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Abstract

In this paper we present a type system for the data language of mCRL2, a process algebra
based language for formalising the behaviour of communicating system. Much of the
type system is standard, and follows the line of, e.g., Pierce [Pie02]. The data language
that is described is rich, and supports (infinite) sets and bags, universal and existential
quantification, and lambda abstraction. Recursive types can be defined using equational
definitions. Subtyping is included for the full data language, and a coercion is given to
transform a well-typed expression into a strictly typed expression.

1 Introduction

mCRL2 (micro Common Representation Language 2, [GMR+09]) is a language for formalising
the behaviour of communicating systems. The language consists of data, processes and logic.
The data part of the language is based on higher-order abstract equational data types. The
data language is rich, and supports (unbounded) integers and rational numbers, (infinite)
sets and bags, lists, structured data types, lambda abstraction and universal and existential
quantification. The intention of the data language design is to closely reflect the mathematical
counterpart of the data types. The behavioural part of the language is inspired by process
algebras, especially ACP, sometimes also referred to as TCP, [BBR09]. It is based on a
methodology similar to tools like FDR2 (based on CSP [Hoa85]), CADP [FGK+96] and µCRL
[GP95]. The property specification language of mCRL2 is the modal µ-calculus [Koz83],
extended to treat data and time as first class citizens [GW05].

The language mCRL2 is supported by a toolset [mCR]. The toolset provides, among
others, an implementation of the data language. In this document we describe a type system
for the data language of mCRL2. The intent is to capture the definition of the current type
system, but extend and improve upon the current behaviour at these points where the current
behaviour is problematic in practice.

Note that the type system as presented in this document is mostly standard, and that the
corresponding theory and algorithms can be found in Pierce’s seminal book on type checking
[Pie02]. We provided references to specific parts of [Pie02] where necessary.
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2 Preliminaries

We first recall the syntax of types and terms in mCRL2. In mCRL2, types are usually referred
to as sort expressions, and terms are referred to as data expressions. In the rest of this paper
we use these notions interchangeably.

2.1 Types and Terms

The syntax of sort expressions in mCRL2 is defined according to the following grammar:

Definition 2.1 (Sort expressions)

S ::= SBasic | S × · · · × S → S | struct scs, . . . , scs | List(S) | Set(S) | Bag(S)
scs ::= f?f | f(spj, . . . , spj)?f | f | f(spj, . . . , spj)
spj ::= f :S | S

Here SBasic is a set of basic sorts, that contains at least Bool, Pos, Nat, Int and Real (resp.
Booleans, positive numbers, natural numbers, integers and real numbers). In the rest of
this paper we write B,N+,N,Z,R for both the syntactic as well as the semantic versions of
the numeric types. Functions can have an arbitrary number of arguments, and → is right-
associative. struct scs, . . . , scs describes a “structured sort”, where scs are the constructors.
A constructor consists of a name, a number of arguments (spj), and (optionally) the name of
a recogniser function. The non-terminal spj describes a constructor argument, which consists
of an optional name and a sort. Names are denoted by f , and the ? seperates the constructor
from its recogniser.

A subtype ordering on the (standard) numeric data types is also present, such that N+ <:
N <: Z <: R. This relation is lifted to the other type structures. It is not possible for the
user to add his own subtype relations.

Before we give the definition of a data expression, we first illustrate the use of structured
sorts with an example.

Example 2.2 The following structured sort defines a type in which each expression is either
nil , or a pair of natural numbers.

struct pair(left :N, right :N)?is pair | nil?is nil

This expression is a sort expression, meaning there can be expressions of sort struct pair(left :N, right :N)?is pair |
nil?is nil . Examples of elements of this sort are pair(0, 1) and nil .

A structured sort is not just the name of a sort; it also specifies its structure, and some
functions to manipulate and query expressions of the sort. For the structured sort given
above, the following functions generated:

left : struct pair(left :N, right :N)?is pair | nil?is nil → N
right : struct pair(left :N, right :N)?is pair | nil?is nil → N

is pair : struct pair(left :N, right :N)?is pair | nil?is nil → B
is nil : struct pair(left :N, right :N)?is pair | nil?is nil → B

Applied to an expression of the form pair(x, y) the function left retrieves the first argument
of the pair, right retrieves the second argument of the pair; applied to any other argument
the function is undefined. The function is pair applied to an expression of the form pair(x, y)
returns true, and false for expressions of any other form. The definition of is nil is similar.
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Data expressions adhere to the following syntax.

Definition 2.3 (Data expressions) We inductively define data expressions e, with sort
expressions S as follows.

e ::= x | f | e(e, . . . , e) | λ~x:~S.e | ∀~x:~S.e | ∃~x:~S.e
| e whr ~x = ~e end | {x:S | e}

Here x represents a variable, and f represents a function symbol. We write ~x:~S to denote
a vector of the form x:S, . . . , x:S, ~x = ~e to denote a vector x = e, . . . , x = e, and we
write ~vi to denote the i-th element of such a vector. The data expression e(e, . . . , e) denotes
the application of a data expression to some others, λ~x:~S.e denotes lambda abstraction.
∀~x:~S.e and ∃~x:~S.e describe universal and existential quantification, respectively. Set and bag
comprehension are denoted by {x:S | e}, where the actual type depends on the sort of e. It
is a set if e is Boolean and a bag if e is a natural number.

In our exposition we typically use x, y, z for variables and f, g, h as function symbols; for
operations defined on standard data types we sometimes use infix notation instead of prefix
notation. We for example write 2 + 3 instead of +(2, 3). For types we typically use S, T .

2.2 Data specification

In mCRL2 all functions that are used have to be declared. For the standard data types
standard definitions of a large number of functions have been provided, along with an efficient
implementation. For a detailed account of all standard data types we refer to [GR10].

The user can define data types in a specification consisting of three parts: (1) sort decla-
rations, where the sorts are defined; (2) function declarations, where the functions operating
on the sorts from (1) are declared (note that they may also operate on system defined sorts);
(3) an equational specification, in which the functions are defined by means of (guarded)
equations.

Note that usually two classes of function declarations are distinguished in mCRL2, namely
the constructors and the mappings. The constructors inductively describe the elements of a
sort, whereas the mappings can be arbitrary functions over declared sorts. Because the
constructor functions describe the elements of a data type, allowing widening of types in
constructor functions is undesired. Note that the standard data types, which are the only
basic data types for which we allow subtyping, incrementally extend each other. Hence, this
is not problematic in practice. For the purpose of this paper, we therefore do not need to
distinguish constructors and mappings, hence we just refer to them collectively as functions.

Sort declarations occur in two forms. Either they just declare a basic sort (i.e., it just
declares a name of a sort), or they declare two sorts to be equal, called type aliases.

Example 2.4 The following specification declares three sorts. The first is a basic sort with
the name Colour , the second is a sort Tree, describing to the sort of binary trees, and the
third is a sort Address, which is defined to be equal to the natural numbers (i.e., Address is
a type alias for N).

sort Colour ;
Tree = struct node(op : B× B→ B, left : Tree, right : Tree) | leaf (b : B);
Address = N;
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Function declarations are used to declare the signature of a function. They have the form
f :S, where f is a name, and S is a sort expression. Note that overloading of function symbols
is allowed, and is in fact heavily used by the definitions of the standard data types, as is
illustrated by the following example.

Example 2.5 Consider addition of numbers. The following are the function declarations for
addition (+) of numbers, as defined in the standard data types

+:N+ × N+ → N+

+:N× N+ → N+

+:N+ × N→ N+

+:N× N→ N
+:Z× Z→ Z
+:R× R→ R

The definition of data types is provided by an equational specification, with equations
of the form c → t1 = t2, meaning that, if Boolean condition c holds, t1 and t2 are equal.
Note that the types of t1 and t2 must be the same. In the mCRL2 toolset these rules are
interpreted in a left-to-right fashion, allowing the reduction of expressions to a normal form
using term rewriting [Wee07].

Example 2.6 Consider the Booleans, with constructors true and false, and mapping ∧:B ×
B→ B, and variable b:B. Conjunction (∧) is characterised using the following equations.

b ∧ true = b
b ∧ false = false
true ∧ b = b
false ∧ b = false

In the rest of this paper we use the following notation. SBasic is the set of basic sorts
(including B,N+,N,Z,R), E is a set of type aliases, and Ω is a set of function declarations.
For the purpose of type checking, the equational specification of data types is irrelevant. We
combine the declarations into the structure Σ = (SBasic , E,Ω), to which we also refer as
signature. Throughout the rest of this paper we assume a given signature Σ = (SBasic , E,Ω).

2.3 Fixed point basics

Our algorithms for subtyping are based on fixed point iteration. We therefore first recall some
basic fixed point theory.

In this section we assume some fixed universe U . A function F ∈ 2U → 2U is monotone
if X ⊆ Y =⇒ F (X) ⊆ F (Y ) for all X,Y ⊆ U . For subsets X of U we say that X is (1)
F -closed if F (X) ⊆ X, (2) F -consistent if X ⊆ F (X), and (3) a fixed point of F if F (X) = X.

Theorem 2.7 [Knaster-Tarski [Tar55]] Let F be a monotone function.

• The intersection of all F -closed sets is the least fixed point of F , denoted µF , and

• the union of all F -consistent sets is the greatest fixed point of F , denoted νF .
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In this paper we want to check for some element x whether it is in the fixed point of a
function F . In general, this computation can cause an exponential blow-up. However, for the
set of invertible functions, the computation can be done more efficiently.

Definition 2.8 Consider a function F and a set U , and let Gx be the following collection of
sets.

Gx = {X ⊆ U | x ∈ F (X)}

Function F is invertible if for all x ∈ U either Gx is empty, or there is a unique element
X ∈ Gx such that ∀Y ∈ Gx : X ⊆ Y , i.e. there is a unique element in Gx that is a subset of
all the others.

When a function is invertible, we can define a support function as follows:

Definition 2.9 Let F be an invertible function. The partial function suppF :U ⇀ 2U is
defined by

suppF (x) =

{
X if X ∈ Gx and ∀Y ∈ Gx : X ⊆ Y
⊥ otherwise

The support function is lifted to sets as follows.

suppF (X) =

{⋃
x∈X suppF (x) if ∀x ∈ X : suppF (x) 6= ⊥
⊥ otherwise

Using a support set, algorithms have been developed for checking membership in the least
and greatest fixed points of a generating function F [Pie02, Section 21.5]. The algorithms
involve asking how x could have been generated by F . Having an invertible F ensures that a
given x can only be generated in a single way. This prevents the combinatorial explosion one
is faced with for a non-invertible F .

3 Basic type checking

We first introduce plain typechecking of mCRL2. In the following sections we extend the
type checking with subtyping, and we add recursive types. Observe that the data language
in mCRL2 is closely related to the simply typed lambda-calculus. It therefore may come as
no surprise that the type system of mCRL2 is similar to the type system for simply typed
lambda calculus [Pie02, Chapter 9].

Well-typedness of data expressions, expressed using statements of the form Γ `Σ e : S,
is defined using a number of syntax-directed derivation rules. In this inference system we
use signature Σ, as well as a context Γ which records our variable declarations. Note that Γ
operates as a stack, and Γ, x:S denotes the extension of Γ with a declaration of variable x of
type S. With x:S ∈ Γ we denote that the topmost declaration of the variable with name x in
Γ has type S, i.e., x:T 6∈ Γ, x:S, for S 6= T , regardless of the declarations in Γ. Extension of
Γ with a vector ~x:~S is an abbreviation for Γ, x1:S1, . . . , xn:Sn for ~x:~S = x1:S1, . . . , xn:Sn We
use Γ and Σ to define well-typedness of data expressions as follows.

x : S ∈ Γ
(T-Var)

Γ `Σ x : S

f : S1 × · · · × Sn → T ∈ Σ
(T-Func)

Γ `Σ f : S1 × · · · × Sn → T
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The rules T-Var and T-Func are basic rules checking whether a variable or a function has
been declared. T-Var looks up the declaration of a variable in the context, whereas T-Func
looks up the declaration of a function in the signature.

Γ, ~x:~S `Σ e : T
(T-Abs)

Γ `Σ λ~x:~S.e : S1 × · · · × Sn → T

T-Abs determines the type of a lambda abstraction. Note that this rule extends the context
with the variables bound by the abstraction, and that the result is a function type.

Γ `Σ e:S1 × · · · × Sn → T Γ `Σ e1:S1 · · · Γ `Σ en:Sn
(T-Appl)

Γ `Σ e(e1, . . . , en) : T

T-Appl denotes application of a function to a number of arguments. Observe that the number
of arguments must coincide with the arity of the head of the application, and that the head of
the application may be an arbitrary term with a function type. The types of the arguments
and the function must coincide.

Γ `Σ d1 : S1 · · · Γ `Σ dn : Sn Γ, ~x:~S `Σ e : T
(T-Where)

Γ `Σ e whr ~x = ~d end : T

The rule for where-clauses is interesting in that this is the only place where the type of a
variable is determined from the type of an expression, instead of having it declared by the
user. For where-clauses the restriction applies that for all i, j variable xi may not occur in
expression dj . As a result, only the body e of the clause needs to be checked in an extended
context, where the types of the declared variables xi are inferred from the expressions ei.

Γ, ~x:~S `Σ e : B
(T-Forall)

Γ `Σ ∀~x:~S.e : B

Γ, ~x:~S `Σ e : B
(T-Exists)

Γ `Σ ∃~x:~S.e : B

The types for universal and existential quantification are inferred much like the type for
lambda abstraction, only in this case the result, and the body of the expression, are required
to be Boolean.

Γ, x : S `Σ e : B
(T-Set)

Γ `Σ {x : S | e} : Set(S)

Γ, x : S `Σ e : N
(T-Bag)

Γ `Σ {x : S | e} : Bag(S)

Finally we allow for the definition of set and bag comprehension. The body of a set compre-
hension is a predicate defining the elements that are part of the set. For bag comprehension
the number of times each element occurs in the bag is defined. Note that, contrary to lambda
abstraction and universal and existential quantification, set and bag abstraction only allow
binding of a single variable. The reason for disallowing multiple variable binding is the way
set and bag comprehension is interpreted in mCRL2. The expression {x:S | e}, in which e
is Boolean, describes the set containing the elements of type S satisfying predicate e, where
e may use x. In this notation, x:S is the bound variable, and x’s of type S are the elements
that get collected, as long as they satisfy e. In short, x serves the role of a bound variable,
and it provides a characterisation of elements that are collected. A similar rationale holds for
bags.

In computer science, sometimes an alternative notation for set comprehension is advo-
cated, see e.g. [NK04, Section 10.2]. Instead of {x:S | e}, the same set is written as
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{x:S | e | x}, where the first part gives the bound variables, the second part gives a predicate,
and the third part describes the elements that are collected. In this case, we can collect other
elements than x’s, for example x2s:

{x:Z | −3 ≤ x ≤ 100 | x2}

The above describes the set consisting of the squares of all integers between −3 and 100
(inclusive). The extension of bags to this notation is not clear. Consider for example the
following bag:

{n:N | true | 0}

This bag would contain 0 infinitely many times.
As a result of the similar form of the expressions for set and bag comprehension, and

overloading that can take place, it can occur that an expression has both types Set(S) and
Bag(S) for some sort S.

Example 3.1 Let f :S → B, f :S → N ∈ Σ, then there are valid derivations for {x:S |
f(x)}:Set(S) and {x:S | f(x)}:Bag(S).

4 Subtyping

The standard data types of mCRL2 include several numeric data types, viz. N+, N, Z and R.
From the point of view of user-friendliness it is desirable to include a subtyping relation for
these types, as failing to do so would require the user to make all casts explicit, as illustrated
in the following example.

Example 4.1 Suppose f :Z → B is a function expecting an integer argument, and x:N is a
natural number. If no subtyping mechanism is included in the type system, the following
expression is ill-typed.

f(x)

The language would have to provide some function N2I:N → Z, explicitly casting natural
numbers to integers, requiring the user to write the following.

f(N2I(x))

Example 4.2 As a more concrete example of the desire for a subtyping mechanism, consider
the following expression:

0 = 1

Where 0 is of type N, and 1 is of type N+, and we want to establish whether 0 and 1 are
equal. Without subtyping mechanism, the expression is ill-typed, as = expects arguments of
equal type, hence the user instead has to write

0 = N2I(1)
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4.1 Basic subtyping

Writing explicit casts is cumbersome and error-prone, hence we introduce a subtyping relation
<:, where S <: T denotes that S is a subtype of T . The first three rules are the basic
axioms describing the hierarchy of numeric data types. Note that these are the only basic
sorts for which <: holds asymmetrically, i.e., we do not allow the user to introduce subtype
relations. The rest of our system for subtyping is again standard, and an excellent exposition
of subtyping can be found in [Pie02, Chapter 15]. In that same chapter it also shown how
to perform coercion, i.e., how to automatically add casts to the code being typechecked in
order to obtain a strictly typed expression. A type assertion is called strict if it can be proven
without using T-Sub.

(S-P2N)
N+ <: N

(S-N2I)
N <: Z

(S-I2R)
Z <: R

Including the following rules, which provide the transitive closure of the previous axioms,
alleviates the need for a rule for transitivity.

(S-P2I)
N+ <: Z

(S-P2R)
N+ <: R

(S-N2R)
N <: R

The following rule provides reflexivity:

(S-Refl)
S <: S

In our example derivations we usually omit applications of this rule.
The definition of <: extends naturally to container types and structured sorts.

S <: T
(S-List)

List(S) <: List(T )

S <: T
(S-Set)

Set(S) <: Set(T )

S <: T
(S-Bag)

Bag(S) <: Bag(T )

The subtyping relation for function types is covariant on the codomain, and contravariant on
the domain.

T1 <: S1 · · · Tn <: Sn S <: T
(S-Func)

S1 × · · · × Sn → S <: T1 × · · · × Tn → T

We also allow subtyping of structured sorts. The names of recognisers and arguments
need to be syntactically equal. Note that we omit the names of recognisers and arguments
here for the sake of brevity.

Si,j <: Ti,j for all i, j
(S-Struct)

Struct1 <: Struct2

where Struct1 is defined as
structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

and Struct2 is defined as
structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)
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Extending the rules for typing data expressions with the following rule adds all features
of subtyping to our inference system.

Γ `Σ e : T Γ `Σ T <: S
(T-Sub)

Γ `Σ e : S

The rule for subtyping of function types may seem strange at a first glance. In subtyping
of functions one function type is a subtype of another if one of its domain types is larger than
the corresponding domain type in the other function type. The reasons for this are illustrated
by the following example.

Example 4.3 Let map:(Z → S) × List(Z) → List(S), and f :N → S be functions, and let
x:List(Z) be a variable. Suppose we use the following alternative rule for subtyping.

S1 <: T1 · · · Sn <: Tn S <: T
(S-ReverseFunc)

S1 × · · · × Sn → S <: T1 × · · · × Tn → T

This gives rise to the following type derivation for the expression map(f, x).

map:(Z→ S)× List(Z)→ List(S) ∈ Σ
(?)

Γ `Σ map:(Z→ S)× List(Z)→ List(S)

(1)

Γ `Σ f :Z→ S

x:List(Z) ∈ Γ
(T-Var)

Γ `Σ x:List(Z)
(T-Appl)

Γ `Σ map(f, x):List(S)

Where at (?) we have applied T-Func, and subderivation (1) is defined as follows:

f :N→ S ∈ Γ
(T-Func)

Γ `Σ f :N→ S

(S-N2I)
N <: Z

(S-ReverseFunc)
N→ S <: Z→ S

(T-Sub)
Γ `Σ f :Z→ S

(1)

We see that given our alternative rule, we find a valid type derivation in this case. If
we take a closer look at our expression, and we give map the classical meaning of applying
a function to every element of a list, we conclude that this expression should be regarded
as invalid. Our derivation allows the application of a function which only accepts natural
numbers to elements of integer type, whereas for negative values the function is undefined.
Using the rule S-Func we are not be able to infer a type for expression map(f, x), as desired.

The intuition behind the rule for subtyping function types is that it allows functions to
be more widely applicable, and to return values from a constrained set.

Observe that in the definition for subtyping, the rules for Set(S) and functions of S → B
and Bag(S) and functions of S → N are not isomorphic. As sets and bags are predefined-
defined, we know for each widening how to extend the definition. This is illustrated by the
following example.

Example 4.4 Consider a set of natural numbers s : Set(N). If we widen this to s : Set(Z),
then we know that for each negative number n, n is not in s. If we consider an arbitrary
function f : N → B however, we do not know how to extend the definition of f to negative
numbers automatically, in order to obtain f : Z→ B.

Similarly, for a bag of integers b : Bag(Z), if we widen this to b : Bag(R), then we know
for each number r, which is not in Z that it is in b zero times.
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In order to not overly complicate the data language, a conscious decision was made to
forbid width-subtyping of structured sorts and the existing numeric types, like in the following
example.

Example 4.5 Forms of subtyping that are disallowed by convention.

struct one 6<: struct one | two

{0, . . . , 5} 6<: N

where {0, . . . , 5} means the type consisting of natural numbers 0, . . . , 5.

Property 4.6 The subtype relation is a preorder.

Remark 4.7 An algorithm for subtyping can be constructed based on the inference rules.
To obtain such an algorithm, we want to have a set of syntax directed deduction rules. We
obtain such a system by removing the rule T-Sub, and replacing the rule T-Appl by the
following rule TA-Appl. Note that removing S-Refl is straightforward.

Γ `Σ e:T1 × · · · × Tn → S

Γ `Σ e1:S1···
Γ `Σ en:Sn

S1 <: T1···
Sn <: Tn

(TA-Appl)
Γ `Σ e(e1, . . . , en) : S

4.2 Fixpoint characterisation of subtyping

In the next section, we are going to extend the type system with recursive types. For subtyping
in the context of recursive types, a fixed-point characterisation of the subtyping relation is
convenient. To make a swift transition to recursive types, we first introduce the fixed point
characterisation of subtyping in the simpler setting of this section. For a description of the
fixpoint characterisation introduced here, see [Pie02, Section 21.8].

Trees of types The set of finite tree types Tf is the least fixed point of the generating
function described by the grammar of types. The universe of this generating function is the
set of all finite and infinite trees labelled with Unit, SBasic , →, List , Set , Bag , struct, and
×, where × is merely used to separate the arguments of constructors of structured sorts. We
also label the edges with an index in the domain of →, C for the codomain, the name of a
constructor in case of struct, and A for the element type of a container.

Note that here we have introduced Unit to denote constructors of structured sorts that
have no arguments.

Example 4.8 The tree corresponding to the type S1×S2 → struct leaf | complex (List(S))
is the following:

→

S2S1 struct

Unit List

S

1 2 C

leaf complex

A
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Finite subtyping using fixed points Two finite tree types S and T are in the subtype
relation if (S, T ) ∈ µSf , where Sf is the monotone function Sf ∈ 2Tf×Tf → 2Tf×Tf , defined
by

Sf (R) = {(N+,N), (N+,Z), (N+,R), (N,Z), (N,R), (Z,R)}
∪ {(C(s), C(t)) | (s, t) ∈ R, C ∈ {List ,Set ,Bag}}
∪ {(S1 × · · · × Sn → S, T1 × · · · × Tn → T ) | (Ti, Si), (S, T ) ∈ R, 1 ≤ i ≤ n}

∪




structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn) ,

structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)


∣∣∣∣∣∣∣∣

1 ≤ i ≤ n
1 ≤ j ≤ mi

(Si,j , Ti,j) ∈ R


Intuitively, S <: T can be derived in the inference system if and only if (S, T ) is in the

least fixed point of Sf applied to the identity relation.

Lemma 4.9 Γ `Σ S <: T if and only if (S, T ) ∈ µSf (I), where I is the identity relation.

A fixed point algorithm can be used to determine whether S <: T . For this we establish
some properties of Sf . We first define the support set of Sf .

suppSf
(S, T ) =



∅ if (S, T ) ∈ {(N+,N), (N+,Z),

(N+,R), (N,Z), (N,R), (Z,R)}
{(S, T )} if S = C(S1) and T = C(T1)

for C ∈ {List ,Set ,Bag}
{(S′, T ′)} ∪ {1 ≤ i ≤ n | (Ti, Si)} if S = S1 × · · · × Sn → S′

and T = T1 × · · · × Tn → T ′

{1 ≤ i ≤ n, 1 ≤ j ≤ mi | (Si,j , Ti,j)} if S = structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

T = structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)

⊥ otherwise

Intuitively, the support function can be used, given some pair (S, T ), to uniquely determine
the next step needed in the computation, in order to establish whether S <: T .

Lemma 4.10 The function Sf is invertible.

Because Sf is invertible, S <: T can be checked efficiently by determining whether (S, T ) ∈
µSf (I), i.e., the pair (S, T ) is in the least fixed point of Sf applied to the identity relation.

Note that for the setting with finite types, using a fixed point algorithm to check the
subtyping relation is overkill. We merely describe it here to extend it to infinite types in the
next section.
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5 Recursive types

In mCRL2 the user can define infinite types using recursive definitions. An example of such
an infinite type is the following.

Example 5.1 A binary tree with natural numbers as leafs can be defined as follows.

Tree = struct node(Tree,Tree) | leaf (N)

5.1 Normalisation

To cope with type aliases in an implementation, we use a rewrite system, rewriting each type
in the system to a normal form. Observe that the rules S = T in the definition of aliases (say
E) can come in the following different forms:

S = T with T ∈ SBasic

S = T1 × · · · × Tn → T
S = C(T ) with C ∈ {List ,Set ,Bag}
S = structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

We interpret the equivalences as follows. We order some rules left-to-right, and others
right-to-left in a rewrite system R, where the directions are given according to the following
rules.

S → T if S = T ∈ E and T ∈ SBasic

S → C(T ) if S = C(T ) ∈ E and C ∈ {List ,Set ,Bag}
structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

→ S if S = structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

∈ E

S → T1 × · · · × Tn → T if S = T1 × · · · × Tn → T ∈ E

In principle, the rules are ordered such that we preserve as much structure as possible, i.e.
from the structure of a type, we can still infer what kind of expression we are dealing with.
The only exception to this rule lies in structured sorts. We fold structured sorts, as their
structure is too large to include in terms for any practical applications, and especially, re-
peated unfolding does not terminate, and does not yield unique fixed points. We pose some
restrictions on sort aliases to ensure termination of normalisation using R.

Restrictions on sort aliases

• Recursions in right hand sides of all aliases, except for structured sorts, must be loop
free, i.e., a sort, except for a structured sort, cannot recursively depend on itself (both
directly and indirectly). As an example, S = T → U,U = S is not allowed, as S occurs
in the right hand side of U , which occurs in the right hand sided of S, and hence a loop
is formed.

12



• Sorts can occur at the left hand side of at most one sort equivalence in E, i.e. left hand
sides of aliases are unique.

• Only basic sorts, other than predefined sorts can occur at left-hand sides of equivalences
in E.

Lemma 5.2 A rewrite system that satisfies the above restrictions on E is terminating.

Proof sketch

• Rewriting a structured sort terminates, as it is rewritten from right-to-left, and its left
hand side may occur as left hand side of only one equation. Applying this rule hence
decreases the number of structured sorts.

• Observe that the number of rewrite rules is finite, and no sort depends recursively on
itself, hence in every sequence of rewrite steps, a single rule is never applied twice to
the same expression, and rewriting terminates.

�

In order to obtain a strongly normalising, and confluent rewrite system, we apply Knuth-
Bendix completion on the rewrite system. If we have a rule f(g(t)) → u1, and g(t) → u2,
i.e., the left hand side of one rewrite rule is a subterm of the left hand side of another rewrite
rule, than we add the rewrite rule f(u2)→ R(u1), where R(u1) is the normal form of u1 with
respect to the current rewrite system.

Lemma 5.3 Given the above restrictions on the equations in E, Knuth-Bendix completion
terminates, the resulting rewrite system is strongly normalising and confluent.

5.2 Subtyping

Having recursion through the definition of aliases introduces the problem of subtyping in the
context of infinite types. Observe that in the syntax of mCRL2, defining the name of the
type (Tree), and defining the type itself are mixed. For our exposition on subtyping, we start
by separating the two, and we introduce an explicit recursion operator. We then follow the
approach described in [Pie02, Section 21.8].

Example 5.4 A binary tree with natural numbers as leafs can be defined as follows using
explicit recursion.

Tree = µX.struct node(X,X) | leaf (N)

Now, writing S = T for some basic sort S and an arbitrary sort expression T , just
introduces S as an alternative name for T , whereas recursion is made explicit through the
use of fixed points.

We need to take care that equations with mutual recursion are handled appropriately.

Example 5.5 Consider the following two equations, which are mutually recursive. Note that
h is some non-recursive sort.

sort A = struct f(B)

B = struct g(A) | h

13



If we just transform those into the following

sort A = µX.struct f(B)

B = µY.struct g(A) | h

we still have to deal with recursion, as adding the fixed points did not change anything.
We can overcome this issue by substituting the right hand sides of mutually recursive types,
obtaining the following:

sort A = µX.struct f(µY.struct g(X) | h)

B = µY.struct g(µX.struct f(Y )) | h

Observe that we have unfolded each recursion once in this example, and that we just include
a single fixed point. There are cases in which multiple fixed points are needed. Furthermore,
as there is a finite number of aliases, the number of substitutions is finite.

Note that dealing explicitly with recursion, as we do in this section, we are able to write
expression that are not supported in mCRL2, like the following.

λy : µX.struct pair(first : N, second : N).first(y) + second(y).

These kinds of expressions can always be emulated in mCRL2 by introducing an additional
alias definition.

5.2.1 Types

We have extended the syntax of types with a least fixed-point operator to make the recursion
in types explicit. The extended syntax of types is as follows.

Definition 5.6 (Sort expressions) The syntax of sort expressions is given as follows:

S ::= SBasic | S × · · · × S → S | struct scs, · · · , scs | List(S) | Set(S) | Bag(S)
| µX.S

scs ::= f | f(spj, . . . , spj) | f?f | f(spj, . . . , spj)?f
spj ::= S | f :S

Observe that the above syntax for sort expressions is identical to the one we have given earlier,
except for the recursive type µX.S.

5.2.2 Trees of types

The set of (finite and) infinite tree types T is the greatest fixed point of the generating
function described by the above grammar. The universe of this generating function is the set
of all finite and infinite trees labelled with Unit, SBasic , →, List , Set , Bag , and struct, ×.
We label the edges in the trees in a similar way as before.

Example 5.7 The tree corresponding to the type µX.struct leaf (N) | node(X,X) is the
following:
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struct

N ×

struct

N ×

struct

N ×

leaf node

1

leaf node

2

leaf node

The tree extends ad infinitum because of the recursion.

5.2.3 Infinite subtyping

The inference system given in the previous section, can be extended to trees of infinite types
by adding folding and unfolding rules of the fixed point operator.

S <: T [X := µX.T ]
(S-FoldRight)

S <: µX.T

S[X := µX.S] <: T
(S-FoldLeft)

µX.S <: T

Algorithmically, this is inconvenient, as it is not easily determined when to apply the
folding or unfolding rules. Therefore, we resort to a fixed point algorithm for computing the
subtyping relation.

Two tree types S and T are in the subtype relation if (S, T ) ∈ νS(I), where I is the
identity relation, and S is the monotone function S ∈ 2T ×T → 2T ×T , defined by

S(R) = {(N+,N), (N+,Z), (N+,R), (N,Z), (N,R), (Z,R)}
∪ {(C(S), C(T )) | (S, T ) ∈ R, C ∈ {List ,Set ,Bag}}
∪ {(S1 × · · · × Sn → S, T1 × · · · × Tn → T ) | (Ti, Si), (S, T ) ∈ R, 1 ≤ i ≤ n}

∪




structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn) ,

structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)


∣∣∣∣∣∣∣∣

1 ≤ i ≤ n
1 ≤ j ≤ mi

(Si,j , Ti,j) ∈ R


∪ {(S, µX.T ) | (S, T [X 7→ µX.T ]) ∈ R}
∪ {(µX.S, T ) | (S[X 7→ µX.T ]), T ) ∈ R,∀T ′.T 6= µX.T ′, T 6∈ SBasic}

Note that the rules for µ types are not symmetric in order to make S invertible.
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The support function corresponding to S is the following.

suppS(S, T ) =



∅ if (S, T ) ∈ {(N+,N), (N+,Z),

(N+, R), (N,Z), (N,R), (Z,R)}
{(S, T )} if S = C(S1) and T = C(T1)

for C ∈ {List ,Set ,Bag}
{(S′, T ′)} ∪ {1 ≤ i ≤ n | (Ti, Si)} if S = S1 × · · · × Sn → S′

and T = T1 × · · · × Tn → T ′

{1 ≤ i ≤ n, 1 ≤ j ≤ mi | (Si,j , Ti,j)} if S = structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

T = structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)

{(S, T ′[X 7→ µX.T ′])} if T = µX.T ′

{(S′[X 7→ µX.S′], T )} if S = µX.S′,

and ∀T ′.T 6= µX.T ′, T 6∈ SBasic

⊥ otherwise

Lemma 5.8 The generating function S for the subtyping relation is invertible.

Theorem 5.9 νS is reflexive and transitive, i.e., I ⊆ νS and νS ◦ νS ⊆ νS.

Using the definitions from this section, an algorithm for computing the greatest fixpoint
can be used to decide subtyping, as described before.

6 Coercion

In the previous two sections we have described a methodology for subtyping in mCRL2. In
an implementation, it is desired that the resulting expression, after typechecking, is strictly
typed, i.e. that it can be checked for well-typedness without the use of the subtyping rules. In
order to achieve this, coercion functions can be applied. Intuitively, a coercion is a function
that transforms an expression that is typeable in the type system with subtyping into an
expression that is typeable in the type system without subtyping.

We introduce the following notation to formalise the translation. C :: S <: T means that
“C is a subtyping derivation tree whose conclusion is S <: T”. Likewise we write D :: Γ `Σ e:S
to mean “D is a typing derivation whose conclusion is Γ `Σ e:S”.

We first introduce the function that, given a derivation C for the subtyping statement
S <: T generates the coercion [[C]]. Observe that [[C]] :S → T . We assume that the following
functions are available in the language:

• P2N :N+ → N

• P2I :N+ → Z
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• P2R:N+ → R

• N2I :N→ Z

• N2R:N→ R

• I2R:Z→ R

• map:List(S)× (S → T )→ List(T ) for all sorts S, T .

Using the above definitions, we define [[ ]] by cases on the final rule used in C. Note that
at ? we apply S-Func.[[

(S-P2N)
N+ <: N

]]
= P2N[[

(S-P2I)
N+ <: Z

]]
= P2I[[

(S-P2R)
N+ <: R

]]
= P2R[[

(S-N2I)
N <: Z

]]
= N2I[[

(S-N2R)
N <: R

]]
= N2R[[

(S-I2R)
Z <: R

]]
= I2R[[ C :: S <: T

(S-List)
List(S) <: List(T )

]]
= λx:List(S).map([[C]] , x)[[ C :: S <: T

(S-Set)
Set(S) <: Set(T )

]]
= λx:Set(S).

{y:T | ∃z:S.y = [[C]] (z) ∧ z ∈ x}[[ C :: S <: T
(S-Bag)

Bag(S) <: Bag(T )

]]
= See Remark 6.1


C1 :: T1 <: S1

...
Cn :: Tn <: Sn
C :: S <: T

(?)
S1 × · · · × Sn → S <: T1 × · · · × Tn → T



 =
λf :S1 × · · · × Sn → S.λ~x:~T .

[[C]] (f([[C1]] (x1), . . . , [[Cn]] (xn)))

[[Ci,j :: Si,j <: Ti,j for all i, j
(S-Struct)

Struct1 <: Struct2

]]
= λx:Struct1 .iftree(x)

where Struct1 is defined as
structf1(S1,1, . . . , S1,m1)

...

|fn(Sn,1, . . . , Sn,mn)

17



Struct2 is defined as
structf1(T1,1, . . . , T1,m1)

...

|fn(Tn,1, . . . , Tn,mn)

and iftree(x) is defined as

if (isf1 (x), f1([[C1,1]] (f1,1(x)), . . . , [[C1,m1 ]] (f1,m1(x))),
if (isf2 (x), f2([[C2,1]] (f2,1(x)), . . . , [[C2,m2 ]] (f2,m2(x))),

if (. . . , . . . , fn([[Cn,1]] (fn,1(x)), . . . , [[Cn,mn ]] (fn,mn(x))) . . . )))

After type checking, and applying the coercions, no coercions occur in the syntactic rep-
resentations of terms; all applications of coercions have been replaced by syntactic elements
in mCRL2, with N2I, etc. as basic elements, extended with lambda abstractions.

Remark 6.1 Note that the coercion function for bags is not generally defined. Given a
subtype relation S <: T , we must define a function Bag(S) → Bag(T ), performing the
coercion. As an example, we take a look at the case for S = N, T = Z. We find the following
function:

λb:Bag(N).{x:Z | if (x < 0, 0, count(I2N(x), b))}

In this function, we use our knowledge about the data type, and the presence of a reverse
function of signature Z→ N. In general, such a function is not provided, hence this solution
is not ideal, and only works for the restricted case of the predefined types.

The problem of finding a general coercion function for bags, operating on arbitrary types,
is still open. The problem can be formalised as follows. Let S, T be types, such that S <: T ,
and assume a coercion function C:S → T , that converts an element of type S to an element
of type T , such that C is injective. Find a function f :Bag(S) → Bag(T ), such that every
element of type Bag(S) is converted to an element of type Bag(T ).

We also define a translation for type derivations. If D is a type derivation for Γ `Σ e:S,
then translation [[D]] is a strictly typed term of type S.
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[[
x : S ∈ Γ

(T-Var)
Γ `Σ x : S

]]
= xs[[

f : S1 × · · · × Sn → S ∈ Σ
(T-Func)

Γ `Σ f : S1 × · · · × Sn → S

]]
= fS1×···×Sn→S[[

D :: Γ, ~x:~S `Σ e : T
(T-Abs)

Γ `Σ (λ~x:~S.e) : S1 × · · · × Sn → T

]]
= λ~x:~S. [[D]]


D :: Γ `Σ e:S1 × · · · × Sn → S

D1 :: Γ `Σ e1:S1
...

Dn :: Γ `Σ en:Sn
(T-Appl)

Γ `Σ e(e1, . . . , en) : S



 = [[D]] ([[D1]] , . . . , [[Dn]])




D1 :: Γ `Σ e1 : S1

...
Dn :: Γ `Σ en : Sn

Γ, ~x:~S `Σ e : T
(T-Where)

D :: Γ `Σ (e whr ~x = ~e end) : T



 = [[D]] whr ~x = ~[[D]] end

[[
D :: Γ, ~x:~S `Σ e : B

(T-Forall)
Γ `Σ (∀~x:~S.e) : B

]]
= ∀~x:~S. [[D]][[

D :: Γ, ~x:~S `Σ e : B
(T-Exists)

Γ `Σ (∃~x:~S.e) : B

]]
= ∃~x:~S. [[D]][[

D :: Γ, x : S `Σ e : B
(T-Set)

Γ `Σ {x : S | e} : Set(S)

]]
= {x : S | [[D]]}[[

D :: Γ, x : S `Σ e : N
(T-Bag)

Γ `Σ {x : S | e} : Bag(S)

]]
= {x : S | [[D]]}[[D :: Γ `Σ e : T C :: Γ `Σ T <: S

(T-Sub)
Γ `Σ e : S

]]
= [[C]] ([[D]])

7 Properties of the type system

In this section we investigate some properties of our type system. Note that a lot of properties
that one might like to hold, do not actually hold for our type system, because of the liberal
data language. Most notably our type system does not ensure a minimal type, i.e., the
following property does not hold.

Γ `Σ e:S =⇒ (∃T : Γ `Σ e:T ∧ (∀U : Γ `Σ U =⇒ T <: U))

This property does not hold because of the overloading that is allowed in the language. As
an example where this property does not hold, consider the following. Suppose f :S, f :T are
declared as functions. We can than derive that Γ `Σ f :S and Γ `Σ f :T , but in general
S 6<: T and T 6<: S. In an implementation it is desired that a type error is given if no unique
<:-minimal type exists.
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In general, expositions about type checking also discuss an evaluation relation. An eval-
uation relation is based on an operational semantics, reducing every closed expression in the
language to a value. In the case of mCRL2, this is generally not possible, as the rules for
reducing expressions are provided by the user. We therefore omit this property here.

For an algorithm implementing the type system as described in this paper, we want the
following properties to hold. Assume that SubΣ(S, T ) is an algorithm deciding whether S is
a subtype of T , and that TypeΣ(Γ, e) returns the unique minimal type of e, if such a type
exists, and ⊥ otherwise.

• `Σ S <: T =⇒ SubΣ(S, T ) = true, i.e., if we can derive that S is a subtype of T in our
inference system, then the algorithm also determines this.

• SubΣ(S, T ) = true =⇒ `Σ S <: T , i.e., if the algorithm determines that S is a subtype
of T , then the relation can be inferred.

• SubΣ(S, T ) is defined for all types S, T .

• TypeΣ(Γ, e) = S =⇒ Γ `Σ e:S, i.e., if the algorithm computes a type S, then it must
be derivable in our type system.

• TypeΣ(Γ, e) is defined for all expressions e.

• (Γ `Σ e:S ∧ Γ `Σ e:T ∧ S 6<: T ∧ T 6<: S) =⇒ TypeΣ(Γ, e) = ⊥, i.e., if an expression e
can have multiple, incomparable types, then an error is given by the algorithm.

• (Γ `Σ e:S ∧ (∀Γ `Σ e:T =⇒ S <: T ) =⇒ TypeΣ(Γ, e) = S, i.e., if an expression e can
have multiple, comparable types, then the minimal type is returned.

8 Conclusions

We have defined a type inference system for the data language of mCRL2. Our definitions
follow the standard approach as described by Pierce [Pie02], but extends the definitions of
inference rules because the data language of mCRL2 is richer than the language described in
ibid. We also provided a coercion function that can be used to move toward a setting with
strictly typed expressions. Note that the coercion function is currently not defined for bags
of arbitrary types, but is restricted to bags of predefined types. The problem of finding a
coercion function for bags of general types is still open.

To obtain a type checker for mCRL2, the approach given in this paper must be extended
with definitions for processes, as well as the first order modal µ-calculus. This is mainly
an extension of the rules with extra mechanisms for variable binding, as well as imposing
restrictions on types, e.g., requiring that guards are Boolean.

In addition, in an implementation one would also like to define restrictions that must be
imposed on the data specification. An example of a restriction is that the left hand side of
an equation must have the same type as the right hand side of an equation. Checking these
kinds of requirements is also a straightforward extension of the approach proposed in this
paper.
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