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STELLINGEN
A.Hirschberg
27 februari 1981

The use of a detailed atomic model by Katsonis for the
development of a collision radiation model is overdone
in view of the fact that the escape factors are assumed
to be independent of the state of the plasma and that the
influence of micro-fields on the atomic structure is
neglected.

Katsonis,K.

Thése Univ.Paris Sud, Centre 4'Orsay(1976).

Tn the two step collision-radiation model of Hoffert and
Lien the reaction rate for three body recombination by
atom-ion-electron collisions depends only on the heavy
particle temperature. However, this reaction rate depends
certainly both on the electron— and heavy particle
temperatures.

Hoffert,M.I. and Lien,M.

Phys.Fluids,10(1967)1769.

The hypoth851s of Tumakayev and Lazovskaya that the waviness
in the electron density proflle after ionization relaxation
behind a shock wave in Xenon is due to associative ionization,
is contradicted by the experimental results of Glass and Liu
showing that this effect depends on the shock tube diameter.
Tumakayev,G.K. and Lazovskaya,V.R.
proc.int.symp.: Phen.Ion.Gases(1967).
Glass,I.I. and Liu,W.S.

J.Fluid Mech.,84(1978)55.

The procedure of Asinovsky for the determination of the
molecular contribution to the heat conductivity of a plasma
from measurements in electric discharges with various diameters
does not take the influence of the diameter of the discharge
on the departure of the state of the plasma from local
thermodynamic equilibrium into account. This may induce
significant systematic errors in the heat conductivity data.
Asinovsky,E.I.,Kirillin,A.V. ,Pakhomov,E.P. and
Shubashov,V.I., proc. IEEE,§2ﬂ1971)592.

The statement of Mitchner and Kruger that the electron heat
conductivity of an atmospheric argon plasma at low degrees
of ionization calculated by means of the Frost-mixture rule
is more accurate than the twelfth approximation in the Sonine
polynomial expansion of the Chapman-Enskog procedure is not
valid for the temperature range in which the Frost-value is
lower than the twelfth approximation, because as demonstrated
by Ferziger and Kaper the successive approximations converge
monotonically towards an upper limit which is the exact value.
Mitchner ,M. and Kruger,C.H. Jr
"Partlally ionized gases",J. Wlley&Sons(19T3)
Ferziger,J.H. and Kaper,H.G.
"Mathematical theory of transport processes in gasses
North Holland pub.cie(1972).
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The procedure of Kicska and Smith for the experimental
determination of the condensation coefficient by means
of the formula of Schrage is based on the assumption that
the condensation rate is determined by gas kinetic effects.
However in the experimental conditions described the
condensation rate appears to be determined by the heat
transfer rate towards the wall.
Kicska,P.A. and Smith,W.R.
J.Chem.Phys.,47(1967) 1418.

The recovery factor of a shielded total temperature probe
such as designed by Winkler depends strongly on the instationary
flow phenomena inside the probe. Measurements with such probes
are therefore unreliable.

Winkler ,E.M,

NAVORD 3834(195k4).

De vraag van Schweers en van Vianen om de vorm te construeren
van een lopende golf in een vrij hangend vertikaal touw
ken niet op basis van de in het boek behandelde stof worden
beantwoord.

Vraagstuk 4 van paragraaf 6.6 in:

Schweers,J. en van Vianen,P.

"Natuurkunde op corpusculaire grondslag"

Deel 3 V, vierde druk,Mamberg Den Boscn(1973).

Belgen-moppen zijn niet onschadelijk.
Deze moppen veroorzaken vooral bij kinderen in Nederland
een vertekend beeld van de Belgische samenleving.
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ABSTRACT

A procedure for the determination of the heat conductivity of
a monatomic gas, from measurements of the structure of the unsteady
thermal boundary layer at the end-wall of a shock tube, is proposed.

In the non-ionized case the structure of the boundary layer
determined by means of laser schlieren measurements appears to be
self-similar. Improved analysis of the schlieren data and accurate
pressure measurements yield heat conductivity data with an accuracy
of 4% for temperatures up to 7000 K (argon, pressure 3x]04Pa to 105Pa)=
There are still systematic errors of a few percent, due to the
influence of side-wall boundary layers and to the simplifications in
the procedure for the determination of the state of the gas outside
the boundary layer.

In the ionized case a model for the development of the thermal
boundary layer is proposed. The processes of ionization and thermal
relaxation are considered. Experimental data on the electron and atom
density profiles obtained from laser schlieren measurements agree
within 10% with theory for a moderate degree of ionization (3%).

At a higher degree of ionization the structure of the boundary layer
is dominated by the influence of radiative cooling, which has been
neglected in the model. Quantitative information on radiative cooling
is obtained from absorption and pressure measurements outside the
boundary layer. A considerable improvement of the accuracy of the
measurements is still necessary in order to obtain quantitative
information on the heat conductivity in the ionized case.

Additional experiments carried out in a 99.57 Ar + 0.5% Hz
mixture yield experimental information on the influence of ionization
rélaxation on the structure of the boundary layer and data on the

ionization rate of hydrogen by collisions with argon atoms.






I. INTRODUCTION

I.a. Goal of the present study

Using a conventional shock tube one can generate for a period
of time of the order of magnitude of one millisecond a well defined
almost stagnant and approximétely uniform high enthalpy gas.

This situation is achieved almost instantaneously after the reflectiom
of the so called incident shock wave at the end-wall of the tube.

The region of high enthalpy between the end-wall and the reflected
shock wave, the reflected shock region, is often used as a gas
reservoir for molecular beam devices (Thor 78, Teshima 79) and
hypersonic blow down tunnels (Oertel 73). For spectroscopic studies
the reflected shock region is used as a light source (Volkov 78,
Wilkerson 71). The reflected shock region is also well suited for
among others the studies of relaxation and transport phenomena in
gases at high temperatures (Bagano

The main research effort of the shock tube group of the
Laboratory for Fluid Dynamics and Heat Transfer of the Department of
Physics (Eindhoven University of Technology) has been directed to the
study of the transport properties of gases at high temperatures
(Jongen 71, Vrugt 76, Hutten-Mansfeld 76, van Dongen 78). The present
investigation is dedicated to the study of heat conductivity of
atmospheric argon in the temperature range 103— 12 x 103K,

In the past many attemps have been made to obtain quantitative
information on the heat conductivity of non-ionized gases by means of
shock tube experiments. Such studies were based on the investigation
of the end-wall thermal boundary layer. This boundary layer is
induced by the heat flux from the hot gas to the wall. The analysis
of the flow is simplified by the fact that viscous effects are
negligibie. The boundary layer structure is well described by a
one-dimensional model if the tube cross section is large énough
compared to the boundary layer thickness. In the non-ionized case for
a : monatomic gas such as argon, when the heat conductivity is'kqown as
a function of the temperature, the boundary layer structure is easily
calculated numerically. The inverse problem of obtaining information

on the heat conductivity of the gas from experimental data depends




strongly on the type of measurements considered.

From the reviews in the studies of Saxena (72) and Vrugt (76)
one can conclude that heat flux measurements at the end-wall will not
provide accurate data at high temperatures. The alternative of optical
measurements of the boundary layer structure has not yielded any
better result so far (Vrugt 76). However the shock tube method is to
our knowleﬂge the only source of experimental data on the heat
conductivity of non-ionized gases above 2500 K. It is therefore
worthwile to improve this method.

In the case of partially ionized gases most of the data om
transport properties have been obtained from the analysis of electric
arc measurements (Emmons 67, Asinovsk§ 71, Kopainsky 71). There is
still some discrepancy between the theory and the experimental data
{Devoto 73).

The behaviour of the transport properties at high pressures, when a
deviation from the ideal plasma behaviour is expected, is not well
understood (Devoto 73). Independent shock tube data would be useful.

Summarizing we can state that the main goal of our present study is to

improve the shock tube method for measurement of the heat conductivity
of gases at high temperatures.

We limited our investigation to experiments with argon.
Reasons for this choice are:
Argon is a relatively cheap noble gas available at high degrees of
purity. The use of a noble gas in the non-ionized case avoids
complications due to the influence of internal degrees of freedom of
the molecules. Argon has been extensively studied (Devoto 73, Aziz 77).
The use of argon provides therefore an excellent test case for the
shock tube method.

In the next sections we give a review of papers related to
our study. In the last section of this introduction we give an

outline of the present work.



I.b. Review of recent studies of the heat conductivity of argon.

The thermal conductivity of non-ionized argon can be
calculated, on the basis of the kinetic theory of gases, starting
from the intermolecular potential. Knowledge about the intermolecular
potential on its turn, can be obtained from the analysis of
spectroscopic data, studies of real gas effects, molecular beam
measurements and data on the transport properties. In a recent review
of Aziz and Chen (77) various expressions for the intermolecular
potential are compared with experimental data. A particular feature
of this study is that the thermal conductivity data are used in order
to select an optimal expression. The data considered are those of
Haarman (71) in the temperature range 328-468 K and those of Chen and
Saxena (75) in the range 350-2500 K. The data of Chen (75) have also
been used by Jain (80) in order to select optimal values for the
parameters of a Lennard-Jones potential.

Haarman (71),using the "transient hot wire' method, determined
the thermal conductivity of argon with an accuracy of + O.SjZ, which
has been confirmed by de Groot (74) and Nieto de Castro (78).

Chen and Saxena (75) used the "hot wire thermal diffusion
column" method. They claim an accuracy of + 1.5 Z. Their data agree
within 2 Z with the independent data of Springer (73) and Shashkov
(78), obtained with the same experimental method.

The data of Chen and Saxena (75) are in agreement with the
equivalent viscosity data. The results of Haarman (71) are not in
agreement with the viscosity of Kestin (72). According to Aziz and

Chen (77)

i<y

, the data of Haarman (71) are more reliable than the
viscosity data.

For temperatures above 2500 K, in the non-ionized case, all
experimental data available have been obtained by means of shock tube
experiments. A review of these studies is given in the next section.
It appears that the uncertainty in these data is of the order of 10 Z.

The theory and experimental data for transport properties of
partially ionized argon, in absence of magnetic field, have been
reviewed by Devoto (73). The heat conductivity of a plasma consists
of separate contributions from:

heavy particles, electrons, radiation and chemical reactions.



Below 7000 K the heat conductivity of atmospheric argon is almost
exclusively due to heavy particles. In the range ]04 - 1.5x 104K the
heavy particle, electron and reactive contributions are of the same
order of magnitude. Above 1.5 x 104 K radiative heat conductivity is
dominant.

The radiative heat conductivity is that part of the radiative
contribution to the heat flux which is proportional to the temperature
gradient. Such a model assumes that radiation is almost in equilibrium
with the plasma. The radiative heat conductivity calculated with a
Rosseland model (Vincenti 65) is roughly inversely proportional to
the pressure and increases exponentially with the temperature
(Ropainsky 71). The radiative energy tramsport which is not taken into
account in the heat conductivity depends on the integral state of the
plasma. A study of the influence of this effect on the analysis of
electric arc data is given by Asinovsky (71).

In the low temperature range when radiative heat conductivity is
negligible radiation escape can induce significant deviation of the
state of the plasma from local thermodynamic equilibrium (Uhlenbusch
71, Biberman 71, Leclair 77, Rosado 79).

The reactive heat conductivity takes the influence of diffusion on

the heat transfer into account. This approach is valid when the plasma
is in a state close to local thermodynamic equilibrium if the pressure
is uniform. In such a case the demsity gradient can explicitly be
expressed into a temperature gradient by equilibrium relatioms.

The molecular heat conductivity is determined by the electrons, ions
and atoms in the ground state. Due to the large mass ratio between

the electrons and the heavy particles the two heat conductivities can
be treated as independent.

A second order approximation in the first order Chapman
Enskog theory should predict the heavy particle heat conductivity
within 12 Z (Devoto 73). Simplified formulas with a comparable
accuracy are given by Capitelli (72) .

In the fully ionized limit, when electron-ion collisions are
dominant, the electron heat conductivity can be calculated by using
the theory of Spitzer (53).

A third approximation in the first order Chapman—Enskog approximation

yields a result which is 1 7 lower than the result of Spitzer- (53).



In the case of weak ionization when electron neutral collisions are

dominant the Chapman-Enskog procedure fails to converge (Krugef 68).

In order to overcome this problem Kruger (68) proposed a semi-empirical

formula which has the mathematical form of the heat conductivity in

the Lorentzian limit.

A similar approach is used by Devoto (73). Alternative mixture rules

based on mean free path considerations are not better than an order

of magnitude estimate (Mitchmer 73).

At high electron densities and low temperatures additiomal

uncertainties are due to the deviation of the gas from an ideal plasma

behaviour (Itikawa 63, Williams 69, Daybelge 70, Luchina 78, Mondt 77).
The theory of Devoto (73) for a plasma in local thermodynamic

equilibrium shows a discrepancy of about 30 7 with the experimental

data for atmospheric argon. This discrepancy might be significant.
Summarizing we conclude that data with an inaccuracy of a few

percent can be expected to be useful in the non-ionized regime to

improve the present knowledge of the intermolecular potential of

argom.

In the partially ionized regime measurements with an inaccuracy of

less than 30 % would be useful. .
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I.c. Review of shock tube studies of the heat conductivity of

non-ionized argon.

The shock tube method for determination of the heat
conductivity of gases, by means of heat flux measurements at the
gas-wall interface, has been first used by Smiley (57).

The possibility of determining the heat conductivity of high
temperature gases by means’ of interferometric measurements of the
structure of the end-wall boundary layer was considered for the first
time by Smeets (65).

Extensive reviews up to 1975 are given in the studies of
Saxena (72) and Vrugt (76). From those two studies it appears clearly
that the measurement of the heat flux at the end-wall will mot yield
accurate information on the heat conductivity of gases at high
temperatures. The main reason for this is that although the heat flux
at the end-wall is an integral effect depending on the whole boundary
layer structure it appears to be mainly determined by the cold gas
layer close to the wall. This effect has been clearly demonstrated by
Lauver (64),who showed that variations of 20 Z in the heat
conductivity at high temperatures would induce changes of only 2 7 in
the heat flux at the wall. Optical methods yielding information on
the structure of the boundary layer in the high temperature region are
expected to be more sensitive to the heat conductivity behaviour at
corresponding temperatures.

Interferometric studies of the boundary layer structure have

been performed by Smeets (65), Bunting (67), Kuiper {68) and Ewald

- (71). The work of Ewald (71) is particularly interestimg as it is an

attempt to obtain heat conductivity data by using the emergy equation
directly.

This approach has the great advantage that nc assumpiicm has o be
made on the functional dependence of the heat conductivity om the
teﬁperature. The results however show a scatter of 20 Z. An important
problem is that the convective velocity cannot be obtaimed accurately
from the interferometric data. This is due to the fact that the
measurements close to the wall become rather inaccurate as a result
of diffraction and reflection of the light against the wall.

Vrugt (76) improved the method of Ewald (71) by making use of a self

12




similarity property of the boundary layer structure. This implies
that from measurements of the spatial gradient of the demsity at a
fixed position from the end-wall as a function of time one can obtain
an estimate of the time derivatives of the density.

Vrugt (76) measured the density profile of the boundary layer by
means of the laser schlieren method introduced by Kiefer (66)

This method appears to yield data with a high degree of
reproducibility (4 %). However the corresponding results for the heat
conductivity, based on theoretically determined convective velocities,
appear to be about 8 7 lower than the data of Chen and Saxena (75).
(see previous section). In spite of Vrugt's considerable improvement
of the method we therefore had to reconsider the procedure in detail.

This is described in chapter II.




I.d. Determination of the heat conductivity of partially ionized

argon and flow induced by an ionizing shock wave.

When considering the possibility of the determination of the
heat conductivity of partially ionized argon from measurements of the
structure of the thermal boundary layer one is confronted with the
fact that no such work has been done before in shock tubes. However
the similar problem in electric arcs has been extensively studied
(Emmons 67, Kopainsky 71, Asinovsky 71, Uhlenbusch 71).

The analysis of the data is based on a determination of the integral
energy balance in a similar way as done by Vrugt (76) for the
analysis of shock tube data in the non-ionized case. Two major
differences between the electric arc and the thermal boundary layer
at the end-wall of a shock tube are:

The electric arc is stationary while the structure of the boundary
layer is time dependent.

The main source term in the energy balance for the arc is due to
dissipation while in the case of the thermal boundary layer it is due
to the time dependence of the enthalpy of the gas.

We consider further studies of the flow induced by the
reflection of an ionizing shock wave at the end-wall of a shock tube
and some papers on the related subject of the flow behind the
incident shock wave.

Kuiper (68) studied the thermal boundary layer at the
end-wall of a shock tube. From time resolved two-wavelength
interferograms he deduced the electron and atom density profiles.
Using two-wavelength streak interferometry Kuiper (68) obtained data
on the behaviour of the flow in the reflected shock region outside the
boundary layer as a function of time and space. Those data are
compared to calculations on the basis of integral conservation laws
by neglecting radiation losses and assuming local thermodynamic
equilibrium. The measured electron density agrees within 10 7 with
the calculated one but as a result of radiation cooling it decreases
by as much as 30 7 within 100 p s for typical experimental conditions
(pressure 5 x 105 Pa, electron density 3 x 1023m%3).

The boundary layer measurements are compared with calculations based

on the "thermal Rayleigh" problem assuming local thermodynamic

14



equilibrium. The discrepancy between theory and experiment could not
be explained within the frame of this model by variation of the plasma
conditions outside the boundary layer.

For this reason Hutten (76) developed a two temperature
relaxation model. This model, also a Rayleigh problem, takes both
temperature and chemical non-equilibrium into account. Radiation
transport was not considered. At the wall a constant temperature was
assumed for the heavy particles.

The behaviour of the electrons and the ions near the wall was
described on the basis of the thin sheath model of Chen (65).

The wall was assumed to be fully catalytic and influence of photo-
ionization was ignored. While the model can be expected to describe
the outer part of the boundary layer quite well, some doubt arises
about the consistency of the model and about the validity of the
reaction model in the vicinity of the electric sheath at the wall
(see chapter IV and Appendix IV).

The state of the gas outside the boundary layer was calculated
according the procedure of Kuiper (68).

The numerical work included a study of the influence of various
relaxation processes by consideration of limiting cases where the
process is assumed infinitely rapid (equilibrium model) or infinitely
slow (frozen model). Those calculations give quantitative information
on the deviation from local thermodynamic equilibrimum as a result of
heat conduction and diffusion.

In his experiments Hutten (76) used a two-wavelength laser
schlieren method and obtained electron density gradient measurements
with a reproducibility of about 20 7. The atom density gradients
showed a scatter of 100 Z%.

The choice of the wavelengths (0.6328 iﬁn and 1.152 ﬁm) makes the
electron contribution to the schlieren effect dominant in the cases
considered by Hutten (76).

The system of equations used to separate the contribution of electrons
from that of the heavy particles turns out to be almost singular.

The reflected shock region has alsoc been studied experimentally
by Kon'kov (73, 74, 75, 76), Logan (77) and Volkov (78) for argon, by
Bengtson (70) for neon and Ezumi (79) for krypton. Those studies

yielded results similar to the results of Kuiper (68).
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Numerical calculations based on a two step ionization model, including
the influence of radiation cooling and side wall boundary layers have
been presented by Takano (77, 79).

The side wall viscous boundary layer behind a shock wave has
been studied experimentally in atmospheric argon by Liu (78).

The model used is similar to the model of Hutten (76). Qualitative
agreement between theory and experimental data has been achieved.

At lower electron densities and low pressures, using spectroscopic
diagnostic methods Vervisch (77, 79) obtained electron temperature
and density data indicating an anomalous behaviour at the wall.

In a theoretical analysis Vervisch (79) considered the possible
influence of the production of electrons at the wall by Auger effect
and photo-ionization.

Considering a boundary layer in & low temperature plasma
Nishida (77) developed a model based on a five step reaction model
including the influence of the escape of nonresonant radiation.

A great experimental and theoretical effort has been spent in
the study of ionization relaxation behind a shock wave in argon. The
influence of impurities on the initial phase of the ionization
relaxation has been studied by Frohn (69), McLaren (68) and Schneider
(79). The influence of side wall boundary layers is discussed by
McLaren (68), Enomoto (73) and Takayama (79).

In spite of those extensive studies little quantitative informations
has been obtained at this time. Most attempts directed to the
determination of the atom-atom ionization cross section are thwarted
by the influence of impurities. The presence of instabilities

(Glass 78) makes a comparison between theory and experiment rather
difficult. Quantitative data on the radiation cooling behind the
ionization relaxation front have been obtained by Horn (66) and

Vaguin (78).




I.e. Outline of the present study

The present study can be considered as a continuation of the
investigations of Kuiper (68), Ewald (71), Vrugt (76) and Hutten (76).
As stated in section (I.a.) our main goal is to improve the shock
tube method for determination of the heat conductivity of gases at
high temperatures.

In the non-ionized case this implies first a detailed
analysis of the methods proposed by Ewald (71) and Vrugt (76). This
analysis is given in chapter II.

In this treatment we derive formulas similar to the formulas of our
predecessors but we take the influence of pressure variations in the
reflected shock region into account. This effect which has been
neglected in all previous studies appears to be rather important.

In chapter III we consider the thermal Rayleigh problem as a model
for the boundary layer growth. This model yields some insight in the
behaviour of the boundary layer when pressure variations are
negligible. The influence of pressutre variations is then considered
within the frame of a simplified model in which the thermal heat
conductivity is taken proportional to the temperature. 4

In the partially ionized case (chapter IV) we derive formulas
for the experimental determination of the heat conductivity under the
assumption that the electron and heavy particle temperatures are
equal. We allow, however for the possibility of chemical non—-
equilibrium. This procedure is justified by the study of the boundary
layer on the basis of the model developed by Hutten (76) (chapter V).
The behaviour of the flow outside the boundary layer is discussed on
the basis of experimental data in section V.b. In sections V.c. and
d. we consider the validity of the assumption of local thermodynamic
equilibrium outside the boundary layer.

The structure of the boundary layer is considered in section V.e.
The theoretical background of the laser schlieren method has been
considered with care. Special attention is given to the influence of
diffraction (chapter VI).

The experimental data obtained in the non-ionized case are analysed
in chapter VII.

The experimental data for the ionized case are presented in chapter

VIII.
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IT. DETERMINATION OF THE HEAT CONDUCTIVITY OF A NON-IONIZED
MONATOMIC GAS FROM MEASUREMENTS OF THE STRUCTURE OF THE
THERMAL BOUNDARY LAYER AT THE END-WALL OF A SHOCK TUBE.

IIl.a. Introduction

By measuring the deflection of a light beam propagating along
the end-wall of a shock tube one can determine the density gradient
at a fixed position in the boundary layer as a function of time. The
experimental method, the laser schlieren technique, will be described
further (chapter VI). In this chapter we assume that from a series of
such measurements we have obtained the density profile of the
boundary layer as a function of space and time. Assuming also the
state of the gas outside the boundary layer to be known, we look for
a procedure for the determination of the heat conductivity of the gas
as a function of the temperature.

This problem has been first considered by Smeets (65) who
used a linearised energy equation to derive a relation between the
heat conductivity of the gas at a certain point of the boundary
layer and the heat conductivity at an other point. Ewald (71) and
Vrugt (76) obtained similar formulas without linearisation of the
energy equation but assuming the pressure to be time independent.

We reconsider the derivation of those formulas and take the influence
of pressure variations into aécount (section II.c.).

The formulas obtained imply that the convective velocity
should be estimated. This could in principle be done on the basis of
the density profile measurements but it is not possible in practice.
In order to determine the convective velocity additional information
is necessary. We show that the determination of the heat flux at the
gas-wall interface is sufficient. Vrugt (76) proposed as an
alternative to use a theoretical evaluation of the convective velocity.
In the next section we give a short description of the flow in the
shock tube. In chapter ITI we will consider the thermal boundary

layer structure more in detail.

18



I1I.b. Description of the flow in the shock tube and definition of

the reference frame.

The theory of the shock tube flow has been treated extensively

by Oertel (73). We consider here a simple model with the purpose of

clarifying the definition of the reference frame and of some reference

state of the gas.

The shock tube can be represented schematically as a closed
tube of uniform cross section. The tube is separated in two sections

by a membrane (figure II.1).

(p1,T1) (pz,'Tz,)

} test section ' I driver section
end-wall membrane

Figure II.1 : The shock tube.

One side of the tube, the test section, is filled with the test gas
(Ar) at a pressure P and a temperature Tl'

The other part of the tube, the driver section, is filled with the
driver gas (N2 or H2) at a high pressure pl}(p4 >> pl) and a
temperature T4. The gases are in equilibrium with the walls. They are
thus uniform, stagnant and at the same temperature as the walls.

The membrane is removed (collapses). The driver gas expands
into the test section pushing the test gas towards the end-wall (of
the test section). In our simplified model we assume that the
membrane has been removed instantaneously. We neglect viscous effects
and heat transport processes at the walls. We assume that ionization
processes are negligible. The flow which is one-dimensional can then
been seen as the desintegration of a discontinuity between two
stagnant gases with states (pl, T], ul) and (Pa’ T4’ uk). Such a
discontinuity desintegrates into a shock wave traveling through the
test gas towards the end-wall, an expansion fan propagating into the
driver gas and a contact discontinuity between the test gas and the

driver gas (Landau 71).



A space time diagram (x,t) is given in figure II.2.

\\\\\\

incident™S\_ A
shock 1
4
er)m(d_i\gall collapsin& membrane X —>

Figure II.2 : (x,t) diagram of the flow in the shock
tube.

The shock wave (incident shock wave) is a region with a
thickness of the order of magnitude of a mean free path of the
molecules. Within the shock wave the test gas is compressed, heated
and accelerated from the initial state (pl, T.» ul) to a new uniform
state (p2, TZ’ u2). The relation between states 1 and 2 follows from
the integral conservation laws for mass, momentum and energy
completed with an equation of state. These so called Rankine-Hugoniot
relations contain only one independent parameter. We use as parameter

the shock wave Mach number Ms defined by:

M =v /c II.1
s s 1

where vy is the shock speed measured in the reference frame of the
tube and ¢ is the speed of sound in region 1.

The Rankine-Hugoniot relatioms are givem in appendix I.
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The incident shock wave reaches the end-wall at the instant
t = 0. At this moment the gas in region 2 which has a uniform velocity
u, directed towards the wall is stopped by the wall. A reflected shock
wave i1s induced with a transition from state 2 to a new uniform state

(ps, TS’ us) determined by the condition:

u. = 0 11.2

The state 5 of the gas is thus determined by the initial state 1 and
the shock wave Mach number Ms of the incident shock (see appendix I).

The gas between the end-wall and the reflected shock remains
undisturbed until the arrival of waves generated by the interaction
of the reflected shock with the contact surface or the reflection of
the expansion fan at the end-wall of the driver section.The situation
becomes then rapidly rather complicated. This limits the period of
time ttest during which we can calculate the state of the gas at the
end-wall.

In the actual situation the incident shock wave does not have a
constant speed. This is due to the finite opening time of the
diaphragm and the influence of the side wall boundary layers behind
the shock. Regions 2 and 5 are in reality not uniform and they are
time dependent. States 2 and 5 determined by the Rankine- Hugoniot
relations, the initial state 1 and the Mach number Ms of the incident
shock wave at t = O_(just before shock reflection), are referred to as
the ideal Rankine-Hugoniot states 2 and 5. The state of the gas at

the end-wall, just outside the thermal boundary layer is denoted by
(P> T_s u ).

For reasons that will be discussed in chapter III we assume
that state « is uniform and follows from state 5 by an adiabatic
pressure change. In such a case the temperature T can be determined
from the knowledge of state 5 and the measurement of the end-wall
pressure p_ as a function of time. The convective velocity u_ is the
result of compression and the thermal boundary layer. The

determination of u_ is discussed in the next section where we derive

general formulas for the determination of the heat conductivity.
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I1.c. Determination of the heat conductivity.

Assuming the boundary layer to have a one dimensional
structure we obtain the laws of conservation of mass, momentum and

energy in the following form (Ewald 71):

dp du _ ..
ac T Py x - 0 continuity I1I.3
9
== = 0 momen tum I1.4
9 X

dh _dp _ 3 9 T
PIT " dc - =P 3R energy II.5

We have used here the so called boundary layer approxi

velocity u of the gas is measured in the reference frame of the
end-wall. The differential operator gE-stands for the Lagrangian
time derivative which is defined by:

d 2 2
—_— = — —_ 1I.6
dt t ¢ Yk

As we limit ourselfs to a perfect monatomic gas the pressure p is

related to the temperature T and the demsity p by the ideal gas law:

P = PRT ‘ II.7
and the enthalpy h is given by:
5 .
h = 7 RT I1I1.8

R is the specific ideal gas constant which is related to the

Boltzmann constant k and the mass m of an atom by:
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R = k/m ) I1.9
a :

For atmospheric pressures and a temperature range 300 — 7000 K the

heat conductivity A of Argon is accurately described by a function

of the temperature only.

Pressure dependence due to real gas effects in the low temperature

range has been studied by Nieto de Castro (78).

At high temperatures the pressure dependence is due to the ionization

which we assumed to be negligible in the temperature range considered.
Using II.3, 4, 7 and 8 we can write the energy equation II.5

in the form:

3p _ 3 p.4py /(00
5R o ( )/( ) sp(dt)/(ax)} .

2

A=

(—gpz)/(ap) - (2 + 2822 /0)

In order to obtain an explicit relation for the heat conductivity
Ewald (71) approximated the right hand side of equation II.10 by

using a power law dependence of A on T. In such a case we have:

dx _
= ( T Y = v IT.11

The constant v was taken by Ewald (71) to be v = 0.66. (We use the
value v = 0.71).
The value of X obtained from equation II.10 is insensitive to the
exact value of v as long as the condition:
2 .
p(ap)>(__3p)2 ' I1.12

3 x2 X

is satisfied.
The restriction II.12 can be avoided when as proposed by Vrugt (76)

we integrate the energy equation. Considering two positions X, and
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%, at a fixed time t we obtain from the integration of the energy
equation:

2

Py A

Ao = Toovasy (o2 (30/0x) + 2R ) + %‘%(dp/dt)(xa—xb)}
b a

IT.13

Vrugt (76) obtained an explicit expression for Ab by assuming that
(Bp/'c)x)a and (dp/dt) vanish. We avoid those simplificatioms in order
not to restrict the validity of expression II.13.

In order to obtain an explicit expression for the heat
conductivity we assume that the points a and b have been chosen in

such a way that:

© >
o N
>

( 22, II.14
9X a

(20
9Xx b

we can then use for Aa a rough estimate.

Both expressions II.10 and 13 involve the convective velocity
u. This velocity might be determined, in principle, as proposed by
Ewald (71) by integration of the continuity equation II.3.
This yields: '

1 X '
u = - — [ (3p/3t) dx - II.15
PO

Such a procedure cannot be accurate because the optical determination
of the demsity close to the end-wall is inaccurate. This is due to
diffraction and reflection of the light against the wall as a result
of the bending of the light towards the wall. Due to the strong
compressibility of the inner part of the boundary layer the
extrapolation of the density profile measured in the outer part of
the boundary layer to the density (measured with light reflection

method (van Dongen 78))at the wall is an inaccurate procedure.
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We consider therefore as an alternative the procedure
proposed by Vrugt (76). We apply equation II.13 between point a and
the wall X, = 0. This yields:

A. A
- 2 (4 R -3
1= TR {;ig(ap/ax)i —p—g( sp/ax)a} 55 xa(dp/dt) IT.16

where the index i refers to the gas wall interface (x = 0).

The term (Ai / pzi)(ap/ax)i is proportional to the heat flux at the
gas wall interface and can be deduced from measurements of the
temperature Ti as a function of time.

Assuming the wall properties to be constant and the wall to be

infinitely thick we have:

AL T.(t) t T.(t)- T.(%")
_i90y _ R 12 1 1 5
pi2<3__)i_ - (A p e /M { —m + ef oy at'l IT.17

where the index w refers to wall properties, ., is the specific heat

capacity of the wall.

The velocity Uy in II.13, follows then from the integration of the
continuity equation II.3 between points a and b. We obtain:
: *b
- —_— t
(pa/pb) u, ; [ (3p/3t) dx" I1.18
b

u

Combination of formulas II.13, 16 and 18 yields:

p% i,3p g Aa (Bp) +
Ab = (ap/ax)ﬁ[Eg{SE)i(l_ E;) * P aPp x’a
b ap 3 dp
——(f +2p o (dt)(xo o %Pp) bOILL19
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The corresponding temperature Tb is obtained from the ideal gas law:

T, = p/Rpb II.20

and the pressure is obtained from end-wall pressure measurements.

A formula equivalent to II.19 is obtained by combining

formulas II.10 and 16. We find:

XP—D) As p—-p
— =Zy(oey , 2 130y _ 3.dp =
s V6 *sro2d)s ~ 5ptae) = * /ey !
= i
r=51 HiIz.21
[ (32p/03x2)/(3p/3x) = ( 1 + v)(3p/3x)/p ]
with the corresponding temperature T given by:
T = p/Rp 11.22

In formula II.21 we made use of the assumption that p_and p  are

related by the adiabatic ideal gas law:

Poo _ Peo 5/3

=)
P5 PS 11.23

Formulas II.19 and 21 should be equivalent. In practice formula II.19
is more sensitive to the time dependence of the pressure than II.21.
Equation IT.21, is restricted by condition II.12. In chapter III we
give an estimate of the range of validity of II.IZ2.

Equation II.21 is used in chapter VII for the determination of the
heat conductivity of argomn.

Formally we have solved the problem of obtaining formulas for
the heat conductivity as a function of experimental data. We have
seen that, in order to determine the heat conductivity as a function
of the temperature from laser schlieren measurements of the structure

of the outer part of the boundary layer at the end-wall of a shock
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tube, we should also measure the temperature Ti and the pressure p at
the gas wall interface as a function of time. However we will use, as
done by Vrugt (76), a theoretical estimate of the heat flux at the
end-wall.

In the next chapter we discuss the flow induced by the
reflection of a shock wave at the end-wall of a shock tube more in

detail.
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11T, THE THERMAL BOUNDARY LAYER IN A NON-IONIZED MONATOMIC GAS.

III.a. Introduction

In the previous chapter we derived formulas for the
determination of the heat conductivity from measurements of the
structure of the thermal boundary layer at the end-wall of a shock
tube. In this chapter we consider the structure of this boundary
layer. The main goal of this study is to deduce some general
properties of the flow, that are useful for the interpretation of
experimental data.

First we will see that when the state of the gas outside the
boundary layer is uniform and time independent (thermal Rayleigh
problem) the structure of the boundary layer is self-similar (III.b).
This property allows to reduce experimenially determined density
gradients from various positions and times to a single curve (Vrugt
76). The reduced density gradient appears to be rather insensitive
to the state of the gas outside the boundary layer. This property has
a restricted validity but yields in practice a powerful procedure for
the analysis of the data. It allows us to compare experimental data
with some variation in the initial conditions and the shock wave Mach
number.

Within the frame of the thermal Rayleigh problem we obtain an
analysis of the heat flux at the end-wall of the shock tube as a
function of the state of the gas outside the boundary layer.

The self-similarity of the boundary layer structure implies
that the set of partial differential equations II.3, 4 and 5 can be
reduced to an ordinary differential equation. However this equation,
the emergy equation in Lagrangian coordinates, is nonlinear.

A quantitative discussion of the structure of the boundary layer can
only be obtained on the basis of numerical solutions of the problem.
We consider therefore a simplified model in which we assume the heat
conductivity to be proportional to the temperature. In such a case
the energy equation in Lagrangian coordinates is linear.

In section III.d we use this simplified model in order to
discuss the structure of the boundary layer. The influence of the

compressibility is analysed.
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The relative magnitude of the various terms in the energy equation is
estimated. This yields criteria for the validity of the boundary
layer approximation and for the validity of the procedure of Ewald
(71) for the determination of the heat conductivity.

In section IIIl.e we discuss qualitatively the deviation of
the flow from the thermal Rayleigh problem.
The main deviation of the flow from the thermal Rayleigh problem is
due to the time dependence of tﬁe pressure.
The influence of pressure variations on the density gradient and the
heat flux at the end-wall is analysed on basis of the simplified model
in which the heat conductivity is assumed to be proportional to the

temperature (III.f).
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ITITI.b. The thermal Rayleigh problem

The thermal Rayleigh problem concerns a stagnant uniform gas
of semi-infinite extent (state (pl,T]) ) in equilibrium with a semi-
infinite wall. At time t = 0 the gas is instantaneously compressed
and heated to a uniform, time independent, state (pm, T ). We use
this model to describe the shock reflection process at the end-wall
(section II.b). We assume thus that the boundary layer growth at the
end-wall can be clearly distinguished from the shock reflection
process. This implies that we consider only time scales that are much
greater than the mean free flight time Teol of the molecules. The gas
can therefore be considered as a continuum. If we limit ourselfs to

times such that:

vt/ Teol > 1 III.1

the convective velocity u_ induced by the thermal boundary. layer
growth will be small compared to the speed of sound. (see section
III.d) This allows us to use the boundary layer approximation (II.3,
4 and 5).

It will be shown in section III.e that for the time scale considered
the temperature gradient at the wall is small enough to assume that
the temperature is continuous at the gas-wall interface. We assume
also that the wall properties are constant (Vrugt 76).

The use of this approximation excludes any independent length or time
scale. The structure of the thermal boundary layer is therefore self-

similar. An appropriate similarity coordinate S is defined by:

S = x/vagt 11I.2

where ap is a reference thermal diffusivity.

Because of the self-similarity of the boundary layer structure
it is clear that the state of the gas (p,Ti) at the gas-wall
interface is time independent for t > 0.

We now consider the mathematical formulation of the thermal

Rayleigh problem. The energy equation II.5 can be uncoupled from the
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continuity equation II.3 by considering the problem in Lagrangian

coordinates (n,t).

The Lagrangian coordinate n is defined by:
n = r p dx' I1I.3

The energy equation becomes, assuming that the pressure is uniform

and time independent, in Lagrangian coordinates:

Z

5 A
02 3t SR 3 (o ) IIL.5

Po= ey ;no= 0 t = 0
P P, R S t = 0
P= Py ;no = 0 t =0

ITI.6

Again there is no independent scale for - n so that the solution
of the thermal Rayleigh problem must be selfsimilar. The Lagrangian

similarity coordinate Z defined by:

Zz = — 0 III.7

vaRt

PR

where PR is a reference density, allows us to write the energy

equation III.5 in the form:

9 _ _
d %] - _1__ _(_1_9_ 2 ___Z g_E. =
1 )5 (dZ) + — (dZ) 0 II1I.8

+

~~
>1[o|
mlm
O >t

where the nondimensional density p and heat conductivity A are defined
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p = o/ or III.9

and

A = 5 A/(2R aRpR) III.10
The temperature T is given by:

T = p/Rogp ° III.11

As the nondimensional heat conductivity A depends also on T _, it is
in general a function of both the pressure p and of B.
When A is known equation III.8 can be integrated (numerically)

and the solution:
0 = £(2) III.12

can be used to calculate the velocity u from the continuity equation
I1.3:

1, a 122 g4 (1
u--Z"(R/t)of-f—(Tr)_f

(z")dz' III.13

From those results one can obtain the solution of the thermal

Rayleigh problem:
p = F(S) III.14

as a function of the laboratory similarity coordinate S by using the

relation:

Z
_ dz!
S = Of EI¢AD) IIT.15
While we have formally solved the thermal Rayleigh problem, we have
ignored until now the problem of the determination of the state of
the gas at the wall (p,Ti). We will show in section III.d that for

a metal wall the temperature Ti is very close to Tl' An excellent
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approximation for 0 is therefore given by:
p; = P/RT III.16

In the next section we consider the dependence of the solution of the
thermal Rayleigh problem on the state of the gas outside the boundary

layer.
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IIT.c. Dependence of the solution of the thermal Rayleigh problem

on the state of the gas outside the boundary layer.

Taking as reference state R the state «» of the gas outside

the boundary layer, so that:

2 Am
=  —m— III.17
aR 5R P,
and
= o I11.18

PR

it is easy to see that equation III.8 is independent of ®,T) if
the heat conductivity is given by a power law dependence of the

temperature:

v

>
.
[
-
-
©

~
>

= (T/T )
\Lix T

While such a power law dependence is not expected to describe
accurately the behaviour of the heat conductivity (Vrugt 76) it
yields a reasonable approximation (section VII.e).
The energy equation III.8 itself will therefore not strongly depend
on the state of the gas outside the boundary layer.

The dependence of the solution f(Z) of the thermal Rayleigh
problem (III.12) on T_ is due to the dependence of the boundary
conditions on T_. The boundary conditions III.6 can be approximated,

using ITI.16 by

"
N
]
[ow]

I11.20

In the next section we discuss the dependence of the solution of the
thermal Rayleigh problem on Tl = Tl/Tw.

As the energy equation III.8 and the boundary conditions
II1.20 are independent of the pressure the solution of the thermal
Rayleigh problem is independent of the pressure. This statement is

confirmed by the experimental data of Saxena (72) for the heat
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flux 49, at the end wall,
The heat flux q is related to £(Z) by:

qQ, = * (————) AT £°(0) III.21

Formula III.21 is only valid if the pressure p is constant.

As shown by van Dongen (78) for test times of the order of magnitude
Of 200 us and the initial pressures P, = 2.7 x 103Pa and 5.4 x 103?a
considered by Saxena (72), the pressure p measured simultaneously by
means of the light reflection technique and a piezo electrical gauge
is constant and agrees within 27 with the ideal Rankine-Hugoniot
value pg (section II.b). From our own experience it appears that for
longer test times or lower initial pressures significant deviations
of p from pg are observed. In section III.f we discuss the influence

of the time dependence of the pressure on the structure of the

boundary layer.
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I1I.d. A simplified model.

In this section we consider a simplified model which yields
an analytical solution for the thermal Rayleigh problem. In this model
we assume that the heat conductivity is proportional to the
temperature. From the studies of Saxena (72) and van Dongen (78) it
appears that such a model yields a good qualitative idea of the
structure of the thermal boundary layer.

Using the assumption:

X = T I1I.22
we can write the energy equation III.8 in the form:

T, zFdT 111.23

d Z z-de

If we assume that the wall properties are constant the behaviour

of T in the wall is described by:

3 T 92T
3t aW s I11.24

The problem is defined by the initial conditions:

T (%,0) = TI/T°° ;s x < 0
IIT.25
T (x,0) = 1 3y x > 0
and the boundary conditions:
lim ' T(x,t) = T /T
X0 e
_ II1.26
1lim T(x,t) = 1
X-»oo
The solution of the thermal Rayleigh problem g(Z):
T = g2 » I11.27
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is given by:
g(z) = Ti + (1 - Ti)erf (z/2) ;3 z= 0 III.28

where the interface temperature Ti is constant and follows from:

ST W T S A I11.29
1 -7 A_p_ ¢ ’
1 W W W

The dimensionless temperature T is related to the density by:
T = 1/p I1I.30

We use this solution of the thermal Rayleigh problem to check
the validity of some assumptions introduced in the previous sectioms.
In section IIL.b we stated that Ti could be approximéted by

T,. For the experimental conditions considered we have:

1

5% 1072 < 'fl < 2x10 II1.31
while for T1 = 3 x 102K and a steel wall we have:

Al os cp = 0(10)
and I1I.32

_ 8

Aw by Sy T 0(107)
From equation IIL,29 we obtain:

T. - T

21 - 0007 111.33

T

Because the uncertainty in the experimental determination of Tl is of .

. -3 . . s
the order of magnitude of 10 , we can neglect in III.28 the deviation

of T, from T,.
1 1
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In section III.b we stated that the boundary layer
approximation used (Equations II.3, 4 and 5) is valid if the
convective velocity u_ induced by the thermal boundary layer is small

compared to the speed of sound:

fTu | < ¢ I1I.34

The simplified model considered allows us to obtain a quantitative
estimate of the time scale for which III.34 is valid. Using III.13
and II1I.28 we find:

u = = ( am/t)l/2 IT1.35
With this expression the criterion III1.34 becomes:
a_/c2 < t I11.36

For our experimental conditions a_ = 0(10‘_3 mzs_l) and '
c, = 0(103 m s—l) the boundary layer approximation is certainly valid
for times larger than 10—63. We will see in the next section that this
condition is not restrictive because the uncertainty in the moment of
reflection of the incident shock wave at the end-wall is of the same
order of magnitude.
A more detailed discussion including the estimation of the
interaction between the thermal boundary layer growth and the
reflected shock is given by van Dongen (78).

We now consider the influence of the compressibility on the
structure of the boundary layer.

Due to the compréssibility of the boundary layer the
similarity coordinate S (III.2) will deviate from the Lagrangian
similarity coordinate Z (III.7).

Using equations III.15 and III1.28 we obtain the relation:

2
1/2

T

S =7 g2) - (1-T)C1 = exp( - 72/4) )y  II1.37
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T3 i V. 1
FJ.&U.LC I11I.2 : ncia

coordinate S and the Lagrangian similarity coordinate

7 for various values of Tl'

In figure III.2 we give S as a function of Z for various values of TI'

In our experiments we measure the density gradient over the range:
0.4 < S < 3

From figure III.2 we see that strong compressibility effects should
be expected for § < 1. For large values of S the influence of the
compressibility on S can be seen as a shift, displacement thickness,

between the Lagrangian coordinate Z and the laboratory coordinate S:

2(1—§:‘1) ,
lim(Z2-8) = ————— II1.38
Zyoo T

In our experiments we measure the density gradient at various

positions. The data show some scatter in Tl' However the normalized
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density gradient F(l) yields a single curve as a function of S.

(1)

We try to understand this insensitivity of F to variations of Tl'

In figure III.3 the influence of a relative change in T1 on

F(l) is shown as a function of S. We see that for small values of S

()

a relative change Afl/Tl will induce a strong change of F

This effect is due to the direct dependence of the density at the wall

on Tl' For large values of § we observe a change of sign of AF(I)/F(IQ

This can be understood, since the boundary layer thickness decreases

for decreasing Tl‘ For S = O0(1) (our experimental range), the two

effeets balance each other.

-1
0 ZS 4

Figure III.3 : Sensitivity of the dimensionless

(D on El’ as a function of S.

density gradient F

We now consider the relative importance of various terms in
the energy equation.

First we discuss the validity of the procedure proposed by
Ewald (71) for the determination of the heat conductivity.
(equation II.22)
In section II.c we have seen that this formula is valid if condition
IT.12:

32p .
p (57 ) >

Q
j=
N

-~
@
]
A
=
]
.
(&}
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is met.
. 2, .
The behaviour of p(32p/8x%)/ (3p/3x)” is given by:

2 2
p(@%p/ox%) _ 45, ,8(2) III.39

(3p/3%)2 g1 (z)

From figure IIT.4 and II.10 we see that if the inaccuracy in
(T/ A)(dA/dT) is 5%, the error in the determination of the heat

conductivity will be less than the experimental uncertainty 0(10_2)
if:

s = 1 I11.40

In such a case the procedure of Ewald (71) can be used.

From figure III.4 we see also that for:

s = 3

2
the ratio p(3%p/d =x2)/ (9p/d x) is of the order 102.

In this case one can use a linearised theory such as considered by

Smeets (65).

Q
s 1 ) . 1 - *

0 g 2 4

for T]= 0.2 .

b op(82p/3%2) /(3 (8p/ox)2) as a function of S
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When considering the experimental determination of the heat

conductivity it is important to realise that the contribution of the
convective term in the energy equation is of the same order of

magnitude as the conductive term.
Therefore the heat flux at the end-wall should be determined with the

same degree of accuracy as the density profile. This statement can be

verified by considering the behaviour of the ratio:

u(dp/dx) _ _2u i/2 .
(dp/3t) 3 (t/aw)‘ 1IT-41

where u is determined by using equations III.13 and S is given by

TIT.37 (see figure IILL.5).

[u(dp/ux)]/(0p/0t)

S

Figure IIL.5:Ratio u(3p/0x)/(3p/3t)

as a function of S.
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IIT.e. Deviation of the flow from the thermal Rayleigh problem.

In the previous sections we have considered the thermal
Rayleigh problem as a model for the boundary layer growth at the
end-wall of a shock tube. We now consider the deviation of the flow
from this model.

Roughly one can classify the deviations of the flow from the
thermal Rayleigh problem into:

rarefaction effects,

interaction of the boundary layers with the main flow,

and instationarity due to pressure waves.

The rarefaction effects are important in the initial phase of
the shock reflection process. For time scales of the order of
magnitude of a mean free flight time Teol of the atoms the thermal
boundary layer at the end-wall cannot be distinguished from the
reflected shock. This phase of the flow has been studied
experimentally by Sturtevant (64), Hanson (73) and Meldau (77).

On an intermediate time scale ( Tcol/t < 10_2) one can
neglect the rarefaction effects in the flow in view of the inaccuracy
of the experimental data 0(10_2). %

The rarefaction effects at the wall can then be simulated by a
temperature jump condition at the gas-wall interface.

The interaction'of the reflected shock wave with the thermal boundary
layer has been studied with such a model by Clarke (67): Using a
linearized version of this theory van Dongen (78) shows that on the
Col/t)l/2

process will lead to the presence of an entropy gradient at the edge

. . . -2 . .
time scale we are considering ( (T < 10 7) this interaction
of the thermal boundary layer. For the experimental conditions

(MS = 3, P1 = 667 Pa, T1 = 294 K) considered this results in a lowering
of T (x_ =5 mm) in comparison to T, of the order of 10 °.

The influence of the temperature jump on the boundary layer structure
has an order of magnitude given by the estimate of the.deviation of

the heat flux at the end-wall:

Ty

~ (Al/cpp 1:)]/2 III.42
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This effect is negligible compared to the experimental inaccuracies
(0 (10—2)) if we consider times larger than 10—53.

While the interaction of the end-wall boundary layer with the
flow in the reflected shock region is negligible, the side wall
boundary layers can have an important influence on the main flow.

The side wall boundary layers behind the incident shock wave will

act as a mass sink. The induced expansion will decelerate the incident
shock wave and accelerate the contact surface.

Using the model of Mirels (66} one can obtain an order of magnitude
estimate. for the induced non-uniformity of the reflected shock region
and the time dependence of the pressure at the end-wall. The actual
flow appears to depend also strongly on the type of diaphragm used and
on the driver gas. Those effects due to the finite opening time of

the diaphragm are illustrated in figure III1.6 where we compare the
end-wall pressure measurements of two rums. In the two cases the
initial conditions and the incident shock wave Mach numbers were

identical.

1.3F

Y b
Ay
~

8
nd F

1.0r

3 1 L 1
0 400
t [uysl
Figure 1I1.6 : Influence of the diaphragm opening on

the time dependence of the end-wall pressure p_.

1. Run (79101005/II), diaphragm (0.5 mm/0.4 mm), driver
gas HZ' (MS)1 = 4.175, Oﬂs)z = 4.171, P = 667 Pa,
T, = 296.3 K.

2. Run (79101006/1I), diaphragm (0.5 mm/0.4 mm), driver
gas Hy. (M), = 4.180, (M), = z:;.le?,,'pI = 667 Pa,

T1 = 296.3 K.

(see notation chapter VII).
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From figure III.6 we see that the end-wall pressure obtained at low
Mach numbers by using hydrogen as driver gas is not reproducibie.
This effect due to the relative low pressure ratio (qupl) over the
diaphragm is also reported by Stupochenko (67) and Simpson (67).
From those data it should be clear that we should take the influence
of the time dependence of the pressure into account. In the next
section we consider the influence of the time dependence of the
pressure on the end-wall boundary layer structure.

The side-wall boundary layer behind the incident shock induces
a curvature of the shock wave (Stupochenko 67). From our experimental
data it appears that the shock wave curvature introduces an
uncertainty in the instant of reflection of the incident shock wave
at the end-wall of the order of 10—65.

Finally the side wall boundary layers behind the incident
shock wave can produce important deviations from the one-dimensional
ffects are due to the difference between
the stagnation pressure in the boundary layer and the pressure in the
reflected shock region. When the stagnation pressure is lower than
the reflected shock region pressure,bifurcation of the reflected shock
wave may occur (Oertel (73)]).

This effect has not been observed in non-ionized monatomic gases such as
argon. When region 2 is partially ionized bifurcation occurs (Kuiper
(68), Takano (79)).

In the present investigation no serious evidence of bifurcation has
been observed for the test times considered.

This however does not exclude a setipus disturbance of the reflected
shock region by the penetration of the side wall boundary layers into
the reflected shock region.

The uncertainty due to such effects can be reduced by comparison of

the experimental data obtained in several shock tubes with different

cross sections.
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I1I.f. Influence of pressure waves on the structure of the end-wall

thermal boundary layer.

In sections III.b, c and d we considered a model for the
thermal boundary layer in which we assumed that the initial conditions
were uniform and the boundary conditions constant (so called thermal
Rayleigh problem).

In section III.e we have discussed qualitatively the deviation of the
flow from this model. In this section we study the influence of
pressure waves on the structure of the thermal boundary layer.

We distinguish two main effects of pressure waves: the
generation of a non-uniformity of the reflected shock region due to
the interaction of the waves with the reflected shock and the time
dependence of the pressure in the boundary 1ayér.

The first effect can be observed:in measurements of the

density gradient outside the boundary layer.

density gradient as a function on time for x = 7 mm.

We see that the gas behind the reflected shock is non—uniform.

E

~(0p/0%)/pg

0 200

b~

7 : TLaser schlieren record of the density

Figure III.

gradient at x = 7 mm.
Run (77091401/11), (Ms)1 = 2.97, P, = 667 Pa,

Tl = 294.9 K.

46



~ Ao N
= - ) II1.45
CP n T n
where the demensionless quantities T and A are defined by:
T = T/T_(t)
- IIT.46
A= AT
Introducing a stretched time coordinate T defined by:
t
T o= of (/A (p,/pg) dt! I1I.47

and assuming that the heat conductivity is proportiomal to the

temperature we obtain:

32T

5T 5P
an

0T c
P

The reference state 5 is defined by:

I, = T(0) 5 pg

= p (0)

III.48

IIT.49

and is assumed to correspond to the "ideal" Rankine-Hugoniot state

defined in section II.b.

We first study the influence of a non-uniformity in the .

initial conditions on the behaviour of the heat flux q, at the end-

wall.

We assume that the boundary conditions are constant (so that

T = t) and given by:

T(0,t) = T1/T5
lim T(n,t) = 1
el

II1.50

The boundary condition at the wall is justified by the order of
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The influence of this non—uniformity of the reflected shock
region is estimated by considering a model of the thermal boundary
layer growth in a non-uniform gas at constant pressure. The influence
of the time dependence of the pressure is considered in a second model
in which we assume the initial conditions to be uniform.

In a similar way as for the thermal Rayleigh problem
(section III.d) we use a simplified model in which the heat
conductivity is proportional to the temperature.

Tn such a case we can obtain from the emergy equation in Lagrangian
coordinates a linear equation for the dimensionless temperature.
When a stretching of the time coordinate is applied this equation
takes the form of the Fourier equation. Analytical solutions can be
obtained for general initial and boundary conditions (Carslaw 48,
Landau 71).

The main goal of this study is to obtain some insight in the
behaviour of the heat flux at the end-wall.

We will see that the time coordinate stretching applied takes the
influence of the "memory" of the boundary layer into account.
Replacing in formula III.21 the time t by a stretched time, one
obtains a good approximation for the heat flux at the end-wall. This
approach is refered to as the "local similarity" model.

We now derive'the basic equation.

The behaviour of the gas in the boundary layer is described by the
energy equation II.5 which in Lagrangian coordinates (n,t) can be

written as:

Cp 3 T 9 p _

1 aT
RT t p o9t

A
( T “ﬁ') III.43

a_
an

o

where n is defined by III.3. We assume that the state of the gas far
from the wall « is uniform. Using the assumption of the uniformity

of the pressure we then have:

2 - B 2" I11.44

and we can write III.43 as:
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magnitude estimate III.33, The general solution T(n,t) is given for
general initial conditions by Landau (71).
We consider here the case of a stepwise discontinuity in the initial

conditions:

T(n,0) = 1 -6.(1 - U(n=n.) )
0 0 III.51

n =2 0

where 60 and g are constants.

U(n - no) is the Heaviside step function. In figure III1.8 we give a

schematic representation of T(n,O)

T(n,0)

0 ‘no : n —

~

Figure II1.8 : Schematic representation of T (n,0)

The solution T of this problem can be expressed as the solution g(Z)

of the thermal Rayleigh problem (III.28) plus a deviation AT :

P

T = g(2) + AT , ' II1I.52

Where Z is the Lagranglan similarity coordinate defined by III.7.

AT is given by:

AT = - 8o (erf(z/2) - %-(erf (Z+20) | g G20y
3 7 -
I11.53
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where ZO is defined as:

n
Z = -——————9———~— III.54

ps(a5 t>1/2

The deviation Aqw/qW of the heat flux at the end-wall induced by the

non-uniformity in the initial conditions is given by:

2
A §~(1 - exp(-Z./4) )
e’ N A 0 T11.55
%Ly (1-1T)
where TI is given by:
T, = TJ/T 11I.56

An oxder of magnitude estimate yields for typical experiments

8§y = 0(10_1), / = O(IO_Bm) and a. = O(IO_Bmzs_l).

n p

In such a case thg relztive deviation of tie heat flux at the end-
wall from the heat flux calculated on the basis of the thermal
Rayleigh problem (equation III.21) should be less than 0(10"2) for
times larger than 10-45.

We now consider the influence of the time dependence of the pressure
on the structure of the boundary layer. We assume that the initial

conditions are uniform:

T(n,0) = 1 ; n =2 0 II1.57
The boundary conditions are:
T(0,7) = TI/T°°
III.58
lim T(n,t) = 1
n -

where T is related to the pressure p by relation IIL.44.
The solution T of this problem can be split in a "local similarity"

~ ~
solution g(Z) and a deviation AT from local similarity:
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T = g(Z) + AT IIT.59

where
g(Z) = T(0,T) + (1 = T(0,t1))erf(Z/2) I1I.60
and
z = —1 III.61
1/2
p(a_t)

g(z) is the solution of the "local" thermal Rayleigh problem with
(constant) boundary conditions corresponding to the instantaneous
value of the boundary conditions III.S5S8.

The normalized stretched time t is defined by:

>

N2, e 4
£t = (pg/ip,) tag/a )T I11.62
The departure of T from g(Z) is given by:
- T i(O T-1')- E(O T) nz ‘
AT =/ 2 2-2 n exp(- —————)d1'
2 W1/2 2 .
(4TTp5 ag T ) T 4 ps a5 T
III.62a

When we consider the problem in a laboratory reference frame we use in

analogy to III.2 the similarity coordinate S defined by:

~ Al/z

s = X/(amt) I11.63

~ v PN

S is related to the Lagrangian coordinate Z by:

S=12g() - 2 (1 - T(0,7))(1 - exp(-22/4) ) + AS

1/2
il
1I1.64
where:
- 1 T T0,r - t') - T(0,1) n?
AS = ——— Y/ 2T (1 - exp(- —2——) ) dr'
1/ 2 1/:2 4(.)23 T' .
(nt)y O ' 525
111.65
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AS is the deviation of S from the local similarity value given by

I11.37.
Using relations III.59, 60 and 63 we obtain for the heat flux q,:

p:As T T
qw=————l—-l——°i—(1—i,i) + Aq 111.66
(ﬂpat)”2 -

where the departure of q, from the local similarity value is given by:
1/2
i1 e 1 T A oy
Aq = - f T(O’T T ) T(OST) d 1
1302

2 g

ITI.67

Applylng I11.67 to some simple cases such as a step wise change in
T(O T) or a linear variation of T(O 1) as a function of T, one can
show that for pressure variations of the order of magnitude of 10 B
(figure III.6) the deviation of q, from local similarity should be
of the order of magnitude of 10_2.

We conclude therefore that for t 2> 10_45 the heat flux at the end-
wall might be accurately estimated by using formula III.21 in which
£ (1)(0) is considered as a function of T_ and t is replaced by the
stretched time ;

Because f(l)(O) is mainly determined by the behaviour of the heat
conductivity in the low temperature region of the boundary layer
(Vrugt 76), such a procedure should yield an accurate prediction of
the heat flux at the end-wall without an accurate knowledge of the

heat conductivity at high temperatures.
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Iv. EQUATIONS FOR BOUNDARY LAYER FLOW, HEAT CONDUCTIVITY AND
RADIATION LOSS IN A PARTIALLY IONIZED GAS.

IV.a. Introduction

In section IV.b we review the equations for a two temperature
model of the boundary layer.

In section IV.c we consider a possible procedure to determine
the heat conductivity of a partially ionized monatomic gas. The
procedure is similar to the procedure for the analysis of non-ionized
experiments (section II.c) and to the standard procedure for the
analysis of electric arc data (Asinovsky 71). We allow departure from
local thermodynamic equilibrium in the chemical composition of the
plasma, but we limit ourselves to a single temperature for the
velocity distributions of the different species.

When a single temperature is assumed, we can obtain a
determination of the thermodynamic state of the plasma in the
boundary layer from two-wavelength laser schlieren, continuum
absorption and end-wall pressure measurements. .

The convective velocity can be estimated by means of the thermal
Rayleigh problem developed by Hutten (76). The heat conductivity is
determined by estimation of the various terms in the energy equation.

Additional complications are the influence of radiation
transport and of diffusion. The radiation transport is split into a
conduction term and a transparent radiation loss term (Kopainsky 71).
The conduction term is included into the heat conductivity.

The transparent radiation loss term is determined experimentally

from the analysis of the behaviour of the plasma outside the boundary
layer (section IV.d].

The diffusion velocity is estimated from the assumption that diffusion

is ambipolar and a theoretical estimate of the diffusion coefficient.
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IV.b. Basic equations

The equations for a two-temperature non-equilibrium model of
laminar boundary layer flows in a partially ionized monatomic gas
have been derived by Knoos (68), starting from the conservation laws
for mass, momentum and energy. A review of later studies and
extensive discussions of these equations are given by Hutten-Mansfeld
(76) and Liu (79). In the case of the thermal boundary layer, assumed
to be ome~dimensional, Hutten-Mansfeld (76) obtained the following

set of equations for the electrons, ions and total mixture,

respectively:
Continuity:
- d g 2
PIr T g e V) = My ? V.1
n = n. H Iv.2
e i
dop 3 u  _ .
Tt e = 0 ; V.3
Momentum:
2 peE = m 2oc ; IV.4
P T T i ‘
P, = 2 _(p +p.) . V.5
i ax ‘Fe i i ‘
3 p _ . 4
L =0 s V.6
Energy:
T P q
5k d d "e 3e ., 5k 9
F—ap - = ——=+35=T ——(p aV)
2 mh dt dt x 2 m e X
e umz e £ + €, 3 1v.7
T, = T,(=T) ; 1V.8
5 k d dp_ 3% )
2mf @ (Thteled TTEa T e TS 1v.9
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The definitions of the symbols in IV.! to 9 are now considered ‘in

detail.

The plasma is considered here as an ideal gas mixture of electrons(e),
singly ionized atoms (i) and neutral atoms (a). The partial pressure

pj of species j (j = e, 1 or a) is related to the number density nj

by:

p; = Mk T, 1V.10

where k is the Boltzmann constant and Tj the temperature of species j.

The pressure p is given by:

p = }:p_ Iv.1l1
i J

We assume that no external electric or magnetic field is applied to
the plasma. The electric field E in equation(IV.4 and 7) is the field
build up by the plasma. e is the elementary charge.

A consequence of the assumed quasi-neutrality (IV.2) is that
the diffusion is ambipolar. The diffusion velocities Vj are thus

related by:

=) vV =V V.12

where V is the ambipolar diffusion velocity and a is the degree of

ionization:

y = — &
a = T - iv.13

= v. - u V.14
where ij is the average of the velocity Zj of the particles of

species j measured in the laboratory reference frame.

The mass average velocity u is given by:
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)X m.n.;.
U et

L % TTm a, .15

The density p of the plasma is approximated by:
o= m (ni + na) IV.16
where m is the mass of the heavy particles:
m = m = m, iv.17

A characteristic length scale x_ for the boundary layer thickness is

given by:

IvV.18

where A is the heat conductivity of the plasma and t_ is the
characteristic time of observation. The index « refers to the state
of the gas outside the boundary layer.

The assumption of space charge quasi-neutrality is justified
by the fact that for the conditions considered x_ is much larger than
the Debye length.

In view of the uncertainties in the transport properties and
the reaction rates (see appendix III) an inaccuracy in the model of
the order of 10% is acceptable. This criterion is used in the
derivation of equatioms IV.1 to 9. The shortest time scale appearing

in the problem is ts the mean free flight time of the heavy

1/2 = 0(10—2) have been

particles. Terms of the order (t, /t )
b=l

2
neglected. Terms of the order (me/ma) and (V mh/k Th) are also
neglected.
The source terms Mi’ Pi’ €es €4 and the fluxes V, 9.s 9, are
estimated on the basis of the Chapman-Enskog procedure (appendix II).
We consider here only some general properties of the expressiomns used.

From the first approximation of the ion momentum source term
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Pi we find:

D.
ia 9 .
v = = TRT 3% (Pe + P{) Iv.19
i h -

where D, is the ion—atom binary diffusion coefficient.
ia

Within the same approximation one can write for the heat fluxes q.:

[

+ é-n. k T. V. Iv.20
J 3 3

where A? is the heat conductivity of species j in the mixture.

The total heat flux q. is given by:
9@ = Ig 1v.21

The energy source terms €, and €, are related to the ion-mass

production source term Mi by:

oq .
¢ T 7 Mi gﬁ Tion B Qr - §§£ .22
and
9q
e = e -M 5 (1. +27)_-q - V.23
e eh 1 mh ion 2 e T 9x

where €an is the electron energy source term resulting from the

electron-heavy particles elastic collisions:

e =4 %n (me/mh) p (8 k Te/ T me)l/z(aQ<]’l)f (1 _a)Qéisl))(Th - T

eh mhe el
1V.24

where the average cross sections Qé;’l) and Qé;’l) are given in
appendix III.

Following Kopainsky (71) we assumed in IV.22 and 23 that the heat
transfer by radiation is due to a radiative conduction term 4, and a
transparent radiation loss Qr' qr’is proportional to the temperature

gradient:
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oT ,
Q. = Ar P Iv.25
where Ar is the Rosseland radiative heat conductivity.
The transparant radiation loss term Qr is assumed to be a function of

the local thermodynamic state of the plasma only.

Expressions for the ion-mass source term Mi are considered in appendices
11T and 1IV.




IV.c. Formula for the determination of the heat conductivity

We assume a single temperature T:

T = p/k(na + 2ne) IV.26

We define the heat conductivity A of the plasma by:

A= A o+ V.27
PR

In our definition the "reactive heat conductivity" is not included.

A definition of the total heat conductivity of the plasma including

the reactive heat conductivity (Devoto 73) is only meaningful in the
case of local thermodynamic equilibrium and for a plasma with a

uniform pressure

Using definition IV.27 we write the energy equation IV.9 as:

2 3T _ 3dp _5p Ymo, da
9% 9x 2 dt 2 n, t M ion dt
rQ vl ko vETer, ) 1v.28
T 9x e 2 ion .

In order to obtain an explicit expression for A Emmons (67)
and Asinovsky (71) use an integration procedure similar to the
procedure of Vrugt (76) (section II.c).

We consider here a differential approach similar to the formula of
Ewald (71) (section II.c) which follows directly from IV.28 and has

the advantage of being (more) local:

~§(dp/dt)-—gﬁﬁdnh/dt)-+nhkTio£da/dt)-+Qf+§;(nekv(g-Tﬁ-Tion))

A 2 2 1 2 1
(87T/9x7) +-I(BA/8T)(8T/BX) + K(Sl/ane)(ane/ax)(aT/&x)
IV.29
where:
V=-(2 D, /(1 + a))(8a/8x) IV.30
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Iv.d. Transparent radiation loss

The transparent radiation loss Qr will be determined from the
study of the behaviour of the plasma at the edge of the thermal
boundary layer (chapter VIII). Assuming that the plasma is uniform

we obtain from the energy equation:

on.
- 2p _B _ 80 _ 3 9p
Qr 2 o, ot nhk Tion 2t 2 3t 1v.34

Outside the boundary layer we measure the pressure and the absorption
of a light beam by the plasma. In order to determine the thermodynamic
state of the plasma from these two quantities we must assume local
thermodynamic equilibrium.

This assumption and the procedure for the determination of the
thermodynamic state of the plasma outside the boundary layer are

discussed in sections V.c and d.
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v. FLOW INDUCED_BY THE REFLECTION OF AN IONIZING SHOCK WAVE AT
THE END-WALL OF A SHOCK TUBE,

V.a. Introduction

In the present chapter we give a qualitative descriptionm of
the flow outside the boundary layer (section V.b).
In section V.c we consider the determination of the state of the
plasma outside the boundary layer. An estimate of the state of the
plasma just after ionization relaxation, is obtained from the Rankine-
Hugoniot (RH) relationms.
Combining these data with absorption and pressure measurements and
assuming local thermodynamic equilibrium one can determine the state
of the plasma outside the boundary layer.
The deviation of this state from local thermodynamic equilibrium as
a result of radiation escape is considered in section V.d.
In section V.e we consider the thermal Rayleigh problem in partially
ionized argon. This model developed by Hutten (76) is used in order
to obtain some insight in the structure of the boundary layer and to

calculate the convective velocity.
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V.b. Qualitative description of the flow outside the boundary

We consider the flow induced by the reflection of a shock
wave at the end-wall of a shock tube for moderate Mach numbers,

Ms < 10. The ionization relaxation time behind the incident shock
is of the order of 1 ms (Kuiper 68).

The test time during which the pressure remains approximately constant
in the reflected shock region is about 0.3 ms.

We therefore can assume that the degree of ionization in regiom 2
(behind the incident shock wave) is negligible. We say that region 2
is frozen. The flow in the shock tube before reflection corresponds

to the flow described in section II.b.

The flow after the reflection (t = 0) is discussed on the
basis of an absorption measurement and tﬁo pressure measurements
(figures V.1, 2 and 3). We ignore the influence of the end-wall
boundary layer on the reflection process (section III.e).

The light absorption in the continuum spectrum is roughly
proportional to the square of the eiectron density. A typical record
of the transmitted power P of a laser beam (1 = 0.6328 ym) is given
in figure V.1. We see that in the initial phase, just after the
reflection (t = 0), the ionization process is rather slow. This is
due to the fact that atom—atom collisions are ineffective in the

ionization process.

O T T 1 —
run(80020401/1)
_ x =3.0mm
“.‘E P, =667 Pa
— T,=2%4K
* M_= 8.97 \
Hon s ttest
1 1 ¢ | | l
0 100 t{us] 200 300

Figure V.1 : Absorption of a light beam (1 = 0.6328 um)

(see definition K. equation V.1).
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Therefore we may consider the initial phase of the flow in the
reflected shock region to be frozen (fr) with respect to the
ionization process. This frozen region 5 is denoted by Sfr’ The

state of the gas sfr is calculated from the initial conditions(pl,Tl)
and the incident shock wave velocity by means of the (frozen) Rankine-
Hugoniot relations (Appendix I).

When, after some time, the degree of ionization reaches the
order of magnitude of 10—3, the more effective electron—atom
ionization process becomes dominant. The ionization rate suddenly
increases. This phase, called the ionization front (Kuiper 68) occurs
at t = t. o (figure V.1)

After the ionization front the state of the plasma is close
to local thermodynamic equilibrium. The decrease of electron density
as a function of time (figure V.1) is due to the escape of radiation.
We call this period (£t > tion) the radiation cooling region.

We observe some waviness in the absorption signal. This corresponds

to disturbances in the electron density that have also been observed
by Kon'kov (75). A similar waviness of the electron density has been
observed behind the incident shock wave in pure argon by Bristow (71)
and Glass (78). These instabilities are strongly sensitive to the ‘
purity level of the argon. They might be caused by the interaction
between the ionization process and transverse pressure waves. Bristow
(71) noticed that the addition of 0.57 hydrogen to the argon has a
strong stabilising influence. Some experiments in a 99.5% Ar + 0.5% H2
mixture are described in chapter VIII.

At t = ttest (figure V.1) we observe an increase of the
electron density resulting from the compression of the plasma by the
waves generated by the interaction between the reflected shock and
the contact surface {section II.b).

At higher Mach numbers (MS = 12) Kuiper (68) and Takano (79)
observed a compression wave due to the interaction of the reflected
shock with the ionization front behind the incident shock. In such
cases bifurcation of the reflected shock occurs. No evidence of
bifurcation was found in pure argon at low Mach numbers (MS‘< 10).
In the case of a 99.5% Ar + 0.57% H2 mixture some experiments show

evidence of bifurcation {chapter VIII).
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An example of an end-wall pressure record is shown in

figure V.2.
i
Hon
P
‘ —
run{80100101/1)
x=0mm
P, =667 Pa
a T,=295K
o’ 3
E MS=912
Yost
O i i ! l |

0 100 tiws] 200 300

Figure V.2 : End-wall pressure record.

In the frozen region Sfr (t < ) the pressure increases above

Yion
Pgg, aS 2 result of the influence of the inhomogeneity of region 2
(see section II.b and IIl.e).
During the ionizatiom (t = tion) the pressure decreases.
This expansion wave is due to the temperature decrease of the gas in
the ionization front resulting in a decrease of volume. The expansion
waves generated in the ionization front and running away from the
end-wall are absorbed by the reflected shock. This results in a
deceleration of the shock. The expansion waves running towards the
wall are reflected at the wall and then absorbed by the shock.

The increase of pressure for t =2 ton is expected to be

due to the influence of the inhomogeneity of region 2. The decrease
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2 .
of pressure for 107 uys < t < teegt 1S DO well understood. Such a

behaviour can be induced by radiation cooling or by waves generated

by the diaphragm (see figure III.6).
A record of the side-wall pressure (x = 12 cm) is shown in

figure V.3.

run (80100101/11)
©x =120 mm

5eq

P, = 667 Pa

T1 =29 K
NE:QJZ

P/P

! { 1
0 0 100 t[us] 200 300

Figure V.3 : Side-wall pressure record.

After the compression by the incident and reflected shocks we observe
at the side-wall a compression during the ionization relaxation.

This effect is similar to the behaviour of the pressure behind a
shock wave with constant velocity. Considering the ionization process
in the reference frame of this "stationary" shock we observe a )
reduction of the velocity of the gas due to the increase of density.
This deceleration implies an increase of the pressure as one can
verify from the momentum conservation law (see for further details
Glass 78). We conclude that at x = 12 cm, the reflected shock behaves
qualitatively as the "ideal" reflected shock which would occur for

t > tion if region 2 were uniform and if radiation cooling would

be negligible. Applying the integral conservation laws across this

65




"ideal" shock yields the Rankine-Hugoniot estimate of the equilibrium
state of the plasma in region 5 (refered to as Seq). This model is
described in section V.c.

On the basis of the previous observations we can draw a
qualitative (x,t) diagram of the flow (figure V.4).
This diagram is similar to the diagram obtained by Kuiper (68).
In the diagram we show two particle paths (————- ).
Following path 1 we observe the abrupt acceleration towards the end-
wall which is induced by the incident shock, the deceleration by the
reflected shock (stagnant region 5fr), the acceleration by the
expansion wave induced by the ionization front and the deceleration

in the ionization front itself.

P, = 667 Pa
600 T, =295K -
lkv“s = 9 . %
t driver gas H
test . 2
— == compesmn () 1
3 | :
= lentropy contact surface
: layer

200 1 (5)

ionization—"

tiOﬂ—«- (2) )
0 k== frozen refected shock -~
(1) incident shock
; 20 30
0 ggrtg c1ie 10 < (em]

Figure V.4 : (x,t) diagram of the flow induced by the

reflection of an ionizing shock wave in argon.
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Following particle 2 we see that the gas in the frozen region behind
the reflected shock is not stagnant. ‘

The variation of the reflected shock velocity induced by the
expansion wave results in a non-uniformity (entropy layer) of the
reflected shock region. The flow is also complicated by the strong
interaction between the expansion wave and the ionization front.
Therefore a detailed description of the flow can only be obtained
numerically as done by Takano (79).

Semi-linearized calculations as carried out by Smith (68) and Crespo-
Martinez (68) can be used at low Mach numbers.

These models are rather inaccurate because of the large uncertainties
in the reaction models used and in the influence of therinhomogeneity
of region 2.

We can conclude from this discussion that the reflected shock
region is in principle instationary and non—uniform and that a
detailed determination of the state of the plasma at the edge of the
boundary layer from measurements of the initial conditions, the
incident shock speed and the end-wall pressure is a difficult
proposition. In the next section we propose a procedure which should

have an accuracy of 10Z.
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V.c. Determination of the state of the plasma in the reflected

shock region.

We assume that outside the boundary layer for t > ti the

on?
plasma is in a state of local thermodynamic equilibrium. In order to
determine the state of the plasma the measurement of two independent
state variables is sufficient. We consider here the determination of
the state of the plasma from measurements of the end-wall pressure
and the absorption of a light beam (1 = 0.6328 um). 8

The absorption coefficient K is defined by:

oA

_ 1 4P
K = 5 72 V.1

where P is the power of the light beam and s is the optical path
length. The absorption coefficient can be calculated when the plasma
is in a state of local thermodynamic equilibrium. For argon
calculations have been carried out by Schluter (68) and Hoffsaess
{78). At high electron densities as considered here corrections have
to be made for the influence of microfields.

A considerable amount of experimental and theoretical studies are
devoted to this subject (Batenin (77), Erhardt (77), Goldbach (77),
Voroh'ev (78), Glasser (79) and Schluter (80)). There is a rather
large scatter in the data presented.

For this reason we use the semi-empirical formula:

K = K_o (ne/nol2 exp(TO/Te) V.2

in which (for 1 = 0.6328 um):
A

T = 2,273 x 10K=h w/2 7 k
° 23 -3 P

n = 10 m
° -2 -1

and KO = 8,8 x 10 m .

8 Note:

The determination of the state of the plasma in the reflected shock
region from simultaneous absorption and emission of continuum
radiation have been used in the studies of Kon'kov (73) and

Hashiguchi (79).
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The temperature dependence of K corresponds to the temperature

dependence of the bound-free absorption assumed to be dominant.

The experimental determination of Ko (in section VIII.b) is based on

the assumption that just after ionization relaxation (t = tion) the

state of the plasma corresponds to the Rankine-Hugoniot state 5eq.
This is the state of the plasma behind an "ideal reflected

shock (see V.b) which has a comnstant velocity v,

The calculation of the state 5eq from the initial state (pl,Tl) and

the incident shock velocity v has been considered by Kuiper (68),

Bengtson (70) and Hutten (76).

The state of the gas in region 2 is calculated by means of the Rankine-

Hugoniot relations for a non-ionized gas (Appendix I). The state 5eq

is related to the state 2 by the integral conservation laws:

(wy = vlp, = -v, Pseq V.3
2 2

P, pZ(uZ " vrl © PSeq * p5equ V.4

' 2 2 ,
hy * (uz : Vrl - h5eq * Z£ V.5
2 2
This set of equations is completed by the equations of state:

p = o RT (1 +a) V.6

h o= 2RT + oR(T, - AT, ) V.7
ion ion

where the degree of ionization o is assumed to be given by the Saha

relation:

T. - AT,
ion 1i0on
exp(- —90 28,

az Zezi ™ 2.3
= — (2mm_k T/h0)
I —a Za p e P

/2

V.8
where Zj is the statistical weight of component j, hP is the Planck
constant and Tion the ionization temperature.

We used the approximation: Ze =2, Zi =6, Za = 1 and

T. 1.83 x IOSK.
ion
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The lowering of ionization temperature ATion was calculated according

to the Debye-Huckel theory (Drawin 71): &

2 ,1/2

AT, = 1.2 22 , V.9

ion 4 e Tp k

where LN is the Debye radius:

e is the elementary charge and € is the permittivity of vacuum.
The results of the calculations of the state 5eq are given in tables
(Appendix TI).

The Rankine-Hugoniot state 5eq has been compared with
experimental data by Kuiper (68), Bengtson (70) and Kon'kov (73, 76).
Kuiper (68) mentions that the data on the electron density at 10 mm
from the end-wall agrees well with the calculations. The data at 4 mm
are about 10% higher. The results of Kon'kov (76) are similar to the
results of Kuiper (68). Bengtson (70) concludes that while the
average of the measured electron density agrees with the predicted
values an important scatter occurs as a result of the non-
reproducability of the flow in the shock tube (diaphragm opening, see
section III.e). Qur own experience is in agreement with this
observation. The lower scatter in the electron density data of
Kuiper (68) is due to the fact that he only considered the average
of a few rums.

The electron temperature measured by Kon'kov (73) agrees well with
the Rankine-Hugoniot value.

While the electron density and the temperature agree within the
accuracy of the experiments with the predicted value, Bengtson (70)
obtained pressures significantly higher (77) than the Rankine-Hugoniot
value. This effect is also observed in figure V.2 (see also section

VIII.b).
& Note:

The calculated electron density and temperature are rather insensitive

to the lowering of ionization potential (Kuiper 68).
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The fact that the average measured electron density and the
temperature are in agreement (within 107Z) with the predicted values

is no clue for the validity of local thermodynamic equilibrium.

It is not impossible that various effects cancel. The deviation from
local thermodynamic equilibrium due to the instationmarity of the state
of the plasma and to the influence of radiation escape on the reaction
rates is discussed in the next section.

Conclusion: Assuming local thermodynamic equilibrium one can use
equations V.2, 6 and 8 to determine the thermodynamic state of the

plasma from measurements of p and K.
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v.d. Deviation from local thermodynamic equilibrium outside the

boundary layer.

As starting point for the study of the deviation of the state
of the plasma from local thermodynamic equilibrium we use the electron
continuity equation:

Bne 3 .
- f 3z (@ u+V) = a V.1l

ot e
Considering the plasma after ionization relaxation we assume that the
convective and diffusion velocities are negligible.
The source term ﬁe can be determined with the two step model
of Mitchner (73}):
A=n.n S (1-@/m)/@/m) ) V.12
e e o0 o e o e o’'st
where S1 is the reaction rate for excitation from the ground level
o to the first excited level 1 (see Appendix IV).
(ni/nolst is the value of (ni/no) which is found in a uniform and
stationary plasma.
The deviation of (nz/no)s from the value (n /n )Sah calculated by
means of the Saha equation is due to radlatlon escape.
The continuity equation can be rewritten as:

an 1
(n /no) 1 - ( )/(n n )

eoo

2
(ne/no)Saha (no/ne)st

The (Sn /3t)~term can be estlmated from absorptlon measurements
(figure V.l) The factor (n /n )Saha (n /n ) can be calculated
with the colllslon—radlatlon model descrlbed in Appendix IV.

The results obtained are given in table V.I.
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I 2 2

MS (ane/at)/(neno OS ) (ne/no)Saha(no/ne)st.-]
7 -107! 1071

8 -6 x 1072 3x 1072

9 -5 x 1072 210 °

Table V.1:
Deviation from local thermodynamic equilibrium outside
the boundary layer as a function of Ms'

x=1mm, p, =667 Pa, T = 295K.

1
We see that the deviation from local thermodynamic equilibrium
induced by radiation escape and by the instationarity of the flow
counteract. Further we conclude that the deviation from local
thermodynamic equilibrium can be neglected in view of the uncertainty

in the experimental determination of the electron density (10%).
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V.e. The boundary layer structure.

Model

The studies of shock tube viscous (side-wall) and thermal
(end-wall) boundary layers by Knoos (68), Kuiper (68), Hutten—Mansfeld
(76) and Liu (78, 79, 80) have clearly demonstrated that such flows

cannot be described within the frame of an equilibrium theory
(section I.d).

In this section we use the relaxation model developed by Hutten (76)
in order to obtain some insight in the structure of the end-wall
thermal boundary layer.

The equations governing the flow have been given in section IV.b.
The equations used for the fluxes and the source terms are given in
Appendix III., We neglect here the influence of radiation transfer

so that equations IV.22 and 23 are replaced by:

€ = -M, T

k
o 1 mh

ion

and

where €. 1s given by IV.24.

Assuming that the ionization rate is determined by the electron atom

inelastic collisions we have:

i 2 2
Mi - mhnane oS (a- (ne/na)/(ne/na)eq ) V.15
2
e
where (;—)Saha is given by V.8 in which we neglect the lowering of
a

ionization temperature (AT;,, = 0).
OS1 is a function of the electron temperature given in Appendix VI.
From equations IV.24 and V.15 we see that the source terms €eh and Mi
are the driving terms for the relaxtion of the state of the gas
towards local thermodynamic equilibrium.

In the model we consider the behaviour of a uniform partially

jonized monatomic gas which is suddenly (at t = 0) brought in contact
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with a cold metal wall. The state of the gas outside the boundary
layer is assumed to be constant and corresponds to a state of local
thermodynamic equilibrium. This problem is a special case of the so
called Rayleigh problem (Knods (68)), it is therefore referred to as
the "thermal Rayleigh problem".

When the problem is considered in Lagrangian coordinates the
velocity u appears explicitly only in the continuity equation IV.3.
Eliminating E by IV.4 and using the expressions of Appendix III for
the source terms and the fluxes one obtains a closed set of equations
for p, 0O, Te and Th'

Because the pressure is uniform, it is determined by the boundary
conditions. We are thus left with a set of three equatioms for a, T,
and Th. This set of equations is given in Appendix III. The
formulation of the problem is completed by specification of the
initial and boundary conditions.

St o3 PUPNE W S JNIPUII 1
The initial ana outerx COnaitions are given by

a(x,0) = lim a(x,t) = o
? oo
Te(X,O) = Th(x,o) = lim Te(x’t) = 1lim Th(ZX,t) =T
X-ro K0
O(X,o) = lim p(;x’t) = p V.16

oo
X0

where (aw, T s pm) are constants related by the Saha rel;tion V.8.

Values for (o T s pm) are calculated from the initial conditions

?
(pl, Tl) and the incident shock Mach number Ms by means of the
Rankine-Hugoniot relations (section V.c).

In order to obtain the boundary conditions at the wall a
collisionless sheath model is used. We assume the wall to be non-
emitting, fully catalytic and without net electric current at the
wall. In the sheath a potential A¢ is build up. From stability
considerations Bohm (49) showed that the ion velocity at the edge of

the sheath should satisfy the inequality:

(V(O,t))2 = (k Te/mh) V.17
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where we use the approximation obtained by Chen (65) for Te > Th'
Using the lower bound as an estimate for V(0,t) and assuming a

Maxwellian wvelocity distribution for the electrons one finds:

k Te
A = — ln(mi/Z T me) V.18

2 e
Equating the molecular energy flux of those electrons at the edge of
the sheath which have sufficient energy to overcome the sheath

potential, to the energy flux qe(O,t), we obtain:

n (0,t) 8 k T_(0,£) 1/2 . Ao

- - — ——— e

qe(oyt) - 4 ( T me ) (ZkTe(O’t) + GA‘I’)eXP( k. Te(O,t) 7
V.19

at V{0,t) is equal to the Bohm

velocity, yield two boundary conditions at the wall.

The boundary conditions are completed by:

Th(O,t) = Tw V.20
where Tw is the wall temperature which is assumed to be constant
(TW = 350 K). The numerical solution of the problem is described by

Hutten (76).

Comment on the boundary conditions at the wall.

Although the collisionless sheath model has been widely used
(see review in Liu (79))the validity of the model is not well
established. The Bohm criterion is in contradiction with the
assumption that the diffusion velocity is small compared to the
thermal speed of the heavy particles (Hutten-Mansfeld (76)).
The assumption that the wall is non-emitting is contradicted by the
experimental evidence obtained by Vervish (79) in his study of the
viscous boundary layer at low pressures. Recent research on the
theory of the electrical sheath at high pressures has shown that the

neccessity of the Bohm criterion might be questionable (Schram (80)).
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For these reasons we decided to study the sensitivity of the
model to variations of the boundary conditions at the wall. Therefore
we used fixed value boundary conditions as an alternative to the

sheath model.

Boundary layer structure.

When a hot uniform partially ionized gas is suddenly brought
in contact with a cold metal wall the state of the gas in the vicinity
of the wall will be strongly modified by the presence of the wall.

The temperature of the heavy particles at the wall will be
close to the surface temperature of the wall if the time scale of
observation t_ is much greater than the mean free flight time ty of
the heavy particles. As a result of the high value of the density and
the heat conductivity of the wall this contact temperature will be
close to the initial wall temperature. This induces a strong non-
uniformity of the gas temperature which implies a heat flux from the
hot gas towards the wall.

Due to the strong catalytic influence of the wall, the degree
of ionization of the gas at the wall will be very low. This induces
a strong non-uniformity in the composition of the gas which results
into a diffusion flux towards the wall.

The relative importance of the heat conduction and of the
diffusion on the structure of the boundary layer is given by the

Lewis number Le:

mh Am
2 a
Le = —_ —_—
5 o 5 V.21
ia

At the outer part of the boundary layer (Le)°° = 0(10) so that heat
conduction is dominant. Close to the wall (Le)W = 0(1) and we expect
therefore that in the inner part of the boundary layer diffusion and
heat conduction are of equal importance.

The structure of the boundary layer will also be determined
by the relaxation rate towards local thermodynamic equilibrium.
Close to the wall, as a result of the low electron density, the flow
is frozen and the electrons and heavy particles behave independently.

Far from the wall due to the high electron density the relaxation
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Figure V.5 Deviation of the state of the plasma from local

thermodynamic equilibrium as a function of the distance to the wall.
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time 1s small and local thermodynamic equilibrium is approached.

The high electron density implies also a high heat conductivity of

the mixture as a result of the electron contribution and a large
specific heat due to the energy involved in the ionization.

The various effects are clearly illustrated by the behaviour of a/aeq
and Th/Te as a function of x for t = 1.96 x ]0—43 (figure V.5).

The behaviour of the fluxes Qes 95 95 and of the velocities V and u
are given in figures V.6 and 7.

For these data we see that the boundary layer can roughly be separated
into an equilibrium outer part dominated by heat conduction (region I,
x = 1 mm), a relaxation part (region II, 0.1 mm < x < | mm) and a
frozen inner part (region III, x < 0.1 mm).

More insight in the influence of the coupling between the various

processes is obtained by considering the limiting cases of the model

(section V.f).

Influence of the wall boundary conditioms.

From the previous discussion we have seen that the electron
temperature and density profiles depend strongly on the éoupling
between the transport processes and the reiaxation phenomena.

However the discussion is obscured by the influence of the boundary
conditions. We consider therefore some calculations with fixed value
boundary conditions instead of the collisionless sheath model.

When a value of a(0,t) = 10_6x a_, lower than the value
predicted from the collisionless sheath model,is used, the deviation
of the o, profile from the calculations with the collisionless sheath
model is negligible. A value for a(0,t) = 10~3x o corresponds to an
electron density ne(O,t) two orders of magnitude higher than the value
calculated with the collisionless sheat model.

This high electron density might not be physically unrealistic as the
photoionization can produce high electron densities at the wall
(Vervisch (79)). We are mainly concerned with the behaviour of the
electron density which we can determine experimentally, x > 0.4 mm.
From figure V.8 we see that for a(0,t) = IO_3x o and for

0.2 < 'I‘e(O,t)/TQ0 < 1.0 there is no significant deviation (less than

10%Z) of n_ from the values calculated with the collisionless sheath
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model for x = 0.4 mm,
This result can be understood by the fact that the degree of

ionization in the inner part of the boundary layer is relatively low.
The heat flux at the wall and in the inner part of the boundary layer
are determined by the atomic heat conduction.
Therefore the heat conduction dominated outer part of the boundary
layer will not be semsitive to the behaviour of the electrons in the
inner part.

In spite of the large uncertainties in the model for small
distances from the wall it is certainly meaningfull to compare the
experimentally determined electron density profiles with the

calculated profiles.

8 T T T T
t =100us

L M,=815 |
P, = 666Pa

61 T, 2 294K _

collisiontess sheath

4

I & | = T _

(Tohy | o :3030(00 ]

- (Te)w:O.Z To
2 -
0 1 1
0 1.0 2.0

X [mm]

Figure V.8 : Influence of the boundary conditions

at the wall on the electron density profile.
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V.£f. Influence of relaxation processes on the structure of the

boundary layer. &

We now consider limit cases of the thermal Rayleigh problem
discussed in the previous section. When the relaxation time for a
process is large compared to t_ the situation is said to be frozen

(fr), the corresponding source term is negligible i.e.:

M. = 0 V.22

or

€ = 0 V.23

The consideration of a frozen limit does not change the mathematical

formulation of the problem.

When the relaxation time for a process is small compared to

In such a case the corresponding equilibrium relation:

(nﬁ/na) = (nz/na)eq ‘ V.24
or

T =T V.25

can be used in order to eliminate one of the independent variables.
The corresponding differential equation '(IV-1 or IV-7) is used to
eliminate the source term (Mi or seh) from the other equationms.

The two relaxation processes (Mi and eeh) are independent, we
obtain therefore from the combination of the three possibilities
frozen (fr), reaction (re) and equilibrium (eq) nine models.

The relation between the models is clarified in table V.2.

8 Note:
The study of the equilibrium and frozen limits has been carried out

by R. van Panthaleon van Eck.
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egE~-egM reE-eqM
1 diff.eq 2 diff.eq
b.c.: b.c.:
Te(O,t)=Th(0,t)=Tw Te(O,t)= 0.7 T,
o (0,t)= aeq Th(O,t)= TW
a (0,t)= aeq

eqE-reM reE-reM
2 diff.eq 3 diff.eq
b.c.: b.c.:
Te(O,t)=Th(O,t)=TW Th(O,t)=TW

_ 1/2 collisionless
V(O’t)_(kTe/mh) sheath
eqE-frM reE~frM
2 diff.eq 3 diff.eq
b.c.: b.c.:
Te(O,t)=Th(0,t)=Tw Th(O,t)=TW

_ 1/2 collisionless
V(0’‘l:)_(kTe/mh) sheath

Table V.2.

Relation between the nine models.

€q
E

Abbreviations:

frE-eqM

2 diff.eq

b.c.:

Te(O,t)= 0.7 T
Th(O,t)= TW

o (0,t)= aeq

frE-reM

3 diff.eq
b.c.:
Th(O,t)=TW

collisionless
sheath

frE-frM

3 diff.eq
b.c.:
Th(o,t)=TW

collisionless
sheath

equilibrium, re = reaction, fr = frozen

€ M = M,

eh’® i

diff.eq. =

b.c. =

differential equation

boundary conditions.



When equilibrium is assumed for a given process the number of
unknowns is reduced and one of the boundary conditions has to be
removed. The boundary conditions used are given in table V.2.

These boundary conditions must be considered as ad hoc assumptions. &
In the reE-eqM and frE-eqM cases we used the fixed value boundary

condition:

T (0,t) = 0.7 T V.26

in order to obtain values of Te(O,t) of the same order of magnitude

as the one obtained in the reE-reM model.

Comparison of the reaction model with the limiting cases.

In figure V.9 we compare the heavy particles temperature
profiles in the nine cases. We see that Th is rather insensitive to
the relaxation model. The most striking difference between the various
models is the increase of the boundary layer thickness in the eqE
cases in comparison to the reE-reM model.

This is due to the increase in the electron heat flux S caused by
the strong electron temperature gradient as a result of the coupling
between the electron- and heavy particle temperatures (figure V.10).
In the eqE-frM case this effect is enhanced by the lower specific
heat capacity of the gas mixture (no recombination) and the higher
contribution of the electrons to the heat conduction (high degree of

ionization).

8 Note:
Instead of the fixed value boundary condition for the electrons (v.26)
we might have used in the reE-eqM and frE-eqM cases the Bohm criterion

1/2)'

as boundary condition (V(0,t) = (kTe/mh)
However it is not correct to use equation V.19 without maintaining the

Bohm criterion since this is used to eliminate A®.

Such an erroneous boundary condition leads to the numerical

instabilities reported by Hutten (76).
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The calculations in the reE-frM case have only been carried
out for t < 16 us. Calculation for longer times is not possiﬁle
without major modifications of the numerical model. The high density
of relatively cold electrons close to the wall lowers considerably
the thermal relaxation time and increases the already existing
stiffness of the equations. The stiffness of the electron energy
equation induces numerical instability so that in order to carry on
the calculations one should use an eqE-frM approximation.

However in the reE-frM case the electron demsity close to the wall is
so high that even the ideal gas law is not valid (ne = 0(1023m—3),

Te = O(IOBK).

In such a case the expressions used for the transport coefficients
are certainly not valid, hence the model has no physical meaning.

In figure V.10 the electron temperature profiles are given.
Except for the frE-frM model the electron temperature is always
higher than or equal to the heavy particle temperature. In the
reE-reM case this is due to the weak coupling between the electron
temperature and the heavy particle temperature combined with the fact
that in our model the energy released in the recombination processes
is transfered to the electrons. The absence of recombination in the
reE-frM and frE-frM cases results in a lower wall temperature Te(O,t)
than in the reE-reM and frE-reM cases.

In figure V.11 the electron density profiles are given.

In the frM cases the electron density in the outer part of the
boundary layer is proportional to the demsity and thus to T;I.

This explains the increase of n, towards the wall. In the inner part
of the boundary layer where diffusion is important the electron
density decreases towards its value at the wall. In the eqE-frM model
the diffusion dominated part of the boundary layer is thinner than in
the reE~frM and frE-reM cases. This is due to the dependence of the
diffusion velocity V(0,t) on the electron tempera?ure Te(O,t) (Bohm
criterion).

The frozen behaviour of n, in the outer part of the boundary
layer and the diffusion dominated inner part is still recognized in
the frE-reM case. The reE-reM case has been discussed in section V.e.

The behaviour of n, at the wall in the reE-eqM and frE-eqM
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S «© -5
(107%) (10*K) (10°Pa)
7.5 1.83 1.03 2.49
8.5 3.89 1.13 3.11
9.5 6. 44 1.20 3.79

Table V.3:
State of the plasma outside the boundary
layer as a function of the Mach number for

the initial conditions: Py = 666 Pa, Tl = 294 K.

1.2 ,
regE-reM
| - ——— eqE-egM _
MS:Q5
10 |
@ 8.5
& [oo====
2T 7.5 ]
08 -
!
107 104 tis] 10°3

Figure V.12 : Heat flux at the wall as a function of

time. P, = 667 Pa, T1 = 294 K.




cases is determined by the boundary conditioms chosen for Te and Th'
No physical interpretation should be given to this behaviour because
it is a direct consequence of our choice of the value of Te(O,t)

(eq. V.26).

Heat flux at the end-wall.

In figure V.12 we compare the molecular heat flux (qt)w in the
reE-reM case with the heat flux in the eqE-eqM case, for various Mach
numbers.

The reference heat flux ot is defined by:

Tpc)
Qop =~ (T, - T) (—E BV ,)1/2

ref V.27
Tt

where cP is the specific heat at constant pressure of the gas.

From these data we see that the eqE-eqM model yields an excellent

estimate of (qt)w for t = 10—55.

In table V.3. the state of the plasma outside the.boundary

layer is given for the corresponding Mach numbers.
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VI. THE LASER SCHLIEREN METHOD

VIi.a. Introduction

When a laser beam propagates through a refractive index
inhomogeneity it will undergo a "deflection" and a "deformation”.
Measurements of the deflection can be used to determine the structure
of the inhomogeneity. Such a measurement method is called 'laser
schlieren”. The method developed by Kiefer (66) is often used for
the study of relaxation phenomena behind shock waves (Kiefer (79)).

Vrugt (76) considered the use of the laser schlieren method
for the determination of the structure of the thermal boundary layer
at the end-wall of a shock tube in non-ionized gases. He estimated
the influence of diffraction and of deformation of the beam on the
schlieren signal using the theory of Kogelnik (65), that applies to
gaussian beams in a lens-like medium.

Hutten (76) used the laser schlieren method as a plasma
diagnostic method. From simultaneous schlieren measurements at two
different wavelengths he could separate the electron contribution
to the schlieren signal from the atom contribution. This method is
similar to the two-wavelengths interferometry of Alpher (58).

We give here an analysis of the laser schlieren method based
on the paraxial scalar wave theory. The basic equations are reviewed
in section VI.b. A model for the set-up and the definition of the
schlieren signal are given in section VI.c. We first neglect the
influence of diffraction and absorption and derive formulas based on
a geometrical optics analysis (VI.d.).

We show that for a lens-like medium and a suitable chosen
configuration of the laser beam, the schlieren signal is proportiomal
to the refractive index gradient at the center of the beam.

The influence of diffraction and absorption is discussed in section
VI.e.

In section VI.f we give a short review of the principle of the two-

wavelengths laser schlieren method.
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VI.b. Basic equations and solutions

The analysis of the laser schlieren method given further is
based on geometrical optics and scalar wave theories of light.
These approximations are discussed by Born (75), Landau (69) and
Marcuse (72). ’

The scalar wave equation is derived from the Maxwell equations.
The fields are assumed to be weak so that linear comstitutive
relations can be used. The plasma is assumed to be isotropic. The
electric fiel E, the magnetic field H and the charge density p, are
separated into a rapidly changing harmonic function of space and time

and a slowly varying amplitude:

E = eexp(i(wt - 1))
H = hexp( iet - 1))
pe = P.exp( ilwt - 1)) - VI.1

~

where e, h and p, are the amplitudes.
w is the frequency which is assumed to be constant.
¥ is the phase.

From the Maxwell equations it appears that e and h are.in
first approximation normal to VEI. For conditions such as considered
here the wave equations for the components of the field are identical.
The field can therefore be described by the amplitude e of the vector
e.

The scalar wave equation is:
2 2 2 ; . 2
Ve + (k" - (VD)Te = 1 ( 2(VI).(Ve) + e V°%) VI.2

The wave number k is defined by:

ou(ew - iog) » VI.3

-
]

where y is the magnetic permeability, € is the permittivity and o is
the conductivity.

The refractive index N of the plasma is related to k by:

N = ke /o VI.4
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where ¢ is the speed of light in free space.
Using a photo-detector we measure the average energy flux density I

defined by:

T/w
E x H dt’ VI.5

w_
27 /e

In the scallar wave approximation I is given by:
ee (VL) VI.6
When the variations of (VI) are small it is useful to set:

VE = ( 0,0,ko) : VI.7
where ko is a constant. Using the arbitrariness in the definition

(VI.1) of ¥ and e we chose for ko the value of k at the origin.

In the paraxial approximation (R) the wave equation becomes:

2 2

224 22 L -kt ye = 2ik 28 V.8
2 2 o o 9z

X oy

In this approximation I is given by:

- o

I = (0,0,—;-e*e k) VI.9

The paraxial scalar wave approximation is used further when diffraction

is expected to be important.

f Note:

2
1281 & 122
o 9z

9z



When diffraction can be neglected we use the geometrical
optics approximation. In this approximation VI is determined from the
so called Eikonal equation:

wn? = 2 VI.10

which follows from VI.2 by neglecting the other (higher order) terms.

Light rays are defined as trajectories r, = (xr,yr,zr) for which:
dr_ x v& = 0 VI.11
Using equations VI.10 and 11 Born (75) derives a relation between r

and k which is refered to as the ray equation (see Appendix V).

In the paraxial approximation of geometrical optics and for the case

of a one-dimensional inhomogeneity, e.i.

k = k(x) VI.12

the ray equation becomes:

dzx
r 1 d 2
2 E-( ax (k/ko) )x =X
d z T
d2yr
S = 0 VI.13
d z

where the direction of propagation of the light beam is parallel to
the z axis.

The geometrical optics approach fails in focal points (where the light
rays intersect each other) because V2e cannot be neglected in

equation VI.2.

In the laser schlieren set-up considered the laser beam is focused in
the test section. For this reason some features of the laser

schlieren set-up can only be understood on the basis of the scalar
wave approximation (VI.8). However it appears that the geometrical

optics analysis is an excellent approximation which has the advantage
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to be close to our intuition. We give therefore in section VI.d an
analysis of the laserischlieren method based on geometrical optics.

We now consider solutions of the scalar wave equation VI.S8.

The initial conditionms e(x,y,0) are assumed to be given and we
consider the behaviour of e for z > O. -

For a parabolic medium (lens-like) when kz(x) ié a quadratic function
of x, exact solutions can be obtained by using the mode theory of
Carsperson (76). This theory includes the possibility of absorptiomn
and emission.

In the special case of a gaussian beam (single mode) the solution is
identical to the approximation used by Vrugt (76). A detailed
analysis is given by Carsperson (73). '

An alternative solution is given by Arnaud (73) using Fresnel
integrals.

When higher order terms in the series expansion of kz(x) are not
negligible no exact sblution_is available. Calculations based on the
W.K.B. method have been carried out for fiber optics by Marcatilli
(67). Marcuse (72) used for the same problem a numerical procedure
based on a thin lens discretisation scheme in combination with Fresnel
integrals.

We use here a perturbation method based on the mode theory. This
procedure is described in Appendix V.

In our further discussion we will mainly consider aspects of the laser
schlieren method which have not been treated by Vrugt (76) or

Carsperson (73).
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VI.c. Model of the set—up, definition of reference frame and signal

A sketch of the experimental set-up is given in figure VI.I.

? =1 mm
mirror,
™~ { :Q laser
; ATy \
o PR 3
~ .
:::: test -section
=
N
Lt NCAAE |
2 =1mm
—light
beam
4 1 e==a-detection
Z

Figure VI.1 :; Sketch of the laser schlieren set-up

and definition of the reference frame.

The laser beam is positioned parallel to the end-wall of the

shock tube. The x axis is normal to the end-wall while the z axis is

taken along the median of the undisturbed beam (the gas in the test

section is uniform). The median X is given by:

® X
f 1" 1(x,y,2) dxdy

—CO00

«©

= J [ I(x,y,z) dxdy

- X
m

VI. 14

In order to avoid complications due to the influence of reflections

at the windows the beam is tilted with respect to the direction

normal to the windows. The angle of incidence is chosen in such a way
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that reflections can be intercepted by a diaphragm (figure VI.2).

The influence of the windows on the behaviour of the beam can be

reflected
beam transmitted

beam

windows by a diaphragm.

incident
light beam |
LZ| test section L= | 1
diaphragm
Figure VI.2 : Interception of the reflections at the

described as a reduction of the distance from the test section to the

detection plane by the amount § zg:

where:

N
w

L
w

é zg = ( (NW/NO)—I) Lw

is the refractive index of the window

is the thickness of the window.

VI.15

We assume that the laser beam passes between z = 0 and z = L through

a one-dimensional inhomogeneity.

The refractive index N is given by:

N
N
=

N(x)

NO {

It
AN A

N O
O N

L is the thickness of the test sectiomn.
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The detection system 8 placed at z = z4 is assumed to yield a

signal S given by:

(=] (2] [e] O
s=J I(x,y,zd) dxdy - f f I(x,y,zd) dxdy VI.17
—co I} -0 - 0

In the following section we consider the relation between S and N(x).

2 Note:
Two different detection systems have been used.

They are described in Appendix VI.

In formula VI.17 we assume an ideal detector consisting of two equally

sensitive half planes.
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VI.d. Geometrical optics analysis

The basis of the geometrical analysis of the laser schlieren

method is the relation:

o0 X -
s = 2 [ & I(x,y,zd) dxdy VI.18
—~ g

which follows from the definitions VI.14 and 17.
From the definition of S it follows that within the geometrical
approximation X satisfies the ray equation VI.13.

The initial conditions are:

xm(O) = X0

d d =0 VI.19
(d x /dz) 2=0

Using a Taylor series expansion of NZ:

n. .
2. 2 -3 A x-x ) VI.20
(N"= N (Xm011/2N (Xmoz jEJ j! (= xmo)

. . . 2
where nj are the normalized derivatives of N™:

o= ——%———(dJNz/de) VI.21
2 N (xmo) X o

we obtain by integration of VI.13:

anZ n222 n324
xm(Z)-xmo=—~2—-(1+-ﬁ+%-0—+... ) VI.22
for 0<z< L
and
Xm(z) - xm(L) = (z —L)(dxm/dz)z=L VI.23
for L < z.

For small deflections we can assume that for 0 < x < X I(x,y,zd) is
®

independent of x and we obtain:
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S = 2x _i I(O,y,zd) dy T OVIL24

The value of I(O,y,zd) is slightly affected by the "deformation" of
the beam due to the focusing effect of the inhomogeneity, it can be
estimated by using a "thin lens'" model for the inhomogeneity, e.i. we

replace the inhomogeneity by a thin lens placed at z = L/2 with focal

distance f:

f = —1/(n2L) VI.25

where we assume that n2L2 <1.

When the light beam is focused at z = z, and in the limit for:
f >>[zw—L/21

zd>>|zW—L/ZI

zd>> L

Using the fact that the ratio of the apertures of the incoming and
outcoming beams is equal to ((zw - L/2)/£) - 1, we find that the

signal S is proportional to:

n
N2 2 L ‘
n, L (1 + - 1a -+ r12L(zW - 5) VI.26

We see that if the beam is positioned in such a way that:

L _ _6%L
2, -3 = : VI.27

the schlieren signal is proportional to the refractive index gradient
of the inhomogeneity along the z axis (x = x o)'

The proportionality constant between S and nT is determined by the
calibration of the system. The calibration signal Scal is obtained

by translating the detection along the x axis over a distance xd.
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For small deflection 8 angles nlL we obtain:

d Scal
5= Urgg, !

L
2 Xd=0 n]L (zd - ED VI.28

if VI.27 is fulfilled.

In addition to the simplifications introduced above, the validity of
VI.28 is restricted by the assumption that the influence of
diffraction is neglible. This effect is comsidered in the next

section.

@ Note:

In some experiments the deflection was not small and a correction for
the variation of I(x,y,zd) was introduced.

This correction is based on the assumption that the shape of the beam
is gaussian. This correction was always less than 2%. For the
calculation of this correction we neglected the influence of the

distortion of the beam.
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VIi.e. Diffraction and absorption

Diffraction will cause the light beam to have a finite radius
at the focal plane and a related divergence at the detection.
The finite dimension of the beam in the test section yields a
1imitation to the use of the schlieren method close to the end-wall
and a contribution of higher order derivatives of the refractive index
to the signal. The absorption of light in the test section will induce
a reduction of the beam power and, if the absorption is non-uniform,
a distortion of the beam shape. Both effects can be estimated with
the theory of Carsperson (73, 76). The influence of the reduction of the
beam power has been taken into account in the interpretation of the data.
The distortion of the beam (due to the absorption) has been neglected.
We now discuss the influence of diffraction for the case of
a gaussian beam without absorption. A gaussian beam in free space

corresponds to the zeroth order mode o (Appendix V):

e(x,y,0) = o VI.29
The radius W of the undisturbed beam is defined as the distance from
the beam axis to the points where the power flux density has been
reduced by a factor ez. W is given by:

2 2 z-z
W v (1+(Z——W)2) VI.30

o

where v is the "waist" of the beam and z the position of the waist.

z, is the '"Rayleigh length" defined by:

_ 2
z, = (ko v )/2 VI.31

Experimentally W(zd) is determined from:

l f i) I(x,y,zd) dxdy
W(zg) = 2(%)2 s VI.32
G Scal/dxd)xd =0 l

For other values of z (z # zd), W is determined by measuring the power
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of the beam intercepted by a knife as a function of the position x of

the knife edge (formula similar to VI.32).

w_and z  are determined from measurements of W at various positions.
In Appendix V a relation between the signal S and the

refractive index profile is obtained by means of the mode theory.

We present here the results for the case:

z, = L/2
Z4 > L
and
z, > z VvIi.33
d o

The first two conditions are introduced in order to reduce the algebra
involved in the calculations. The third condition is taken so that
there is no influence of diffraction on the behaviour of the beam at
the detection.

When the calculations are carried out up to the first approximation

(in the mode expansion) we find:

ds 2
L cal N,w
S = (z5 - (- 30
a 2 dxd )xdzo L (“1 t
n w4
5% 31, 5 2.2 1 2.4
* Gg + TgL/kw,)" + gpL/kw)) )+
VI.34
2
for qlL < =
O 0O

In second approximation we find an additional correction, given by:

ds 3
L cal L n,n
AS = (z.~3)(- — 172 +
2 2 3 2.2 1 2.4
N3V Te (7 + g(L/kowo} + ﬁ(L/kowO) Y F oeeee)
2 VI.35
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Comparison of VI.34 to VI.22 and 23 confirms that the geometrical
optics approach is valid for a parabolic medium. |

This statement is demonstrated for more general conditions by Marcuse
(72) and Carsperson (73). We also see that in order to minimise the

influence of the higher order derivatives we should chose W, such that:

w < w < w_. VI.36
op o min
where w corresponds to the beam configuration for which the beam

min
radius at the windows W(L) is minimal:

1
= 2
Woin (ko/L) VI.37
and wop corresponds to the beam configuration for which the average
beam radius W in the test section is minimal:
ﬁ =

% [ W dz' VI.38
.0

For z, = L/2 we have:

1 1
- 3 z
wOP (1/3) (L/ko) VI.39
Vrugt (76) showed that for z = L/2 and w, = Wop the influence of the
second order derivative on the distortion of the beam is minimised.
Formula VI.38 has been used for the correction of the signal for the
influence of n3.\This correction was always smaller than 3Z.

The sensitivity I of the schlieren set-up can be defined by:

z. - L/2 z, - L/2

r = d (g% _ v —;}T('Z'T— VI.40
o 0 Z:Zd a’
J [ I dxdy o

From this definition we see that the sensitivity of the set-up can be
increased by focusing the beam at the detection.

Due to the divergence of the beam a high sensitivity will correspond
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to a large beam radius in the test section.
For a given beam radius in the test section there is therefore a limit
to the sensitivity of the set-up which is obtained when the beam is

focused at the detection and (zd - L/2) = z .
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VI.f. Principle of the two—wavelengths laser schlieren method

We now consider the dispersion relation VI.3.

Using definition VI.4 we can write VI.3 as:
2 .
NT = (u/uo)( (a/eo) - l(c/aom) ) VI.41

where uy is the permeability of vacuum and € the permittivity of

vacuum. Following Landau (69) we can state:
(u/uo) = 1 VI.42

The dissipative (real) part of the electric conductivity ¢ can be
neglected for the wavelength considered because the electron-heavy
particle collision frequency is much smaller than w.

Then we can write (Born (75)):

VI.43

(s/eo) is estimated by assuming that the contribution of each

particle is independent of the contribution of the other partidles:

_ z
(e/ao) 1 = 4 q 3oy Pj VI.44

where Pj is the polarisability of a particle j.
From the experimental studies of Alpher (65) and Bristow (71) it
follows that the contribution of excited argon atoms can be neglected.

Following Peck (64) we use the polarisability Pa of argon atoms:

2
P, = C +Cu VI.45
with:
21C, = 10.326 x 10720 5
8 1°¢’C, = 5.417 x 1074

The value of Pi of singly ionized argon has been determined by
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Bristow (71):
P. = (0.65 + 0.08) P VI.46
i - a

This value agrees with the estimates of Alpher (65) and Baum (75).

Using VI.42 to 45 we can write VI.41 as:

2
N (mi) 1 = 2 (Ai n, + Ei ne) VI.47

and

= 1 '
nl(wi) Ai n) + Ei nl VI.48

Using VI.48 we can determine the electron and aton density gradients

né and n; from two simultaneous measurements of n, at two—wavelengths

(wl and wzl.
Note:
1= 6.328 x 10 T 3
A= 1.046 x 10727 m3;
E,=-1.727 x 10_28 m3;
1,=1.152 x 10—6m ;
A= 1.036 x 107293
E2=—5.887 x 10—281113 ;
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ViI. EXPERIMENTAL DETERMINATION OF THE HEAT CONDUCTIVITY OF
NON-IONIZED ARGON

VIl.a. Introduction

In this chapter we present experimental data on the structure
of the thermal boundary layer for cases in which ionization is
negligible. Using the procedure described in chapter II we obtain
heat conductivity data as function of the temperature. The basic idea
is to determine the state of the gas as a function of position and
time and to use the energy equation to determine the heat conductivity
A

Because the flow is one-dimensional, the state of the gas is
determined by (p, p, u). The pressure p is measured at the end-wall
by means of a piezo-electrical transducer. The density gradient
(9p/9x) is measured with the laser schlieren method (chapter VI).
Integration of the density gradient yields the demnsity difference
(p -p,)- The density p_, outside the boundary layer, is estimated as
described in section II.B; p,(0) is assumed to be equal to the
Rankine-Hugoniot value Pge The velocity u is related to éhe velocity
u_ outside the boundary layer, through the continuity equation -
(II.18). The velocity u_ can be calculated with equation II.16 when
the heat flux at the end~wall q, is known. For q, we use a
theoretical estimate based on the thermal Rayleigh problem
(section III.b) and the local similarity approximation discussed in
section ITII.f. As will Be shown in section VII.b the estimate for q,
is rather insensitive for variations in the expression used for heat
conductivity.

As suggested by Vrxugt (76), the procedure outlined above is
considerably simplified when the structure of the boundary layer is
self-similar. Deviation from the self-similarity resulting from the
time dependence of the pressure appeared to be negligible (section
VII.d) for the conditions considered.

In section VII.b we describe the experimental procedure, for
the determination of (p , po_, u ). In section VII.c we consider the
non-uniformity of the flow in the reflected shock region.

The laser schlieren data on the structure of the boundary layer are
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given in section VII.d. The heat conductivity data are presented in

section VIiI.e.

Technical notes:

Set—up:
The principle of the set-up and the accuracy of the measurements are
discussed. Some additional technical information is given in Appendix

VI.
Shock tubes:

Most of the experiments presented in this chapter have been carried
out with the same shock tube facility as used by Vrugt (76). This
shock tube (cross section 10 x 10 cm2) is refered to as shock tube I.
Additional experiments have been carried out in a smaller shock tube
with a cross section in the shape of a racing track (4.2 x 8 cm2)

refered to as shock tube II.

Diaphragms:

Aluminum diaphragms of 0.5 and | mm thickness were used.

In order to achieve a specific Mach number the diaphragms were

encarved following a pattern given in Appendix VI. The diaphragm is

characterized by: (thickness/depth of encarving).

Driver gas:

For Ms < 3.5 we used N2, for Ms > 3.5 we used H, as driver gas.

2

Run:

Each run is denoted by the date followed by a series number and the

shock tube number (I, II): (date, number/shock tube number).
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VII.b. State of the gas outside the boundary layer

Using the procedure outlined in section II.b we determine
(p,s P> u ) from the measurement of the initial state (pl, p ), the

«©

incident shock Mach number M and the end-wall pressure whlch is
equal to p_.

P: Before each experiment the test sefgion of the shock tube was
evacuated to a pressure pooof less than 10 “Pa. The test section was
filled with argon (N50 of Aga/Air liquide, impurity level about 10 ppm) .
The initial pressure P; was measured by means of a van Essen oil
filled micro-manometer of the Betz type (absolute accuracy better than
2 Pa). For some measurements with P, higher than lO4 Pa a Bourdon type
Wallace-Tiernan manometer was used (accuracy better than 1%).

The leakage (outgasing) rate of the shock tube was about 2 x 10-3Pa/s.
The time between the closing of the pump and the shot was about 3 min.
The partial pressure P, of the impurities (mainly air) was thus of the

order of magnitude of 0.4 Pa.

Tl: The temperature T] was measured with a mercury thermometer in
thermal contact with the shock tube wall (accuracy 0.2 K).

M : The Mach number MS was calculated from equation II.l1 where

S

¢, is given by:

c, = (vy R Tl)l/z VII.I
with y = 5/3, R = 208.13 m?s 2k,
v.: The speed of the incident shock wave v, was determined from

g
the measurement of the travel time of the shock between two piezo-

electrical transducers (Kistler type 603 B) mounted flush in the side-
wall at distances X and X, from the end-wall (see table VII.1).

An additional pressure transducer is mounted at Xq.

Shock tube X, X, X3
(mm)  (mm)  (mm)
I 995 30 945
IT 615 125 190

Table VII.1: Positions of side-wall pressure transducers.

109



The pressure signals triggered electronic counters.

The inaccuracy in the time measurement, about 0.2 us, was estimated
by the simultaneous use of various counters (Systron and Donner type
7034 or HP type 5345 A) in combination with various triggering
systems.

The value of v measured in this way is referred to as (Vs>1 and has

an accuracy of 0.1%Z. The corresponding value of MS is (Ms}l'

P.* The end-wall pressure p was measured by means of a piezod
electrical transducer (Kistler 203 B) mounted flush at 2 cm from the
middle of the end-wall surface. The charge amplifier (Kistler 5001)
was used in the position "long'" corresponding to a RC-time of ca I s
for leakage of the charge from the crystal. In order to avoid
heating of the gauge, the sensitive surface was coated with a non-
transparent layer (ca 0.2 mm) of black silicon rubber.

The coated transducer was calibrated dynamically in combination with
the charge amplifier over the range 105 to 2 x 105Pa. The calibration
pressure step, released by the opening of a magnetic valve, was
measured by means of a calibrated bourdon type manometer (Wallace -
Tiernan, model n°p 62-A).

The finite opening time of the valve and the wave phenomena in the
system restricted the validity of the calibration procedure to times
greater than 2 ms. The reproducibility of the calibration was better
than 0.1%. The response of the gauge appeared to be linear within
0.4%. The short time dynamical response of the gauge was checked by
using shock tube experiments with high initial pressures. A typical

signal is shown in figure VII.I.

Figure VII.! : End-wall

pressure measurement.
Run (80020705/II),
Diaphragm (1 mm/0.35 mm) Q

1.1+ —

~
M), = 5.160; a8 1.0+ 1 -

P, = 6665 Pa; 2

T, = 294.4 K. 0 700

t (us)

i10



The registration of the signals is described in Appendix VI.

Because of the resonances (see figure VII.1) one can only measure the

pressure accurately by averaging over a period of ca 10 us.

From figure VII.I we see in this way that the end-wall pressure agrees

within 27 with the Rankine-Hugoniot value Ps- (See for additional data

chapter VIII). The overshoot in the pressure signal in the first 3 us

depends strongly on the gauge.

The accuracy of the pressure measurements(2%) has been confirmed by

the study of van Dongen (78) in which the response of piezo~electrical

transducers is compared with pressure data obtained by means of the

light reflection method (van Dongen 75,77).

In figures VII.2, 3 and 4 we give the pressure data for the

conditions at which boundary layer measurements have been carried out.

1.10

QD/PS

100

[| 1 ! 1
200 400 600 800 1000
t{as]

Figure VII.2 : End-wall pressure as function of time.

average Mach number MS = 2.73, shock tube I.

P, = 667 Pa, T, = 295K,

End~wall configuration of figure VII.S5a.
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{ { 1 1
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tlas]

1.00

Figure VII.2 : End-wall pressure as function of time.

average Mach number MS = 3.0, shock tube I.
End-wall configuration of figure VII.5b.
Details about the initial state and Mach number data are

given in table VII.Z2.

1.10 T T T T
13
8
S 2 :
R \ 0
8 —10
o’ T
14
1. 1 i 1 1
000 200 400 600 800 1000
tlas]
Figure VII.4 : End-wall pressure as function of time.
average Mach number MS = 5.3, shock tube I.

End-wall configuration of figure VII.5b.
Initial conditions and Mach number data are given in

table VII.Z2.
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80062701/1
80062702/1
80063001/1
80063003/1
80070101/1
80070102/1
80070103/1
80070302/1
80070401/1
80070701/1
80070801/1
80070802/1
80070901/1

80070902/1

Table VII.2

(Pa)

660
665
671
668
664
670
667
666
667
663
667
667
667
668

(K)

291.
292,
294.
292.
292.
292.
292.
292.
292.
292.
292.
292,
293.
292,

O NN

O~ w0~

—

2.991
3.007
3.022
2.998
2.849
2.834
2.826
5.914
5.310
5.319
5.292
5.324
5.333
5.374

diaphragm
( () / (mm) )

(0.5/0.15)
(0.5/0.15)
(0.5/0.15)
(0.5/0.15)
(0.5/0.25)
(0.5/0.25)
(0.5/0.25)
(0.5/0.15)
(0.5/0.25)
(0.5/0.25)
(0.5/0.25)
(0.5/0.25)
(0.5/0.25)
(0.5/0.25)

Initial conditions and Mach numbers

corresponding to figures VII.3 and 4.



We observe that the data of figure VII.2 are lower than the data of
figure VII.3. The data of figure VII.2 have been presented in our
previous study (Hirschberg 78).

The main difference between these two series of measurements is the
configuration of the end-wall of the shock tube: (see figure VII.5
a and b).

AN I~
pressure
gauge
A kX /-
a)
| SV = —
pressure
gauge — |
. o~
N [ A A

b)

Figure VII.5 :

End-wall configurations corresponding to the data of

figure VII.2, 3 and 4.

This suggests that the discrepancy between the behaviour of the
pressure measurement series might be due to variations in transition
from a laminar to a turbulent side-wall boundary layer induced by the

windows.

qw: The heat flux qw at the end-wall of the shock tube was
estimated on basis of the thermal Rayleigh problem (section III.b).
The influence of the time dependence of the pressure was taken into

account by means of the local similarity approximation (section III.f).
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For the calculation of (qw)th we used a Afit based on the heat

conductivity data available (see figure VII.6). R

T T

Mip=00172(T/29008 | T<500K
:00568(1/1500%7 5 T>500K

.02+ b
s "% I’, \\ 7
=z 100 ' ‘§\ \‘\
s < H N
! ~ ‘ \‘
~< i T~ 1
---- Touloukian(70)
: 0.98} T
:, x  Haarman (73)
| —— Chen (75) ]
0.960 ) 1 2 3

T 1103K]

Figure VII.6 : Comparison of the expression used for

the heat conductivity in the calculations of (qw)th

with data on the heat conductivity.

f Note:

Afit is slightly discontinuous at T = 500 K.
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In order to obtain some insight in the influence of the uncertainty
in the expression used for the heat conductivity we compare in figure
VIi.7 (qw)th to the calculated values of q, for various expressions

for the heat conductivity.

1.05 T T -
T,&6000K
2000 ]
1000
100} i
£ 500
3
o
< 290
>
0.0172(1/290)08 ; T<T
095 A=z 08 N
00172(T /2901 %%(1/ T 007 . T > T
050, 4 : 3 5

3
T5[10 K1l

Figure VII.7 : Influence of the expression used for

the heat conductivity on the heat flux at the end-wall.

These expressions yield values of the heat conductivity at high
temperatures (T5 2 6000K) that differ by 307 (see figure VII.8),while

the data on q, show a corresponding variation of 8Z.
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Further more we see that in agreement with the conclusion of Lauver

(64) the heat flux q, is rather insensitive to variations on the heat

conductivity in the outer part of the boundary layer.

012 T T T { T
Tref = 6000°K

T
- 0.1t

(S
Z
<

i 1 i 1 i
% 2 4 6
T [103K]

Figure VII.8 : Expressions for the heat conductivity

used in the calculations of the heat flux qw shown in

figure VII.7.
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VII.c. Non-ideal behaviour of the flow outside the boundary layer

The procedure described in the previous section for the
determination of the state of the gas outside the boundary layer is
based on the model of section II.b in which we assumed that the
incident shock has a constant speed and that the gas outside the
boundary layer is uniform.

In section III.e we reviewed the main sources of deviation of the
flow from this model. In the present section we give the corresponding

experimental data collected.

MS: As a result of the influence of the finite opening time of the
diaphragm and of the side-wall boundary layers the incident shock wave
does not have a constant speed (Mirels (66), Stupochenko (67),

Simpson (67), Boer (75), Reese (77), Zeitoun (79)). Using a third
piezo-electrical pressure gauge placed at a distance Xq from the end-
wall (table VII.1) we obtain a second speed measurement refered to as
(v.)y-

In shock tube I the traject X; T Xy was used for the measurement of
(vs)z. In shock tube II the traject Xy < x, was used.

The data collected on (Ms)l/(Ms)Z are given in figure VII.9.

The order of magnitude of the deceleration of the incident shock
measured (figure VII.9) corresponds to the order of magnitude of the
data found in the literature (see above).

From the scatter in (MS)l for a given initial pressure and diaphragm
one can get an estimate of the reproducibility of the experiments
(figure VIIL.9).

Neglecting the deceleration of the incident shock in the
procedure for the determination of the state of the gas outside the
boundary layer (section VII.b) we overestimate MS by about 0.57%.

This results in an overestimation of Ps by 1% which induces an

underestimation of p, by about 0.67.
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Figure VII.9 : deceleration of the incident shock
wave in shock tube II as a function of (MS)1 for
various pressures (see table VII.3).
Symbol diaphragm driver gas P,
((mm) / (mm) ) (Pa)
A (0.5/0.20) N2 667
v (0.5/0.35) N2 667
A (1.0/0.85) N2 667
v (1.0/0.65) N, 667
) (0.5/0.40) H, 667
+ (1.0/0.45) H2 667
o (1.0/0.40) H2 667
x (1.0/0.25) H2 667
® - - 2666
B - - 6665
O - - 13330
Table VII.3 : Symbols of figure VII.O
vt In a similar way as the incident shock wave the reflected

shock does not have a constant speed. In the initial phase of the

reflection process the reflected shock wave strongly interacts with

the end-wall thermal boundary layer (Piva (69), Sturtevant (64),
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Meldau (77)). .
This effect is clearly observed in measurements of v, carried out for
MS = 7.7 in a mixture of 99.5% Ar + 0.5% HZ' These data are described
in section VIII.c.

For longer times (t 2 20 us) the reflected shock velocity appears to
be about 107 lower than the velocity predicted by the Rankine-Hugoniot
relations. This effect is due to the non-uniformity of region 2 and
should therefore be closely related to the time dependence of the end-
wall pressure (section VII.b) and the non-uniformity of the reflected

shock region.

I Information on the non~uniformity of the reflected shock
region can be obtained from the laser schlieren data. A typical laser
schlieren record for X = 7 mm is shown in figure III.7.

Similar data for 0.6 mm < xm< 1.0 mm are shown in figure VII.10

incident

shock reflec ‘edboundar
\ shoc& Jlayer y

T 1

20+ .
_ xm:0.56 mm

——jﬁ | !

t (us] 40

Figure VII.10 : Short time behaviour of the laser

schlieren data.
MS = 2.83, P, = 667 Pa, Tl = 292 K.
Shock tube I.
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In figure VII.10 we observe successively in time the incident and
reflected shocks and the thermal boundary layer growth. In a similar
way as in figure III.7 between the shock compression and the "arrival"
of the boundary layer the laser schlieren signal does not vanish.

The schlieren signal measured is thus due to a gasdynamic
inhomogeneity. ®

This fact is confirmed by the correlation between the time dependence
of the pressure and the schlieren signal shown in figure VII.11. The
steaper increase of the pressure in experiment | corresponds to a

higher density gradient just behind the reflected shock.

L1 A ]
NS 1 2
s | 1| .
3k
~I
1.0f , , 1 ' Oh 1 0nl
0 t s 120 Oruss #0 0ppsy 40

Figure VII.1l : Correlation between the time

dependence of the pressure and the laser schlieren
signal (Xm = 0.6 mm), MS = 3.4, P, = 266 Pa,

T1 = 294 K, shock tube II.

@ Note:
A possible influence of the windows on the signal was excluded by
considering the schlieren signal obtained with Helium as a test gas.
In such a case for X, = 7 mm there was no significant schlieren
effect as we expected because of the lower refractivity of Helium.
Fused quartz windows were used.

BK 7 Crown glass used earlier shows significant schlieren effect.
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Figure VII,12 : Density gradient measured 10 us after

compression by the reflected shock as a function of the

distance from the end-wall.

Symbol shock tube P, MS
(Pa)

o 11 667 3.2

@ 1T 267 3.4

+ I 667 2.9

X I 667 5.3

In figure VII.12 we give the data on the density gradient measured

10 1is after the shock compression as a function of the distance x
from the end-wall. From these data we can estimate the non-uniformity
of the reflected shock region.

We conclude that for x 2 0.5 mm the density variations are of the
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order of magnitude of 27. The order of magnitude of this inhomogeneity
agrees with the calculations based on a one-dimensional linearized
theory (see section III.e).

On the basis of the data presented by Gardiner (61), Kuiper (68) and
Bunting (67) one can exclude deviation of 0 (0) fromp5 of more

than 57.
Conclusion: From the data presented here we conclude that using the

procedure described in section VII.b we may underestimate the density

P, by about 2% and that we can not exclude systematic errors up to 5%.
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Vii.d The structure of the boundary layer.

Presentation of the data:

The structure of the boundary layer has been determined with
measurements of the density gradient, by means of the laser schlieren
method (chapter VI), as a function of time for various distances X
from the end-wall.

As demonstrated by Vrugt (76) from a series of measurements
(with 0.94 mm < . < 1.74 mm) the structure of the boundary layer is
self-similar within the accuracy of the measurements. Deviations from
self-similarity can be estimated with the simplified model of section
IIT.f. For times greater than 100 us no significant deviation from
selfsimilarity was observed in our data. We therefore present the data

in the normalised form:

o (aSt)l/z
F = —————  (3p/3%) VIL.2
Ps
as a function of S :
= 1/2
s = xm/(aSt) VII.3

For the :.calculation of ag we used the formula:

As = 0.0568 (T5/1500)0'68 VIL.4

The main advantage of this presentation of the data is that it allows
us to compare data obtained at various positions X and with some
scatter in the initial conditions and the incident shock wave Mach

number.

Accuracy:

The absolute accuracy in the position of the beam is of the order of
6 um (see Appendix VI). The time measurements has an uncertainty of
about | ps in the origin of time and an additional 0.5 7% relative
uncertainty due to the registration procedure (see Appendix VI).

The uncertainty in the measured density gradient is of the order of
magnitude of 3%, mainly due to the inaccuracy of the calibration of

the schlieren system. As pointed out before (section III.e) there may

124




be an additional uncertainty due to the influence of the side-wall

boundary layers on the signal.

Survey of the data :

We performed six series of measurements of the structure of the

thermal boundary layer in non-ionized argon (see table VII.3).

Series N° P1 MS X shock tube data number
(Pa) (mm) of runs
1 667 2.7 0.4 to 1.8 I 780227 to 9
780301
2 667 3.0 0.4 to 1.2 I 800627 to 7
800701
3 667 5.3 0.6 to 1.4 I 800701 to 7
800709
4 667 3.2 0.3 to 1.4 I1 790907 to 30
791005
5 267 3.4 0.4 to 0.8 IT 791015 to 5
791017
6 2666 2.8 0.6 to 0.8 II 791018 : 4
Table VII.3 : Survey of the measurements series.

The purpose of the first series (1) was to confirm the results of
Vrugt (76). The second and third series (2 and 3) have been carried
out with special care and have been used for the determination of the
heat conductivity data presented in section VII.e.
Measurement series 1 and 2 cover the low temperature range
(T < 2500 K) for which accurate data on the heat coﬁductivity are
available. These two series of measurements are used in order to
estimate the accuracy of the determination of the heat conductivity.
Measurement series 3 is used to obtain heat conductivity data
in a temperature range for which no accurate data are available
(T = 4000 K). _
The other series (4, 5 and 6) were mainly meant to verify the

influence of the side-wall boundary layers on the schlieren signal.
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As a result of an error & in the use of the registration system these

data are less accurate than the data of the previous series (about 5%).

Series 1 :

In the set up used for series | the laser beam was focused as done by
Vrugt (76) at the center of the test section (zW =1/2).

The laser schlieren signal obtained in such a case is related to the
structure of the boundary layer by formulas VI.34 and 35. The
refractive index gradient N1 is determined by iterative correction of
the signal for the influence of the second and third derivatives N2

and N3 (see Hirschberg (78)). The density gradient is given by:

dp/dx = N1 /K VIL.5

in which K is the Gladstone-Dale coefficient (K = 1.582 x 10_4 _Bkg_l).

A correlation formula for the data with X > 0.6 mm was determined by

linear regression:

2 4

F) = 0.04791 - 0.4768 S72 + 0.02487 S~ VII.6

valid for 0.4 < S < 1.5.

88 .r the Fit is r2 = 0.9993.

The determination coefficient
For X < 0.5 mm deviations of 10% from selfsimilarity were observed.
Further analysis and comparison with the second measurement series
(2) showed that the deviation of the data from selfsimilarity was due
to a misalignment of the waist of the laser beam, AzW = 8 mm.

In later measurements series an improved determination of z, excludes
uncertainties in z, of more than 2 mm.

In the experiments of series 1 the pressure was not measured
simultaneously with the schlieren signal.

The pressure data shown in figure VII.2 have been obtained from a

f Note :
An A-C filter was used

RR Note :
Definition of the determination coefficient is taken following

Wonnacott (72).
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series of experiments with the end-wall configuration shown in
figure VII.5a while the schlieren measurements were carried out with
the end-wall configuration of figure VII.5b. In series 2 and 3 the
end-wall pressure was measured simultaneously with the schlieren
signal.

From figure VII.2 we see that the end-wall pressure increases
from Pg to 1.1 x Ps- We therefore compared the data of series 1 to the
solutions of the thermal Rayleigh problems for P, = Ps» T = T5 and
p, = 1.1 Pg» I_=1.04 TS' In those calculations we used the data of
Chen (75) for the heat conductivity.

From figure VII.13 we see that a quantative agreement between theory

and experiment may be expected when the influence of the time

dependence of the pressure is taken into account.

1
1.051 - -
-~ ™~
~N
/ [ LTI
= e
11m*“/ 7 !
y //_l_
= /
z //
& ’
/
/ .
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/7 ¢
// H
0.95~ .
— — P, -l1Pg |
""" - i
05 1.0 L5
S

Figure VII.13 : Comparison of the experimental data

of series 1 (equation VII.6) with the solutions of
the thermal Rayleigh problems with P, = Ps» ’I‘po =T

and p_ = I.1 Pss T_=1.04 TS'

5

Series 2 :
As noticed before series 2 was performed for the purpose of
determining heat conductivity. Special attention was dedicated to the

measurement of z, and the pressure was measured simultaneously with .

127



the schlieren signal. We restricted ourselves to signals small
enough so that the non-linearity of the response of the schlieren.
system (due to the gaussian shape of the beam) does not involve
corrections of more than 1.5%.

In addition we focused the beam at z = L/3 so that in first
approximation the contribution of the second derivative N2 to the
deflection of the beam is compensated by the influence of the
deformation of the beam (equation VI.28).

The correction for the influence of N3 was performed on the basis of
formulas VI.34 and 35. This correction was not more than 2% in the
data used for the determination of the heat conductivity. In order to
illustrate the influence of the third order derivative N3 on the
signal we compare in figure VII.14 the data on F(]) for x = 0.4 mm

with and without correction, with the average of the data of series 2.

0.3

(Mg%=2820;'p1=667Pu; T1=292K
K
Xm=OA0mn\;ZW:L/3

X

01 3} runteoo7ozonny

average series 2
(056 mm < X< 121 mm)

0 L :
1.5 20
S

Figure VII.14 : Influence of N3 on the schlieren

signal. Comparison of run (80070301/I) with the

average of the data of series 2. (X: equation VI.28;

o : equation VI.28 corrected for the influence of N3).
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When a misalignement Azw =

8 mm is assumed in the experiments of
»(1)

series 1, the data om of series I and 2 agree within 17.
The reproducibility of individual experiments is about 2%. Within
this uncertainty no deviation of similarity was observed in the range
0,7 <8< 2.

In view of the determination of the heat conductivity a fit
of the data of each run was obtained by linear regression.

The expression used is:

5 .

) 2 q 2 Z 4 g VII.7
0 j=2 i

The coefficients Aj and the determination r2 are given in table VII.4.

In order to achieve an optimal fit we used a rather large number of

terms. As a result of the rather large correlation between some

powers of S the individual coefficients Aj have a low significance.

Note : For runs (80062701/I) and (80062702/I) the pressure data are
not available. For the determination of the heat conductivity we used

the average of the pressure data of the series 2 (figure VII.3).

Series 3 :
The experimental procedure followed for series 3 is identical to the

procedure followed for series 2. The fits of the data are given in

table VII.5.

Series 4 :

In order to obtain an estimate of the influence of the side-wall
boundary layers on the laser schlieren data we performed in shock tube
II (optical path length L= 4.2 cm) a measurements series similar to
series | and 2 (shock tube I, optical path length L = 10 cm).

In figure VIIL.15 we compare the averages of the data of series 2 and
4. The data of series 4 appears to be about 7% lower than the data of

series 2!!

129



£66666°0
TH6666°0
986666° 0
896666°0
1966660
6866660
8L6666°0

I
c

986666°0
6g6666° 0
71,9666°0
G86666° 0
7186666°0
ch6666°0
Ln6666°0

I
c

L-20EH "G
l-2682° S
1-68L1°€

LGLO"L
1-96L9° L
1-Lg6e e
i-glsl e

Iy

l-2Llf0°g
1-E1Qs°tL

0270" L
L-fhet L
1~2608°€
c-gnE6 6

Oy

.aﬁo.m >8> .L'0) € soTass

Lzel e~
€LLS e
7649 L -
hehh i
0LgL "€~
€9LE L~
6026° L~
Sy
5l 0°€

glil e~
1-LELO" 6~
L-6L18 €~
09LG" 1~
L-7289° 8-
€£00° e~
L-18L1"9-

Sy

692"
L10g" ¢
HLGE "€
gely* L
€481 "¢
6L€Q8°2
G9zce ¢

Ty

\%
)

0696°9
€666°1
oHSh 1
0L9L° )
$L00°2
9LL6°¢
Gegs- L

Ty

6EES H—
05LL " -
2660 €~
6619 6-
79L6°€-
GLoL 2~
11g0" €~

by

s> L°0 )g sotuss

tlle: s~
£09Q° L~
0L9L-1L-
ch90°9-
18L0°¢e-
geLs-e-
86499 L~

m<,

c

£ o=
© .
* ﬁulm < N

c

e 0

_ 0L X 9062°L = g-9042°!L

1990N §

JO BYBD |\ 2L JO SITL CTIIA OLARL

90€L "1
L-g02Q 6
L-GLEL9

0GLH"L
1-GE4E"Q
L-746L8" G
L-625E° L

%y

FO ®ITD | I 2U} FO SILL W IIA

ozze" |
L~OH6L 2
L-o0lzl e

HLGH" L
L-gce2 €
ARy
L-h160"2

%y

g-€L68"L-
c-6hLL "L~
AN
2-906¢ "¢~
€~066L" L~
E-ceh e
£-2266°g-

Oy

2-gh6s L-
e-1elg-1
€-ClL6H 6
Z-SEnE e
£-6929°8
H-€GE6° L~
2-9062" 1

Oy

T/2060L008
T/1060L008Q
1/2080L009
I/1080L008
1/10L0L00g
1/10%0L00g
1/20£0L008

una

I/€010L00¢Q
I/2010L009
I/10L0L00Q
I/£00£9008
I/100£9008
1/20L29008
I/10L29009

ung

fl
€1
2L
L
ol
6

130



06

04 y
TJ- f— =
02 — — -~ Eezizes",shock tub‘e} .
= cm N
series 2,shock tubel ~
L=10cm N
0 i 1
1.0 S 1.5
Figure VII.15 : Comparison of the data obtained in

shock tube I (L = 10 cm) with the data obtained in
shock tube IT (L = 4.2 cm).

Translated in terms of effective optical path such a discrepancy

implies an error of about 5% in the data of series 2 (shock tube I).

Series 5 :

In order to obtain

some insight in the influence of the side-wall

boundary layer we performed a series of measurements at lower

pressures p, = 267

Pa. Unlike the data of series 1, 2, 3 and 4 the

experimental results show a large scatter (20%) for similar

experiments.
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Series 6 :
An additional series of measurements was carried out for high initial
pressures p, = 2666 Pa. The data obtained agree within the

experimental accuracy with the data of series 4.

Conclusions

Within the experimental accuracy the structure of the boundary layer
is self-similar.
A significant influence of side-wall boundary layers cannot be

excluded (Additional experiments are necessary).G

@ Note : As stated in section III.e the side wall boundary
layers might penetrate into the reflected shock region.
This might induce a complex turbulent flow. Because of
the complexity of this problem measurements in shock tubes
with different cross sections and at various pressures are
certainly necessary in order to obtain high accuraéy data

on the heat conductivity.
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VII.e. Heat conductivity data

Using the selfsimilarity of the boundary layer structure one

can write formula II.2! in the form:

S
(-5, qwth(t__)1/2_3t,dp)(s+°° -
2 5p a 5pdt (1)
p 5 F
A= >\5(p—-
5 (n P
1 d F (1).,75 5
[P SR G -~ 1 + F —
VII.8
where
0.6 5 ()

(p/p5) = (p/pg) """ + [ F 748! VII.9
and AS is the reference value calculated with formula VII.4. For v we
used the value v = 0.71 expected to approximate (T/A)(dA/dT within 5%
for T > 103K.

We first neglect the (dp/dt) term and the time stretching in
the local similarity approximation of (qw)th. In figure VII.16 we
compare calculations of A with these corrections (—— —— —) to the
calculations without these corrections (= - - = - = ).

In both cases we used the "global fit" of the schlieren data

(equation VII.7 and table VII.4). In order to get an impression of the
sensitivity of the procedure for the fit used, we show in figure
VII.16 the data obtained by using a "local fit" (linear regression)

in order to estimate (dF(I)/dS). In view of the accuracy of the
experimental data (ca 37) the discrepancies between the three

procedures are negligible.

8 Note :

The integration bound "=" was replaced by S' = 3.
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I ]
RUN 80070102
Xm=0.795mm
B (Ms)‘] =2.834

A [02 WK o]

[#))
I

Chen (75)
Zﬁ o local fit

!  ————= global fit

; — — corrected for time
dependance of -
pressure and time
coordinate
stretching

T 5 '
T [103K]

un

Figure VII.16 : Influence of the fit of the F(l)

data, of the (dp/dt) term in equatiom VII.8 and
of the time coordinate stretching in the local
similarity approximation of (qw)th on the

determination of the heat conductivity.

In figures VII.17 and 18 we compare the data of series 2 (section
V1I.d) to the data of Chen (75). The corresponding pressure data are
given in figure VII.3. The initial state and Mach number data are

given in table VII.2. The fits of the F(l) data are given in table

VILI.4.
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For low temperatures (T < 1900 K) the data show no significant
dependence on X At higher temperatures the data tend to be higher.
This effect is expected to be due to the non-uniformity of the
reflected shock region (section VII.c and figure VII.10). The non-
uniformity of the reflected shock region induces a deviation of the
structure of the boundary layer from the similarity structure assumed
in equation VII.8 (section III.f).

The average of the data for T < 2100 K (including all terms
in the energy balance) are compared in table VII.6 to data calculated
on the basis of the intermolecular potential of Aziz (77). 8
We conclude that the data are lower than the heat conductivity data
of Chen (75) by 4%. In view of the accuracy of the data of Chen (75)
(1.5%) and the reproducibility of our data (3%) this discrepancy is
significant. The main source of systematic error in the procedure for
the determination of the heat conductivity is the underestimation of
the density p,(0). (section VII.c).

Further the influence of the side-wall boundary layers is not well

understood and might-induce errors of a few percent (section VII.d).

& Note :

Private communication Aziz (80).
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Figure VII.17 :

term and time stretching.

Heat conduetivity data without (%%

007 :
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e . e e Chen(79)
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Figure VII.18 : Heat conductivity data without (dp/dt)

term and time stretching.
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(K)

1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100

(1072

5

5.
5.
5.
5.

5.

6

6
6
6
7

Table VII.6
Comparison of the average of the experimental data A
with the theoretical data Ath of Aziz (80).

9y is the standard deviation of the experimental data.

A

W/m K)

,67
38
41
86
80
.89
98
.09
.17
.29
47
.40
.53

.75

.09

9\

(10" %/m K)

.27
.25
.18
.12
.10
.06
.08
.22
.07
.11
.21
0.42

OO0 O O O O O O o o o

5
5
5
5
5
6
6
6.
6
6
6
6
6
7
7

A

th

(107%W m K)

430
.559
.687
.813
.938
.062
.184
305
425
544
.661
.778
894
.009
.123

(Ath/ A) -1

-0.042
0.033
0.051

-0.008
0.023
0.028
0.033
0.034
0.040
0.039
0.029
0.056
0.053
0.037
0.005
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In figure VII.19 we compare the data of series 3 to the data
of Devoto (73) and Aziz (80). Our data are about 15% lower than the
data of Devoto (73) but agree within the experimental accuracy (3%)

with the data of Aziz (80).

0.2 T T T
———  Aziz (80)
o A\p Devoto (73)
————— xm = 1.0mm
08mms xm<s L.émm °
e L
T
e
~<
i | 1
01; 5 6 7
1 [10%K]

Figure VII.19 : Heat conductivity data without (dp/dt)

term and time stretching.
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In table VII.7 we compare the average of our data (including

all terms) with the data of Aziz (80).

)\ th

(K) (W/m K) (W/m K) (W/m K)
5000 0.127 0.04 0.1279
5200 0.129 0.03 0.1313
5400 0.131 0.04 0.1348
5600 0.134 0.03 0.1382
5800 0.137 0.02 0.1415
6000 0.140 0.02 0.1449
6200 0.145 0.04 0.1482
6400 0.149 0.06 0.1515
6600 0.151 - 0.1547
6800 0.152 - 0.1579
7000 0.153 - 0.1611
7200 0.155 - 0.1643
7400 0.158 - 0.1675
7600 0.164 - 0.1706

Table VII.7.

Comparison of the average of the experimental data -

with the theoretical data )th of Aziz (80).

Comments:

The data below 6600 K are the average of 6 experiments.
Above 6600 K only one experiment is available.

Q. is the standard deviation.

A
The pressure is 1.3 x 105 Pa.



an overall view of the data.
T T I

In figure VIL.20 we give

AW itk

—— — Touloukian(70)

Aziz(80)

o }\m
a Devoto(73)

m_ ,m
X ihg * Ay
> present study
Vrugt({76)

| 1 ! |
4 6 8

i L 1
0 2 1p03K)

Figure VII.20 : Comparison of the data obtained

from shock tube experiments with data of previous

studies.
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The data presented by Vrugt (76) are about 5% lower than our
data. A further analysis of the procedure used by Vrugt (76) did not
reveal any systematic error of this order of magnitude.

This discrepancy is expected to be due to:
a. the time dependence of the pressure which is not taken into
account by Vrugt (76).
b. a different estimate of (qw)th.
c. influence of the third derivative of the refractive index.
d. schlieren effect of the windows
e. different Mach number measurement.

It is interesting to calculate lower and upper bounds for the
heat conductivity by comparing the various intermolecular potentials
V(r) available.

The heat conductivity data of Devoto (73) were calculated on
the basis of the repulsive exponential potential of Colgate (69). This
potential appears to be "softer" 22 than the corresponding part of the
potential of Aziz (77) (see table VII.8). The Lennard-Jones potential
of Clifford (77) selected by Jain (80) on the basis of the data of
Chen (75) is "harder”QQ

restricted temperature range a power law fit of the temperature

than the potential of Aziz (77). In a

dependence of the heat conductivity should be rather accurate.
Because the Lennard-Jones potential would yield a value of v = 0.67

while a fit of the data of Devoto (73) yields v = 0.71 we expect that:

0.67 < v < 0.71 VII.1O0

f Note :
In the present study considerable attention has been given to the
quality of the windows. The windows were checked both statically
(translation of a light beam along the window) and dynamically

(run with X = 7 mm, section VII.c).
RR Note :

The expressions soft and hard refer to small and large slope

respectively of the curve V(r).
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Combining this estimate with the data of Chen (75) we find the

estimate:

7

0.0568(T/1500°°%7 < A < 0.0568(1/1500)°" 7! vII.11

for 103K < T < 104K. The data of Aziz (80) and our data agree

with this estimate.

Colgate (69) Aziz (77) Jain (80)

r V/k V/k V/k
(nm) (K) (K) (x)
0.20 3.56+4 6.09+4 2.50+5
0.22 1.64+4 2.96+4 7.66+4
0.24 7.55+3 1:38+4 2.53+4
0.26 3.48+3 6.19+3 8.72+3
0.28 1.60+3 2.59+3 3.01+3
0.30 7.38+2 9.48+2 9.51+2
0.32 3.40+2 2.41+2 2.06+2
0.34 - -3.82+1 ~5.43+1
0.36 - -1.2142 -1.31+2
0.38 - -1.43+2 -1.40+2
0.40 - ~1.28+2 -1.26+2
0.42 - -1.05+2 -1.06+2
0.44 - -8.34+1 ~8.69+1
0.46 - -6.50+1 -7.02+1
0.48 - -5.04+1 ~5.65+]1
0.50 - -3.91+1 -4 .54+1

Table VII,.S8.
Comparison of various intermolecular potentials V(r).

r is the distance.

In view of the systematic error in the estimate of the state of the
gas outside the boundary layer (about 3%) and the discrepancy between
the data obatained in different shock tubes (77%) it should be clear

that the actual power of the shock tube method has not yet been fully
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exploited. In view of the high reproducibility of the data (3%) the
shock tube method might, when improved have an accuracy comparable

to the hot wire colomn method (27).
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VIII. EXPERIMENTAL DATA ON THE STRUCTURE OF THE FLOW INDUCED BY
THE REFLECTION OF AN IONIZING SHOCK WAVE

VIII.a. Introduction

While in the non-ionized case the shock tube method has been
used before for the determination of the heat conductivity of gases
(chapters II, IFI and VII) no similar attempt has been reported in
the ionized case (section I.d). The present study, a first attempt,
has an exploring character. The data obtained are not accurate enough
to improve our knowledge about the heat conductivity of partially
ionized argon. However our insight in the structure of the reflected
shock region and the end-wall boundary layer in partially ionized
argon has been considerably improved.

The attempted determination of the heat conductivity presented in
section VIII.e can be used in order to estimate the relative
importance of the various terms in the energy equation. This yields
an estimate of the accuracy which must be achieved in order to obtain
valuable heat conductivity data by means of the shock tube method.

In section VIII.b we give the data collected on the flow
outside the boundary layer in pure argon. In section VIII.c we
consider the influence of the addition of 0.5% hydrogen to the argon.
The hydrogen appears to be a powerful catalyzer for the initial
ionization relaxation process. The shortening of the ionization
relaxation time tion improves the agreement between the experiment
and the thermal Rayleigh problem (section V.e).

Further the addition of hydrogen suppresses the instability of the
ionization front (section V.b). In section VIIT.d we present the data

on the structure of the thermal boundary layer.

Note :

The flow induced by the reflection of an ionizing shock wave has been
described in chapter V. A review of related studies has been given in
section I.d. The experimental procedure used is similar to the
procedure in the non-ionized case (chapter VII). In this chapter we

limit ourselves to the presentation of experimental data.
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VIII.b. Flow outside the boundary layer in pure argon

In order to determine the state of the gas outside the

boundary layer we carried out a series of simultaneous pressure,

absorption and laser schlieren measurements (0.6328 ym).

Typical records are shown in figure VIII.1.

1.3 T

{10'4 mt]
()

Ny

K{m]

—

Figure VIII.1

100
tlus]

: Pressure p, absorption coefficient K

and refractive index gradient N, measured in run

(80030403/1I):

x = 3.00 mm;
m

(Ms)l = 8.90;

A systematic study of the

1

1

P, = 666 Pa, T = 293.4 K; p_ = 10 'Pa;

(Ms)2 = 8.88.

I

ionization relaxation process in argon is -
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difficult because the flow is strongly semsitive to the purity level

of the argon.

At high purity levels (10 ppm) the ionization front shows

instabilities similar to the instabilities observed by Glass (78)

behind the incident shock wave. This effect is illustrated in figure

VIII.2 in which we show a typical schlieren record obtained in a first

measurement se;ies with P, = 3 x 10_3Pa and Poo” 10_4Pa.

run(77120602/1)

xm:ZOmn1

| ] 1
0 t [aLs] 100

Figure VIII.2. : Laser schlieren record of the

jonization relaxation process showing instability
(impurity level 10 ppm).
run (77120602/11)

MS = 8.53; P = 667 Pa, T

_ iaTh
P~ 10 Pa.

| = 294K, p =3x 10 2pa,

In order to improve the reproducibility of the flow we carried out

experiments in argon with a small amount of impurities.

A measurement series was carried out in argon with about 150 ppm air.

@ Note :
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This measurement series is refered to as ''pure argon'.
An additional measurement series was carried out in a 99.5% Ar + 0.5% H2

mixture (sections VIII.c and d).

Pressure data :

The pressure p at the end-wall was measured as described in section
VII.b. In figure VIII.3 we compare the pressure measured at t = 200 us
with the value calculated with the Rankine-Hugoniot relatioms
(Appendix I), as a function of Mspl'

As noticed in section V.b the data show significant discrepancy from

the Rankine-Hugoniot value at low initial pressures (p1 < 103Pa).

T i T 1 1
Symbol ]
X 2
L * (102Pa] i
° X 2.67
° 4.00
o 6.67
o + 9.33
11 8 s 13.33 -
% v 20.0
o x 26.7
L *
o a . 66.7
o A .
S . . o 133.3
10f ‘ —]
** "
A
;v * ] ] i |
090 4 6

2 4
M Py [104Pg ]

Figure VIII.3 : End-wall pressure at t = 200 ps in
shock tube II.

Diaphragm thickness 1 mm.

Absorption coefficient :

The maximum of the absorption signal (figure VIII.1) is given as a
function of the square of the calculated electron density (ni)RH in
figure VIII.4 (wave-length 0.6328 um). From those data we obtained

the value of the coefficient KO in equation V.2
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K, = 8.8x 10 %n !

The uncertainty in the determination of Ko is of the order of 207

mainly as a result of the uncertainty in the estimate of the electron

density (section V.c). 8

08—~ ~ ! -
1=0.6328 um
xm =3.0mm

Klm')

0.4 g

PP
" 267 T
400
667
933 4
1333

> + x40

(nd)gy [10%8 mi®]

Figure VIII.4 : Absorption of a light beam (0.6328 um)

as a function of the calculated electron density.

Equation V.2; Te = 11.300K.

R Note:

By lineailr regression we obtain the fit of the data:

K = [ 0.0424 + 0.601 (ne/1023)2 - 0.314 ((T - Te)/104) 1o !

where:

T 1.126 x 10°K

H
1]

and
2 0.986

H
I

For the Biberman factor ;(AlTe) defined by (Hofsaess (78)):

0—27 3n2

K = 1.367 x 1 1

1o

e
we find: g(l,Te) = 2.74.

exp (TO/Te) ;(1,Te)
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Radiation loss :

Using the procedure described in section V.c we can determine the
state of the plasma after the ionization relaxation (t > tion) from
the absorption and pressure measurements.

Using the energy equation (section IV.d) we calculated the radiation

loss Qr from those data.

In figure VIII.5 we compare our data with the data of Kopainsky (71)
on Qr and the continuum contribution Qc to Qr'

Within the accuracy of the measurements all our data appeared to be

a function of the electron density only.

The difference between our data and the data of Kopainsky (71) is due
to the difference of the geometry of the plasmas. The measurements of
Kopainsky (71) were carried out in a cylindrical electric discharge

(radius 3 mm).

1010
Kot =
‘e
z
5
8 £
10 Qo continuum
&, total
i Kopainsky(71}
W present data Q.
| ]
1044 109 26 1048 1047

Figure VIII.5 : Comparison of the radiation loss Qr

measured at X, = 3 mm and the data of Kopainsky (71).

10%Pa < p < 5% 10°Pa; 10°%k < T < 1.3 x 10°K.
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In a similar way as described above one can determine Qr from’
simultaneous pressure and light emission measurements (Petchek (53),
Logan (77)). Measurements of Qr performed in this way agree within the
experimental accuracy with the data of figure VIII.5. Further the data

obtained in shock tube I agree well with the data of shock tube II.
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VIII.c. Flow outside the boundary layer in a 99.5% Ar + 0.57% HZ

mixture

Influence of the hydrogen :

As noticed in sections V.b and VIII.a the addition of hydrogen to the

argon improves the reproducibility and the stability of the flow in

the reflected shock region. This is due to the strong catalytic

influence of the hydrogen in the initial phase of the ionization

relaxation.

This effect is illustrated in figure VIII.6 where we compare the

laser schlieren signal at x = 3.0 mm in pure argon to the signal in

a 99.5%Z Ar + 0.57 H2 mixture.

——995%Ar+0.5% H
10 2
. --- Ar
g=
~r
o
—_ N
._:_ / !
=z 1
;1\
7\
0 N\
L - = —1
0 100
tlasl

Figure VIII.6 : Refractive index gradient (0.6328 um)

at x_ = 3.00 mm.
m

99.5%7 Ar + 0.57 Hy; (1), = 8.37; p = 669 Pa;

T1 = 294.8 K; run (80042502/II).
———————— pure Ar; (Ms)1 = 8.40; p; = 667 Pa; T,
p, = 10 °Pa; run (78092201/1T).
® Note :
The work presented in this chapter has been carried out by

S. Bruinsma.

= 293.8 K;
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As we will see in the mext section the reduction of the ionization

relaxation time ton improves the agreement between the structure of

the boundary layer and the thermal Rayleigh model.

The hydrogen is not expected to influence the transport properties of

the plasma significantly but the energy and ion-mass production
source terms €4 and Mi are increased by approximately a factor 2.

The addition of hydrogen appears also to induce bifurcation like

phenomena in about one runm out of ten.

This effect is illustrated in figure VIII.7.

10}
= of
€
ql‘
(]
NS 2
—~ 10
pd
0 \
1
{ i 1 !
0 30

Figure VIII.7 :

showing bifurcation like behaviour (1) to a normal
signal (2). 99.5% Ar + 0.57 HZ'
(1) : = 1.20 mm; P, = 670 Pa; T

run (80042403/11)

(2) : X = 1.20 mm; Py = 670 Pa; T

t{as]

run (80042404/11).

(x,t) diagram of the flow :

In figure VIII.8 an (x,t) diagram of the flow made out of laser

Comparison of a laser

1

1

schlieren signals at various positions is shown.

The corresponding end-wall and side-wall pressure records are shown

in figure VIII.O.
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X (mm)

N° M
s

B #"

7.82
7.24
T7.24
T.62
7.7k
7.78
7.80
T-57
7.78
10 7.70
11 7.7h
12 7.7k
13 7.67
1 7.78
15 7.71
16 T.Th
17 7.7
18 T7.67
19 7.60
20 T7.67
21 7.68
22 7.78
23 7.71
24 7.78 "
25 7.86
26 7.72
27 7.79
28 7.94
29 7.49 2
30 T7.67
31 7.72

Tgble VIIT.

O o= OV FE W D=
OOOOmODCOJ:'-F'J‘-"J-“-F'-T—'l})
OEDOOOOOOOOOO

OO MM N e b o ot 3 b ol e
OO0 ONOONONOTONN NN N

N
w

n N
w W
—_ OOOOOOOOOOOOOOOOOOO

M and x data
s m

of figure VIII.S8.

[V OO S NIFIIETON (RO NP N P -4

Figure VIII.8 : Laser schlieren signals as function of

x and t. (x,t) diagram of the ionization relaxation in

the reflected shock region. Shock tube I; 99.57% Ar + O.SZH2
mixture; P, = 667 Pa; T1 = 294 K; see Mach number data
table VIII.I.
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The corresponding data on the reflected shock velocity v, are shown
in figure VIII.10. These data clearly show the influence of the end-
wall boundary layer om the reflected shock. The order of magnitude of
the measured change of the reflected shock velocities agree with the
data presented by Sturtevant (64). The change of the reflected shock
velocity is responsible for the non-uniformity of the reflected shock

region discussed in section VII.c.

Q

r °

No significant influence of the hydrogen addition on the radiation

loss Qr has been observed.

kH—Ar:

In the initial phase of the ionization relaxation process the
ionization rate is determined by the excitation of hydrogen by
collisions with argon atoms. This reaction rate ky , can be estimated
from the measured electron dénsity .gradient (né)o just behind the

reflected shock with the approximation:

(v.))
r’fr
k. = ————— (n') VIII.!I
H-Ar nH nAr e’o
where (Vr)fr is the frozen reflected shock velocity and Ny, nAr are

the hydrogen and argon atom densities.

For the measurement of (n;)O we used a laser schlieren set-up with a
wavelength of 3.39 um. In such a case the heavy particles
contribution to the schlieren signal is negligible.

The data on kH—Ar obtained in this way are shown in figure VIII.I1l.

154



run(78011205/1)

MS :773
P1 =667 PG
J T, = 294K
X =0 mm 99.5°/oAr+0-5°/oH2
100 ALS

X =80mm

Figure VIII.9 : End-wall and side-wall pressure records

corresponding to the (x,t) diagram of figure VIIT.S8.

0.55 . T I T
shock tube I
99.5%Ar+05%H,

P, =667Pa; T, =294K

(Vedep/ vg Mg), =7.70

(xe/tp) /7 vg
S X
sk
S x
N

0.45

Figure VIII.IQ : Comparison of the measured reflected

shock position (xr

’tr) and of the calculated reflected

shock velocity (Vr)fr'
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Figure VIII.10 (continuation)
In the calculation of (vr)fr we assumed that the hydrogen in region 2

is fully dissociated.

Each point (x) has been obtained as the average of about 5
measurements (a linear dependence of (Xr/tr) on MS for a given value

of Xm has been assumed.

10 , | |
(o]
X m= 5mm
%
o]
2%
- 3 [Symbot] P,
W 1031 _
- nolpat|  °
E o 2.67 X
o~
2 = | 4.00 &
= X
< a 5.33 v
_XI
X 6.67
102 - X n
v 8.00
o
O 10.7 v*v
x 1120
+ | 133
1
10" - o -
o | 160 °
= | 187
. 213 +
.
100 | ! 1
04 3 0.8 10 12
1/Tg) 104K

Figure VIII.1l : Reaction rate k, , for excitation

of hydrogen by collision with argon atoms as a function

of the temperature.
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VIII.d. Boundary layer structure

Laser schlieren measurements

Measurements of the structure of the boundary layer were carried out
with a two-wavelength laser schlieren set-up.
The wavelengths are: 11 = 0.6328 um and I2 = 1.152 ym (He-Ne laser;
Spectra Physics type 120).
Simultaneously with the schlieren measurements we measured the end-
wall pressure, the absorption of the laser beam (0.6328 um), and the
displacement of the shock tube.
All the data presented in this chapter have been obtained in shock
tube II. The set-up is shown in figure VIII.12. Additional technical
details are given in Appendix VI. The experimental procedure is
similar to the procedure followed in the non-ionized case (chapter
VII).

Typical laser schlieren records are shown in figure VIII.13.
From the response of the schlieren system to the passage of the
incident and reflected shocks one can estimate the response time T of
the detection systems.

We found: t, < 0.2 us for 11 = 0.6328 ym and 1, = 0.6 um‘for

1

l2 = 1,152 um.

2

The contribution of light emission of the plasma to the
infrared signal (12)(of the order of 27) was determined experimentally.
The influence of the absorption of light by the plasma leads to
similar corrections. The absorption of the red light beam (11) was
measured. The absorption of the infrared light beam was calculated by

using formula V.2 in which: K_ = 0.32 a !, T = 1.25x 10%x,

n =103 a
(o]

R Note :
This estimate was obtained on the basis of a series of measurements
of the absorption outside the boundary layer. The contribution of
the light emission by the plasma was of the same order of magnitude
as the absorption signal. This is the reason why no absorption
measurements of the infrared light beam were carried out in the

boundary layer.
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it
LASER | é-1mm

1 =06328um}le--—%

@ :llmm
if
: D 0—{Hl5=1152 um
0 ] x [ 2
fem e — m X ——> [ASER

—

TEST SECTION

(24),=1-26m { e 2

Figure VIII.12 : Principle of the two-wavelength laser

schlieren set-up.

In order to reduce the influence of the light emitted by the plasma

on the schlieren signal an interference filter (if,) was placed in

front of each detection system (de.). The two light beams cross each

other just after the test section. The diaphragm placed at this

position reduces also the influence of the light emission.

The interference filters in front of the lasers protect the laser for
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the light emission from the plasma.
The diaphragm in front of each laser improve the gaussian shape of

the beam by filtering out higher order modes.

run(80041501/11); sz 0.80 mm (Ms)1:8.06
P1 =670 Pa
T, =295.4K

(AN1)11:‘IO'2 m!

(A Nﬂl :10.2 I'ﬁ]
2

At=100wus

Figure VIII.13 : Laser schlieren records.

11 = 0.6328 ym, 1, = 1.152 ym.

2

The shock tube displacement, due to the recoil of the driver
section was of the order of 3 um. This effect is the same for the two
light beams and was neglected in view of the uncertainty of 6 um in
the position of the beams. The set-up used for the measurement of the
shock tube displacement was similar to the set-up described by
Vrugt (76).

Both laser beams were focused at z, = L/3 so that in first
approximation the laser schlieren signal is proportional to the
refractive index gradient N1 (section VI.d). Corrections for higher

order effects were not carried out. From the refractive index
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gradients we obtained the electron and atom‘density gradients’
(né and n;) by means of formula VI.4S8.
An estimate of the accuracy of the determination of né and n;
was obtained from experiments in which ionization is negligible
(MS = 3.2, P, = 667 Pa, T1 = 294 K). The uncertainties Ané and An;

are estimated to be:

An'

——$ = 57 An' = 1024m .
n, e

An

——$ = 107 An' = 1026m 4
n) a

These estimates correspond to the reproducibility of the experiments.
In addition one must take into account the uncertainty due to the

influence of the side-wall boundary layers (see section VII.d).

Electron density from absorption measurements :

The electron density n_ was estimated from the absorption measurements
with formula V.2. The temperature Te in this formula was determined

from the ideal gas law assuming a single temperature :

T = p/(k(na + Zne)) VIII.2

n, was estimated by integrating the laser schlieren data on n;.

The integration constant (na)_m was determined from the measurement
of the state of the plasma outside the boundary layer described in
section V.c. (absorption and pressure measurements + assumption about
local thermodynamic equilibrium. The accuracy of the determination of

n, is about 107 with Ane =5 x 1021m_3.

Pure argon : (Ar + 150 ppm air)

In figure VIII.14 the data on né and n; for MS = 8.15 are compared
with the calculations of two thermal Rayleigh problems:

the two temperature relaxation model (reE-reM) and the

local thermodynamic equilibrium model (eqE-eqM) (sections V.e and f).
We see that the eqE-egM model overestimates the electron density

gradient né significantly while after the ionization relaxation the
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reE-reM model agrees well with the experimental data.

The behaviour of né and n; during the ionization relaxation
(t < 60 ps) is due to the combination of various effects. As a result
of the thermal boundary layer growth the gas has a non-uniform
temperature. The resulting position dependence of the ionization rate:
yields high positive values of né for t = 40 us. While the initial
phase of the ionization relaxation, controled by atom-atom ionization
processes, is slow, the final phase of the ionization relaxation
dominated by electron—atom ionization processes is abrupt.

This sudden increase of the ionization degree induces a considerable
decrease of temperature and a mass flux towards the wall (The
pressure decreases only slightly (figure VIII.1)).

This convective effect is observed in our data by a sudden decrease
of the gradients at t = 45 ys.

After iomnization relaxation is completed a fair agreement
between the reE-reM model and the experimental data is observed for
X < 1.0 mm. For X Z 1.0 mm the measurements of both né and n; give
significantly lower values than the theory(for t > 100 us).

This is due to the flattening of the outer part of the boundary layer
by the radiation cooling. This is confirmed by the comparison of the
electron density o, (determined from the absorption measuremengs)
with the theory in figure VIIIL.15.

The effects described above are also observed in figures
VIIL.16 and VIII.17 in which we show the dependence of né on the
Mach number for X = 0.80 mm and X = 1.20 mm.

In figure VIII.17 we observe also negative values of né
during the ionization relaxation (Ms = 9,27). In such a case the
ionization occurs in a more uniform gas. The electron density
‘gradient measured is due to the dependence on the position of the
onset of ionization.

In figures VIII.I8 and 19 we give the data obtained for
Ms = 8.7. In figure VIII.19 we compare the data on n, obtained from
the absorption measurements with the integrated laser schlieren data.
The integration constant was determined by setting n,atx = 1.20 mm
equal to the average of the absorption measurement data for

1.0 mm < XF < 1.4 mm.
I
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Figure VIII.l4 :

Comparison of the measured and theoretical electron and atom density

profiles of the thermal boundary layer in pure argon (Ar + 150 pmm air).
Theory :

M_ = 8.15, p, = 666.5 Pa, T = 294 K.

(o]

N X
(mm)
1 1.20
2 1.00
3 0.80
4 0.60
5 0.50
Experiment :
N° run X (MS)l (MS)2 P, T1
(mm) (p2) (X
1 80041602/11 . 1.20 8.25 8.12 667.9 295.5
2 80041601/11 1.00 8.15 8.08 667.4  295.5
3 80041503/1I 0.80 8.33 8.24 666.5 295.5
4 80041102/1I 0.60 8.25 8.19 667.0 295.3
5 80041402/11 0.50 8.19 8.14 666.5 294.5
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Figure VIII.15 : Comparison of the electron denmsity

determined by means of absorption measurements with

the theoretical profiles.
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Figure VIII.16 : Mach number dependence of the
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Figure VIII.18 :

Comparison of the measured and theoretical electron and atom density

profiles of the thermal boundary layer in pure argon
(Ar + 150 ppm air).
Theory :

M = 8.70, p, = 666.5 Pa, T, = 294 K.

Experiment :

N° run X (MS)1 (MS)Z P, T,
(mm) (Pa) (x)

1 80030304/11 1.203 8.88 8.88 664 294.3

2 80030303/11 1.003 8.80 8.79 666 294.2

3 80030302/11 0.800 8.73 8.71 667 294,1

4 80022803/11 0.703 8.77 8.76 667 294.0

5 80022601/11 0.605 8.60 8.56 669 294.5

6 80022703/II~ 0.502 8.89 8.85 666 294.4

7 80022702/11 0.412 8.71 8.68 666 294 .4

8 80022701/11 0.407 8.59 8.54 668 294.3
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Figure VIII.19 : Comparison of the electron density

determined from the absorption measurements with the
integrated laser schlieren data (———-—- )
MS = 8.70, P, = 667 Pa, Tl = 294 K.

99.57 Ar + 0.5% H2 mixture :

The influence of the hydrogen addition to the argon is illustrated in
figure VIIL.20, in which we compare the pressure, laser schlieren and
absorption signals obtained in pure argon (——) to the signals in
a 99.57 Ar + 0.57% H, mixture (~——-—=-- ). We see that the hydrogen
reduces the influence of the ionization relaxation process on the
thermal boundary layer growth. This effect is also observed in the
density gradient data (né and n;) shown in figure VIII.2I. Comparison
of these data to the data obtained in pure argon (figure VIII.14)

shows that n! for t > t, and x> 0.80 mm is not significantly
e ion m
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affected by the hydrogen addition. For X < 0.6 mm we observe an
increase of né due to the hydrogen addition.
Both effects are also observed in figure VIII.22 in which we compare
the absorption and laser schlieren data on o . The influence of the
addition of 0.57% H2 to the argon can be qualitatively interpreted as
an increase of the source terms €eh and Mi by a factor two. This is
illustrated in figure VIII.23.

The good agreement between the data in pure argon and in a
99.5% Ar + 0.57% H2 mixture in the outer part of the boundary layer

(xm # 0.8 mm) shows that the outer part of the boundary layer is not

_sensitive to relaxation processes. In section V.e we predicted_this .

fact with the statement that the outer part of the boundary layer is
in a state of local thermodynamic equilibrium and that the heat flux
towards the wall is determined by the heavy particle heat conductivity
in the inner part of the boundary layer. In this inner part the

behaviour of the heavy particles is not sensitive to the relaxation

processes (low ionization degree).
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Figure VIII.20 : Comparison of the pressure, laser schlieren

(11 = 0.6328 um) and absorption (11) signals in pure argon

with the signals in a 99.5% Ar + 0.5% H2 mixture. X = 1.2 mm.

Ar :

run (80041602/1II), (Ms)1 = 8.25, (MS)2 = 8.12, p, = 668 Pa,
T1=296K.( )

99.5% Ar + 0.57 H, :

run (80042501/11), (MS)1 = 8.37, (MS)2 = 8.30, P, = 666 Pa,

T, = 294,5 K, (—==—== )
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Figure VIII.21 : Electron and atom density gradient

(né and n;) profiles of the thermal boundary layer in

a 99.57 Ar + 0.5% H2 mixture.

N run x (MS)l (MS)2 P, T1
(mm) (Pa) (K)

1 80042501/11 1.20 8.37 8.30 666  294.5

2 80042402/11 1.00 8.09 7.97 669  294.5

3 80042401/11 0.80 8.26 8.14 668  294.4

4 80042302/11 0.60 8.15 8.08 670  294.4

5 80042301/11 0.50 8.33 8.23 668  294.4
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Figure VIII.23 : Influence of the increase of the source terms

by a factor two on the electron density profile of the boundary

layer.
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VIII.e. Determination of the heat conductivity

From the data presented in the previous section we have seen
that a quantitative agreement between the relaxation model (reE - reM)
and the experiment is achieved for M_ = 8.15. In the outer part of the
boundary layer corrections of the order of 307 on the né and n; data
for the influence of radiation cooling should improve the model
considerably.

We now try to obtain information on the heat conductivity of
the plasma from the experimental data with the procedure described in
section IV.c. We assume a single temperature. The heat conductivity
is thus a function of the temperature and the electron density.

The factors (T/A)(3A/5T) and (ne/k)(ak/ane) are estimate on basis of
the theory given in Appendices II and III:

1.5
0.3

0.3
0.1

(T/X) (3A/3T)
(ne/k)(ak/ane)

[
I+ i+

The convective velocity is estimated from the thermal Rayleigh problem
calculations (reE-reM).

We consider here the experimental data in a 99.57%7 Ar + 0.57 H2 mixture
because those data agree better with the reE-reM model than the data
in pure argon.

In table VIII.2 we give the data on the state of the plasma
outside the boundary layer (xm = 3 mm). In table VIII.3 we give the
details of the calculations. In table VIII.4 we compare the results to
the theory (Appendices II and III).

We see that the data obtained are lower than the theoretical
calculated values. We expect that this is due to systematic errors in
our measurements. From an analysis of the various sources of
uncertainties we concluded that the determination of the heat
conductivity depends mainly on the measurements of the atom density.
An improvement of the accuracy of the measurement of the atom density
gradient can be achieved by using instead of the infrared beam

(12 = 1.152 uym) a shorter wavelength such as used by Glass (78).
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t P dp/dt G (@), d(n ), /dt

sy (10°pa) (100%™ (10%%3) o) (0%t 3sTh
100 3.33 0.3 5.9 2.02 1.5

150 3.18 1.8 5.3 2.03 -1

200 3.10 ~-1.5 4.7 2.01 -4

250 3.01 0.3 4.1 1.99 2

Table VIII.2 :

State of the plasma outside the boundary layer.

M_ = 8.15, p, = 667 Pa, T = 294 K.

X u \ Te/T

h

-1 -1

(mm) (ms ) (ms )
1.0 -1.91 -0.21 1.002
0.8 -1.60 -0.26 1.005
0.6 -1.35 -0.29 1.019

Data estimated on the basis of the reE-reM model. t = 200 us.

2 2
X n, ane/at Bne/ax P) ne/ax dne/dt Qr
am) (10224073 102737y o™t (102%™ (10283 aodw 173
1.0 3.0 -1.3 26 -2.6 -1.7 1.8
0.8 2.4 1.1 32 -1.3 -1.6 1.2
0.6 1.8 -0.8 31 - -1.2 0.6

Experimental data on the electron density and radiation loss.

t = 200 us.

X n on /3t on_/ox an /ax2 dn /dt
a a a a a

am) (1024073 10%%737s)  (10%n7Y  (103%0) 10?8 s)

1.0 2.11 -0.5 -36 0.8 6

0.8 2,21 2 -61 1.5 12

0.6 . 2.38 6 -116 3.5 22

Experimental data on the atom density. t = 200 us

Table VIII.3 :

Details of the data used for the determination of the

heat conductivity.
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X T n A A

e th
@) (10°® 10*A) @k wrklah
1.0 1.04 3.0 0.3 + 0.1 0.43
0.8 0.99 2.4 0.2 + 0.1 0.39
0.6 0.93 1.8 0.3 + 0.2 0.35

Table VIII.4 :

Experimental data on the heat conductivity of
partially ionized argon obtained from the data

of tables VIII.2 and 3.

In view of the results of the measurements in the non-ionized case
influence of side-wall boundary layer may be important (section VII.d).
Measurements in a larger shock tube facility might show some

improvement.

In figure VIII.24 we show the influence of a variation of 203
of the electron heat~conductivity on the calculated values of the
density gradients né and n; (reE-reM model described in section V.e).
From those data we see that in order to obtain information on the
electron heat conductivity one should measure né and n; with an
accuracy of about 27. Further we observe that for x > 1 mm the
density gradients are much more sensitive to variations in the

electron heat conductivity than close to the wall (Xm < 1 mm).

It appears that for X Z 1.00 mm the time dependence of the
pressure (dp/dt) and the radiation loss term Qr are of the same order
of magnitude as the other terms. We therefore expect that at higher
temperatures the accuracy of the determination of these terms will

restrict the use of the shock tube method.
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IX. CONCLUSIONS

IX.a. Heat conductivity

Non-ionized monatomic gases: (chapters II, III, VII)

Considering the main goal of our study: the improvement of the shock
tube method for the determination of the heat conductivity of gases
at high temperatures we may conclude that for non—ionized monatomic
gases the shock tube method, based on a direct determination of the
terms in the energy equation, yields heat conductivity data with an
accuracy of about 47.

A significant improvement of this accuracy is expected to result from
a better measurement of the state of the gas outside the boundary
layer and a study of the influence of the side-wall boundary layers
on the flow.

We expect that the improved shock tube method should have an accuracy
comparable to the hot wire column methods with the advantage of a
much more extended temperature range.

For argon, because of the relatively long ionization relaxation time,
one may use the "frozen" reflected shock region in order to determine
heat conductivity of non—ionized argon up to temperatures of the order

of 2 x 104K.

Argon: (chapter VII)

The heat conductivity data on argon obtained for low temperatures
(below 2500 K) agree within 47 with the hot wire column data of
Springer (73), Chen (75) and Shaskov (78).

At higher temperatures (5000 K < T < 7000 K) our data agree within 37
with the data of Aziz (80) calculated on the basis of the

intermolecular potential of Aziz and Chen (77).

Polyatomic gases: (chapter VIII)

Bifurcation of the reflected shock is a severe restriction to the use
of the shock tube method for polyatomic gases.

Some aspects of the heat conductivity of polyatomic gases such as the
influence of dissociation may be studied by considering mixtures of

monatomic gases with a small amount of polyatomic gases.
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Ionized monatomic gases: (chapters IV, V, VIII)

In the ionized case the shock tube method may yield valuable data on
the heat conductivity. A considerable improvement of the accuracy of
the measurements of the atom density, the pressure and the radiation

loss has still to be achieved.

IX.b. Non—equilibrium phenomena in ionized boundary layer:

(chapters V, VILI).

A quantitative agreement between the two temperatures
relaxation model of Hutten (76) and the experiment is achieved at low
Mach numbers (electron densities lower than 5 x 1022m-3).

At higher electron densities the structure of the reflected shock
region is strongly influenced by the radiation cooling.

A considerable improvement of the agreement between theory and
experiment is expected if the radiation loss term and the time
dependence of the state of the plasma outside the boundary layer are

taken into account.
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APPENDIX 1I.

RANKINE-HUGONIOT RELATIONS

A I.a. Rankine-Hugoniot relations for a perfect gas

The different regions of shock tube flow, as defined in

figure II.2 are coupled by the following relations:

Relations A I.1 to 7 can also be used to calculate the "frozen"

state sfr'

p
2 2y .2
Py - b y + 1 (MS D
I, 20y - 1) (y M§+ 1)(M§— 1
— - ] +
Tl (y + 1)2 M2
S
(vg = uylo, VsP
p .
5 2 v 2
p2 = I+ y + 1 (Mr D
T, 20y - DG+ DAL = 1)
O 7 2
2 (y + 1)™ M
T
u5 = 0

(section V.b).

1.2

I.3

I.4

I.5

I.6

I.7

181



A I.2. Rankine-Hugoniot relations for partially ionized argon

Using the integral conservation laws (V.3, 4 and 5) in
combination with relations V.6 to 10 we calculate the equilibrium
state 5 behind an "ideal" ionizing reflected shock (section V.c).
The numerical procedure is described by Hutten (76). Results are

given in tables A I.1, 2 and 3.

Ms p5eq T5eq (ne)Seq 0Leq

(10°Pa) (10°x) (1022 w73y (07H
7.0 0.8706 9.444 0.844 1.264
7.5 0.9853 9.973 1.530  2.138
8.0 1.1047 10.418 2.434 3.169
8.5 1.2296 10.808 3.571 4.334
9.0 1.3607 11.159 4.960 5.616
9.5 1.4980 11.482 6.623 7.009
10.0 1.6421 11.784 8.588 8.509

Table A I.1 : State 5eq as function of MS for
P, = 266.6 Pa and ’I.’l = 295 K.
Ms p5eq TSeq (n )Seq oLeq

(10°pa)  (10°K) 10%? n73) (074
7.0 2.1936 9.690 1.739 1.060
7.5 2.4854 10.289 3.282 1.876
8.0 2.7879 10.790 5.352 2.860
8.5 3.1038 11.227 7.976 3.983
9.0 3.4344 11.618 11.201 5.232
9.5 3.7808 11.978 15.077 6.595
10.0 4.1437 12.313 19.650 8.062

Table A 1.2 : State Seq as function of MS for
P, = 666.6 Pa and TI = 295 K.
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QO W W 0 0 ~N N
o U O U O U O

p5eq
5
(107Pa)

4,4119
5.0038
5.6160
6.2536
6.9201
7.6175
8.3473

Table A 1.3 :

TSeq
(10°xy

9.867
10.527
11.076
11.552
11.977
12.367
12.730

State 5 as function of M_ for
eq s

(

(ne)Seq 0Leq
1022 073y 10
2.960 0.914
5.786 1.681
9.637 2.624
14.564 3.714
20.642 4,933
27.966 6.269
36.645 7.716

P, = 1333 Pa and T1 = 295 K.
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APPENDIX II

RELATIONS BETWEEN CROSS SECTIONS, FLUXES AND SOURCE TERMS

A II.a. Introduction

In section IV.b we reviewed the conservation equations for a
thermal boundary layer in a partially ionized monatomic gas.

In equations IV.1 to 9 we left the expressions of the fluxes and
source terms unspecified. Some general properties of those terms are
given in equations IV.10 to 25. In this appendix we give expressions
relating the fluxes and the source terms to the cross sections for
collisional processes (radiational processes are not considered).

Hutten (76) used the formulas of Fay (62) based on a
mean—free-path theory. Those formulas should be equivalent to a first
approximation in the Chapman-Enskog procedure. However the electron
energy source term €t used by Hutten (76)(and Hoffert (67))
differs by a factor 4/3 from the expression of Chapman (70). Further
the cross section for electron-atom elastic collisions used by
Hutten (76) (and Jaffrin (65)) is about a factor 4 too low, which is
expected to be due to a confusion in the definition of the cross
section. In addition it appears that a mean-free-path approximation
will only yield an order of magnitude estimate for the electron heat
conductivity (Kruger 68).

We therefore used improved expressions based on the studies
of Chapman (70) and Devoto (67, 73). In section A II.b we give the
definition of the cross sectioms. In section A II.c we consider the
transport coefficients. In section A II.d we consider the source

terms. In appendix III we give the cross section data.

A IIL.b. Definitions cross sections

-~

The'total"™ cross section Q(ij/kl) for a collisional process

(1j/k1l) or:
i+ —> k+1 A TII.1
is defined following Mitchner (73) by:

_ Number of events (ij/kl) per unit of time

Q(ij/kl) Flux of test particles i

A II.2
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In cases of non-elastic processes k and 1 are the products and we use

the short notation:

- i
.. = Q. A II.3
Uijan T Y
For elastic processes (ij/ij) we use the notatiom:
e e g = Q.. A I1.4
Uij/ig) N

The total cross section is a function of the relative energy e given

by:
_ 1 2
e. = 3 m]._j gij A I1.5
where:
m]._j = miij(mi + mj) A II.6

and gij is the relative velocity:

g.. =V. =V, A II.7
2ij -5 -

In addition to the total cross section we also need information on the

differential cross section Iij(x’er) defined for elastic collisions by:

(Number of particles i deflected per unit
of time into the solid angle dQ)

Iij(X,er) = A II.8

dQ (Flux of particles i)

where the solid angle element dQ is taken in the direction X.
Iij(X’er) can be calculated from the intermolecular potential V(r).
In the cases considered further the data available are given in the
(s)
J

form of "weighted" cross sections Qi defined by:

™

Q') = 2 1 (1- cos®D)sin(X) L..(X,y) dX A TII.9
1] 0 1]
and of "average' cross sections QE;’t) related to Qii) by (Devoto 73):
s,t L(s + 1 ® 2t+3 2
Qéj’ ) - ( ) o Y exp(-y )Qig)(y) dy
(t+ DI (2s + 1 =(-1)%) J
A II.10
with 2
vy = e /(k T) A II.1]
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and:
Tm = (mJ.Ti + miTj)/(mi + mj) A II.12
Definition A II.9 and 10 are chosen so that in the case of rigid

(s,t) _ A(s)
Qij = Q..

spheres: ij

A II.c. Transport coefficients

The transport coefficients of partially ionized argon can be
estimated on the basis of the Chapman-Enskog procedure (Chapman 70,
Devoto 66). In principle this procedure considers only small
deviations of the distribution functions of the particles from local
Maxwellian distributions with a single temperature. When terms of the
order (me/mh)l/2 are neglected this procedure can be generalised to
the case of a two-temperature plasma (Devoto 67, Kruger 68). In this
approximation the influence of the electrons on the heavy particles
appears only through the presence of an electric field E. The heavy
particles (atoms and ions) are treated as a binary mixture.

The diffusion velocity Yj (j = i,a) is given by (Devoto 66):

- T
Yj = (nh/nj) Djkgk (Dj/(njmh)(V1n Th) A II.13
where:
4, = V(ni/nh) - (ni e E) (na/nh)/Ph A II.14
and:
d = -d, A iI.lS
—a —i

Expressions for the binary diffusion coefficients Dij and the thermo-
diffusion coefficient D§ based on a second approximation in the
Sonine-polynomial expansion of the Chapman-Enskog procedure are
given by Chapman (70). The thermo-diffusion appears to be negligible
for the conditions comnsidered (p = 3 x ]05Pa, T < 12000 K).

This result is confirmed by the study of Devoto (67).

@ Note:
We neglect the influence of the excited argon atoms on the transport

properties.
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Further it appears that a first approximation for Dia is sufficient

(in view of the uncertainties in the cross section data):

Ttk T
hy1/2 _1 A II.16

1a

The corresponding approximation for the heat fluxes q. (j = i,a) is
given by equation IV.20. The heat conductivity A? of the ions appears
to be megligible. The heat conductivity A: of the atoms was calculated

by means of the mean—-free-path approximation:

o(2:2)
m _ o ia
SR e Nex 1 A TII.17
aa
in which lij is given by:
_ 15k 1/2 (2,2)
My T e (kT m) /e A IT.18

In table A II.1 we compare AZ to the heavy particle heat conductivity

m
(Ah)Dev
approximation in the Chapman-Enskog procedure.

calculated by Devoto (73) for atmospheric argon with a second

§ o Az/(Ai)Dev (XZ/ Aﬁ)DeV
(10°K)

6  2.5x107° 1.000 0.02

8  1.6x10 > 1.003 0.29

10 2.1x1072 1.011 1.17

12 1.2x10" " 1.275 3.58

Table A II.1: Comparison of A: obtained 8 from
formula A II.17 with the data of Devoto (73).
(p =1.013 x IOSPa).

f Note:

On basis of the cross section data of Devoto (73).
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The relatively large discrepancy between formula A II.17 and the data
of Devoto (73) at high temperatures is unimportant because in such a
case the heat conductivity of the plasma is mainly determined by the
electrons (see table A IIL.1). Further Devoto (73) notices that at
high temperatures the second approximation in the Chapman-Enskog
procedure underestimates the heavy particles heat conductivity by
about 12%. Alternative simplified formulas proposed by Capitelli (72)
and Honda (77) have a similar accuracy.

The electron transport properties have been calculated on
basis of the simplified theory of Devoto (67).
As shown by Kruger (68) a third approximation in the Sonine—polynomial
expansion yields an estimate of the heat conductivity in the fully
ionized limit which agrees within 1.2% with the formula of Spitzer
(53). In the partially ionized case when electron—atom and electron~
charged particle interactions are of the same importance the third
approximation agrees within 20% with the twelfth approximation, which
can be regarded as exact (Kurger 68). At lower degrees of ionization
the Chapman-Enskog procedure fails to converge (T < 6000 K, p = 105Pa).
In the limit of very low degrees of ionization, the Lorentz limit, an
analytic expression for the heat conductivity can be derived.
In the partially ionized case Devoto (73) and Kruger (68) use a semi-
empirical formula which has the mathematical form of the Lorentz
1imit. This so called Frost-mixture rule implies a numerical
intergration? Because the heat conductivity of the electroms below
6000 K will not be of major importance for the structure of the
boundary layer (see table A II.! and section V.e) we decided to use a
simple extrapolation between the Lorentz 1imit and the value of the

heat conductivity in the partially ionized case:

e T o3 fr————? A II.19

m . . . . . .
where (Ae)3 is the third approximation to AZ, F is the ratio of

electron-neutral to electron—-ion collision frequencies given by:

_ _ (1,1 (1,0 and F_ = 50
F o= (1-a)Q " "/(aQ ) o A 11.20
@ Note: For 4000 K < T <6000 K the Frost-heat conductivity is lower than
the twelfth approximation in the Chapman-Enskog procedure.In contradiction
with the statement of Mitchner(73) it is therefore not closer to the
exact value of the heat conductivity than the twelfth approximation.
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With a second approximation for the diffusion and the thermo—diffusion

we obtain:
5 01, 11 o .m
% =3 k Te (1 + qee/qee) n, Xe ke v Te A 1I.21

The third approximation (AZ)B to AZ is given by:

9 q22
m, _ 75kn 1/2 ee
(Ke)3 = 3 e (27k Te/me) T 22 ; 12)2 A II.22
eelee dee
The matrix q:i is according to Devoto (67) given by:
qO] = 8 I nn. ( Q(1 D 3 Q(1’2)) A 1I.23
ee s e ] e]
J=1i,a
1 _ 1/2 2 .(2,2)
Qee 82 Be Qee *
8§ £ nn 22Dl s Q(1 2) 412 Q(l 3,
.. e 4 “ej
J=1,a
A TII1.24
12 1/2 2 7 ,(2,2) _ (2 3)
s = 8 @'l (£l 2 ;07 +
175 (1 1) _ 315,(1,2) (1,3)_ (1,4)
8 I mnn(5zQ g Qe;  + 270 30Qg;7 )
J=1i,a
A II1.25
22 1/2_2,77 (2,2) _ (2 3) (2 4)
oo = 8@ "Talgr ot - 700 w500
1225 (1,1)_ 735Q(1’2) 399:(1,3) (1 4) (1 5)
S.E. ( 64 2 8 Tee * 2 "ee ZIOQ * 90Q )
J_lya
A II.26
From the cross section data available it appears that:
o1, 11 _ -1
Uge/dge = 0010 ) A II.27

so that equation A II.2! can be approximated by IV.20.
The interaction of charged particles needs a special treatment because
that interaction cannot be considered as strlctly binary.

J

We separate therefore the coefficients 9 into a electron-neutral
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interaction qu and an electron-charged particle interaction q;J:
ij _ ij ij
a;) gl + qp A II.28

Expressions for qéj are given by Itikawa (63), Williams (69), Daybelge
(70) and Luchina (78). The theory of Daybelge (70) is appropriate for
a two-temperature plasma as considered here. For Te/Th < 102 in the
fully ionized limit the heat conductivity of the electrons in a two-
temperature plasma deviates only by a few percents from the one-
temperature heat conductivity. This effect was therefore neglected.
The éxpressions proposed for qéj show some discrepancies that
are, according to Luchina (78), due to numerical errors. In view of
the fact that Luchina (78) dedicates special attention to this problem
we decided to use his expressions. It is interesting to notice that
in the fully ionized limit the heat conductivity calculated with the
expressions of Luchina (78) agrees with the data of Daybelge (70) but
does rnot agree with the previous calculations of Daybelge reported by
Kruger (68) and Mitchmer (73).

In figure A II.1 we compare the various expressions.

1.6 T T T

_ \ o Krug}er(Sb) | !
N - _ Luchina(78) 7
@ o Daybelge(70) |
Eao —_

< — - .

= 6—o— o o o=
Fo

j 08 ! | 1 1 | I 1 |

5 7
(n(3 rD/Zbo)

Figure A II.1: Kihara correction to the heat

conductivity in the fully ionized case according to

Kruger (68), Daybelge (70) and Luchina (78).
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Using the expressions of Luchina (78) we found:

Il

Gp = 8 m bi §(9 328 1n(3 rD/Zb ) - 15.405) A IT.29

ol = & b2 nl(10.746 1n(3 x /2b ) - 25.586 A TL.3C

qéz = 87 bi 2(21 486 1n(3 r, /2b ) - 38.722) A II.31
where:

rg = ek Te/(e2 ne) A TII.32
and

bO = ez/(8 T eok Te) A II.33

In appendix III we derive a simplified expression for the electron

heat conductivity.

A II.d. Source terms

The ion-mass source term Mi depends on the departure of the
state of the gas from local thermodynamic equilibrium and is the net
result of various collisional and radiational processeso‘A model for
M, is described in appendix IV. We consider here only collisional
processes.

The rate of production of particles k by a collisional
process (ij/kl) is given by:
ninJ 8 kT

m1/2 .= 3 2. i
(1%, )( lJ) Of y exp(-y") ij(y) dy

R(1j/k1) =

A II.34

In which the factor (1 #+ 6ij)—1 is introduced to prevent that events
are counted twice in the case of collisions between identical
particles.

The momentum source term Pi is given in first approximation
by:

P. = - %-ninhmh (k Th/n mh)1 2 Q(l D

1

A II.35

The expressions for the energy source terms €5 €4 and €eh have been

given in section IV.b.
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APPENDIX III

THERMAL RAYLEIGH PROBLEM: EQUATIONS, TRANSPORT COEFFICIENTS
AND SOURCE TERMS.

A II1.a Introduction

In this appendix we give information on the equations, the
transport coefficients and the source terms used in the reE-reM model
described in section V.e.
In section A IIIL.b we give the equations. In section A IIT.c we
describe the expressions used for the transport coefficients and in

section A III.d the expressions used for the source terms.

Note:

For the calculation of the limit cases of the relaxation model

(figures V.9, 10 and 11) the expressions of Hutten (76) have been used.

A III.b Equations
A combined Lagrange-similarity transformation of the form:

Fxye) = £ /2 5% gy A III.1
0
is applied to the set of equations IV.1 to 9.
After rearrangement the following set of equations for Oy Te and Th

1s obtained:

t M.
da f Ja 1/2 % i
t—t——2 5t t 3_f ap V) + A II1.2
tg _E_t.a__(a T) =
¢t 3t 5P 3t P i) =
aT 3T
- 2 3 m e
“73F "5, e T) rrgarle A, 372
oT
1 2 1/2 2 e
p(T + Tlon)Mi t t R v 5F
+ g-tl/zv E——-(a T) + 2 t A III.3
5 of e e TSR T fen :
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oT
h 2 ? _
t at * 5p t ot (ap Te) B
aT oT
f ""h £f 3 2 2 m h
738 Y Spar P T tarar A, )

A ITII.4

The corresponding initial and boundary conditions are given in

equations V.16 to 20.

The numerical procedure is described by Hutten (76).

A TII.c. Transport coefficients

The relations between the transport coefficients and the
cross sections for collisional processes are given in appendix II.
We now give the cross section data used and compare our data to data
from the literature.

For Dia we used equation A II.16 with:

(1,1) _ -18 _ =0.14 2
Q;, = 3,5x 10 T, m

for Th < 1.5 x 104K A TII.5

which is a compromise between the data of Devoto (73) and Ellis (76).

For AZ we used formula A II.17 with:

Q%22 o 334 10718 770-21 2 A TIT.6
aa h
and
A = 3.1 x 107 7071 ¢ 7 lg7! A III.7
aa h
which agree with the data of Aziz (80) within 4% for Th < 104K, and
with:
(2,2) -18 _-0.30 2
Qia = 3,6 x 10 Th m A III.8

which is a fit of the data of Devoto (73).
The electron heat conductivity kz was estimated by means of equation

A II.19 in which (AZ)3 was calculated with equation A II.22.
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The Kihara-correction for the charged particle interaction was
(1)

ea

neglected and the electron-atom cross section Q was assumed to be

proportional to the energy e,

Using the data of Frost (64) and Milloy (77) we obtained:

2

o - 8.6 x 1072 e m A TIL.9

ea

for

3x10°%% < e. < 2x 107185,

The ratio of electron-atom to electron—-ion collision frequencies F is

given by:
Q(l,l)
F a ;“) > £a A III.10
2w boln(3rD/2bo)
m .
and for (ke)3 we find:
o0y, = 2 37(“ k Te)1/2 k (1 +1.78 F)
e’3 8 m, 2 1 biln(BrD/Zbo) (1 +10.7 F + 3.61 F2)
A III.11
m m m m

T3 (Ae)I (Ae)II (ke)III (Ae)IV
(107K) (W/m K) .

3 8.35-10 8.35-10 7.99-10 9.42-10

4 2.10-6 2.10-6 1.97-6 2.48-6

5 1.71-4 1.72-4 1.65-4 2.13-4

6 2.41-3 2.44-3 2.31-3 3.12-3

7 1.70-2 1.80-2 1.70-2 1.88-2

8 6.22-2 6.80-2 6.52-2 5.86-2

9 0.150 0.162 0.158 0.137

10 0.277 0.293 0.290 0.264

11 0.432 0.451 0.449 0.437

12 0.609 0.631 0.631 0.644

Table A III.1 : Comparison of various expressions for the

electron heat conductivity in an atmospheric plasma
(p = 1.013 x 105Pa) (see text).

notation: 8.35 - 10 = 8.35 x 10 19,
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In table A III.1 we compare data obtained by means of various
. m

expressions for Xe :
I. Simplified expression used for our calculations.

The Kihara-correction has been neglected and a linear dependence

of Q(l)on e 1is used. (A III.9 to 11)

ea T

II. Simplified expression based on the assumption of a linear

(1)

dependence of Q on e (A III1.9) and including the Kihara-

ea
correction according to the formulas of Luchina (78).
III. Heat conductivity with the data of Milloy (77) for Qé;)in the

19

range e_ <4 x 10 77 and the data of Forst (64) for

e_>4x 10 7.
The Kihara-correction is applied according to Luchina (78).

IV. Data of Devoto (73) with the data of Forst (64) for the electron—
atom interaction and the formulas of Williams (69) for the
charged particle interaction. Below 6000K the Forst-mixture rule

of Kruger (68) is used.

A IITI.d. Source terms

was calculated with équation IV.24
(1,1),

el

The energy source term €h

in which the expression of Kihara (Mitchner 73) was used for Q

(1,1) _ 2 _
Qei = 27 bO (ln(BrD/Zbo) 1.37) A IIT.12

for the electron—atom interaction formula A IIT.9 was used.

We calculated the ion-mass source term Mi assuming that
electron—atom collisions were dominant. Equation V.15 was used where
oS1 is given by:

1 1/2 _
S =C T T @I +T ) exp(-T /T) A III.13

with:
_22m3K—3/25_1.

T
ex

1.35 x 10°K and C__ = 3 x 10
ea

This formula can be considered as a lower bound for the estimate of Mi'

From the comparison of this model with a more detailed model we will

show in appendix IV that A III.13 yields a reasonable order of

magnitude estimate of Mi outside the boundary layer. However in the

inner part of the boundary layer this model is not even expected to

yield a correct order of magnitude estimate.
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APPENDIX 1IV.

COLLISION-RADIATION MODEL

A IV.a. Introduction

In the present study we use a collision~radiation model in
order to estimate the influence of radiation escape on the state of
the plasma outside the boundary layer (séction V.d).

The model used is the two-step model of Mitchmer (73). (sectiom A IV.b).
When radiation escape is neglected this model yields formula V.15

which has been used for the estimation of the recombination rate in

the boundary layer (see also appendix III, section d).

This simple model yields a qualitative insight in the
behaviour of the plasma in the outer part of the boundary layer and
outside the boundary layer. This statement is supported by the
comparison with a more detailed (five step) model and with experimental
data of Leclair (77) (section A IV.c).

For the inner part of the flow (close to the wall) the
feaction model is not expected to yield a realistic order of magnitude
estimate for the recombination rate. We recall here some of the defects
of the model:

From the study of Mitchner (73) it appears that for the conditions
encountered close to the wall the deviation of the electron velocity
distribution from a Maxwellian distribution must be taken into
account for the estimation of the reaction rates.

From the studies of Drawin (69) and Bacri (77, 78) we conclude that
electron-ion-atom three body recombination will not be negligible.Q
The influence of dissociative recombination is not well established.
Close to the wall (T, = 0(3x10%K), T, = 0(5x10°K) ) it will
certainly be dominant. Bates (80) states that dissociative
recombination will overshadow other processes up to lOaK. This is in

contradiction with the results of Igra (75).

@ Note:
The expression of Hoffert (67) used by Glass (78) for this reaction
rate depends only on the heavy particle temperature.

This seems rather unrealistic. The formula proposed by Drawin (69)
seems more appropriate.
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Finally the development of a realistic collision-radiation model
necessitates the estimation of escape factors in a non-uniform
plasma.@

In view of those difficulties we did not attempt to develop
a reaction model valid for the entire flow.
Fortunately as shown in section V.e the structure of the outer part
of the boundary layer is rather insensitive to the behaviour of the

electrons close to the wall.

R Note:
One may expect that absorption of the light emitted outside the
boundary layer by the inner part of the boundary layer can yield

negative values of the escape factors.
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A IV.b. Two step—model

The general formalism of collision-radiation models is
described by Biberman (71), Drawin (69, 72) and Katsonis (76).
A comparative study of various approaches is given bij Drawin (75).
We consider here the simplified two-step model of Mitchmer (73) for a
uniform plasma consisting of electroms (e), argon atoms in the ground
state (Aro), excited argon atoms (Arl) and singly ionized argom in the
ground state (Ar+ or i). The distribution functioms of the particles
are assumed to be Maxwellian. The population of the excited atoms n,

is assumed to be quasi —-stationary, i.e.:

Snl
3—1:_—_ +V.(nl(2+21)) =n1 = 0 A IV.1

where n, is the volumic rate of production of atoms in the excited

1
state 1. Using the assumption of quasi-neutrality and the conservation

of charges we have:

a = 0, =-n A 1Iv.2

Assuming that electron—atom inelastic processes are dominant we can

write:
noo= —R(eArO/eArl)( 1 - (nl/no)(no/nl)eq) + nlAIoBlo
_ + _ 2 2 2
R(eAro/eAr e) (1 (ne/no)(no/ne)eq) + neAcoBco A IV.3
and

n, =0 = R(eAro/eArl)(l - (nl/no)(no/nl)eq) —.nlAloBlo

2 2 2
(ne/nl)(nl/ne)eq) + n"A B A IV.4

~R(eAr /eAr+e)(l
1 e clel

Where the equilibrium values of (n]/no) and (nz/nj) are given by:

(nl/no)eq= (Z]/Zo) exp ((eo - el)/kTe) A IV.5

and

2 2.3/2
(ne/nj)eq=(22i/Zj)(2ﬁmek Te/hp) exp ((ej—eion)/kTe)
A IV.6
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The reaction rates are calculated with formula A II.34 in which the

following approximations for the cross sections are used:

e _ -3 _ _ 2

Q01 =3 x 10 (er (e1 eo)) m A IV.7
e _ -2 _ _ 2

Qoi =1.2 x 10 (er (eion eo)) m A IV.8

Q. =1.9x10 (e - (e,  =-e)) m A TV.9
1i : T ion I

Formulas A IV.7, 8 and 9 are based on the experimental data of Jacob
(76), Kieffer (66) and Dixon (73) respectively.

Formula A IV.7 is also used by Glass (78).

ej is the energy of level j and e on is the ionization energy. A]o is
the rate of spontaneous de—excitation from level 1 to the ground
level o. ch is the two-body radiative recombination rate. The data

one., Z., A, and A . used are given in table A IV.I.
1717 lo cJ

7. . A, .. A .
J ki 5 3G~ cj

(1.6x10—19J) (108/3) (m3/s)
o 1 0 - 1.03};10"17/’1‘;_/2
1 12 11.6 3.17 6X10_23(1.5x104+Te)/T;/2
i 6 15.76 - -

Table A IV.1 : Model of the argon atom

These data have been obtained from the studies of Wiese (69), Katsonis
(76) and Nishida (77).
The influence of lowering of ionization potential and advance of
series limit on the radiative recombination rates has been neglected.
Actual values of ch may be higher by a factor 1.2 to 2 (Vorob'ev (78),
Schluter (80)).

The escape factors B

s B and B . have been calculated by
co c

lo 1

means of the formulas of Drawin (73).
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Assuming a Lorentz—line@shape Blo is related to the optical depth t

by:

lo

1/2

2

BIO = (1 + (tlo/(z + tlo)))/(l + (7 tlo) ) A IV.10

where:
2 2 2

tio = (ZI/ZO)(C /8 T VIO) Aloﬁﬁvlo A IV.11
The line half width Av, is given by:

Av,, = (A\)lo)n + Cﬁvlo)s + (Avlo)r A IV.12
where the natural line broadening is given by:

(Avlo)n = A]o/4ﬂ A IV.13
the stark broadening is given by Griem (74):

(v, ) = 1.4x10 35 7! A IV.14

lo’s e

and the resonant broadening is calculated by means of the formula of

Lindholm-Foley e (Traving (68)):

_ 3
(Avlo)r = (Zl/zo)(c/an “lo) Al m A 1IV.15

and

Vi, = (e1 - eo)/hp A IV.16

R Note:

From the study of Drawin (73) it appears that B10 is mainly
determined by the wings of the line. The Doppler broadening will
not affect Blo significantly for the experimental conditions

considered.
Q8 Note:

The formula of Ali (65) yields a value which is a factor 4 lower.

Equation A IV.15 can be considered as an upperbound.
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According to Iroms (79) the formulas of Drawin (73) yield a
qualitative estimate of the escape factor for a cylindrical plasma.
The escape factor at a distance x from a wall in a half infinite
space is about a factor 3 lower than the escape factor at the center
of a cylinder of radius x (for strongly absorbed lines).

The expression used for B, 1is thus an upperbound (when considering

i
the state of the plasma ouzside the boundary layer in shock tube
experiments).

Using the photo-ionization cross section data of Katsonis (76)
we found:

Bco = exp( - tco) A IV.17

where the optical depth tCo is given by:

o 't = 3.5 x 102! 42 A IV.18
) co
For Bcl a hydrogenic approximation of the photo-ionization cross
section (Mitchner 73) was used. _

For the temperature range considered (T < 12000 K) the direct
ionization R(eAr /eAr e) is negligible in comparison with the
excitation rate R(eArO/eArl), The global ionization rate Sg defined by:

3

2 = S nn -A n A 1Iv.19
e g eo g e

is in such a case approximatively equal to:

i
OS = R(eAro/eArl)/nenO A IV.20
In principle the global ionization rate Sg is not related to the global
recombination rate Ag by the principle of detailed balance.

Equation A IV.19 can also be written as:

. = nnS (1= (n /n )(n /n )

e eog e’ "o st) A Tv.21

. 2 . .
where the stationary value (ne/no)st 1s 1n general a function of x, n_,

n. and T .
1 e
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When the escape factors are independent of the populations nj,
2 . . .
(ne/no)St is a function of n, and Te only which can be used as a
generalized Saha expression.
. . 2 2
In figure A IV.1 we show the behaviour of (ne/no)St and (ne/nl)st for
conditions corresponding to our experiments. The escape factors Blo
and BCO are given as a function of x in figure A IV.2.
From these data we conclude that the influence of radiation escape is
negligible so that we may approximate equation A IV.21 by equation V.15:
. 1 _ 2 2
n, = oo oS (1 (ne/no)(no/ne)eq) V.15
In the next section we compare this simplified two-step reaction model

with other models and with experimental data.
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Figure A IV.1 : Stationary state Asw\vamn and Figure A IV.2 : Escape factors data
Azo\zwvmn as function of distance of the wall x corresponding to figure A IV.I,

in a uniform plasma (two-step model).
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A IV.c. Comparison of the two-step model with other models

At temperatures of the order of 104K and electron densities
of 1022m_3 the two—step model agrees well with the models of Katsonis
(76) and Kimura (73, 78). In figure A IV.3 we show the stationary state
populations o and n, calculated by means of a five-step model based
on the atomic model of Kimura (73). The additional cross—section data
which are not described in section A IV.b are calculated by means of
the generalized Thomson formula (Mitchner (73), Kimura (73)). The
radiative recombination rates of Katsonis (76) are used. The behaviour
of the escape factors is similar to the behaviour shown in figure A IV.2.

The two—-step model described in the previous section fails at
low temperatures because the atomic model used is too rough and because
processes which have not been taken into account become dominant
(section A IV.a).

For Te = O(IOBK) when the two-step model becomes unreliable,
Hutten (76) and Liu (79) use both the model of Hinnov (62).
Following Igra (75, 77) this model yields a correct order of magnitude
estimate for the recombination rate up to temperatures of IOAK. This
conclusion will certainly not hold at low electron densities.
As shown by Bacri (77, 78) and according to Massey (74) and Bates (80)
the atom—ion—electron three body recombination and the dissociative
recombination will overshadow the electron-ion-electron three body
recombination. A simple reaction model is not possible because the
various processes will interact through their influence on the

populations of the excited levels.
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Figure A IV.3 : Stationary state of a
uniform plasma (five-step model).
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For instance an extrapolation of the data of Fox (66) for the
dissociative recombination to temperatures of 104K would yield a
reaction rate which is 103 times greater than the reaction rate
predicted by our two-step model. As shown in figure A IV.4 the
increase of Mi by a factor 10 in the reE-reM model (secticn V.e)
yields electron density gradients which are significantly higher than
the measured density gradients. Taking into account that the electron
density profile is not sensitive to the behaviour of the electrons in
the inner part of the flow, we may conclude that if dissociative
recombination is important it will not overshadow the three body
electron~electron—ion recombination process (in the outer part of the
flow). Because the electron density profile is not very sensitive to
variation in Mi (figures A IV.4 and A IV.5) this conclusion should
be considered with care. Our conclusion is supported by the studies
of Desai (69) and Igra (75, 77, 80).
The dissociative recombination rates calculated by Desai (69) by
assuming an equilibrium concentration of Ar; are of the same order of
magnitude as the reaction rates calculated by means of the two-step
model (section A IV.h).
It is also interesting to notice that the recombination rates
measured by Desai (69) and Gaucherel (77) are strongly influenced by
the addition of 100 ppmN2 to the argon. Gaucherel (77) comnsiders
also the influence of O2 and H2.
As shown in figure A IV.6 the addition of 0.5% H2 to the argon can be
simulated in the reE-reM model by multiplying the recombination rate
by a factor two,

It is also interesting to compare our model to the
experimental data (no/(no)eq)exp of Leclair (77) and Rosado (79).
Those data have been obtained in a stationary electric arc.

In such a case we can write:

, 2, 2 V- (n V)
MPoleq = (ol ge (Re/moleg/ (1 =5 —)

m N

(no/nil(n

A Iv.23

For the estimation of (no/nilst and Sg we used the five-step model.

The diffusion term V.(neze) was estimated by means of the formula:
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Figure A IV.5 : Influence of variation
in M. on the calculated electron density

@ﬁomwwm.

10
T _
99.5% Ar +0-5%,H X run n
2 m
M. :8.15 (mm)
: 0.50  80042301/11
P, =667Pa 0.60  80042302/1i
ﬂA =294 K 0.80  80042401/11
= experiment
— - —— — reE-reM model with
e Xy 2050 mm 2 xEqp and 2 xM;
&
2 <
N 7
V.ne \ / ////
_:u.v L ] / =N\
! / NN
i+ /060mm— >~
i / \\ N\ /////
I / S N
i / N . > -
/ / NI ~ o
/ / N // >~ ~
__ / S AN S
i ! /// > AN T~
//0.80mm NS
T TNl T
i/ / ~ ~
\ ~
- F
[T
i
|
._, | !
co( tlas] 200

I3

Figure A IV.6 : Influence of the addition of 0.5% EN to the
argon on the measured electron density profile.
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8 n D.
e la

— 3 A IV.24
(1 + a)R

V.(neye)

which is based on a calculation with a parabolic electron density

profile:

n (r) = n_(0)(1 - (£/R)%) A IV.25

At low temperatures (currents) it appears from the data of Baum (75)
that the constant R is of the order of magnitude of the radius of the
arc.

At higher temperature a considerable flattening of the electromn
density profile is observed. This is due to the strong radiative

energy transfer.

In table A IV.2 we compare the calculated value of (no/(no)eq)th
to the experimental results of Leclair (77).
2
n, n o n, V.(neye)
T ( ) ( ) =) _ .
3 (n) exp (n) th n2 St eq nn_ S
(107K) o‘eq o’eq e o eo g
11 2.0 1.5 1.12 0.25
13 1.5 1.1 1.07 0.03

Table A IV.2 : Deviation from local thermodynamic

equilibrium in an atmospheric electric arc.

(p =1.0I3 x IOSPa).

We see that our model significantly underestimates (no/(no)eq). This
as suggested by Rosado (79) may be due to an overestimation of S .
However one must also consider the fact that the radiative
recombination rates calculated by Katsonis (76) do not take into
accout the influence of advance of series limits.

Further we see from figure A IV.2 that the escape factor BCO is very
sensitive to the model used for the density profile and for
uncertainties in the cross section data. From equation A IV.24 we see
that the influence of diffusion depends strongly on the electron
density profile assumed. In view of these difficulties we can state
that our collision radiation model yields estimates for (no/(no)e )

q
that are not in contradiction with the experimental data available.
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Appendix V

PROPAGATION OF A COHERENT LIGHT BEAM THROUGH A ONE -DIMENSIONAL

INHOMOGENEITY

AV.a Ray equation

Starting from the Eikonal equation:

2
(ve)” = K2 ; AV.1
where k 1s a function of x only(k = k(x)), we find

(Courant (62)):

(VZ)X - (ke_ A2)1/2
(vz)y = (Ag— B2)1/2
(vz)Z =B : AV.2

The integration constants A and B are determined Ty tze

initial conditions:
(vz)O = ( k sin b, 0, k_ cos b )s
b is the angle of incidence of the beam.

From the definition of a light ray :

dr, x (vz) =0 : AV.k

we obtain:
2

(ax,/a2)% = ((vz)_/(v3) )  AV.S

or:

(d2xr/dz2) =1 Gi—(k/ko)e) ; AV.6

2 cos2b dx X=X

When cosb = 1 or in the paraxial approximation (égs b= 1)

this equation is identical to equation VI.13.

(QV)
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AV.b Scalar wave theory

As starting point we use the scalar wave equation

(section VI.b):
(Bge/axz) + (Bge/ayz) + (kz- ki) e =21 ko(ae/az) s AV.T

We consider the propagation of a light beam through a slab
of gas (thickness L):

k = k(x) for 0 <z < L

k=ko for 2z <0 and z=>L; AV.8
The amplitude e(x,y,0) is assumed to be given and we consider
e(x,y,z) for z = 0.

In order to determine e(x,y,z) we use a perturbation

method based on the mode-theo;‘y. The modes ejk are a set of
solutions of the wave equation (AV.7), forming a complete set

of orthonormal functions. So that we have:

= - .
B wf“ oof ejkelm dxdy 6,]'161\:111 H AV.9

Considering the gaseous inhomogeneity as a disturbance of
the uniform region ( z<0 and L<z) we use the free space

modes (Praseti(77)) defined by:

1/2 1/2
. Hj(.2 x/WX)Hk(Z y/Wy)
Jjk 00(23+k itk )1/2
expé i (j aret{(z - ZWX)/ZOX) + k arctg((z - ZW)/ZOy)) ;
and AV.10
i ECL R RL
X ¥
. x2 y2 i .
expl - 1ko(-f-{;+-1.§‘-)+-2-(arctg((z-zwx)/zox)+arctg((z—zw)/zoy)) 5

AV. 11



where:
2 _ 2 2, .2 2 ) 2,
Wx = WOX( 1T+ ((z zwx)/zox) ) s Wy- Woy(‘l+((z Zwy)/zoy) )3 AV.12

2
; R =(z-2 1+ z2— JAV .1
)3 wy)( (zoy/( z_))7) 3
z =k w /2'z=kW2/2' AV. 1k
0X o ox > %oy To oy ? -

LA is the waist of the beam and z. is the position of the waist.

Hj(t) is the Hermite polynomial of argument t given by: 8

(j-2m)! m! 3 AV.T5

H.(t) =
J m =20

The modes depend on the choice of the coordinate system and

of the parameters w__,w__,z ,z and k .
ox’ oy’ wx’wy o]

Because the wave equation AV.7 is

linear we can write :

e(x,y,z) = I oz Ajk(z) e 3 AV.16
J k
° " - [}
where Ajk(z) is the "amplitude" of mode ejk'
Using the wave equation AV.T we find:
i = 2 2
= L x - .
(dAjl/dz)- % L LA S fejl(k ko) e ,dxdy ; AV.17
O m n — Q-
with the initial conditions:
A (0)= 17 T (x,7,0) elx,y,0) axdy ; AV.18
Ji oo oo I

In the case of a uniform medium (k=ko) the amplitudes are
constants . We can thus determine e(x,y,z) for z >L when

e(x,y,L) is known.

@ Note ¢t [j/2] is the largest integer smaller or equal to j/2.
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In order to calculate Ajl(L) we use a perturbation
scheme similar to the procedures described by Schiff( ).
We introduce the perturbation parameter 6 by stating:

)
(ke— ki) —_— 6 (k- ki); AV.19

and expand the amplitudes Ajl in a power series:

t
s altlg . AV.20

A5 1 fa ’

we write equation AV.17 as:

(0)

(dAjl /dz) =0 ;

(aa's*V/agy= - L 55 als) = ==
mn

51 2 o ;L ;L ejl(kz_ks) e ,dxdy;

AV.21
This set of equations is equivalent to the wave equation AV.7
and can be solved up to any desired order (s+1) because the
right hand side of AV.21 contains only lower order quantities.
The amplitudes Ajl are estimated by using the (s+1) first
terms in equation AV.20 and putting the parameter 6 equal to

unity.
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AV.c Schlieren signal

The schlieren signal S defined by:

[=-] o0 [~2] O
s= [ 7 I(x,y,zd) dxdy - f I(x,y,zd) dxdy 3 AV.22

-0 O -0

where:

K e®e : AV.23

1
I=-
2
has Dbeen calculated for the case of a gaussian beam:

45,000 = 854 8 : AV.2k
with:
w =W =W 4 AV .25
ox oy o
and 2 =z =3z : AV .26
wX WYy W

The refractive index profile is given by:

2 2 ]

k™ - ko max Ei j
—_—= % - -z ; .
2 J=1 J! (x Xmo) ? Av.21
k
o
In order to calculate the amplitudes Aéi)by means of formula
AV.21 we first calculate the perturbation matrix Hj] defined
by: 2 2
yH = “X(k_ko) a AV.28
Jjlmn ;L ;L ejl k2 €mn axdy -
o
We notice that because k is a function of x only:
H = 4§, H 5 AV.29

J1lmn 1n jonmn
Further from the properties of the Gauss—Hermite functions

(Rainville(60)) we see that

_ - S
H 0 for |Jj-ml Jpax

Jjnmn 5 AV.30
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The matrix elements used for the derivation of formulas

VI.34 and 35 are:
_ 2,0y .
Hygoo™ (g /2) 5
2 .
oo™ (& #/2) (n #(nW"/8))exp(~i arctg 2) ;
2 5/2 )
Hogo™ (Eono /227) exp(-2 i arctg ) ;
H3OOO= (kon3w3/(8 61/2)) exp{-3 i arctg 2);
- 2 .
Hig1o= (3 Ko /8) 5
oo = (/22 (0. +(nB/W)) exp(~ i arctg B)
2010 o R AR exp(— 1 arctg ;
1/2 2 )
B30107 (6 / k n W /8) exp(-2 i arctg &) ;
1/2 -
Hh010” (ko”3w3/(4 6"/ )) exp(- 3 i arctg 3) ;
- 2 _
Hynoo= (5 EngW /8) 5
.= (3% w2) (n,+(3n.52/8) exp(- i arctg B)
3020 o RS exp(- 1 arctg ;
1/2 2 )
Hyop0= (3 / K noW /4) exp(-2 i arctg B) ;
H5020= (5]/2kon3w3/(8 31/2)) exp(-3 i arctg 2) ;
o= (Teni/8) 5
2 .
HBuo30™ (kW (n #{ng™/2)) exp(- 1 erctg 2) ;
1/2 2 ,
H503O= (5 / kongw /)4') exp(— 2 1 a,rctg %) 5
1/2 1/2 )
Hg030= / ko”3W3/(” 61/2)) exp(- 3 i arctg 2) ;
where:
W =W = 3
x 'y
and: 3 = (z-z )/z_;

AV. 31

Av.32

AV.33



Taking jmaxz 3 we find in first order (s=1) the amplitudes

for 0 < z <1 :

(1) 2 %=(z—zw)/zo

R

A%y =(i kon2w§/8)§zo( 3 )8 H
Z=—z [z
. w2 w0
A(1) -(1i k W /2)§z Z(n1+ g O(1+52/3))
10
2 2
7z & n.w Z=(z—z_ )
S O TERES N
! 8 7Z=—z /z
W @]
(1)__,. 2 1/2 22 g=lz-z )/z )
Azo =(1 kongwb/h 2 ))gzo%(1— 3 - i %)g%_ iy 5
= ZW ZO
Z=(z-z )/z
Ak g/ 61/2))gz 8(1-8"-i2(6-3 ))§ Vo Ly
30 %= —ZW/ZO
For z 2 L we have:
(1) _ (1 .
Ajo (z) = Ajo (L) 3 AV.35

The second order (s=2) calculation is rather complex.

We limited ourselves to the case z = L/2 and z > L.

Because the schlieren signal is given by:

=277 (I(x,7,2) = I(-x,¥,2,)) axdy ; AV.36

-0
where (up to second order):

I(x,y,z )—I(—X,y,zd) = 2 k Re%(1+A(1))X (1) e=

10 €00%10
(T)X (1) = ()= (1) % (1)= (1) %
T Ao R0 ®10%00 F Ao A3 enptsp t (THAG )AL Te e
(2> * (2) = (2) = i )
* A0 %0%10 T A30 %00%30 * %50 ®00%50 5 AV.37
(2) (2) (2)
we need only ATO (L>’A30 (L) and ASO .
8 Note :
é f(z>§’Z =2 . f) - £(b)
%=1
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We find:

Ag§>(L> = - i(kin 3%/ 32) I (8n,/3)+(ngw2/8) (6+ §;£2)]
-i[ 6 (1+£)+( 2/8)(1o+§£“)]§-
1 T]1 9 n3wo 3 ;
(2).y _ _ .,.2 3.2 (/2 2,676 ok
Ay (B) = = i(n L%/ (32 6 E)n /e £ (5 - £
L
+81i (-5 + §-£2 + g_ )§

2
- CegngnZi®/ (32 61%) (ren ) (1 - £

5 L
(2) - s /2,2 5.2 O N AP -R N
Asg (L) = - i(10/3) (kon2n3woL /128)% 51 21(1-3 L7 + 5 )4;
Av.38
where:
L= (L/2z ) ; AV.39



AV.4 Digression

While the influence of higher order derivatives
of the refractive index on the schlieren signal is rather
difficult to interpret, the behaviour of the center of gravity
x of the light beam is quite simple.

In analogy to the theorem of Ehrenfest we can write(Marcuse 72):

(a%%/az?)

1, 9 2 )
5 ( g(k/ko) ) : AV. Lo

where the average of a scalar F is given by:

F=(_{ _JFTaxay)/( S LT axay) ; AV. 41

Equation AV.LO can also be written as

22922y = L2 /e 12y -
(@7x/d2") = F{7(k/k )7) -
w LTl _myd=1 g
+~;- .z, L™ (3 (g )2) -0 §; AV.k2
JI= (3=1)1 5x ° X ‘
In first approximation we obtain:
- % n2'+1 L J
(dx/dz) = (ax_/d_ ) __ + .2 S & dz;AV.h3
z=21L r' Tzlz=L 0 j=1 233—1(5_1)' 0

The simplicity of those expressions makes the direct
measurement of X rather attractive. This could be done by
means of a diode-array as detection system.

Equation AV.43 was used as a check for the calculations

presented in the previous section.
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APPENDIX VI
TECHNICAL DATA

Shock tube I

A sketch of shock tube I is given in figure AVI.1

The pattern encarved in the diaphragm is‘shown in figure
AVI.2. Typlcal vacuum characteristics are:

P= 10 Pa ; (dp /dt) =2 x 10 3Pa g1,

2m T.Tm

\
\_ PTy_) '
e (.
' \
\ \ \\ \ ’
L —
43 §:2::ﬁ55 —\ T —/
. — .
driver section 0.1 m test section

Figure AVI.1: Sketch of shock tube I.
Figyze AVI.2:

Pattern encarved in diaphragm
of shock tube I.

1
i

AARNY

Shock tube IT
A sketch of shock tube IT is given in figure AVT.S3.

The pattern encarved in the diaphragm is shown in figure
AVI. L, Typical vacuum characteristics are:
4l ik -1
P, .= 10 Pa ; (dpo/dt) =10 Pas .
1.5 m 5.5 m

[EE—

13 em

\\79»::1 L.2 cm
A

AL VTVY
-
/’/
-w iy

driver section test section
Figure AVI.3: Sketch of shock tube IT.

Figure AVI.)h:

Pattern encarved in diaphragm
of shock tube ITI.
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translating T

Schlieren set-up:

(shock tube I)

A sketch of the schlieren set—-up of shock tube I is

given in figure AVI.S

. The set—up has been built as

compact as possible and is placed on a single optical

bench (which is mounted on rubber blocks). The light

beam before the test section is protected against air

turbulence by means of tubes. The fluctuations in +the

position of the beam due to vibrations and air turbulence

were not more than 2 x 10—6m. The long time drift in

the position appeared to be due to the thermal expansion

of the shock tube. No significant change of direction

was observed for a period of 2 x 10° s.

orientable table

. 2
mirror
= - mirror
Coser T [7 = 1 o=
irror
~ 1 .
T shock tube I \
E:¢ = 1.5 mm
laser: Spectra Physics (He—Ne) type 120.
I~ . _
0.707 m light beam lenses: f1— 12 em
f2= 30 em
= L detection orientable
table: see figure AVI.6
detection: see figure AVI. 9
Figure AVI.S5:

Laser schlieren set-up of shock tube I.
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We now consider step—wise the most important parts of
the set-up.
Adjustment of the laser beam configuration:

The laser beam configuration is determined by the direction
of propagation, the position of the waist and the magnitude
of the waist(chapter VI). The set-up{figure AVI.5) was
designed in order to make it possible to adjust the various
parameters independently. The laser(Spectra Physics He-Ne
type 120) is mounted together with a telescope on an
orientable plateQ. This plate is supported by three vertical
micrometers(vm) with free rolling balls mounted at the tips
(figure AVI.6). Two of the balls (b) can move freely in a
plane. The movement of the third is restricted to a line(1)

in this plane.

60 cm

qlv.m. 20 cm

—V.o.

1

L
5
ol FERRRD

G
P A
\

1 b

Figure AVI.6: Orientable table.

& Note: Design of laboratory for length measurements
and laboratory for atomic physies (THE).
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The two transversal micrometers (tm) are used for
translation and rotation of the light beam. Combining
this to the translation by mesns of the translating
mirror (see figure AVI.5) we can adjust both the
distance to the wall and the position of the waist

in the test section.

The first lens £ (f = 12 cm) is used to
make an "object" waist which has approximately the
dimension Wop (equation VI.39). The second lens f,

(f = 30 cm) mekes an "image" waist in the test section.
Because the image and object distances with respect to
f2 are approximately equal, a translation of f2 along

the beam axis will change the magnitude of the "image"

waist without changing its position.
Distance to the wall:

The position of the median X of the beam(equation VI.1k)
is determined by the interception of half of the beam
power by means of knife edges mounted on both sides of

the test section (figure AVI.T).

Spring blades:
thickness 0.2 mm

knife surface 70 cm2

\

B
1

*—+—— test section

? light beam

\n
9]
B

ball bearin
€ [ ]

-
{
-k

|

Knife for position measurement(shock tube II).

micrometer —, Figure AVI.T:
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The system was calibrated by means of a magnetic knife
edge (calibration knife ) placed on the end-wall

as shown in figure AVI.S8.

incident_beam trafigitted beam

wall

ki
rf///II/I/IIlIIIIKII'f////I/Il/
calibration knife

Figure AVI.8:Calibration of the measurement of X
by means of a knife edge attached magnetically to
the end-wall.

The height of the calibration knife was measured within
2 x 10_6m (Carl Zeiss Universal Messmikroskop 3117).
This uncertainty was reduced to about 10—6m by means of
five different calibration knifes.

The reproducibility in the measurement of
X was 2 x 10-6m which corresponds to the micro-meter
reading uncertainty. Additional uncertainties in the
position of the beam are:
- 3 ym due to the quality of the end-wall surface,
- 3 um due to the measurements of the transmitted power,
~ 2 um due to alr turbulence and vibrations,
- 2 um due to the uncertainty in the measurement of the
position of the shock tube during the experiment.
The total uncertainty is estimated to be of the order of
6 umn . Experiments with two wavelengths (chapter VIII)

showed that this can be considered as an upper bound.
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+ 15 V.

Shape of the beam:

In chapter VI we obtained formulas (equations VI.34
and 35) for the schlieren signal in the case of a
gaussian beam. No significant deviation of the
gaussian beam shape was observed.

The beam shape was determined before each
experiment by a measurement of the total beam<power and

(dscal/dxd)x=x .
mo

(as  _/ax.) was calculated from 10 measurements

cal d x=xm
of Scal as function of Xq by means of linear regression.
Typical determination coefficient was r2= 0.99985 .

Detection system:

The detection system used is similar to the system
described by Diebold(Th). The electronic scheme is
given in figure AVI.Q.

SR

%

C

B

\

Figure AVI.9:Detection system shock tube I (1 = 6.328 x 1of7m)

’dz’d3’dh guadrants of UDT 8 diode
=10 F
= 103 @ r,= 106 Q

2 3

=10°Q ;=104
buffer LH 0033 CG
differential amplifier pA 733
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Registration:
The signals were recorded by Blomation type 805 digital

memories (DC mode).Graphs of the signals were obtained
by means of a Houston instr. Ommigraphic (X,Y) recorder
type 6. The electronic set-up including recording and
detection systems was calibrated by means of a HP oscillator
type 615B. The amplitude of the sine was measured by a
Fluke universal voltmeter type 8000 A. The procedure

was checked against a Philips electronic reference unit
type PT 2248. The period of the sine was measured with
a HP counter type 5345 A. This calibration procedure

was carried out for frequencies between 50 Hz and 20 kHz
and for various amplitudes. In addition the response

of the system to a step function was checked. As a check
a calibration at 10 kHz was performed after each run.
The accuracy was mainly limited by the reading of the

graphs ( 2% for S and 0.5% for time).

Schlieren set—up:
(shock-tube II)

The schlieren set—up of shock tube II is shown in figure

VIII.12 . It is similar to the system of shock tube I,
described above, except for the detection systems.

The detection system for 1= 6.328 x 10_7m was modified
in order to make absorption measurements possible.

The influence of fluctuations in the intensity of the
laser beam were reduced by comparison of the transmitted
beam power with the intensity of a reference beam.

The two upper quadrants of the UDT 8 diode were used
for the measurements of the schlieren signal and of

the transmitted beam power. The influence of radiation
emitted by the plasma on the power measurement was
compensated by means of the signal measured by the two

lower quadrants of the diode.



The sensitivity of the absorption measurement was
limited by the electronic noise (minimum : K in™ 5x10_2m_1)
and by the quality of the windows. After about 10 runs
aluminum dust from the diaphragms may significantly
influence the absorption signals for xmismaller than 0.6 mm.
For this reason some of the data obtained are not

included in figures VIII.15 & 22.

6

The detection system for 1.= 1.152 x 10 "m

Q 2

is shown in figure AVI.10.

i
~+—light beam

-_‘_—-—
'__j__ M ~——translating
: i plate
o
I

__fg

\

\
\
\

X

“1

\
\

]
I
|
|
!
!
!

1 2

Figure AVI.10: Infrared detection system( 12).

The reflecting prism(P) splits the beam into two parts.
The mirrors(M) at both sides of the prism are placed
together with the prism on a translating plate. The
lenses (f.and f.) and the diodes (d

1 2 1
to the optical bench. A translation of the prism, for

and d2) are fixed

the calibration of the schlieren system, will change
the ratio of the powers of the beams without affecting
the position of the images on the photo-diodes( the
optical path lengths do not change).

& Note: Design S.Bruinsma.
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In a similar way when the diodes are placed at the
images of the center of the test section, a deflection
of the beam in the test section will not strongly
affect the position of the light spots on the diodes.
However better results are obtained when the diodes
are placed slightly out of the image points (out of
focus). In such a way one avoids the complications

due to the variations in the sensitivity of the
surface of the diodes. The diodes used are germanium

photodiodes (Rofin model TL60 Ge).
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NOMENCLATURE
LATIN
a thermal diffusivity (a = A/(p cp))
; coefficient
_ 2
bO Landau length (bo =c“/(8 7 ek Te))
c velocity of sound (c2 =y R T)
c velocity of light (¢ = 2.998 x 108 m s—l)
c specific heat capacity at constant pressure
c specific heat capacity at constant volume
c, specific heat capacity of the wall material
Dia ion—atom binary diffusion coefficient (appendix III)
e elementary charge (e = 1.602 x 10—190)
e,e amplitude electric field (equation VI.I)
E,E electric field
e.. equilibrium
1]
£ focal distance
£(Z) solution of thermal Rayleigh problem (o = £(2))
£ (zy = (aIg/azdy
F(S) solution of the thermal Rayleigh problem (5 = F(S))
73 sy = (adr/ash)
g(Z) solution of the simplified thermal Rayleigh problem
(section III.c)
h specific enthalpy
h,h amplitude of the magnetic field (equatiom V.1)
H,H magnetic field
hp Planck constant (hP = 6.626 x 10—34J s)
I,I average energy flux density (equations VI.5 and 6)
& Notes :

1. Symbols used in the appendices only are not included in this list.

2. Some of the symbols have been used for different quantities.

The context should avoid confusion.
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Boltzmann constant (k = 1.3807 x 10
wave number (equation VI.3)

wave number at the origin

absorption coefficient (equation V.1)

reference absorption coefficient (equation V.2)
Gladstone-Dale coefficient (equation VII.5)

reaction rate for excitation of hydrogen atoms by

collisions with argon atoms (equation VIIIL.1)

wavelength

width of the test section (shock tube I: L = 10 cm;
shock tube II: L = 4.2 cm)

thickness of the windows (LW = 2 cm)

Lewis number (equation V.21)

mass of particle j (j = e, i, a or h)
ion mass production source term
Mach number of the incident shock wave (MS = vs/c1)

Mach number measured over the traject x, - X, (table VII.1)

additional Mach number (section VII.c) 1
total particle demnsity (n = n, + o, + na)
refractive index (N = k c/w)

= (adn/axd)

refractive index of the windows

particle density of species j (j = e, i, a or h)
reference particle density (equation V.2)
particle density of the atoms in ground level

= (dnj/dx)

rate of production of particles j per volume

pressure (p = p_ + p; + p_.) ,
partial pressure of species j (j = e, i, a of h)
power flux of the light beam

ion momentum source term (equation IV.5)
polarizability of species j (equation VI.&4)
partical pressure of impurities

pressure after evacuation of the test section

heat flux density
heat flux density at the wall



reference heat flux (equation V.27)

QZEf contiuum contribution to the transparent radiation loss

Qr transparent radiation loss (section IV.b)

Q§§’s) thermally averaged cross section for elastic collisions
between particles i and j (appendix V)

r position vector (r = (x, y, z))

r, Debye length (rg = eok T/(ezne))

re relaxation

R specific gas constant (R = k/ma)

s optical path length (equation V.1)

S similarity coordinate (S = x/(aRt)l/z)

S schlieren signal (equation VI.17)

OS1 reaction rate for excitation of atoms from ground level o to
level 1 by collisions with electrons (appendix IV)

t time

T temperature

t, reference timg (tw = 10_48)

£ normalized stretched time (equation III.62)

TO reference temperature (equation V.2)

Tion ionization temperature (argon: Tion = 1.83 x loiK)

TeX excitation temperature (argon: Ty = 1.35 x 107K)

u,u convective velocity, (mass averaged velocity)

\ ambipolar diffusion velocity (equation IV.19)

Vj diffusion velocity of species j (equation IV.14)

\£ velocity of particle j

V(r) intermolecular potential

v incident shock velocity

v, reflected shock velocity

W radius of the gaussian beam W2 = Wg(l + Cf—z—fz)z)

o waist of the gaussian beam (minimum of W) °

Wop optimal waist corresponding to a minimum of deformation of the
beam (equation VI.39)

Voin waist corresponding to the minimum value of the beam radius at

the windows of the test section (equation VI.37)
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distance to the end-walil (figure VI.1)
midian of the light beam (equation VI.14)
position of light ray (equation VI.I3)

reference length scale (equation IV.18)
coordinate parallel to end-wall

distance along the axis of the undisturbed light beam
(figure VI.1)

position of the waist of the light beam
position of the detection system
Rayleigh length (zo =k Wi/Z)

similarity coordinate (Z = n /(nR(aRt)I/Z))
coefficient (equation III.54)

statistical weight of component j (j = e, i, a)



GREEK

AX

AT jon

< =

M Q © T

-

col

degree of ionization (o = ne/nh)
coefficient in equation III.5!
experimental uncertainty in X, or X-Xref
lowering ionization temperature (equation V.9)

sheath potential (V.18)

correction of zy for the windows (equation VI.15)

electric permittivity

energy source term in the electron energy equation (IV.23)
energy source term resulting from the electron-heavy particles
alastic collisions (IV.24)

total energy source term (IV.22)

= cp/cV

sensitivity of the schlieren system (IV.40}

Lagrangian coordinate (III.3)

; (dsz/de)x=x

2 N (Xmo) mo

Biberman factor (section VIII.b)

heat conductivity

heat conductivity of species j in the mixture (aépendix II)
radiative heat conductivity (IV.25)

= A

= Ao+ AL

magnetic permeability
= (dA/dT)/(A/T)

density (mass)

charge density
electric-conductivity
phase (equation VI.I)
stretched time (III.47)

mean free flight time
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SUBSCRIPTS

a atom

Ar argon

c continuum

cal calibration
detection

D Debye

e electron

eq equilibrium’

ex excitation

fr frozen

h heavy
Hydrogen

i ion

ion ionization

j j=e, i, aorh

m median

min minimum

max maximum

o origin, reference, vacuum

op optimal

p constant pressure

r radiative

r reflected

T light ray

re relaxation

ref reference

R reference

RH Rankine-Hugoniot

s incident

saha Saha equation

st stationary

t total

th theoretical
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test

)

test time
constant volume

waist

wall
outside the boundary layer, reference

vector

1,2,3,4,5 regions 1,2,3,4 and 5 (figure II.2)

SUPERSCRIPTS

T

(i)

NOTE:

first order derivative
derivative of order j
reduced

reduced

averaged

in the mixture

SI units are used.
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SAMENVATTING

Een procedure is uitgewerkt om de warmtegeleidings-—
eigenschappen van &énatomige gassen te bepalen uit metingen van
de structuur van de instationaire thermische grenslaag aan de
eindwand van een schokbuis.

De grenslaagstructuur, bepaald met de laser—schlieren
methode, blijkt beschreven te kunnen worden met een gelijkvormig-
heidsparameter. Na een verbeterde analyse van de laser—schlieren
methode en met gebruik van nauwkeurige druk-metingen is de
warmbegeleldingscoefficient van argon tussen 1000 en 7000 K
bepaald met een nauwkeurigheid van 4% ( de druk ligt tussen
BXTOh en TOSPa). Ten gevolg van de invloed van de zijwand—grens-—
lagen en de vereenvoudigingen in de procedure voor de bepaling
van de toestand van het gas buiten de grenslaag, zijn er nog
systematische fouten van enkele procenten aanwezig.

In het geioniseerde geval is een model voor de grens-—
laag ontwikkeling voorgesteld. De ionisatie— en thermische
relaxatie worden in het model beschreven. Metingen van de
electron— en atoomdichtheidsgradienten verkregen met behulp van
de laser schlieren methode komen, voor lage waarden van de lon-
isatie graad (3%), binnen 10% overeen met de theorie. Bij hogere
waarden van de ionisatie graad wordt de grenslaag structuur sterk
beinvloed door de stralingsafkoeling die in het model verwaar-—

loosd is. Uit absorptie- en druk-metingen is quantitatieve

informatie over de stralingsafkoeling buiten de grenslaag
verkregen. Een aanzienlijke verbetering van de meetnauwkeurigheid
is noodzakelijk voordat gquantitatieve informatie over de warmbte-
geleidingseigenschappen van geioniseerde gassen op deze wijze

verkregen kan worden.

;? Uit aanvullende experimenten ultgevoerd aan een meng-
sel van 99.5% Ar + 0.5% H2 is informatie verkregen over de invloed
van ionisatie relaxatie op de grenslaagstructuur en de ionisatie

snelheid van waterstof ten gevolg van botsingen met argon atomen.
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