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Motion Blur Reduction for High Frame Rate
LCD-TVs

F. H. van Heesch and G. de Haan
Philips Research Laboratories

High Tech Campus 36, Eindhoven, The Netherlands

Abstract—Today’s LCD-TVs reduce their hold time to prevent
motion blur. This is best implemented using frame rate up-
conversion with motion compensated interpolation. The regis-
tration process of the TV-signal, by film or video camera, has
been identified as a second motion blur source, which becomes
dominant for TV displays with a frame rate of 100 Hz or higher.
In order to justify any further hold time reduction of LCDs, this
second type of motion blur, referred to as camera blur, needs
to be addressed. This paper presents a real-time camera blur
estimation and reduction method, suitable for TV-applications.

I. INTRODUCTION

At the introduction of LCDs in the TV domain, motion

blur was identified as one of the most important picture

quality aspects that required improvement to compete with

the then dominant CRT displays. From the many motion blur

reduction methods that have since been proposed [1], Motion

Compensated Frame Rate Conversion (MC-FRC) has been the

most successful. The MC-FRC method has the advantage that

the hold time of a display system can be reduced, without

negative picture quality side-effects such as large area flicker

and loss of light efficiency. As a result, 120Hz, 240Hz and

even 480Hz LCDs with MC-FRC have been proposed [2]. The

improvements in motion blur reduction for such high frame

rate displays is limited, however, due to the presence of motion

blur that originated during registration [3]. The combination

of both motion blur sources, i.e. display blur and camera blur,

has been investigated in [3], verified in [4], and is illustrated

in Fig. 1.

Camera blur and display blur can both be described as a

temporal averaging filter that, due to motion tracking, is per-

ceived as a spatial averaging along the motion vector [3]. There

are, however, two important differences for TV-applications

leading to different motion blur reduction algorithms. First,

display blur can be known from the display properties, while

camera blur needs to be estimated from the TV’s input picture.

Second, display blur is caused by eye movement relative to

the display, while camera blur is caused by camera motion

relative to the scene. Because of these differences, camera blur

reduction requires a post-processing of the TV-signal, while

display blur reduction is a pre-processing method.

In this paper, the implementation of a real-time camera blur

reduction method is discussed. Because it attempts to invert

the perceived motion blur, this filter method is referred to

as Motion Compensated Inverse Filtering (MCIF). We will

show in Section II, that the filter characteristics of motion blur
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Fig. 1. Motion blur perceived from video that is displayed on an
LCD is a combination of display blur (vertical axis) and camera blur
(horizontal axis). Both blur sources are relative to the picture delay,
ΔT . The measurement points have been obtained from a perception
test [4].

are straightforwardly derived from theory, but that a practical

implementation for removing this blur is not easily robust.

We will describe the signal theory in Section II and from the

theory it follows that, for the inverse filter, motion estimation

and motion blur estimation are required pre-processing steps.

This will be described in Section II-A. In Section II-B, we

will discuss two filter implementations and results are shown

in Section III. Conclusions are drawn in Section V.

II. CAMERA BLUR REDUCTION

The perceived motion blur that is caused by an LCD has

been described in [5] and can be analyzed in the frequency

domain by describing the perceived picture:

If
p (f�x, ft) = If

a (f�x, ft)A
f
d (f�x, �v · f�x) Af

p(f�x, ft), (1)

with If
a the reconstructed picture on the display, Af

d , the

spatio-temporal display aperture, Af
p , the aperture of the Hu-

man Visual System (HVS), �v, the motion vector corresponding

to tracking and f�x and ft, the spatial and temporal frequencies,

respectively. The level of perceived motion blur is determined

by analyzing the attenuation of the high spatial frequencies of

If
a for ft = 0.

The reconstructed picture, If
a , can be expressed to include

camera blur, using a spatio-temporal registration aperture:

If
a (f�x, ft) = If

c (f�x, ft)Af
c (f�x, �v · f�x), (2)

with If
c the sampled picture during registration and Af

c the

registration aperture. In order to directly compare If
c with the



0 1 2-1-2

without blur

due to A

b(x,t)

c,t

x

I (x,t)a

(a) Camera blur for ||�b(�x, t)|| = 5
pixels.

x
0 1 2-1-2

I’(x,t)a

(b) The derivative of Ia along the
motion vector.

AC(I’(x,t))

21

a

8 9763 4 50
x

(c) The AC of (b), ideal (black) and measurement examples (lines).

Fig. 2. The position of the minimum of the AC of the image derivative
corresponds to the blur length.

reconstructed picture, If
a , and to focus on motion blur, we have

ignored spatial scaling and the influence of the spatial camera

aperture and will describe the temporal camera aperture by the

Temporal Aperture Width (TAW), at, as reported in [6]:

Ac,t(t) =

{
1, if |t| ≤ 1

2at

0, if |t| > 1
2at

Af
c,t(ft) = atsinc(πftat),

with sinc(t) = sin(t)
t and denoting the Fourier pair.

In order to reduce the attenuation caused by camera blur, an

enhancement filter can be constructed that inverts the temporal

registration aperture, |Af
c,t(�v · f�x)|, i.e. we can write for the

amplitude response of the enhancement:

|Hf
c (f�x)| =

1∣∣∣Af
c,t(�v · f�x)

∣∣∣ =
1

|sinc(π(�v · f�x)at)| . (3)

The amplitude response of this filter has infinite gains and

is unstable in the presence of noise. Therefore, we approx-

imate the filter response by a filter that boosts high spatial

frequencies along the local motion vector. Furthermore, the

amplitude response scales with the TAW. In Section II-A, we

will explain how the TAW is estimated from the input picture,

before discussing the filter design in Section II-B.

A. Camera blur estimation

The estimation of camera blur has been mainly investigated

for image processing in the area of astronomy and still picture

processing [7], [8], [9]. In [7], a method is proposed that esti-

mates the blur characteristics from the spatial cepstral domain

using multiple sub-images to attenuate signal characteristics in

favor of the blur characteristics. The cepstral domain method

was replaced in [8] with a method that estimates the blur

extent, �b(�x, t), i.e. the length of the blur along the motion

vector, using the autocorrelation of the signal’s directional

intensity derivative. This method was extended in [9] to be

able to cope with motion gradients, next to uniform motions.

In this section, we will present a TAW estimation algorithm

based on the camera blur estimation from [8] that is suitable

for arbitrary motions.
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Fig. 3. Camera blur estimation is performed on selected locations.
Candidates are discarded based on motion vector size and consistency
and based on local image detail (texture). The TAW follows from
multiple measurements of the location of the minimum of the AC of
the picture derivative along the motion vector.

One of the main limitations of the methods presented in [8]

and [9] is a reliable motion estimate. For video, however, a

motion estimator can more reliably determine a motion vector

at each position in the image. This simplifies the camera blur

estimation, as it allows to normalize the estimated blur extent

to a blur time that directly corresponds to the TAW, according

to:

at =
||�b(�x, t)|| · ΔT

||�v(�x, t)|| , (4)

with ΔT the picture period. Furthermore, the TAW can be

expected constant within a picture sequence, allowing for

locally selective measurements and the exploitation of tempo-

ral consistency to improve robustness by combining multiple

measurements.

The camera blur estimation algorithm determines the auto-

correlation (AC) along the motion vector at selected locations

for the signal derivative. The position of the first minimum in

the AC corresponds to the blur length, as explained by Fig. 2.

Combining measurements improves the robustness of

the TAW estimate, but further robustness is obtained by

discarding measurements that are likely to yield erroneous

results, such as measurements at:

• high speeds: The video signal is attenuated as a function

of motion. Faster motions result in larger blur extents,

while noise can be expected constant. As a result, the

SNR, and therefore the reliability of the TAW estimate,

reduces for increasing speeds.

• very low speeds: For low speeds, the influence of the



spatial camera aperture cannot be ignored. The influence

of focus blur, scaling and digital compression would

typically lead to an over-estimate of the camera blur.

• flat areas: A low SNR reduces the reliability of the

camera blur estimate. Therefore, flat areas are detected

using a local activity metric and removed from the blur

extent measurement.

• motion edges: The expression of camera blur as stated

in Eq. 3 does not hold when locally the motion vector

is not constant. In this case, the estimates at edges in

the motion vector field are unreliable, even if the motion

estimates themselves are accurate. The locations are

found by verifying the consistency of the motion along

its vector. Locations that fail the consistency check are

discarded.

The robustness is further improved by using the resemblance

of the autocorrelation function with respect to the ideal shape,

shown in Fig. 2(c), as a confidence measure. For example by

averaging the results for those measurements meet a certain

confidence threshold. This is schematically shown in Fig. 3.

It has been demonstrated that, for HD TV-signals [4], this

method is quite resilient to both analog and MPEG noise, and

can cope with low contrasts and focal blur. The method fails to

provide an accurate estimate only in case of very little motion,

or in case of very high noise levels in the picture or motion

vector field. In these cases, however, it is unlikely that camera

blur reduction will yield a significant improvement in picture

quality.

B. Inverse filtering

The camera blur estimate, at, and the motion estimate,

�v(�x, t), enable the implementation of the sharpness enhance-

ment filter described by Eq. 3. We refer to this method as

inverse filtering, although it is not the goal to obtain the

best approximation to the theoretical inverse filter. Instead,

we attempt to invert the perceived reduction in sharpness. The

infinite gains of the amplitude response complicate a practical

implementation of the inverse filter and an approximation is

required. An implementation that uses a FIR filter, known

as Motion Compensated Inverse Filtering (MCIF), has been

proposed in [5] and [10] for display blur reduction.

For display applications, MCIF filtering applies a spatial

filter for each pixel in the picture along the motion vector that

corresponds to the motion tracking of the HVS. Therefore, a

1D FIR-filter is rotated and scaled to align with the motion

vector. In practice, such filtering can be implemented by fetch-

ing the luminance of Ia(�x, t) at an interpolated pixel grid along

this scaled and rotated vector using e.g. bilinear interpolation.

For camera blur, the FIR filter also scales linearly with the

TAW as illustrated in Fig. 4.

In this section, we will discuss MCIF for camera blur

reduction using two inverse filter design methods: Luminance

Transient Improvement (LTI) [11] and Trained Filtering (TF)

[12].

cI (x)
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Fig. 4. Filtering along the motion vector requires fetching of intensity values
on a non-integer grid along the (scaled) motion vector. The scaled motion
vector, indicated by the white arrow, determines the position of the sample
positions, indicated by the black dots. The intensity values at these locations
are calculated from the nearest intensities. This is illustrated for the bottom
left sample position. In case of bilinear interpolation, its intensity is calculated
from the surrounding 4 pixel locations (white dots), using the distances Δx1

and Δx2 to proportionally weight the intensities.

The LTI method, known from static sharpness enhancement,

can be explained as a two-step process. First, a sharpness en-

hancement filter reduces camera blur at the cost of overshoots

at edges. Second, the overshoots at edges are eliminated by

clipping the filter output to the local intensity extremes, as

illustrated for a 1D signal (along the motion vector) in Fig. 5.

Note that the method does not attempt to approximate

an ideal inverse filter, instead it enhances mid-frequencies,

limiting the enhancement of noise. This filter method was

found to perform well at edges, but yields only a modest

sharpness enhancement in textured areas. Also, this method

was found to be still sensitive to noise. Improved performance

and robustness is obtained by linking a noise estimator to the

filter gain and by making the filter coefficients adaptive to the

local picture structure.

A second filter design strategy uses a TF method to find

Mean Square Error (MSE) optimal inverse filters. With a

training set of degraded and “original” video data, containing

motion blurred and motion-blur free content, respectively, the

filter that obtains the minimum difference between the two

data sets can be determined. This requires a classification

method to sort data similarity, an energy function that defines

a

b

I (x,t)a
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b(x,t)

(a) Fetching pixels.

Intensity

v0

blurred edge
highpass added
clipped

a bb(x,t)

(b) Filtering and clipping.

Fig. 5. The LTI method: pixels are fetched at line segment [a-b] at an
interpolated grid along the motion vector, �v. The FIR filter is scaled
to match the blur length. A highpass filter is added to the blurred edge
(red line), yielding overshoots at edges (blue line). Clipping to the
local intensity extremes of the blurred edge reduces the overshoots
(green line).
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Fig. 6. The TF method: (a) The filter window consists of a line
along the motion vector and a box around the center pixel containing
17 sample locations. The intensities within this window are fetched
from an interpolated grid. (b) A 19-bit class code is constructed by
comparing the sampled intensities with the window average, yielding
17 bits, together with a 2-bit code for the DR. The class code is the
index of the filter table.

a quantifiable difference metric, and a representative data

set of sufficient size. The classification encodes local picture

structure using a window aligned along the scaled motion

vector. In order to constrain the number of classes to a practical

number for training, the number of pixels in the window

is limited and the structure is typically encoded with one

bit per pixel, e.g. “0” and “1” correspond to a lower or

higher luminance value compared to the window average,

respectively.

The classification process for camera blur reduction has

been thoroughly researched in [13]; an extensive search of

all possible symmetric filter structures using up to 19-bits for

the classification, as illustrated in Fig. 6(a), using one bit per

pixel and an additional two bits to encode the Dynamic Range

(DR), yields an MSE-optimal filter structure as illustrated in

Fig. 6(b). For this evaluation, a test set of 145 HD images was

used. The robustness to noise is obtained with the encoding

of the dynamic range, while the content adaptation is encoded

by the filter structure. The disadvantage of this method is the

large filter table that is required to store all filter coefficients.

Furthermore, a re-training is required for every change in (the

tuning of) the classification.

Special care is required for the borders of moving objects,

i.e. occlusion areas. The inverse filter should take occlusion

areas into account and discriminate between covering and

uncovering areas, because the motion blur model, described

by Eq. 3 does not hold here. Visible artifacts at occlusion

areas can be alleviated by filling in the occlusion data from

a previous and next picture, or by gradually limiting the

enhancement at occlusion areas.

III. RESULTS

The MCIF filter using the LTI and TF methods have

been applied to the example HD picture shown in Fig. 7(a)

containing a partial panning motion of 30 pixels per frame. The

HD picture has been registered with a TAW of at = 0.5. The

filtering methods have been applied to the luminance signal

(a) (b)

(c) (d)

Fig. 7. (a) A picture from the Trainloop sequence, containing a
horizontal motion of 30 pixels per frame, registered with a TAW of
at = 0.5. (b) A close-up of the luminance component, illustrating
the camera blur. (c), (d) The same close-up after applying the LTI
and TF methods, respectively.

only. The filter outputs are illustrated in Fig. 7(c) and Fig.

7(d).

In addition, the camera blur reduction methods have been

applied to a test set and evaluated with an informal subjective

assessment on a high frame LCD-TV. From this assessments,

we found the LTI method to be most robust to noise, but lim-

ited in reconstructing details in textured regions. The trained

filter method was found to perform best for recreating details,

without creating visible overshoots at edges, although a tuning

for several types of picture degradations was found more

cumbersome. Further work is required to quantify the quality

improvement of these methods and to determine which is most

suitable for camera blur reduction in LCD-TV applications.

IV. DISCUSSION

To achieve the best perceived picture quality when imple-

menting camera blur reduction for LCD-TVs, other picture

quality improvements that might be present in between a

TV’s picture reception and rendering must be taken into

account. In particular, the combination of MCIF with spatial

sharpness enhancement (SSE) [11] and MC-FRC (for display

blur reduction) cannot be considered independently.

MC-FRC and MCIF both use motion vector estimates

and have to tackle visible artifacts that can appear when

moving objects occlude. In addition, the execution order of



MC-FRC and MCIF need to be considered. Applying MCIF

after MC-FRC results in higher computational requirements,

while applying MCIF before MC-FRC, influences the frame

interpolation of MC-FRC.

When combining MCIF with SSE, in general, care has to

be taken that the sharpness enhancements of both processing

steps do not “overlap”. In particular for low speeds, MCIF can

influence the spatial sharpnesS, causing an over-sharpening in

combination with SSE.

From informal experiments, we found that visible artifacts

that result from combining MCIF with SSE or MC-FRC

are highly implementation specific and, therefore, need to be

addressed on a case-by-case basis.

V. CONCLUSIONS

For video and film content, motion blur can only be reduced

on high frame rate LCD-TVs by reducing camera blur. The

blur characteristics of camera blur are described by the TAW

which needs to be estimated from the TV-signal. MCIF is

required for camera blur reduction. A camera blur estimation

method, two filter design strategies and a system evaluation

have been implemented. The TF method was found to perform

best in recreating details, while the LTI method was found

to be most robust to noise. To implement MCIF for TV

applications, the combination with SSE and MC-FRC need

to be considered to optimize picture quality and required

computational resources.
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