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On optimal interpolation schemes for particle tracking in turbulence
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An important aspect in numerical simulations of particle-laden turbulent flows is the interpolation
of the flow field needed for the computation of the Lagrangian trajectories. The accuracy of the
interpolation method has direct consequences for the acceleration spectrum of the fluid particles and
is therefore also important for the correct evaluation of the hydrodynamic forces for almost neutrally
buoyant particles, common in many environmental applications. In order to systematically choose
the optimal tradeoff between interpolation accuracy and computational cost we focuss on comparing
errors: the interpolation error is compared with the discretisation error of the flow field. In this
way one can prevent unnecessary computations and still retain the accuracy of the turbulent flow
simulation. From the analysis a practical method is proposed that enables direct estimation of the
interpolation and discretization error from the energy spectrum. The theory is validated by means
of Direct Numerical Simulations (DNS) of homogeneous, isotropic turbulence using a spectral code,
where the trajectories of fluid tracers are computed using several interpolation methods. We show
that B-spline interpolation has the best accuracy given the computational cost. Finally, the optimal
interpolation order for the different methods is shown as a function of the resolution of the DNS
simulation.

I. INTRODUCTION

Pseudo-spectral codes in combination with accurate in-
terpolation methods for particle tracking are commonly
used in many applications [1–6]. The spectral code solves
the flow field by means of direct numerical simulations in
an Eulerian approach, while the particle trajectories are
obtained by a Lagrangian approach. To compute the par-
ticle trajectories the fluid velocity must be known at the
particle positions. The standard way to do this is by rep-
resenting the Eulerian fluid velocity on a uniform, rect-
angular grid and make use of appropriate interpolation
schemes to evaluate fluid velocities out of the grid. Many
interpolation methods have been used, from low-order
linear schemes [2] to high-order splines [4–6]. Because
the interpolation step is time consuming and memory de-
manding, it is important to choose the best interpolation
method for a given application. In order to get more
accurate results the order of the interpolation method
can be increased. Because high order methods are com-
putationally expensive, it is important to make the best
tradeoff between accuracy and computational costs. The
best tradeoff can be determined by using good error es-
timates, assuring that the high-order methods will give
significantly more accurate result.
In many applications, and notably those where almost

neutrally buoyant particles are involved, not only the
fluid velocity is needed but also its first derivatives. The

∗ Electronic mail: M.A.T.v.Hinsberg@tue.nl
† Electronic mail: H.J.H.Clercx@tue.nl

evaluation of these derivatives can also be computed effi-
ciently by the interpolation method, by taking the deriva-
tive of the interpolating function [7]. A good approxima-
tion of the first derivative requires accurate interpola-
tion methods. For the computation of the trajectories
of (almost neutrally buoyant) particles we consider the
equation discussed by Maxey and Riley [8], for small
isolated rigid spherical particles (dp � η, with dp the
particle diameter and η the Kolmogorov length scale) in
a non-uniform velocity field u(x, t). An important as-
sumption is that the particle Reynolds number is small,
Rep = dp|u−up|/ν � 1, with up the velocity of the par-
ticle and ν the kinematic viscosity of the fluid. Because
we consider small particle diameters and small particle
volume fractions we ignore the effects of two-way and
four-way coupling. An overview of the different terms in
the Maxey-Riley (MR) equation and its numerical imple-
mentation can be found in the paper by Loth [9] and a
historical account of the equation of motion in a review
article by Michaelides [10]. Time integration of the MR
equation to compute particle trajectories can be an ex-
pensive, time- and memory consuming job, particularly
for what concerns the computation of the Basset history
force. However, a significant reduction in computational
costs can be obtained by fitting the diffusive kernel of the
Basset history force with exponential functions, as shown
by Van Hinsberg et al. [11].

A systematic way to determine the best tradeoff be-
tween interpolation accuracy and computational cost for
a particular application is to compare errors: the inter-
polation error is compared with the discretisation error
of the flow field. In this way one can prevent unnecessary
accurate and expensive computations. We will introduce
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different practical methods for computing these errors,
and will investigate the following interpolation methods:
Lagrange interpolation, spline interpolation, Hermite in-
terpolation and B-spline interpolation. For Hermite in-
terpolation we use the method suggested by Choi et al.

[12] who employed Hermite interpolation on multiple spa-
tial points. For the B-spline interpolation the method of
Van Hinsberg et al. [7] is used. These methods are also
used in many other applications, including the computa-
tion of charged particles in a magnetic field [13, 14], but
also digital filtering and applications in medical imag-
ing [15, 16]. In the latter case interpolations are used
to improve image resolution. Besides the optimization
of interpolation algorithms (accuracy, efficiency), the im-
pact of different interpolation methods on physical phe-
nomena, like particle transport, has been investigated in
many studies [12, 17–22]. To our knowledge the direct
comparison between the interpolation and the discretisa-
tion error to make an optimal choise for the interpolation
method has not yet been systematized; here we will give
fundamental insight into this problem.

The manuscript is arranged as follows. Sections II and
III give practical methods on how to estimate the in-
terpolation error. Section II focuses on calculating the
interpolation error off-line. In this way only statistics
of the turbulent flow are needed without having to com-
pute interpolations. In Section III an even more practical
method is proposed. This method only needs the energy
spectrum to predict the interpolation error. A practi-
cal method for estimating the discretisation error is dis-
cussed in Section IV. Next, the different interpolation
methods employed are explained in Section V. There-
after, the results of a comparison are shown in Section
VI, where we give a prediction of the optimal order of
the interpolation methods provided the spatial resolution
of the smallest (turbulent) flow scale is known. Finally,
concluding remarks are given in Section VII.

II. INTERPOLATION ERROR

This section focuses on the a-priori estimation of the in-
terpolation error. In this way only the statistics of the
turbulent flow is needed without having to compute in-
terpolations, an efficient method for estimating the inter-
polation error.

In general the particle will follow a path xp(t) and
the flow velocity field is given by u(x, t). Suppose that
we need to find the velocity at the particle position,
i.e., u(xp(t), t), but instead we find the approximation
ũ(xp(t), t), due to the interpolation errors. Let I be the
interpolation operator that maps u onto ũ, so ũ = I[u].
The relative interpolation error ε for one particle can be
computed by the L2-norm like

ε = lim
T→∞

‖u(xp(t), t) − ũ(xp(t), t)‖T
‖u(xp(t), t)‖T

, (1)

where the time averaging norm, ‖ · ‖2T is given by

‖f‖2T =
1

T

∫ T

0

|f(t)|2dt, (2)

and | · | denotes the usual 2-norm. Analogous to this,
the norm is also used for scalar quantities. The value
of u(xp(t), t) in relation (1) can be calculated from the
Fourier components of the Eulerian flow field (obtained
from the DNS), which is computationally expensive.
Therefore, relation (1) will only be used to validate the
following steps towards a more pragmatic approach to
estimate the interpolation error.
We assume that the system is ergodic which means

that the ensemble average is equal to the time average,
therefore ε does not depend on the choice of the particle
and an average over particles can be taken. Further-
more, we assume that the particle has no preferential
location and thus we can replace the particle average by
a space average. We can thus average over space and
time, in practice the time average needs to be performed
over several large-eddy turnover times. The space aver-
age is taken over the whole domain V which is [0, 1)3

in dimensionless units. Notice that in order to simplify
the notation we have chosen [0, 1)3 instead of the usual
[0, 2π)3. In this way one can write ε like

ε =

∥∥ ‖u− ũ‖3
∥∥
T∥∥ ‖u‖3

∥∥
T

, (3)

where we introduce the following inner products

〈f,g〉1 =

∫ 1

0

(f · g∗) (x)dx,

〈f,g〉3 =

∫ 1

0

∫ 1

0

∫ 1

0

(f · g∗) (x)dxdydz, (4)

and the corresponding norms:

‖f‖21 = 〈f, f 〉1 =

∫ 1

0

|f(x)|2dx ,

‖f‖23 = 〈f, f 〉3 =

∫ 1

0

∫ 1

0

∫ 1

0

|f(x)|2dxdydz. (5)

Here f ·g denotes the usual inner product and g∗ denotes
the complex conjugate of g. These inner products and
norms are also used for scalar fields like f and g where
the inner product is reduced to the ordinary product fg∗.
The velocity field is approximated in a three-dimensional
Fourier series, like

u(x, t) =
∑

k∈K

uk(t)φk(x), φk(x) = e2πik·x, (6)

where K is the space of wave vectors k, with k =
(kx, ky, kz) and |k| ≤ kmax the maximal wave number.
We neglect the error made by taking a finite sum, which
is a part of the discretisation error (and should for a
well-resolved simulation decrease exponentially in case
of increasing resolution). The complex valued functions
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φk constitute an orthonormal basis with respect to the
inner product 〈·, ·〉3. Introducing the interpolant of φk;

φ̃k = I[φk], when the interpolation operator I is linear,
one obtains:

ε =

∥∥∥
∥∥∥
∑

k∈K
uk

(
φk − φ̃k

)∥∥∥
3

∥∥∥
T∥∥ ∥∥∑

k∈K
ukφk

∥∥
3

∥∥
T

. (7)

It can be proven, see [7], that φk − φ̃k constitute an
orthogonal basis with respect to the inner product 〈·, ·〉3
and we define γk = ‖φk − φ̃k‖3. In this case we obtain

ε =

∥∥ (∑
k∈K

γ2
k
|uk|

2
)1/2 ∥∥

T∥∥ (∑
k∈K

|uk|2
)1/2 ∥∥

T

. (8)

Changing the order of the norms gives

ε =

(∑
k∈K

γ2
k

∥∥uk

∥∥2
T

)1/2

(∑
k∈K

∥∥uk

∥∥2
T

)1/2 . (9)

Now ε can be calculated without having to do a simu-
lation for all the interpolation methods, only ‖uk‖T is
needed from the simulations. Next, we require I to sat-
isfy:

φ̃k = I[φk] = I[φkx
φky

φkz
]

= I1[φkx
]I1[φky

]I1[φkz
] = φ̃kx

φ̃ky
φ̃kz

, (10)

with I1[·] the one-dimensional variant of the operator
I[·]. Using this property and ‖φk‖1 = 1, γ2

k
can be writ-

ten as

γ2
k
= 1 + s1(kx)s1(ky)s1(kz)− 2s2(kx)s2(ky)s2(kz), (11)

with

s1(k) =
∥∥∥φ̃k

∥∥∥
2

1
, s2(k) = R

(〈
φ̃k, φk

〉
1

)
, (12)

with R(f) denoting the real part of f . Here, s1 and s2
can be calculated fast using methods from Van Hinsberg
et al. [7]. Now combining (9) with (11) and (12) gives us
a method for the calculation of the interpolation error.
This method is based on the assumptions that there

is no preferential position for the particles, an approach
that is correct for fluid tracers in incompressible flows.
Inertial particles will instead cluster depending on their
size and density. The advantage of this method over using
relation (1) is that no simulations of particle trajectories
in turbulence have to be done when ‖uk‖T is known; the
statistical information on the turbulent flow field itself is
sufficient.

III. APPROXIMATION OF THE
INTERPOLATION ERROR

In this section the error estimate ε is further simplified.
In Eqn (9) a summation must be taken over all three-
dimensional vectors k ∈ K. In order to evaluate only

a one-dimensional sum one can use the assumption of
statistical isotropy of the turbulent flow. In the end this
results in a practical method that only needs the energy
spectrum to predict the interpolation error.
Starting from Eqn (9), the summation is split as:

ε2 =

∑kmax

k=0

∑
k∈Kk

γ2
k
‖uk‖

2
T∑kmax

k=0

∑
k∈Kk

‖uk‖
2
T

, (13)

where Kk is a subset of K which include k with k −
1
2 ≤ |k| < k + 1

2 . Next, the approximation is made that

Kk includes 4πk2 wave vectors (the surface of a sphere
with radius k). Assuming statistical isotropy the three-
dimensional energy spectrum is spherically symmetric,
and we can write ‖uk‖T = ‖uk‖T for k = |k|. Using
both assumptions (13) can be approximated with

ε2iso =

∑kmax

k=0 k2γ2
k ‖uk‖

2
T∑kmax

k=0 k2 ‖uk‖
2
T

, γ2
k = [γ2

k]|k|=k , (14)

where [·]|k|=k denotes the space average over the surface

of a sphere in k-space with radius k. Note that (k‖uk‖T )
2

is proportional to the energy of the modes with k = |k|.
In this way the integrated energy spectrum in combina-
tion with γk is sufficient to calculate the error.
In order to be able to compute [γ2

k
]|k|=k easily, the

following derivation is made. Starting from γk = ‖φk −

φ̃k‖3 and introducing ek = φk − φ̃k one finds:

γ2
k
= ‖φkx

φky
φkz

−

(φkx
− ekx

)(φky
− eky

)(φkz
− ekz

)‖23. (15)

We assume that the error is relatively small compared
to the actual Fourier component. Under this assumption
we have that ‖ek‖1 � ‖φk‖1 = 1 and only the lowest
powers of ek need to be taken into account. Using that
‖φk‖1 = 1 one obtains:

γ2
k ≈ ‖ekx

φky
φkz

+ φkx
eky

φkz
+ φkx

φky
ekz

‖23

≈ ‖ekx
‖21 + ‖eky

‖21 + ‖ekz
‖21. (16)

In the last step we neglected the cross terms. We checked
that the final contribution of the cross terms in the sum-
mation in relation (14) is only of the order of 5 percent,
this is due to the fact that these terms mainly average
out as they can be both positive and negative.
We restrict ourselves to polynomial interpolations and

we define the order n of the method as follows: n is the
highest degree of a polynomial for which the interpolation
is still exact. When the order of the interpolation method
is known the following approximation can be made

‖ek‖
2
1 ≈ ck2(n+1), (17)

where c is some constant. The reason for this formula
is the following. Given that a method has order n the
amplitude of ek is proportional to the (n+1)−th derivative
of φk. From this, one gets that ek is proportional to kn+1.
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(This is also shown by Figure 1 in Section VI.) Using this
one finds that

γ2
k ≈ ck2(n+1)

x + ck2(n+1)
y + ck2(n+1)

z . (18)

Next, the average needs to be taken over a spherical sur-
face, [γ2

k
]|k|=k. Because of symmetry reasons we only

need to calculate the contribution of ck
2(n+1)
z , the con-

tributions of the other terms are equal to this one. The
calculation for the surface average is done in spherical
coordinates k = k(sinϕ cos θ, sinϕ sin θ, cosϕ) as follows,

1

3
[γ2

k
]|k|=k ≈ c[k2(n+1)

z ]k=|k|

=
c

4πk2

∫ π

0

∫ 2π

0

(k cosϕ)2(n+1)k2 sinϕdθdϕ

=
ck2(n+1)

4π

∫ π

0

∫ 2π

0

cos2(n+1) ϕ sinϕdθdϕ

=
ck2(n+1)

2n+ 3
. (19)

Thus we obtain:

γ2
k = [γ2

k
]|k|=k ≈

3

2n+ 3
ck2(n+1) ≈

3

2n+ 3
‖ek‖

2
1. (20)

Combining Eq. (14) with (20) results in a practical
method that only needs the energy spectrum to predict
the interpolation error. Note that some approximations
as discussed are needed and therefore the result will be
somewhat less accurate than the expression derived in
the previous section.

IV. DISCRETISATION ERROR

As we will compare the interpolation error with the
Eulerian discretisation error δ̄, we take the same norm
for both of them. A first suggestion would be

δ̄ =

∥∥ ‖u− û‖3
∥∥
T∥∥ ‖û‖3

∥∥
T

, (21)

where û is the exact Eulerian velocity field. In practice
what we call the ”exact” velocity field is obtained by
using double grid resolution. Expanding u and û in a
Fourier series gives

δ̄ =

∥∥ ∥∥∑
k∈K

ukφk − ûkφk

∥∥
3

∥∥
T∥∥ ∥∥∑

k∈K
ûkφk

∥∥
3

∥∥
T

. (22)

Due to turbulence the error will grow in time and even-
tually will become of the same order as the velocity field
itself. To avoid this complication we will only look at
statistical properties. We take the time average of the
Fourier components before comparing the two velocity
fields. The new discretisation error δ is therefore defined
as:

δ =

(∑
k∈K

(
‖uk‖T − ‖ûk‖T

)2)1/2

(∑
k∈K

∥∥ûk

∥∥2
T

)1/2 . (23)

Note that this error is taken in the same way as the in-
terpolation error, see relation (9). Next we use the fact
that the energy spectrum for homogeneous isotropic tur-
bulence is spherically symmetric like done before, which
results in:

δ2iso =

∑kmax

k=0 k2
∣∣‖uk‖T − ‖ûk‖T

∣∣2
∑kmax

k=0 k2
∥∥ûk

∥∥2
T

. (24)

This relation can be used to estimate the discretisation
error by the use of the energy spectrum.

V. INTERPOLATION METHODS

The theory presented is tested on several different
interpolation methods, namely Lagrange interpolation,
spline interpolation, Hermite interpolation and B-spline
interpolation. In each spatial direction the methods in-
vestigated use N data points to construct a polynomial
function of degree N − 1 for the interpolation. For Her-
mite interpolation we use the method suggested by Choi
et al. [12] who employ Hermite interpolation on multiple
spatial points. For the B-spline interpolation the method
of Van Hinsberg et al. [7] is used.
In Table I all methods are listed with an overview of

their main features. The order of continuity refers to

interpolation n order of FFT comment

method continuity

Lagrange N − 1 0 1 for even N

−1 1 for odd N

spline N − 2 (N − 2)/2 1 only even N

Hermite N − 1 1 8 only for N ∈ 4N

B-spline N − 1 N − 2 1 all N

TABLE I. Overview of the interpolation methods considered
in this study. Note that for all methods the degree of the
polynomial function is equal to N − 1. n is the highest order
of a polynomial function for which the interpolation is still
exact[7].

the continuity Cn of the interpolation function. Further-
more with FFT we refer to the number of Fast Fourier
Transforms required for the interpolation. For Hermite
interpolation also the derivatives are needed and this re-
quirement increases the number of FFTs needed. In Fig-
ure 1, γk(k∆x), as from equation (20) is shown for the
different interpolation methods, where ∆x is the distance
between the grid points.

VI. RESULTS

In this section we compare the interpolation methods.
The discretisation error is computed and compared with
the interpolation error for all the interpolation methods.
We estimate the errors by using the methods given by
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FIG. 1. Interpolation error γk (20) of the various methods,
calculated with the methods of Van Hinsberg et al. [7]. For
all methods N = 4 except for linear interpolation which has
N = 2.

Eq. (24), for the discretisation error and by Eq. (14)
and (20) for the interpolation error. Subsequently, the
methods are validated by investigating two different as-
pects: the error made in the location of the particles and
the acceleration spectrum. Thanks to this quantitative
comparison we are able to give a prediction of the opti-
mal order N for the different interpolation methods as
a function of kmaxη. Here η is the Kolmogorov length
scale.
To compute the discretisation error several simulations

of homogeneous isotropic turbulence are performed with
different kmax, for details see Table II. The energy spec-
tra are reported in Figure 2. Using relation (24) the

grid number of kmax ν kmaxη

grid points

coarse 64 21 0.048 2.4

fine 128 42 0.048 4.8

reference 128 64 0.048 7.2

TABLE II. Details of the DNS simulations of homogenous
isotropic turbulence. Three grids are used for comparison, a
coarse, a fine and a very well resolved (reference) grid.

discretisation error can be computed. Next, also the in-
terpolation error can be computed by directly using re-
lation (1) or the approximate relations (14) and (20).
Table III shows the interpolation error, calculated in the
two different ways, to check the reliability of the approx-
imation. The two proposed methods are found to be in
agreement within 10-20%, while the interpolation error
changes over orders of magnitude for the different inter-
polation methods. The differences between the ways of
estimating the interpolation error can be explained by
statistical errors and approximations made in the theo-
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FIG. 2. Energy spectra for different kmax in log-log scale. In
the inset the same but in log-lin scale.

method N ε (1) εiso (14) and (20)

linear 2 5.44 · 10−3 4.52 · 10−3

Lagrange 4 3.67 · 10−4 3.45 · 10−4

Spline 4 4.39 · 10−4 4.73 · 10−4

B-spline 4 3.59 · 10−5 3.99 · 10−5

Hermite 4 3.82 · 10−5 3.13 · 10−5

TABLE III. Interpolation error for different methods calcu-
lated in different ways. Here kmaxη = 2.4 and δ = 5.03 · 10−4 .

retically derived error estimates.
Next, to check the theory and the influence of the in-

terpolation error, both errors in particle position and ac-
celeration statistics are investigated. We start with the
error in the position of the particle. The procedure is
as follows: first a family of tracers starting at one point
is simulated with different interpolation methods, second
the reference tracer is simulated in a second simulation
with double grid resolution keeping the initial condition
and forcing the same. We started averaging over 50 parti-
cles, and in order to check statistical convergence and the
eventual dependence on the initial condition, we repeated
this for 4 different realizations of the flow field. After
checking that the trend is the same the results shown
here are averaged over the 4 realizations, for a total of
200 particles. The error in the particle position is plotted
in Figure 3 using different norms,

LM = ‖xp − x̃p‖M , ‖f‖M =

(
∑

p

|fp|
M

) 1

M

,(25)

where x̃p is the particle trajectory calculated by using
interpolation methods and xp is the exact particle tra-
jectory, calculated using double grid resolution. In Fig-
ure 3 one can see that even after one large eddy turnover
time, t=1, the influence of the interpolation error dom-
inates over chaotic behavior of turbulence. At t=1 the
errors for the different methods are still clearly separated.
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particles.

Next, we consider the L2-error after the Kolmogorov time
scale (t = 0.15) for the different interpolation methods,
see Figure 4. In the following we focus on the L2-norm
because this is the norm used in Sections II and III. In
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FIG. 4. L2-error at the position of a tracer after the Kol-
mogorov time scale (t = 0.15), with kmaxη = 2.4. The error
is a combination of the interpolation and discretisation error.

Figure 4 one can see that higher order interpolations in-
deed become more accurate and that for high N no fur-
ther accuracy is gained because the discretisation error
has become dominant over the interpolation error. This
behavior is in agreement with the results in Table III.
When increasing the resolution the discretisation error
becomes smaller and higher order interpolation methods
are needed to maintain the accuracy after interpolation,
see Figure 5.

In order to better show the influence of interpolation
methods we investigate the acceleration of the particle.
Not only is the acceleration itself of great interest as
a statistical quantity, see for example Ref. [1], but it
is also needed to calculate the hydrodynamic forces in
the Maxey-Riley equation. The acceleration signal of a
generic particle as a function of time is shown in Figure
6. The high frequency oscillations are clearly nonphysi-
cal and with more accurate interpolation methods they
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FIG. 5. L2-error at the position of a tracer after the Kol-
mogorov time scale, with kmaxη = 4.8. The error is a combi-
nation of the interpolation and discretisation error.
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FIG. 6. Particle acceleration of a fluid tracer, computed with
different interpolation methods, where kmaxη = 2.4. The
zigzagging is an artifact of the interpolation method.

disappear. To better quantify this effect we analyze the
acceleration spectrum of the particles. From Figure 7 it
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FIG. 7. Particle acceleration spectrum, with kmaxη = 2.4.
On the right side artificial energy is added due to both the
interpolation and discretisation error.

can be seen that even the spectral interpolation shows
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a kink in the spectrum (around k = 13) due to the dis-
cretisation error. For higher kmaxη this kink is still ob-
served but at higher wave numbers. The energy content
within the range of wavenumbers between 20 and 3000 is
computed and used as an error indication, see Figure 8.
Again the same behavior is found as in Figures 4 and 5,
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FIG. 8. The error in the acceleration spectrum is plotted
as a function of N , the order of the interpolation function.
As error indication we employ the energy contained in the
particle acceleration spectrum between wavenumbers 20 and
3000. The error is a combination of both the interpolation
and discretisation error. (left panel) kmaxη = 2.4 (right panel)
kmaxη = 4.8

as predicted by the theory.
Now that the methods are validated for computing the

interpolation error, the theory can be used to forecast
which interpolation method is optimal for a given kmaxη.
As increasing N of the interpolation method is much less
time consuming than improving the resolution, the inter-
polation error is not allowed to exceed the discretisation
error. Using this criterium the optimal N can be found
for a given kmaxη and interpolation method, see Figure
9. In this simulation we did not allow for any aliasing of
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FIG. 9. Optimal order N for the different interpolation meth-
ods with kmax = 1

3∆x
. The optimal N is found by the cri-

terium that the interpolation error is not allowed to exceed
the discretisation error.

the nonlinear term, therefore kmax = 1
3∆x . In order to

increase the accuracy, kmax can be increased allowing for
some aliasing, see Figure 10.
From Figures 9 and 10 it can be seen that interpo-

lation methods become more important when going to
higher values of kmaxη. Typical kmaxη values used are

1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7

8

9

k
max

η

N

 

 

Lagrange
Spline
B−spline
Hermite

FIG. 10. Optimal order N for the different interpolation

methods, with kmax =
√

2

3∆x
. The optimal N is found by the

criterium that the interpolation error is not allowed to exceed
the discretisation error.

around 1.5 but studies have been performed with values
up to 34 [23]. As the full Maxey-Riley equation also use
derivatives of the flow field the accuracy of the flow field
should be increased, implying kmaxη ≈ 3 or higher. Here,
B-spline interpolation is by far outperforming the other
interpolation methods. The only interpolation method
that is comparable is the Hermite interpolation, however
a drawback is that it can only be used for N a multiple
of 4, thus limiting its flexibility. Furthermore, in order to
employ Hermite interpolation also derivatives are needed
making it computationally expensive (due to the need to
evaluate many FFTs per derivative). To conclude, we
found that B-spline interpolation is very suited for par-
ticle tracking simulations.

VII. CONCLUSIONS

We have introduced different practical methods for
computing the error in the interpolation of the fluid ve-
locity. First, we have introduced an accurate method
that uses the full three-dimensional energy spectrum to
estimate this error. Second, we introduced a practical
method that only needs the one-dimensional energy spec-
trum to estimate the same error. These methods are val-
idated by means of turbulent simulations and it is shown
that they give accurate results.
Further we show the effect of the interpolation methods

on both errors of particle positions and the acceleration
spectrum. Particularly the latter is important because
the particle acceleration enters directly in the Maxey-
Riley equation. The results for both the errors on particle
positions and the acceleration spectrum are in agreement
with the predictions of the theory.
Finally, we could provide a prediction for the optimal

order of the different interpolation methods as a func-
tion of kmaxη. In order to investigate the behavior of
almost neutrally buoyant particles also derivatives of the
flow field need to be accurately resolved, this implying
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values of kmaxη around 3 or higher. At these values of
kmaxη, B-spline interpolation performs much better than
the other interpolation methods, implying less computa-
tional overhead.
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