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Mathematical modelling of a hierarchical framework for
controlling NPD projects under a hard time constraint

A.B. Dragut1, J.W.M. Bertrand2

Abstract

Based on the hierarchical framework introduced in Dragut, Bertrand (2002)
for the control of New Product Development (NPD) projects under a hard time
constraint, we formulate mathematically the project control. The relationships
with the well-known mathematical project models are discussed. The framework
splits the project horizon into a number of review periods. At the start of
each review period the project state is reviewed in order incorporate the new
information about the customer needs, and about the progress the engineers
made in working on design tasks. This leads to the addition/deletion of design
tasks, and to a stochastic solving time of the design tasks.

The paper contributes to the area of mathematical models for the organiza-
tion of work in an NPD, and to the development of management-related control
concepts in the NPD projects, both areas that present research opportunities
according to Brown, Eisenhardt (1995).

Keywords: mathematical modelling, hierarchical control, NPD projects, dy-
namic product definition, planning, engineering.

1 Introduction

In a previous paper (Dragut, Bertrand, 2002) we introduced a hierarchical
framework for the control of New Product Development (NPD) projects un-
der a hard time constraint. The framework splits the project horizon into a
number of review periods. At the start of each review period the state of the
project is reviewed in order incorporate the new information about the customer
needs (from the market), and about the progress the engineers made in working
on design tasks. In response to the new information the framework considers the
process of solving design tasks by the engineers, the allocation of design tasks
to engineers, and the updating of the performance levels of design tasks. The
framework furthermore assumes that decisions are taken in order to maximize
at the deadline the expected market value of the new product. With a proba-
bility greater than a given safety margin, this new product will be delivered at
the deadline, to the market.

The previous paper also gives a list of concepts, variables and relationships
that enable the mathematical modelling of the process of performing the design
tasks, of the dynamics in the design tasks that constitute the project, and of
the relationship between expected marked performance of a product and the
performance levels of the design tasks of the project. These concepts, variables
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and relationships take into account relevant knowledge in published literature
or new product management, product development, system engineering, project
planning and control, production scheduling and human performance manage-
ment.

The current paper is a sequel to the previous paper and presents the math-
ematical modelling of the hierarchical control framework. Section 2 describes
the aggregate decision process of periodically setting the design tasks perfor-
mance levels given the update of the project status in view of the time and
capacity remaining until the project deadline. Section 3 deals with the detailed
planning process consisting of a re-scheduling decision function, its associated
re-scheduling problem, and the allocation of design tasks to the engineers sub-
ject to workload constraints, and a common due date. In section 4 we present
the engineering process that transforms the project state during each review
period, by solving their allocated design tasks.

The aggregate decision process, as well as the detailed planning level al-
location problem are specific for controlling NPD projects under a hard time
constraint, and their formulation it is to the best of our knowledge new. The
entire framework can be used for determining in probabilistic terms the ex-
pected NPD project outcome, as shown in section 5. It is not practical to solve
separately for each review period the problems defined at the hierarchical struc-
ture levels, but the review periods can be easy linked using their approximate
solutions. The paper is concluded in section 6.

The global variables of our NPD project model are:
T : the total number of review periods (review periods are numbered from

0 to T − 1);
M : the total number of engineers;
N : the initial number of design tasks;
N : an upper bound for the maximum number of design tasks during the

whole project;
L : the number of performance levels per design task (levels are numbered

from 0 to L, where 0 means that design task will not be performed any more);
∆ : the total number of customer needs considered;
h : the short time detailed planning horizon, which is a multiple number of

review periods;
c (n) : the cost of performing one activity of the design task n; n = 1, ..., N
µ : the rate of the exponential distribution of an activity solving time.

2 The aggregate decision process

The aggregate decision problem formulation deals with the technological uncer-
tainty, and market requirement variability (Huchzermeier, Loch, 2001; Bhat-
tacharya et al., 1998).

At the beginning of each review period t, (t, t+ 1], the aggregate controller,
decides first whether to continue or not the NPD project. The abandonment
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is the result of either an expected exceeded NPD budget, or of a low product
performance. In case of continuation the controller modifies the design tasks
performance levels in an interactive process aiming at a maximal market payoff
at the deadline. Thus, the targets on design tasks realization for the detailed
planning level are provided, under the constraint of achieving the currently
desired performance levels, at the deadline, with a certain probability. Decisions
on allocating design tasks to resources (engineers) are not considered here.

A directed acyclic graph of design tasks reflects the precedence relations
among design tasks at the beginning of each review period. We construct stages
for our graph, by associating a representation into T independent sets to it: sets
of unordered design tasks (no precedence relations between any two of them)
and all having the same length of the longest path from the start dummy node
to them (in the precedence graph), see Figure 1.

Figure 1.
Empty sets can be added in the T -partition if the controller wants to control

more often than the number of independents sets. The concept of a T - stage
network associates naturally the t-th decision moment with the allocation of the
t-th set of the partition of design tasks.

Input parameters (at the beginning of review period t):
α (t) : the required current safety margin for the probability of completing

the project before the deadline; α (t) ∈ (0, 1)
β (t) : the required current safety margin for the probability of exceeding the

maximal team solving capacity; β (t) ∈ (0, 1)
wδ (t) : the customer need normalized weight δ; ∀ δ = 1, ...,∆;
B (t) : the current remaining NPD project budget;
Rt :=

(
Λ0
t ∪ Λ1

t ∪ ... ∪ ΛT−1
t ,A

(
Λ0
t ∪ Λ1

t ∪ ... ∪ ΛT−1
t

))
: the newly updated

T -partite directed acyclic graph of unfinished design tasks precedence relations;
Λt0t is the current design tasks set to be allocated at t0;

Xi (t− 1) : the set of newly arrived design tasks (during review period t−1)
concurrent with design tasks allocated/to be allocated during the i-th review
period; In Dragut, Bertrand (2002) we assumed for each i = 0, ..., t a general
Markovian review period-dependent arrival process of new design tasks with a
common contribution function and identical performance level structure.

lmin (·, t) : {1, ..N} → {0, ..., L} : the minimal performance design task level
function;

l (·, t) : {1, ..N} → {0, ..., L} : the achieved performance design task level
function;

A (n, t, l) : the number of sequential activities planned for solving the design
task n, at the performance level l, assuming the previous levels already solved.
All activities are assumed to have the solving time exponentially distributed
with the same mean time µ (see for empirical evidence Best, 1995; Reed, 1998),
independent of the engineer which will perform them; ∀ n = 1, ..., N,∀l =
1, ..., L;

Θ (n, t, δ) : the normalized maximal contribution of the design task n in
fulfilling the customer need δ ; Θ (n, t, δ) ∈ (0, 1]; ∀ n = 1, ..., N,∀ δ = 1, ...,∆;

3



Since N is an upper bound, we set to zero all the parameters depending on
an artificial n ≤ N .

Notation (at the beginning of review period t):
N (t− 1) : the random variable giving the design tasks number arrived since

the NPD project beginning until the end of review period t− 1, [t− 1, t);
Sn (t, l) : the solving time of a design taskn, if it is performed at the level l;

n = 1, ..., N . They are independent random variables Erlang-
l∑
i=1

A (n, t, i), with

mean

l∑
i=1

A (n, t, i)

µ
;

C (t, l (·, t) , R) : the completion time of the network of design tasks, R, if
l (·, t) gives the design tasks performance levels;

Sδ (t, l (·, t)) : the normalized S-functions family giving the market payoff ,
function of the distance between the cumulated design tasks contribution per
customer need δ,

∑
n =1,..,N

Θ (n, t, δ) · l(n,t)L , and its ideal value;Sδ (t, l (·, t)) ∈

(0, 1),∀δ = 1, ...,∆.

M

[(
Θ (t, ·, δ)1≤δ≤∆ , l (·, t)

)
1≤n≤N

]
:=

∆∏
δ=1

[
Sδ (t, l (·, t))

]wδ(t) (Yoshimura

1996), or
∆∑
δ=1

wδ (t)

[ ∑
n =1,..,N

Θ (n, t, δ) · l(n,t)L

]
(Askin, Dawson, 2000) : the cu-

mulated market payoff function, where l (·, t) gives the design tasks performance
levels;

Decision function:
l̂ (·, t) : {1, ..., N} → {0, ..., L} : the desired design task performance level

function, at the beginning of review period t

Then, the aggregate planing problem is:

max
l̂(n,t), n∈{1,...,N}

M

[
Θ
(
t, l̂ (·, t) , δ

)
1≤δ≤∆

]
(1)

subject to:

Pr
{
C
(
t, l̂ (·, t) , Rt

)
≤ (T − t)

}
≥ α (t) (2)

Pr


∑

n∈Λ0
t∪Λ1

t∪...∪ΛT−1
t

or
N+E[N(t−1)]+1≤ n≤N+E[N(T−1)], for t>0

Sn

(
t, l̂ (n, t)

)
≤M · (T − t)


≥ β (t)

(3)
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T−1∑
t0=0


∑
n∈Λ

t0
t

or
N+E[N(t0−1)]+1≤ n ≤ N+E[N(t0)], for t0>0

l̂(n,t)∑
i=l(n,t)

A (n, t, i) · c (n)

 ≤ B (t)

(4)
l̂ (n, t) ≥ min (lmin (n, t) , l (n, t)) , n = 1, ..., N (5)

¿From (2) the completion time of the NPD project defined by the design
tasks desired performance must be smaller than the deadline with a probability
at least the current safety margin α (t). The analytical evaluation of a general
directed acyclic graph completion time distribution is a NP -complete problem,
(P 6= NP ), but Colajanni et al. (2000) gives a polynomial time algorithm for
determining an upper bound.

¿From (3) the remaining total workload does not exceed the team remaining
maximal solving capacity with a probability at least the required β (t) margin.
The workload is computed by adding the remaining solving times of the un-
finished design tasks from Rt. This constraint takes into account the average
random arrival of new design tasks. The computation of the time required to
complete both the planned and additional expected design tasks can be done
under the assumption of review period-dependent Poisson arrival processes of
design tasks with a common contribution function and identical performance
level structure.

The constraint (4) gives the condition of abandoning the project in the case
of exceeding the remaining budget. The cost per activity may differ from one
design task to another, refining the previous constraint.

¿From the last inequality the target performance level of a design task should
at least the minimal target or what the engineers already achieved.

This aggregate project planning formulation studies the project risk in terms
of the probability of obtaining a total duration, a total quality, and a total cost,
achieving dynamically the product definition. During the aggregate decision
making the controller has to assign numerical values to α (t), β (t). Those
choices depend on the risk that the controller is willing to take. The adoption
of small values means that more time will be spent on the design tasks already
allocated, since more uncertainty is allowed for the outcome of the NPD project.
Adopting large values means precisely the opposite. A selection with a large
α (t) and a small β (t) means that the controller focuses more on the possibility
of finishing the design tasks situated on most ”stochastic critical paths ”, than
on the capacity issue.

3 The Detailed Planning Process

At the beginning of each review period t, (t, t+ 1], a set of concurrent (planned
or newly arrived to the team of engineers from the review period t− 1)) design
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tasks ,Y (t)
notation

:= Xt (t− 1)∪ Λtt, that can be solved in parallel is allocated to
the team of engineers.

We also have three more other sets of design tasks subject to precedence
constraints inherited from the project network:

- the set of updated design tasks already scheduled in previous review peri-
ods.

- the set of newly arrived design tasks to the team of engineers (from the

review period t − 1), X (t− 1)
notation

:=

( ⋃
i=0,...,t−1

Xi (t− 1)

)
,which are con-

current with previously allocated design tasks.
- the set of design tasks left over after the allocation procedure has taken

place at the detailed planning level for the previous review period t − 1. If at
the beginning of this review period the set Y (t) is empty, they will be regarded
as new design tasks to be allocated to the engineers, and Y (t) will updated
to contain them. The same happens with newly arrived design tasks that are
concurrent with them. If the set Y (t) is not empty, they will be included in the
set X (t− 1), and will be subject first to scheduling, and then to workload and
common due date constraints.

At the detailed planning level, first a re-scheduling decision is taken for some
of the design tasks assigned to the engineers in previous review periods, in case
of infeasibility problems. Second, the (re-)scheduling takes place for the team
of engineers. The design sets considered for (re-)scheduling are not only the
ones affected by the re-scheduling decision function, but also the set X (t− 1)
of newly arrived design tasks to the team of engineers from the review period
t − 1, which are concurrent with previously allocated design tasks. The (re-
)scheduling problem aims to minimize the expected maximum completion time
of a set of design tasks subject to precedence constraints, to be solved by the
M engineers working in parallel.

Afterwards, the concurrent design tasks, Y (t), are allocated for each engineer
on an individual basis. In order to investigate the problem more precisely,
we need to model the dependency between engineers’ productivity and their
perceived work pressure. In Bowers et al., (1997) a first estimation of the work
pressure is given by comparing, for a given engineer, the estimated duration for
completing the allocated design tasks and the available time until the deadline.
Design task solving times are stochastic, and there is a common due date t+ h
for all those allocated to engineers (h is called short time planning horizon, and
given as input). Thus, we use the probability ph(A) of finishing all design tasks
of the set A in time h. We also suppose we are given as input for each engineer
m an optimal value α (m) for this probability, called optimal work pressure
level. Therefore, we achieve efficiency for the engineers involved in the process
by requiring for each engineer m that |ph (Am)− α (m)| < ε. In words, this
requires that for a short time horizon h, the probability of finishing the design
tasks allocated to m is close to an optimal subjective value (the closeness ε
being also an input). This ensures both not overloading the engineers and not
giving them too little work to do. Organizational psychology (see for a review
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Wickers, 1996) shows that this dependency between the productivity and the
work pressure is curvilinear, and this is the reason of the absolute value bound.
The impact of work pressure on engineers productivity has been confirmed by
experimental research in Oorschot (2001).

The allocation problem aims to maximize the value of the set of design tasks
allocated in the short-time planning horizon, subject to workload constraints
for each engineer, and with no precedence constraints between the tasks. The
detailed planning level controller does not know the market payoff function,
nor the customer needs. For optimization purposes we derive design task value
functions, as an indication of design task realizations influence on the market
payoff function. They are obtained by taking into account both the design task
contribution functions, and the type of cumulative market payoff function (see
Appendix).

The design tasks left over after the allocation procedure will be further main-
tained available at the detailed planning level. No due date will be set for them.
This way of doing detailed planning reflects the particular purpose of due dates
in NPD processes. Since the precedence relationships in between tasks are quite
loose, the due dates are not mostly given to be met, but to ensure the efficiency
of the involved engineers. So, while the deadline of the whole NPD project is a
hard constraint, design tasks due dates are not like that.

Input parameters (at the beginning of review period t):
α (m) : the optimal work pressure level for the engineer m, for all m =

1, ...,M .
ε : the closeness parameter, i.e. the allowed variation with respect to the

optimal work pressure level of each engineer.
σ
\
m (t) : the m-th engineer scheduled design tasks sequence from review pe-

riods prior to t, m = 1, ...,M ;
d (n, t) : the due date of the design task n at the beginning of review period

t;n ∈ σ\m (t) ;
Xi (t− 1) : the set of newly arrived design tasks (during review period t−1)

concurrent with design tasks allocated/to be allocated during the i-th review
period, i = 0, ..., t;

Z(t) :=
⋃

m=1,...,M

σ
\
m (t) : the set of design tasks that were already scheduled

in previous review periods;
Gt = (J (Gt) ,A (Gt)) : the directed, acyclic graph of precedence relations

among design tasks at the detailed planning level, where J (Gt) := Z(t) ∪( ⋃
i=0,...,t−1

Xi (t− 1)

)
;

Y (t) := Xt (t− 1)∪ Λtt :the set of concurrent (planned or newly arrived)
design tasks to be allocated to the engineers at the beginning of review period
t; K := |Y (t)|.

l̂ (n, t) : the n-th design task performance, as established at the aggregate
decision level, n ∈ J (Gt) ∪ Y (t);
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A (n, t, l) : the n-th design task number of planned activities, if its perfor-
mance level is l, assuming the previous levels already solved; l = 1, ..., l̂ (n, t),
n ∈ J (Gt) ∪ Y (t); A design task that is in progress will start with the next
activity not performed yet.

V (n, t) : the n-th design task value;∀ n = 1, ..., N ;

Notation (at the beginning of review period t):
X (t− 1) :=

⋃
i=0,...,t−1

Xi (t− 1) : the set of newly arrived design tasks (dur-

ing review period t− 1) concurrent with previously allocated ones;
k|σ : the real index (in the numbering of design task from 1 to N) of the

k-th design task from the sequence σ, ∀k = 1, ..., |σ|
Cn (t) : the random variable denoting the n-th design task completion time,

n ∈ J (Gt)
En (t) : the random variable denoting the n-th design task earliest start time,

n ∈ J (Gt)
Pred (n) : the set of direct predecessors of the design task n in the graph Gt,

n ∈ J (Gt)
Ŝn (t): the random variable denoting the n-th design task solving time;

∀n = 1, ..., N
For an engineer, to solve one of the design tasks, n, scheduled to him means

that he has to solve sequentially the list of activities planned for it at the be-
ginning of the review period t, for each level up to l̂ (n, t) (Dragut, Bertrand,
2002). Thus, we consider the solving time of any design task n as being a

random variable distributed Erlang-
l̂(n,t)∑
i=1

A (n, t, i), with mean

l̂(n,t)∑
i=1

A (n, t, i)

µ
.

3.1 Re-scheduling decision function

At the beginning of each review period t, (t, t + 1], the re-scheduling decision
function decides whether for the updated design tasks in Z(t) ∪ X (t− 1) we
already have a partial schedule, satisfying the precedence relations among the
design tasks according to a stochastic ordering. More explicitly, if a design task
has direct predecessors in the set J (Gt), then it will be assigned to an engineer
such that its starting time will be greater than the completion time of all its
predecessors according to a stochastic ordering.

Definition 1 Given X1, X2 two random variables with distribution functions
FX1 , FX2 we say that X1 is stochastically smaller than X2 (denoted by X1 ≤stoch
X2 ) if FX1 (z) ≤ FX2 (z) ,∀z ≥ 0. The stochastic ordering is a partial order
relationship among random variables and distribution functions which is closed
under multiplication and convolution.

We have E
k|σ\m(t)

(t) :=
k−1∑
i=1

[
S
i|σ\m(t)

(t)
]

and C
k|σ\m(t)

(t) :=
k∑
i=1

[
S
i|σ\m(t)

(t)
]
,

for any k ∈ Z(t).
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So if there exists m0 and k0 such that E
k|σ\m(t)

(t) < maxstoch
j∈
{

Pred
(
k|σ\m(t)

)}Cj (t)

then the design task k0 and all its successors are added to J (Gt) \Z(t) and
removed from the sequences assigned for the engineers, and implicitly from
Z(t).

3.2 (Re-)Scheduling of design tasks

The project controller of a design team will schedule to the engineers the design
tasks from the set J (Gt) \Z(t) updated by the re-scheduling decision function.
This is done mainly to minimize the expected makespan, because we want to
avoid the delays that may occur due to the precedence constraints relating
J (Gt) \Z(t) to the set of concurrent planned design tasks to be allocated next
to the engineers.

As a result of solving the scheduling problem, we will obtain for each engineer
m an optimal sequence σ\\m (t) of design tasks. In front of this sequence we will
add the sequence σ\m (t) of the design tasks on progress from previous control
periods which at the beginning of review period t had the performance levels
unchanged, and their previous scheduling satisfied the precedence relationships
by means of stochastic ordering.

An instance of our type of scheduling problem is given by the directed,
acyclic subgraph of Gt spanned by J (Gt) \Z(t). We assume that the engineer
cannot solve more than one design task at the same time and no preemption is
allowed. Then our (re-)scheduling problem is a variant of the known stochastic
identical parallel machine scheduling with non-unit jobs and arbitrary prece-
dence constraints aiming to minimize the expected maximum completion time.
This problem was solved analytically for tree-like precedence constraints (see for
a review Weiss, 1995), while the research of Foulds et al. (1991) and Neumann
and Zimmermann (1998) gives polynomial heuristics even in more general types
of precedence constraints.

Decision variables:
σ
\\
m (t) : the sequence of design tasks from J (Gt) \Z(t) scheduled for the

engineer m in the beginning of review period t; m = 1, ...M .

The detailed planning level (re-)scheduling problem can be formulated as
follows:

min(
σ
\\
1 (t),...,σ

\\
M (t)

)
{

max
m=1,...,M

E

[
C∣∣∣σ\\m (t)

∣∣∣|σ\\m (t)
(t)
]}

(6)

subject to

∀k ∈ 1, ...,
∣∣∣σ\\m (t)

∣∣∣ , ∀m = 1, ...,M

E
k|σ\\m (t)

(t) ≥ max
stoch

{
Cj (t) , j ∈ Pred

(
k|σ\\m (t)

)}
(7)
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∀n ∈ J (Gt) \Z(t),∃!m ∈ 1, ...,M s. t. n ∈ σ\\m (t) (8)

where

C
k|σ\\m (t)

(t) :=
∑

i∈σ\m(t)

[
S
i|σ\m(t)

(t)
]

+
k∑
i=1

[
S
i|σ\\m (t)

(t)
]

(9)

E
k|σ\\m (t)

(t) :=
∑

i∈σ\m(t)

[
S
i|σ\m(t)

(t)
]

+
k−1∑
i=1

[
S
i|σ\\m (t)

(t)
]

(10)

The condition 8 requires that each design task to be (re-)scheduled at the
beginning of review period t has to be allocated to exactly one engineer.

3.3 Allocation of concurrent design tasks

After the (re-)scheduling, the design team project controller allocates the set
Y (t) of concurrent (planned or newly arrived) design tasks to engineers.

The allocation of design tasks to engineers maximizes the value of the al-
located design tasks, subject to the following constraints : each design task is
either allocated to exactly one engineer or is not allocated at all, and resources
(engineers) have to work close to their corresponding optimal work pressure lev-
els. This multiple choice knapsack problem is specific for NPD projects under
hard time constraint and was solved in Dragut (2002). The stochasticity and
the fact that to each engineer we can assign more than one design task, do not
allow neither a mixed-integer formulation of the problem, nor a simpler formu-
lation of the partial solutions to be eliminated, as required by more efficient
algorithms (Ibaraki et al., 1978; Dyer et al.,1995).

Additional notation (at the beginning of review period t):
v (A, t) :=

∑
n∈A

V (n, t) : the cumulated value of the design task set A ∈

P (Y (t)); u (∅) = 0;

Na (A, t) :=
∑
n∈A

l̂(n,t)∑
i=1

A (n, t, i) : the total number of activities of the design

tasks in the set A ∈ P (Y (t));

ph (A, t) := Pr
{ ∑
n∈A

Ŝn (t) < h

}
: the probability of solving the design tasks

in time, where A ∈ P (Y (t)), and Ŝn (t) are sums of Na ({n} , t) i.i.d. exponential
random variables of mean µ; each represents the duration of a design task k.
Since the mean µ is the same for the activities of all tasks,

ph (A, t) = 1−
Na(A,t)−1∑

i=0

(µh)i exp(−µh)
i!
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We also have to say that ph
({
n1, ..., n|A|

})
is easily computable from the

number of activities of each task ni ∈ A: we have assumed that the mean of the
exponentials (for the activities) is the same for all tasks and thus we have again
an Erlang distribution. This is also the reason we keep the design task’s control
at activity level.

Definition 2 Given Y (t) 6= ∅ we say that πm = (A1, A2, ..., Am) is an m-

partition of the set Y (t) if
m⋃
i=1

Ai = X, Ai ∩ Aj = ∅, and Ai 6= ∅ for all

i 6= j , i, j = 1, ...,m .

Under the assumption that we have enough design tasks to be allocated to
the engineers, the allocation problem is:

max
πM+1=(A1,A2,...,AM+1)∈ΠM+1

 ∑
m=1,...,M

v (Am, t)

 (A0)

where
ΠM+1 := {πM+1 an M + 1 partition of Y (t)|. |ph (Ai, t)− α (i)| < ε, i = 1, ...,M}.
The set AM+1 will contain all the design tasks that we failed to allocate into
the short time-planning horizon, to the M engineers of the team considered.

If after solving the aggregate level problem, there are not enough design
tasks to be allocated to engineers, the engineers may receive design tasks from
other projects to ensure their efficiency. From this project point of view they
will have zero-value, and hence will be the last to be allocated.

4 Engineering process

During the review period t, (t, t+1], the engineers work concurrently, each on its
corresponding sequence of design tasks determined at the beginning of review
period t in the detailed planning. Each design task has been allocated to only
one engineer.

Input parameters (at the beginning of review period t):
σm (t) : the sequence of design tasks allocated to the engineer m during the

detailed planning; m = 1, ...,M ;

Υ(t) :=
M⋃
m=1
{k| k ∈ σm (t)} : the set of all design tasks allocated to the team

of engineers;
A (n, t, l) : the number of activities planned for solving the design task n, at

the performance level l, assuming the previous levels already solved; l = 1, ..., L,
n ∈ Υ(t);

l̂ (n, t) : the level at which the design task nmust be performed, as established
at the aggregate decision level, n ∈ Υ(t);

For solving a design task, n, we may assume that an engineer solves sequen-
tially its planned activities, for each level up to l̂ (n, t) (Dragut, Bertrand, 2002).

11



But, an engineer decision on choosing or not a specific design task to work on
remains uncertain due to the large variety of variables implied and due to the
lack of empirical data to support theories. Unlike machines, human beings per-
ceive the concurrency and the relative urgency of design tasks. The sequence of
design tasks allocated to an engineer, may contain more than one design task
allocated at the beginning of the same review period. Those design tasks can be
performed in parallel and their order in a sequence reflect only the optimality
criteria of the scheduler from the detailed planning level.

During the solving process of the design tasks, other several disturbances
concerning new activities arrival to the design tasks in progress, and addi-
tion/deletion of design tasks in the NPD project may occur (review: Dragut,
Bertrand, 2002). The new activities are a result of the incapacity of solving
the design task with its current description, so they have preemptive resume
priority over the planned activities (Dragut, Bertrand, 2002).

All those uncertainties influence the execution of the schedule. Therefore,
for the next period, at the aggregate decision level the controller will take into
consideration the current shop status at the current review period end. This
fact is consistent with the real life situations where, on a weekly basis, each
engineer measures how much time was spent on solving each design task, what
activities were solved, what activities were added. Thus, at the beginning of
review period t+ 1, the output variables from the engineering process are:

A (n, t+ 1, l) : the number of activities of design task n , if design task n is
performed at level l, assuming the previous levels already solved; l = 1, ..., L,
n ∈ Υ(t);

5 Expected NPD project outcome

Before starting a new review period, the aggregate controller must update the
previous network of design tasks according to the technological changes oc-
curred (deletion/addition of new design tasks, arrival of new activities for the
design tasks on which the engineers have worked). Based on previous levels
mathematical description, one can link the review periods using approximate
solutions for the detailed planning and engineering level problems, and assuming
review period-dependent Poisson arrival processes of new design tasks with a
common contribution function and identical performance level structure. Such
a linkage mechanism can be further used to predict the expected NPD project
outcome in terms of market payoff, and to derive optimal policies for achieving
it.

Simple priority rules may schedule detailed planning level design task, giv-
ing an ordering among all the planned activities included in all the design tasks
(Neumann, Zimmerman 1999; Dragut, Dragut, 2001). Thus, at the beginning of
each stage t the linkage problem gives a queueing system with M parallel servers,

and a common queue of Ã (t) =
∑

n∈Y (t)∪Z(t)

l(n,t+1)∑
l=l(n,t)+1

A (n, t, l) planned activities

with Exp (µ) distributed processing times. The solving process is disturbed by

12



a λ(t)-Poisson arrival of unplanned activities (λ(t)/µ < M) with preemptive
resume priority. This simplification allowed the computation of transition prob-
abilities of a Markovian decision process for the one customer need aggregate
control of time constrained NPDs (Dragut, Dragut, 2001). Optimal policies can
be derived for the case of more customer needs under similar conditions. Also,
approximate policies can be derived using the neuro-dynamic techniques for
finite-horizon nonstationary Markov decision processes (Garcia, Ndiaye, 1998).

6 Conclusions

Managing the new product definition is a complex managerial task. Based on
recent research, this paper proposes a mathematical formulation of the NPD
project management, which includes two new problems specific for the NPD
projects under hard time constraint.

We model the real-life project, and formalize the quality-time-cost trade-offs
underlying the NPD project mainly from the technological uncertainty point of
view. This paper goal is to close the gap in between the mathematical models
world and management practice providing a basis from which one can derive
the constraints for computational models. Thus, it is facilitated the evaluation
and acceptance of the computational results by the management practitioners.
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Appendix:

IfM
[(

Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)
)

1≤n≤N

]
def
:=

∆∑
δ=1

wδ (t)

[ ∑
n =1,..,N

Θ (n, t, δ) · l̂(n,t)L

]
(Askin, Dawson, 2000) then max

l̂(n,t), n∈{1,...,N}
M

[(
Θ (t, ·, δ)1≤δ≤∆ , l (·, t)

)
1≤n≤N

]
=

max
l̂(n,t), n∈{1,...,N}

∑
n =1,..,N

l̂(n,t)
L ·

[
∆∑
δ=1

wδ (t) ·Θ (n, t, δ)
]
. An obvious choice for de-

sign task value functions is: V (n, t) := l̂(n,t)
L ·

[
∆∑
δ=1

wδ (t) ·Θ (n, t, δ)
]
,∀ n =

1, ..., n ∈ J (Gt) ∪ Y (t), where l̂ (n, t) is the n-th design task desired perfor-
mance level.

IfM
[(

Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)
)

1≤n≤N

]
def
:=

∆∏
δ=1

[
S
(
t, l̂ (·, t) , δ

)]wδ(t)
(Yoshimura

1996) we have no direct decomposition indexed by the design tasks numbers.
Since

max
l̂(n,t), n∈{1,...,N}

M

[(
Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]
≈ max

l̂(n,t), n∈{1,...,N}
log
{
M

[(
Θ (t, ·, δ)1≤δ≤∆ , l̂ (·, t)

)
1≤n≤N

]}

we define V (n, t) := log
{

∆∏
δ=1

[
Sδ

(
t, l̂ (n, t)

)]wδ(t)}
−Vmin +ε ≥ ε > 0 to obtain

positive design task value functions, where

∃Vmin = inf
n∈J(Gt)∪Y (t),∀δ=1,...,∆

log

{
∆∏
δ=1

[
Sδ

(
t, l̂ (n, t)

)]wδ(t)}
∈ (−∞, 0)

since Sδ
(
t, l̂ (n, t)

)
∈ (0, 1),∀n ∈ J (Gt) ∪ Y (t),∀δ = 1, ...,∆ represent a finite

number of finite values.
If

LHS
notation

:=
∑

n∈J(Gt)∪Y (t)

V (n, t)

≤ log
{
M

[(
Θ (t, ·, δ)1≤δ≤∆ , l̂ (n, t)

)
n∈J(Gt)∪Y (t)

]}
notation

:= RHS
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holds, then the detailed level allocation solution (which maximizes the value of
the allocated design tasks) provides an heuristic lower bound for the aggregate
decision targets.

LHS =
∑

n∈J(Gt)∪Y (t)

∆∑
δ=1

wδ (t) logSδ
(
t, l̂ (n, t)

)

=
∆∑
δ=1

wδ (t)
∑

n∈J(Gt)∪Y (t)

logSδ
(
t, l̂ (n, t)

)

=
∆∑
δ=1

wδ (t) log
∏

n∈J(Gt)∪Y (t)

[
Sδ

(
t, l̂ (n, t)

)]
Since Sδ (t, l (·, t)) ∈ (0, 1),∀δ = 1, ...,∆ are normalized S−functions LHS ≤

∆∑
δ=1

wδ (t) log
[
Sδ

(
t, l̂ (n0, t)

)]
. Since log (·) and Sδ (t, l (·, t)) (being S− func-

tions of the
∑

n =1,..,N

Θ (n, t, δ) · l̂(n,t)L ) are increasing functions of the levels:

LHS ≤
∆∑
δ=1

wδ (t) log

 ∑
n∈J(Gt)∪Y (t)

[
Sδ

(
t, l̂ (n, t)

)] ≤ RHS
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Figure 1: Stages of the directed acyclic graph describing the state of the system
at time instant t0
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