
 

A-posteriori symbol probabilities and log-likelihood ratios for
coherently detected π/4-DE-QPSK
Citation for published version (APA):
Houtum, van, W. J., & Willems, F. M. J. (2011). A-posteriori symbol probabilities and log-likelihood ratios for
coherently detected π/4-DE-QPSK. IEEE Communications Letters, 15(2), 160-162.
https://doi.org/10.1109/LCOMM.2011.122010.101842

DOI:
10.1109/LCOMM.2011.122010.101842

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/LCOMM.2011.122010.101842
https://doi.org/10.1109/LCOMM.2011.122010.101842
https://research.tue.nl/en/publications/ec9eb78e-1e36-43a9-85e5-34925f42818d


160 IEEE COMMUNICATIONS LETTERS, VOL. 15, NO. 2, FEBRUARY 2011

A-Posteriori Symbol Probabilities and Log-Likelihood Ratios for
Coherently Detected 𝜋

4 -DE-QPSK

Wim J. van Houtum, Member, IEEE, and Frans M. J. Willems, Fellow, IEEE

Abstract—In this letter, coherent detection of 𝜋
4
-DE-QPSK

is considered, but our analysis also holds for common DE-
QPSK. It is shown that maximum a-posteriori (MAP) sequence
detection can be regarded as an approximation, based on
selecting dominant exponentials, of MAP symbol detection. A
better approximation, relying on piecewise-linear fitting of the
logarithm of the hyperbolic cosine, is proposed. This approxi-
mation results in a performance very close to optimal symbol
detection. For the case where the symbols are produced by
convolutional encoding and Gray mapping, the log-likelihood
ratios are investigated. Again a simple approximation based on
selecting dominant exponentials and an improved approximation
relying on piecewise-linear fits, are discussed. As in the uncoded
case the improved approximation gives a performance quite close
to ideal. While the particular examples considered show modest
gains in performance, this letter provides a way of improving
performance when needed.

Index Terms—Differentially encoded phase-shift keying, coher-
ent detection, MAP detection, log-likelihood ratios.

I. INTRODUCTION

IN this letter, we discuss a-posteriori (AP) symbol-
probabilities and optimal symbol-detection, but also log-

likelihood ratios (LLRs) for 𝜋
4 -DE-QPSK systems when co-

herent detection is performed. Our analysis carries over to
common DE-QPSK. We assume that the detector has perfect
knowledge of the carrier frequency. The carrier phase is known
up to an ambiguity of a multiple of 𝜋

2 .
Colavolpe [1] mentioned that for differentially encoded

phase-shift keying, maximum a-posteriori (MAP) sequence
detection has a symbol-error performance practically identical
to MAP symbol detection. We will demonstrate here that
MAP sequence detection can be regarded as a straightforward
approximation of MAP symbol detection. We will also discuss
a better approximation of MAP symbol detection, which
outperforms MAP sequence detection. This improvement is
based on a piecewise-linear approximation of the logarithm
of the hyperbolic cosine.

In the second part of this letter we will focus on coded sys-
tems and investigate a-posteriori log-likelihood ratios (LLRs),
and some approximations for these ratios. Although the per-
formance gain is small we show that practically optimal
performance can be achieved again using the piecewise-linear
approximation mentioned above.
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For ease of comparison, we will follow the notation of
Colavolpe [1], with 𝑀 = 4.

II. A-POSTERIORI PROBABILITIES

In the sequence 𝒄 = 𝑐0, 𝑐1, . . . , 𝑐𝑁 of transmitted 𝜋
4 -

DE-QPSK code symbols, the symbols 𝑐𝑛 ∈ 𝒳𝑒 ={
𝑒𝑗𝜋𝑙/2, 𝑙 = 0, 1, 2, 3

}
for 𝑛 even and the symbols 𝑐𝑛 ∈

𝒳𝑜 =
{
𝑒𝑗𝜋𝑙/2+𝜋/4, 𝑙 = 0, 1, 2, 3

}
for 𝑛 odd. Furthermore,

these symbols are determined by the differential encoding rule

𝑐𝑛 = 𝑎𝑛𝑐𝑛−1, for 𝑛 = 1, 2, . . . , 𝑁, (1)

where the first symbol 𝑐0 ∈ 𝒳𝑒, with Pr{𝑐0 = 𝑒𝑗𝜋𝑙/2} = 1/4,
for 𝑙 = 0, 1, 2, 3.

As in Colavolpe [1] we consider the case where the
information symbols 𝒂 = 𝑎1, 𝑎2, . . . , 𝑎𝑁 are independent
of each other and uniformly distributed (iud) over 𝒳 ={
𝑒𝑗𝜋𝑙/2+𝜋/4, 𝑙 = 0, 1, 2, 3

}
. Denoting the received sequence

by x = 𝑥0, 𝑥1, . . . , 𝑥𝑁 , we can write for channel output 𝑥𝑛

for 𝑛 = 0, 1, ⋅ ⋅ ⋅ , 𝑁
𝑥𝑛 = 𝑐𝑛 + 𝑤𝑛, (2)

where 𝑤𝑛 is circularly symmetric complex white Gaussian
noise with variance 𝜎2 per component.

Now, as in (13) in [1], the a-posteriori probability (AP) of an
iud 𝜋

4 -DE-QPSK information symbol 𝑎𝑛 for 𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁
can be expressed as

Pr{𝑎𝑛∣x} ∝ (3)⎧⎨
⎩

∑
𝑐𝑛−1∈𝒳𝑒

exp(
1

𝜎2
ℜ{𝑐∗𝑛−1 [𝑥𝑛𝑎

∗
𝑛 + 𝑥𝑛−1]

}
), 𝑛 odd,

∑
𝑐𝑛−1∈𝒳𝑜

exp(
1

𝜎2
ℜ{𝑐∗𝑛−1 [𝑥𝑛𝑎

∗
𝑛 + 𝑥𝑛−1]

}
), 𝑛 even.

which results in the MAP symbol decision rule

𝑎̂𝑛 = argmax
𝑎𝑛

Pr{𝑎𝑛∣x}. (4)

For MAP sequence detection in the case of iud informa-
tion symbols (i.e. maximum-likelihood (ML) detection), the
decision rule is, see (17) in [1],

𝑎̂𝑛 = 𝑐𝑛𝑐
∗
𝑛−1, (5)

with
𝑐𝑛 = argmin

𝑐𝑛
∣𝑥𝑛 − 𝑐𝑛∣2 . (6)

Now consider (3) for 𝑛 − 1 is even and for some fixed
𝑎𝑛 ∈ 𝒳 . If we define

𝑣𝑛 ≜ 𝑥𝑛𝑎
∗
𝑛 + 𝑥𝑛−1, (7)
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we obtain

Pr{𝑎𝑛∣x} ∝ exp

(
1

𝜎2
ℜ(𝑣𝑛)

)
+ exp

(
− 1

𝜎2
ℑ(𝑣𝑛)

)

+exp

(
− 1

𝜎2
ℜ(𝑣𝑛)

)
+ exp

(
1

𝜎2
ℑ(𝑣𝑛)

)
= 2 cosh (𝑅) + 2 cosh (𝐼) , (8)

with 𝑅 ≜ ℜ(𝑣𝑛)
𝜎2 and 𝐼 ≜ ℑ(𝑣𝑛)

𝜎2 . Note that for odd 𝑛− 1 we
get an identical expression for Pr{𝑎𝑛∣x} if we define

𝑣𝑛 ≜ (𝑥𝑛𝑎
∗
𝑛 + 𝑥𝑛−1) 𝑒

𝑗 𝜋
4 . (9)

A. First approximation

From (8) we may conclude that the AP of an iud information
symbol is proportional to the sum of two cosh-functions.
To avoid underflow, calculations are often carried out in the
logarithmic domain, and therefore instead of (8) the metric

𝑚0(𝑎𝑛) ≜ ln (2 cosh (𝑅) + 2 cosh (𝐼)) , (10)

can be applied. As approximation for 𝑚0(𝑎𝑛) we can now use

𝑚1(𝑎𝑛) ≜ ln
(
max

(
𝑒∣𝑅∣, 𝑒∣𝐼∣

))
= max(∣𝑅∣, ∣𝐼∣). (11)

Note that this approximation avoids calculating exponentials
and logarithms. To demonstrate that this approximation leads
to a performance identical to that of MAP sequence detection,
note that for iud information symbols, the MAP sequence
decision rule (5) can be written as:

𝑎̂𝑛 = argmin
𝑎𝑛

min
𝑐𝑛−1

(∣𝑥𝑛 − 𝑐𝑛−1𝑎𝑛∣2 + ∣𝑥𝑛−1 − 𝑐𝑛−1∣2)

= argmax
𝑎𝑛

max
𝑐𝑛−1

1

𝜎2
ℜ{𝑐∗𝑛−1 (𝑥𝑛𝑎

∗
𝑛 + 𝑥𝑛−1)

}
. (12)

If we now call

𝑚seq(𝑎𝑛) ≜ max
𝑐𝑛−1

1

𝜎2
ℜ{𝑐∗𝑛−1 (𝑥𝑛𝑎

∗
𝑛 + 𝑥𝑛−1)

}
, (13)

then, for 𝑛− 1 even and all 𝑎𝑛 we obtain

𝑚seq(𝑎𝑛) = max(
ℜ{𝑣𝑛}
𝜎2

,−ℑ{𝑣𝑛}
𝜎2

,−ℜ{𝑣𝑛}
𝜎2

,
ℑ{𝑣𝑛}
𝜎2

)

= max (∣𝑅∣, ∣𝐼∣) , (14)

which is identical to our first approximation given by (11). As
a consequence, our first approximation will result in the same
symbol estimates as MAP sequence detection.

In the next subsection we discuss a better approximation
for the AP symbol metric 𝑚0(𝑎𝑛) than 𝑚1(𝑎𝑛).

B. Second approximation

To improve approximation 𝑚1(𝑎𝑛) of 𝑚0(𝑎𝑛), we propose

𝑚2(𝑎𝑛) ≜ 𝑓

(
𝑅+ 𝐼

2

)
+ 𝑓

(
𝑅− 𝐼

2

)
+ 2 ln 2, (15)

where we used the identity

cosh (𝑅) + cosh (𝐼) = 2 cosh

(
𝑅+ 𝐼

2

)
cosh

(
𝑅− 𝐼

2

)
,

(16)
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Fig. 1. SER-performance for ideal and approximated versions of the APs.

and approximated the ln (cosh(𝑔)) by the piecewise-linear
function:

𝑓 (𝑔) =

{ ∣𝑔∣ − ln 2, ∣𝑔∣ > ln 2
0, ∣𝑔∣ ≤ ln 2.

(17)

To see that this is reasonable note that for large ∣𝑔∣ one of the
exponentials in cosh(∣𝑔∣) dominates, which results in linearity.

C. Simulations

We have simulated the first and second approximation in
terms of the uncoded Symbol Error Rate (SER) versus the
signal-to-noise ratio 𝐸𝑠/𝑁0 = 1

2𝜎2 , where 𝐸𝑠 is the received
signal energy of a code symbol and 𝑁0/2 the two-sided power
spectral density of the noise. The results of these simulations
can be found in Fig. 1, together with the optimum symbol-
detection results, i.e. the results based on metrics 𝑚0(⋅).

It can be observed that optimal symbol detection and our
second approximation outperform MAP sequence detection
(first approximation). In contrast to the other two methods,
MAP sequence detection requires no knowledge of the noise
variance however.

III. LOG-LIKELIHOOD RATIOS

In a coded situation the detector is followed by a Viterbi-
decoder which needs soft-information about the coded bits.
The desired metrics for transmission 𝑛, i.e. the LLRs [2], in
the case of Gray encoding, see [3], can be expressed as

𝜆1
𝑛 = ln

(
𝑒𝑚( 3𝜋

4 ) + 𝑒𝑚( 5𝜋
4 )

𝑒𝑚(𝜋
4 ) + 𝑒𝑚( 7𝜋

4 )

)
, 𝜆2

𝑛 = ln

(
𝑒𝑚( 5𝜋

4 ) + 𝑒𝑚( 7𝜋
4 )

𝑒𝑚(𝜋
4 ) + 𝑒𝑚( 3𝜋

4 )

)
,

(18)
where 𝜆1

𝑛 corresponds to the first bit and 𝜆2
𝑛 to the second bit.

Ideally the symbol-metric 𝑚(⋅) should be 𝑚0(⋅) but to reduce
complexity we could also use an approximated version, i.e.
𝑚1(⋅) or 𝑚2(⋅).

A. Third approximation

To avoid arithmetic based on exponential and logarithmic
functions, we introduce a third approximation, which just
as our first approximation, selects the dominant exponential.
Observe that a LLR is a difference of the logarithm of a numer-
ator and the logarithm of a denominator. Both the numerator
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Fig. 2. BER-performance for ideal and approximated versions of the LLRs.

and denominator consist of two exponentials. Therefore we
make the following approximation

ln
(
𝑒𝑚(𝑎) + 𝑒𝑚(𝑎′)

)
≈ max (𝑚(𝑎),𝑚(𝑎′)) . (19)

Note, that in this approximation we can use the ideal value
𝑚0(⋅) for 𝑚(⋅), but also one of its approximations 𝑚1(⋅) or
𝑚2(⋅). If we take 𝑚1(⋅) we get an approximation which is
identical to the approximation (10) by Bottomley et al. [4].

B. Fourth approximation

Motivated by the fact that our first approximation could be
improved, we propose a fourth approximation, similar to the
second one. Based on the identity

𝑒𝑚(𝑎)+𝑒𝑚(𝑎′) = 2𝑒
𝑚(𝑎)+𝑚(𝑎′)

2 cosh

(
𝑚(𝑎)−𝑚(𝑎′)

2

)
, (20)

and (17), we can approximate

ln
(
𝑒𝑚(𝑎) + 𝑒𝑚(𝑎′)

)
(21)

≈ 𝑚(𝑎) +𝑚(𝑎′)
2

+ 𝑓

(
𝑚(𝑎)−𝑚(𝑎′)

2

)
+ ln 2.

Again we could use the ideal symbol metrics 𝑚0(⋅) for 𝑚(⋅),
but also the approximations 𝑚1(⋅) or 𝑚2(⋅).

C. Simulations

Fig. 2 shows simulation results when we use the ideal
symbol-metrics 𝑚0(⋅) with the ideal LLR computations as
in (18), but also for the case where we use the approx-
imated symbol-metrics 𝑚1(⋅) in combination with LLR-
approximation three (19), and for the case in which we use the
improved symbol-metrics 𝑚2(⋅) together with the improved
fourth approximation (21). The Bit Error Rate (BER) versus
the signal-to-noise ration 𝐸𝑏/𝑁0 = 1

2𝜎2 is shown, where 𝐸𝑏

is the received signal energy of an information bit.
We used, conform [3], the de-facto industry standard 𝑅𝑐 =

1
2 , 𝐾 = 7, convolutional code with generator polynomials
𝑔0 = 133 and 𝑔1 = 171. Its output is randomly bit-
interleaved and differentially encoded after Gray mapping.
The BER simulations are performed with the Viterbi-algorithm
for decoding the convolutional code. Note that even if we do
ideal LLR-computations based on ideal symbol-metrics 𝑚0(⋅),

the concatenated demodulator/decoder can only be close to

optimal. As expected the ideal symbol-metrics 𝑚0(⋅) together
with ideal LLR-computation result in the best (ideal) results,
and using approximated symbol-metrics 𝑚1(⋅) together with
the LLR-approximation three yields the worst results. Using
symbol-metrics 𝑚2(⋅) together with LLR-approximation four
achieves results that are only slightly worse than the best re-
sults. Note again that the combination of the second and fourth
approximation requires knowledge of the noise variance.

IV. CONCLUSIONS

We have shown that a straightforward approximation of
MAP symbol detection is actually identical to MAP sequence
detection, which is suboptimal for coherent symbol detection
of 𝜋

4 -DE-QPSK. This approximation is based on selecting
dominant exponentials. Simulations showed that MAP sym-
bol detection outperforms MAP sequence detection, but the
difference is small. In this way we have made the statement
of Colavolpe [1] more precise. Moreover we have proposed
an improved approximation of the symbol-metrics that results
in a symbol-error performance close to optimal. The resulting
arithmetic is based on a piecewise-linear function.

In the coded case LLRs must be computed. Apart from
exact computation of these LLRs, we have considered an
approximation based again on selecting dominant exponen-
tials, i.e. Bottomley’s [4] approximation, but also a better
approximation based on the piecewise-linear function men-
tioned before. Improved LLR-approximation combined with
improved symbol-metric approximation gives a performance
close to that of exact LLR-computation based on exact symbol
metrics.

Selecting dominant exponentials is similar to max-log-MAP
detection applied in turbo-decoders, see Robertson [5]. Our
improved approximations are based on a piecewise-linear fit
for the logarithm of a hyperbolic cosine and can be shown
to be similar to approximations of the Jacobian proposed
by Talakoub et al. in [6] for turbo decoding. While the
particular examples of our considered approximations show
modest gains in performance, the letter provides a way of
improving performance when needed.
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