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Applied Mathematics, the Hans van Duijn way

Mark A. Peletier

April 25, 2012

Abstract

This is a former PhD student’s take on his teacher’s scientific philosophy. I describe a
set of ‘principles’ that I believe are conducive to good applied mathematics, and that I have
learnt myself from observing Hans van Duijn in action.

1 Introduction

Among scientists there circulates an apocryphal list of six ‘principles of good science’, supposedly
formulated by Clifford Truesdell. My copy is a bad photocopy of a bad photocopy of this list.
It is entitled ‘How the Bernoullis worked’, and, despite its obscure provenance, gives some very
sound advice: ‘Always attack a specific problem. Try to solve it in a way that leads to a general
method’, for instance, and ‘Let a key problem solved be father to a key problem posed’.

This list appears inspired by the belief that there are ‘good’ and ‘bad’ ways of doing science.
Over the years I have come to agree. I also claim that similarly there are good and bad ways of
doing applied mathematics, and that the peculiarities of applied mathematics warrant a special
treatment.

The list below is strongly inspired by my experience of working with Hans van Duijn, and in
this volume dedicated to Hans’ work I am perfectly confident giving it the title ‘How Hans works’.
The list is wholly my own doing, however, and Hans should not be blamed for any (undoubtably
many) faults. In fact, the occasions on which he and I discussed such philosophical issues were
few and far between. This list is my analysis of Hans’ actions, rather than his words—a written
version of ‘leading by example’.

How Hans works

1. Find a math-friendly applier

2. Get to understand the applied problem completely

3. In the applied mess, find a beautiful math problem

4. Solve it, preferably with the appliers

5. Interpret it, with the appliers

6. Repeat and enjoy!

In the rest of this paper I will illustrate these ‘rules’ by describing some scientific developments
that I have been part of.
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Figure 1: An outcrop at Millook Haven in Cornwall, UK. The lighter layers are sandstone,
the darker ones shale (clay). At the bottom of the picture there is a young version of myself.

2 Mathematical Geology

The topic is what one might call ‘Mathematical Geology’. Central questions are for instance

• Forward problems: how do rocks deform? How is this deformation influenced by material
properties and loading conditions?

• Inverse problems: from observations of current rocks, what can we infer about the deforma-
tion history?

The inverse problem has of course significant commercial interest, although our mathematical
work never seemed to get close to those interests.

The geological structures that we study were mostly created by sedimentation, which creates
parallel layers of rock whose thickness and composition vary from one layer to the next but are
remarkably constant along each layer (see Fig. 2). By the time we see these layers, as in Fig. 1,
they have gone through a long series of deformations: submersion to large depth, conversion of the
sediment into rock, folding under various forces, possibly in many stages, and possibly combined
with various chemical modification processes as well. The whole deformation history can be very
complex, and we tend to focus on just one part: the folding of the layers.

Much of what I know about mechanics and rock folding I have learnt from other scientists,
which brings me to Rule #1: Find a math-friendly applier. The importance of this rule can not
be overemphasized. There have been many such applied collaborators over the years, but here I
want to illustrate this principle with two of these: Giles Hunt and John Cosgrove.
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Figure 2: Sandstone and shale, similar to Fig. 1. Here the sandstone has rusted and become
brown. The scale from top to bottom is about two meters. This photograph was taken to
highlight the unusual deviation from straight, parallel layers: exactly in the middle of the
picture a sandstone layer has a thinner section, formed by a small channel of moving water
eroding a layer of sand just after deposition.

Giles Hunt John Cosgrove

Giles Hunt is a retired mechanical engineer at the University of Bath, and I was fortunate
enough to spend a postdoc period in his department. John Cosgrove is a geologist at Imperial
College in London whom I met at various occasions, and who brought the rocks to life for us on
a field trip in the spring of 2011.

What makes both Giles and John such great collaborators for a mathematician is a combination
of three things. First: an untiring willingness to explain how they think about ‘their’ problems.
Anyone who has ever worked outside of their field of expertise will appreciate the importance of
this. Secondly, the ability to think abstractly, to seek general principles that govern the specific
case at hand. Finally, the belief that mathematics, and more generally reductionism, might help
them understand their problems better. Oh, and of course enthusiasm always helps.

To give an example, I spent many hours with Giles experimenting with toy models of mechanical
systems, which were contraptions of links, hinges, and springs—meccano on paper. Giles is a
master in using such highly simplified mechanical models to zoom in on a very specific feature
while preserving mechanical feasibility. All the models we built on paper could, in theory, be built
in a lab. Some actually were.

This brings me to Rule #2: Get to understand the problem completely. In the case of mathe-
matical geology, there is no substitute to a field trip with a guide like John Cosgrove. Over the
course of a couple of days we saw many different types of rocks with very varying deformation

3



histories, and it was John’s expert insight that made them accessible to us. Figure 3 shows some
of the activities during the trip.

In a similar way, an earlier field trip, in 1998, had pointed us towards the first of a number of
mathematical questions:

Math question #1: Why straight limbs and sharp hinges?

Why this is interesting requires a bit of background. Rocks are fairly rigid at human time scales,
but over geological time scales they can deform significantly, as the deformed rocks around the
world show. Whether rock deforms elastically or viscously on geological time scales is still unclear,
to large extent due to the difficulty to performing experiments at those time scales. But both elastic
and viscous behaviour have a preference for smooth deformation that is spread out, not localized.
The deformation in Fig. 1 however is highly localized: long stretches of undeformed rock are
bounded by very sharp corners. Why is this?

2.1 The first mathematical problem

Math question #1 is a very intriguing one, and one of the first to come out of our interest in
geology (see Rule #3: In the applied mess, find a beautiful math problem). It is also a tough one,
and not yet completely resolved.

After that first field trip we did give an answer of sorts. Not so much a mathematical answer,
but more a pictorial one. By simply fitting together curved layers of different geometry (Fig. 4)
we ‘showed’ that the straight-limb-sharp-corner geometry fits together better, leaving less voids
between the layers. Since the layers deform under high pressure, voids carry a high energy penalty.
This penalty pushes the material away from its preference for smooth deformation towards the
sharp-hinged geometry.

Later we would come back to this question. In the meantime Bruce Hobbs, another geologist,
had suggested that we do some experiments in the lab, using paper as a substitute for layered
rocks. Figure 5 shows an example of this.

The setup of the experiment is as follows. We placed a stack of (relatively common, printer-
type) paper between two confining plates, lined with foam. We then slowly compressed the layers
in the direction of the layering. As as result, the stack of paper buckled into the foam; as the
shortening increased, the foam became stiffer, since it was flanked by rigid plates, and the smooth
initial buckle converted into the final structure in Fig. 5.

This experiment showed us a number of things. First, there is indeed a tendency for the paper
to be straight with sharp corners, and this tendency increases with increasing shortening. Since the
horizontal shortening also causes the foam to compress, the total pressure in the paper increases,
which explains why the sharpness of the corners increases with shortening. It also showed us a
structure that appears often in geology, that of ‘kink bands’ (see Fig. 6).

2.2 Kink bands

This brought us to

Math question #2: How do kink bands form, and why?

More specifically: what determines the geometry of the kink bands, such as the width of the
kink band and its angle with respect to the layers? In the experiment of Fig. 5 the kink bands
appear to arise as a sharpening of the global buckle that formed initially, and the size of the kink
bands therefore is set by the initial buckle. That case is therefore not very interesting. In other
experiments, such as in Fig. 7, the kink band width and angle seem to be independent of the size of
the specimen. This is the case in which we want to understand how this geometry is determined.

Together with Giles Hunt and Ahmer Wadee we created a very simple mathematical model
for kink bands (Rule #4: Solve it, with the appliers). The layers of paper in the kink band are
abstracted into rigid blocks (see Fig. 8), and the paper outside of the kink band is reduced to a
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Figure 3: An impression of a field trip to Cornwall
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Figure 4: A pictorial answer to Math question #1: high overburden pressure implies that
voids between the layers are penalized, leading to straight limbs with sharp corners. Pub-
lished in a paper with Giles Hunt and Ahmer Wadee [8] (see Rule #4: Solve it, preferably
with the appliers).

Figure 5: Horizontal compression of layers of paper, vertically confined by two layers of
foam. The top four figures show the compression increasing from left to right; the bottom
picture is the final structure. One layer in twenty-five has been coloured black. These
experiments were done with Giles Hunt and Ahmer Wadee at the University of Bath.
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Figure 6: The left-hand figure shows John Cosgrove’s schematic of ‘conjugate kink bands’,
and the right-hand figure an example of such structures in Bude.

Figure 7: An experiment similar to that of Fig. 5, in which the foam is replaced by further
sheets of paper, creating a much stiffer confinement. As a result the kink bands are shorter
and more orthogonal to the layering. Experiment performed by Ahmer Wadee at Imperial
College, London [10].
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Figure 10: Equilibrium solutions on a plot of load p against total end-shortening ∆.

and p in terms of α then leaves the equation

ln(cosαM − µ sinαM)− (1− cosαM )(sinαM + µ cosαM )

sinαM(cosαM − µ sinαM)

=
b

2q
(1− cosαM)2, (10)

from which the particular Maxwell displacement ∆M can be found, where energy levels in
pre-buckled (α = 0) and post-buckled (α = αM) states match. Fig. 11 shows the values of
∆M for two different values of q.
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(a) Vertical stack
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(b) Inclined stack

Figure 11: Maxwell displacements ∆M .

12

Figure 8: Left: The setup of the simple kink band model. Right: Plot load P versus
shortening ∆ for stationary points of the stack, for two values of overburden pressure q.
The two vertical lines correspond to Maxwell displacements (see text). Here µ = 0.57 [8].
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single inline spring. The overburden pressure is represented by a simple lateral pressure q. The
angle β of the kink band is now fixed to the angle α of the layers by an assumption of non-
expansion: the layers are assumed to preserve their thickness throughout deformation, and no
opening between the layers is allowed. An important aspect of the model is friction between the
layers, characterized by the friction coefficient µ, the ratio of the maximal friction force to the
normal force.

Because of the friction, the system has an unusual structure. Many buckling problems have
a finite buckling load, at which the system becomes unstable. In this system however the friction
causes the undeformed state to remain locally stable to arbitrarily high loads. As the load tends
to infinity, the basin of stability shrinks to a point, and therefore the undeformed state becomes
increasingly susceptible to small perturbations. The question becomes how to characterize this
sensitivity to perturbations.

We found a useful characterization in the concept of a Maxwell displacement [7], the smallest
displacement ∆ at which the energy of the undeformed state can be matched by the energy
of a deformed state. The properties of this Maxwell displacement turn out to be favourable:
the prediction of the kink band angle is reasonably accurate, and the prediction is remarkbly
stable with respect to imperfections [9, 8]. However, in this model the width of the kink band is
completely free. In order to fix that, the confinement, represented here by q, has to become stiffer
with increasing compression [10].

2.3 Revisting the sharp corners: voids

We now return to the question of straight limbs and sharp corners. In such a sharp corner
sometimes voids arise; both Figs. 5 and 7 show such voids between the layers. The simple pictorial
argument described above of course does not allow any kind of prediction of the size of these voids,
and therefore Tim Dodwell, a graduate student in Bath with Giles Hunt and Chris Budd, studied
a simplified problem aimed at characterizing the size of voids.

4 Dodwell T. J et al

Figure 3. Setup of single elastic layer forced in rigid hinge.

More commonly intrinsic coordinates are used to describe curvature of layers.
Here we use cartesian coordinates because it proves easier to describe f and w in
terms of one fixed coordinate system, instead of expressing one curve in terms of
the intrinsic coordinates of the other.

(b) Total potential energy function

A variational formulation of the problem is obtained upon writing a total po-
tential energy function V , comprising of work done in bending and voiding, and
against friction.

(i) Bending energy

Work is done in bending from the flat state, using the expression for curvature
in cartesian coordinates.

UB =

� L−∆

0

B

2

w2
xx

(1 + w2
x)3

dx (2.1)

(ii) Work done against overburdern pressure in voiding

Voiding is calculated as the distance between the rigid hinge f and the lower
boundary of the elastic layer w. Labelled D this distance is D = |f−h

√
1 + k2−w|,

where the term h
√

1 + k2 accounts for the thickness of w. Without loss of generality
we can assume f always takes a V shape, additionally we insist layers cannot pass
through each other therefore D = (w−f −h

√
1 + k2)+, where x+ = max(x, 0). For

an overburdern pressure q, the creation of the void has an energy penalty of

UV = q

� L−∆

0

(w − f − h
�

1 + k2)+dx (2.2)

Article submitted to Royal Society

Figure 9: Overburden pressure forces a single layer into a V-shaped obstacle [4].

The setup is shown in Fig. 9: an elastic layer is forced into a V-shaped obstacle by overburden
pressure q and possibly a lateral force P .

When P = 0, this problem can be formulated as a constrained minimization problem, mini-
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mizing the functional

V =
B

2

∫ ∞

−∞

w2
xx

(1 + w2
x)5/2

dx+ q

∫ ∞

−∞
(w − f) dx, where w ≥ f.

Here B is the bending stiffness of the rod, and w : R→ R the vertical displacement; the obstacle is
represented by the requirement w ≥ f . Using ideas from convex function theory and constrained
optimization, Tim proved a number of results:

Theorem 1 ([4]) There exists a constrained global minimizer w, which is unique and convex.
The void set {x : w(x) > f(x)} is an interval, and its length scales as (B/q)1/3.

In addition, Tim derived the stationarity equation, characterized the contact forces, and gave
a mechanical interpretation of the first integral of this equation.

This is a good start, and a marked progress with respect to Fig. 4. The comparison with the
experiment of Fig. 5, however, is not altogether favourable. Indeed, that experiment shows an
intriguing phenomenon: the voids do not happen every layer, but seem to be localized at black
layers, and even at one in three or one in five black layers.

The black layers are part of the experimental setup. In this experiment, we took a separate
stack of paper and coloured the sides black with a felt pen. Then we introduced one of these
coloured-side layers into the remaining stack, one every twenty-five layers of paper.

So the position of the voids suggests that the process of introducing the black layers somehow
caused the voids to happen there rather than somewhere else—perhaps as a consequence of reduced
friction. But this does not explain why the voids happen not at every black layer, but on one in
every five black layers—one in every 125 sheets of paper.

Recently, Tim has been extending this model to cover multiple layers, again forced into a
V-shaped obstacle, that might choose to deform separately (Fig 10, left) or collectively (right).
While it is too early to make strong predictions, there is a back-of-the-envelope calculation that
suggests that for certain parameters layers might indeed choose to deform collectively in a pack of
n layers, with voids between two such packs, with an optimal n that is larger than 1 but smaller
than +∞ [3]. Although that may be the case, other experiments done by Tim show preference
for void formation between each pair of adjacent layers (Fig. 11). Obviously our understanding is
still incomplete.
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Figure 10: In multilayer folding, voids might form between each two layers (left) or between
each two packets of n layers (right).

On a philosophical note, it is interesting to observe that while the paper experiments were set
up to give us insight into rock folding, we are now trying to understand the behaviour of the paper
experiments themselves. Hopefully this will eventually bring us back to the rocks again.
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Figure 11: In this experiment there appears to be a preference for void formation between
each pair of layers. The photograph is highly enlarged, and shows individual layers of paper.
Experiment performed by Tim Dodwell and Andrew Rhead at the University of Bath.

2.4 Future work

At this moment, there is at least one challenge that I would much like to address:

Math question #3: characterize the layers of paper or rock as a material.

What I mean by this is the following. For homogeneous and isotropic elastic, viscous, and visco-
elastic materials there is a well-defined constitutive theory, which provides the essential relation-
ships between deformation and loading of those materials. For materials with some microstructure
that remains within the same class the theory of homogenization provides rigorous derivations of
material properties in the limit of large scale separation (see e.g. [6, 1]). The ‘material’ that we are
considering here, however, is mixed in nature: the layers are elastic, while the interlayer mechanics
introduces friction into the picture. Such a combination has not been studied theoretically (al-
though some related problems have, such as the case of rigid ‘elasticity’ with friction [2]). Other
related problems are those of thin elastic bodies, for which rigorous derivations are available for
a number of different energy regimes [5]. The case of elastic layers with friction remains open,
however.

3 Conclusion

Looking back at the whole experience we can formulate a number of conclusions:

1. Suitable applied collaborators are very special, and very rare. One should cherish them!

2. The interaction with a particular applied problem does not necessarily result in an interesting
mathematical problem right away. The first two results described above were mathematically
uninteresting: the pictorial argument isn’t even mathematical, and the kind-band model in
the form of a stack borders on the trivial, from a mathematical point of view. However, as
time progressed, we were able to move to more interesting mathematical models, such as the
variational model in Section 2.3, as answers to the applied questions.

This phenomenon is quite general, and implies a lesson learnt: finding good mathematical
problems takes time, energy, and perseverance—but the result is worth it.

3. This experience is an example of a collaboration in which both the application side and
the mathematical side took home good and interesting results. I believe that this is often
possible, and I also believe that one should aim for such a collaboration. This will take time
and energy—see above—but it is worth it.

10



In retrospect I realize that during my PhD period in Delft and Amsterdam, Hans had a very
similar collaboration going with a group of petroleum engineers in Delft, notably Hans Bruining,
and a group of subsurface soil engineers, including Sjoerd van de Zee and Pieter Raats. As I re-
marked in the beginning, we never really explicitly discussed how one handles such a collaboration.
But I have been very fortunate to have seen this way of working in action, and my subsequent work
in applied mathematics—in mathematical geology and other areas—have been strongly influenced
by it. For me, Hans has been a wonderful teacher.
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