)[ 1]}-l 
n =; 1 + "PRo coth( "PRo)- "PRo ( 4.18) 

The consequences of this result will now be considered for the porons system. 

4.3.2 Pulsating gas bubbles in a porous system 

As we stated previously, a gas bubble with radius Ra in a fluid-saturated 
porons medium will commonly occupy several pores: Ra > A, where A is 
a characteristic pore radius. Therefore, heat transfer processes will take 

29 



1.4 

12 

s 1.0 

E 0.8 
isothermal isentropic 

a) 0.6 
!I 

0.4 

0.2 lm [n] 

0.0 
0. 1 1 10 100 

1\ I <ST 

Figure 4.2: Real and imaginary part of the polytropic constant as a lunetion 
of the reciprocal, reduced, thermal peneteation depth. 

place between the gas bub bie and the surrounding porous structure rather 
than between the gas bubble and the surrounding fiuid, as was the case in 
the previous section (4.3.1). The length scale related to the heat transfer 
processes and corresponding thermal damping mechanisms will be A rather 
than R0 • We have, consequently, presented in figure 4.2 both real and 
imaginary parts of the polytropic constant n as a function of A/8-r, where 

6T = J2agjw is the thermal penetration depth. As expected, we find n --t 

1.0 for small values of A/6T and n --+ 1.4 for large values of A/6T. In 
between there is a transition zone with a non-zero imaginary part of n, 
which causes a phase difference between a change in pressure and a change 
in volume of the gas phase. This imaginary part of n is therefore responsible 
for the thermal damping mechanism. This is illustrated in figure 4.3, where 
we have plotted a diagram of the real part of the change in pressure of the 
gas bubble versus the real part of the change in volume of the gas bubble. 
The area enclosed by the compression and expansion curves represents the 
net loss of energy due to the heat conduction. 
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4.4 Acoustic damping 

In this case the compressibility effect of the pore :Huid is taken into account. 
The linea.rized continuity and momenturn equations then become: 

op! 
öt + p/V.w = 0 

8w bo 
etooPJ öt = -Vp- </>o w 

Combining both foregoing equations we find: 

v2 - bo _1_ op- aooo
2
p- 0 

P 4>o PJC? öt c? öt2 - ' 
(4.19) 

where Cl is the speed of sound in liquid: c? = opfOPJ· In spherical co
ordinates the above equation becomes: 

82 bo 1 a Cloo o2 

-(rp)- - - -(rp)- --(rp) = 0 
Or2 <f>o PJC? Ot c? 1Jt2 

(4.20) 

After substitution of a harmonie pressure p = pexp(iwt), the solution of 
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the equation is given by a sperical pressure wave: 

~ _ Jlo ~(Jlo) i~ee(Ro-r) p- -p e ' 
r 

(4.21) 

where we have defined an effective wave number K.e = .fi{f.Jw2- iwwcF, 
and F denotes the b(w)fb0 ratio. This means that, at this stage, we have, as 
before, introduced the frequency dependent interaction term b(w). A plot 
of the effective wave number K.e/K.l is shown in figure 4.4. Apparently, in 
the high frequency limit, the speed of sound is modified by a factor .,;a;;, 
originating from the tortuosity of the porous medium. In the low frequency 
limit, viscosity effects are dominant, and we notice there is a (wfwc)-112 
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dependenee of the absolute value of the wave number. Comparing this ex
pression with the classical theory for an oscillating bubble in a compressible 
fiuid (see e.g. Dowling & Ffowcs Williams 1982, p. 49), we find that the 
effect of the porous medium is represented by the effective wave number "-e· 
For the velocity field we may write: 

. _ (Ro) 2 
"(R) 1+iKer i~<.,(Ro-r) w- - w 0 . e , 

r 1 + ZKeRo 
(4.22) 

where, obviously, w(Ro) = iwR is the fiuid velocity at the gas-fiuid interface. 
Now integrating the momenturn equation from Ro to infinity we find: 

• "(R ) et.ooPJRoR( 2 • F) Poo = P 0 + 1 . Ro W - ZWWc + ZKe 

For the pressure jump across the bubble surface we now write: 

"(R ) • ( OWr 2 n • ) 2u R 
p o =Po+ 1J 2 [)r - 3 v .w Ro + R6 

This yields: 

• _ • . R 3Ro"-e 2uR "( 122) . 
p(Ro)- Po- 417zw Ro 1 - 1 + iKeRo + R5 

(4.23) 

(4.24) 

( 4.25) 

For bubble radii up toa few millimeters the second term between the brack
ets in the above equation may he neglected for all frequencies. Subsequent 
combination of the above equations ( 4.23) and ( 4.25) and application of the 
polytropic relation leads to: 

. (2u . ) R Ct.ooPJRoR( 2 . ) 
Poo = Ro - 3np9o - 41]ZW Ro + 1 + iKeRo w - zwwcF (4.26) 

We have now found a relation, which is essentially the same as the one we 
presented before ( equation 4.9). It has only been modified by the acoustic 
damping, where it has been assumed that pulsating bubbles are radiating 
acoustical energy into the surrounding, infinitely extended, pore liquid. 

4.5 Damping at resonance 

In the case of undamped oscillating bubbles in a fiuid-saturated porous 
medium, under isothermal conditions the resonant frequency is given by: 

wo= [
3 2u ]1/2 Poo- 71; 

a.p,R6 
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Figure 4.5: Resonant frequency (a) and damping coeflicient (b) of vibrating 
gas bubbles in a fluid-saturated porous medium. Only thermal damping is 
taken into consideration. 

When there is a transition from an adiabatic towards an isothermal condi
tion, i.e. when thermal damping is taken into consideration, the asciilation 
of the bubble consists of a damped exponential sinusoidal vibration. The 
resonant frequency obviously becomes: 

(4.27) 

where n itself is a function of the angular frequency. Correspondingly, we 
may calculate the imaginary part Wi, which is used to define the damping 
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constant D: 
( 4.28) 

From equation ( 4.28) it is seen that n-1 is the number of cycles required for 
the amplitude of motion to rednee to e-1 of its original value. A numerical 
solution for Wr and Wi is found in an iterative manner. Results of compu
tations for Wr and D are presented in figure 4.5. We find that for bubble 
radii larger than 1 mm, the resonant frequency is given within one percent 
by the isothermal solution. That is because Wr is directly proportional to 
Rö1

. So, increasing Ro valnes will yield lower resonant frequencies and a 
tendency towards the isothermal solution (see figure 4.2). It is interesting to 
note that the opposite is happening if there is no porons medium involved, 
and the length scale related to the heat transfer process is Ro instead of A. 
Then, Wr will remain proportional to R0\ but the parameter Ro/6T, which 

replaces the parameter A/ 6T, will he proportional to R~/2 • 
The damping reaches a maximum for bubble radii of approximately 0.3 mm, 
and tends to zero for smaller, and also for larger bubbles. So far, we have 
taken into account the thermal damping only. From the relation (4.26), 
however, we find that the total damping may he explained by losses, origi
nating from four processes: 
1. Darcy damping, due to the interaction forces between the ftuid and the 
porons skeleton. 
2. Thermal damping, caused by the annihilation of energy by heat flow 
between the gas in the bubble and the surrounding porons structure. 
3. Sound radiation damping because of the compressibility effects of the 
pore fluid. 
4. Viscous damping, due to viscous forces at the gas-liquid interface. 

If we want to take into account all damping mechanisms mentioned above, 
we need to solve equation ( 4.26), where we have set p00 = 0, i.e. where 
we have removed the driving force. The equation is then, again, solved 
in an iterative manner. We may assume that the contributions of vari
ons dissipation mechanisms may he added to obtain the resulting damping 
coefficient (Van Wijngaarden 1972). A plot of the computed damping con
stauts is given in figure 4.6. This plot may he compared directly to the ones 
presented by Devin (1959) and Van Wijngaarden (1972), who considered 
the case of oscillating gas bubbles in an infinitely extended ftuid. In this 
case, Darcy damping is obviously not involved. In a ftuid-saturated porons 
medium, however, we find that this Darcy damping is the most important 
damping mechanism for large pulsating gas bubbles. For small bubbles, both 
Darcy and thermal damping have to he taken into consideration. We also 
notice that neither the acoustic damping, nor the viscous damping, plays an 
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important role over the entire bubble range. 

4.6 Dynamic compressibility 

In this section we will consider the effect ofthe previously discussed damping 
mechanisms over the entire frequency domain. From equations ( 4.2) and 
( 4.26) we now find: 

(4.29) 

Ignoring surface tension, acoustic and viscous damping and taking n = 1, 
we find the expression we reported before (Sniekers, Smeulders, van Dongen 
& van der Kogel1989). We notice that the effective bulk modulus Kg ofthe 
gas phase becomes a complex valued quantity. The imaginary part of Kg 
causes a phase difference between a change in the gas volume Vg and a change 
in the exerted :fl.uid pressure p00 , which gives rise to an energy dissipation 
mechanism. We will therefore consider the contributions of the different 
damping mechanisms to the imaginary part of Kg. The contribution of the 
Darcy damping may be expressed by the ratio Rnar: 
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The contribution of the therma.l damping is expressed by the ratio Rth: 

Im(n) 
Rth = P9oim(Ku)' 

and the viseaus contribution is, obviously, expressed by Rviac: 

4 1JW 
Rvi/Ie= 3Im(K

9
) 

In all three cases, Im(K9 ) is computed from equation (4.29). Results are 
depicted in figure 4.7. We find that Rviac < 10-3 over the entire frequency 
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Figure 4.7: Contribution ratiosof different damping mechanisms. Compu
tations are performed for a bubble radius of 1 mm. 

domain. Henceforth the viseaus damping mechanism will he neglected. We 
also find that for low frequencies the damping of vibrating gas bubbles is 
entirely explained by bath therma.l and Darcy dam ping. However, this is 
no langer the case for high frequencies. From figure 4. 7 it becomes clear 
that, in this case, the damping cannot he explained by therma.l and Darcy 
damping a.lone. We also have to take into account the acoustic damping 
mechanism. For this acoustic damping mechanism we have not written an 
ana.lytic expression for the contribution ratio Racow" as we did fot the other 
damping mechanisms. This is because from equation ( 4.29) it is seen that it 
is not possible to find one single term responsible for the acoustic damping. 
Furthermore, we find that for high frequencies the thermal damping mecha
nism may be ignored. That is because in this case gas bubbles are pulsating 
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Figure 4.8: Frequency dependent absolute values (a) and phase values (b) of 
the B.uid bulk modulus in the isothermal case. Viscous and acoustic effects 
are neglected. Calculations are performed fora gasfraction of 0.1 % and 
bubble radii of 1 and 5 mm. 

isentropically, and there is, obviously, no thermal damping. Resuming, we 
find that the acoustic damping mechanism plays a very important role in the 
high frequency range. However, we have to notice that in our calculations 
it has been assumed that gas bubbles are freely radiating energy into the 
surrounded, infinitely extended, pore :fl.uid. In our experiments this cannot 
be the case. Part of the radiated acoustic energy is re:fl.ected from the walls 
of the porous cylinder, and does not contribute to the energy dissipation 
of the system. Taking into account the acoustic damping in this way, will 
therefore overestimate its importance. In chapter 7, it will be shown from 
wave experiments that this is indeed the case. lt is for this reason, that the 
forthcoming calculations will be performed omitting the acoustic damping 
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mechanism. 
Combining equations (4.1) and (4.29), we are now able to compute the 

frequency dependent :ftuid bulk modulus. Results are depicted in figures 
4.8. Calculations are performed fora gasfraction of 0.1 % and bubble radii 
of 1 and 5 m.m. lt may be clear from the previous considerations that 
we have performed these calculations taking into account the thermal and 
Darcy damping only. In this respect, our model is different from that of 
Bedford & Stern (1983), who took into account the thermal damping only. 
We find for both bubble radii that the general behaviour is identical. At 
low frequéncies the dyna.mic bubble behaviour is of minor importance. The 
:ftuid bulk modulus is affected only by the extra steady-state compressibility 
of the gas bubbles: Kg - npg0 - ~ia· In the high frequency limit, on the 
other hand, the pore :ftuid acts as if there were no bubbles at all: Kg -
- oo and therefore K 1 - KI/ s, w here s is usually close to (but less than) 
unity. In the intermediate transition region, relatively high absolute valnes 
of the bulk modulus occur; gas bubbles show an out-of-phase behaviour, 
i.e. increasing liquid pressure Poo causes gas bubbles to expand. This is 
neatly illustrated in the phase plot, where valnes of about 1r are reached in 
this case. The minimum absolute value of the bulk modulus occurs at the 
resonance frequency; gas bubbles are vibrating in phase with the exerted 
:fluid pressure which results in a highly compressible :fluid. From figure 4.8, 
it also becomes obvious that a change in bubble radius results in a frequency 
shift of the :fluid bulk modulus (both absolute and phase valnes) due to a 
change in gas bubble resonant frequency. 

4.7 Wave motion 

In the previous section it was shown that the presence of gas bubbles in a 
:fluid-saturated porons medium modifies the :fluid bulk modulus Kt. Ob
viously, this will also change phase veloeities and damping coeffieients of 
both wave modes discussed in section 3.1. This is shown in figures 4.9. 
The results are somewhat different from those of Bedford & Stern (1983), 
because of different damping mechanisms. At low frequeneies, we notice 
that the presence of a small amount of gas causes higher damping and lower 
phase velocties for both wave modes. Because of high energy dissipation, 
the damping of the second wave mode reaches its maximum when the gas 
bubbles are vibrating out-of-phase with respect to the exerted :ftuid pres
sure. In this case, the :ftuid becomes very stiff, which results in high mode 
2 p!tase velocities. Mode 2 phase veloeities may even attain higher valnes 
than the mode 1 phase veloeities. In the high frequency limit, it becomes 
clear that an interchange of roles has taken place, both for the phase ve-
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locities and the damping coefficients. The high frequency limit of mode 1 
is the high frequency limit of the fully saturated mode 2 and vice versa. 
Summarizing, we fi.nd that the partially saturated porous medium acts as a 
frequency filter, with high atttenuation coefficients for one frequency range 
and low damping for another. This is illustrated again by the low mode 2 
damping coefficients in the high frequency limit. The transmission phenom
ena, caused by an incident pressure step, have been calculated by means of 
a straightforward Fourier decomposition as described by Van der Grinten, 
van Dongen & van der Kogel (1987). The results are shown in the 3-D :figure 
4.10. As compared to the fully saturated case, which we discussed in chapter 
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Figure 4.10: Propagation of compressional waves in a partially saturated 
porous medium. Gasfraction: 0.1 %; bubble radius: 1 mm. 

3, we fi.nd that the two-step behaviour has completely disappeared. Instead, 
an oscillatory disturbance is seen to propagate in the porous material. At a 
longer time scale, this behaviour is depicted again in :figure 4.11. In the fully 
saturated case, the gradual pressure increase, caused by the arrival of the 
second dilatational wave, cammences from a certain offset value. Increasing 
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the gas fraction within the porous material, we notice that this offset va.lue 
decreases. At a gasfraction of only 0.1 %, the offset va.lue is already no 
longer visible (see fi.gure 4.11). Furthermore, an oscillatory behaviour comes 
in, with higher frequencies involved when the gasfraction is increased. The 
gradual pressure increase is still observed, but it arrives later. The Fourier 
frequency spectrum of the oscillations, which we observed in the time do
main (:figu.re 4.11), is shown in :figures 4.12 and 4..13. It consists of two 
frequency ranges, conesponding to the two Biot wave modes. The high fre
quency range corresponds to the second wave mode, which has low damping 
for high wfwc valnes (see :figure 4.9). The low frequency range corresponds 
to the fust wave mode, which attains low damping coeffi.cients in the low 
wfwc region. We also notice that the Fourier spectrum is very sensitive to 
changes both in bubble radius and in gas fraction. This is depicted in both 
:figures 4.12 and 4.13. 
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Figure 4.11: Pressure development at increasing gasfraction at a depth of 22 
cm. Bubble radius: 0.3 mm. Po is tbe atmospheric pressure. The incident 
pressure step Pin is 1.0 bar. 
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5 Dynamic permeability 

5.1 Introduetion 

For many technological areas it is interesting to know how :ftuid :ftows through 
porous media. The dynamic permeability and tortuosity are important prop
erties to describe the macroscopie flow through porous media, subjected to 
an oscillatory pressure gradient. It is important to notice that all important 
features are brought out consirlering a rigid porous medium. We will discuss 
this in section 5.4. Introducing an exp( iwt) dependenee for the fluid pres
sure p and the macroscopie fluid velocity w, the dynamic fluid behaviour 
may he characterized on a macroscopie scale by the ac permeability k( w) 
or, alternatively, by the ac tortuosity a(w): 

fJ4>o A _ V A 

k(w) w-- p 

iwp1a(w)w = -Vp 

(5.1) 

(5.2) 

In these two expressions, fJ is the fluid viscosity, Pithefluid density and f/>0 

the porosity. In the past few years, it has been the interest of many authors 
to express the macroscopie fluid behaviour in terms of averaged microscopie 
equations. Different authors have considered the steady-state permeability 
k0 for stationary flow (Larson & Higdon 1988; Beasley & Torquato 1988; 
Rubinstein & Torquato 1989; Mei & Auriault 1991). The steady-state per
meability is a real-valued quantity, defined by: 

lim k(w) = ko 
w-+0 

(5.3) 

For the dynamic permeability, however, less results are available. Lévy 
(1979), Auriault (1980) and Burridge & Keiler (1981) derived a two-scale 
homogenization formalism to describe the dynamica! behaviour of a New
tonian fluid within a porous, elastic, medium. Auriault, Borne & Chambon 
(1985) were the :first to present both numerical and experimental data for 
a schematized, periodic, porous medium. They compared their results to 
an asymptotic, high frequency, approximation. In 1987, Johnson, Koplik & 
Dashen described the dynamic permeability behaviour over the entire fre
quency range by a sealing function. They argue that the reduced dynamic 
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permeability k(w)/ko must depend on a reduced frequency wfwc, where Wc 
is a rollover frequency from a viscosity dominated regime to an inertia dom
inated one: 

Wc = TJcPo/ p Jkoaoo, (5.4) 

where a 00 is the the tortuosity or added mass parameter, defined by: 

lim a(w) = et00 
W-+00 

(5.5) 

The rollover frequency becomes apparent, equating the low frequency limit 
of (5.1) (i.e. for k(w) -+ k0 ) and the high frequency limit of (5.2) (i.e. for 
a(w) -+ a 00 ). By analyzing the behaviour for high frequencies, Johnson 
et al. (1987) also found that k(w)fk0 must be a ftmction of yet another 
parameter 

(5.6) 

where A is an independently measurable property of a porous material with 
the dimension of length. In the same paper the parameter M is suggested 
to be 1 for all porous media, at least approximately. All this was also 
briefiy commented upon later (Johnson 1989). The assumption that there 
exists only one sealing function for all porous media was validated in later 
years, both numerically and experimentally. Numerical calculations of the 
dynamic permeability for a variety of microstructures were presented by 
Sheng & Zhou (1988) and Yavari & Bedford (1990). Experimental data 
were obtained by Charlaix, Kushnick & Stokes (1988). 

In this chapter we will derive, from microstructure, the averaged dynamic 
permeability relations presented before by Lévy (1979), Auriault (1980) and 
Burridge & Keiler (1981). Our relations are simplified somewhat because 
we have assumed the porous medium to be rigid. The unique macroscopie 
dynamic permeability k(w)fko, presented by Johnson et al. (1987), is subse
quently expressed in terms of averaged microscopie relations. High frequency 
behaviour is studied. 

Furthermore, we will present a way for numerical calculation of the con
stituents of the parameter M given in (5.6). Two different axisymmetrical 
pore geometries will be considered, and values of M for different pore ge
ometries will be given. 

5.2 Microstructural Approach 

The microstructure of a random porous medium is generally characterized 
by a length scale a that is typical of the pore size. An extended statistica! 
characterization in terms of various kinds of correlation functions has been 
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considered by several authors (Rubinstein & Torquato 1989; Bear & Bach
mat 1990). Another scale of description is the macroscopie level, at which 
measurable continuons and differentiable quantities may be identified and 
boundary value problems can be stated and solved. lts length scale is called 
L. We now define ë as afL. Consiclering a rigid :O.uid :filled porons medium, 
we may write the linearized microscopie :O.uid equations: 

OU 2 
PJ Ot = -Vp+7JV u+('7+7J')V(V.u) (5.7) 

1 op 
KJ Ot = -V.u, (5.8) 

where we have introduced the :O.uid velocity u at microscale. Furthermore, 
11' is the :O.uid dilatation viscosity and K 1 is the :O.uid bulk modulus. Substi
tution of an exp( iwt) dependenee for the :O.uid pressure p and :Huid velocity 
u yields: 

(5.9) 

(5.10) 

Equations (5.9) and (5.10) may be written in dimensionless form by intro
ducing reference parameters Ure/ = 1J / p Ja, Pref = L712 / p 1a3

, Wref = 1J / p 1a2 

and tref = 1/Wref· 

(5.11) 

·-- 1i7-zwp = -- v .u, 
é 

(5.12) 

where V= aV. 
We may now apply the well-known technique ofhomogenization (Lévy 1979; 
Auriault 1980; Burridge & Keiler 1981), invalving the explicit recognition 
of two length scales in the problem by writing all quantities as a function of 
ë and the two spatial variables x =· r f L and y = r fa, and then expanding 
them as a perturbation series in ë. Furthermore, the gradient operator V 
acts on both the x and y scales: 

ii = uo(x,y)+ëut(x,y)+ ... 

P =Po( x, y) + ëPt(x, y) + ... 

V= ëV'x + V'71 
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(5.14) 
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Note that for convenience the -sign has been omitted in the right hand sides 
of the above equations. By now equating terms with equal powers of € we 
obtain: 

iWuo =-V :z:Po- V 11PI + V~Uo 

V 11 po = 0 

iWpo =-V :z:·Uo- V 11 .ul 

V11 .Uo=0 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

Similar equations were found by Lévy (1979) and Auriault (1980). Equation 
(5.17) indicates that the pressure Po is a ftmction of the x spatial variabie 
only and can therefore be identi:fi.ed as a measurable macroscopie quantity. 
Equation (5.19) indicates that the fluid may be regarded incompressible on 
the microscopie level (y-scale). As pressure and velocity are complex valued 
quantities, we may write from equation (5.16): 

• - • '1"7 • '1"7 • + '1"72 • - awu0 = - v :z:Po - v 11p1 v 11 11ó (5.20) 

The asterisk denotes complex conjungated quantities. Multiplication of 
equations (5.16) and (5.20) by u(j and Uo, respectively, and subsequent ad
dition yields: 

-V 11 .(PI ui)+ piuo) + ui).V~Uo + uo.V~ui) = ui).V :z:Po + UQ.V :z:Po (5.21) 

In order to link this microscopie equation to its macroscopie equivalent we 
shall average it over the the y-variable. Aim.ing to de:fine the average of any 
ftmction g, defined for yin the fluid domain Dj, we will use the technique 
proposed by Burridge & Keller (1981). We consider a sphere ~of radius R 
and integrate g with respect to y over that part of D 1 which is contained in 
~' and divide this integral by the volume of ~. Finally, taking the limit of 
this ratio as R-+ oo we call this limit < g(x) >. Applying this procedure 
to equation (5.21) we find: 

< ui).V~Uo + UQ.V~ui) >=< ui).V:z:Po + uo.V:z:Po > + 

lim ~ j (PiuO + piuo).ndydy (5.22) 
R-+oo 31r R 

s,R 

The surface S JR consists of two parts: the part of the pore surface within 
~: (SJ )R, and the part of the surface of the sphere ~ within D1: (SR)J· 
Since the entire surface of the sphere is 411" R2 , the integral over it is bounded 
by some constant times R2• Divided by R3 this integral is zero as R -+ oo. 
Therefore, the surface of integration in (5.22) may be replaced by ( S 1 )R· 
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Considering this surface, we find any :O.uid velocity perpendicular to the 
pore surface ( S 1 )R to he zero, and we are left with: 

(5.23) 

Defining the macroscopie :O.uid velocity w =< ü.o >, this equation may he 
rewritten: 

(5.24) 

We have reintroduced the - sign to focus attention to the dimensionless char
acter of the quantities under consideration. The left hand side of the above 
equation (5.24) is the averaged microscopie :O.uid response to the applied 
macroscopie pressure gradients in the right hand side of equation (5.24). 
However, this linea.r (i.e. smaJl amplitude) response of the pore :O.uid is 
usuaJly described in terms of the macroscopie :O.uid velocity wéwt and the 
dynamic, frequency dependent, tortuosity a(w). This relation was given by 
(5.2): 

iwa(w)pJW =-V :cPo, (5.25) 

It is noted by camparing (5.1) and (5.2) that a(w) and k(w) are not inde
pendent: a(w)ja00 = -ik(j.l)c/wk(w). In dimensionless form equation (5.25) 
becomes: 

iWa(w)w = -V:ciio (5.26) 

As a(w) is a complex va.lued quantity we may write from (5.26): 

(5.27) 

Multiplication of equations (5.26) and (5.27) by w* and w, respectively, and 
subsequent addition yields an energy equation at the macroscopie level: 

(5.28) 

In equation (5.24), the :O.uid response to the applied pressure gradients is 
written in terms of averaged microscopie velocities. In equation (5.28), on 
the other hand, the :O.uid response to the applied macroscopie pressure gra
dients is written in terms of the macroscopie tortuosity a( w ). We may now 
equate both relations (5.24) and (5.28) to express a(w) in termsof ratiosof 
averaged microscopie quantities: 

I [ ( )] == (iiö.V~ü.o + ü.o.V~iiö} 
ma w 2Wiwl2 (5.29) 

48 



We note that the right hand side of the above equation (5.29) is, in fact, 
only determined by the frequency and by the pore geometry because of 
the proportionality between all veloeities involved. After some algebrak 
manipulations and reintroducing dimensions we may write: 

11 ö • öuoj öu0i öu0i öu0i 
Im[a(w)] = 2w I 12 (-

0 
(u0'J·-

0 
+ Uoi-

0 
) -2-0 -

0 
), (5.30) 

P 1 w Yi Yi Yi Yi Yi 

where summation over repeated indices is assumed. As it is obvious that we 
are considering harmonie flow behaviour, we have, for reason of convenience, 
omitted the A sign for all velocities. Replacing in the previous denvation 
at the appropriate places ( starting from equation 5.21) the addition by a 
subtraction, we may derive an expression for the real part of a(w) in a quite 
identical way: 

[ ( )] _ (lüol2) (ü0.V~Üo- üo.V~ü0 ) 
'Re a w - lwl2 - 2iwlwl2 ' (5.31) 

or alternatively: 

(5.32) 

where, again, for reason of convenience, the A sign has been omitted for all 
veloei ties. 

5.3 High frequency behaviour 

Having written the imaginary andrealparts of a(w) in this way (equations 
(5.30) and (5.32)), we may now investigate the high frequency behaviour of 

a(w). In the limit of high frequencies, the viscous skin depth é = J21J/WPJ 
eventually becomes much smaller than any characteristic pore size. Any 
vorticity, V x u, generated at the pore walls decays to zero as one moves 
away from the pore walls into the bulk of the pore. Therefore, except for 
a boundary layer of thickness é, the fluid motion is given by potential flow, 
u = -V 11 '1/J, for some '1/J. In the forthcoming, we shall show that for an 
ideal fluid the quantity a(w) is a real valued quantity a 00 , independent 
of fluid properties. Then we shall relate, exactly, the corrections to this 
extreme high frequency limit a 00 to the microscopie potential flow field for 
high frequencies. We note that since é is arbitrarily small at high enough 
frequencies the walls of the pores appear to be flat in the boundary region. 
Therefore, introducing a boundary layer velocity u0c5 at a distance é from 
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the pore walls, the entire velocity field in the boundary layer is descibed by 
(Landau & Lifshitz 1959, p.91): 

(5.33) 

(Also in this section, the • sign is omitted). In this equation, {3 is alocal 
coördinate, measured from the pore wall into the bulk of the pore, and 
k = (1 - i)jfJ is the shear wave number at frequency w. By substituting 
(5.33) into (5.32), the second term in the right hand side of equation (5.32) 
vanishes and we readily arrive at (w -+ oo ): 

(5.34) 

Obviously, in the extreme high frequency limit, the viseaus skin depth fJ 
tends to zero and we may write: 

lim 'R.e[a(w )] = a00 = (l11pl
2
), 

w-+oo lwl2 (5.35) 

where Up is the potential :ftow solution. In Appendix A, we show that the 
high frequency behaviour of 'R.e[a(w)], asymptotically approa.ching its ex
treme high frequency limit a 00 , may be described by rewriting equation 
(5.34) in termsof this extreme high frequency limit a 00 and the viseaus skin 
depth fJ(w) (w-+ oo): 

1 
'R.e[a(w)] = a 00(1 +At fJ(w)] (5.36) 

It is also shown in appendix A that At has the dimension oflength, and can 
be evaluated on the basis of steady potential flow theory: 

2 [/,:I l11pl 2dVl~w 
At = I lupl2dV 

(5.37) 

In this equation, we have defi.ned a :ftow potential di:fference Ä'lj; between two 
arbitrary equipotential surfaces. Furthermore, [JrG]~,p denotes the deriva
tive of some quantity G with respect to some outward virtual displacement 
r of the pore walls at constant Ä'lj;. 

Next, we shall evaluate the asymptotic behaviour of the imaginary part 
Im[a(w)] by combination of (5.30), (5.33) and (5.35) (w-+ oo): 

_ fJ a00 *I J11pwJ
2
dS 

Im[a(w)]- - WPJ T {1Upl2) ' (5.38) 
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where the integration is over the pore wall surface S, and Vp is the pore 
volume. Furthermore, llpw denotes the potential :flow velocity at the wall. 
Interpretating the averaging operation in the denominator of (5.38) we may 
write (w--+ oo ): 

6 2 
Im[a(w)] = -a

002 
A

2
, 

where the parameter A2 has the d.i.mension of length and is given by: 

2 f lupwl2dS 
A2 = J IUpl2dVp 

(5.39) 

(5.40) 

This expression (5.40) was derived earlier by Johnson et al. (1987), on the 
basis of energy flux and energy dissipation considerations. The integration 
in the num.erator of (5.40) is over the pore wall surface S; that ofthe denom
inator is over the pore volume. Thus, 21 A2 is essentially the surface-to-pore 
volume ratio, in which each surface or volume element is weighted according 
to the local va.lue of the field up. The motivation for defining A2 in this 
way becomes apparent considering a straightforward potential :flow through 
a cylindrical duet with radius R. As up is the same everywhere in the duet, 
we easily find A2 = R. The error in equation (5.39) is of 0(62) and thus 
equation (5.39) is satisfactorily accurate. Combination of (5.36) and (5.39) 
yields an expression for a(w) for higher frequencies with an error of 0( 62 ) 

(w--+ oo): 
6(w) .6(w) 

a(w) = a 00 [1 +-- ,_] 
A1 A2 

(5.41) 

The parameters A1 and A2 , however, are not independent. Following the 
same reasoning as Johnson et al. (1987), we have the further requirement 
that a(w) should satisfy a symmetry relation: 

a( -w) = a*(w) (5.42) 

AB we have 6( -w) = =t=i6(w) we readily find from equation (5.41): 

A1 = A2 =A (5.43) 

This modifles equation (5.41) to (w--+ oo): 

a(w) = a 00 [1 + (1- i) 6~)] (5.44) 

From equation (5.44) it becomes clear that the dynamic tortuosity a(w)laoo 
in the high frequency regime can be characterized by the parameter 6 I A, or, 
alternatively, v I wA 2 , where v denotes the kinematic viscosity. Summarizing, 
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we may -write that the dynamic tortuosity over the full frequency range is a 
function of at least two parameters: 

This, indeed, confums the assumption by Johnson et al. (1987) that the 
dynamic permeability is a function of wfwc and M. Furthermore, we have 
shown that the present results found for a 00 , A1 and A2 only contain real 
valued quantities that can be evaluated on the basis of steady potential flow 
theory. As the steady-state permeability k0 may be computed from the 
Stokes flow problem, we are now able to investigate the parameter M. This 
will be treated in section 5.5 for axisymmetrical model pores of different 
geometries. 

5.4 Relation to acoustics in deformable porous 
media 

In this section we wil1 consider the relevanee of the results of this chapter to 
the acoustic properties of deformable porous media generally. The drag that 
the solid part of the porous medium exerts on the fluid part, is dominated 
by inertial effects in the strictly high frequency limit, and by viseaus effects 
in the strictly low frequency limit. This dragis therefore characterized by 
the values for the tortuosity a 00 , and for the permeability ko, respectively. 
In the Biot theory, this drag is described in terms of relative motion between 
fluid and solid. From relation (2.31), the eq_uation of motion for the fluid 
constituent may be written: 

where 

iwp{W = -iwp! [a(w)- 1] (w- v)- Vp, 

ib(w) 
a(w) = 0!00 - -

</>oWPJ 

(5.45) 

(5.46) 

These relations were also found by Johnson & Plona (1982). The quantity 
a(w), appearing in (5.45), is independent of theelastic properties of both 
fluid and solid and is, in fact, identical with that de:fi.ned in (5.2). This can 
be seen by consiclering the Biot equations in the limit that the skeletal frame 
moduli are much larger than the bulk modulus of the fluid, so that the fluid 
does not move (v = 0); in thislimit (5.45) reduces identically to (5.2). The 
implications are that the general properties of a(w), deduced in the previous 
sections, automatically apply to the acoustics of deformable porous media, 
via the Biot theory. The conventional approach has been to treat the pore 
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Figure 5.1: Real parts (a) and negative imaginary parts (b) ofthe dynamic 
reduced tortuosity for the tube D.ow (dashed lines) and the sealing lunetion 
by Johnson et al. ( drawn Jin es). We have chosen M = 1. 

space as an ensemble of circular ducts of some radius R. In this case the 
interaction force b(w)fb0 is given by (Zwikker & Kosten 1949; Biot 1956; 
Stoll1974; Van der Grinten 1987, p. 22): 

b(w) 1. 2 Jl(i3/2J.l) 
-- = _,J.l 

bo 4 i3/2 J.lJo( i3/2 J.l) - 2Jl ( i3/2 J.l)' 
(5.47) 

where J 1 and J0 are Bessel functions offirst and zeroth order, respectively. 
Furthermore, J.l = Rv'W/v, where vis the kinematic viscosity. It was no
ticed before (Biot 1956; Stoll1974) that all porous media may he described 
by (5.47), where the argument J.l of the Bessel functions was modified by 
multiplicative "structure factors" ~ or ..;nrTS. In the language of this 
chapter, we find that any porous medium P may he described as an ensem-
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ble of circular ducts of radius R = M11A11• This yields JL = .j8M11wfwc. For 
a porous medium consisting of a series of two-dimensional slits, for example, 
we find M = 2/3, yielding JL = J16w f3wc, which is in agreement with the 
Biot paper (1956). Although the introduetion of "structure factors" may 
seem to he an ad hoc procedure, essentially any function that satisfies the 
conditions (5.3) and (5.44) of the previous sections, will adequately describe 
the :O.uid-solid interaction over the full frequency range. The following func
tion was proposed by Johnson et al. (1987): 

k(w) 1 
ko = [1 + liM ~]1/2 +i~ 

2 Wc Wc 

(5.48) 

It is important to notice that in the original article, this function is written 
for the exp( -iwt) convention. Real and negative imaginary parts of the 
tortuosity for both functions (5.47) and (5.48) are plotted in figures 5.1a 
and 5.1b. For the sake of definiteness we have chosen M = 1. U se has been 
made of the relations (5.1), (5.2) and (5.46). We find that both functions 
display essentially the same behaviour. The only major di:fference is in the 
low frequency limit of 'Re[a(w)] (1.33 versus 1.25). For high frequencies, 
-Im[a(w)] shows an w-112 dependence, whereas for low frequencies an w-1 

dependenee is found. 

5.5 Numerical computations 

Numerical computations were performed on two different types of rotation
symmetrical pore geometries with lenght L, drawn in figures 5.2 and 5.3. 
Pore type 1 has a width W and a rotational axis P1P5 • The surface of 
revolution, bounding its pore volume, is described by the generator curve 
P2P3P4. It consists of line-element P3P4 and of 1/4 circle-segment P2P3, 
with radius R and centre C. The geometry of pore type 1 can he varied in 
two different ways: 

- altering R while maintaining W = L. 
- altering W while maintaining R = 0.5L. 

Pore type 2 is described by generator curve P2P3P4P5 • It consists of line
element P4Ps and 1/4 circle-segment P2P3, with radius R1 and centre C17 
and 1/4 circle-segment P3P4 , with radius R2 and centre C2 • Both eentres 
define the straight line C1C2 at a distance 0.5L from the rotational axis 
P1P6 • The distance between C1 and C2 , d(C17 C2), is defined by the relation 
d( Ct, C2) = Rt + R2 = 0. 75L. The geometry of pore type 2 can he varied 
by changing both Rt and R2 according to this relation. 
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Figure 5.2: poretype 1. 
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Figure 5.3: poretype 2. 

55 



Using the SEPRAN finite element package (Cuvelier, van Steenhoven & 
Segal 1986), we computed a 00 , A2 and ko/t/>o for poretype 1. Results are 
presented in figures 5.4 and 5.5. We used relations (5.35) and (5.40), respec
tively, to compute a 00 and A2. In this way, we solved the potential problem 
Uo = -Vyt/J, where '1/J = 0 at z = 0 and '1/J = 1 at z = -L. Also, introducing 
the vector n normalto the pore walls, a Neumann type boundary condition 
was prescribed at the pore walls: n.Vyt/J = 0. 
Furthermore, we computed ko/</>0 by solving the Stokes problem 77V~Uo = 
-Vp, where p = 0 at z = 0 and p = 1 at z = -L. A Dirichlet type boundary 
condition was prescribed at the pore walls: u 0 = 0. For all computations, 
the accuracy was checked by refining the numerical grid several times. 
Subsequently, we computed a 00 , A2 and ko/t/>o for poretype 2. Also in this 
case, the accuracy was checked by grid refinement. The results of these 
computations are presented in figures 5.6. Varying this pore geometry, we 
achieved a perpendicular pore wall shift which enabled us to compute A1 , 

using equation (5.37). Results of this additional computation are included 
in figure 5.6b. We find in good approximation A1 = A2 , as was also theo
retically expected, thus showing reliability of our numerical methods. The 
results of all computations were then used to obtain the values for M, using 
equation (5.6). TheseM-values are listed in table 5.1. 

R/L M W/L M Rt/L M 
0.3 1.04 ± 0.02 1.0 1.00 ± 0.02 0.05 1.25 ± 0.07 
0.5 1.00 ± 0.02 0.9 0.99 ± 0.02 0.10 1.08 ± 0.07 
0.6 0.98 ± 0.02 0.8 0.96 ± 0.02 0.15 1.03 ± 0.07 
0.7 0.98 ± 0.02 0.7 0.95 ± 0.02 0.20 0.98 ± 0.05 
0.75 0.97 ± 0.02 0.65 0.94 ± 0.02 0.25 0.96 ± 0.05 
0.8 0.95 ± 0.02 0.6 0.93 ± 0.02 0.30 0.94 ± 0.05 
0.85 0.95 ± 0.02 0.35 0.92 ± 0.05 
0.9 0.93 ± 0.02 0.40 0.92 ± 0.02 

0.45 0.90 ± 0.02 

Table 5.1. Calculation of M-values for different pore types. 

lt apppears that M is weakly dependent on pore geometry. The parameters 
R/ L, W/ L and Rd L are varied over a wide range of magnitudes without 
a:ffecting M for more then about 20%. Maximum deviation from M = 1 is 
found for strongly curved pore geometries. Thus, indeed, we find that many 
porons media satisfy the simple approximate sealing law that k( w) / ko is a 
nmction of only one independent parameter wfwc. 
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6 Parameter tests 

6.1 Porosity and homogeneity 

We determined the porosity of :five model porous media and of a sample of 
Bentheim sandstone. The model porous media are made out of :five different 
partiele types: a) glass beads; size range: 0.40-0.52 m.m, b) glass beads; size 
range: 1.16-1.40 m.m, c) glass beads; size range: 2.50-3.50 m.m., d) sand 
gra.ins; size range: 0.3-0.6 m.m, e) sand gra.ins; size range: 2.0-4.0 m.m. Each 
model porous medium contains only one partiele type. These particles are 
glued together and to the wallB of a brass cylinder by means of an epoxy resin 
(Scotchcast, 3M electrical resin 8, 5236). Each model porons sample has a 
length L0 of 100 m.m. and a diameter do of 60 m.m. The brass cylinder has 
a lenght of 250 m.m. The Bentheim sandstone sample, :finally, has a length 
L0 of 50 m.m. and a diameter do of 74.5 m.m. Porosities (~) are measured 
by using the standard two-weight (dry and buoyant) method. This implies 
that we determined the dry weight G0 of the porons sample, and the weight 
G1 of the same sample when it was fully water saturated and fully water 
im.mersed. From these experiments both porosity ~ and partiele density p11 
are found: 

(1 _ ~)Vb = Go - G1 
9Pw 

1
_ Pw _ G1 

P11- Go' 

where Vb is the bulk volume of the porons sample, g is the constant of grav
ity, and Pw is the water density. Measured porosities and partiele densities 
are presented in table 6.1 at the end of this paragraph. 
In this way, however, only an average porosity valne is obtained. For the 
porous samples that are studied in this chapter, we assume that local devi
ations from the average values are small, because of small sample lengths, 
i.e low Lof d0 ratios. In chapter 7, however, we descri he wave experiments 
performed on porons samples that have much higher L0 / do ratios. For these 
experiments we nsed a) a column consisting of sand gra.ins in the range 0.3-
0.6 mm, which are glned tagether by means of an epoxy resin (Scotchcast, 
3M electrical resin 8, 5236), and b) a column of Bentheim sandstone with a 
lengthof 1102 mm and a diameter of 74.5 mm. The former column has a 
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Figure 6.1: Schematic drawing ofthe gamma-ray transmission scanner. The 
137 Cs 1-source and the detector are translated simultaneously along the 
porous cylinder. Detector signals are amplifi.ed and recorded by the com
puter. 

lengthof 1410 mm and a diameter of 74 mm, and was extensively described 
by Van der Grinten (1987, pp. 43-45). In a review of studies (Dullien 1975; 
Macdonald, El-Sayed, Mow & Dullien 1979), it was shown that local devia
tions from the average porosity value may in:O.uence permeability properties 
enormously. Therefore the homogeneity of the sand column was tested by 
Van der Grinten by means of a gamma-ray transmission scanner, developed 
at Delft Geotechnics (Van der Grinten 1987, pp. 45-47). Variations in the 
porosity appeared to be within 7% of the average value. 
We used the same method to test the homogeneity of the Bentheim sand
stone column. The principle of this method was described by De Swart & 
Groeneveld (1970), Been (1981), Davidson, Bigger & Nielsen (1963) and 
Van der Grinten (1987, p 46). The set-up is drawn schematically in figure 
6.1. A 137 Cs 1-source and a detector are moved simultaneously along a 
porous cylinder and the detector signal versus the position along the sample 
is record ed. The main energy of 137 Cs is a 0.66 Me V 1-peak. The detector 
is a 1 inch N al scintillation crystal with a photo multiplier. By means of a 
narrow windowed one-channel pulse height analyser, only the non-scattered 
photons are counted, and we measure the attenuation due to the Compton 
effect, which is the most important attenuation mechanism at the 0.66 MeV 

61 



2.20 
a 

2.15 

,..., 2.10 
E -en 
~ 

,..., 
0 ...-

CT b aJ 
~ 

2.15 

2.10 

2.05 
5 25 45 65 85 105 

Z (cm) 

Figure 6.2: Equivalent density plots of the Bentheim sandstone column, 
obtained by means of a 1-ray transmission scanner. In (b) the column is 
rotated 90 degrees from the initial state (a). The density is plotted versus 
the position z along the column 

energy level. We may write the ratio of the recorded intensity I and the 
souree intensity Io: 

I 
Io = exp( -p.pdo), (6.1) 

where p. is the mass attenuation coeffi.cient, p the density of the porous 
sample, and do the diameter of the sample. For Compton attenuation, p. 
is proportional to the ratio of the atomie number Z and the mass number 
Bof an element. This means that for light elements (Z/B = 1/2), p. is 
a constant. The only exception is hydrogen (Z/ B = 1). Therefore in 1-
attenuation experiments, the equivalent water density Peq is 20/18 = 1.11 
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times the physical water density. From eq.(6.1) we write: 

I 
Io = exp( -JteqPeqdo), (6.2) 

where the equivalent maas attenuation coefficient, Jteq, is now a constant 
for alllight elements. The -y-intensity is recorded, which initially leads to a 
logarithmic density scale. After sealing, we obtained a linear density scale 
(figure 6.2a). Mter the first density measurement the column is rotated 90 
degrees and a second density scan is performed (figure 6.2b ). As the diam
eter and the grain density of the porous column are constants, variations in 
density must he caused by porosity variations. From the results of figures 
6.2 we find t/Jo = 0.20 ± 0.02, which is in agreement with the average value. 
The density measurement procedure was calibrated with small water-filled 
calibration vessels of several diameters. 

sample type t/Jo piJ (10" kgm-") 
1 Bentheim sandstone 0.23±0.02 2.65 ± 0.05 
2 sand grains 0.3~0.6 mm 0.29±0.02 2.44 ± 0.05 
3 glass beads 0.40-0.52 mm 0.31±0.02 2.67 ± 0.05 
4 glass beads 1.16-1.40 mm 0.31±0.02 2.71 ± 0.05 
5 sand grains 2.0-4.0 mm 0.31±0.02 2.44 ± 0.05 
6 glass beads 2.50-3.50 mm 0.32±0.02 2.65 ± 0.05 

Table 6.1. Porosities and grain densities. 

6.2 Tortuosity 

The tortuosity is determined in an electrical conductivity experiment. The 
analogy between the acceleration of an inviscid incompressible :O.uid within a 
rigid porous medium, and the electrical current density within an electrolyte 
filled porous insulator, was fust demonstrated by Brown (1980). Later this 
analogy was also discussed by Johnson & Sen (1981), and experimentally 
verified by Johnson, Plona, Scala, Pasierb & Kojima (1982). We may write: 

(6.3) 

where u is the conductivity of the :O.uid filled porous insuiator, and u 1 is 
the intrinsic :O.uid conductivity. The a 00 /t/>o ratio is known as the formation 
factor F. The set-up is drawn in figure 6.3. Two electrodes, consisting of 
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Figure 6.3: Set-up for measuring the formation factor of aporous sample 
that is saturated with a saline solution. The buffer vessel helps to maintain 
constant temperature and saline concentration. 

porous Ni-disks, are placed on both si des against the porous sample, which 
has previously been saturated with a de-gassed 0.01 mol/1 KCl saline solu
tion. Conductivity is measured, using a resistance bridge (Marconi Univeraal 
Bridge TF2700). In order to avoid electrolysis, all conductivities are mea
sured AC with a 1000Hz frequency. For obvious conductivity reasons, the 
model porous samples within their containing brass cylinders ( see section 
6.1) could not be used. Five new samples were prepared in an identical way 
within perspex cylinders with a length of 85 mm and an internal diameter 
of 70 mm. Each porous sample has a lengthof 60 mm. For a sample of 
Bentheim sandstone, with a lenght of 50 mm and a diameter of 7 4.5 mm, 
a separate perspex containing cylinder was produced. In order to maintain 
constant temperature and saline concentration, we included a buffer vessel 
and a rotary pump intheset-up (see figure 6.3). The same set-up, but with
out the buffer vessel and rotary pump, was also used by Van der Grinten 
(1987, pp. 53-55). The results ofthe tortuosity measurements are presented 
in table 6.2. 
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sample type F 
1 Bentheim sandstone 10.3± 0.2 
2 sand grains 0.3-0.6 mm 9.3± 0.2 
3 glass beads 0.40-0.52 mm 9.1 ± 0.2 
4 glass beads 1.16-1.40 mm 8.7 ± 0.2 
5 sand grains 2.0-4.0 mm 9.7 ± 0.2 
6 glass beads 2.50-3.50 mm 8.2 ± 0.2 

Table 6.2. Fbrmation factors. 

6.3 Steady-state permeability measurements 

Stationary permeability properties were determined in two different one
dimensional :flow set-ups, as will be descibed in the forthcoming. For low 
velocities the Darcy law holds: 

8p '7 Q 
az -koA.n' (6.4) 

where At> is the total cross sectional area of the porous sample and Q is the 
:flow rate. For higher velocities, the Darcy law. has to be extended by an 
extra term proportional to the :flow rate squared~ 

8p '7 (Q)2 -=--Q+bJP -az koA.n An ' 
(6.5) 

where b1 is an arbitrary phenomenological constant, with the dimension of 
inverse length. The density of the :fluid or gas in the pores is denoted by 
p. This relation (6.5) is often referred to as Forchheimer'slaw (Forchheimer 
1901). H the :flow is in the laminar regime, b1 is a function of the pore geom
etry only, and not of the Reynolds number. The second term on the right 
hand side accounts for the convective inertial e:ffects, which are proportional 
to pQ2 • The linear superposition of the viscous and inertial effects embodied 
in equation (6.5), cannot be justified on purely theoretical grounds, but ex
perimental and numerical verificatation has been given in the past (Beavers 
& Sparrow 1969; Beavers, Sparrow & Rodenz 1973; Van der Grinten 1987, 
pp. 47-51; Coulaud, Morel & Caltagirone 1988). 
In order to obtain low Reynolds numbers, the three most permeable porous 
media were saturated with a :fluid of high viscosity. We used a clear oil with 
a density p = 860.0 kgm-3 at a temperature of 23 °C. 
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Figure 6.4: VJScosity of oil used in permeabiJity measurements 

The viscosity of the oil is given in figure 6.4 as a. function of tempera.ture. 
Permea.bilities were then determined by mea.ns of a. so-called falling hea.d 
test. The set-up is dra.wn in figure 6.5. On top of the brass cylinder con
taining the porous sample, we mounted a. perspex cylinder with a. length of 
1150 mm a.nd a.n interna.l diameter At of 70 mm (not visible in figure 6.5). 
This cylinder was fi.lled with oil. The momenta.ry oil level height a.bove a. 
certain reference height, is called h(t). The reference height is de:fined in 
fignre 6.5. The initia.l oillevel height is ca.lled ho. lgnoring the second term 
in eqa.tion (6.5), from (6.5) we may write: 

In (ho) = ko pg Aot 
h fJ L At ' 

(6.6) 

where g is the constant of gra.vity. The amount of oil permea.ting, which 
is directly rela.ted to h(t), is measured by mea.ns of a.n electronk ba.la.nce 
(Mettler P3600) a.s a function of time. We a.lso mea.sured h(t) directly, by 
mea.ns of a. ca.libra.tion on the perspex cylinder. Measurements for all three 
samples are presented in figure 6.6. We find, indeed, tha.t there is a. nea.t 
linea.r rela.tionship between ln[ho/h(t)] a.nd time. Resulting permea.bilities 
are presented in ta.ble 6.3 a.t the end of this pa.ra.gra.ph. 
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Figure 6.5: Set-up for permeability measurements by means of an oil flow. 
The permeating oil flow is measured as a function of time. 
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Figure 6.6: Permeability measurements for three model porous samples at 
a temperature of 23 °C. The reduced oil level height ho/ h(t) is plotted 
logarithmically against time. 
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Figure 6. 7: Set-up for permeability measurements by means of an air flow. 
The air flow is measured by means of a gasmeter. The air flow resistance 
follows from the pressure drop over the porous sample. 
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Figure 6.8: Results of air flow permeability measurements for two model 
porous samples and for the Bentheim sandstone sample at a temperature 
To = 23°C and a pressure p0 = 1.01 bar. The pressure drop over the porous 
sample is plotted against fow rate. 
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For the three least permeable porons samples, oil percolation experiments 
are rather time consuming. We performed air flow experiments instead. The 
set-up is drawn in figure 6.7. It consists oftwo pressure chambers connected 
via the porons sample. Flow rates Q are varied modifying the upstream 
pressure, and measured by means of a gasmeter (Meterfabriek Dordrecht, 
Natte precisie gasmeter, Type 1). The pressure drop tl.p across the sample 
is measured, using a highly sensitive water manometer (v.Essen, Betz micro
manometer, 500 m.m.). Experimental results are presented in figure 6.8. We 
find that there is a linear relationship between Q and tl.p. Apparently the 
viscous term is dominant over the inertia term, and the second term on the 
right hand side of equation (6.5) is therefore neglected. Permeability values 
are subsequently calculated and presented in table 6.3. 

sample type ko (10 ·IO m2) 

1 Bentheim sandstone 0.037±0.003 
2 sand grains 0.3-0.6 m.m. 1.00±0.05 
3 glass beads 0.40-0.52 m.m. 1.40±0.05 
4 glass beads 1.16-1.40 m.m. 9.00±0.05 
5 sand grains 2.0-4.0 m.m. 27.7±0.5 
6 glass beads 2.50-3.50 m.m. 42.0±0.5 

Table 6.3. sta.tiona.ry permea.bility values. 

6.4 Dynamic permeability measurements 

Auriault, Borne & Chambon (1985) were the fust to report experimental 
data, showing the transition from the viscosity dominated, low frequency 
regime towards the inertia dominated, high frequency regime. We must no
tice that in their paper the dynamic permeability is written in the form: 
11/k(w) = H1 + iH2 • Measured data are presented for </>oa2HI/277 and 
</>oH2 / PJW, where a is a length parameter of the porous medium. For 
an oscillating flow within a cylindrical duet of radius R, we find a = R, 
</>oa2H1/277 = 41le[k0jk(w)] and </>oH2/PJW = ?le[a(w)]. They paid partie
nlar attention to the high frequency range. Measurements were performed 
on one slit-like pore geometry. 
In 1988, Charlaix, Kushnick & Stokes presented experimental data over a 
wide range of reduced frequencies. An oscillating flow was induced by an 
audio speaker, driving a latex membrane. They used small porous cylinders 
with lengths of 50-70 m.m. and diameters of 4.3 m.m., consisting of sintered 
glass beads and sintered, crushed, glass. 

69 



x2 

contactless 
piston 

x1 

Ls 

Lo 

membrane 

water level 

pressure 

transducer 

poreus 
material 

pressure 

transducer 1 

i nle t 

Figu.re 6.9: Set-up for dynamic permeability measurements. The pressure 
drop over the sample is measured by means of two pressure transducers PTl 
and PT2. Flow rates are deduced from PT2 measurements. 

We report here experimental data of dynamic permeability, performed on 
the :five model porous media that are described section 6.1. We used the 
setup drawn in :figure 6.9, which was already schematically proposed by 
Biot (1961). As the particles ofthe :five model porous samples are glued to
gether and to the walls of a brass cylinder by means of an epoxy resin, any 
free motion of the porous material is avoided. As we described in section 
6.1, the brass cylinder has a lengthof 250 mm and an internal diameter of 
60 mm. We also saw that each porous sample has a length L0 of 100 mm. 
As described in chapter 5, each porous sample may be characterized by a 
rollover frequency Wc, which cail only be calculated after determination of 
the stationary permeability k0 and the formation factor cx00 ff/>o. Measure-

70 

2 



ments of the formation factor were described in section 6.2, and stationary 
permeability values were determined insection 6.3. 

The sample is now carefully evacuated and the pores are filled with 
carbon dioxide. Subsequently, the sample is filled with de-gassed water 
until the water surface is about 20 mm below the open upper cylinder end. 
Compared to air, carbon dioxide is far better soluble in water, thus causing 
a quick dissalution of any gas remnants. An oscillatory flow is induced by 
means of a MB Electronica EA 1500 permanent magnet exciter, driving a 
contactleas piston. The void space below the piston is bounded by a brass 
membrane, impermeably connected both to the cylinder wall and the piston
rad. The frequency range is :from 12 to 300 Hz, which causes >../4 ::> L0 , 

where we have introduced the wavelength >... Therefore, on this scale, fluid 
may he regarcled incompressible. The experiment is run for displacement 
amplitudes corresponding to Reynolds numbers usually less than 1, where 
Reynolds numbers are taken with respect to the mean partiele diameter. 
Therefore, the response of the fluid to the applied pressure gradient is still 
to he considered linear. The pressure drop across the porous sample is 
measured using PCB116A piezo-electric pressure transducers PT1 and PT2. 
PT1 is installed in the piston, whereas PT2 is mounted on the lower end of 
a cylindrical perspex sha.ft. Signals are modified by means of Kistier 5001 
amplifiers. Defining ft2 as the pressure amplitude recorded by PT2, and v2 

as the undisturbed fluid velocity at some distance above PT2, flow rates are 
deduced from the upper pressure transdueer measurements: 

. ~ Î'2 
p J1.WV2 = -L ' 

eff 
(6.7) 

where we have introduced the effective fluid height Lef! above PT2. We 
computed the local flow pattem and pressure distribution in the vicinity 
of PT2 as a salution of the steady potential problem, using the SEPRAN 
fini te element package. A description of this finite element package is given 
in section 5.5. We found LeJJ = L 6 + tl.L, where L 6 is the length of the 
sha.ft below the fluid surface, and tl.L = 3.9 mm. Introducing the macro
scopie fluid velocity vo within the porous sample, we may write a dynamic 
equivalent of Darcy's law: 

4>o1Jo = k(w)ph- Pl, 
17 Lo 

(6.8) 

where Ph and Pl are the fluid pressure amplitudes right below and above 
the porous sample, respectively. Pressures p1 and p2 though, are recorded 
at some distances x1 and x 2 below and above the porous sample ( see figure 
6.9). By means of local application of continuity and momenturn equations, 
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the pressures Ph and Pl can be expressed in terros of the recorded pressures 
ÎJJ. and ÎJ2: 

A A A (1 - ,8)x1 (6.9) 
Ph= PI- P2 L 

eff 

Pt = P2[1 + (1- ,8~x2- dL)], (6.10) 
eff 

where ,8 is the shaft-to-cylinder area ratio. Results of dyna.mic permeability 
measurements are presented in :figures 6.10a and 6.10b. For each porous 
sample, dyna.mic permeability and frequency are scaled by corresponding 
k0 and Wc values, which are determined in the previous sections. In :figure 
6.10a, one clearly observes the rollover of the modulus of k(w)jk0 from the 
value 1 at low frequencies to a (wfwc)- 1 dependenee at high frequencies. 
This rollover behaviour is also clearly visible consiclering the argument of 
k(w )/ k0 in :figure 6.10b. Errors are represented by the magnitude of the data 
symbols. The drawn curves in :figures 6.10 correspond toa sealing function 
proposed by Johnson, Koplik & Dashen (1987): 

k(w) _ 1 
ko - [1 + liM ~]1/2 + i~ ' 

2 Wc Wc 

(6.11) 

where for the sake of definiteness we have chosen M = 1. We notice that 
there is good overall agreement between experiment and theory for both 
absolute and phase values. At w/wc-values of about 0.5, the experimentally 
determined absolute values of k(w)jk0 are somewhat lower tha.n predicted. 
This is caused by a persistent set-up resonance observed in the case of small 
particles. At the same wfwc-values, this set-up resonance is also visible in 
the phase plot. Summarizing, we :find that the present experimental results 
support the experiment-based conclusions of Charlaix et al. (1988) and the 
computational results of Sheng & Zhou (1988). 
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Figure 6.10: Absolute values (a) and negative pbase values (b) of dynamic 
permeability measurements. 0 sand grains 0.3-0.6 mm. + glass beads 0.40-
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sand grains 2.0-4.0 mm. Tbe drawn curve represents tbe tbeoretical sca.ling 
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6.5 Elastic Properties 

In an isotropie elastic medium, theelastic constants E (Young's modulus), 
Kr, (bulk modulus), Kp (constrained modulus), v (Poisson's ratio), G (shear 
modulus) and À and IJ (Lamé's coefficients) may he defined. There are, 
however, only two independent parameters. Some frequently used relations 
a.re: 

E 
IJ= G = 2(1 + v) 

À= Ev 
(1 + v)(1- 2v) 

2 E 
Kr,= À+ 31J = 3(1- 2v) 

E(1- v) 
Kp =À+ 21J = (1 + v)(1- 2v) 

Some of these relations are given by Achenbach (1973, p. 54). Van der Grin
ten (1987, pp. 52-53) determined the moduli of Young and the constrained 
moduli of both porous columns used for the wave experiments described in 
chapter 7. These porous samples are denoted as 1 and 2 in all tables in 
chapter 6. 
For the determination of K 'P' a pulse propa.gation experiment was performed, 
by means of a concrete tester (CSI-ctt4). For the determination of E, a 
resonance experiment was performed, by means of a so-called Elastomat 
(Institut Dr. Forster, Typ 1.015). The results are shown in table 6.4. From 
theE and Kp values, the ratiosof Poisson were calculated. 

sample type E (GPa) Kp (GPa) l/ 

1 Bentheim sandstone 13.4±0.2 14.7± 0.2 0.19 ± 0.01 
2 sand grains 0.3-0.6 mm 3.9±0.2 10.2± 0.2 0.42 ± 0.01 

Table 6.4. Elastic constants. 
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6.6 Preparation of a water-air mixture 

Up to now we have only discussed the properties of the porous medium. 
We will now focus on the pore :fl.uid. For the wave experiments, described 
in cha.pter 7, we need to crea.te a. homogeneaus pore :fl.uid with uniformly 
distributed air bubbles of equa.l size. An inhomogeneons air bubble distri
bution ma.y ca.use re:fl.ections and extra damping, that makes it hard to give 
an adequate interpretation of the wave experiments. From our theoretica! 
models, it follows that the minimum occurring wavelength is a.bout 2 cm, 
corresponding to frequencies in the order of 100 kHz. The size of the air 
bubbles and their distance must therefore be smaller than 2 cm in order 
to justify the use of continuurn theory. Therefore, the size and concentra
tion of the air bubbles is controlled by adding some Ca(OH)2 to the pore 
:fl.uid. The relia.bility of this method was checked in optically transparant 
gelatin-water mixtures, as will be reported in section 6.10. Mean air bubble 
size and concentra.tion are determined from measurements of the pore :fl.uid 
compressibility, as will he discussed in section 6.9. 

The prepara.tion of the pore :fl.uid, consisting of a water-air mixture, 
proceeds as follows. First, the porous sample is fully water-saturated. This 
is done by carefully eva.cuating the sample and filling the pores with carbon 
dioxide. Subsequently, the sample is :filled with de-gassed water. Compared 
to air, carbon dioxide is far better soluble in water, thus causing a complete 
dissalution of any gas remnants. Next, in a. separate vessel (see figure 6.11), 
an amount of water is sa.tura.ted with air, at a constant pressure level. This 
is done by blowing air bubbles into the vessel. The amount of air dissolving 
in the water is controlled by the vessel pressure, which is higher than the 
a.tmospheric pressure. By means of a rotary pump, this air-saturated water 
is :fl.ushed through the porous column until its entire pore volume is refreshed 
about 50 times. Meanwhile, the porous column is held at the same pressure 
as within the vessel, and the blowing of air bubbles continues. Fina.lly, the 
circula.tion is stopped, and the pressure is released. The pore :fl.uid is now a 
super-sa.tura.ted (200-300 %) air solution. Gas molecules start to form gas 
bubble nuclei. This ma.y take place at any microscopie roughness in the 
pore surfa.ce, or in the surface of sma.ll pore :fl.uid particles. This process 
is called heterogeneaus nuclea.tion. A description of this process and of the 
subsequent conditions for bubble growth is given by Ward, Johnson, Venter, 
Ho, Forest & Fraser (1982). The spontaneons (homogeneous) formation of 
air bubbles does not occur. For this process a. super-sa.tura.ted air salution 
of 2000 % is needed (Van Stalen & Cole 1987; Sillen 1983). 

75 



QJ 
.0 
::J ...... 

..ll:: 
u 
0 

...c: 
VI 

,.. 

>< 
>< 
>< 
>< 
)< 

>< 
-

-
---

-; 
I 

I 

I 

water 
air reducing : 

valvei 

I 

-.1-...Io----------
I 

T äl 
VI 
VI 
QJ 

> 

-1:. ..a. ..., 
pump 

4 
1 Ï-

,---i---1--

r--:: 
!.•: 

. , • 

! . . 
I 

I 

-..:r 
relief 
valve 

L ...... ------

Figure 6.11: Set-up for the preparation of a water-air mixture in the shock 
tube sample. In a separate vessel, an amount of water is saturated with air 
at a constant, super-atmospheric pressure. This is done by blowing small 
air bubbles into the water. The air-saturated water is circulated through 
the porous column by means of a rotary pump. After releasing the pressure, 
air bubbles are formed in the shock tube sample. 

6. 7 Compressibility 

By means of pore :fl.uid compressibility measurements, the mean air bubble 
size and concentration may be determined. These data are needed to com
pute the dynamic bubble behaviour, described in chapter 4. Fora compress
ibility experiment, the pore :fl.uid is subjected to a small pressure increase 
~PI during a time interval r 1 (typically in the order of several minutes), 
which is small enough to ensure that almost no air from the bubbles is dis
solved in the liquid. From the conesponding change in liquid volume, the 
pore :fl.uid compressibility {3 f is found: 

{3 = ]__ 8pj 
f PJ lJp' 

(6.12) 

which is a direct measure for the momentary air volume fraction 1 - s. In 
this case, the compressibility experiment is denoted as "frozen". If, on the 
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other hand, the pore :Huid is subjected to a stepwise pressure change Ll.P2 
during a time interval r 2 ; r 2 > Tt, part of the air will gradually dissolve 
into the :Huid until a new equilibrium is reached. This process is diffusion 
dominated. Both frozen and equilibrium conditions were reported previously 
by Sniekers, Smeulders, va.n Dongen & va.n der Kogel (1989). 
In order to :find a relation between the pore :Huid compressibility and the air 
volume fraction, we write the mean density of the water-air mixture: 

Pi= SPI+ (1- s)p9 + spd., (6.13) 

where Pd. is the mass of dissolved gas per unit :Huid volume. To :find the 
density change dpi, we assume that the num.her of air bubbles per unit :Huid 
volume will remain constant. The location of the individual air bubble is 
:fixed. This assumption differs slightly from that of Barends and Tennissen. 
Barends (1980) assumes the total air mass in a unit volume to be constant, 
whereas Tennissen (1982) assumes that the relative velocity of air bubbles 
and water is zero. A pressure increase will cause the air bubbles within the 
unit :Huid volume to shrink, which, in its turn, will cause pore :Huid to enter 
the unit volume. Continuity of air mass within the unit volume requires: 

d[(1- s )p0 + spd.] = Pd.ds 

Combination of equations (6.13) and (6.14) yields: 

dpi = (PI+ Pd.)ds + sdp1 

(6.14) 

(6.15) 

In good approximation, we may replace Pi by sp1 in equation (6.12). We 
may then write from equations (6.12) and (6.15): 

1 ( Pd.) 8s !3i = !31 + - 1 + - -8 
s PI P 

(6.16) 

The second term between brackets in the above equation is in the order of 
10-5 , and henceforth it will be neglected. The above relation is valid for 
both the frozen and the equilibrium condition. 

In the "frozen" condition we assume dpd. = 0. From equation (6.14) we 
may write after integrating: 

Po 1- So ----, 
PoO 1- s 

(6.17) 

where the subscript 0 refers to the initia! state. Assuming that the va.pour 
pressure in the air bubble, and the surface tension u may both he neglected, 
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we find p9 = p. We also assume that the bubbles are compressed isother
ma.lly. Using the ideal gas law, we may write from equation (6.17): 

p 1- so 
Po 1-s 

(6.18) 

From both the equations (6.16) and (6.18) we now findan expression for the 
"frozen" :Huid compressibility: 

(6.19) 

We shaJl next consider the equilibrium condition. Henry's solubility law 
states that, under isothermal conditions, the dissolved gas density Pd is very 
nearly proportional to the gas density p0 • This proportionality is expressed 
by the solubility coe:fficient WH, which is about 0.02 at room temperature. 
For the equilibrium condition, we may therefore write: 

From equation (6.14), we now find after integration: 

1 

f!p_ = (1- So + WHSO) 1-wH 

Poo 1- S + WHS 

In good approximation, we may :finaJly write: 

Po P 1 - So + WHS 
-=-- ' 
Puo Po 1-s+wHs 

(6.20) 

(6.21) 

(6.22) 

which is the equilibrium equivalent of (6.18). In figure 6.12, we have indi
cated what happens when the pore :Huid, e.g. consisting of a water-air mix
ture of saturation s0 = 0.982, is subjected toa preesure increase !l.p = p-Po· 
The instantaneous "frozen" saturation change, !:is = s- so, is found from 
(6.18), and indicated by the curve segment AoA1 (see :figure 6.12). When 
the pressure is subsequently held constant, air from the bubble is dissolved 
in the liquid, until a new equilibrium is reached. This is a dilfusion dom
inated process, indicated by the line segment A1Aoo in :figure 6.12. The 
equilibrium curves in figure 6.12 are found from equation (6.22). As we see, 
the equilibrium curve is depending on the initial saturation s0 , wherea.s this 
is not the case for the "frozen" curve. As an example, we have drawn two 
equilibrium curves in figure 6.12. We notice that for pfp0 ~ (1- so)/wH + 1, 
all air bubbles will :finaJly dissolve in the liquid. 
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Figure 6.12: Reduced air volume fraction versus the reduced pressure. The 
frozen (solid line) and two different equilibrium (dashed lines) curves are 
plotted. For a given pressure increase, and for s0 = 0.982, the air bubbles 
wiJl shrink according to the path A0A1 A00 • A bove a certain lim.iting pressure 
increase, all the air bubbles wiJl finally dissolve. 

6.8 Ditfusion 

We shall now give a quasi-steady description of the diffusion process. We 
will follow the procedure of Smeulders, De la Rosette & van Dongen (1992). 
Consiclering a gas bubble of radius R, we defi.ne the origin of coordinates at 
the bubble centre, which is at rest. The position of any point in the :fiuid is 
indicated by r. Following Henry's law, a sudden stepwise increase, tl.p, will 
cause a corresponding increase in the dissolved gas density at the bubble 
radius Pdb· Defining a reduced dissolved gas density C at a fixed timet, we 
may write: 

C = Pd(r, t)- Pdoo(t), 
Pdb- Pdoo(t) 

(6.23) 

where Pdoo is the dissolved gas density far away from the bubble. From the 
quasi-steady diffusion equation, V2C = 0, we find C = Rfr. The mass 
flux dM/dt from the bubble towards the surrounding :fiuid may now he 
calculated: 

(6.24) 
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where De is an effective dilfusion constant. It is equal. to the dilfusion 
constant D in water, divided by the tortuosity parameter a 00 : De= D/a00 

(Smeulders et al. 1992). Considering next the situation of a large number of 
bubbles with number density N m-3 , we de:fine the average bubble distance 
2a as N-113 • If this average bubble distance far exceeds the bubble radius, 
equation (6.24) still holds if we replace the factor Pdoo(t) by Pd(a, t). From 
the maas conservation law we may write: 

a 

4 n3! 2 4 n3 4 3 3 31rp9 n.- + 47rR Pddr = 37rp9 .tti + 31rPdl(a - R1 ), (6.25) 

R 

where the index 1 refers to the initia! state. This initia! state is indicated as 
A1 in :figure 6.12. In good approximation, the integral. in the above equation 
is equal. to ~1rPd(a,t) (a3 - R3 ). Assuming R3 ~ a3 , and R~ «: a3 , we :find 
from equation (6.25): 

( R~ R3) Pd(a, t) = Pdl + p9 03 
-

03 
(6.26) 

Substitution of this equation in (6.24) yields a differential. equation for the 
reduced bubble radius 17(t) = R(t)/a: 

d77 3 3 
17 dt' = "loo - 17 ' (6.27) 

where 77~ = (Pdl - Pdb) / p9 + RVa3
• Furthermore, we have introduced the 

reduced time t' = Det/ a2 • When the diffusion process is approaching its 
new equilibrium state fort' ---+ oo, obviously d17/dt' will tend to zero. The 
equilibrium state is indicated as A00 in :figure 6.12. From equation (6.27), 
we :find that 17---+ "loo· Solving the differential. equation (6.27), we :find: 

t' = _1_ [1n "7~ + "loo 17 + ~ _ ln "7~ + "loo "71 + 11?] 
677oo ( "loo - 17 )2 ( "loo - "71 )2 

+ -- arctan .,L ., - arctan -·-'--1 -.-i:::--1 1 [ 2'1'N + '1100 2n + '1100 ] 

"loo .j3 "loo .j3 "loo .j3 ' 
(6.28) 

where "71 = RI/a. Introducing a dimensionless parameter 6 = 11/771, the 
above equation (6.28) may be rewritten: 

= _1_ [1n 6~ + 6006 + 62 
-ln 6~ + 600 + 1] 

66oo (6oo- 6)2 (600 - 1)2 

1 [ 2+600 26+600 ] + ----r.i arctan "' - arctan . "' , 
6oov3 6oov3 600 v3 

(6.29) 
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where, obviously 600 = f'Joo/1'/1· We still have to make a link to the air volume 
:fraction 1 - s. We notice that: 

(6.30) 

1
- s = 63 (6.31) 

1- St 

In figure 6.13, some diffusion curves are drawn for different va.lues of the 
reduced equilibrium (end) saturation 600 • We notice that a negative (virtual) 
va.lue for 600 corresponds to a situation where the equilibrium state is under
saturated. 
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Figure 6.13: Dilfusion curves for different, reduced, equilibrium (end) sat
urations 600 • A negative value for 600 corresponds toa situation where the 
equilibrium state is under-saturated. 

6.9 Optica! set-up and measurements 

The optica! set-up for compressibility measurements of a fiuid-saturated 
porous medium is depicted in figure 6.14. It was described previously by 
Van der Grinten (1987, p. 60). In the shock tube, we have mounted an 
optica! section, containing two parallel windows. This section is located 
at some decimeters above the porous column, which is at the bottorn of 
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the shock tube. The porous column is fiuid-saturated, and the water level 
is some millimeters below the windows of the optical section. The optical 
section contains a He-Ne laser, the beam of which is re:flected by a mirror. 
The mirror can be translated by means of a stepping motor. The re:flected 

proportienat 
feedback 

Figure 6.14: Optical section for compressibility experiments of a B.uid
saturated porous column. 

beam passes the window, re:flects from the water surface, and reaches a dif
ferential diode detector. This detector generates a voltage, proportional to 
the difference in light intensity between the upper and lower half of the 
sensitive surface of the diode. This voltage signa! is then used to activate 
the stepping motor and to translate the mirror, in such a way that the dif
ferential light intensity of the diode is minimized. The result is that the 
laser beam is always directed towards the centre of the diode detector, by 
means ofmirror adjustment. The mirror displacement is detected by a trans
ducer (Sangamo transducer 72822). One step of the stepping motor causes 
a mirror displacement of 10 ~-tm. From figure 6.14, it becomes clears that 
this corresponds to a 5 ~-tm displacement of the water surface. In this way, 
volume changes of 2.33 ·10-5 dm3 can be detected. A compressibility exper
iment will therefore consist of the registration of the mirror displacement as 
a function of the pressure change above the water surface. Calibration is 
performed when the shock tube is filled with de-aired water (Van der Grin
ten 1987, p. 61). We measured the compressibilities of the water-saturated 
sand column, and of the water-saturated Bentheim sandstone column. The 
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results are shown in figure 6.15. The measured volume change is reduced by 
the total water volume V0 , and the pressure change by the initial pressure 
Po· We found f3ref1 = (7.7 ± 0.1) · 10-IO Pa-l for the sand column, and 
f3ref 2 = (5.1 ± 0.1) · 10-to Pa:-1 for the Bentheim sandstone column. These 
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Figure 6.15: Compressibility measurements offully water-saturated porous 
columns. D sand column \J Bentheim sandstone column. Vo is the 
total water volume; Po is the initial pressure 

values obviously include the compressibilty of the o-rings and silicone kit, 
which are used in the set-up. From the linear relation between displacement 
and pressure in figure 6.15, it follows that the compressibity is a constant 
value, indicating that both columns are indeed fully water-saturated. 

We will now consider the partially saturated case. A water-air mixture 
was prepared as described in section 6.6. After the release of the pressure, 
air bubble growth will begin, which is a diffusion dominated process. It is 
our aim todetermine both mean air bubble radius and concentration. We 
shall show that this is possible by measuring the air volume fraction {1-s) as 
a function of time, during the diffusion process. Therefore, a series of com
pressibility experiments was performed over a period of as much as 622 hours 
after the beginning of bubble growth, initiated by the pressure release. Each 
single experiment took about 10 minutes, and can therefore be considered 
as "frozen". This means that we assume that the di:ffusion process itself is 
not disturbed by the successive compressibility experiments. As pointed out 
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Figure 6.16: A series of compressibility experiments performed on a partially 
saturated porous sand column. The red u eed volume change is plotted versus 
the reduced pressure 1 - Po/P· t = 0 corresponds to the beginning of air 
bubble growth, due totherelease of pressure. Each single experiment took 
about 10 minutes. After about 622 hours, a new equilibrium was reached. 

by Van der Grinten (1987, p. 64), compressibility experiments, performed 
on a. pa.rtia.lly sa.tura.ted porous column, will no longer yield straight linea, if 
we plot the change in volume versus the change in pressure. We notice tha.t, 
in this ca.se, the tota.l compressible volume Vo consists of a. liquid pa.rt Vi, 
and a. :fl.uid pa.rt V1: Vo = Vi + Vj, where Vj denotes the wa.ter-a.ir mixture. 
The tota.l compressibility {3 may therefore be written: 

(6.32) 

All compressibilities a.re de:fined in full ana.logy with (6.12). Substitution of 
equa.tion (6.19) in the above equation (6.32) yields: 

VJ Po 
f3 = f3ref + Vo (1 - s) p2, (6.33) 

where we have assumed (1-s)Po/P <::: 1. Fu.rthermore, we have a.lso taken 
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Figure 6.17: Air volume fra.ction measurements as a lunetion of red.uced 
time. The drawn curve represents the theoretical curve, which is fitted by 
means of a least squares method. The equilibrium air volume fraction is 
1.22 %. 

into account the compressibility of o-rings and silicone kit by introducing 
the reference compressibility f3ref. Integration of this equation yields: 

~V' ( Po) - = (1- s) 1-- ; v,o p 
(6.34) 

where, as usual, the index 0 refers to the initia!. state. In this equation, we 
have introduced the parameter 

~V' = Vo- V- f3reJVo(P- Po) 

In :figure 6.16, ~V' fVJo has beenplottedas a function of (1-Po/p). Indeed, 
as we expected, we :find a series of straight lines, the slopes of which equal 
(1- s). 
Once the values (1 - s) are obtained during the di:ffusion-dominated process 
of bubble growth, they can he plotted against the reduced time (:figure 6.17). 
As will be explained in the forthcoming, we are now able to deduce the mean 
air bubble size and concentration. 

85 



2.0 r---------------~--------~ 

2 

1.0 

f" 5 

0 0.0 J----------.~.,jf6==------t ,.... 

R 
> ...... 
- -1.0 
> t (hoursl 1-S !%) 
<l 

1. 20 0.54 

2. 43 0.46 
-2.0 3. 117 0.29 

4. 141 0.19 

5. 308 0 06 

-3.0 
+ 

-0.6 -0.4 -0.2 0.0 0.2 0.4 

1-PJP 

Figure 6.18: A series of compressibility experiments performed. on a partially 
saturated porous sand column. The reduced. volume change is plotted versus 
the reduced pressure 1 - Po/P· t = 0 corresponds to the beginning of air 
bubble shrinkage, due to a rise of pressure. Each single experiment took 
about 10 minutes. 

By means of a least squares method, the measured data for ( 1 - s) are fi.tted 
to the theoretica! diffusion curve, which, in this case, is described by the 
equation: 

(6.35) 

The result is displayed in tigure 6.17. The best fitting curve is described 
by the parameters a = 1.97 cm and 1/oo = 0.230. This implies that the 
equilibrium air volume fraction is 1.22 %, and that the mean equilibrium air 
bubble radius is 0.45 cm. A further check on these parameters was obtained 
by a subsequent bubble shrinking experiment. The pressure was raised, and 
fora period of 308 hours we, again, performed compressibity experiments. 
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Figure 6.19: air volume fraction measurements as a lunetion ofreduced time. 
The drawn curve represents the theoretical ditfusion curve, which is fi.tted 
by means of a least squares method. Eventually, all bubbles wi11 disappear. 

The results are presented in figure 6.18. Also in this case, we find a series 
of straight lines, the slopes of which equa.l (1 - s ). 
The theoretical diffusion curve is now described by equation (6.29). We 
again searched for a best fit by mea.ns of a least squares method. In this case, 
we found a = 1.95 cm and 1]00 = -0.143, which means that the equilibrium 
condition is under-saturated. This result for a confirm.s our assumption that 
the location of the individual bubbles is fixed, and that their distance 2a is 
a constant. The theoretical curve and the measured air volume fractions are 
depicted in figure 6.19. 

87 



6.10 Air bubble distribution 

For the preparation of the water-air mixture in the porous column, a super
saturation technique is used, as described in section 6.6. The size and con
centration of the gas bubbles is controlled by adding some Ca(OH)2 to 
the pore liquid. The reliability of this method was checked in optically 
transparant water-gelatin mixtures. In the same way as described in section 
6.6, air-saturated water is prepared in a separate vessel. The amount of 
air dissolving in the water is controlled by the pressure in the vessel, which 
is higher than the atmospheric pressure. After the addition of gelatin, the 
pressure is released, and air bubble growth is initiated. When the equilib
rium situation was reached, pictures were taken of the air bubbles trapped 
in the gelatin. They are presented in figures 6.20 and 6.21. Compared to 
destilled and tap water, the addition of Ca(OH)2 results in a homogeneons 
distribution of small, equally sized, air bubbles. 

6.11 Air bubble shape 

In order to investigate the shape and the structure of the air bubbles in a 
porous medium, a porous disk with a diameter of 40 mm and a thickness of 
5.5 mm was prepared from sintered particles of crushed glass. The diameter 
of the particles was about 0.5 mm. The disk was submerged in a 1.35 g/ml 
N al saline solution, which has the same index of refraction as the glass 
particles. After the submergence of the disk, pictures were subsequently 
taken of the remaining air bubbles in the pores (figures 6.22 and 6.23). We 
find that the air bubbles commonly occupy several pores and have a ramified 
structure, e.g. like alveoli in the human lungs. In figures 6.23, air bubbles 
are pictured at atmospheric pressure p0 (left) and at a differential pressure 
p-Po = 1.5 bar (right ). Bubble shrinkage due to pressure increase is clearly 
visible. 
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Figure 6.20: Air bubbles in destilled (left) and tap water (right). The diameter 
of the vessels is 80 mm. 

Figure 6.21: Air bubbles in a filtered (left) and non-filtered (right) 0.5 g/1 
Ca(OH)2 solution. The diameter of the vessels is 80 mm. The filtering has 
been performed by means of the sand column used in the wave experiments (see 
chapter 7). 
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Figure 6.22: Air bubbles in a porous medium, submerged in a 1.35 gjml 
N al saline solution. The picture covers a width of the porous medium of 
about 16 mm. 

Figure 6.23: Air bubbles in aporous medium at atmospheric pressure (left) 
and at a differential pressure of 1.5 bar (right ). The pictures cover a width 
of the porous medium of about 5 mm. 
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7 Wave propagation experiments 

7.1 Experimental set-up 

E 
m 
-a 

m OigO pressure section 

test section 

-f::l--- p2 

-u---- p12 

p22 

porous column with 

pressure gages (P) 

Figure 7.1: Experimental set-up for wave propagation experiments in a 
porous medium. The porous medium is placed in the test section of the 
shock tube. 
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The experimental set-up consists of a vertieal shock tube with a length of 
about 8 mandan intemal diameter of 77 mm. This set-up was described 
by different authors li.ke Van der Grinten, van Dongen & van der Kogel 
(1985, 1987); Sniekers, Smeulders, van Dongen & van der Kogel (1989) and 
Smeulders, De la Rosette & van Dongen (1992). A shock tube technique for 
the experimental investigation of wave propagation in porous media was also 
used by Dontsov, Kuznetsov & Nakoryakov (1987). Theset-upis drawn in 
tigure 7.1. The shock tube sections are made out of steel with a wall thickness 
of 24 mm. Below, in the test section, we have placed the porous, cylindrical, 
test sample, which is either a Bentheim sandstone column with a diameter 
of 75 mm, or a sand column with a diameter of 74 mm. This implies that 
there is a gap of 1 - 1.5 mm in between the walls of the shock tube and the 
porous column, in order to prevent any shear interaction between the walls 
of the shock tube and the porous sample. The si de walls of both samples are 
covered with an epoxy coating (Sigma, Colturiet TCN), in order to prevent 
any lateralfluid flow through the sample walls while flushing the column 
(see section 6.6). The properties of both porous columns are discussed in 
chapter 6. Both porous samples are equally equipped with 4 miniature pore 
pressure transducers (Druck PDCR 81, without ceramic filters), located at 2, 
12, 22 and 72 cm from the top of the sample. Moreover, the sand column is 
also equipped with 8 dual strain gages (M-M CEA-06-125 UT-350), located 
at 2, 12, 22 and 82 cm from the top of the sample. At each location, two 
dual strain gages are attached at the opposite sides of the sample. They 
are used for measuring both axial and circumferential strains. Each pair 
constitutes the two active elements in a Wheatstone bridge, whereas the 
two other resistors in the bridge consist of passive strain gages outside the 
shock tube, used for temperature compensation. All wiring of the pore 
pressure transducers and the strain gages is carried down in a narrow slit 
in the wall of the porous column. Finally, we have the possibility to mount 
piezoelectric pressure gages (Kistler 603B) in the shock tubewallat various 
locations. One of them is always located at some distance above the porous 
sample (see figure 7.1), and is used for triggering the data recording system. 
The upper part of the shock tube is the high pressure section, which is 
separated from the test section by means of a thin plastic membrane. A 
wave experiment proceeds as follows. The porous sample is fully or partially 
saturated as described in section 6.6, and the pressure in the high pressure 
sectionis raised to 1.5- 4 bar. By means of an electric current, the membrane 
is subsequently burned, and a stepwise pressure wave in air is generated. 

A general description of the wave propagation process is given in the 
z-t plot of figure 7.2. We have assumed that the porous medium is fully 
water-saturated. For reference, the shock tube is also drawn. The shock 
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Figure 7.2: Space-time plot of incident, re:flected and transmitted waves for 
a water-saturated porous medium. C denotes a compression wave and E 
denotes an expansion wave. A and B correspond to the detection of the 
incident and re:flected wave by the reierenee pressure gage Pref. P1 and P2 
are the two dilatational waves in the porous sample. 

wave in air is transmitted into the water layer on top of the porous column, 
where it is detected by the reference pressure gage Prer (A). This triggers 
the data recording system. Subsequently, the wave is partially reflected from 
the porous column, causing a second pressure increment at Pref (B). Now, 
the value of the pressure at Prer equals the amplitude of the step loading 
Po at the top of the sample at t = 0. When reflecting from the porous 
sample, the wave in the water layer generates two irrotational waves in 
the porous sample. They are often referred to as P (primary)- waves. The 
existence ofboth waves was theoretically predicted by Biot (1956), but it was 
not until 1980 that the fust experimental observation of the second (slow) 
irrotational wave was reported (Plona 1980). Both irrotational waves are 
successively detected by the pressure and strain gages in the porous sample. 
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Data recording and starage takes place by means of a laboratory computer, 
consisting of a 5-channel transient recorder. The maximum samplerateis 1 
MHz. Per channel, a 4K, 10 bit memory is available. This computer system, 
basedon a M68000 microprocessor, was devèloped at Eindhoven University 
of Technology, Department of Applied Physics. 

7.2 Water-saturated Bentheim sandstone 

As far as we know, the second compressional wave has, up to now, only been 
observed in artificially made porous media, consisting of sintered glass beads 
(Plona 1980; Dontsov et al. 1987), or sand grains glued tagether by means 
of an epoxy resin (Van der Grinten et al. 1985, 1987). We shall report here 
the experimental results, obtained from a fully water-saturated sample of 
natural Bentheim sandstone. In figure 7 .3a, the recorded reference pressure 
is shown. The shock tube generatea a step-like pressure increment in air, 
which is transmitted into the water layer on top of the porous column, and 
recorded by the reference pressure gagePrerat t = -0.12 ms. The amplitude 
of this step loading is denoted Pin· This wave partially re:flects from the top 
of the saturated porous sample, causing a second pressure increment at P rer 
at t = 0.12 ms. As the distance between the top of the porous sample and 
the reference pressure gage is known, the velocity of sound in water may 
be calculated. It is found to be 1450 ± 50 m/s, which is in agreement with 
the literature value (1484 m/s at 20°C). Now, the value of the differential 
pressure (p- Po) at Pref equals the amplitude of the step loading Po at the 
top of the porous sample at t = 0. This value is approximately 1.3 bar. The 
re:flection coe:fficient r =Po/Pin - 1 is found to be 0.52 ± 0.02. 

When re:flecting from the top of the porous sample, the wave in the 
water layer generatea two P-waves in the porous sample. The P 1 (fast) wave 
re:flects from the bottorn of the porous sample, and is eventually recorded 
by the reference pressure gage at t ~ 1 ms ( see figure 7 .3a). 

The wave, which re:flected from the top of the porous sample, re:flects 
again from the water-air interface, and returns as an expansion wave. It 
is recorded by the reference pressure gage at t = 1.35 ms. This expansion 
wave, in its turn, re:flects from the top of the porous sample, and is recorded 
by Pref at t = 1.61 ms. The entire process is schematically shown in figure 
7.2. 

In figure 7.3b, the recorded pore pressures at 12 and 22 cm from the top of 
the porous sample are shown. They are denoted P12 and P22, respectively. 
At both locations, we notice the arrival of the first wave, foliowed by a 
plateau. Next, there is a pressure rise, caused by the arrival of the second 
P-wave at t ~ 0.16 ms and t ~ 0.31 ms, respectively. From these recorded 
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pore pressures at the two different locations, estimates were obta.ined for 
the high frequency limits of the veloeities of both P-waves. As a criterion, 
the propagation veloeities of the foots of the wave fronts were taken. We 
found c 1 = 2900 ± 150 m/s and c2 = 710 ± 40 mfs. Moreover, the pressure 
signals gave a value for the reduced pressure amplitude of the fust wave 
ftlo/Po = 0.48 ± 0.04. 
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Figure 7.3: Pressure signals for the relerenee pressure Pref (a), and for the 
pore pressores P12 and P22 (b) in a water-saturated column of Bentheim 
sandstone. Po is the atmospheric pressure. Time t = 0 corresponds to the 
arrival of the pressure step Po = 1.3 bar at the top of the sample. 
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The measured values of cl! c2 , Pt.o/Po and r, were subsequently fitted to 
the results of linear theory, described in chapter 3. We used the tortuosity 
a 00 and the constrained modulus Kp as fitting parameters. As a result, we 
found a 00 = 2.4 and Kp = 10.0 GPa. The best fit for the tortuosity param
eter a 00 is in agreement with the value we determined in the conductivity 
experimentinsection 6.2. The value of Kp, however, is lower than the one 
we found in section 6.5 (14.7 GPa). Yet, the latter value was determined 
for a dry sample; long periods of water exposure may very well infl.uence the 
elasticity properties of the porous sample. In figure 7 .4, the measured pore 
pressures are compared to the results from computations. Two different 
permeabilities, k0 = 3.7 D and k0 = 18.0 D, have been taken into account. 
Here, we have introduced the Darcy (D) unit, which is approximately equal 
to 10-12 m2 • We find that the independently determined permeability value 
(see section 6.3) ko = 3.7 D, does not adequately describe the diffusive pres
sure rise of the second dilatational wave. The value k0 = 18.0 D, on the 
other hand, gives a nice fit for the pore pressure signals at both 12 and 22 
cm. From straightforward considerations, presented in appendix B, it fol
lows that wave propagation properties are seriously a:ffected by the presence 
of the gap between the shock tube wall and the porous sample. Compared 
to the elastic properties of water, the epoxy coating of the cylinder wall is 
a :flexible membrane, which cannot sustain any pressure differences. This 
mea.ns that there is a complicated interaction process between the pore :fluid 
and the gap :fluid, which may very well affect the measured permeability 
value of the porous sample. In case the pore :fluid consists of a water-air 
mixture, the compressibility of the pore :fluid far exceeds the compressibility 
of the liquid in the gap. Also in this case, wave propagation and damping in 
the porous sample may be a:ffected by the liquid-filled gap. This is discussed 
in appendix B. 

7.3 Water-saturated sand 

Wave experiments, performed on a fully water-saturated sand column have 
been reported by Van der Grinten et al. (1985, 1987). They found phase 
velocties c1 = 2190 ± 90 m/s and c2 = 790 ± 20 m/s. 
For the pressure amplitude of the fust wave Pt.o/Po, a value of 0.59 ± 0.03 
was reported. These measured values were subsequently fitted to the com
putational results from linear theory. Again, a 00 and Kp were used as fitting 
parameters. They found a 00 = 1.45 and Kp = 4.5 GPa. These values are 
obviously not in agreement with the values, which we determined in sections 
6.2. and 6.5, respectively ( a 00 = 2. 7 ± 0.2 and Kp = 10.2 ± 0.2 GPa). Some 
remarks can he made about these discrepancies. There are indications that 
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Figure 7.4: Pore pressure signals, recorded at 12 cm (a) and 22 cm (b) from 
the top of a water-saturated Bentheim sandstone column. The dasbed lines 
represent the computational results from linear theory. The computations 
are performed for two different k0 values, and for K 11 = 10 GPa, <Po= 0.23 
and a 00 = 2.4. We have introduced the Darcy (D) unit for the steady-state 
permeability. A definition is given in the text. 
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water absorption of the resin infiuences the elastic properties of the porous 
column. For the epoxy resin, we determined the moduli ofYoung Et before, 
and E;. after 48 days of water immersion. This was done by means of a 
tensile test. We found Et = 0.6 ± 0.05 GPa and E2 = 0.18 ± 0.05 GPa. The 
water absorption thus canses a decrease of Young's modulus by more than 
a factor 3. 
The tortuosity parameter Q 00 may he affected by the liquid-:filled gap be
tween the sample and the shock tube walls. This is qnalitatively discussed 
in appendix B. 

7.4 Partially saturated sand 

In this section, we will discuss wave experiments, performed on a partially 
saturated sand column. The column consistsof sand grains in the range 0.3-
0.6 mm, which are glued tagether by means of an epoxy resin (Scotchcast, 
3M electrica.l resin 8, 5236). Details ofthe preparation of a water-air mixture 
and the determination of the mean air bubble size and concentration can 
be found in sections 6.6- 6.9. Once we have prepared a water-air mixture 
of specific mean air bubble radius Rand gas volume fraction (1- s), these 
experimental conditions may easily be altered by changing the ambient pres
sure inthetest section ofthe shock tube (see figure 7.1). If the pore :fl.uid is, 
for example, subjected to an ambient pressure increase dPJ., the mean air 
bnbble radius and the gas volume fraction will both decrease. This process 
may he considered "frozen", if dPI is applied for a time interval Tt, which 
is short enough to ensure that almast no air from the bubbles is dissolved 
in the liquid. With the results from section 6. 7, the "frozen" gas volume 
fraction and mean air bubble radius may then be ca.lculated. 
The wave experiments, performed on a partially saturated sand column, will 
now he discussed both in the time domain and in the frequency domain. 

7.4.1 Time domain 

The immense infinence of a minor gas volume fraction on wave propaga
tion, as was theoretically described in chapter 4, is also distinctly visible in 
our experiments. In figure 7.5, we have plotted two pore pressure signals, 
recorded at 12 cm from the top of the porous sample. One of the signals was 
recorded in a fully water saturated column. The other signal corresponds 
toa pore :fl.uid, consisting of a water-air mixture with a gas volume fraction 
of only 0.12 %. For the fully saturated sand column, the two P-waves can 
clearly be recognized in the recorded pressure signal. This was also found by 
Van der Grinten et al. (1985, 1987). We notice the sudden pressure rise at 
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Figure 7.5: Pore pressure signals for a fully water-saturated case and for a 
pore Buid consisting of a water-air mixture with a gas volume fraction of 
0.12 %. Time t = 0 corresponds to the arrivaJ of the incident pressure step 
Pin. = 0.8 bar at the top of the sample. 

the arrival of the fust dilatational wave, foliowed by a more gradual pressure 
rise at the arrival of the second, dispersive, wave. When there is a gas vol
ume fraction of only 0.12% in the pores, this two step structure completely 
disappears. Instead, an oscillatory pore pressure signal is recorded, foliowed 
by a gradual pressure rise. We also notice that this gradual pressure rise 
cammences from a certain offset value, which is about 0.1 bar in this case. 
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Figure 7.6: Experimental and tbeoretical pore pressure signals at 12 cm 
from tbe top of tbe porous sample. t = 0 corresponds to tbe arrival of tbe 
incident pressure step Pin = 0.8 bar at tbe top of tbe sample. Tbe gradaal 
pressure rise rommences at a certain offset value. For bigher (1- s) and R 
values, tbe offset value and tbe gradual pressure rise botb decrease. 
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In figure 7.6, we have indicated what happens when the gas volume fraction 
(1- s), and the corresponding mean air bubble radius R, are increased fur
ther. We notice that the offset pressure value gradually diminishes. We also 
find that the long-term pressure rise becomes leas, and, finally, is no longer 
visible on our time scale. 
In figure 7 .6, we have also plotted the conesponding theoretica! pore pres
sures. The computed pore pressure signals indeed display an oscillatory 
behaviour. A Fourier analysis of recorded and computed oscillations is dis
cussed in the next section. The diffusive pressure rise is also found from 
computations, and, indeed, diminishes for higher gas volume fractions and 
gas bubble radü. However, there are still some discrepancies between the 
amplitudes of the recorded and computed pore pressure signals. 

7 .4.2 Frequency domain 

The recorded pore pressure signals have been analysed in the frequency 
domain by means of straightforward Fourier analysis. From theoretica! con
siderations, presented in chapter 4, we found that a change of the ambient 
pressure in the test section does not so much alter the frequency spectra. 
That is beca.use the effect of a "frozen" change in ( 1-s) is, at least partially, 
undone by the conesponding "frozen" change in R. We therefore prepared 
three different water-air mixtures in the way that was described in section 
6.6. From successive compressibility experiments, we determined mean air 
bubble size and concentration (see sections 6.7- 6.9). 
The results were: a. (1- s) = 1.14%, R = 3.1 m.m.; b. (1- s) = 1.09%, 
R = 1.6 m.m.; c. (1- s) = 0.66%, R = 2.9 m.m. Subsequently, in each case, 
a series of wave experiments was performed. Fourier spectra of the recorded 
pore pressure signals at 22 (a), 12 (b) and 22 cm ( c) from the top of the 
porons column are presented in figures 7. 7. We notice that the pore pres
slires are in different ranges for all three cases, which allows a comparison 
between experimental and theoretica! data for a total differential pressure 
range of 0-8 mbar. The experiment a display a remarka.ble two peak struc
ture. Two separate frequency bands, with conesponding frequency maxima, 
are clearly visible. In the forthcoming, the location of the maximum of the 
fust frequency band is denoted w1 , and the location of the maximum of the 
other frequency band is denoted w2• Theseparate frequency bands corre
spond to the two Biot wave modes, as was discussed in chapter 4. 
In the same figure 7. 7, theoretica! curves are also drawn. Pore pressures have 
been computed with, and without including the acoustic damping mecha
nism. In all three cases, the amplitudes of both frequency maxima are in 
agreement with the theoretica! values, if the acoustic damping mechanism 
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is omitted. Including the acoustic damping in the way it was presented in 
section 4.4, will apparently overestima.te its importance. 
Experimental and theoretical values for w1 and w2 are presented in table 
7.1. We :find that, in all three cases, the experimental w1 values are in good 
agreement with the theoretical values, wherea.s this is not the case for the w2 

values. This may be caused by gas bubble inhomogeneities, a.s the w2 values 
are pa.rticularly sensitive to a small variation in mean gas bubble radius. 
Another possible rea.son is the lateral interaction effect between the pore 
fluid and the liquid in the ga.p between the porous sample and the shock 
tube walls (see appendix B). From table 7.1, we also :find that a decrea.se 
in mean gas bubble radius R will cause an increa.se of both w1 and ~· A 
decrea.se in gas volume fraction, however, acts in the opposite direction. 

a b c 
1-s (%) 1.14 ±0.02 1.09 ±0.02 0.66 ±0.02 
R (m.m.) 3.1 ±0.1 1.6 ±0.1 2.9 ±0.1 

experimental w1 (10:; ra.d/s) 0.38 ±0.04 0.72 ±0.04 0.33 ±0.04 
theoretical w1 (105 ra.d/s) 0.36 0.69 0.30 

experimental ~ (105 ra.d/s) 0.87 ±0.05 1.86 ±0.08 0.91 ±0.05 
theoretical w2 ( 105 ra.d/ s) 0.58 1.07 0.47 

Table 7.1 Comparison between experimental and tbeoretical values of 
tbe maxima of tbe Fourier spectra. 

104 



ex peri ment 

4 

1 3 

a.o 2 

a. 
0 

0 2 3 4 0 

2.5 rr---------------, 

2.0 

1 1.5 

a.o 1.0 

I 0 .5 
a. 

0 .0 

0 

1-5=1.09% 

2 3 4 0 

10 r---------------, 

8 

I 6 

4 

2 

0 

0 2 

1-S • 0.66% 

R = 2.9 mm 

3 

w (105 rad/S) 

4 0 

theory 

2 3 

2 3 

2 3 

w (105 rad/sl 

Figure 7.7: Power spectra of recorded and computed pore pressure signals. 
Pore pressure signals have been computed with (dashed lines), and without 
( drawn lines) in cl u ding the acoustic damping mechanism. Two separate 
frequency bands are detected, corresponding to the two Biot wave modes. 

105 

4 

4 

4 



7.5 Partially saturated Bentheim sandstone 

Preliminary experiments were performed on a partiaJ.ly saturated Bentheim 
sa.ndstone column. An experimental result is shown in fi.gure 7.8. Also in 
this case, the expected oscillatory behaviour is recorded, and the diffusive 
long-term pressure riseis visible. Comparison with computed pore pressure 
signals is a point for future investigation. 
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Figure 7.8: Recorded pore pressure signal in a partially saturated Bentheim 
s&lldstone column at a depth of 2 cm. The air volume fraction is 0.48 %. 
Time t = 0 corresponds to the arrival of the incident pressure step Pin = 0.8 
bar at the top of the sample. 
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8 Conclusions 

In this chapter, we will summarize the results of the experimental and the
oretical studies of the previous chapters. These studies were performed 
for fully saturated and partially saturated porons media. Particular atten
tion was paid to oscillating gas bubbles in porons media; the way they are 
damped, and the way in which they affect wave propaga.tion phenomena. 
For the wave experiments, we used a sand column, consisting of glued sand 
particles, and a natural Bentheim sandstone column. The results of the 
studies allow some conclusions to he drawn. 

In order to perform well-defined wave experiments on partially saturated 
porons media, a homogeneons water-air mixture in the pores was prepared, 
using a super-saturation technique. By means of a series of successive com
pressibility experiments, both mean gas bubble radius and concentration 
can he determined. These pore fiuid properties can easily he varled by al
tering the ambient pressure conditions. In this way, wave experiments can 
he performed for different experimental conditions. 
The presence of even a small gas volume fraction in the pore8 largely in:flu
ences wave propagation, reileetion and damping phenomena. Instead of the 
distinct two-step structure of the fully saturated case, an oscillatory pore 
pressure behaviour is observed. The propagation velocity of this oscillation 
is about the same as the phase velocity of the fust Biot wave mode in the 
fully saturated case. On a longer time scale, the oscillation is foliowed by a 
gradual diffusive pressure rise. 

Straightforward Fourier analysis of the oscillatory pressure signals shows 
two distinct frequency bands, which were also theoretically predicted. They 
correspond to the two Biot wave modes. From the damping-versus-frequency 
plot, we find, indeed, that there exist two frequency bands, where low damp
ing coefficients occur. A partially saturated porous media obviously acts as 
a frequency band filter; some frequency bands are easily transmitted into 
the porons medium, and have low damping factors and high phase velocities. 

The experimental data from wave propagation experiment& were com
pared to linear one-dimensional theory. The effect of oscillating gas bubbles 
in the porons media was represented by a dynamic, i.e. frequency depen
dent, :fl.uid bulk modulus, which was incorporated in the Biot theory. When 
the gas bubbles are vibrating in phase with the exerted pressure in the sur-
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rounding liquid, the pore fl.uid beoomes very compressible. When, on the 
other hand, the gas bubbles are vibrating out-of-phase, i.e an increase in the 
liquid pressure ca.uses the gas bubbles to expand, the pore fl.uid compress
ibility is very low. 

The oscillating gas bubbles in a pa.rtially saturated porous medium, are 
dampeel by thermal, viscous, Darcy and acoustic mecha.nisms. Of these 
four, the Darcy damping mecha.nism is by far the most important one. It 
is caused by the dynamic interaction between the pore fl.uid and the porous 
materiaL This dynamic interaction was experimentally investigated in a 
separate set-up, in which a low-frequency oscillating liquid flow was induced 
in a fully saturated, rigid, porous medium. This was done, using an exciter
driven frictionleas piston. By mea.ns of sealing the size of the grains of the 
porons samples, experiments could be performed for a reduced frequency 
range, which was the same as for the shock tube wave experiments. The 
measurements of the so-called dynamic permeability, or dynamic tortuosity, 
were in agreement with a sealing function over the full frequency range. 
For low frequencies, the visrous effects are dominant, whereas in the high 
frequency range the inertial effects prevail. In between there is a transition 
region, characterized by a so-called rollover frequency. The viscous effects 
a.re characterized by the steady-state permeability; the intertial effects by 
the tortuosity parameter. 
This dynamic behaviour ca.n be described on the basis of a two-scale homog
enization formalism. In this way, it is possible to derive new expressions for 
the real and imaginary pa.rts of the dynamic tortuosity. These are exact 
results, applicable over the entire frequency ra.nge. It is shown that in the 
high frequency limit, when the viscous bounda.ry layers are small compared 
to the size of the pores, we may describe the macroscopie permeability by 
two parameters a 00 and A, characterizing the microscopie pore geometry 
properties. We a.lso :find that it is possible to calculate A in two different 
ways, yielding the same result within limits of accuracy. 
Over the entire frequency range we found that the reduced dynamic perme
ability is a function of, at least, two parameters. The fust is the rollover 
frequency, we mentioned before, and the other is a similarity parameter M. 
From numerical computations for several pore geometries, we found that 
M ~ 1, although we observed deviations up to 20 % for strongly curved 
pore geometries. 

The acoustic damping mecha.nism is found to be overestimated, in case 
we aasurne that all energy from an oscillating gas bubble is freely radiated 
into the surrounding, in:finitely extended, compressible pore fl.uid. There 
is obviously refl.ection of energy from the walls of the porous sample, which 
does not contribute to the energy dissipation of the system. A more detailed 
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study of this phenomenon is a point for future investigation. 

For the fully water-saturated sand, both the "in-phase" and the "out-of
phase" wave modes were a.lready observed previously. In the present study, 
both waves are a.1so recorded in a natural Bentheim sandstone. In the lat
ter case, the measured wave speeds and pressure amplitudes for both wave 
modes are :fitted to linear, one-dimensional theory, with the constrained 
modulus and the steady-state permea.bility as :fitting parameters. We :find 
that these :fitted va.lues . di:ffer signi:ficantly from the expected va.lues. This 
may he caused by several reasons. The discrepancy in the constrainèd mod
uli may be caused by water absorption by the porous material, which may 
change the elastic properties of the porous skeleton. The same effect was 
also found for the fully saturated sand column, where we measured that a 
rednetion by a factor 3 of Young's modulus of the epoxy resin was ca.used 
by a water immersion of 48 da.ys. 

Another factor of importance is the presence of a liquid-:filled ga.p be
tween the porous sample and the shock tube walls. For a. rigid porous 
ma.terial, it is shown that the interaction between the liquid in the ga.p and 
the pore :fluid may he represented in one-dimensional theory by a lower tor
tuosity va.lue and a higher value for the steady-state permea.bility. This tor
tuosity effect was, indeed, observed for the satura.ted sand column, whereas 
the permea.bility effect was observed for the Bentheim sandstone. A detailed 
quantita.tive description could not not be given due to the fa.ct that the elas
tic motion of the porous material was not taken into account. 

For the partially saturated cases, the compressibility of the pore :fluid far 
exceeds the compressibility of the liquid in the gap. Also in this case, how
ever, there are indications that the infl.uence ofthe gap can not he neglected. 
When the power spectra of the recorded pore pressure signals are compared 
to the results from a theoretica! analysis, a good agreement is reached only 
in the case that the "effective" tortuosity and constrained modulus are taken 
into account. 
As we expected, we :find that the frequeny band, corresponding to the sec
ond Biot wave mode, is especially sensitive to a variation in the tortuosity 
parameter. 
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Appendix A 

Computation of A1 

In order to calculate the real part of the frequency dependent tortuosity 
a(w), we have a.ssumed the potential fiow solution to be bounded by the 
actual pore walls, thus neglecting viscosity effects and therefore introducing 
an error of 0(6). We shall now present a more detailed analysis to actually 
calculate the error under consideration, by linking the actual pore velocity 
Uo toa potential fiow solution 11p = -V y'I/J· We shall choose 1/J in such a way 
that the fiow rate Qo, corresponding to the velocity distribution Uo equals 
the fiow rate Q, corresponding to the potential fiow velocity distribution Up· 

We shall introduce the pore wall shift as a potential fiow modifying factor. 
A velocity ub is defined in such a way that ub equals Uo everywhere 

except in the viscous boundary layer where ub ha.s a fixed value ~8 : 

The second part of the right hand side of the above equation is zero, except 
in the boundary layer. Substituting the boundary layer velocity distribution: 

(A.2) 

and integrating the second part of the right hand side of eq.(A.l) we arrive 
at: 

(A.3) 

where the integration in the second part of the right hand side is over the 
pore-grain interface surface. Next, aiming to link ub to the previously de
fined potential fiow solution Up, we note that, at constant fiow rate, the 
presence of a viscous boundary layer of thickness 6 will cause the non-viscous 
velocity modulus lupl in the whole of the pore to he lower than 1~1· 
Talring this into consideration, we write the aquared velocity modulus lubl2 

as a Taylor series: 

(A.4) 
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where .ó.r is some virtual outward displacement of the pore walls at constant 
flow rate and frG denotes the derivative of some quantity G with respect 
to this virtual displacement. To emphasize the derivative is at constant flow 
rate, the subscript Q is added. 

In order to estimate the value of .ó.r, we will compare the velocity distri
bution uf> to the actual velocity distribution Uo· We notice that the presence 
of the viscous boundary layer will introduce a small, complex valued, flow 
ra te di:fference Q 6 = Q& - Qo, where Q~ is the flow ra te corresponding to 
the velocity distribution uf>. AB IQ6I < IQbl, we ma.y write a fust order 
approximation for IQol: 

IQol ~ IQ~I- 'Re je~- Uo).ndf3dl, (A.5) 

where lis a circumferential coordinate perpendicular both to the pore wall 
surface and the boundary layer velocity. Furthermare, n is the normal vector 
defining the surface element d{jdl. Substitution of eq.(A.2) into eq.(A.5) 
yields: 

IQol ~ IQ~ I - ~ f ~6.ndl. (A.6) 

The second part of the right hand side of the above equation can he inter
pretated as a virtual shifting of the pore walls over a distance -6/2. By 
definition we may write Q = Qo and we may therefore conclude .ó.r = -6/2. 

Now integrating eq.(A.4) over the pore volume we arrive at: 

In equation (A.3) we may replace ~6 by the potential flow velocity at the 
wall 11pw without loss of accuracy, i.e. accepting an error of 0( 62). This is 
easily seen by writing 1~6 1 2 as a Taylor series also. Subsequent substitution 
of eq.(A.7) into eq.(A.3) yields arelation between the actual pore velocity 
distribution Uo and the potential flow velocity distibution 11p: 

Dividing the entire equation (A.8) by the pore volume V" and by the squared 
macroscopie velocity modulus lvol2 , we find that the left hand side of the 
above equation is the real part of the dynamic tortuosity 'Re( a), and that 
the fust term of the right hand side is the extreme high frequency limit of 
the dynamic tortuosity a 00 • From eq.(A.8) we write: 

6 2 
'Re( a)= a00 [1 +--A ], 

2 1 
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where the parameter A1 ha.s the dimension of length and is given by: 

(A.lO) 

Equation (A.lO) offers the opportunity for numerical computation of the 
value of A1 , by shifting the pore walls while maintaining constant flow ra te 
by adapting the :flow potential di:fference 6.'1/J between two equipotential sur
fa.ces. This rather laborious procedure may be simplified considerably writ-
ing 

(A. U) 

The di:fferentiation at constant flow rate ha.s now been replaced by a more 
convenient di:fferentiation at constant flow potential di:fference. We shall 
prove (A.ll), consiclering an incompressible flow at microscale: 

(A.12) 

Integration over the pore volume and application of Gaufi' theorem yields: 

(A.13) 

where A is the integrating surface consisting of pore wall surfaces and two 
a.rbitra.ry bounding equipotential surfaces. Furthermore, n is the normal 
vector defining such surface element dA. As we have 11p.n = 0 at the pore 
wall surfaces, we arrive at: 

(A.14) 

We now praeeed taking the derivative with respect tor of (A.14) at constant 
flow rate: 

[i_ J ln-12dV) = Q[ÖÖ.'I/J] = -Q [~]A,P 
Ör " Q Ör Q [~]r (A.15) 

At constant r, i.e. not changing the pore geometry we may write: 

ÖQ Q 
[ ÖÖ.'I/J]r = Ö.'I/J (A.16) 

By substitution of (A.16) into (A.15), we finally arrive at (A.ll). 
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Appendix B 

The influence of a liquid-filled gap on wave 
propagation in rigid porous media 

In this appendix, we will give a. qualita.tive survey of the influence of the ga.p 
between the porous sample a.nd the shock tube wa.1ls on wa.ve propagation 
in a.liquid-:filled, rigid, porous medium. This obviously mea.n.s tha.t only the 
second Biot wave mode is considered. The configuration is dra.wn in fi.gure 
B.l. The area. marked 1 in the figure, corresponds to a.liquid-:filled ga.p; the 
area. marked 2, is the liquid-sa.turated porous medium. The components in 

2 

y 
V 

z r 
w 

Figure B.l: Contiguration and axes used in computations. The area 1 cor
responds to a liquid-fi.lled gap; the area 2 is the liquid-saturated porous 
medium. v and w are the components of the displacement vector in the y 
and the z direction, respectively. 
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the y and in the z direction of the :O.uid displacement vector ui a.re denoted 
Vi a.nd Wi, respectively. The index i = 1, 2 corresponds to the a.reas in 
tigure B.l. We may define the displacement potentia.ls 4_;1 a.nd 4_;2 , such that 
t1i = 8flï/8y a.nd Wi = {)4_;i/8z. The dynamic :O.uid equations then hecome: 

2 1 .. 
V 4_;1 = c?. 4_;1 

I 
(B.1) 

(B.2) 

where the dot denotes a deriva.tion with respect to time. The velocity of 
sound in the liquid is called c1, a.nd the density P22 is defined in section 2.4. 
For the :O.uid pressures we may write: 

The hounda.ry conditions a.re: 

y= 0: PJ.=P2 
4>ov2 = v1 ( continuity of :filtration velocity) 

y = -h: VJ. = 0 
y = D /2 : 172 = 0 

(B.3) 

If. a.n exponential solution for hoth 4_;1 a.nd 4_;2 is suhstituted in equations 
(B.1) a.nd (B.2), we find: 

4_;1 = (Ae-q11 + Beq11 ) é(wt-~U) 

4_;2 = (ce-B'JI + DeB'JI) ei(wt-~U), 

(B.4) 

(B.5) 

where A, B, C a.nd D a.re a.rhitra.ry consta.nts a.nd K. is the wave num.her. 

Furthermore, q = V"'2 - 1\.1 a.nd s = .;,.,2- K.~, where Ka is the wave num.her 
far h = 0 (no gap). We may write: 

2 2 Pi iwbo 
Ka= aex>w Kj - 4>o Kj (B.6) 

Suhstitution of hoth equations (B.4) a.nd (B.5) in the houndary conditions 
yields, after some algehraic manipulations, a.n expression for the wavenum
her K.: 

(B.7) 
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In fi.rst approximation, we may write tanh(tDs) ~ tns and t~h(qh) ~ qh. 
We then find: 

(B.8) 

In figure B.2, we have drawn the phase velocity w /'Re( K) and the attenuation 
coe:fficient Im(K) as a function of angular frequency. When the in:fl.uence 
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Figure B.2: Reduced phase veloeities (a) and attenuation coetlicients (b) as 
a function of reduced angular frequency. Ca is the high frequency limit of 
the phase velocity when the liquid-lilled gap is not taken into account. Ca is 
also defi.ned insection 3.1. 

of the liquid-filled gap is taken into account, we find that, over the entire 
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frequency range, the phase velocity is higher, and the damping is less. In 
one-dimensional theory, both effects can he represented by introducing an 
"effective" tortuosity para.m.eter Cteff and an "e:ffective" permea.bility keJJ· 
The e:ffective tortuosity should he less than a 00 to account for the high fre
quency limit of the phase velocity, and kef 1 shonld he greater than ko to 
account for the damping effect. Both effects have also been observed ex
perimentally. Van der Grinten, van Dongen & van der Kogel {1985, 1987) 
introduced an e:ffective tortuosity to account for the phase velocity of the 
second compressional wave in a porous sand column, and in chapter 7, we 
showed tha.t the introduetion of a higher permeability value gives a better 
explanation of the experimentally observed damping of the second compres
sional wave in a Bentheim sandstone column. A quantnative explanation 
af the observed phenomena is only possible when also the elasticity of the 
porons material is taken into account. This, however, implies a severe com
plica.tion of the dynamic equations. 
For a sand column, it was found previously (Van der Grinten et al. 1985, 
1987) that a good match between experiment and one-dimensional theory 
WBB obtained by the introduetion of an "e:ffective" constrained modulus 
Keff, the value of which is less than the value of Kp. In chapter 7, we 
showed that this also holds for a Bentheim sandstone column. 

The liquid-filled gapmayalso infiuence wave propagation and damping in 
case the pore :fluid consists of a water-air mixture. Therefore, we have aga.in 
compared the experiment al data of section 7.3 to linear one-dimensional 
theory. In this case, however, the computations were performed with the 
"e:ffective" para.m.eters KeJJ = 4.5 GPa and Cteff = 1.45 (Van der Grinten 
et al. 1985, 1987). The results are shown in figures B.3. We find that the 
agreement between experiment and theory is quite satisfactory. 
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Figure B.3: Power spectra of recorded ( drawn Jin es) a.nd computed ( dasheel 
lines) pore pressure signals. The computations were performed with the 
"effective" parameters Kef! = 4.5 GPa a.nd Ci.eff = 1.45. Acoustic damping 
was not included. a: 1- s = 1.14 %, R = 3.1 mm; b: 1- s = 1.09 %, 
R = 1.6 mm; c: 1 - s = 0.66 %, R = 2.9 mm. 
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Abstract 

The propagation and damping of compressional waves in aporous medium 
are investigated, both theoretically and experimentally, in case the pore 
liquid contains a small volume fraction of gas. 

The effect of oscillating gas bubbles is taken into account by the intro
duetion of a frequency dependent Huid bulk modulus, which is incorporated 
in the Biot theory. This dynamic Huid bulk modulus relates the exerted Huid 
pressure to a change in the average Huid volume, and is strongly dependent 
on the dynamic gas bubble behaviour. Oscillating gas bubbles in a partially 
saturated porous medium are damped by means of thermal, Darcy, viscous 
and acoustic mechanisms. A careful analysis of all mechanisms involved, 
shows that the Darcy damping is by far the most important. It can be rep
resented by a dynamic, frequency dependent, permeability. In a separate 
set-up, this dynamic permeability is measured and compared to theoretica! 
results from homogenization theory. Measurements are performed on five 
different fully water-saturated porous samples. Over the entire domain of 
reduced frequencies, the measured data for the dynamic permeability are in 
agreement with a theoretica! sealing function. 

It is shown that even minor gas fractions largely inHuence the dynamic 
Huid bulk modulus and, consequently, the wave propagation phenomena in a 
porous medium. Close to gas bubble resonant frequencies, the compressional 
waves are very strongly damped. In this way, aporous medimq, with small 
gas inclusions in the pore liquid, can be described in terms ofi a frequency 
band filter for pressure waves. 

Wave experiments are performed by means of a shock tube technique. 
A vertical shock tube generatea a pressure step wave in air, which is trans
mitted into the water layer on top of a porous column. This wave partially 
reHects, partially transmits into the porous medium. Two different cylindri
cal porous samples are used. One of them consists of sand paiticles, glued 
together by means of an epoxy resin; the other is a column of ~atural Ben
theim sandstone. Both samples are equally equipped with mihiature pore 
pressure transducers. The porosities, steady-state permeabilities and tor
tuosities of both samples are determined experimentally. Shock tube wave 
experiments are performed on both water-saturated porous columns. Two 
longitudinal pore pressure waves are observed, as is also theotetically pre
dicted. There is one wave in which Huid and skeletal veloeities ire in phase, 
and another in which they are in opposite phase. The latter has higher 
damping and lower phase velocity. It is shown that for a detailed descrip
tion of the observed phenomena, it is necessary to take into account the 
liquid-filled gap between the porous sample and the shock tube wall. 
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Particular care is paid to the preparation of a homogeneous water-air mix
ture in the pores of both samples. A super-saturation technique is descri bed, 
which implies that a diffusion dominated air bubble growth is induced in the 
pores of the porous samples. Mean gas bubble radius and concentration are 
determined by means of a series of successive compressibility experiments. 
Subsequently, a series of wave experiments is performed on both partially 
saturated porous columns. In this case, the pore pressures at several dis
tances from the top of both po rous samples display an oscillatory behaviour. 
Detailed study of this behaviour for several gas bubble radii and concentra
tions is presented for the sand column. In all cases, the observed oscillations 
consist of two distinct frequency bands, with two distinct maxima. The 
partially saturated po rous medium acts as a frequency band filter. Two 
frequency bands are easily transmitted into the porous medium and have 
high propagation veloeities and low damping factors. The amplitudes of the 
oscillations are in agreement with the theoretical analysis. The location of 
the first frequency maximum is in quantitative agreement with the linear 
one-dimensional theoretical analysis. The location of the second frequency 
maximum is particulary sensitive to the infiuence of the liquid-filled gap be
tween the porous sample and the shock tube wall, which can be represented 
by the introduetion of "effective" skeletal properties. The location of the 
two frequency maxima appears to depend strongly on mean air bubble ra
dius and concentration. Forsmaller air volume fractions and for greater air 
bubble radii, both frequency maxima are shifted towards lower frequencies. 
This tendency is in agreement with the theoretical analysis. 
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Samenvatting 

Theoretisch en experimenteel onderzoek is verricht naar de voortplanting en 
demping van drukgolven in poreuze media., waarvan de porievloeistof een 
geringe hoeveelheid lucht bevat. 

De invloed van oscillerende luchtbellen wordt in rekening g~bra.cht door 
in de Biot theorie een frequentieafhankelijke compressiemodul~s van de po
rievloeistof op te nemen. Deze dynamische compressiemodulus ilegt een ver
band tussen de uitgeoefende poriedruk en de verandering van het gemiddelde 
vloeistofvolume in de poriën, en is in hoge mate afhankelijk van het dyna
misch belgedra.g. Oscillerende luchtbellen in gedeeltelijk verzadigde poreuze 
materialen worden gedempt door middel van thermische, Darcy, visceuze en 
a.coustische dissipa.tiemecha.nismen. Een zorgvuldige analyse la.a.t zien da.t de 
Darcy demping veruit het belangrijkst is. Deze Darcy demping kan worden 
beschreven met behulp van een dynamische, frequentieafhankelijke, doorla
tendheid. In een afzonderlijke opstelling wordt de dynamische doorlatend
heid gemeten van vijf verschillende poreuze materialen, die vooraf volledig 
met water verzadigd zijn. De metingen worden vergeleken met voorspel
lingen op grond van de homogenisatietheorie. De gemeten doorlatendheid 
blijkt over het gehele gebied van dimensieloze frequenties overeen te komen 
met een theoretische scha.lingsfunctie. 

Aangetoond wordt dat zelfs zeer geringe hoeveelheden luch~ de dynami
sche compressiemodulus van de porievloeistof in hoge mate beï~vloeden en, 
daarmee samenhangend, een grote invloed uitoefenen op de g1lfvoortplan
ting in poreuze materialen in het algemeen. Nabij de resonanp efrequentie 
van de luchtbellen worden de drukgolven sterk gedempt. Een :ROreus mate
riaal met kleine luchtinsluitseis in de poriën ka.n dus worden op~eva.t a.ls een 
frequentie bandfilter. 

De golfexperimenten worden verricht met een schokbuismethode. Een 
verticale schokbuis genereert een stapvormige drukgolf in lucht, die zich ver
volgens voortplant in de wa.terla.a.g boven een poreuze kolom. Deze golf 
reflecteert voor een deel a.a.n de poreuze kolom, en plant zich voor een ander 
deel voort in de poreuze kolom. Er wordt gebruik gema.a.kt van twee ver
schillende poreuze kolommen. De een besta.a.t uit zandkorrels die onderling 
zijn verlijmd met een epoxyhars; de ander is een Bentheimer zandsteenko
lom. Beide kolommen zijn voorzien van miniatuur poriedrukopnemers. De 
porositeit, doorlatendheid en tortuositeit van beide kolommen worden ex
perimenteel bepa.a.ld. Vervolgens worden golfexperimenten verricht op beide 
kolommen, die vooraf volledig verzadigd zijn met water. Zoals :op theoreti
sche gronden verwacht ma.g worden, worden twee longitudinale poriedruk
golven waargenomen. Bij de eerste golf zijn de snelheden van het poreuze 
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materiaal en van de porievloeistof met elkaar in fase, terwijl er bij de tweede 
golf sprake is van snelheden in tegenfase. De tweede golf wordt sterker ge
dempt, en heeft een kleinere fasesnelheid. Aangetoond wordt dat het voor 
een gedetailleerde beschrijving van de waargenomen verschijnselen noodza
kelijk is de met water gevulde spleet tussen de poreuze kolom en de wand 
van de schokbuis in de beschouwingen te betrekken. 

Veel zorg is besteed aan de preparatie van een homogeen mengsel van 
water en luchtbellen in de poriën van beide poreuze kolommen. Een overver
zadigingstechniek wordt beschreven, die erop neerkomt dat er een aangroei 
van luchtbellen in de poriën wordt geïnduceerd. Deze belgroei is overwegend 
een diffusieproces. De concentratie en de gemiddelde straal van de lucht
bellen worden bepaald door middel van een reeks opeenvolgende compressi
biliteitsmetingen. Vervolgens wordt een reeks golfexperimenten beschreven, 
uitgevoerd op beide gedeeltelijk verzadigde poreuze kolommen. Nu verto
nen de poriedruksignalen op verschillende afstanden van de bovenkant van 
beide kolommen een oscillerend gedrag. Voor de verlijmde zandkolom is dit 
gedrag onderzocht als functie van de concentratie en de gemiddelde straal 
van de luchtbellen. In alle gevallen bestaan de waargenomen oscillaties uit 
twee afzonderlijke frequentiebanden met twee afzonderlijke maxima. De 
gedeeltelijk verzadigde poreuze kolom gedraagt zich als een frequentieband
filter. Twee frequentiebanden worden relatief eenvoudig ingekoppeld in de 
poreuze kolom, worden in geringe mate gedempt, en hebben een hoge voort
plantingssnelheid. De amplitudes van de oscillaties zijn in overeenstemming 
met de theorie. De ligging van het eerste frequentiemaximum is in over
eenstemming met de lineaire, eendimensionale theorie. De ligging van het 
tweede frequentiemaximum wordt sterk beïnvloed door de aanwezigheid van 
de met vloeistof gevulde spleet tussen de poreuze kolom en de wand van 
de schokbuis. Deze invloed kan worden verdisconteerd door "effectieve" ei
genschappen van de poreuze kolom te introduceren. De ligging van beide 
frequentiemaxima blijkt sterk afhankelijk te zijn van de concentratie en de 
gemiddelde straal van de luchtbellen. Zowel voor geringere volumefracties 
lucht als voor grotere gemiddelde belstralen, blijkt de ligging van beide fre
quentiemaxima te verschuiven naar lagere frequentiewaarden. Deze tendens 
is in overeenstemming met de theoretische analyse. 
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Stellingen 

1. De structuurparameters 62 /8~ en n2 / s, zoals die voorkomen bij Biot 
en Attenborough, zijn in feite identiek aan de door Johnson et al. 
geïntroduceerde gelijkvormigheidsparameter M. 
Biot, M.A . 1956. J. Acous. Soc. Am. 28, 168-191. 
Attenborough, K. 1983. J. Acous. Soc. Am. 77, 785-799. 
Johnson, D.L., Koplik, J. & Dashen, R. 1987. J. Fluid Mech. 176, 
379-402. 

2. Het is niet te verwachten dat de tweede Biot golfmode experimenteel 
zal worden waargenomen in poreuze media met doorlatendheden in 
het gebied beneden de 1 Darcy. 

3. Chroomoxide-deeltjes, verkregen door het verhitten van een nikkel/ 
chroom-draad, zijn uitstekend toepasbaar bij het genereren van een 
monodisperse nevel door adiabatische expansie van een gas/damp 
mengsel. 
Smolders, H.J., Willems, J.F., de Lange, H.C. & van Dongen, M.E.H. 
1989. A.I.P. Conf. Proc. 17th ISSWST, 802-807. 

4. De wetenschappelijke controverse, onstaan bij de beschrijving van een 
"unjacketed test" op met vloeistof gevulde poreuze media, is een ge
volg van een onzorgvuldige definitie van de voorkomende grootheden. 
Berryman, J.G. 1981. J. Acous. Soc. Am. 69, 416-424. 
Korringa, J. 1981. J. Acous. Soc. Am. 70, 1752-1753. 
Berryman, J.G. 1981. J. Acous. Soc. Am. 70, 1754-1756. 

5. Bij het bestuderen van golfverschijnselen in natuurlijke gesteenten, 
kan met vrucht gebruik worden gemaakt van kunstmatig aangemaak
te, verlijmde poreuze media. 

6. Bij de beschrijving van golfvoortplanting in poreuze media kan een 
poreuze cylinder waarvan de porievloeistof een geringe hoeveelheid 
luchtbellen bevat, opgevat worden als een frequentiebandfilter. 

7. In de theoretische aërodynamicakan bij de bestudering van een expan
siewaaier in een niet-homentrope stroming op elegante wijze gebruik 
gemaakt worden van een LMS- (Ludford, Martin, Stanyukovich) gas. 
Steketee, J.A. 1972. Quarterly Appl. Math. 30, 167-181. 
Ludford, G.S.S. & Martin, M.H. 1954. Comm. Pure Appl. Math. 7, 
45-63. 
Stanyukovich, K.P. 1960. Unsteady motion of continuous media. 
New York. 



8. Vochtabsorptie in poreuze baksteen kan nauwkeurig worden bestu
deerd met behulp van neutronenbundelverzwakking. 

9. Het zogenaamde "Sick Building Syndrome" is grotendeels een gevolg 
van het negeren van eenvoudige fysische wetten in de ontwerpfase. 
Symposium "Sick Building Syndrome", 8 maart 1988, Utrecht. 

10. Het is begrijpelijk dat de ontwikkelingen van de kleurencopieerappa
ratuur de officiële geldscheppende instellingen grote zorgen baart. 
Dit proefschrift, blz. 89, 91. 

Stellingen behorend bij het proefschrift: "On wave propagation in saturated 
and partially saturated porous media". 
Eindhoven, 23 juni 1992 D.M.J. Smeulders 


