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Abstract

We consider a generalized memoryless property which relates to Cantor’s second
functional equation, study its properties and demonstrate various examples.

Keywords: Generalized memoryless property, Markov kernel, Cantor’s second func-
tional equation.
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1 Introduction and setup

Let R denote the set of real numbers and B be it’s Borel sets. Consider a Markov kernel
P (x,A) where for each x ∈ R, P (x, ·) is a probability measure on (R,B). We say that the
generalized memoryless property is satisfied if the following is satisfied for each nonnegative
x, y and real z:

P (z, (x+ y,∞)) = P (z, (x,∞))P (z + x, (y,∞)) (1)

We note that if P (x, ·) = P (·), that is, the Markov kernel is independent of the originating
state, this is precisely the memoryless property of which the only solution is of the form
P ((x,∞)) = ρx for some 0 ≤ ρ ≤ 1. That is, a random variable that has such a distribution
is either almost surely (a.s.) zero, or a.s. infinite or has an exponential distribution.

To motivate the property given by (1) assume that in addition P (·, A) is a Borel function
for each A ∈ B and let Ta (age) and Tr (remaining life) be a pair of random variables, where
Ta has an arbitrary distribution and P(Tr ∈ A|Ta) = P (Ta, A). That is, one interprets
P(Tr ∈ A|Ta = z) = P (z,A). Then (1) becomes

P(Tr > x+ y|Ta = z) = P(Tr > x|Ta = z)P(Tr > y|Ta = z + x) . (2)
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In other words, in order for the a component having age z to function at time x + y, it
first has to function at time x. Then, independent of everything else, its age is modified
to z + x and, given that its age is now z + x, it has to function at time y. This model
relates to Model II of [7]. In fact, given the condition that P (0, (x,∞)) > 0 for each x ≥ 0
this results in exactly the same model, even though we write it in more primitive terms.
To see this, denote 1− F (x) = P (0, (x,∞)) and observe that with z = 0, (2) becomes

1− F (x+ y) = (1− F (x))P(Tr > y|Ta = x), (3)

so that indeed

P(Tr > y|Ta = x) =
1− F (x+ y)

1− F (x)
, (4)

which is equation (1) of [7] with the roles of x and y reversed. However, if we only
assume that P (z, (x,∞)) > 0 for all 0 < z ≤ x then we will see that it is possible that
P(Tr > y|Ta = x) = s(x+ y)/s(x) for some nonincreasing function s for which s(x)→∞
as x ↓ 0. We will also see that other possibilities may occur as well. We also mention that
for the case where P (z, (x,∞)) > 0 a more general model was considered in [9]. However,
in this paper the authors suffice in pointing out some examples of this property but do not
characterize the general form. In this generality, a characterization might not be possible.

To continue, for real x and y ≥ x we denote µ(x, y) = P (x, (y − x,∞)) and observe
that (1) becomes

µ(z, y) = µ(z, x)µ(x, y) (5)

for each z ≤ x ≤ y. If this was valid for all x, y, z then (5) is called Cantor’s second
functional equation. We note that in the latter case, if µ(z, y) 6= 0 for some z, y then
µ(z, x) 6= 0 and µ(x, y) 6= 0 for all x. Since µ(x, y) = µ(x, u)µ(u, y) then µ(x, u) 6= 0
for all x, u and in particular if we denote s(x) = µ(z, x) then for any x, y we have that
µ(x, y) = s(y)/s(x). Thus, as is well known (e.g., see [1]), the only solutions of Cantor’s
second functional equation are either µ(x, y) = 0 for all x, y or µ(x, y) = s(y)/s(x) for some
function s(·) that never vanishes. In the second case it is clear that for all x, µ(x, x) = 1
and that for any nonvanishing function s(·), s(y)/s(x) obeys Cantor’s second functional
equation.

When we assume that (5) is satisfied only if z ≤ x ≤ y, the solution requires a bit more
care.

2 Main observations

In order to consider the most general setup, let us assume until further notice that

µ : {(x, y)| x ≤ y} → R (6)

(note: R rather than just [0, 1]) and that (5) is satisfied for z ≤ x ≤ y. Denote

b(z) =

{
z if µ(z, x) = 0 ∀x > z
sup{x|µ(z, x) 6= 0, x > z} otherwise

(7)
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and

a(z) =

{
z if µ(x, z) = 0 ∀x < z
inf{x|µ(x, z) 6= 0, x < z} otherwise.

(8)

Now, when a(z) < b(z) we denote

I(z) =


(a(z), b(z)) if µ(a(z), z) = 0 = µ(z, b(z))
(a(z), b(z)] if µ(a(z), z) = 0 6= µ(z, b(z))
[a(z), b(z)) if µ(a(z), z) 6= 0 = µ(z, b(z))
[a(z), b(z)] if µ(a(z), z) 6= 0 6= µ(z, b(z))

(9)

and when a(z) = b(z) = z we let I(z) = {z}, noting that from µ(z, z) = µ(z, z)µ(z, z)
necessarily µ(z, z) ∈ {0, 1}. Moreover, since

µ(u, v) = µ(u, v)µ(v, v) = µ(u, u)µ(u, v) (10)

for u ≤ v, it is easy to check that if I(z) is not a singleton, then necessarily µ(z, z) = 1.
Consider now the following.

Lemma 1. Let µ : {(x, y)| x ≤ y} → R satisfy (5) for all z ≤ x ≤ y. Then for x < y,
µ(x, y) 6= 0 if and only if I(x) = I(y) and for every u, v ∈ I(x) with u ≤ v we have that
µ(u, v) 6= 0.

Proof. For v ≥ y we have that µ(x, v) = µ(x, y)µ(y, v), so that µ(x, v) 6= 0 if and only
if µ(y, v) 6= 0. For u ≤ x we have by similar reasoning that µ(u, x) 6= 0 if and only if
µ(u, y) 6= 0. For w ∈ (x, y) we have that µ(x, y) = µ(x,w)µ(w, y) and thus µ(x,w) 6= 0
and µ(w, y) 6= 0. This implies that I(x) = I(y). Now, for every u ∈ I(x) we have that
I(u) = I(x) and thus for any v ≥ u with v ∈ I(x) it follows that v ∈ I(u) which implies
that µ(u, v) 6= 0. �

Theorem 1. Under the conditions of Lemma 1 there exists a family {Iθ| θ ∈ Θ} of nec-
essarily at most countably many disjoint intervals (open, half open or closed) and possibly
uncountably many singletons with ∪θ∈ΘIθ = R such that for each θ for which Iθ is not a
singleton there exists a function sθ : Iθ → R which is nonvanishing such that for every
x, y ∈ Iθ with x ≤ y we have that µ(x, y) = sθ(y)/sθ(x).

Proof. For an arbitrary z ∈ Iθ define

sθ(x) =

{
µ(z, x) if z ≤ x ∈ Iθ
1/µ(x, z) if z ≥ x ∈ Iθ .

(11)

Then, if z ≤ x ≤ y and x, y ∈ Iθ then

sθ(y) = µ(z, y) = µ(z, x)µ(x, y) = sθ(x)µ(x, y) . (12)

If x ≤ y ≤ z and x, y ∈ Iθ then

1

sθ(x)
= µ(x, z) = µ(x, y)µ(y, z) = µ(x, y)

1

sθ(y)
. (13)
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Finally, when x ≤ z ≤ y with x, y ∈ Iθ then

µ(x, y) = µ(x, z)µ(z, y) =
1

sθ(x)
sθ(y) . (14)

�
In particular we observe that if µ(x, y) 6= 0 for all x ≤ y then I(x) = R and for some

nonvanishing function s : R→ R we have that µ(x, y) = s(y)/s(x) for all x ≤ y. It seems
as if this is the same solution of Cantor’s second functional equation until we recall that
µ(x, y) is undefined for x > y.

Returning to the generalized memoryless property of (1) we recall that µ(x, y) =
P (x, (y − x,∞)) and thus, for y ≥ 0, P (x, y) = µ(x, x + y). Hence we conclude the
following.

Theorem 2. Assume that (1) is satisfied. Then there exists a family {Iθ| θ ∈ Θ} of
disjoint intervals and singletons with ∪θ∈ΘIθ = R such that for each θ for which Iθ is not a
singleton there exists a nonincreasing right continuous strictly positive function sθ : Iθ → R
such that for every x ∈ Iθ and y ≥ 0 with x+ y ∈ Iθ we have that

P (x, (y,∞)) =
sθ(x+ y)

sθ(x)
.

Remark 1. We note that the same result holds, only with sθ being left continuous, for
P (x, [y,∞)) (left closed interval) if we replace (1) by the left closed version

P (z, [x+ y,∞)) = P (z, [x,∞))P (z + x, [y,∞)) (15)

which, by taking y ↓ u, where u ≥ x, is also equivalent to

P (z, (x+ u,∞)) = P (z, [x,∞))P (z + x, (u,∞)) (16)

whenever x, y ≥ 0.

Remark 2. For the case µ(x, y) = P (x, (y − x,∞)) clearly µ(x, y) ∈ [0, 1] for all x ≤ y.
Therefore, from µ(z, y) = µ(z, x)µ(x, y) ≤ µ(x, y) for z ≤ x ≤ y it follows that µ(·, y) is a
nondecreasing function on (−∞, y]. Similarly µ(x, ·) is nonincreasing on [x,∞).

Remark 3. It is easy to check that these results remain unchanged if the domain of µ is
0 ≤ x ≤ y rather than x ≤ y or x ≤ y ≤ ∞ or any other combination like this. Basically,
whenever we have (5) for z ≤ x ≤ y these results apply.

Remark 4. When P (x, (y,∞)) > 0 for every x and every y ≥ 0, then there is some neces-
sarily nonincreasing and right continuous function s : R→ (0,∞) for which µ(x, (y,∞)) =
s(x + y)/s(x) for all x and y ≥ 0. Moreover the function s is uniquely determined up to
a constant multiple. We note that unlike in [7], it is possible that for some θ, Iθ = (0,∞)
and sθ(x) → ∞ as x ↓ 0. If [0,∞) ⊂ Iθ for some θ then one has the model considered in
[7].
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Remark 5. It is also evident that the same structure holds when one reverses (1) to

P (z, (−∞, x+ y)) = P (z, (−∞, x))P (z + x, (−∞, y)) (17)

or to
P (z, (−∞, x+ y]) = P (z, (−∞, x]))P (z + x, (−∞, y]) (18)

for all x, y ≤ 0. In particular when P (z, (−∞, 0)) = 0 and −z ≤ x, y ≤ 0. We will
use this in the next section when modeling a certain growth collapse (additive increase
multiplicative decrease) process with state dependent decrease ratios.

Consider now a possibly infinite interval Iθ which is not a singleton and its correspond-
ing positive valued function sθ. Then for each z ∈ Iθ and x ≥ 0 such that z + x ∈ Iθ we
have that P (z, (x,∞)) = sθ(z + x)/sθ(z). If x + z 6∈ Iθ then P (z, (x,∞)) = 0 so that we
may define sθ(y) = 0 for any y 6∈ Iθ which is on the right of Iθ (if any) where necessarily
sθ must be right continuous at z∗(θ) = sup{z| z ∈ Iθ}. Now, for z ∈ Iθ and 0 < u < 1
denote

tzθ(u) = inf

{
x| 1− sθ(z + x)

sθ(z)
≥ 1− u, x ≥ 0

}
= −z + inf {x| sθ(x) ≤ sθ(z)u, x ≥ z} (19)

= −z + inf {x| sθ(x) ≤ sθ(z)u}

Where the last equatlity follows since sθ(x) < sθ(z)u for every x ≤ z. It is standard that
if U ∼ Uniform(0, 1) then tzθ(1−U) and thus tzθ(U) have the distribution P (z, ·). Thus, if
we denote tθ(v) = inf{x| sθ(x) ≤ v} for v > inf{z| z ∈ Iθ} then for every z ∈ Iθ we have
that tθ(sθ(z)U)− z has the distribution P (z, ·). Recalling Ta and Tr from Section 1, this
implies the following.

Theorem 3. Assuming that Ta and U ∼ Uniform(0, 1) are independent, then (Ta, Tr)1{Ta∈Iθ}
and (Ta, tθ(sθ(Ta)U)− Ta)1{Ta∈Iθ} are identically distributed.

Clearly, when Θ is countable then the immediate conclusion is that

(Ta, Tr) ∼
(
Ta,
∑
θ

(tθ(sθ(Ta)U)− Ta)1{Ta∈Iθ}
)
. (20)

It is interesting to check when for a given θ for which Iθ is not a singleton the value of
tθ(sθ(z)u) − z is independent of z. That is, it is only a function of u. The answer is not
surprising.

Theorem 4. When Iθ is not a singleton then tθ(sθ(z)u) − z is independent of z ∈ Iθ if
and only if for some 0 ≤ λθ <∞ and 0 < cθ <∞, sθ(z) = cθe

−λθz for z ∈ Iθ.

Proof. Let f(u) = tθ(sθ(z)u)− z (independent of z) for every z ∈ Iθ and 0 < u < 1. Note
that since the right side is left continuous in u, then so is f (as a function defined on
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(0, 1)). In particular f is Borel. Denoting X = f(U) we have that for every z ∈ Iθ and
every x, y ≥ 0, with z + x+ y ∈ Iθ,

P(X > x+ y) =
sθ(z + x+ y)

sθ(z)

=
sθ(z + x)

sθ(z)
· sθ(z + x+ y)

sθ(z + x)

= P(X > x)P(X > y)

The equation g(x + y) = g(x)g(y) for x, y ≥ 0 under minor regularity conditions on g
implies that g is either identically zero, identically one or exponential. Monotonicity, right
or left continuity or even Lebesgue measurability are sufficient conditions. The standard
proof can be easily modified to the case where g is defined on and the equation is valid
only when x, y, x + y are in [0, a) or [0, a] for some 0 < a < ∞, resulting in g being
identically zero, identically one or exponential on [0, a) or [0, a]. When we know that g is
strictly positive and bounded above by one on [0, a) or [0, a], then zero is not an option
and thus g(x) = e−λx for some 0 ≤ λ < ∞. Thus, for every z ∈ Iθ and x ≥ 0 such that
w = z + x ∈ θ we have that for some 0 ≤ λθ <∞

sθ(z + x)

sθ(z)
= e−λθx =

e−λθ(z+x)

e−λθz
(21)

which implies that for every z, w ∈ Iθ

sθ(w)eλθw = sθ(z)e
λθz ≡ cθ , (22)

as required. �

3 Maximum at a random time of a continuous time Markov
process with no positive jumps

Consider a continuous time right continuous Markov process {X(t)}t≥0 with convex state
space X ⊂ R, having no positive jumps and with generator A. As is customary, we denote
Px and Ex the distribution measure and the expected value when the process is initiated
at x ∈ X. Assuming its existence, let f be strictly positive and nondecreasing function in
the extended domain, which is bounded on (−∞, x] ∩ X for any x ∈ R and for which

M(t) = f(X(t)) exp
(
−
∫ t

0

Af(X(s))

f(X(s))
ds
)

(23)

is a martingale with respect to the right continuous augmented filtration {Ft| t ≥ 0}
generated by X. A sufficient condition for the latter is that f is bounded away from zero
on X (e.g. [4], p.175). Furthermore we assume that Af(x) is nonnegative for all x ∈ X.
Now, denote τ(y) = inf{t| X(t) > y} (infinite if X never exceeds y). Then τ(y) is right
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continuous in y and it is easy to check that sup0≤s≤tX(s) ≤ y if and only if τ(y) ≥ t. With
a∧ b = min(a, b) it is well known that M(τ(y)∧ t) is also a martingale and moreover, our
assumptions assure that it is also bounded. Finally, denoting λ(x) = Af(x)/f(x), then
by the bounded convergence theorem we have that for y ≥ x such that y ∈ X, if either
τ(y) <∞ Px-a.s. (almost surely) or

∫∞
0 λ(X(s))ds =∞ on {τ(y) =∞} then

f(x) = ExM(0) = ExM(τ(y)) = f(y)Exe−
∫ τ(y)
0 λ(X(s))ds . (24)

In particular this means that it is impossible to find a positive f in the extended domain

of A such that Af ≥ 0 and
∫ τ(y)

0 λ(X(s))ds =∞ Px-a.s. for some x.
Now, if we denote s(x) = 1/f(x), we have that

Exe−
∫ τ(y)
0 λ(X(s))ds =

s(y)

s(x)
(25)

for every y for which τ(y) < ∞ Px-a.s. If Z is a random variable (possibly infinite) such

that Px (Z > t|Ft) = e−
∫ t
0 λ(X(s))ds, then in fact

Exe−
∫ τ(y)
0 λ(X(s))ds = Px (Z > τ(y)) = Px

(
max

0≤t≤Z
X(t) > y

)
. (26)

Thus, we have that

Px

[
max

0≤t≤Z
X(t) > y

]
=
s(y)

s(x)
(27)

for x ≤ y. If one assumes that U is an independent Uniform(0, 1) random variable (if
there isn’t then it is easy to artificially modify our probability space so that there is),
then taking FUt = Ft ∨ σ(U), we see that M is a martingale also with respect to this new

filtration. Thus, if we let F (X, t) = 1 − e−
∫ t
0 λ(X(s))ds and G(X,u) = inf{t| F (X, t) ≥ u}

then Z = G(X,U) has the correct conditional distribution.

3.1 Lévy processes

Sometimes, for various values of α, we may be lucky to find a function f satisfying the
above conditions and for which λ(x) = α. In this case we immediately obtain the Laplace
transform

Exe−ατ(y) =
s(y)

s(x)
. (28)

For a Lévy process with no positive jumps (in particular a Brownian motion) and

ϕ(α) = logE0e
αX(1) = cα+

σ2

2
α2 +

∫
(−∞,0)

(
eαy − 1− αy1(−1,0)(y)

)
ν(dy) (29)

then the equation that needs to be solved is the following

cf ′(x) +
σ2

2
f ′′(x) +

∫
(−∞,0)

(
f(x+ y)− f(x)− yf ′(x)1(−1,0)(y)

)
ν(dy) = αf(x) . (30)
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Fortunately, when X is not nonincreasing (the negative of a subordinator or the zero
function), then ϕ has an inverse on [β,∞) when β = inf{α| ϕ(α) > 0, α > 0}. It is well
known that β = 0 if ϕ′(0) ≥ 0 and β > 0 otherwise. In this case, for every x ≤ y, τ(y) is
Px-a.s. finite and f(x) = eϕ

−1(α)x for α ≥ β satisfies all the needed requirements and in
particular solves (30). So, as is well known,

Exe−ατ(y) = Exe−ατ(y)
1{τ(y)<∞} =

s(y)

s(x)
=
f(x)

f(y)
= e−ϕ

−1(α)(y−x), (31)

even if τ(y) is not Px-a.s. finite (that is, when ϕ′(0) < 0). In this particular case Z ∼
exp(α) (independent of X) and it follows as is also well known that

max
0≤t≤Z

X(t)−X(0) ∼ exp(ϕ−1(α)),

so that this random variable obeys the standard (not-generalized) memoryless property.

3.2 Reflected Brownian motion

For the reflected Brownian motion on X = [0,∞) with general drift, the generator is the
same as the one for Brownian motion, only that its domain is reduced to twice differentiable
functions for which f ′(0) = 0. In this case one needs to compute µf ′(x)+ σ2

2 f
′′(x) = αf(x)

subject to f ′(0) = 0 for α > 0. It is easy to check that any positive constant multiple of
the function

f(x) =
ea

+x

a+
+
e−a

−x

a−
(32)

where a± =

√
µ2+2σ2α ± µ

σ2 , would do the trick. In particular it is positive and increasing
due to 0 < a− < a+. In this case it is well known that τ(y) < ∞ Px-a.s. for any y > x
regardless of the value of µ, but it can also be inferred from this without resorting to
anything else, by letting α → 0. Of course, this particular result is quite standard (e.g.,
problem 4 on p. 95 of [5]).

More generally of course, given a positive function λ if it is possible to find some f
satisfying our assumptions for which Af(x) = λ(x)f(x) for each x ∈ X, then if either
y > x is such that τ(y) is Px-a.s. finite or λ is bounded away from zero, then (27) is
satisfied.

3.3 A growth collapse process with generalized memoryless jumps

In this section we consider a piecewise deterministic Markov process Xt with jumps that
are governed by a jump measure with the generalized lack of memory property described
above. See [2] and [8] for similar models.

Let {X(t)}t≥0 be a Markov process on X = [0,∞) which is deterministically increasing
with rate r(x) between randomly occurring downward jumps. More specifically, we assume
that inbetween jumps dXt = r(Xt) dt, that r(x) is positive and Lipschitz-continuous and
that the time t∗(x, y) =

∫ y
x 1/r(u) du that is needed to reach the level y from x in the

absence of any jumps is finite for all x < y ∈ [0,∞). Let κ : X → [0,∞) denote the
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state-dependent jump rate, i.e. if the process is in the state x ∈ X, then a jump occurs
during the next ∆t time units with probability κ(x)∆t + o(∆t) (and the probability to
see more than one jump is o(∆t)). We assume κ to be bounded. Given that there is a
jump at time t, the process jumps from state x ∈ X into some measurable A ⊂ [0, x)
with probability ν(x,A). We assume that for 0 ≤ y ≤ x ≤ z the kernel ν has the special
property that

ν(z, y) = ν(z, x)ν(x, y) (33)

holds (compare with (5)). Here we write ν(x, y) for ν(x, [0, y]). It is then easy to see
that a similar situation as in Section 1 is present (let P (z,A) = ν(−z,−A) for z ≤ 0 and
A ⊆ (x, 0]). It follows that there exists a family {Iθ| θ ∈ Θ} of disjoint intervals and
singletons with ∪θ∈ΘIθ = [0,∞) such that for each θ for which Iθ is not a singleton there
exists a function sθ : Iθ → R which is nonvanishing such that for every x, y ∈ Iθ with
x ≤ y we have that

ν(x, y) =
sθ(y)

sθ(x)
.

Note that sθ(y) : Iθ → [0,∞) is nondecreasing and is not necessarily bounded. The
infinitesimal generator of the Markov process Xt is given by

Af(x) = r(x)f ′(x) + κ(x)

∫ x

0

(
f(y)− f(x)

)
ν(x, dy). (34)

We assume that the domain DA of A consists of functions f that are absolutely continuous
and for which the expectation of

∑
0<Ti≤t |f(XTi−)−f(XTi)| is finite for every t ≥ 0, where

Ti denotes the ith jump time (see [3]).
The following Lemma generalizes formula (28) in [8].

Lemma 2. Suppose that r(x), κ(x), λ(x) and sθ(x) are differentiable for x ∈ Iθ. Define
the functions a(x) = r′(x) + r(x)ξ(x) − λ(x) − κ(x) and b(x) = λ′(x) + λ(x)ξ(x), where

ξ(x) =
s′θ(x)

sθ(x) −
κ′(x)
κ(x) if κ(x) 6= 0 and ξ(x) = 0 otherwise. Any twice differentiable solution

f with f ′(x)sθ(x) being continuous of

r(x)f ′′(x) + a(x)f ′(x)− b(x)f(x) = 0, (35)

fulfils Af(x) = λ(x)f(x).

Proof. The process Xt, if started in the state x ∈ Iθ will leave Iθ only at the moment
when it passes through the upper boundary z∗(θ) and ν(x, y) = 0 for y < z∗(θ). If x ∈ Iθ
we may hence write

Af(x) = r(x)f ′(x) +
κ(x)

sθ(x)

∫ x

z∗(θ)

∫ y

x
f ′(u) du sθ(dy), x ∈ Iθ.

Applying Fubini’s theorem we can write this as

Af(x) = r(x)f ′(x)− κ(x)

sθ(x)

∫ x

z∗(θ)
f ′(u)sθ(u) du, x ∈ Iθ. (36)
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Then Af(x) = λ(x)f(x) is equivalent to

κ(x)

∫ x

z∗(θ)
f ′(u)sθ(u) du = sθ(x)

(
r(x)f ′(x)− λ(x)f(x)

)
. (37)

Differentiation yields

κ′(x)

sθ(x)

∫ x

z∗(θ)
f ′(u)sθ(u) du = r(x)f ′′(x) + (r′(x) + r(x)

s′θ(x)

sθ(x)

− λ(x)− κ(x))f ′(x)− (λ′(x) + λ(x)
s′θ(x)

sθ(x)
)f(x).

If κ(x) 6= 0 then we divide (37) by κ(x) and obtain (35) with ξ(x) =
s′θ(x)

sθ(x) −
κ′(x)
κ(x) . If

κ(x) = 0 then it follows from (37) that

r(x)f ′′(x) + (r′(x)− λ(x))f ′(x)− λ′(x)f(x) = 0,

which is (35) with ξ(x) = 0. �
As is described earlier in the section via (27), the probability that the maximum pro-

cess max0≤t≤Z X(t) exceeds y, given X(0) = x, satisfies the generalized lack of memory
property when Z is defined right before (26). More precisely,

Corollary 1. Fix a θ ∈ Θ and suppose that f ∈ DA is bounded away from zero (or is
such that M(t) in (23) is a martingale) and solves equation (35) in Iθ. Then

Px

[
max

0≤t≤Z
X(t) > y

]
=
f(x)

f(y)
,

for all x, y ∈ Iθ with x ≤ y, where Z be a random variable, such that Px (Z > t|Ft) =

e−
∫ t
0 λ(X(s))ds.

In general (35) is not easy to solve and closed form solutions may be obtained only in
certain cases. We provide two examples, where the coefficients a(x) and b(x) are such that
a solution can be given.

Example 1. Equation (35) reduces to a differential equation with contant coefficients if

r′(x)

r(x)
+
s′θ(x)

sθ(x)
− κ′(x)

κ(x)
− λ(x) + κ(x)

r(x)
≡ C

and
λ(x)

r(x)

(λ′(x)

λ(x)
+
s′θ(x)

sθ(x)
− κ′(x)

κ(x)

)
≡ D.

For example suppose that λ(x) = c1e
αx, κ(x) = c2e

αx, r(x) = c3e
αx, sθ(x) = c4e

βx, with
c1, c2, c3, c4, β ≥ 0 and α ∈ R. Then (35) reads

f ′′(x) +
(
β − c1 + c2

c3

)
f ′(x)− c1β

c3
f(x) = 0,
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which is solved by f(x) = Aea
−x +Bea

+x, where

a± =
1

2

(
β − c1 + c2

c3
±
√(

β − c1 + c2

c3

)2
+ 4

c1β

c3

)
.

If we set f(z∗(θ)) = 1 (w.l.o.g.), then f ′(z∗(θ)) = λ(z∗(θ))/r(z∗(θ)) = c1/c3. This leads to
the final solution

f(x) =
a+ − c1

c3

a+ − a−
ea
−(x−z∗(θ)) +

c1
c3
− a−

a+ − a−
ea

+(x−z∗(θ)).

Example 2. This example is a generalization of Example (A), Section 4.1 in [8]. Sup-
pose that the jump measure ν(x, y) = sθ(y)/sθ(x) is defined such that for some α > 0
sθ(x)λ(x) = ακ(x). Then ξ(x) = −λ′(x)/λ(x) and as a consequence the second coefficient
b(x) is zero (while a(x) = r′(x)− r(x)λ′(x)/λ(x)− λ(x)− κ(x)). Hence (35) becomes

r(x)f ′′(x) + a(x)f ′(x) = 0, (38)

which is solved by

f(x) = f(z∗(θ)) + f ′(z∗(θ))
r(z∗(θ))

λ(z∗(θ))

∫ x

z∗(θ)

λ(u)

r(u)
e
∫ u
z∗(θ)

λ(w)+κ(w)
r(w)

dw
du.

Note that since Af(x) = λ(x)f(x) it follows that λ(z∗(θ))f(z∗(θ)) = r(z∗(θ))f
′(z∗(θ)) and

hence, choosing w.l.o.g. f(z∗(θ)) = 1, we obtain the solution

f(x) = 1 +

∫ x

z∗(θ)

λ(u)

r(u)
e
∫ u
z∗(θ)

λ(w)+κ(w)
r(w)

dw
du.
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