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C h a p t e r 0 n e 

G E N E R A L I N T R 0 D U C T I 0 N 

MOTIVATION THE STUDY 

In the process industry various kinds of plants are 

encountered in which a bed of solid particles is treated by a 

stream of fluid flowing through it. When the bed of solid 

particles is fixed, the treatment of the fluid is of first 

importance, as e.g. in regenerators where the solid material 

is used to heat or cool gas, or in chemical reactors where the 

solid particles are used as carriers of the catalyst to 

enhance a desired reaction of the fluid. In rnaving-bed 

processes, when the bed is transported through an installation 

by a grate, the heat treatment of the solid particles by the 

fluid is usually of first importance. Examples of these 

processes are clinker coolers, sintering , pellet-drying 

and -indurating machines. 

The Measurement and Control Group of the Department of 

Technical Physics of Eindhoven Univers of Technology was 

confronted with such rnaving-bed plants when studying the 

dynamics and control of a cement clinker cooler /55/ and a 

pellet-indurating plant /68 +) • 

In principle, such rnaving-bed processes can be considered 

as gas-salid cross-flow heat exchangers where a horizontally 

rnaving bed of solid particles is caoled or heated by vertical 

gas streams (see Figure 1.1). The exchange of heat will cause 

a change of gas as well as solid temperatures and as a 

consequence other processes may take place like drying, 

sintering and chemical conversion. 

The construction of a mathematical model of the heat and 

mass transfer behaviour of a rnaving bed process results in a 

set of coupled non-linear partial-differential equations with 

respect to in principle five independent variables, viz. time 

t, horizontal coordinates x and y, vertical position z and 

+) 7 see note at page 1 
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location r inside the solid particles. Irregular shapes and 

sizes of the particles may further complicate the analysis. 

The study of this type of process is not only of practical 

value but also theoretically interesting. A search of the 

literature turns up many papers on rnadelling and simulation 

of fixed-bed processes like regenerators and chemica! reactors, 

but very few about moving-bed processes. Recently, a static 

model of a pellet-indurating machine /44/ and a very simple 

dynamic model of a sinter strand process /14/ have been 

published. 

Also, in contrast to co-current and counter-current heat 

exchangers, little is known about the dynamic behaviour of 

cross-flow heat exchangers: the few publications about this 

subject /5,45,50/ all deal with heat exchangers of a different 

type, viz. liquid-liquid /45,50/ and gas-liquid /5/ insteadof 

gas-solid. Moreover, these publications consider only the 

effect of temperature variations, with the exception of the 

study of Bender /5/ that takes the effect of flow disturbances 

into account. In addition, in all simulations only one 

spatial dimension is considered. For a gas-solid cross-flow 

heat exchanger this simplification is not allowed, because of 

the large temperature gradients both horizontally and 

vertically. 

Little has been published by other groups concerning the 



dynamics and control of a pellet-indurating In the 

only paper known to us, Henry and Smeaton /32/ offer only a 

few suggestions about computer-control possibilities without 

discussing the dynamics of the plant. For any fundamental 

control study a dynamic model is required of which a fast 

simulation (digital, analog or hybrid) can be obtained. 

Because of the fact that the basic physical laws of moving-bed 

processes result in a set of complicated partial-differential 

equations, the possibilities of model reduction beforehand, 

using overall quantities, has been investigated. Even after 

this model reduction, the resulting mathematical model was 

difficult to simulate. The model equations are different from 

the equations normally encountered in literature in that 

partial-differential equations with respect to three 

independent variables occur with first-order differential 

quotients. A dynamic simulation on present-day computers 

shows the following characteristics: long computing times are 

used by machines, much hardware is needed analog 

machines and much starage capacity is demanded by hybrid ones. 

Therefore, the work described here aimed at developing more 

practicable simulation methods for the dynamic behaviour of 

rnaving packed-bed heat-exchange processes. 

1.2 DESCRIPTION OF THE PROCESS 

In ironmaking, blast furnace charges are more and more 

prepared by means of pellet-indurating plants instead of 

sintering installations because the use of pellets is more 

economical /23/. The object of iron-are pelletising is to 

produce firm, hard balls (about 0.01 m in diameter) from 

ground ore. These pellets must have sufficient 

strength and suitable chemical properties to serve as blast 

furnace charge material. Therefore, after balling, the wet 

green are indurated (heat hardened) • In commercial 

practice a shaft furnace, a rnaving grate, or a rnaving grate 

and kiln combination are normally used for this induration 

process. 

In this study, the pellet-indurating plant of the Royal 

Netherlands Blast Furnaces and Steelworks at IJmuiden in the 
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0 0 0 0 gas~fired burners 

Number of boxes * Location Surface area (m2) 

Updraft-drying zone 5 1-5 52.5 
Downdraft-drying zone 4 6-9 42 
!st Induration zone (fan F5) 6 10-15 63 
2nd Induration zone (fan F2) 11.5 16-27A 120.75 
I st Cooling zone I 1 • 5 27B-38 120.75 
2nd Cooling zone 3 39-41 31.5 

* Dimensions of one windbox - length: 3m width: 3.5m 

Figure 1.2 Diagram of the pellet-indurating plant 



Netherlands, a rnaving grate unit designed by Lurgi /42/, will 

be analysed. A sketch of the plant is given in Figure 1.2. 

The wet green pellets coming from the balling plant are 

loaded onto a rnaving grate via a roller-conveyor which sereens 

out the smallest pellets, thus preventing blockage of the bed. 

The remaining pellets are ited as a of about 0.3 m 

height on top of a so-called hearth- of 0.1 m height 

consisting of indurated pellets covering the grate for 

protection. 

The grate with pellets moves through the various zones of 

the plant where the pellets are dried, indurated (fired) and 

caoled to obtain the required physical properties. The total 

length of the is 123 m, the width of the grate is 3.5 m, 

the speed normal 0.04- 0.08 m s- 1 . In the induration 

zones an exothermic reaction takes place converting the 

magnetite in the iron ore into hematite. For the production 

of good quality pellets all green pellets must achieve 

sintering temperatures during a prescribed period of time 

(more than 1300 °C for at least two minutes). But also, as 

the strength of the grate decreases rapidly with higher 

temperatures, care must be taken that the grate temperature 

does not exceed its maximum admissible value (650 °c). The 

division of the induration area in two zones connected to 

different fans, is a good device enabling to meet both the 

quality and the temperature requirements. As somewhere 

hal the second induration zone enough heat has been 

transferred to the bed to obtain the required sintering 

temperature at the botton of the layer of green pellets, the 

gas temperature in the remainder of this zone may be lowered. 

Having accomplished the induration, cooling is started and 

in order to prevent overheating of the grate an updraft 

blowing system is used. 

Looking at the indurating machine from the gas side, two 

main streams can be distinguished. One flowing upwards 

through the second cooling zone, downwards through the 

downdraft-drying zone and, with the help of fan F5 (see 

Figure 1.2) to the stack. The other strearn flows upwards 

5 



6 

through the first cooling zone, downwards through the 

induration zone and fan F2, and again upwards through the 

updraft-drying zone. This stream is divided in the first 

part of the induration zone where part of the gas is blown to 

the stack. Ambient air.is added to the hot exhaust gas stream 

leaving the second induration zone in order to proteet fan F2 

against overheating. 

A great amount of heat is re-used. The air coming out of 

the first cooling zone is used as cernbustion air for the fuel 

in the induration section. The air coming out of the second 

cooling zone is used as a drying agent in the downdraft-drying 

zone. The gases leaving the last section of the induration 

zone are used for the updraft drying zone. Because of the 

repeated use of the same gas flow, disturbances occurring in 

one zone readily propagate into another zone. Because of the 

resulting interaction between zones in the indurating plant 

combined with the high costs, the indurating plant 

proved to be an interesting object for control studies. As 

Ts 
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Figure 1.3 Pellet temperature response 
halfway the cooling sectien 
after a porosity step disturbance 
at t = 0. 



an of the consequences of the interactions between 

the various zones the pellet temperature response halfway 

the cooling section after a porosity step disturbance is 

shown in Figure 1.3. To understand the phenomena taking 

place in the pellet-indurating machine during transients 

a dynamic model must be constructed and solved. 

1. OUTLINE OF THE 

The outline of this thesis is as follows: After the 

general introduetion of Chapter 1, the model-building activity 

is described in Chapter 2. Possible simulation strategies are 

reviewed in Chapter 3. Chapter 4 compares the effectiveness 

of various integral-transform methods for the simulation of a 

segment (a slice) of the pellet bed (see Figure 1.1). In 

Chapters 5 to 8 four different simulation methods for a whole 

bed or compartment, viz.: 

- a digital simulation in the time domain, 

- a digital simulation in the frequency or Laplace domain, 

- a hybrid simulation, 

- an RC-network simulation, 

are applied to the cooling zone of the pellet-indurating plant. 

Each of these methods lends itself as well to simulation of 

the induration zone (gas flowing downward) - if the ore 

contains little or no magnetite the chemical reaction can be 

ignored - coupled to the cooling zone (gas flowing upward) , 

and changes in the bed porosity in the zone can also be 

taken into account. 

Chapter 9 attempts to present a critical evaluation of the 

various methods: advantages and drawbacks of the different 

simulation techniques are summarised and the generality of 

the results is discussed in view of the underlying 

assumptions. 

NOTE: In order to make a c1ear distinction all references to publications 
in which the auther was involved are identified in underlined italics 
whereas the reierences from a1ready existing literature are denoted in 
roman types. 
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C h a p t e r T w o 

M 0 D E L L I N G 

2.1 INTRODUCTION 

The word model is used in the sense of mathematieal model 

by which we mean any collection of algebraic, differential 

and/or integral equations or inequalities which describe the 

behaviour of theprocess. ModelZingor model building is 

defined as the activityof choosing and defining process 

variables and deriving mathematically expressed relation

ships betweenthem /18/. 

In extremis, two different approaches of the rnadelling 

activity may be distinguished /21/: on the one hand the 

physieal approaah, using laws of conservation of mass, energy 

and momentum, and physical and chemical relations like the 

kinetic equations for chemical reactions, or the equations 

descrihing phase changes, e.g. the transition of liquid to 

gas, and on the other hand the blaak-box approach, using input 

and output data collected from an oparating process to 

estimate the model parameters of a priori postulated relation

ships between process variables. These parameters rarely have 

a physical meaning. 

In practice, the physical approach tends to be used when 

theoretica! knowledge of the process is available, when there 

are paar possibilities (or none at all!) to experiment and 

when the modelling is nat too expensive. Advantages of the 

physical approach are that - in contrast ta the black-box 

approach - it can be started befare the actual plant exists, 

which may result in valuable design and start-up information, 

that it may lead to conclusions relevant to ather, similar 

processes, that the influence of different physical parameters 

can be investigated, and that it may give deeper insight into 

the system, thereby serving as a valuable guide ta the design, 

operatien ar impravement of the process. A disadvantage of 



the physical approach is that it is general 

tedious. 

computationally 

As described above, the distinction is essential, but in 

both extremes are hardly ever used: mixed approaches 

abound. Even when it is undesirable from the point of view 

of continuons plant to do measurements on the 

process, some tests have to be performed in order to get an 

idea about the of the physical model and, when 

necessary, appropriate corrections have to be made. Also, 

certain unknown interrelations may have to be det,ermined 

experimentally. , when following the black-box 

approach certain model parameters may easier be obtained from 

elementary physical considerations than from identification 

experiments. 

Because of the fact that there were few chances to do 

enough identification experiments in the industrial environment 

of the pellet-indorating plant and because, at first, the 

pellet plant was still only in the and little 

was known 

to follow the 

In this 

start-up , it was decided 

approach of model building. 

, i.e. rnadelling the system from first 

principles for a particular purpose, many assumptions have to 

be made. Indeed, the art of the model building is to make 

assumptions such that the resulting model represents as 

accurately as desired and as simply as possible the 

process characteristics that we are interested in. The main 

assumptions used in model building the pellet-indorating 

are presented and discussed explicitly in Sectien 2.2. In 

Section 2.3 it will be shown that for a spherical 

under the ing conditions, heat conduction inside the 

pellets is fast eeropared with heat exchange between gas and 

pellets, so that uniform internal temperatures come about. 

In this way the use of a model without internal 

temperature is justified and a considerable 

reduction of the complexity of the model is obtained. The 

resulting model equations for a segment moving along with the 

pellet bed are derived in Sectien 2.4. In Sectien 2.5 the 

9 



model equations will be extended to the whole bed. 

2.2 ASSUMPTIONS 

Studies about the static behaviour of the complete 

indurating plant /i§/ showed that - within the normal range 

of eperating conditions - changes in input variables of the 

drying zones do nat influence overall plant behaviour 

considerably, whereas many input variables of the firing and 

cooling zones were found to play an important part. Therefore, 

it was decided to restriet the dynamic studies of the plant to 

the firing and cooling zones (i.e. Box 10 - 41 in Figure 1.2). 

The following assumptions are used: 

Assumption 1: Pellet inlet conditions 

As the wet green pellets have been dried sufficiently in 

the drying zones, they enter the first firing zone with zero 

moisture content, in spite of small variations in e.g. grate 

velocity or gas flow rate during transportation in the drying 

zones. The corresponding changes in pellet temperature at the 

inlet of the first firing zone are small compared with the 

temperature rise which the pellets undergo during the 

induration process. Therefore, as inlet conditions for the 

first firing zone the moisture eoncentratien will be taken 

zero and the pellet temperatures will be considered as input 

variables independent of the conditions in the firing and 

cooling zones, but nat independent of time and height. 

Assumption 2: Uniform distribution of pellets over the bed 

Because the transport of pellets on the rnaving grate is 

going on rather smoothly, any redistribution of pellets, for 

example in vertical direction with the big ones rnaving to the 

top and the small ones down to the bottorn of the bed, will nat 

take place. The effect of bursting or wastage of the pellets 

and dust from the pellets carried along by the gas flow on 

e.g. the porosity of the bed or the heat transfer between gas 

and pellets, is rather unlikely to be significant under the 

prevailing conditions and, hence, will be neglected. 

10 



Assumption 3: Rectangular pellet bed and constant overall dimensions 

It is assumed that the height of the bed of pellets does 

not change during transport through the plant. Hardly any 

pellets are lost through the grate during transportation 

through the installation. Also the effect of shrinkage of the 

pellets on the height and the other dimensions of the pellet 

bed can be neglected, for the experiments of Ross and Ohno /59/ 

show that the shrinkage of briquettes of magnetite and hematite 

iron ore mixtures during induration is only a few percent. 

Assumption 4: Interchange with environment 

The grate on which the pe~lets are transported will be 

heated or cooled by the gas flow. It is described by the same 

equations as those of a layer of pellets, with adapted values 

for the heat capacity and the heat exchanging surface. 

There are other interchanges of the pellet bed and the gas 

flow with the envirornrnent which usually result in loss of heat 

and/or mass at the boundaries of the bed. Owing to the large 

size of the bed and the design of the plant, only negligible 

quantities of heat and material will be lost compared with the 

total amount which is processed. Hence, these losses are 

neglected. Their incorporation will be briefly resonsidered in 
Chapter 9. 

Assumption 5: Independenee of the y direction 

All (heat) transport phenomena are taken independent of the 

y direction (the pellet and gas streams flow in the x and z 

directions, respectively; see Figure 1.1 for the orientation 

of the spatial coordinates) . 

Assumption 6: Plug-flow gas stream 

The gas flow in the bed can be described as forced 

transitional (i.e. between laminar and turbulent) flow. The 

presence of particles obliges the stream to undergo constant 

splitting and intermingling, so that the conditions of plug 

flow are better approached than for a stream with the same 

mean velocity in an empty tube /53/. No channeling effects 

have been observed in pot-test experiments. The compression 

term of the gas has been neglected because of the small 

pressure differences over the bed (~P ~ 4 * 10 3 Nm- 2 ) and the 
11 



small changes in gas pressure. The plug-flow assumption does 

nat imply that the gas flow rate is independent of the 

horizontal position x. On the contrary, due to its strong 

temperature dependenee (see Assumption 8) the gas flow rate 

changes much with horizontal position. Moreover, its direction 

in the induration zones is downward whereas it is upward in the 

cooling zones. 

Assumption 7: NegZeetion of the accumulation term in the heat 

balance of the gas 

For a unit volume of the bed the heat capacity of the gas, 

given by 

IJg = e: pg yg (2 .1) 

with 

yg specific heat of the gas [J K-1 kg -1 J 

e: void fraction of the bed [ -] 
IJg heat capacity of the gas in the bed [ -1 -3] J K m 

pg density of the gas [kg m- 3] 

is small compared with the heat capacity of the pellets 

IJS = (1-e:) ps ys (2. 2) 

with 

ys specific heat of the pellet material [J K- 1 kg- 1] 

IJS heat capacity of the pellets in the bed [J K- 1 m- 3J 

ps density of the pellet material [kg m- 3]. 

Hence, the time constants of the gas temperatures can be 

neglected as compared with the pellet-temperature time 

constants. 

Assumption 8: ~p - Fg relation 

Ergun /22/ confirmed by accurate experiments that a 

satisfactory relationship between the gas flow rate through 

an isothermal packed bed and the pressure difference over the 

bed under laminar, transitional and turbulent flow conditions 

is given by the expression 

A g F + A F 2 -- pg ~p 
1n g 2g --z- (2. 3) 

12 



where 

gas flow ra te [kg -2 s-1] m 

z height of the bed Lm] 

drop the bed [N -2" [kg 
-1 -2~ 

!lP pressure over m j m s J 

viscosity of the [kg m 
-1 - ll ng gas s j 

while the constants A
1 

and 
2

, which are independent of 

temperature, pressure drop, gas flow rate and height of the 

bed, are defined as 

and 

= diameter of the pellets [m] 

~ shape factor (which is 1 for spherical particles) [-J 
The first term of (2.3} is the viseaus term which is pre

dominant for laminar flow and the second term is the friction 

term which prevails in turbulent flow. 

In the strongly non-isothermal pellet bed, the Ergun 

relation is not valid as both the density and the viscosity 

of the gas are temperature dependent. Therefore, use has been 

made of the extended Ergun relationship of Szekely and Carr 

/65/ which is reported to agree fairly well with measurements 

in such situations 

z 
în + f (Al ng Fg + A 2 

0 
)dz 

F(Z) 

J og dP 
P(O) 

where o is the inlet density of the gas at z=O and 

the outlet density at z- . 

(2. 4) 

There are two differences between (2.3) and (2.4): firstly, 

because of the large change in density of the gas when passing 

through the bed, a kinetic energy term has been added, viz. 

the first term at the left hand side of (2.4) and, secondly, 

the differential form of the mechanical energy balance (2.3) 

has been used to take the temperature dependenee of ng and pg 

into account. 

The integrals in (2.4) have to be determined numerically, 

13 



e.g. by division nf a segment (see Figure 2.2) into N layers 

2 N 
Fg { ln + + Fg{ - t:,.P (2.5) 

where the index n refers to the local situation at layer n. 

Hence, given the pressure difference over the bed and the 

vertical gas temperature profile (necessary to evaluate pg 

and ng at various heights in the bed) , the gas flow rate can 

be found from the quadratic relation (2.5). Because of the 

strong pellet- and gas-temperature dependenee on the 

horizontal position x, the gas flow rate also depends on x. 

Assumption 9: Heat transport 

In the horizontal x direction heat transport is primarily 

governed by adveetion owing to the rnaving bed of pellets. All 

other horizontal heat transport mechanisms, such as transport 

of heat between pellets by conduction or radiation, and 

advective heat transport by horizontal dispersion of the 

vertical gas stream as a result of the constant splitting and 

intermingling of the gas through the pellet bed, are neglected. 

Similarly, it is assumed that in the vertical z direction 

heat is transported only by adveetion owing to the gas stream. 

Again, all radiative, conductive and dispersive contributions 

may be neglected. Experimental support is given in /22a/. 

Assumption 10: Heat transfer 

Heat transfer between gas and solid occurs only when gas 

and solid are in contact with each other. Radiative effects 

may be incorporated in the overall heat transfer coefficient 

U [J K- 1 m- 2 s- 1]. In practice, the parameter U is aften used 

as a fiddle factor to fit the simulation results as well as 

possible to the experimental data. 

Assumption 11: Uniform internaZ pellet temperature 

The heat conductivity of the solid is assumed to be so 

large that, given the processing conditions, the temperature 

differences inside the pellets are negligible during any 

transient of importance. In this case the pellets may have 

14 



any shape and size as long as the condition of uniform 

internal temperature is fulfilled. If one is dealing with a 

bed consisting of irregular particles, one must hope that this 

assumption is satisfied because otherwise rnadelling of the 

packed bed is impossible, but in the case considered here, the 

pellets are almast spherical. In Section 2.3 the justification 

and consequences of this assumption of uniform internal pellet 

temperatures will be discussed in more detail. 

A ssump ti on 12: Chemieal reac t1:on 

In the induration zones an exothermal reaction takes place 

if the are contains magnetite (Fe ), which then becomes 

+ -~ 6 Fe + (2.6) 

where (- tJi) is r -1 
the heat of reaction LJ male ] . In certain 

cases the effect of this reaction was studied and then it was 

supposed to obey the equation 

Ts) = Cs k = e ( 2. 7) 

where 

Cs 

E 

k 

Ts 

Assump 

concentratien of magnetite [mole 

activation energy [J mole- 1] 

rate coefficient [s- 1] 

velocity constant [s-1] 

reaction rate [mol.e m- 3 s 

universal gas constant 

sol.id temperature [ 0 cJ 
3: 

[J 

of the gas 

T~e chemical reaction (2.6) consumes oxygen from the gas. 

Due to the large gas throughput, only a few percent of the 

available oxygen is used for the reaction. Therefore, the 

change in chemical composition of the gas as function of time 

and position can be neglected. 
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Assumption 14: Uniform oxygen concentratien inside the pellets 

Because of the assumption of uniform internal let 

temperature (Assumption 11) and the uniform and constant 

chemical composition of the gas (Assumption 13), the magnetite 

concentratien remains also uniformly distributed over the 

pellet, i.e. no radial concentratien gradients originate due 

to chemical reaction if diffusion of oxygen through the pellet 

goes fast enough so that a uniform oxygen concentratien inside 

the pellet is always maintained. Subject to this proviso, the 

oxygen concentratien can be incorporated in the velocity 

constant k
0 

of the reaction rate equation (2.7). 

Assumption 15: Quasi-constant coefficients 

The heat capacity of the pellets ~s and the specific heat 

of the gas yg are known functions of temperature /54/. This 

dependenee is so weak that, when werking with locally constant 

coefficients, no errors of significanee will be made. Hence, 

in each zone an average value has been used. The overall heat 

transfer coefficient U (see also Sectien 2.3) is a function of 

gas flow rate and temperature. For the flow dependenee a 

simple square-root relation has been applied 

u (2.8) 

with 

u
0 

= temperature-dependent coefficient [J K- 1 kg-~ m- 1 s-~] 
Also here, the temperature dependenee is relatively weak and 

use will be made of zone-averaged values for u
0

• These values 

were determined experimentally by matching steady-state model 

results with experimental data. The coefficient values for 

the various zones are presented in Table 2.1. 

Tab1e 2.1 Parameter values of loca11y constant coefficients 

quantity !st firing 2nd firing !st coo1ing 2nd cooling dimension 
zone zone zone zone 

1480 
I -3 

~s 1650 2200 1900 kJ K_
1 

m _ 1 
yg I. 13 1.16 1.13 1.08 kJ K_ 1 k~3 
~grate 

3580 4800 4130 3190 kJ ~! _, -1 -1 

0.036 0.042 0.029 0.024 kJ kg K m s 2 

0 
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: It is perhaps useful to point out that certain 

have not been made, for example are porosity, gas 

flow rate and gas inlet temperature changes possible a·s 

function of the horizontal x. 

2. 3 OF INTERNAL PELLET GRADIENTS 

Lebelle et al. from Hoogovens /43/ constructed a static 

model of the pellet-indurating 

radial heat conduction inside the 

in which they took the 

into account. They 

did not use our assumption of uniform internal pellet 

conditions, but introduced new 

derive their model eguations, viz. 

a. all pellets are spherical, 

b. all lets have the same size, 

to be able to 

c. the are equally contacted over the surface by 

the gas stream. From a photograph of a random sample of 

indurated lets (Figure 2.1) it can be seen that the pellets 

are only spherical (the wet from the 

balling discs have different sizes and are deformed during 

transport on the conveyor belt because of their softness)/34/. 

Figu~e_2~ 

Photograph of some arbitrarily 
selected pellets on mu-seale 
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Owing to the packing of the pellets, the gas stream will not 

contact the surface uniformly. 

Although the assumptions a, b and c are open to question, 

the simulation results of Lebelle et al. are in good agreement 

with corresponding resuits of our simplified model 

uniform internal pellet conditions /69/, as wellas with their 

own pot-test measurements /43/. Apparently, the heat 

conduction is indeed so large that temperature differences 

inside the can be neglected. 

It will now be demonstratea for spherical particles (an 

analytical treatment which takes internal pellet-temperature 

differences into account, is only feasible with such a 

geometry) that under pellet-bed conditions, heat transport 

inside the pellets by means of conduction is so fast compared 

with gas-pellet heat exchange that uniform internal pellet 

temperatures come about. 

Consider a segment of the pellet bed and assume that all 

pellets are indeed with the same radius and equally 

contacted over the surface by the gas stream. For a spherical 

partiele of uniform and 

and conductivity Às [J 
heat conduction within a 

constant density ps, specific heat ys 
1 m- 1 s- 1] the Fourier equation for 

at height z in the segment is 

'dTe(r,z, e) 
ae 

where 

KS = 

with 

ÀS 

ps ys 

= KS + 

r distance to the centre of the pellet [m] 

Ts temperature within the [0 c] 

(2.9) 

(2 .10) 

e residence time of the segment in the campartment [s] 

KS thermal diffusivity of the pellet material [m2 s- 1] 

The residence time e te.lls us how far the segment has 

progressed through the plant, by means of the relation 
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8 
f ÏS(T) dT (2.11) 

0 

where 

Vs = grate velocity [m s- 1] 

x covered distance 

The boundary conditions for (7..9) are 

= 0 (2 .12) 
r=O 

ÀS 'dTs = h {Tg(z,e) - Ts(r=R,z,G)} (2.13) 
r=R 

and the initial condition is 

(r, z, ::::: (2.14) 

where 

h heat transfer coefficient [J m- 2 K- 1 s- 1] 

R radius of the pellet [m] 

gas temperature .[ 0 eJ 
Neglecting, according to Assumption 7, the non-stationary 

accumulation term in the gas heat balance and assuming 

constant gas flow rate Fg and specific heat yg, this balance 

can be written as 

hA {Ts(r=R,z,e) -Tg e)} (2.15) 

with boundary condition 

eJ (8) ( 2. 16) 

where 

A heat transfer area between gas and pellets per 

unit volume of the pellet bed [m- 1] 

inlet gas temperature of the segment [ 0 e] 
The equations (2.9) to (2.16) tagether describe the thermal 

behaviour of a pellet in the cooling zone. They can be solved 
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analytically after application of central differences with 

respect to the z direction. The accuracy of this segmentation 

will be discussed in Chapter 4. In this way Equation (2.15) 

goes over into 

yg Fg {Tg (6) -Tg 
1
fe)} 

n n-
z hA n, {Ts (R,B) -Tg (B)} 
L• a,n a,n (2.17) 

The use of central differences can be visualised by division 

of the height Z of the segment into N Layers (see Figure 2.2) 

and introducing for each layer n=1~2, .•• ,N the following 

approximations 

3Tg(6)1 
az n-% 

Tg (9) -Tg 
1

(6) n n-
Z/N (2.18) 

and 

:: 1 
2 n 

(2.19) 

where and Tg are the input and output gas temperatures n . 
of layer n, respectively. Tg is the average gas temperature a, n 
in layer n. Ts is the average solid temperature in n. a,n 
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Substitution of a new variable 

8) = y> /r, eJ (2.20) 

into (2.9) 1 (2.13) and ( 2. 17) yields, for n 

eJ 
= KS (2.21) 

oe 

.7 (r, eJ 1 u (R, 8) 
n (2.22) R-~~r=R = + 

yg Fg (8)} 
z 

hAN n (e)] ( 2. 23) 

Laplace transformation of (2.21) with respect to time 

(introducing as the Laplace variable) yields a second-order 

ordinary-differential equation in r which is easi solved 

with the boundary condition for r 0 /57/, provided the 

initial temperature (see (2.14)) is independent of the radius. 

= 
sinh ( P' fëi; V-;::8 

sinh(R• /?f; V-;::8 

q) + q 
(2.24) 

Now (R,q) can be found by differentiation of (2.24} with 

respect to r and substitution into the transfarm of boundary 

condition {2.22), which yields 

where 

1 
G(q} + ~s [R' L!I n n R VKs 

),$ r \ & 
1 + h R erv-~ aoth(R 

3 Suppose that 1 m pellets contains 

will have a total heat capacity 

JJS 

(r fZï; - 1] VK8 q 
(2.25) 

(2.26) 

pellets. These pellets 

(2.27) 
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and a gas-pellet contact surface 

A = 4 1r R
2 

P (2.28) 

Tagether with (2.10) we get the following for :\s 

ÀS = J KS )JS 
AR 

(2.29) 

Substitution of (2.29) into (2.25) and the transformed version 

of (2.23) gives, if (2.23) and (2.25) are combined to eliminate 
'V 
un(R,q), 

1 + 'l JKS
2 

{R U coth(R [7j) - 1} 
R VKii VK$ r Ts 0l 

l~(J (q) - -j 
1 + JKB {R f7T coth(R· fq) - 1} n-1 q '2 --2 VKS \IK$ 

R 

+ 
q 

(2.30) 

with 

= ]J$ 
1 

2 yg Fg N/Z} (2.31) 

{__!:.. + 1 } ( 2 3 2 ) 
)JS hA 2 yg Fg N/Z • 

Choosing Ta
0 

as the zero point ~f the temperature sca1e, the 

relation between the temperature of the gas leaving any 

n and the gas inlet temperature of a segment becomes 

+ JKS 
1 1--2 

R 
3KS 

R2 

[R~ coth(RV!i) - 1nn 
[RV!/; coth(RVJ!s) 1Jj (2.33) 

Obviously, the response of the gas outlet temperature of the 

segment is found by replacing n by N. 

The amplitude ratio and phase shift of this transfer 

function for typical coefficient values of the cooling zone 

of the plant are plotted in the Bode diagram 

in Figure 2.3. Curve a represents the situation with finite 

internal conductivity :\a 0.58 J K- 1 m- 1 s- 1 and 
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Amplitude 

ratio 

1 
Phase 
shift 

1 

.1 

.01 

.001 

rr 

-2 

.001 .01 

""' 
Tgout -Tg in 

·· .... c a .... 

. 1 

-----+ W (rad/s) 

.1 

--+ W (rad/s) 

1 

Figure 2.3 Frequency response of the outlet gas 
temperature of a segment after an inlet 
gas temperature disturbance 
Curve a: situation with finite 
Curve b: situation with infinite conductivity 
and unchanged heat transfer coefficient 
Curve c: situation with infinite 
and adapted heat transfer coefficient 

If we make the of uniform 

internal temperature, i.e. infinite thermal , the 

frequency response according to Curve b eernes about, where 

)\s=ooandh 210JK-lm- 2 s- 1 . Asweshall below, 

the heat transfer coefficient h can be adapted so as to take 

the conductivity inside the pellet into account. A better 

approximation of Curve a is obtained for ÄS co with h = 140, 
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as is shown by Curve c. Now, the approximate salution is 
-2 -1 satisfactory up to the frequency w = 4 x 10 rad s , i.e. 

heat transfer phenomena with periods of two minutes will still 

be described satisfactorily in spite of the negleetien of the 

internal pellet temperature gradients. Such an adapted value 

of h is called an "overall heat-transfer coefficient" and will 

be denoted by a separate symbol U. 

Compared with the total processing time of the pellets on 

the rnaving grate, which is about 30 minutes, signal components 

in the frequency range above, say, w = 0.1 rad s- 1 will not 

play any part of importance in the dynamic behaviour of the 

total plant. It will be shown in the subsequent simulation 

chapters that the main time constants of the process are at 

least an order of magnitude larger. 

The inverse Laplace transformation of (2.33) is simple in 

a number of cases, for example if n=l and the gas inlet 

temperature is constant 

(2.34) 

Then, the salution is given by /57/ 

2: (2. 35) 
l=l 

in which 

= (2.36) 
Pz 

where Pz represents the roots of 

1 + 3 KS T 2 
= 0 (2.37) 

Equation (2.35) gives the output gas temperature response of 



of a pellet layer if the-input gas temperature is constant 

for residence time e > 0. Hence, it describes the temperature 

behaviour around the transport grate very accurately. 

Differentiation of (2.35) with respect to e yields the 

impulse response of one layer and by means of convolution 

integrals the behaviour of the complete segment could, in 

principle, be calculated. This calculation, however, is very 

cumhersome and unremunerative for practical purposes. 

The effect in time domain of introducting an overall heat 

transfer coefficient U can be seen in Figure 2.4 /69/ where 

Curve a represents the output gas temperature of one 

with initial temperature of 1200°C, caoled by a gas 

flow of 15°C found analytically according to the equations 

(2.9) to (2.16). Curve b represents the same case, but with 

uniform temperature (ÀS = oo) and the same heat transfer 

coefficient as in Curve a. Curve c is calculated with an 

adapted (smaller} value for h. It intersects Curve a twice, 

and apart from its values at very small values of 8, Curve c 

is a good approximation of Curve a. The curves as 

presented in Figure 2.4 have been calculated for a few different 

set of parameters. It must be added that in the example of 

this figure, the diameter is about twice as as the 

average pellet diameter. The reason is that with large 

diameters the effect can be better demonstrated. The 

differences between the three curves would have been about four 

times smaller with a more realistic pellet diameter of 0.01 m. 

Tg 

("C) 

1 

800 

I 

600 \ 
I 

' \ 
' 

'. \ . \ . \ 
'.\ . \ ·., 

curve a 

---- curve b 

·· curve c 

., 
200 ~. .. 

___.els) 

Figure 2.4 The effect of finite therma1 
conductivity in time domain 
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The procedure of taking an adapted value for the heat 

transfer coefficient to cornpensate for the approxirnation of 

infinite internal conduction can be visualised by consictering 

an RC-network analog for the problern of heating or cooling a 

pellet. In Figure 2.5 the RC analog of heat transfer 

(resistance) and conduction (RC-ladder network) is shown. If 

the ladder network only consists of two 

the transfer function is 

fs(r=O,g) 

T'g(q) 
= 

1 

RC circuits, 

(2. 38) 

If we neglect internal conduction without changing the heat 

transfer coefficient h(~1/R), the transfer function becornes 

Jlg(q) 

1 (2.39) 
+ 1 

A better approxirnation of (2.38) will be obtained when we take 

instead of R in (2.39) 

Rlll = R + R
1 

(2.40) 

which rneans a smaller value for the overall heat transfer 

coefficient U = 1/R* than for the convective heat transfer 

coefficient h = 1/R. 

Tg Ts(t,R) 
e---i 1--e--1 

R 

Ts(t,O<r<R) Ts(t,O) 

R1 I' R2 1 IC' Is 
~ convection + conduction 

~ 
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.4 MOV.TNG SEGMENT 

from the equations (2.9) to (2.16) which describe 

the thermal behaviour of a segment of the bed 

internal temperature differences, in this section the 

segment equations based on uniform internal 

will be derived. 

conditions 

of (2.9) multiplied by with respect to r 

from the center of the r=O to the boundary r=R 

R 

f 
R 2 J 4rrr <S i..:....,;c...;;..;..;,;..,~c..:..:... (2.41) 

0 0 

Defining a volumetrie mean temperature 

R 
*r ) Ts ,z,e f Ts(l',Z, 6) (2. 42) 

0 

and mathematical properties of the function Ts z,e) 

such that integration with respect to r and differentiation 

with respect to e may change order, (2.41) can be written as 

::::: (2.43) 

The right-hand side of (2.43) may be evaluated as follows 

R 2 J 4rrr KB dr + 
R 

f 
0 

ars . 
Brrr KB ar di' ::::: 

0 
(2.44) 

= dr 

Hence, by means of (2.12) 

(2.45} 

(2.10} and {2.13} we find that 
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~ 
4 R3 aTs (z,e) ? ps ys ae 

2 = h 4TIR {Tg(z,e) - Ts(R,z,e)} (2.46) 

In the derivation up ~ill now we did not assume infinite heat 

conductivity. However, in general, ±he pellet temperature at 

the surface of the pellet Ts(R,z,e) will not be equal to the 

mean pellet temperature Ts*(z,e), when- because of finite 

heat conductivity - a temperature gradient exists inside the 

pellet. 

* If we approximate Ts(R,z,e) by TB (z,e), the absolute value 

of the right-hand side of (2.46) increases causing the average 

pellet temperature to change too rapidly. This was compensated 

by replacing the gas-pellet heat transfer coefficient h by the 

smaller overall heat transfer coefficient U as shown in Section 

2.3. In this way we find instead of (2.46) and (2.15) 

'J!i 
'ilTs (z,eJ 

JlB ae * = U A {Tg(z,eJ - Ts (z,eJ} 

F aTg(z,eJ 
yg g 'ilz * U·A {Ts (z,e) - Tg(z,e)} 

with initia! and boundary conditions 

* TB (z,S=O) 

Tg(z=O,eJ = Tg. (e) -z,n 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

This set of equations describes the thermal behaviour of a 

segment moving along with the pellets through the plant. 

2.5 TOTAL BED EQUATIONS 

The equations (2.47) to (2.50) can be extended to the whole 

bed of particles by defining instead of the residence time e 
the time t and the horizontal location in the bed x (see also 

(2.11)). Then the heat balances for an infinitesimal alemept 

of the pellet bed result in the following set of partial 

differential equations 
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'iJTs(x,z,t) 
).JS at + ).JS Vs(t) 'iJTs(;~z,t) = U(Fg(x,t)J A {Tg(x,z,t) - Tg(x,z,t)} 

(2. 51) 

yg Fg(x,t) 'iJTg(x,z,t) = U(Fg(x,t)) A {Ts(x,z,t) - Tg(x,z,t)} 
(Jz 

(2. 52) 

The gas flow rate Fg, denoted as function of x and t, depends 

on E, 6P and Tg according to (2.4) 

Fn2 pgin 
::_j2_ ln --
2E2 pgout 

+ 
z 

f 
0 

2 (A 1 ng Fg + A2 Fg )dz = 
P(Z) 

f pg dP 
P(O) 

The overall heat transfer coefficient is a function of Fg 

( 2. 4) 

( 2. 8) 

).JS, yg and u
0 

are locally constant (sse Table 2.1 on page 16). 

If the assumption of uniform internal pellet conditions also 

applies to a (small) magnetite concentration inside the pellet, 

the material balance gives 

'iJCs(x,z, t) 
'iJt 

+ Vs(t) 'iJCs(x,z,t) = - k(Ts) Cs(x,z,t) 
'iJ x 

(2. 53) 

and to the right-hand side of (2.51) an extra term (-6H) k Cs 

must be added to represent the heat produced by the chemical 

reaction. The rate coefficient k depends on the pellet 

temperature according to (2.7) 

E 

k(Ts) = ko e R(Ts+273) (2. 7) 

The accompanying initial and boundary conditions are 

Ts(x,z,t=O) = Ts
0

(x,z) ( 2. 54) 

Cs(x,z,t=O) = Csix,z) (2. 55) 

Ts(x=O,z,t) = Ts . ( z, t) 
1-n 

(2. 56) 
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Cs z, t) 

Tg. (x, t), 
1-n 

(2.57} 

(2.58) 

For a simulation of the dynamic behaviour of the pellet

indurating plant the equations (2.51} to (2.53) together with 

the equations (2.4), (2. 7) and (2.8) must be solved. 

For a comparison of the effectiveness of different 

simulation methods the addition of Equation (2.53) does not 

fundamentally change the problem. Moreover, when pure hematite 

ores are processed in the indurating , no chemica! 

reaction can be ignored and the pellet-bed equations are 

essentially the same for indurating and cooling zones. 

Let us now take a closer look at the equations (2.51), 

(2.52}, (2.4} and (2.8}, for, after all, mathematica! rnadelling 

not only serves to arrive at quantitative simulation results, 

but also to gain insight into the model's behaviour, by 

inspeetion of the equations as well as by (approximate} 

analytica! solution. The equations (2.51) and (2.52) forma 

set of hyperbolic partial-differential equations with 

differential quotients with respect to three independent 

variables x, t and z. At first sight they have a simple 

structure with attractive features like one-way influences 

(see Figure 5.3). 

For a set of hyperbolic partial-differential equations 

the solution at a certain point in space and time is completely 

determined by the initia! and/or boundary conditions which are 

situated on the same characteristic as the point of which the 

solution is required. Physically speaking, this comes down to 

the solution by following a segment moving along with the bed. 

In this way, i.e. solving the partial differential equations 

along the characteristics, the total bed equations go over 

again into the moving segment equations (2.47) and (2.48). 

Under certain simplifying assumptions these equations can be 

solved analytically as is shown in Chapter 4. 

However, the additional equation (2.8) and especially the 



flow-pressure drop relation like (2.4} or any similar 

expression,complicate the salution of (2.51} and (2. 

enormously. For the gas flow rates Fg(t,x) are significantly 

dependent on the pressure drop ~P, the bed porosity s and the· 

gas temperatures (t,x,z) everywhere in the bed. Hence, due 

to variations in and gas temperatures in the bed during 

transients, the gas flow distribution over the bed will also 

change. Therefore, inside a zone, all flows and temperatures 

are influenced and have an effect on all other flows and 

temperatures. Moreover, since the total gas flow rate to a 

zone of the bed is coupled with the pressure difference over 

the bed by means of one or more appropriate fan characteristics, 

the total gas flow rate through a cernpartment can , which 

will have an effect on other cornpartments of the plant where 

the same gas stream is flowing through. In this way, all 

ternperatures and flows are coupled with all other temperatures 

and flows in the bed. 

In order to avoid burdening the discussion that follows 

with the complications of taking the interactions between the 

indurating and the cooling zones into account, we shall 

subsequently limit the discussion to the cooling zones of the 

pelletising I but the results are equally to 

the burning zones. In Chapter 9 we shall briefly reconsider 

the problem introduced by the coupling. 

Due to these interactions, the solutions for the rnaving 

segment equations were found to be of little use for the 

dynarnic simulation of the bed equations tagether with (2.4} 

and (2.8}. Hence, the studies of the rnaving segment 

equations mainly served as a first guide to get in 

the problern and to find the necessary nurnber of in 

a segment for an accurate simulation of the vertical 

temperature profiles, resulting in aso-called ~-rule /57/. 

However, although we do not transfarm the (2.51) 

and (2.52) to their characteristic forrn, this does not mean 

that we did not make advantage of the fact that the salution 

is determined on a characteristic path. As will be shown in 

Section 5.4, the numerical integration methad used in the 
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digital calculation in the time domain takes such a ratio for 

the time and position intervals that the equations are in 

fact solved for points lying on the characteristic. 
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C h a p t e r T h r e e 

T R A N S F 0 R M A T I 0 N M E T H 0 D S 

3.1 INTRODUCTION 

The difficulties in solving the dynamic bed equations 

are caused by the distributed character tagether with the 

nonlinearity of the equations. In case certain assumptions 

and/or approximations are permissible, feasible solutions 

can be obtained after transformation of the equations into 

a more manageable form. For the purpose of analog and hybrid 

simulation the equations are approximated by a set of 

difference-differential euqtaions and for digtal simulation 

by a set of difference equations. 

In Section 3.2 the backward- and central-difference 

approximations, which will be used in the subsequent chapters, 

are applied to a single first-order differential equation 

and are shown to be mathematically sound. 

The equations (2.51) and (2.52) have to be solved tagether 

with (2.5) and (2.8) which determine the values of Fg and U. 

The non-linear character tagether with the coupling of these 

equations complicates the solution. A considerable saving of 

computations can be obtained by linearisation. In Section 3.3 

the linearisation procedure is described and applied to the 

model equations. 

Linear(ised) partial-differential equations can also be 

simplified to ordinary-differential equations or pure 

algebraic equations by means of integral-transform methods. 

In Section 3.4 some of them are surveyed and Laplace 

transformation is found to be preferable. 

Linear partial-differential equations can be solved 

analytically without segmentation. In Chapter 4, however, it 

will be shown for a segment of the pellet bed that segmentation 

methods are superior. 

By means of the transformation methods discussed in this 
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chapter the rnaving bed equations can be prepared for 

simulation on digital, hybrid or analog computers. 

5.2 FINITE-DIFFERENCE METHODS 

In literature about process dynamics /15,27/ the 

transformation of (partial-)differential equations to 

difference(-differential) equations is mostly performed as 

fellows: the continuous space and/or time coordinates which 

occur in the differential operator(s) are divided into a 

number of segments within which the time- and/or space

dependent variables are assumed to be uniform. The values of 

these dependent variables in successive segments are obtained 

by defining input and output variables for a segment and 

equating each input of a segment to an output of a preceding 

segment, etc. By means of a simple relationship a value can 

be assigned to the variable in the segment: if a so-called 

backward-difference approximation is used, the outgoing value 

of the segment is taken equal to the value in the segment, and 

with a central-difference approximation the value in the 

segment is taken equal to the arithmetic mean of incoming and 

outgoing values. 

We call this procedure to transferm a differential equation 

into a set of difference equations segmentation. In the 

various dialects encountered in literature, many synonyms 

exist for segmentation, e.g. lumping, discretisation, taking 

finite differences. 

The distributed character of the equations (2.51) and 

(2.52) is removed by segmentation of the space-dependent 

quantities, e.g. temperatures.Ts and , gas flow rate Fg, 

heat transfer coefficient U and specific heats vs and yg. 

We are forced to fellow this procedure, since, except for some 

simple field problems /26/, no analog machines are available 

which simulate three-dimensional partial-differential 

equations. When using analog or hybrid simulators, ene of the 

independent variables may remain continuous, while in digital 

calculations segmentation must be applied to all continuous 

independent variables. 
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The process of segmentation will be discussed in general 

in this section. As different finite-difference schemes will 

be used for various simulations, the actual transformations 

of (2.51) and (2.52) to their respective finite-difference 

approximations will be postponed to Sections 2 of Chapters 5 

to 8. Here, only a short survey will be given of the applied 

difference schemes and of some of their mathematical 

properties. 

The process equations that are obtained after segmentation 

and backward- or central-difference approximation of the 

original differential equations are equal to the equations 

that represent some linear multistep algorithms. Following 

the numerical of Lambert /41/, we will showfora 

first-order differential equation that these algorithms - and 

hence the res~lting backward- and central-difference 

approximations - are consistent, stable and convergent. 

Consider the boundary value problem for a s first-

order differential equation 

cp(x,f) (3.1) 

with boundary condition 

( 3. 2) 

We seek a salution in the range O~x~X and we assume that the 

problem has a unique, continuously differentiable solution, 

which we shall indicate by f(x). Consider the sequence of 

{xm} defined by m dx. m=0,1.2 •...• M. The 

parameter dx is called the steplength. We seek an approximate 

salution on the discrete set lm=0.1.2, ...• M=X/6x}. Let f m 
be an approximation to the exact salution at x , that is, to m 
f(x ), and let$ = ~ ). If a computational methad for m m 
determining the sequence {f } takes the farm of a linear m 
relationship between f .• ~ .• j=O,l •...• k, we call it a 

m+J m+J 
linear k-step method. The linear multistep methad 

may thus be written as 

k k 

I a. 
J 

:::: I s :i ~ • ;i=O v m+J 
( 3. 3) 

a 
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wh.ere aj and 6 j are constants. We assume that ak :1 0 and that 

not both a
0 

and B0 are zero. Since (3.3) can be multiplied on 

both sides by the same constant without altering the relation

ship, we assume that ak = 1. 

The method (3.3) is explicit if Bk 0, and implicit if 

Bk :1 0. For an explicit method, equation (3.3) yields the 

current value fm+k directly in terros of fm+j' ~m+j' j=O,l, ... , 

k-1, which at this stage of the computation, have already been 

calculated. An implicit method, however, will call for the 

solution, at each stage of the computation, of the equation 

= + ( 3. 4) 

where ~ is a known function of the previously calculated 

values fm+j' ~m+j' l, ... ,k-1. When the original 

differential equation in (3.1) is linear, then (3.4) is also 

linear in fm+k' and there is no problem in solving it. 

Todetermine the coefficients a., B., we consider the 
J J 

Taylor-series expansion of f(x +~x) about x : 
m m 

= f(x ) m + 
ix=x + 

m 

~~-2 d2{1 + •••• 
dx x=x ( 3. 5) m 

If we truncate this expansion after two terros and substitute 

for ~ the differential equation ,(3.1), we have 

f(xm+~x) = f(xm) + ~x <P(x ,f(x )) 
m m 

( 3. 6) 

a re lation which is in error by 

r•xJ' ~~ • 3 a' .[I + 
2! dx 2 

3! dx
3 

x=x m 

(3.7} 

Equation (3.6) expresses an approximate relation between exact 

values of the salution of (3.1). We can also interpret it as 

an exact relation between approximate values of the salution 

of (3.1} if we replace f(x ), f(x +~x) by f, f +1 ' m m m m 
respectively, yielding 

= + (3.8) 
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an linear one-step method. It is, in fact, Euler's 

rule, the of all linear multistep methods. This 

relation is also known as forward-difference approximation. 

The error associated withit is given by the expression {3.7). 

In the same way expansion of f(xm+l-~x) about 

the backward-difference approximation 

+' 
'm+l 

+ nx 
1 

{3.9) 

which is the implicit one-step method. This relation 

is in error 

t:.x 2 

2! 

!::.x 3 

3! 
+ - .•• {3.10) 

Similar 

of given 

accurate one-step 

can be used to derive any linear methad 

Thus if we wish to find the most 

methad 

+ ÓX ( 13 1 

we write down the associated 

f(x +6X) + m 
(x ) 

m 

and choose a
0

• s
1

• s0 so as 

accurate as possible. The 

f(x +~x) 
m 

f(x ) + ~ 
m 

dfl = ~fl ïJx x=x +t:,x = x=x 
m m 

+ !:,x 

1 + (3 .11) 

relationship 

(3 .12) 

+ + ... ( 3 .13) 

+ + ... (3 .14) 

Substituting in (3.12) and collecting the terms on the left

hand side gives 
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+ ••• " 0 

(3.15) 

where 

cl = 1 Bl - Bo 

c2 
1 = 2- [31 

c3 
1 1 
6- 2 [31 

Thus, on order to make the approximation (3.12) second-order 

correct, we choose a 0=-1, s 1 =s 0=~. c3 then takes the value 

-1/12. 

The linear second-order one-step method can now be 

described by 

+ (3.16) 

the trapezoidal rule or central-difference approximation. Its 

local truncation error is 

+ ••• (3.17) 

For the numerical simulation of (2.51) and {2.52) we use 

backward and central finite-difference methods. A basic 

property which we demand of the finite-difference methods is 

that the solution by the methods converges to the 

exact solution as the step length tends to zero. Before 

investigating whether our difference methods meet these 

requirements, some mathematica! properties have to be defined. 

By definition, the linear multistep method (3.3) is said to 

be convergent, if for all boundary value problems (3.1), (3.2) 

~im f = f(x ) 
~O m m 

(3.18) 

mhx=x m 
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holds for all x s x] , ~nd for all solutions } of the 

difference equation (3.3) satisfying boundary condition (3.2). 

The linear multistep methad (3.3) is defined to be of 

order p if in {3.15) - 0 - 0 0 ~ 0 - Jl - • ~p+1 r · 

Also by definition, the linear multistep methad (3.3) is 

said to be consis t if it has order p > 1. 

The first characteristic polynomial of the linear multistep 

methad (3.3) is defined as 

k 
p(ç) = (3.19) 

By definition the linear multistep methad (3.3) is said to be 

stable, if noroot of the first characteristic polynomial 

(3.19) has a modulus greater than one, and if every root with 

modulus one is simple, a condition that is bound to appeal to 

any control engineer. The necessary and sufficient conditions 

for a linear multistep method to be convergent are that it be 

consistentand stable, as is shown in /41/. 

Application of the definition of consistency and stability 

to (3.9) and {3.16) immediately shows the convergence property 

of the backward- and central-difference approximations for 

ordinary differential equations. 

A more general definition of consistency is that the 

segmented equations reduce to the original (partial) 

differential equation in the limit of vanishing interval length. 

Stability is defined more generally as the condition that the 

salution of the differential equation problem remains finite 

in a finite time interval. 

Multidimensional versions of backward- and central

difference approximations are derived in Chapter 5. They 

yield practical finite-difference schemes for the numerical 

salution of (2.51) and (2.52), which are known in mathematical 

literature as the first- and second-order correct, implicit 

difference formulae for hyperbalie partial differential 

equations /48/. By the methad of Von Neumann /48/ it can be 

proven that both difference approximations are again consistent, 

stable and convergent. 
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3.3 LINEARISATION 

When the salution of a non-linear static model requires a 

large number of time-consuming calculations (in the case of the 

pellet-indurating plant gas flow rates are determined for 

each segment as a function of pressure drop, and the void 

fraction and gas temperatures in all other segments, and the 

heat transfer coefficients are calculated as functions of the 

gas flows), the digital simulation of a dynamic model may 

become even more time consuming than a static simulation, 

unless, of course the latter comes down to the same. After 

segmentation of the time variable, a single computation step 

in the time direction might require as much time as a static 

solution. A possibility to speed up the calculation of the 

dynamic behaviour is to replace the time-consuming non-linear 

expressions by their linear approximations. 

Starting from non-linear static equations, eperating values 

for a typical process situation are calculated for each 

variable everywhere in the bed. These steady-state values 

are obtained from an Algol program based on a numerical 

simulation of the equations (2.51) to (2.53) without 

accumulation terms tagether with the equations (2.4) 

and (2.8) /69/. Some of the resulting steady-state pellet and 

gas temperature profiles are shown in Figures 3.1 and 3.2. 

The values given by this program are taken as the starting 

point in our dynamic model studies, after which all non-linear 

expressions are expanded into Taylor series to describe the 

effect of deviations from the stationary eperating conditions. 

The linearised equations are obtained by neglecting all secend 

and higher order terms, and retaining linear expressions only. 

To make this linearisation procedure permissible, all 

deviations as well as the second- and higher-order derivatives 

must be small ('small' signals and 'smooth' non-linearities). 

An attractive feature of the linearisation approach is that it 

gives a first estimate of the dynamic response, for its 

results are true for the non-linear case as well, provided the 

disturbances are sufficiently small and Taylor series 

expansion is possible (no hysteresis for example). Therefore, 

it can be used for the design of regulators cantrolling non-
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linear processes /56/. Of course, the linearisation approach 

is not necessarily applicable to start-up and shut-down 
procedures or feed-forward control problems. 

The problem of establishing the range over which the linear 

approximation leads to satisfactory results has received little 

attention in the literature. For simple problems, nouglas 

developed a perturbation analysis to test the validity of the 

linearisation /20/. In more complicated situations, however, 

the dummy equations which are needed to test the linearity are 

more difficult to solve than the original non-linear equations. 

In those circumstances this aspect can be partly covered by a 

seperate approach based on static non-linear calculations. 

When each of the input variables (alone, and in combination 

with each other) are successively in the neighbourhood of and 

further away from the steady-state value around which the 

equations have been linearised, the degree of non-linearity 

of the non-linear static model can be investigated. In the 

case of the pellet-indurating plant, variations of the input 

variables with 1% and 10% with respect to their original 

steady-state values did not show any striking non-linear 

effects. 

To calculate the dynamics of the cooling zones, equations 

(2.51) and (2.52), which are non~linear when gas flow and bed 

velocity disturbances are considered, are linearised around a 

steady state (denoted by overlined symbols) 

a(Ts+tsJ + 
llB at J.!S 

(F+-f' J a(Tfj+tgJ 
yg g Jg <Jz 

a (Ts+ts) 
.;;_;_;:..;i):-x..:..;::...:..... =A 

A({} + au .{' J { 8Fg J{J 

+ fg){(Tg+tg)-(Ts+ts)} 

(3.20) 

- (Tg+tg)} (3.21) 

where small symbols denote deviations from the steady-state 

values. The linearised equations become after reaarangement 

and subtraction of the steady-state relations 

+ JlS Vs + U A} ts -UAtg+ aTs 
]lS dX VS + 

w --+ A (Ts - Tg) fg 0 {3.22} 
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{yg 
a 
az + U A} tg - ' A ts + aTg au 

{yg -.-- A az = 0 

(3.23) 

OWing to the linearisation procedure the deviation of the gas 

flow rate from steady state, , which is used in (3.22) and 

(3.23) as an input variable, depends linearly on variations in 

pressure drop, void fraction, and the gas dens which is 

determined by the temperature. Hence, instead of (2.5), we 

have 

+ 
aFg + -tq 
dTg ~ 

(3.24) 

The last term on the right~hand side of (3.24) is small compared 

with the other ones and will at first instanee be neglected. 

Lateron, it will be shown that its effects should also be 

ineorporated. Likewise, the E dependences of ~s and A are small 

in comparison with the € dependenee of Fg and therefore they are 

omitted in (3.20) and (3.21). 

3. 4 INTEGRAL-1'RANSFORM METHODS 

The usefulness of an integral-transform methad is determined 

by the types of operatien performed on f(x) whieh are 

transformed by the integral 

= 
a 

b 
r 
' 

f(x) dx 

into algebraie on F(q). The kernel k(x,s) 

(3.25) 

determines the type of transformation. A summary of transfarm 

methods is in /3/. 

Best-known are the Laplaee and Fourier transforms. Other 

transfarms may be used to solve problems but most of 

them involve transeendental functions (like Bessel 

functions in Hankel transforms) . A few are listed in Table 

3 .1. The in tabulation is on the operation whieh 

can be transformed most simply, since this is the key to the 

salution of the equations. From Table 3.1 it can be concluded 

that because of the type of the partial-differential equations 

(3.23) and (3.24) (all differential operators are of first 

order) for the salution of these equations other methods than 
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Table 3.1 SUMMARY OF INTEGRAL TRANSFORMS /3/ 

eperation Transfarm Transfarm of operation 

One-sided Laplace transfarm 

00 

F(q) = I e-qtf(t)dt q F(q) - f(O) 
0 

Twa-sided Laplace transfarm 

df(t) 
00 

F(q) f e-qtf(t)dt q F(q) ---a:t -oo 

Faurier transfarm 

00 

e -jwt f( t)dt F(w) I jw F(w) 
-oo 

Mellin transferm 

00 

tq-ldt t FM(q) I f(t) -q Fiq) 
0 

Hankel transfarm 

2 00 

2 l ~(tdf(t) )- ~f(t) F(q) = I f(t)tJ (qt)dt -q F(q) 
t dt dt t2 0 

V 

Meijer transferm 

a2rrtJ + ho açtJ 
00 \) 

F (q) = f f(t)tv+lK (qt)dt 2F ( ) _ r(v+1)2 f(OJ 
dt2 t t \) 0 \) q V q \1 

q 

(K is a modified b - 1 
0 

v Bessel functian) \) = -2--

Legendre transfarm 

~ (1-t2) df(t) 
1 

F(n) f f(t)P (t)dt -n(n+l)F(n) 
dt dt -1 n 

(P n a Legendre palynomial) . 
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Laplace and Fourier transformation are less favourable. 

Because of the fact that first-order differential equations 

are non-self-adjoint systems, only infinite integral transfarms 

may be applied /61/. 

Also, the application of other approximation methods is 

excluded by the first-order character of the differential 

equations. The modal analysis method /25/ and the functional 

approximation method /66/ are based on a functional 

approximation for the computer solution of initial-value 

partial-differential equation problems using eigenfunctions 

(modes). For application of these methods, the eigenvalue 

problem corresponding with a differential operator 

must have a discrete eigenvalue spectrum, since only in this 

case does the transformation of the differential operator make 

sense. Therefore, processes characterised by only first-order 

differential operators cannot use a modal simulation. 

In conclusion, it can be said that for the set of partial

differential equations (3.23) and (3.24) semi-infinite 

Laplace and Fourier transfarm methods seem most promising. 

In Chapter 4, single and double Laplace transfarm methods will 

be applied to a segment moving along with the pellet bed, and 

compared with respect to accuracy and computer time. When'the 
d time-differential operator is transformed to the frequency 

or the Laplace domain, use can be made of the control theory 

available in these domains and inverse transformation is often 

unnecessary. In Chapter 6 this method will be applied to the 

dynamic simulation of the cooling zone of the pellet-indurating 

plant. 
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C h a p t e r F o u r 

C 0 M P A R I S 0 N 0 F M E T H 0 D S B A S E D 

0 N L A P L A C E T R A N S F 0 R M A T I 0 N 

4.1 INTRODUCTION 
In this chapter we attempt to do two things, i.e. to arrive 

at the most efficient salution methad of a segment rnaving along 

with the pellet bed by means of single ar double, numerically 

ar analytically inverted Laplace transformation, and to gain 

whatever insight may be gained by these kinds of exercises. 

After a presentation of the dimensionless partial-differential 

equations descrihing the dynamic thermal behaviour of a segment 

in a simplified case in Sectien 4.2, three types of salution 

are considered. 

In Section 4.3 a double Laplace transfarm salution is 

presented. After double Laplace transformation of the segment 

equations and rearrangement of the resulting algebraic 

equations, the inverse transfo~mation is found by a judicieus 

series development of the transformed equations. 

In sectien 4.4 a single Laplace transfarm salution is 

derived. After single Laplace transformation of the segment 

equations, the resulting set of differentlal equations is 

further transformed into a set of difference equations by 

means of a central-difference approximation. Inverse Laplace 

transformation is applied after rearrangement of the equations. 

In Section 4.5 a numerical inversion salution is given. 

After single Laplace transformation of the segment equations 

the resulting differential equations are solved with the 

Laplace variable as a parameter. The salution ia the Laplace 

domain is numerically inverted. 

In Sectien 4.6 the three methods are compared with respect 

to accuracy and computer time. The most efficient salution 

method, viz. the single Laplace transfarm solution, is used 

in a simulation study described in Chapter 6. 

InSection 4.7 a general double Laplace transfarm salution 
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with non-uniform boundary conditions is derived. 

Part of the results presented in this have already 

been in /11,12/. 

4. 2 EQUA'PIONS 

InSection 2.4 the heat balances of solid and gas fora 

segment rnaving along with the bed resulted in the 

set of partial-differential equations 

= u A {Tg(z,eJ - Ts e)} (2.47) 

yg :::: U A {Ts eJ - e)} (2.48) 

where we have written Ts insteadof Ts*, with initialand 

boundary conditions 

(2.49) 

(2.50) 

If the inlet gas temperature (e) is constant and if the 

initial solid temperature Ts 0 (z) is independent of z, 

normalised dimensionless solid and gas temperatures can be 

defined by 

eJ (4 .1) 

eJ = (4. 2) 

provided that 

assuming constant 

Restricting the problem further by 

properties and constant gas flow rate, 

and introducing dimensionless residence time 

T = u A 
8 

iJS 

and dimensionless height 

(4. 3) 
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U A --- z yg Fg 

the moving segment equations (2.47) to (2.50) become 

àG(r,,T) 
d[, 

= G(<;,T) 

= S([,,T) 

- S(r,,T) 

- G(<;,T) 

with initial and boundary conditions 

(4.4) 

( 4. 5) 

{4.6) 

(4.7) 

(4.8) 

Other boundary conditions for this simplifyed model will be 

considered inSection 4.7. 

4.3 DOUBLE LAPLACE TRANSFORM SOLUTION 

A number of papers descrihing the thermal behaviour of a 

regenerator or a blast furnace stove were publisbed between 

1926 and 1931 /28,29,30,51,52,62/. A survey is given in the 

book by Jakob (1957) /35/. A~ this literature appeared before 

the advent of modern computers, many analytical solutions 

exist for thesetof equations (4.5) to (4.8), but all of them 

are in infinite series form, so that for practical use the 

series must be truncated. The analytical solution obtained 

by Kohlmayr in equation (12) of /37/ (1968) was presented as 

being the most efficient of all. His solution will be derived 

here. 

Let the double Laplace transform (DLT) of G(<;,T) be defined 

by 'V oe oo 

~(p,q) L{G(<;,T);p,q} = f f G(r,,Tl e-pr;,-qTd[,dT (4.9) 
0 0 

N.B. One-sided Laplace transformation with respect to r, is 

permitted because the height of the segment of the pellet bed 

can be thought infinite without changing" the model results at 

at any he·ight z. 
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The DLT of S(ç,T) is obtained analogously. The DLT 

formulation of (4.5) to (4.8) is then given by the following 

set of algebraic equations 

'V 

+ (q + v srp, 
1 

'V 

rp + v crp,qJ 0 

and the DLT of the normalised gas temperature response 

function G(ç,,) is found as 

1 
- p{(p+l)(q+1} 

Application of 

I 
n=O 

1 
n+1 x 

1} 

provided that x 2>1, converts (4.12) into 

'V 

?.Jrp,qJ = I 
n=O p(p+.Z 

'V 

For the remaining task of inverting ?.;(p,q) the algebraic 

identity 

1 1 

p(p+l)n+l 
:::: 

p 

can be substituted in (4.14) 

'V 

~ 
n 

1 ?';(p,q) = z: - I 
n=O m=O (p+l 

1 1 
n 

= I p q r +" )n+l m=O ,q L 

( 4 .10) 

( 4. 11) 

( 4. 12) 

(4.13) 

(4.14) 

(4 .15) 

(4 .16) 

This expression can be inverted because the elementary DLT pair 

49 



Ç,m -aç ,n -bT 
L{ -, e --; e ; p.,q } = m. n. 

1 

is known. Thus the following representation of the gas 

temperature response function is found 

G(Ç,, T} 1 e-r;;-, L 
n=O 

m 
.L 
m! 

(4.171 

( 4. 18) 

In computations, only a finite number of terros of this 

infinite series can be taken into account. The truncated 

salution is 

N n 
= 1 I I (4.19) 

n=O m=O 

See Section 4.6 for an evaluation of this solution. 

4.4 SINGLE LAPLAGE TRANSFORM SOLUTION 

According to the central-difference approximation (see 

Section 3.2) applied to the spatial variable, the following 

N differential and N algebraic equations result instead of the 

two originalpartial-differential equations (4.5) and (4.6) 

with boundary conditions (4.7) and (4.8) 

Gn-1(T} 
S (T} = a,n (4.20} 

G (T} - Gn-1 (T) Gn-l(T) (T) 
n = s (T) 

r;;""!N a,n (4.21} 

for n=1, 2, ••• ,N with boundary conditions 

S (c=O} = 1 a,n for n=1,2,. •• ,N 

where 

( 4. 8) 
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for c>O 

S (T) = ~{ {T} + Sn(T)}. a,n 
Ç, was an independent variable. 

(4. 22) 

( 4. 2 3 )• 

In Equations (4.5) tv 

Now, in the definition 



of S (T) and G (T), n replaces ç while the fixed height of 
a,n * n 

the segment ç acts as a parameter in the equations. 

Applying Laplace transformation with respect to time and 

using the initial conditions, the following equations can be 

obtained 

q [; (q) 
a,n 

(VqJ - ~n-l(q) 

ç""/N 

- ']j (q) 
a,n 

= ']j (q) 
a,n 

By elimination of~ (q), ']j (q) can be expressedas a 
n a,n 

function of~ 
1

(q) only. ~ (q) can be calculated n- n 

(4. 24) 

(4. 25) 

afterwards according to (4.25). Tagether with the boundary 

condition (4.23) the following computation scheme results 

~o(qJ = 0 (4.26) 

']j (q) 
T+ ~n-/q) 

= + 
a,n 1 + T+q 1 + T+q 

for n=1,2, .•. ,N (4. 27) 

~ (q) 
n 

T+ - T 
+ - ']j (q) for n=1,2, ... ,N 

T+ a,n 
(4. 28' 

where 

T = 1 (4. 29) 

"" 
T+ 1 + L 

2N 
(4. 30) 

Comparison of (2.31) and (2.32) with (4.29) and (4.30) shows 

that the dimensionless constants T_ and T+ are similar to Tl 

and T 2 , respectively, when U is taken equal to h. 

U A 
T = - Tl IJS 

(4. 31) 

= U A 
T+ -T 

]JS 2 (4. 32) 

Rearranging (4.26) to (4.28), the Laplace transfarm of the 

temperature of the outcoming gas can be written as 
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= 
1 - }_ f1 + T_qlN 

q q [1 + '+qj 
(4. 33) 

·rhe gas temperature between the layers n and n-1 fellows from 

this equation by replacing N by n (remember, however, that '+ 

and T still depend on N) • 

The transfer function between the incoming and outgoing 

gas temperature of a segment can be derived in a similar way 

from (4.20) and (4.21~ with boundary condition S (T) = 0 a, n 
for n=1,2, ..• ,N insteadof (4.22), as 

(4.34) 

It resembles the transfer function encountered in Chapter 2 

?fgN(q) 

~ 
+ T 1q 

3 K~ {RvS% coth(Ryl!iJ - l}lN 
= 

q R KS KS 

1J 

(2.33) 
Jig ofqJ + T q 3 

KS {R~ coth(Rvf!!J -
2 R2 KS KS 

q . / 

Moreover, bath transfer functions are identical when the 

thermal conductivity inside the pellets is infinite, as can 

be shown by application of the series development 

lim {~(x coth x - 1)} = 1 
x+O x

2 
x=R fë[ VK$ 

By means of the relation 

1 + T_q 
= T_ [1 

'+ 

1/T_- 1/T l 
+ q + 1/T:J 

~N(q) of (4.33) can also be written as 

1 = q 
}_ l'-]Nt1 + 1/T_- 1/T+]N 
q L'+ l q + 1/T+ 
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Now, using the transfarm pair 

r-1 
(4. 38) 

and the algebraic 

N 
1 + I (4.39} 

r=l 

the following representatio~ of the gas temperature response 

function is found 

[::]" N 
Y' r-1 ( I )m 

2(-;:) " rN) 
.TT+ 

( 4. 40) = e L m! r-=1 
'p 

The dependenee of on the parameter ç* is hidden in the 
2 

coefficients + and T • 

Another solution is obtained when the relation 

1 + T_q T - T+ q -
1 + (4. 41) 

1 + T+q T+ q + 

and, hen:::e, means of Newton's binomial formula 

rl + '-r 1' 

N I T - :hJ 1 + ~~ (~) l -
ll + '+q r=l q + 

(4. 42) 

is substituted into (4. 33) 

1 
q 

lV 

I 
r=1 

(4.43) 

Inverse transformation can be found in a similar way 

as for (4.37) resulting into 
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= (4.44) 

In spite of the similarity of (4.40) and (4.44) no simple way 

could be found to transferm these formulae into each other. 

From the formulae it looks - at first sight - difficult to 

recognise their accuracy when only a small number of terms are 

used. But in the derivation of (4.40) the principal part of 

the transfer function is split into a parallel circuit 

consisting of a proportional element and a first-order 

response function, and in the derivation of (4.44) into a 

parallel circuit consisting of a proportional element and a 

tame differentiator. Application of Newton's binomial formula 

shows that the N-th power of the right-hand side of (4.41) can 

be seen as a parallel circuit consisting of 

- 1 proportional element 

- 1 tame differentiator 

- 2 tame differentiators in series 

N tame differentiators in series 

The N-th power of the right-hand side of (4.36) can be seen as 

a parallel circuit consisting of 

- 1 proportional element 

- 1 first order 

2 first orders in series 

- N first orders in series 

Hence, after n terms in the series development, (4.40) is more 

accurate for small values of T and (4.44) is more accurate for 
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large values. Since temperature responses at small and 

intermediate values of T are more important than large 

values of T (a segment is only a limited time in a zone and at 

longer residence times the outgoing gas temperature would 

approach the gas inlet temperature) , only temperature response 

(4.40) will be evaluated in Section 4.6. 

4.5 NUMERICAL-INVERSION SOLUTION 

Af ter 

(4.8) 

transformation with respect to ç, (4.5) to 

T) 

-r=O) 
1 = p 

Elimination of S(p,T) and salution of the 

differential equation gives the following expression for 

G T) 

e 

Introducing the definition of G(p,T), we obtain 

"' 
G(ç,,) e-pç dç = p(p;l) e 

- _E_ ~ 
p+1 ' 

( 4. 4 5) 

(4.46) 

(4.47) 

(4.48) 

(4. 49) 

which, upon substitution of x= e ç, which amounts to the 

introduetion of another vertical scale with finite bounds, 

becomes 

G(-ln(x)~T) dx = 
p 

1 
T 

e (4. 50) 

The integral expression in the left-hand side of (4.50) can be 

approximated numerically by a finite sum of N terros consisting 

of the value of the integrand in a number of times a 

weighting factor wn. The and have to be chosen so that 
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N 1 p-1 I w x G(-tn(x ) , ·r) approximates f x- G(-tn(x),-r) dx. 
n=l 

n n n 
0 

Hence, we may write 

N T 

I w x G(-ln(x J,-r) e (4.51) 
n=l 

n n n 

Let now p assume N different values 1,2, ... ,N. Then, (4.51) 

represents a set of N equations with N unknowns G. After 

matrix inversion, we can write instead of (4.51) 

N 
I 

p=l 

A __ 1_ 
np p(p+l) e (4.52) 

The index N refers to the fact that an (NxNJ-matrix has been 

inverted. The elements A of the {NxN)-matrix A have to be 
np 

calculated only once from the xn and wn. Bellman et al. /7/ 

take for xn the roots of the shifted Legendre polynomials of 

degree N with appropriate weighting factors w . For N=3,4, ... , n 
15 the matrices A resulting from this choice of x and w are 

n n 
given in appendix V of /7/. 

The calculation procedure according to the numerical

inversion method can be summarised as follows: for N real 

values of p 

1 
p(p+l) 

_ _E_, 
e p+1 

is calculated. By multiplication with a known matrix ~. N 

points of the response in the ' domain are obtained. In the 

next sectien this method will be evaluated. 

4.6 GOMPARISDN OF SOLUTION METHODS 

The accuracy of the approximate solutions GN from (4.19), 

(4.40) and (4.52) in the points ( ''j) where i=1,2, ... ,k and 

j=1,2, ... ,l can be expressed quantitatively by a quadratic 

error norm 
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k 
I (N) 

q [ ki I (4. 53) 
i=l 

As a second accuracy criterion the Chebyshev norm or maximum 

error norm is introduced 

I (N) = 
c max IG t(ç.,c.) 

i=l, 2, . .. , k exac & J 
GN(ç .,, .) I 

& J 
(4. 54) 

j=l, 2, ... , l 

Iq penalises the deviation of GN from Gexact in each point 

(ç.,, .) and therefore it is a measure of the quality with which 
& J . 

one of the solutions fits the whole profile. Ie only accounts 

for the deviation in that point (ç.,, .), where the approximate 
& J 

salution GN is worst, and therefore it only indicates the 

largest value of the difference IG t - GNI on a profile. exac 
If it is relatively small, then the first norm is bound to be 

relatively small too. 

The exact salution Gexact(çi''j) was approximated by 

calculating (4.19) for such a large value of N that 

GN(ç ., '.) 
& J 

< (4. 55) 
GN(ç.,,.) 

& J 

and is plotted in Figure 4.1. In Figures 4.2 and 4.3 the two 

Figure 4.1 Gas ternperature profiles at various times. Boundary 
and initial conditions: G(ç=O,T) = 0; S(ç,,=O) = 1 
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Figure 4.2 Accuracy of the three solution methods 
according to the error norm I versus 
time needed on the EL-XS. The number o~ terms N 
is indicated along the curves. 

.OI .02 

time (s) 

Figure 4.3 Accuracy of the three salution methods 
according to the Chebyshev norm Ie versus time 
needed on the EL-X8. The number ~f terms N is 
indicated along the curves. 



error norros Iq and with k=l=10 and çi=2,4, ... ,20, Tj=2,4, .. . , 

20 are plotted for different values of N in (4.19} 1 (4.40} and 

(4.52} versus the required computer time on the EL-X8 computer. 

The values of N used in the calculations are indicated along 

the curves. From these figures it can be seen that for none 

of the three salution methods are the results affected 

qualitatively by the choice between norm or This means 

that the approximate solutions are smooth curves without the 

sudden appearance of large deviations. 

According to Figure 4.2 the Laplace transfarm 

salution (4.40} needs less computer time than the other methods 

if the accuracy norm may be greater than 4 x 1 If I 
q 

must be smaller than 4 x 1 the double Laplace transfarm 

salution is the fastest method. This means that only for very 

accurate calculations the double Laplace transfarm salution is 

preferable. In view of the accuracy of the model equations, 

however 1 calculations with an accuracy better than 1% are 

unrealistic. Hence, for practical purposes 1 the single Laplace 

transfarm salution is the most efficient one. 

For an accuracy of 6 x 10- 4 the numerical-inversion 

salution needs 15 terros (N=15 in (4.52)) and the Laplace 

transfarm salution 25 terros (N=25 in (4.19)) 1 but nevertheless 

it is much faster. In building an analog model of the 

equations (4.40) and (4.52} the number of required integrators 

is of prime importance. This number equals the number N of 

terros needed in (4.40} and (4.52). Therefore, analog

simulation solutions using the numerical-inversion methad 

may be more efficient than the usual finite-difference 

solutions. This results corresponds with the of 

others /2 1 31 1 61/ that in simulating distributed systems special 

integral-transform methods may offer special advantages 1 e.g. 

save analog computer hardware. However, this is only true for 

low values of N1 since otherwise the numerical inversion methad 

may very inaccurate results owing to the very and 

opposite values of the coefficients of the A matrix. 

The three salution methods have only been compared for the 

equations of a segment (moving along with the bed) with uniform 

59 



initial condition. Non-uniform initial conditions complicate 

the double Laplace transfarm salution and the numerical

inversion solution, while the single Laplace transfarm 

salution can easily take it into account. 

4.7 EXTENSION OF DOUBLE LAPLAGE TRANSFORM SOLUTION FOR NON

UNIFORM INITIAL CONDITIONS 

When the initial temperature profile of the segment can be 

expressedas a finite power series in ç, the double Laplace 

transfarm salution is still possible, although it becomes moré 

complicated. In this sectien we will derive the general 

double Laplace transfarm salution for a segment with a non

uniform initial condition and apply it to the cases of a linear 

and a parabalie initial solid temperature profile. 

In addition to (4.5) and (4.6) 

as(r;,lo:J = G(r;, t) - S(ç, o:) 
dT 

22.!~ = S( ç, 1) - G(ç, o:) 
:Jç 

we now have as initial condition 

S(r;,, o::::O) = ho + hl I; + b2 I; 
2 

+ 

and again as boundary condition 

G(r;,=O,o:} = 0 

Applying the double Laplace transfarms 

'\, 

è:rp,qJ 

~(p,q) 

60 

"' .. 
= L{G(r;,,T);p,q} = J J 0(1.,,1) e-pç-qT dr;dt 

0 0 

r co oo 

= L{S(r;,T);p;q} = J f S(r;,T) e-pr;-qT dçdT 

0 0 

(4. 56) 

(4.57) 

(4.58) 

(4. 59) 

(4 .60) 

(4. 61) 



and the transfarms 

} = f S(ç,T=O) e-pç 
0 

00 

L{G(r,=O,T.);q} = f G(ç=O,T) e-qT dT 
c 

to (4.56) to (4.59), the following set of 

equations is obtained 

q 
êV 

:::: ~(p,q) 
êV 

fJ(p,q) 

p - fJ(ç=O,q) = ~/p,q) ~(p,q) 

with initial and boundary conditions 

c=O) 

= 0 

2b.2 
-3 + 

p 
+ 

( 4. 62) 

(4.63) 

(4. 64) 

( 4. 65) 

(4. 66) 

(4. 67) 

In this way the double Laplace transfarm of the normalieed gas 

temperature is found as 

---'--- + 
bl 2 b2 

2 + 3 (4. 68) 
p(pq+p+q) p (pq+p+q) p (pq+p+q) 

and the double Laplace transfarm of the solid temperature is 

given by 

bo bo+bl = --- + + ---;;_.;;;..._.;;;...._ + --:::'__;::._____:-__ + • • • + 
pq+p+q p(pq+p+q) 

In order to obtain the inverse transfarm of (4.68) and (4.69), 

the inverse Laplace transformation of 

1 

i/ p ipq+p+q) 
( i=O, 1, 2, ••• , n+ l) 
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must be known. Use is made of the two algebraic identities 

1 1 
k p 

(4.70) 

(4.71) 

In this way (4.68) and (4.69) can bedescribed as the product 

of a number of series with terros of the farm 

1 

with inverse double Laplace transfarm 

Now the application 

1- 1 = Ï 
P (pq~p+qJ jo=o 

= 

1 

1 
1: 
p 

= 

of (4.70) and {4.71) yields 
1 

1 

1 
j1 

1 
pi-1 (p+l)j 1+1 1--1 l: 

j =0 p'l--2 (p+li 2+1 

1 

p 1--2 (p+1 )j 2 +1 

1 

1 

= 

p 

p 

1 

p 

= 

1 
1--2 

1 

q 

2 

j2 
1 ·z: 

j -o pi 3 (p+1i ;/1 3-

(4.72) 

(4. 73) 



Subsequent substitution of these relations gives 

1 1 
~-(-----, = -

'( 
p pq+p+i{) p q 

1 L . 1 
j =0 (q+1)JO+ 

0 

1 
i-3 -

p 

Rearrangement of terros gives 

1 
:::: 

1 jo 

jo 
1 'i i-I 

-
j1=0 p 

j1 

'i 
j2=0 

j. 1 &-

L 
j .:::0 

& 

jo 

1 
i-2 

p 

(4. 74) 

1 

j1 ;: 'i l -"2 ____ 
i pi-l(q+l)jO+l 

+ 
pi-2(q+1)j0+] p (pq+p+q) [J q jo=o j =0 j =0 0 1 

+- ... + 

(4. 75) 

+ (-l)i-1 + 

j 0 j1 

'i 'i 'i 
j =0 j =0 j =0 

0 1 2 

Now the double Laplace transfarm salution of (4.56) to (4.59) 

for any initialsolid temperature profile of the farm (4.58) 

can be obtained by substitution of (4.75) in (4.68) and (4.69) 

and using (4.72) in order to obtain the inverse double Laplace 

transform. 

As an example, the double Laplace transfarm salution of 

(4.56) to (4.59) with the parabalie initial solid temperature 

profile 

(4. 76) 

will be given. The Laplace transfarm of (4.76) is 

+ 
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'\, 

S(p, r=O) = ( 4. 77) 
p 

Then the double Laplace transfarm of the normalised solid and 

gas temperatures are 

~(p,q) = b1+:::b2 2b,, 
+ _ _::___.....:::.. __ + ----- + " 

' 1 2( ) ;)( ) pq+p+q pI pq+p+q; p pq+p+q p pq+p+q 

~ 

~(p,q) 
bl __ ::__ __ + ~2 -=---- + -=-_ ___:::__ 

p (pq+p+q) 

With the help of (4.75) one finds 

and 
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+ (b +b ) ( _!_ -
0 1 

pq 

"' Jo+l 

J
0
Zo p(q+lJJo+1 + 

/ 1 l Jo+l 

l p3q - jo=O p2(q+l)JO+i 
+ 

(4. 78) 

(4.79) 

+ 

( 4. 80) 



+ 

+ 
I 1 
,~-

I J 
\ p q 

+ 

(4.81) 

+ 

J J (p+J 

Now using the inverse double Laplace transform (4.72), the 

normalised solid and gas temperatures as a function of s and T 

become 

T) =: 
-Ç-1 I' 

L 
j 

+ i 
2} r; -

-1· 202 

and 

+ 

_, 
e 

~-l 

j j 

) 
(

Ï -[-T 
~ e ;. 

/ j l 
Jolj/) + 

+ 

{4.82) 
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G( Ç,, T) - e-r;--r 

--r e 

jo 

L: L: 
j =0 j =0 

0 1 

L: 
j =0 

0 

jo 
(j 

0
+1h 

jo. 

+ 

+ e-r;--r 

jo 

l: L: 
j =0 j =0 

0 1 
+ 

(4. 83) 

In Figures 4.4 to 4.6 the solid temperature profiles at various 

times are plotted for linear and parabalie initial conditions. 
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S(~, l') 

Figure 4.4 Solid temperature profiles at 
various times. Linearly raising 
initia! profile: S(ç,-r=O)= 0.05 x ç; 
boundary condition: G(ç=O,-r) = 0. 



S( l;'' t") 

Figure 4.5 Solid temperature profiles at 
various times. Linearly deseending 
initial profile: S(~,r=O) = 1 0.05 x ç; 
boundary eondition: G(ç=D,r) = 0. 

------ S(~. t") 

Figure 4.6 Solid temperature profiles at 
various times. Parabalie initial 
eondition: S(ç,r=O) = 0.2 x ç- 0.01 
boundary eondition: G(ç=O,r) = 0. 

2 
ç ; 
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C h a p t e r F i V e 

D I G I T A L S I M U L A T I 0 N 

I N T I M E D 0 H A I N 

5.1 INTRODUCTION 

Finite-difference approximation is necessary for the 

salution of partial-differential equations on a digital 

computer when analytical solutions do nor exist or are too 

tedious. The extension of backward- and central-difference 

approximations from ordinary differential equations to 

partial-differential equations is fairly straightforward. 

The derivation of finite-difference approximations for the 

linearised model equations descrihing the thermal behaviour 

of the pellet bed is given in Sectien 5.2. In the case of 

a backward-difference approximation simple equations result. 

With a central-difference approximation the large number of 

terros appearing in the resulting difference equations can be 

reduced by introduetion of new variables, which considerably 

simplifies the calculations. 

The static and dynamic accuracy of the methods is considered 

in Section 5.3. A further analysis of the central-difference 

approximation resulted in a calculation scheme that is even 

simpler than that of the backward-difference method and still 

more accurate. 

After the conclusions in Section 5.4, the various 

calculation schemes are given explicitly in the appendix in 

Section 5.5. 

5.2 FINITE-DIFFERENCE APPROXIMATIONS 

When using finite differences, the three-dimensional TXZ

volume of interest in the txz-space is divided into a three

dimensional array of elementary volumes as shown in Figure 5.1. 

When the period of interest [o,T] is divided into L intervals, 

the horizontal bed length X into M segments and the vertical 
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z 

~ / / 
? I 

x 

~ 

ld ~ // ~ ., / / 
L 

t 

Division of the domain in elementary volumes 

Z into N layers, Lx;'JxN elementary volumes originate. 

The coordinates of the grid points are given by mX/M and 

nZ/N where l=0,1,2, ..• ,L, m=0,1,2, ... ,M and n=0,1,2, ••• ,N. 

Depending on the finite-difference scheme used, various 

difference approximations of {3.22) and (3.23) can be made. 

We will apply a first- and second-order correct approximation 

using backward and central differences, respectively. 

5 .. 2. 1 kward s 

When backward differences are ied, the solid and gas 

temperatures the elementary volume (l,m,n), which is defined 

as {t,x,zjtE(l-1,Z]xT/L,xe(m-l,m]xX/M,zE(n-1.n]x }, are taken 

egual to their ou values. The temperature derivatives in 

the elementary volume are according to a multidimensional 

version of (3.9) approximated as follows 

"v L 
n} T n n 

ats 'V M {ts ts } x -
ax i" l,m,n l,m-l,n 

&~m,.,n 

~ N 
{ z n n·d} 

n 

( 5. 1) 

{ 5. 21 

( 5. 3) 
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With the help of these approximations the equations 

corresponding to (3.22) and (3.23) can be solved numerically. 

After eliminatien of undesired variables, the unknown gas and 

solid temperatures can be expressed as linear functions of the 

already known temperatures and the velocities. 

For the backward-difference approximation the numerical 

salution can be expressed as fellows 

ts 
~-l,m,n 

ts 
ts ~.m-1,n 

l.,m,n = A tgz. m n-1 
tg > • 

'l,m,n 
VB~ 

fgz. m 
• 

where A is a (2x5)-matrix which, due to assumption 15 in 

Sectien 2.2, is only a function of m and n. 

(5.4) 

A 
all a12 al:S a14 a15 

(5.5) 

a21 a22 a24 a25 

The coefficients of A are given in the appendix in Sectien 5.5. 

If the initial and boundary conditions ts
0 

, ts 1 0 
and 

,m,n "• ,n 
tg 7 0 

as well as VB 7 and fg 1 are known, equation (5.4) 
~,m, " ~,m 

can be applied toeach elementary volume (l.,m,n), starting 

from (1,1,1) to (L,M,N). 

5.2.2 Central differenoes 

Consider one of the LxMxN elementary volumes, e.g. the 

(l.,m,n)-th in Figure 5.2. The center of this elementary 

volume is located at position 7,-~,m-~,n-~. Therefore, the 

physical properties of the whole of the (l.,m,n)-th volume 

will be represented by the appropriate symbol having the 

index ~-~,m-~,n-~. 

When central differences are used, we take the solid and 

gas temperatures equal to the arithmetic mean of the 

temperatures at the eight grid points 
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/ 
I 

/ 

{l,m-1,n-1) 

I 
I 

(1.1,m,n) 

/Btm-1,n-1) - - ~;r:=-.:=-==---+ 

Figure 5.2 Definition of solid and gas temperatures 
of the elementary volume (l,m,n) 

m-l:f_,n-~ 
= -8

1 
{(ts 1 +tsl 1J + (ts_,.., +tsl 1 1/,m..,n "m.,n- L--L_,m_,n -.1..,m" 

1 
n-J,; = 8 

1+tg1 ., 1 _) n- ,_.,-.1_,m- .,?l-1 

+ 

(5. 6) 

+ 

(5. 7) 

and the three differential guotients of eguations (3.22) and 

(3.23) are according to (3.16) approximated as follows 

atsi ~ L 

ll-J,;,m-J,;,n-J,; 4T { 
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- (ts +ts l-l,m,n l-l,m, - (ts +ts l-l,m-l,n l-l,m-1, 
} ( 5. 8) 

M 
{(tsz +tsz 1) + (tsl-1 +tsl-1 -1) + ,m,n ,m,n- ,m,n ,m,n 

- (ts +ts ) l,m-l,n l,m-1,n-1 (ts +ts )} 
l-1,m-1,n l-l,m-l,n-1 (5.9) 

{(tg +tg +tg +tg ) + l,m,n l-l,m,n l,m-l,n l-1,m-1,n 

- (tg +tg +tg +tg )} l,m,n-1 l-l,m,n-1 l,m-l,n-1 l-l,m-l,n-1 (5.10) 

A reduction of the number of temperatures needed for the 

numerical salution of (5.6) to (5.10) can be obtained by the 

introduetion of new variables for some recurring groups of 

temperatures, viz. these which have been denoted in brackets 

( •.. ) in (5.6) to (5.10). These new temperatures are averaged 

with respect to the t, x or z direction of the elementary 

volume. These averaged temperatures will be identified with 

index numbers halfway between the integer values and a bar 

over the symbols to indicate the averaging process. In this 

way the following new temperatures are introduced 
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ts = 1:;( ts + ts ( 5 .11) l,m,n-1:; l,m,n l,m, 

n-1:; 

ts l,m-1,n-1:; 

= ~(ts~ 1 + tsz 1 J 
&- ,m,n - ,m,n-1 (5 .12) 

J:i(ts1 _
1 

+ ts 1 _
1 

_
1
J 

&,m ,n "•m ,n 
(5.13) 

(5.14) 

M tgz + tgz 1 + tgz 1 + tgz 1 1 J < 5 • 15 l 
~m~n - ~m~n ~m- ~n - ~m- ~n 

= h(tg +tg +tg +tg ) 4 l,m,n-1 l-l,m,n-1 l,m-l,n-1 l-1,m-1,n-1 
(5 .16) 



and the equations (5.6) to (5.10) can be written as 

ts = J;j( tsz 1 + ts + ts 1 _ + tB"z 1 1 1) 
l-~,m-~,n-~ ,m,n-ry; l-1,m,n-~ l,m-1,n-ry; - ,m- ,n-ry; 

(5 .17) 

tgl-* m-1: n-*' 2 ~ 2:t 2 
~(tg 1 1 1 + tg 1 1 1 1) &-ry;,m-ry;,n &-ry;,m-ry;,n- (5 .18) 

3tsl 'V L 
(tsl 1 + at = ts + 

l-~,m-~,n-~ 
2T .,m~n-~ l,m-1,n-~ 

- ts - ts ) (5.19) 
l-1,m,n-~ l-1,m-1,n-~ 

3tsl 'V M 
(tsl 1 + tsl 1 + = 2X dX _,m"n-P§ -1,m,n-ry; 

l-~,m-~,n-~ 

- ts - ts ) (5. 20) l,m-1, n-~ l-l,m-l,n-~ 

3tgl 'V N 
(tgl-~,m-~,n tgl-~,m-~,n-1) (5. 21) = 

3z z 
l-f§_,m-l§_,n-~ 

In this way the equations corresponding to (3.22) and (3.23) 

can be solved numerically. After elimination of undesired 

variables the unknown gas and solid temperatures can be 

expressed as linear functions of the already known temperatures 

and the velocities. In matrix notation central-difference 

approximation gives the following relationship 

B 
ts 

l,m,n-~ 

tgl-~,m-~,n 

ts 
l-1,m,n-~ 

ts 
l,m-1,n-~ 

ts 
l-1,m-1,n-~ 

VSz-~ 

fgl-k m-k 2> 2 

( 5. 22) 
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where B is a (2x6)-matrix, which, like !, is only a function 

of m and n. 

B = b12 b13 b14 b15 bl6 

b22 b24 b25 b26 
(5. 23) 

The coefficients of B are given in the appendix in Section 5.5. 

The calculation procedure is the same as for the backward

difference approximation: when the initia! and boundary 

conditions ts ts and as well as O,m, l,O,n-~ l-~,m-~,0 
vsl-~ and m-~ are known, equation (5.22) can be 

calculated for each elementary volume (l,m,n) starting from 

(1,1,1) to (L,M,N). The "averaged" initialand boundary 

conditions ts 0 _L> tsl 0 _, and tgl_L needed for , m, n '1' , , n 'i '1', 0 
starting the calculation procedure (5.22}, are obtained by 

(5.11) and (5.15) from the 'real' initialand boundary 

conditions ts 0 , tsl 
0 

and tgl . ,m,n , ,n ,m,O 

5.3 ACCURACY OF THE SIMULATIONS 

5.3.1 Determination of statia aceuraay 

In the simulation studies of.the cooling section of the 

pellet-indurating plant there are three place- and time

dependent input variables, viz. the solid inlet temperature 

ts. (t, z), the gas inlet temperature tg. (t,x) and the gas 
~n ~n 

flow rate fg(t,x), and one time-dependent variable, tbe 

velocity of the moving grate vs(t). These four input 

variables determine the output variables: the solid and 

gas temperatures everywhere in the bed. A scheme of dependenee 

is shown in Figure 5.3. In the simulations the responses 

after a step disturbance in one of the input variables will 

be investigated. 

The accuracy of the static part of the response (the ultimate 

ultimate value which is reached after all transient phenomena 

have died out) will be studied first. This accuracy can be 

dealt with separately, for, when the dynamic part of the 
a ~ response is over, at 0 in (3.22) and (3.23) and the 
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ultiroate teroperatures follow froro the steady-state 

jlS V8 UA (tg - ts) +~A 'dFg (5.24) 

+ yg U A (ts - tg) + au A (Ta -
dFg 

yg (5. 25} 

A first for a salution roethad of (3.22) and (3.23) 

is that at least (5.24) and (5.25) are solved 

The siroulation of the equations (5.24) and (5.25) by roeans of 

a backward- and a central-difference approxiroation will be 

eeropared with each other and also with the more accurate 

siroulation of the non-linear static model. 

The procedure used for an accuracy test can be illustrated 

by the following Let the bed velocity Vs undergo a 

positive step disturbance which aroounts to e.g. 10% of its 

steady-state value The solid and gas teroperatures in the 

bed eventually becoroe constant, reaching their new static 

values. The accuracy of the static teroperature changes can be 

____... 
vs 

z 

i 

t t 

Figure 5.3 Scheme of dependenee of 

-x 

and output variables 
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determined by comparison with what we will call more accurate 

temperature changes. These are obtained by running the original 

non-linear model twice: once in the original working situation 

and once in the original situation with only the input velocity 

replaced by 1.1 x Vs, and the differences in temperatures 

between these two static model runs we will call the more 

accurate static temperature changes. They are more accurate 

because they have been derived (1) by means of a more 

accurate numerical salution method, i.e. a fourth-order Runge

Kutta integration procedure/~/, and (2) from non-linear 

model equations. In the same way, the static accuracy after 

a gas flow rate change, and a solid or gas inlet temperature 

disturbance can be determined. 

5.3.2 Static accuracy of the backward-difference model 

In Figure 5.4 the static pellet temperature change above in 

the bed at z=0.4 mafter a step disturbance of the incoming 

pellet temperature of 100 K is shown as function of the 

horizontal position x. The temperature scale has been chosen 

logarithmic since a prior~ and in first approximation, an 

exponential decrease of ts(t=oo,x,z) as function of x is 

expected. However, as a result of the temperature dependenee 

50 

ts(t.-oo,x,z.Am) 

(K) 

20 

5 

- -- backward-difference salution XIM.3m 

....... backward-difference salution X/M: 1m 

-- nonlinear static model salution 

20 30 

of the gas density pg, the gas 

mass flow rate Fg increases 

with lower temperatures. 

Therefore, at the end of the 

cooling zone the pellets are 

better cooled than would 

correspond to an exponential 

decrease. This is shown by the 

convexity of the temperatures 

in Figure 5.4. Although finer 

segmentation results in a 

somewhat better correspondence, 

the inclination of the 

temperature profiles obtained 
Figure 5.4 Static pellet temperature by a backward-difference 

-----+x(m) 

change at z=0.4m after an inlet pellet 
temperature disturbance of 100 K. approximation is less steep 
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Figure 5.6 Static gas temperature change after 
a gas inlet temperature disturbance 
of 20 K with gas flow rate correction. 
according to the non-linear static 
model ( ) and the backward
difference model with X/M~3m (---- -) 



than the corresponding more accurate solution. The 

remaining difference is mainly due to the changed gas 

flow distribution along the leng.th of the bed owinq to a 

different temperature profile, as will be illustrated below. 

Figure 5.5 shows the-static gas temperature changes at 

various heights in the bed (z=O, 0.2 and 0.4 m) aftera step 

disturbance of the gas inlet temperature of 20 K, plotted 

against the horizontal position x. Also in these calculations 

the gas flow through the bed Fg(x) was presumed to remain 
the same. From these temperature profiles it fellows that a 

more refined segmentation with respect to the x direction 

does not imprave the accuracy of the backward-difference 

approximation considerably. Particularly, the negative value 

of the static temperature change of the gas leaving the 
bed between x=? and x=21 m is not reproduced in the backward

difference simulation. This reversal is remarkable, for it 

means that although the gas inlet temperature has been 

increased by 20 K, at some places the gas can leave the bed 

at a lower temperature than before. The reasen herefore is 

formed by the temperature dependenee of the gas flow rate. 

Because of the gas temperature disturbance the gas flow 

distribution over the length of the bed Fg(x) changes. It 

becomes relatively smaller in the beginning of the cooling 

zone and larger at the end. The changed flow distribution 

tagether with the non-uniform pellet inlet temperature profile, 

will cause temperature profiles as produced by the non-linear 

static model. When the gas flow redistribution after a gas 

inlet temperature disturbance was appropriately taken into 

account by means of a correct~ve gas flow rate disturbance, a 

much better correspondence was obtained between our backward

difference simulation and the non-linear static model, as 

demonstrated by Figure 5.6. ·obviously, this redistribution 

is more influential than the remaining non-linear effects (see 

also the results discussed in Sectien 7.3). 

The static accuracy of the backward-difference model after 

a disturbance in the gas flow rate or the bed velocity is of 

the same order as for pellet and gas temperature disturbances. 
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5.3.3 Static accuracy of the centra model 

With identical segmentation, the static accuracy of the 

central-difference model is better than the static accuracy 

of the backward-difference model. This result was found for 

each disturbance and for all responses. As an example, the 

gas temperature changes after a gas flow rate step d'isturbance 

are shown in Figure 5.7 for the backward- as well as the 

central-difference roodels tagether with the non-linear model 

temperature change as reference. In Figure 5.8, the differences 

between each approximation and the more accurate model results 

are sketched. The result is in agreement with the expectation 

that - with an equal number of segments a second-order 

correct approximation gives better accuracy than a first-order 

correct one. 

With the centr?l-difference model a satisfactory static 

accuracy is obtained for all disturbances when the pellet 

___..l((m) 

20 30 

0 

·25 

·50 

l 
(K) ·75 

i9(t•w,x,Z•0.4) 

·100 

-150 

40 
i:. tg 

T 

20 

-10' 

-15 

-20 

----+x (m) 
40 

~~~~5~·~7 Static gas temperature 
at z=0.4m after a +10% gas 

flow rate change 

Figure 5.8 Difference between the 
backward- and central-difference 
models and the non-linear static 
model 
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bed is divided in horizontal segments of length àx = 3 m. The 

accuracy corresponding with this segmentation is even better 

than the static accuracy of the backward-difference model 

with segments of a lengt~ ~x = 1 m. 

5.3.4 Dynamia results 

The problem of the determination of the accuracy of the 

dynamic part of a salution methad for the cooling zone of the 

pellet bed is that - in contrast with the static situation 

where an accurate static simulation was available - there 

existed no exact dynamic salution as reference in the case 

considered here. 

However, for a parallel-flow heat exchanger with constant 

physical properties the theoretically expected exact 

temperature responses after a step disturbance in inlet 

temperature or velocity are known to be either a pure delay 

function (with a gain factor} or a cut-off first-order response 

function or a cut-off ramp function /64/. Because of the 

resemblance between parallel-flow and cross-flow heat 

exchangers, similar dynamic behaviour will come about for the 

pellet bed. This means that after a step disturbance in (1) 

pellet inlet temperature, (2) gas inlet temperature, (3} bed 

velocity or (4) gas flow rate, the pellet temperature response 

will be about (1) a pure delay (with a gain factor), (2) a cut

off first-order response function or (3J (4) a cut-off ramp 

(see Figure 5.13). 

Experience has taught us that in approximate solutions the 

difference between a cut-off first order, a normal first order 

and a cut-off ramp response fun?tion can not be distinguished 

very clearly. Therefore, the dynamic accuracy of the 

simulation methad can be evaluated best by consideration of the 

response after a pellet inlet temperature disturbance. 

In Figure 5.9 the backward-difference salution of the 

pellet temperature response function after a step disturbance 

in pellet inlet temperature of 100 K is shown tagether with the 

theoretically expected exact solution. The step character of 

the exact response function is approximated by an s-shaped 

curve, which becomes less steep further away from the beginning 
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of the bed. Figure 5.10 demonstrates that a finer segmentation 

with respect to the x direction results in a better 

approximation of the step function by the curve. 

In Figure 5.11 the central-difference solution of the pellet 

temperature response function after a step disturbance in 

pellet inlet temperature is shown with the exact 

solution. As can be seen , changing the ratio 

nx/nt strongly influences the character of the response 

function. The ratio 

= Vs (5.26) 

gives the best results, although even for this ratio the 

temperature responses show an behaviour in the 

neighbourhood of the discontinuity. This oscillation causes 

no static error in the solution. It can be removed when for 

\ ... 

(K) -----= 4X/Afa4.5Vs 

\ 
'\ 

\. _,.··" 

1 
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Figure 5.11 Pellet temperature responses at x=10.5m, z=.2m toa 
pellet inlet temperature step disturbance of lOOK 
according to the central-difference methad (5.22) with 
~x=3m and different values for üx/~t. 



the determination of the mean solid temperature only those 

pellet temperatures of the elementary volume are taken into 

account that are situated on or near the characteristic /48/ 

x = Vs t (5.27) 

Then we have instead of (5.17) 

~(tsl 1 + tsl 1 1 1) 
~m~n-~ - ~m- ~n-~ 

(5.28) 

As a consequence, the elementary relationship between the 

unknown solid and gas temperatures and the already known 

temperatures and veloeities becomes instead of (5.22) 

ts 
l-l,m,n-~ 

ts l,m-1, n-~ 

tsl 1 _,m:tn-.1§ c tsl-l,m-l,n-~ 
(5.29) 

tgl-h: m-h: n 
2:t 2-' 

VBz-~ 

fgz-~,m-~ 

where f, like ~. is a (2x6)-matrix which is only a function 

of m and n. 

c = cll c12 cl3 cl4 elS cl6 

c21 c22 c23 c24 c25 c26 

(5. 30) 

The coefficients of C are given in the appendix in Section 5.5. 

The result of the central-difference salution according to 

(5.29) is shown in Figure 5.12 for a pellet temperature 

response after an inlet pellet temperature step disturbance 

of 100 K. When again the ratio 6x/6t = Vs, the expected pure 

delay response is now simulated exactly. Values of 6x/6t that 

deviate from Vs cause oscillations in the neighbourhood of the 

discontinuity around the exact salution which are, however, 

still smaller than the oscillations corresponding with a 

salution according to (5.22). 
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Figure 5.12 Pellet temperature responses at x=10.5m, z=.2m toa 
pellet inlet temperature step disturbance of lOOK 
according to the central-dofference methad (5.29) with 
!J.x=3m and different values for !J.x/!J.t. 

The explanation of the exact simulation of the pure delay 

function is that for Ax/&t = Vs the coefficients o 11 , c 12 , c 21 
and o 22 become zero (as can be seen immediately from the 

appendix) and, hence, tsl L only depends on one solid , m, n-'1! 
temperature, viz. tsl-l,m-l,n-~· 

This also means that the central-difference approximation 

can be put in a calculation scheme of a {2x4)-matrix, 

which is even smaller than the. backward-difference calculation 

scheme. Hence, the statically and dynamically more accurate 

central-difference approximation can be put in such a form 

that it is even a faster salution methad than the backward

difference approximation. 

In Figure 5.13 the dynamic behaviour of the pellet bed after 

a step disturbance in each of the four input variables is shown 

according to both salution methods. From this picture it is 

seen that the central-difference salution produced the expected 

dynamic behaviour of a pure delay, a cut-off first order 
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response and ~wo cut-off ramp response functions, while the 

backward-difference salution shows after a inlet 

temperature disturbance an S-shaped higher-order response 

function (instead of the pure delay) and after each of the 

ether input disturbances a kind of first-order response 

function. 

5.4 CONCLUSIONS 

Two finite-difference roodels have been applied to simulate 

digitally the d ~amic behaviour of the cooling zone. The 

computing time for the simulation by means of the backward-

difference approximation in the calculation scheme 

(5.4) with a coarse horizontal segmentation (öx=Jm) was about 

2 minutes on the Philips EL-X8 computer. However, especially 

the dynamic accuracy was rather poor. Refinement of 

segmentation improved the accuracy but also raised the 

computation time. The accuracy of the dynamic part of the 

salution was not influenced appreciably by variations in the 

ratio öx/öt. 

Better accuracy was obtained with the central-difference 

approximation resulting in the calculation scheme (5.22). 

Simulation with a coarse horiz~ntal segmentation (6x=3m) 

produced static temperature profiles that are in close 

agreement with the exact ones and consumed about 4 minutes 

computer time on the EL-X8. The accuracy of the dynamic part 

of the salution is strongly influenced the ratio öx/öt. 

The value for this ratio is The oscilatory 

behaviour of the temperature step responses which is 

encountered after a step disturbance when applying a central

difference approximation, could be removed by adaptation of 

the finite-difference scheme ((5.29) insteadof (5.22)). In 

this way a calculation scheme was obtained that is even faster 

than the backward-difference approximation and still more 

accurate. It consumes about 1 minute computer time for the 

simulation of a dynamic response. 

For studies invalving feedback, e.g. from cooling to a 

burning zone, by means of digital simulation in the time 
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domain, many more time steps may have to be made and in that 
I 

case the total computing time may still become fairly long. 

5.5 APPENDIX: EXPRE:SSIONS FOR TllE MATRIX ELEMENTS 

The elements of the matrix A are 

;;;:: 

;;;:: 

1 
;;;:: 

;;;:: 

L 

A U yg J1i . 
(yg Fg + A TJ Z/N) 

{A (- -) U A Z/N [au A (T _ ) 'dTg ] , 
Ts-Tg + yg Fg + A TJ Z/N 'iJFg s Tg - yg 3z 1 

A U "JS L/T 

A Ti 'dTs 
u 118 ax 

;;;:: [-yg + aFg A(T8 -Tg) + ]:18 L/T + ~/ V8 M/X +TJA o;~ A(Tg-Ts)] 

where 

= \18 L/T + ~s V8 +A U yg Tg N/Z + A TJ 

yg 

The matrix elements depend on m and n as are a 

function of them: n' 
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The elements of B are 

b11 [ 
+ J:;(Ü A) 2 1 

\.!8 L/T - llB VB M/X - ~ U A (yg 'J!?j N/Z + ~ 11 A) 

b12 = [ 
- - J:;{U A)2 ] 

-\.tB L/T + \.tB VB M/X - ~ U A + (yg Fg N/Z + ~ Ü A) 

b13 [ 
J:;(u AJ

2 
] 

JlB L/T + \.tB Vs M/X - ~ U A + (yg pg N/Z + :f 11 A) 

b14 = {U A (1 + yg ~ N/Z - ~U A)} 
yg g N/Z + 'f Tl A 

b15 = 

b16 
1 

b1 
A 

dU -- óTg l - A(Ts-Tg} - yg 
+ óFg óz 

yg 'f!ij N/Z + ~ 'û A 

where 

b1 = llB L/T + llB 
J:; (U AJ 2 

M/X + ~ U A - yg Fg N/Z + ~ Tl A 

and 

b21 = 

b22 = 

b23 = 

b24 = 

b25 = 

b26 = 

where 

U A [J.lS L/T - \.tB M/X - ~ U A] 
4 b 2 llB L/T + J.!S 178 M/X + 'f Tl A 

U A [-\.tB L/T + \.tB VS M/X - ·~ U A] 
4 b 

2 
+JlB L/T + \.tB 178 M/X + 'f Û A 

UA 
4 b2 

1 - - J:; (U Al z;; { yg Fg N/Z - ~ U A + ps L/T + ll8 W M/X + ~ Tl A } 

+ ~ Ü A . êJU A(r,c-Ts)} 
J.lS L/T + pB 178 M/X + ~ TT A óFg _g 

are a function of them: PB U Fg yg m,n• m,n• m• m,n' 
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The elements of C are 

_.!:._ { )18 L/T )18 V8 lvi/X} 

1 
= __::_ { -)18 L/T + )18 M/X} 

2 c
1 
1 

0
13 

-;;:!- { )18 + )18 MIX - U A + 
~4 

.1 

c14 = 

= 5 

b 1 
c16 = - b16 

where 

and 

)18 L/T + )18 
~ (ü A)2 

M/X + Ü A - ----~~~~~~ 
yg Fg N/Z + ~ TJA 

= Ü A [ )18 L/T )18 · Vs l1/X c 

2c
2 

)18 L/T + )18 Vif M/X + TJ AJ 

= U A [ -)18 L/T + )18 Vs M/X 1 
c22 )18 L/T + ]:.18 Vif M/X + TJ Al 

1 

c25 = -

{yg 

)18 

~ (U AJ 2 
N/Z - ~ U A + -~~--~~~~--~~ 

Jl8 L/T + JlS Vif M/X + TJ A 

3Ts 
a x 

= 1 
c2 

+ -- uA au --] 
A(Ts-Tg) + llB L/T + )18 Vs M/X + U A A(Tg-Tg) 

where 

= yg N/Z +~U A 
)18 L/T + J:!8 VS M/X + Tl A 
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Chapter s i x 

D I G I T A L S I M U L A T I 0 N I N 

T H E F R E Q U E N C Y D 0 M A I N 

6.1 INTRODUCTION 

Instead of a digital simulation in the time domain, a 

simulation methad using an integral-transform methad can be 

applied. In Chapter 4 we found that single Laplace 

transformation provides the most efficient salution 

methad using integral-transform theory for a segment of the 

pellet bed. Moreover, when working in the frequency domain 

inverse transformation to the time domain often is not 

necessary. The inverse transformation may be omitted when all 

results can be interpreted in terms of e.g. Bode and/or 

Nyquist diagrams. , .Especially for control studies extensive 

theory is available in frequency-domain terms. 

In addition, the results of a simulation in the frequency 

domain can easily be incorporated in a larger model. Also, 

feedback control actions ar the heat feedback by means of the 

gas streams between firing and cooling zones can easily be 

dealt with in the frequency domain. These advantages are due 

to the fact that convolutions on the time domain reduce to 

multiplications in the frequency domain. 

After a presentation of the model equations in the frequency 

domain and a discription of the calculation procedure in 

Section 6.2, the static and dynamic accuracies of the methad 

are considered in Section 6.3. The simulation results are 

discussed on the basis of Bode diagrams in Section 6.4. After 

the conclusions in Section 6.5, the expressions for the matrix 

elements are presented in the appendix inSection 6.6. 

Part of this subject has been publisbed in/~/. 
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6.2 SEGMENTATION AND POURIER TRANSFORMATION 

If we again apply central differences to the spatial 

coordinates but retain the derivatives with respect to time, 

we may obtain equations like 

1 l-:S d ,--+ 
2 at 

n A +_u_) 
2 

+ U A) ts + 
+ --2- m-l,n-~ 

+ au A (Ts-Tg)} + 

(6.1) 

8'1'8 
n-1 11s ax vs 

m=l., 2., .... "lr1; n=l"' 2" ••• "N. 

U A (- +uil) 
tgm-~,n-1 

u il ts + -2-) + -2- + n 2 m,n-~ 

u - -2- + A (Tg-Ts) - yg f'gm-k ( 6. 2) 

m=1~2" ••• :~ii1; n:::::1"2" ••• "N. 

The corresponding frequency-response representation may be 

written as 

= D ( 6. 3) 

n 

where D is a (2x4)-matrix which is a function of m and n as 

well as jw, whose elements are in the in 

Section 6.6. These elements are complex functions of the 

angular w and can be written in the general form 

d(w) = (6.4) 

Using relation (6.3) between the inlet and outlet variables 

of an element, the calculation of the dynamic behaviour of 

91 



the pellet bed is reduced to simple multiplication of matrices 

containing complex elements. 

6.3 ACCURACY OF THE METHOD 

The static accuracy will be the same for the digital 

frequency-domain simulation as for the digital time-domain 

simulation using central differences described in Sectien 

5.3.3, since in bath simulations the space-dependent part of 

the model (as described by the equations (5.24) and (5,25)) 

is the same. 

To check the dynamic accuracy of the method, simulations 

with different numbers of segments M and layers N have 

been compared. The necessary number of layers for a 

sa:tisfyiJ:lg simulation of the gas and pellet temperatures 

of the bed in vertical direction was found to be eight or 

more as in the static case The fact that an equal 

number of layers gives the same accuracy in the static case 

as in the dynamic case is explained by the absence of 

an accumulation term (dynamics) in the heat balance of the 

gas (3.23). 

The dynamic accuracy is strongly influenced by the 

segmentation in the horizontal x direction. An exact 

analytical salution is possible for the somewhat simpler 

case of a gas-salid cross-flow heat exchanger with constant 

coefficients using threefold Laplace transformation /5/. 

However, this solution, which is a three-dimensional version 

of the salution derived in Section 4.3, takes an enormous 

amount of computer time /6/. 

A more convenient approach·to test the dynamic accuracy 

is to see how fast the salution (6.3) converges for 

increasing m. Moreover, the exact salution of the pellet 

temperature response function after a pellet inlet temperature 

disturbance is characterised by a pure time delay and a gain 

factor as oan be deduced directly from ~3.22) and (3.23), 

and as we also know already from the simulation results 

in Chapter 5. In the frequency domain the corresponding 

Bode diagram should show a constant amplitude ratio for all 
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frequencies and an exponential phase behaviour because of the 

logarithmic frequency scale. 

Hence, the accuracy of the dynamic simulations of the space

lumped equations can be tested by camparing the Bode diagrams 

of a transfer function of the solid temperature at the end 

of a campartment of the bed after a disturbance in inlet pellet 

temperature with the exact ones. Figure 6.2 shows that for the 

first cooling zone segmentation of the horizontal length in 

M=33 segments gives satisfactory simulation results up to a 
-1 frequency w =0.03 s . At that frequency the error in 

amplitude ratio is less than 5% and the phase error is only 

25° while the pha~e shift is already -360°. 

Use of finer horizontal segmentation, which would give an 

accurate simulation also for higher frequencies, is not 

meaningful, since for frequencies above w=0.04 s-
1 the 

assumption of uniform internal pellet properties is not 

valid any more (see Section 2.3). For accurate simulation 

results at higher frequencies a different model must be used. 

However, as has been said in Section 2.3, phenomena of such 

high frequencies do not influence the process. 

6.4 DYNAMIC CHARACTERISTICS 

In Figures 6.1 to 6.8 some transfer functions are shown for 

gas and solid temperature responses after disturbances in 

inlet solid and gas temperature, bed velocity or gas flow rate, 

which illustrate the dynamic behaviour of the cooling section 

of the pellet-indurating plant. In these Bode diagrams a 

resonance effect occurs, which is well known from parallel

flow heat exchangers /15,20,27/. Here, too, the first 

minimum resonance peak is at frequency 

w 
_ 2 11 Vs --x-- (6.5) 

From Figures 6.3 and 6.4 it may be seen that the transfer 

functions ~s/Yg and ~s/Js are almast identical except for a 

phase shift of 11 radians and a proportionality constant. This 

means that the dynamic effect of a velocity disturbance is 
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eppesite to that of a gas flow rate disturbance. This result 

indicates the usefulness of proportional feedforward 

campensatien of the effect of the measurable bed velocity 

disturbances by means of gas flow rate adjustments. 

Comparison of Figure 6.2 with Figures 6,3 and 6.4 shows 

that the resonance effect is less pronounced after a gas 

temperature disturbance than after a bed velocity or gas 

flow rate disturbance. Similar phenomena are found in the 

frequency-domain simulation of a steam-water parallel-flow 

heat exchanger /64/. 

Application of the initial value theerem in the case of 

a step response gives 

Zim {f(t)} = 
t+O 

Zim {q 

Jql-- q 
(6.6) 

where ~(q) is the transfer function and, hence, ~(q)/q the 

Laplace transferm of the step response. Therefore, from 

the Bode diagrams of ~g/~gin and ~g/~g - where, as can be 

seen from Figures 6.6 and 6,7, for high frequencies the 

amplitude ratio's converge to a non-zero value and the phses 

to zero - it can be concluded that after a step disturbance 

of the inlet gas temperature or the gas flow rate, the 

responses in the time domain of the gas temperatures in the 

bed start with a non-zero value at t=O. This result, 

which is caused by the negleetien of the accumulation term 

in the heat balance of the gas, is in accordance with what 

has been found intheether simulations (see Figures 7.9 and 

8.10). 

In Figure 6,9 transfer functions of the outlet water 

temperature of a steam-water parallel-flow heat exchanger 

to disturbances in steam temperature and water velocity are 

shown, tagether with the corresponding time-domain responses 

after a step disturbance. A cut-off first order response 

results after a temperature disturbance and a cut-off ramp 

after a velocity disturbance. The difference between bath 

responses is difficult to recognise. In the Bode diagram 

the difference is more pronounced: zero values for the 
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amplitude ratio in the Bode diagram after velocity 

disturbances at frequencies 

2, ••• 

and a much weaker resonance effect after disturbances 

in water inlet temperature. 

6,5 CONCLUSIONS 

( 6. 7) 

Computation time of the complete frequency response of the 

cooling section of the pellet-indurating plant is about 4 

minutes on the ELX8 digital machine. Hence, the amount of 

computer time is somewhat larger than for the time-domain 

simulation of Chapter 5. However, after one calculation all 

transfer functions are known and for an investigation of the 

effect of different modes of control and various locations 

of sensor elements, repeated calculation of the cooling 

section is not necessary, since the closed-loop frequency 

response of a control system can be readily obtained from 

the open loop frequency response. 

The similar dynamic behaviour of the pellet bed after gas 

flow rate and bed velocity disturbances as well as the 

different dynamic behaviour after gas inlet temperature 

disturbances compared with the behaviour after gas flow 

rate and bed velocity disturbances, was clearly demonstrated 

by their frequency responses. In time-domain simulations 

these differences can hardly be recognised. 

By means of the frequency-domain simulation some properties 

of the dynamic behaviour are explained from a different point 

of view. In this way more insight in the process is obtained. 

6.6 APPENDIX: EXPRESSIONS FOR THE MATRIX ELEMENTS 

all 
1 [rz ]ls - JlS jw - Ü A) ( 2 yg Fg + Ü A) + (Ü AJ 2] = 
dl X/M Z/N 

dl2 
1 [z u A J = 
dl 

98 



d13 = + U A) (!18 

d14 = 2 
luA {-yg ,2 ya Ffl -

dl 
+ A } + I 7v,~, + U A) A 

uj LV 

= 1 U A) 
d2 

d22 = 1 [ (2 )18 V8 jw +U A) 
- 2l 

d2 X/M + )18 - U A) + (U A) J 

d23 
2 

(U A \l8 = - d2 

:::: 2 [,3U A 
d2 

,_, 
dFg 

- yg + 1-18 +U A} +U A2 

= (2 ].!8 Vs + U A) +U A) (U A) 2 
I X/M + ]lB 
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C h a p t e r S e v e n 

H Y B R I D S I M U L A T I 0 N 

7.1 INTRODUCTION 

When the digital simulation of partial-differential 

equations is prohibitively long and expensive, hybrid computers 

have been shown to have the potential to be several hundred 

times faster and cheaper (per solution) than are digital 

computers /67/. In /17/ comparative results are reported for 

a dynamic parameter optimisation problem concerning a chemical 

reactor. Digital results from an IBM360/65 were compared with 

calculations run on a hybrid computer AD4/IBM1800. While the 

differences between digital and hybrid results were less than 

1%, the digital computing time proved to be roughly 500 times 

the hybrid computing time. However, as an extrapolation of 

the current trend would lead one to expect a five to fiftyfold 

increase in digital computing speed in the coming ten years 

/38/, the future may show a switch-over to on-line all-digital 

simulation. 

In order to get an idea about the usefulness of a general

purpose hybrid computer for the calculation of the transient 

behaviour of the pellet-indurating plant, a simulation has 

been set up on the AD4/IBM1800 computer of the Delft University 

of Technology in 1972/73. 

Part of this chapter has been presented at the 7th AICA 

conference on hybrid computation at Prague in August 1973 /IQ/. 

7.2 IMPLEMENTATION 

To solve partial-differential equations on a hybrid 

computer, they must be reduced to a set of ordinary

differential equations with only one continuous variable. 

For the process equations (3.22) and (3.23) one may conceive 

methods in which the continuous variable is the time t (called 

CTDXDZ method: continuous t, discrete x, discrete z} or the 
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length x (DTCXDZ method) , or the z (DTDXCZ method) . A 

combination of time and one or two space variables is also 

possible, but because of its expected complexity this' case 

will not be considered further. 

A choice can be made between the above mentioned 

possibilities by reconsideration of the equations (3.22) and 

(3.23) which will be rewritten here unmodified 

~ 

V" 1_ + {!18 
0 

+ U A} ts UA tg + V8 + !18 V ~ !iS 
a X 

( 7. 1) 

+ A = 0 

+ U A} tg - UA ts + 
8Tg 

{ya--
v az 

au 
A = 0 

(7. 2) 

The steady-state values (denoted by overlined symbols) are 

obtai.ned from the static model and are space-dependent, viz. 

z)., Ts(x,z), I • - a u I _ ., 3 T s r -· 
i ~l u'~t'x/:. x '" z) (x~) ~/> ' ~J:~n'' ;, -~--.~, > ,~ • 

a ~ .x Z 
The coefficients 11s and yg are weakly temperature dependent 

and, therefore, they are taken locally constant. Hence, in 

(7.1) and (7.2) all coefficients are functions of x and/or z, 

but not of time Therefore, only the use of the continuàus 

time method would nat need functian generators to provide x-

ar coefficients and steady-state values, which 

would the salution considerably. This problem 

does nat exist when the CTDXDZ methad is used. The x and z 

of the coefficients is then accounted for by means 

of constant coefficients for a ~x~z element. The complete 

time behaviour of such an element can be calculated with 

constant coefficients. In aur case we simulate a whole 

segment. The x and z dependenee is effected by changing the 

caefficient values when proceeding from one segment ta the 

next. 

When in the literature about hybrid computation a chaice 

must be made between CTDS (continuous time, discrete space) 

and DTCS methods, almast always the DTCS method is chosen. 

The mativation herefore is not always equally convincing, 
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Many authors, such as in /4,8,33/, confuse the problem by 

putting the following false dilemma: when using CTDS methods, 

reference is made to analog computation and when werking with 

DTCS methods to hybrid c~mputation, while for a just appraisal 

the camparisen of CTDS and DTCS methods ought to be considered 

on the same machine. 

In general it can be said that for hybrid simulation of a 

linearised model CTDS methods are preferable because of the 

space-dependent coefficients resulting from the linearisation 

procedure. 

After application of the central-difference approximation 

for the differential quotients with respect to x and z, use 

of the CTDXDZ methad implies that the original partial

differential equations (7.1) and (7.2) can be replaced by the 

following set of ordinary-differential equations 

dts 
m3 n-~ 

dt 

dts m-1 n-~ = e1 dt ' + e2 ts 1 ,. + e 7 ts , + e4 tg ,. 1 + m- 3 n-~ v m3 n-~ m-~3 n-

(7. 3) 
+ e5 tg L + e6 vs + e 7 fg ,. 

m-~,n m-~ 

= e8 ts 1 ,. + e9 ts ,. + e10 tg ,. 1 + e11 fg ,. (7.4) m- ,n-~ m3 n-~ m-~,n- m-~ 

where m=1 3 23 ••• ,M; n=1 3 23 ••• 3 N. 

The coefficient values are given in the appendix in Sectien 7.5. 

The analog scheme of (7.3) and (7.4) for element (m,n) is 

shown in Figure 7.1. Analog implementation of the whole 

cooling sectien would require MxN analog circuits. 

For multidimensional problems a significant reduction of 

computing hardware (over straightforward analog continuous

time simulation) is obtained by implementation of only one 

"line" on the analog computer. A "line" is defined as a set 

of salution points with one index constant, e.g. a set of 

salution points having the same x coordinate (a segment) ar 

the same z coordinate (a layer) . 

In the fairly accurate digital salution of (3.22) and (3.23) 
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Analog scheme of the n)-th 
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components must be added in order to 
circumvent the "see-saw" effect. 
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obtained in Chapter 5 using a central-difference model, 

the height Z was divided into N=9 layers and the length of the 

cooling zone into M=13 or 39 segments. On the AD4, the analog 

part of the hybrid computer, these nine layers, needed for an 

accurate simulation of one sègment, could just be implemented. 

Therefore, the hybrid simulation was set up according to a 

line-multiplexing method /67/ with a segment as a "line". 

Thus, nine elements like Figure 7.1 were patched on the AD4, 

the outgoing gas temperature of element (m,n) being connected 

to the inlet one of element (m,n+l). This computation 

procedure is visualised schematically in Figure 7.2. 
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The coupling between segments (in the horizontal direction} 

was provided by the digital computer. The time behaviour of 

the outputs of the segment under consideration was stored in 

the computer by means of track-store units and A/D 

converters. After all interesting responses had been stored, 

the DCU's coefficient units) of the analog part were 

provided with new values according to the values 

of the next segment. Afterwards, the stared output temperature 

responses of the last segment, i.e. the inputs to the new 

segment, were played back via D/A converters. 

The procedure of starage and play-back of the derivative 

of the solid temperature was chosen. The value of the solid 

temperature itself in the next segment is obtained by 

integration (see Figure 7.1). The reason why this method was 

followed is the following: Since as well as 1, 
l,n-~ must be known, 18 time functions would have to be 

stared and back for each segment. If we want to 

transport only half of this number of functions, we have to 

perfarm an integration or differentiation afterwards. If the 

solid temperature values are stored and 

differentiation of these values errors. The 

method known as 8-interpolation in the literature /67/ (use 

of central differences results in avoids this problem 

by in the machine just that combination of 

calculated values that will be needed as an input to the next 

segment, viz. 

1 
+ 

2 (7.5) 

where the values of the next element must be 

used. However, this only satisfies single or 

uncoupled partial-differential equation and cannot 

be applied in our case. For, as can beseen from (7.3) and 

(7.4), apart from the combination (7.5) which is needed in 

(7.3), the temperature " , itself is needed in (7.4). 
1Jn-~ 

Therefore, the procedure of starage and play-back of the 

derivative of the pellet temperature was chosen. 

The hybrid set-up may be summarised as follows: the analog 
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part provides high-speed integration with respect to time for 

all (discrete) values of z. Integration with respect to the 

x-direction was performed by storage and play-back of the 

derivatives of the pellet-temperature responses of a segment. 

Analog patching of 'a whole segment (N=9 elements) eliminated 

the problem of storage and play-back with respect to the z 

direction. The derivatives with respect to the x and z 

directions were taken into account by means of a central

difference approximation, exactly as has been done for all 

independent variables in Chapter 5. 

However, application of 

the central-difference 

approximation with respect 

to the x dependenee while 

integration of time is 

performed continuously, 

results in the so-called 

"see-saw" effect /60/. 

This effect causes the 

model to exhibit unrealistic 

tshl 

r " 1~ area of ··sea-saw··effect 

- actual response (tsm_}
2

, n- }
2

) 

---- space-lumped response (tsm,n-~) 

--· 
Figure 7.3 "See-saw" effect for 
step increase in inlet temperàture 

reversals in outlet temperature responses (see Figure 7.3). 

The "see-saw" effect does not influence the ultimate static 

value of the temperature response, but the transient behaviour 

of the response is largely in error. Refined segmentation 

with respect to the x direction does not remove the effect. 

In Chapter 5 it was found that, when using central differences, 

the dynamic behaviour could be simulated accurately by taking 

the ratio of the steps in the x and t directions equal to Vs: 

(7. 6) 

If ~x/~t < Vs, oscillations originate at the end of the 

response. With ~x/~t > Vs, the response function starts with 

oscillations (see Figure 5.11). In the hybrid model where 

time is taken continuous, the limit case ~t+O exists. 

Therefore, response functions as shown in Figure 7.3 arise. 

To evereome the "see-saw" effect. Schidt and Clarke /60/ 
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propose the methad of "time-lumping" instead of space-lumping, 

by which they mean that the observation point is now becoming 

an arbitrary mass of the rnaving bed itself. In fact,- they 

transfarm a partial-differential equation with respect to t 

and x, like (7.1), into an ordinary-differential equation with 

respect to the residence time 

8 :::: t x 
(7. 7) 

Vs 

This methad of simulation of the pellet bed by considering 

"moving segments" suffers from three drawbacks: 

1. Because of the linearisation procedure the method is 

complicated, since the variation of the coefficients and 

steady-state values as functions of 8 must be implemented by 

function generators. 

2. Although in this way the unrealistic reversals after 

a pellet inlet temperature disturbance have been eliminated, 

the time-lumped model tends to delay unrealistically responses 

to gas-side disturbances /60/. 

3. With the use of the residence time 8 being a combination 

of real time and horizontal distance, an additional 

complication arises, because finally results in real time and 

distance are required. Therefore, at the end of the simul'ation 

process an inverse transformation has to occur. 

We found that the process of the "see-saw" effect can be 

avoided in the following way: In the central-difference 

approximation the pellet temperature in an element of length 

6x :::: X/M was replaced by the mean of the incoming and outgoing 

solid temperatures (as was done in deriving (7.3) from (7.1)) 

tsm_L n-'' :::: 2 (ts + ts 1) 
'2> "' 2 m-1, n-lf m, n-?§ 

(7. 8) 

and the derivative with respect to x by 

'dts I 
dX 1 m-lf,n-7§ 

:::: 

ts - ts m,n-lf m-l,n-lf 
X/M (7. 9) 

Hence, these variables do not actually appear in the formulae. 

Instead use is made of what we might call "auxiliary variables", 
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viz. k and ,n-2 
while the real temperature of 

element n) is ts ,. The see-saw effect arises when 
m-~·" 

the auxiliary temperatures instead of the real temperatures 

are plotted a~d it can be avoided by also calculating the real 

temperatures according to (7.8) 

tB 
m" 

+ tB 
3 m-1" 

( 7. 10) 

This is implemented by patching the elements sketched in dotted 

lines in Figure 7.1 on the part of the hybrid machine. 

In all further hybrid simulations reported in this chapter use 

has been made of this implementation. 

7. STATIC AND DYNAMIC RESULTS 

The ultimate steady-state values after a step disturbance 

in one of the.input variables are in good agreement with those 

calculated by means of the static non-linear model. 

This illustrated in 7.4 to 7.7, which show profiles of 

static pellet and gas temperature changes after an inlet gas 

temperature disturbance of 20 K and a gas flow disturbance of 

10% of the normal value From these pictures 

it can be concluded that the dynamic hybrid simulation is qt 

least statically sati 

Most dynamic responses are in good agreement with the 

theoretically ones (see Figure 5.13). In Figure 7.8 

are shown the pellet temperature step responses after a 10 

gas flow rate disturbance. Similar dynamic responses are 

found after a 10% bed disturbance, but then the signs 

of the responses are opposite. 

An interesting effect observed in Figure 7.9, where some 

gas temperature responses after a disturbance of the gas inlet 

temperature of 20 K are presented for various heights in the 

bed. At the bottorn of the bed the response is the sum of a 

step function (a constant part) and a first-order function. 

up in the bed the gas response function loses its 

constant part (the and tends to be a higher-order 

response function. 
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From the simulation point of view, the explanation of this 

effect is as follows: going opwards in a segment, the outgoing 

gas temperature tg '· of element (m,n) is according to (7,4) m-72,n 
the sum of a fraction of the incoming gas temperature 

e 10 tgm-~,n-l and the solid temperatures of the element with 

appropriate coefficients e 8 tsm-l,n-~ + e 9 tsm,n-~· If only 

a gas inlet temperature disturbance is present , these solid 

temperatures are related by integration to the gas temperatures 

(see Figure 7.1). Roughly speaking, the outgoing gas 

temperature response of element (m,n) is partly proportional 

to the incoming gas temperature and further related to it by 
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an additional first-order response of this incoming gas 

temperature. 

Physically, the following interpretation can be given: if 

a segment is considered to be a packed-bed heat exchanger, it 

is known from the literature that the heat and gas flow move 

at different veloeities because the exchange of heat between 

the gas and the solid (pellets) slows the thermal wave with 

respect to the fluid wave /63/. The sameeffect is observed 

in Figure 7.9. Although the gas velocity is very high and 

variations in the gas flow rate therefore are almast 

immediately perceptible, it takes some time befare the inlet 

gas temperature disturbance is sensed above in the bed. 

In Figure 7.10 pellet temperature responses aftera step 

disturbance in the pellet inlet temperature are shown for 

different places in the bed. The oscillations can be reduced 

by using a finer horizontal segmentation as is shown in 
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Figure 7.10 Pellet temperature step responses 
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Figure 7.11, whereas it should be noted that the oscillations 

in Figure 7.3 (the "see-saw" effect) cannot be reduced by 

refined segmentation. 

When t.x X/M is taken smaller, the slope of the response 

curve becomes steeper and therefore the response tunetion 

approximates better the expected gain factor 

plus pure time (see Figure 5.13). 

7.4 CONCLUSIONS 

A simulation was set up because of the fact that 

8 

hybrid computers are known to be much faster than digital ones. 

A CTDS 1 methad was shown to be a favourable 

hybrid 

The 

was the 

, given the linearised process equations. 

in the speed of the hybrid simulation 

interface used for the function starage and 

feature. The main part of the total computing time 

neede for the calculation of the cooling zones was the sample-
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sample-loop time T 7 multiplied by the number of samples S samp&e 
taken from a signal, the number of signals (= the number of 

layers N) and the number of segments M. 

Because of the large number of samples used for each signal 

much memory space was needed by the sampling procedure. 

Insufficient core memory necessitated the use of disc memory 

also for storing local subroutines and coefficient values. 

The t o tal computing time therefore increased by a considerable 

amount of organisation time T 
O Y' g 

1 t o t = Mx(NxSxT 7 + T ) 
s amp&e org (7 .11) 

In the existing configuration the lower limit of the sample-

loop time T sample was about 1 ms and the organisation time 

T 
OY'g 

about 0 . 5 s. With M=13, N=9 and 5= 400 the total computing 

time became about one minute. Hence, the speed advantage of 

hybrid o ver digital computation was reduced by the large number 

of disc transfers. 

All static and dynamic results proved to be in good 

agreement with the theoretically expected ones. 

? .5 APPEN DIX: 

= 1 

2 Vs 
e3 = X/M 

e4 = es = 

= = 
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COEFFICIENT VALUES 

U A 
l!S 

U A 

U A 
l!S 

U A 
+ 2 yg Fg 

Z/N 



= 

2 yg Fg 
Z/N 

2 yg Fg + 
Z/N 

U A 

U A 

AI!!_ 
aFg 

{(Ts 
1 

h:+Ts , ) -m- _, n- 2 m_, n- >§ 

+ 

2 yg Fg + U A 
Z/N 

2 yg Fg (T - Tg ) 
Z/N gm-~, n-1 m-~, n 

2 yg Fg + U A 
Z/N 

+ 
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C h a p t e r E i g h t 

R C - N E T W 0 R K S I M U L A T I 0 N 

8.1 INPRODUCTION 

Conventional analog simulation of the whole cooling section 

requires far more analog components (viz. integrators and 

coefficients for at least 120 analog circuits as in Figure 7.1} 

than are available on a general-purpose analog computer such 

as the EAI680 with, , 30 integrators. 

A similar situation exists for the simulation of parallel-

flow heat exchangers. It was in the literature 

that for these systems special-purpose analog machines (mainly 

consisting of resistors, and buffer amplifiers} 

would be preferable. However, the usefulness of the results 

of the first RC networks publisbed in the literature is rather 

doubtful. The analog RC circuit of Mozley /49/ even ignores 

the use of buffer amplifiers needed for the simulation of the 

transport equation. Like Mozley, Ford /24/, Kourim /39/ and 

Mirsepassi /47/ give only results for the dynamic behaviour of 

a heat exchanger after inlet temperature disturbances of one 

of the fluids. However, the effect of variations in fluid 

flow is very important because the flow is mostly used as a 

correcting variable in a control system. But, if independent 

current sourees are used for the RC-circuit simulation of 

flow disturbances, realisation is bound to be complicated and 

expensive. 

In /36/, J~rgensen and KÜmmel present results from special

purpose simulation of a transportation lag and a double-pipe 

heat exchanger with counter-current flows. Introducing 

variable resistances, realised by transistor-switch hardware, 

they were able to simulate flow disturbances without the use 

of independent current sources. This feature makes their 

methad fairly attractive. A drawback of the methad is that 

the RC circuit is complicated by the transistor-switch part. 

116 



In this the simulation of the section by 

means of a RC network is described. The 

electric network derived consists only of passive elements 

(resistors and capacitors) and (buffer) ifiers. No 

integrators are used contrary to hybrid simulation. In order 

to simulate flow disturbances, the buffer amplifiers are given 

a gain factor than l. In this way the use of 

complicated transistor-switch hardware was circumvented. The 

proposed methad can also take into account the linearised flow 

dependenee of the heat transfer coefficient, a feature that is 

notpresent when variable resistors are used (Section 8.2). 

In order to reduce the number of buffer amplifiers, use has 

been made of a backward-difference approximation of (3.22) and 

(3.23). The resulting set of for an elementary 

volume can eas be simulated on a flip-chip module. The 

static accuracy can be improved when the steady-state values 

are taken in a central-difference way, as is described in 

Section 8.3. 

As the dynamic accuracy, it is shown in Section 8.4 

that for continuous-time simulation the backward-difference 

approximation is second-order correct if a small " ous" 

diffusion in t.he direction of x is assumed .. Same extra model 

characteristics that can be taken into account when 

working with RC networks are also described here. 

InSection 8.5 some simulation results are shown. 

In conclusion (Section 8.6), some remarks on simulation 

speed, and costs of this rather uncommon simulation 

are discussed. 

8.2 A ANALOG 

For the same reason as mentioned inSection 7.2, also in 

the RC-network simulation time is chosen as the continuous 

variable. Application of a backward-difference approximation 

of (3.221 and (3.23) gives 

+~ 
X/M n + + n 

117 



+ (Ts - Ts 
1 

) vs m,n m- ,n + au I A (Ts - Tg J fg aFg m m,n m,n m = 0 ( 8. 1) 

yg Fg 
___ m (tg - tg J + U A (tg - ts ) + 

Z/N m,n m,n-1 m m,n m,n 
(8.2) 

+ rliL. rr r J + au 1 A (Tg r )] +' = o [ZIN gm,n - gm,n-1 '?JFg m m,n - 8 m,n Jgm 

A backward-difference approxirnation has been taken because it 

can be implernented rnuch more easily by rneans of RC elernents 

than the more accurate central-difference approxirnation. The 

influence of the former approxirnation on the accuracy 

discussed in Sections 8.3 and 8.4. 

Physically speaking, all terrns in (8.1) and (8.2) represent 

heat currents (dimension: J s- 1). When these heat currents 

are simulated by analog electric currents and the ternperatures 

by voltages, equation (8.1) can be represented by the RC 

networkof Figure 8.1 and equation (8.2) by the networkof 

Figure 8.2. Both inter-coupled equations are simulated by 

Figure 8.1 Network representation 
of equations (8.1) 
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Figure 8.2 Network representation 
of equation (8.2) 



coupling the networks 

of Figures 8.1 and 8.2, 

which results in the 

RC scheme of Figure 8.3. 

Such a network must be 

built for each 

N) 

volume. Since there is 

no backmixing, the 

network of adjacent 

elementary volumes are 

coupled with the aid of 

buffer amplifiers. 

Altogether, MxN networks Figure 8.3 Coupled network representing 

must be built and 
representing (8.1) and (8.2) 

The terms in (8.1} and (8.2} which take into account the 

effect of vs and disturbances must be simulated by 

appropriate current sources. However, implementation of 

current sourees would make realisation of the network very 

complicated. If the flow dependenee of the overall heat 

transfer coefficient U is neglected, the effect of velocity 

and flow variations may be incorporated in the network by 

means of the use of variable resistors achieved by inserting 

a fast transistor switch in series with the resistors Rs and 

Rg /36/. The linearisation procedure can be omitted in this 

case. 

A simpler salution of the problem of including flow and 

velocity disturbances in the RC simulation is possible. 

Consider the networkof Figure 8.4. Here _ , ts , 
J."n m"n 

tg _ ", _ , vs and fg are m,n-1 n m 
(variables) and the 

other quantities are constants. Application of Kirchhoff's 

current law in node 1 gives 

+ 
n 

+ 

(8. 3) 

+ + 
n 

ts 
m" 
~ m,n 
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which can be written as 

.dts 
m~n 

].lS~ 
n 

+ 

+ m,n 
[

1 - ss 
Rs m,n 

tg - ts m,n m,n 
Rt m,n 

This is identical with (8.1) if 

1 - Ss m,n 

and 

Rs m,n 

1 
~= 

m,n 

1 
~ = 

m,n 

1 

~ m,n 

= 

Vs 

Sfl 
+ ~ + 

Rf1 m,n 

(Ts 
1 

- Ts ) m- ,n m,n 

A (Tg - Ts ) m,n m,n 

1 

vs 
+~ 

m,n 

n 

n 

Figure 8.4 Coupled netwerk representing equations 
(8.1) and (8.2) when only voltage sourees are used 
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+ 

Ra3~] 
m,n 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8. 8) 

(8.9) 



Kirchhoff's current law applied tonode 2 

+ + n 
+ 

(8.10} 
n = 0 
n 

which can be written as 

+ + 
fgm 

+ Rf2 
m~n 

(8 .11) 

+ 
n 

0 
n 

This identical with (8.2) if 

Bf2 m_,n 
Rf2 + 

m~n 

1 
( 8. 12) 

n 

and 

1 ( 8. 13) 

1 
Rfl + n-1 

) 
n 

(8 .14) 
.. rn" n 

To simplify the simulation, the constants B are taken 

independent of m and n. Furthermore, which 

makes the use of one voltage souree for the 

flow disturbance If Ba Bg %, the coupling between 

the adjacent networks must be realised by means of buffer 

amplifiers with a gain factor 1/Ss = 2. 

The resistors and Rb are needed to make n m,n 
the use of uniform sealing factors Ss, Bg, sv and for all 

MxN networks. Ss, Bg, sv and can only fulfil (8.5) and 

(8.12) for ,2, ••. ,M and n=1,2, ... ,N, if 3v and 3f are so 

small that for each elementary volume positive resistances 
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Ra and Rb can be found. Generally, Ra and Rb will m,n m,n m,n m,n 
be different for the network of each elementary volume. 

After an investigation into the (statie) accuracy of the 

simulation scheme (see following section) it was decided to 

simulate the cooling section of the pellet-indurating plant by 

means of MxN = 1Jx9 = 11? networks as in Figure 8.4. 

In the RC simulation only three types of electronic 

components are used, viz. resistors, capacitors and amplifiers. 

In choosing electronic components several objectives must be 

fulfilled such as high accuracy and low cast. A special point 

of importance is formed by the overall size of the RC 

simulator. Ta keep this within reasonable limits, it is 

necessary - because of the large number of networks - to use 

small electronic components. For resistors this is na problem. 

Integrated circuits can be used as small buffer amplifiers. 

In fact, the feasibility of building a special-purpose RC 

simulator originated with the availability of cheap small 

amplifiers. 

The size problem was most serious with respect to 

capacitors. One of the final objectives of the RC simulation 

is to perfarm control experiments by coupling the RC simulator 

(the process) with the small digital computer (PDP-8I) of the 

Measurement and Control Group as a controller /16/. The time 

constants of the simulator must be compared with the 

minimum sample and control-calculation period of the digital 

controller (about 1.2 ms). The typical input resistance of 

2 MQ of the amplifiers imposes a maximum value on the 

resistors. The only remaining possibility of making the RC 

time as large as necessary is to use large capacitances, 

which implies geometrically large-sized capacitors. The 

maximum size of the capacitors, however, is determined by 

the distance between two flip-chip modules. Hence, although, 

in principle, the sealing factors between heat and electrical 

resistance and real and sireulated time can be chosen 

arbitrarily, feasibility reduces these degrees of freedom. 

Apart from the size, a problem was formed by the prieel 

accuracy dilemma. A choice was made for 5% inaccurate ~W 
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Philips carbon resistors and 10% inaccurate Philips C280 

metallised polyester capacitors and as buffer 

the AD 741 C was found to be accurate enough. Same electrical 

characteristics of the amplifiers are given in Table 8.1. 

Sing1e-width, sing1e-height wixed flip
chip module with electric components 

For the special-purpose analog simulater a mounting panel 

was constructed which offered a way to build a system 

of up to 480 flip-chip modules into a 12QX60 cm of rack space. 

As connector blocks the type H 800-W of DEC was used /19/. 

This is an 8-module moulded socket as For each of the 

eight modules it provides an 18-pin connector with 

pins. For the simulation of each of the 117 elements a single-

width, single-height wired module was used. On such 

a module the components, viz. resistors, capacitors and buffer 

amplifiers, can be soldered 

module is shown in Figure 8.5. 

8. STATIC ACCUR~ 

A photograph of such a 

Befare the modules were provided with resistances 

according to (8.5) to (8.9) and (8.12) to (8.14), the static 

accuracy of this backward-difference approximation was 

calculated. Introducing a step-disturbance in one of the 
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Table 8.1 

Electrical characteristics of the AD741C 

parameters 

input offset voltage 

input offset current 

input bias current 

input resistance 

input capacitance 

offset voltage adjustment range 

input voltage range 

common mode rejaction ratio 

supply voltage rejection ratio 

large signal voltage gain 

output resistance 

outpur short circuit current 

supply current 

124 

power consumption 

transient response rise time 

overshoot 

slew rate 

! 

I 

value 

1.0 

20 

80 

2.0 

1.4 

±15 

±13 

90 

30 

200,000 

75 

25 

1.7 

50 

0.3 

5.0 

0.5 

units 

mV 

nA 

nA 

MQ 

pF 

mV 

V 

dB 

llV/V 

V/V 

n 

mA 

mA 

mW 

lJS 

% 

V/)ls 
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Figure 8.6 Static gas temperature change at 
z = 0. 4m af ter a + 10% gas flow change 

inlet quantities: gas flow rate, bed velocity, gas inlet 

temperature or pellet inlet temperature, the static pellet and 

gas temperature changes can easily be calculated. This was 

done digitally by means of the equations (8.3) with ~s 0 

and (8.10), using the values provided by (8.5) to (8.9) and 

(8.12) to (8.14). The correspondence of the static pellet 

and gas temperature changes obtained in this way (i.e. by 

applying backward differences for the derivatives with respect 

to and z) with the more accurate static temperature changes (as 

defined in Section 5.3) is poor when compared with the static 

accuracy of the central-difference methad which was used in 

all other simulations (Chapters 5 to 7). In Figure 8.6 this 

is illustrated by a static gas temperature change profile 

after a gas flow disturbance of 10%. The difference between the 

non-linearprofile and the approximation is shown in Figure 8.7. 

Simulaticn of the central-difference approximation of 

element ~ ' 1m.,n; is only possible by means of RC elements when 

a large number of amplifiers is used. This would result in 

a much more complicated circuit than the one of Figure 8.4. 

A simulation scheme similar to Figure 7.1 is not feasible 
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Figure 8.7 Difference between the static 
gas temperature change calculated with the 
non-linear static model and the gas temperatures 
change according to one of the following three 
difference approximations: 

backward-difference approximation 
mixed central/backward approximation 
central-difference approximation 

owing to the accuracy and the quality of the resistors, 

capacitors and amplifiers. 

Some improvements of the static accuracy may be obtained 

by the use of central-difference values for the steady-state 

quantities Fg, U and instead of their 

backward-difference values. In this way, when partly applying 

a backward-difference approximation (viz. for the dynamic 

part of the simulation) and partly a central-difference 

approximation (viz. for the static part of the simulation), 

the following set of equations results from (8.1) and (8.2) 

+ llB Vs ( ts - ts ) + 
X/M m,n m-1,n 

A (ts - tg J 
m,n m,n 

(8 .15) 

lJS (Ts - Ts ) Vs 
X/M m-1,n-~ m,n-~ 

'dUA I (T - Ts ) -~'" + 3Fg gm-~ n-~ m-~ n-~ J gm 
m-~ , , 
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Figure 8.8 Difference between the static 
gas temperature change calculated with the 
non-linear static model and the gas temperature 
ch<".nge according to the mi_xed central/backward
difference approximation for three different 
horizontal segmentations (M=13,39,117) after 
a JO % disturbance in gas flow rate. 

+ Um_,
2 

A (tg - ts ) 
"" m,n m,n 

(8.16) 

+ 'duAI (Ts -- )}+' 
'è!Fg , m-~,n-~ Tgm-~,n-~ Jgm 

m-'1! 

The difference between the static temperature profile thus 

obtained and the more accurate profile coming from thenon-linear 

model fora 10% flow disturbance is also shown in Figure 8.7. 

As can be seen from this figure, the mixed central/backward

difference approximation of (8.15) and (8.16) gives a somewhat 

better static correspondence with the non-linear static model 

result than the backward-difference approximation of (8.1) and 

(8. 2) • Similar results were found for other disturbances. 

The following explanation is given for this effect. When 

using backward differences, the temperature inside element (m,n) 

is equal to the outgoing temperature. This rough approximation 

is made for the space-dependent and time-dependent variables 

ts and tg as well as for the space-dependent but time-
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independent quantities Ts, Tg, Fg, U, 3U/3Fg (steady-state 

valuesl~ In equations (8.15) and (8.16) this inaccurate 

backward-difference approximation is partly replaced (for 

the steady-state values) by a more accurate one, viz. the 

central-difference approximation. In this way the static 

behaviour of the RC simulation could be improved without 

changing the structure of the proposed RC circuit. With 

the modification the resistance values are determined by the 

following equations: 

1 )lS Vs = X/M Rs m,n 
(8 .1 7) 

1 
um-~ A m- = 

m,n 
(8.18) 

1 )lS (Ts - Ts ) 
~ = X/M m,n m-1,n-~ m,n-~ 

(8.19) 

1 w-1 A (Tg - Ts 1 ) 

~ = 3Fg k m-~,n-~ m-~,n-0§ m,n m-2 
(8.20) 

1 1 - Ss sv ___H_ 
~ = ~ ~ - Rf1 m,n m,n m,n m,n 

(8. 21) 

1 yg Fgm-~ 

Rgm n 
= Z/N , 

(8. 22) 

1 1 __JfJ_ (Tg - Tgm-~,n) ~ = ~ + 
m,n m,n Z/N m-~,n-1 

(8. 23) 

1 ~ ___ff___ 
~ = Rgm n Rf2 m,n , m,n 

(8.24) 

A finer horizontal segmentation impraves the static accuracy 

of the RC simulation as is shown in Figure 8.8. A similar 

situation exists for the vertical segmentation in the z 

direction. However, finer segmentation involves a larger 

number of flip-chip modules with electronic hardware to be 

constructed. For this reasen a choice was made for M = 13 
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and N 9, the same segmentation as used intheether 

simulations (Chapters 5 to 7). 

8. 4 DYNAMIC ACCURACY 

The ana is of the static accuracy of the RC simulation 

proved that the backward-difference gives 

rather poor results. Therefore, the dynamic responses of 

the RC simulation had to be verified. The effect of the 

mixed backward/central-difference approximation on the dynamic 

behaviour was investigated. Because of the fact that the 

dynamic behaviour mainly determined by the solid heat 

balance (8.1), the effect of the difference 

approximations will be analysed only for this equation and 

the influence of the z dependenee will be omitted. Terms 

invalving vs and disturbances are for ease of 

discussion, but can be added without introducing extra 

difficulties. 

Under these the solid heat balance reduces to 

(see (3. 22)) 

êlts 
]-:S 3t + ]JS U A - ts) (8. 25) 

Backward-difference approximation with respect to the x 

coordinate results in 

3ts m 
IJS 3t + = U A 

Introduetion of a heat conduction or diffusion term into 

equation (8.25) gives 

8ts 
IJS '"- + JlS JlS D = U A - ts) 

0& 

where D is the diffusion coefficient [m2s- 1]. Central

difference approximation of (8.27) with respect to the x 

coordinate results in 

{8. 26) 

{8.27) 
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- 2 ts + ts 
1

; m m-

= Ü A (tg - ts ) m m 

This equation can be rearranged as follows 

ats 
lJS __ m + 

at 

+ [ lJS Vs 
2 X/M 

(ts - ts 
1
J + Ü A m m-

-'---;.._.;;.-:::- ] (ts 
1 

- 2 ts + 
(X/M) m+ m 

= 0 

When the term in square brackets zero, (8.29) is 

(8.28) 

(8.29) 

identical with (8.26), i.e. the central-difference approximation 

of the solid heat balance with diffusion equals the backward

difference approximation of the solid heat balance without 

diffusion. Therefore, the effect of using a backward

difference approximation instead of a central-difference one 

is the introduetion of spurious diffusion /40/ with the 

diffusion coefficient 

D 
1 
2 

x 
M 

(8.30) 

In view of what has been said in Sectien 2.3 about the 

occurrence of diffusion and dispersion, the dynamic behaviour 

of this backward-difference approximation may even better 

represent physical reality than the central-difference one 

ignoring D. This method has bèen used in chemical engineering 

design to evaluate the temperature and concentratien profiles 

in tubular reactors, where the diffusion effects were 

extremely important, but could not easily be dealt with if 

the full model was used /46/. 

The actual value of D may be so large that - according to 

(8.30) - a very coarse segmentation would be necessary, 

resulting in a very inaccurate simulation. This problem 

can be solved simply by the addition of resistances to the 
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Figure 8.9 

R' R' 

RC network simu1ating the transport 
and diffusion equations 

original RC network, see Figure 8.9, in which for the sake 

of clarity a number of less important resistances have been 

omitted. 

Additional heat transport into any other direction, e.g. by 

conduction, may be represented by connecting resistances to 

the appropriate nodes of the network elements of adjacent 

volumes. Finally, internal heat conduction inside the 

lets may be represented by a circuit as shown in Figure 5.2. 

8.5 TIPICAL SIMULATION RESULTS 

In Figures 8.10 to 8.13 some dynamic responses of the RC 

simulation are presented. From these graphs it may be seen 

that compared with the dynamic responses found in Chapters 5 

to 7 the wave fronts are smoothed out owing to the diffusive 

effect of the backward-difference approximation used in this 

simulation. This is seen very clearly in the solid temperature 

responses after a 

(figure 8 .10) . 

The ultimate 

inlet temperature step disturbance 

part of the step responses of 

Figures 8.12 and 8.13 show an interesting phenomenon: 

somewhere halfway in the bed (halfway the horizontal position 

x for Figure 8.12 and halfway the height z for Figure 8.13) 
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the responses show a maximum static amplification. These 

results are in accordance with the corresponding static 

accuracy profiles (see, for example, curve a in Figure 7.6). 

The reasen why this effect only occurs after bed velocity or 

gas flow rate disturbances is that the effect of these 

disturbances is mainly determined by the gradient of the 

static temperature profiles (as shown in Figure 3.2) with 

respect to the height z or the horizontal position x. The 

maximum value of this gradient is halfway the cooling zone. 

8.6 CONCLUSIONS 

Because of its fully parallel operatien the RC-network 

simulation is - in contrast to the other simulation techniques 

very fast. The dynamic effect of a disturbance is simulated 

in all places of the bed in some milliseconds. This is of 

great advantage in trying and camparing different control 

schemes, calculating optimal controller settings and optimal 

sensor locations, etc. 

A drawback of the RC simulation is that changing to another 

steady-state situation would involve the replacement of the 

majority of the resistors on the flip-chip modules, a 

cumbersome, time-consuming task. Therefore, it is advisable 

to postpene the calculation, selection and soldering of the 

resistors until the operating conditions of interest are well 

known. 

Static accuracy is comparatively poor due to the use of 

backward-difference approximation methods which are needed in 

order to keep the analog scheme simple. Dynamically, spurious 

diffusion is introduced, which also may be present in the 

real pellet bed. 

The total cost of the special-purpose analog simulator 

described in this chapter is about f 10.000,= in hardware for 

the cooling section of the pellet-indurating plant. This 

simulation has been set up for the whole plant and costs then 

about twice as much. 
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C h a p t e r N i n e 

C 0 M P A R I S 0 N 0 F T H E 

M E T H 0 D S 

9. GENERAL 

S I M U L A T I 0 N 

By its very nature, a methodological of simulation 

studies is never very satisfactory. Por models are built and 

simulated for a purpose, whereas methodological studies 

aim at arriving at ral conclusions. This difficulty arises 

because different models and simulation methods are used for 

different purposes. For example, start-up and shut-down 

problems may be studied by a non-linear model which is only 

accurate in the low-frequency range, whereas a model needed 

for feedback-control studies may be linear(ised) but must be 

accurate for frequencies. 

An extra of the comparison is formed by the fact 

that in our simulations the applied method as well as the 

computer may be different. This is an uncommon situation: 

comparative studies in the literature deal with different 

numerical methods implemented on the same machine. 

The few published comparisons between the effectiveness of 

different machines are limited to comments on 

obvious and drawbacks. 

The problem is also complicated by the past experience and 

the environment of the user. When a potential user is 

almast continuously in simulation exercises, he may be 

to have a broad expertise with to a variety of 

simulation methods. When his main mission is a rather different 

one - for to (re)design processes and to 'shoot troubles' 

of any kind, if unavoidable even of a dynamic nature - it is not 

uncommon that he has learned to use one method. 

Applicability and ease of of that method then are 

crucial requirements. And to finish with still another 

if the user is an electrical network specialist by but 
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has never really managed to master a digital language like 

Algol 60, the RC-network simulation will have a strong appeal 

to him, nat only as a means of simulation, but also - and 

perhaps even more import~ntly - as a means of grasping the 

process to be modelled as a whole, of gaining insight into 

its behaviour, of simplifying the model where possible, and 

of communicating about it with others who understand networks, 

in theory and practice. 

Whether or not a specific kind of simulation equipment can 

be made available may turn out to be equally decisive. The 

availability of computer time or a computing budget is of 

comparable importance. 

In spite of all these complications, which seem to prohibit 

a meaningful comparison, we will try to evaluate the various 

simulation methods. Our conclusions fall into two categories: 

(1) those relating to the elaborated example of a campartment 

of the pellet-indurating plant (described inSection 9.2) and 

(2) those relating to similar but somewhat different problems 

(described in Sectien 9.3). 

The classical analytica! solutions tagether with the double 

Laplace transferm salution and the numerical-inversion salution 

of the equations descrihing a segment moving along with the 

pellet bed (as presented in Chapter 4) are only practicable 

(or only possible~) in the case of constant coefficients, 

uniform boundary conditions and linear partial-differential 

equations. Hence, although these methods may be very helpful 

for a theoretica! point of view, for the actual salution of 

practical problems, where never all these requirements are 

satisfied together, these methÓds are of little use. Therefore, 

they will be left out of consideration and we will base our 

camparisens on the simulation methods described in the chapters 

5 to 8. 

9. 2 CONCLUSIONS FOR .THE CASE ST UDY DESCRIBED IN THIS THESIS 

Since for each of the elaborated simulation studies a good 

choice between the various possibilities of implementation 

has already been made in Chapters 5 to 8, the ultimate 
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camparisen will mainly be a camparisen between the various 

implementations with respect to the effectiveness of simulating 

the (3.22) and (3.23). We had to start from these 

rather s linear model in order to be able to 

campare the four simulation methods at all. 

In the four simulation methods with respect to a 

number of criteria, such as static and dynamic accuracy, 

computation time with and without feedback, set-up time and 

flexibility, the results of the preceding chapters are 

summarised. 

For the calculation of the behaviour of a 

campartment after an inlet disturbance in one of the input 

variables without coupling with other compartments or feedback

control action, digital simulation in the time domain, as 

described in Chapter 5, is most competitive because of 

high static and dynamic accuracy combined with short 

computation time as well as set-up time. When the aim of the 

simulation is to perfarm control studies or when the simulation 

is extended by heat- and rnass-flow feedback into 

account, the simulation in the time domain looses 

attractiveness. The computation scheme becomes more 

complicated and the corresponding simulation time beoomes so 

large that other simulation methods, like digital simulation 

in the frequency domain or RC-network simulation, may become 

preferable. For the frequency domain, this benefit is caused 

by the fact that the simulation time is not affected by the 

presence of feedback. Open-loop response simulation 

results can be used in feedback studies, where the 

feedback may be caused by the process itself (coupling of 

interacting compartments) or by feedback controllers. Also 

the RC-network simulation, due to its speed and fully 

parallel operation, is very suitable for extensive feedback 

and control simulation studies. Its main drawbacks are the 

inflexibility and the relatively poor accuracy. 

It should be noted that the hybrid simulation, as desePibed 

in ter ?, is no serious competitor for computation of the 

pellet-bed behaviour with or without feedback effects. 
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However, it must be admitted that this is due to the fact that 

we started from linearised process equations and that, hence, 

a CTDS-simulation methad had to be chosen in order to make the 

simulation feasible. The relatively long set-up time (the 

patching and checking of the analog part of the simulation) 

and the required specialised knowledge tagether with the 

relatively limited flexibility (as compared with digital 

simulation) could only be compensated for by a much smaller 

computation time than the digital one. However, this was not 

the case, because at the time the hybrid studies were carried 

out, the large number of intermediate results had to be stared 

on disc memory and to be played back (owing to care-memory 

limitations). 

Simulation in the frequency domain was only possible 

because of the linearity of the process equations (3.22) and 

(3.23). Digital and hybrid simulation can easily take non

linear effects into account. In principle, also in RC-network 

simulat.ion non-linearities can be taken into account, but with 

a view to feasibility simple linear relationships are to be 

preferred in general, but sametimes its unique capability to 

"solve" sets of implicit equations in the same way as nature 

"solves" such problems, provides a peerless advantage. 

9.3 GENERALITY OF THE CONCLUSIONS 

The conclusions about the effectiveness of the various 

simulation methods are not limited to the simulation of 

pellet-indurating plants. Similar conclusions can be expected 

for other processes described by a comparable set of non

linear partial-differential equations of first order with 

respect to three or more independent variables. Hence, our 

conclusions are also of importance for simulation studies of 

processes like sintering plants, gas-liquid cross-flow heat 

exchangers or clinker coolers. 

9.3.1 Linearisation 

For the purpose of comparing the various methods of 

simulation, we had to linearise the equations. Due to the 

linearisation, only relatively small excursions from the given 
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steady-state condition are permitted. Hence, we 

focussed the simulation studies discussed in this thesis on 

the dynamics around a typical steady-state situation.' Although 

it followed from the static accuracy tests of the various 

simulations that there were no differences between the 

temperature profiles as by the non-linear static 

model and by the linear dynamic model, it is clear that in 

this way only a certain class of control problems can be 

dealt with Start-up and shut-down problems 

generally need a non-linear process model. 

9.3.2 Spac endent ients 

An essential feature of the four simulation methods 

elaborated in Chapters 5 to 8 is their ability to deal with 

processes with t coefficients. Owing to the 

segmentation with respect to both space directions, the 

simulation methods could deal with non-uniform 

coefficients. In that wayf also the of the 

process with the environment (in the study of the pellet bed 

for example: the interchange between the bed and the grate 

bars of the transportation as well as non-uniform 

boundary conditions could be taken into account very easily. 

It should be noted 1 that for problems where the space 

dependenee of the coefficients is less pronounced 1 quite 

different implementations 

various machines. For 

have been chosen on the 

-.,·~··--~~-, a time-lumped simulation 

would have been realised on the hybrid computer and even 

analytical solutions might have been applicable. Hence, 

the comparison of the various simulation methods is primiraly 

of for processes with coefficients that are 

significantly space-dependent. 

t assump 

In , the assumptions permissible in the derivation 

of a mathematical model will be different for other processes. 

An evaluation of the influence of the model assumptions on the 

simulation results is in order to extend the 

of our comparative conclusions. Therefore, we will 

the feasibility of the simulation methods under several 
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different assumptions. 

Dispersive gas flow instead of plug-flow gas stream, or 

heat eonduetion in vertical and/or horizontal directions in 

the solid as well as in the gas introduces second-order 

differential quotients. Finite eonduetion inside the pellets 

even adds an extra dimension to the problem {see Section 2.3). 

As has already been shown inSection 8.4, RC-network simulation 

is very suitable for taking into account extra diffusion terms 

with respect to already existing independent variables as well 

as with respect to new coordinates. This is due to the fact 

that a passive ladder network of resistors 

and capacitors represents the version of the 

diffusion equation. In fact, RC-network simulation has more 

problems in simulating first-order transport equations {it 

then needs buffer amplifiers) than second order diffusion 

equations. In digital simulation and classica! analog 

simulation just the opposite is true. 

If one does not want to ignore the time constant introduced 

by the heat aapaaity of the gas ho in the bed which is 

small compared to the time constant of the solid material, an 

extra a/at term must be added. When there is a large 

difference between the time constants, the system of equations 

is a so-called stiff system. Digital simulation in the time 

domain will need much computer time since small integration 

steps are needed to account for the small time constant, and 

accuracy problems may then arise. Also hybrid simulation will 

use more computation time since the responses to be stored and 

played back must be sampled very frequently in order to take 

into account the high-frequency part of the responses of the 

stiff system. The RC-network simulation and the frequency

domain simulation can easily deal with stiff systems. In the 

RC network small capacitors must be added to the gas temperature 

node and in the frequency-domain simulation it is 

sufficient to extend the calculations to higher frequencies. 

The addition of a ehemiaal reaetion results in an extra 

transport equation like {2.53). Since this equation is 

essentially of the sametype as the solid heat balance (2.52), 
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no new simulation problems arise because of the addition of 

the new equation. All simulations become more extensive, but 

not essentially different. 

Heat by radiation needs the evaluation of the 

fourth power of the temperatures according to the Stefan

Boltzmann equation. Without linearising the equations, the 

frequency-domain simulation is not permissible any more. RC

network simulation becomes very complicated. For digital 

simulation in time domain, raising to the fourth power is no 

problem at all. 

9.3.4 Other considerations 

Simulation in the frequency domain may be preferable for 

stabilising control studies, in view of the extensive control 

theory available in frequency-domain terms. 

The good man-machine interaction feature of the RC-network 

simulation may be an advantage for extensive simulation studies, 

e.g. the determination of optimal sensor location for the 

design of a feedback-control loop. 

of the simulation results obtained for a 

campartment of the process into a si.mulation of the whole 

plant is most easily by means of the frequency

domain simulation. In this case, the previously obtained 

results can be used directly without repeating the calculation. 

With RC-network simulation, where computation time is 

negligible, the hardware must be extended. For the digital 

simulation in the time domain as well as for the hybrid 

simulation the implementation must be adapted and the whole 

calculation repeated. 

The ease of parameter values that are not very 

well known in advance aften turns out to be an important factor 

in practice. Digital machines and also hybrid computers can 

easily perfarm such changes. The main drawback of the RC

network simulation is its inflexibility. Another value of 

a heat transfer coefficient means changing resistances. A 

change of the steady-state eperating situation around which 

the process equations have been linearised is not feasible 

without changing or building another RC network. 

141 



As regards the amount of time needed to apply the various 

methods- an aspect that is closely related to fLexibiLity, 

whatever the precise meaning of this term may be, - a 

distinction must be made between 

- preparatien time (set-up time), i.e. the time needed to 

adapt the metbod and its implementation to 

- a new problem 

- a problem reformulation {e.g. a revised assumption) 

- a change in eperating conditions 

- a change in initial or boundary conditions 

- computation time 

- time needed to interpret the simulation results. 

Digital simulation in the time domain is characterised by 

a relatively short set-up time and {for open-loop responses) 

a rather short computation time. Moreover, digital computation 

is very flexible. 

Digital simulation in the frequency domain is characterised 

by a relatively short set-up time and a rather short 

computation time (giving all responses at once:) for 

open-loop as well as closed loop responses. It is also very 

flexible. 

Hybrid simulation demands more set-up time (patching and 

checking of the analog part of the simulation) , is less 

flexible than digital simulation, and was - in the 

implementation considered here - only somewhat faster than 

digital calculation. 

RC-network simulation needs a long set-up time {design and 

construction of the flip-chip modules), a very short 

calculation time, but a very long time to adapt for other 

parameter values. The costs for the RC-network hardware will 

be of minor importance for an extensive simulation study. 

Realisation of an RC network for the whole pellet-indurating 

plant amounted to an investment of f 20.000,= in components. 

In Table 9.1 a summary of the advantages and drawbacks of 

the four simulation methods is given for the circumstances 

considered in Chapters 5 to 8 as well under somewhat different 

conditions. 
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Table 9.1 

COMPARISON OF THE VARIOUS SIMULATION METHOOS 

t: 
0 

,3 
<l) 
ç: 
I 

u 

"" 
Static accuracy 

Dynamic accuracy 

Computation time +) 
(without feedback) 

good 

good 

good good intermedia te 

Computation time 
(with feedback) 

Set-up time 

Flexib ili ty 

Accessibility of 
intermediate results 

2 min++) 

% 10 min 

short 

good 

possible 

intermediate intermediate poor 

4 min+++) I min++) JO ms 

4 min 

short 

good 

possible 

% JO min JO ms 

intermediate long 

intermediate poor 

possible good 

Linearity required 

Incorporation of 

no yes no preferabie 

-diffusion complicated complicated complicated simple 

-chemical reaction possible possible possible possible 

-radiation++++) easy impossible possible complicated 

-accumulation of complicated possible complicated simple 
heat in the gas 

Sui tabili ty for 

-overshoot calculation good poor 

good 

good inaccurate 

-feedback control 
studies 

-start-up/shut-down 
studies 

-(re)design studies 

poor 

good 

good 

poor good 

poor good poor 

poor good poor 

+) These computation times are - of course - highly dependent upon existing 
technology, but their ratio's tell the story. 

++) for one complete response to a single disturbance 
+++ 

) for the frequency response of a~l process variables to a~l input 
variables (for 30 frequencies) 

++++) if the Stefan-Boltzmann relation is not linearised 
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L I S T 0 F S Y M B 0 L S 

A heat transfer area between gas and pellets per unit volume of the 
pellet bed tm- 1] 

A1 constant in (2.3} 

A2 
A 

B 

c 
== 
c~ 
Cs 

constant in (2.3) 

(2x5)-matrix (see 

(2x6)-matrix (see 

(2x4)-matrix (see 

constant defined 

concentratien of 

(5.4)) 

(5.22)) 

(5.29)) 

by (2.36) 

magnet i te 

D (2x4)-matrix (see (6.18)) 

[mole m-3] 

ap diameter of the pellets 

E activatien energy [J mole- 1] 

f function of x 

Fg gas flow rate [kg s-I m-2] 

G normalised dimensionless gas temperature 

GN 1 double Laplace transferm solution of G according to (4.19) 
> 

GN, 2 single Laplace transferm salution of G according to (4.40) 

GN, 3 single Laplace transfarm solution of G according to (4.43) 

GN 4 numerical-inversion salution of G according to (4.52) 

h 'heat transfer coefficient [J K-I m-2 s-1] 

k rate coefficient [s -IJ 

k(x,s) kernel of integral transformation 

k
0 

velocity constant [s-IJ 

~ index in time direction 

L number of time intervals 

m index in horizontal x direction 

M number of segments in horizontal x direction 

n index in vertical z direction 

N number of layers in vertical z direction 

p Lap lace variab le [-J 
p~ constant defined by (2.37) 

q Laplace variabie (demensionless in Ch.4 and [s-1} elsewhere) 

r reaction rate [mole m-3 s-1] 

r distance from the center of the pellet [m] 

R radius of the pellet [m] 
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R resistance 

R* overall resistance 

S normalised dimensionless solid temperature 

t time Is] 

T [ocJ g gas temperature 

Ts pellet temperature [
0 c] 

u substituted variable (see (2.20)} 

U overall heat transfer coefficient [J K-l m-2 s- 1] 

u
0 

temperature dependent coefficient (see (2.8)) 

Vs grate velocity [m s- 1] 

x horizontal position [m] 

z vertical position [m] 

Z height of the bed [m] 

ak coefficients in Chepter 3 

Sk coefficients in Chapter 3 

yg specific heat of the gas [J K-l kg- 1] 

ys specific heat of the solid [J K-l kg- 1] 

6H heat of reaction [J mole- 1] 

6P pressure drop over the bed [N m-
2
] 

s void fraction of the bed [-] 

e residence time [s] 

[kg m-1 s-1] ng viscosity of the gas 

r; dimensionless height 

* fixed dimensionless height of a segment of the bed r; 

KS thermal diffusivity of the pellet material [m2 s -IJ 
ÀS heat conductivity coefficient of the pellet material 

)lg heat capacity of the gas in the 

)JS heat capacity of the pellets in 

pg density of the gas [ -3 kg m J 
ps density of the pellet material 

~ function of x and f 
~ function of f and ~ 

bed [ -1 -3] J K m 

the bed [ -1 -3] J K m 

[kg m-3J 

Tl 2 time constauts according to (2.31) and (2.32) [s] 
' 

T_ + dimensionless time constauts according to (4.29) and (4.30) 
' I w angular frequency [s- J 
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Subscripts 

a average 

0 initial 

in inlet 

out outlet 

SuperacY'ipta 

1 single Laplace transferm of f 
} double Laplace transferm of f 
F steady-state value of F 

RC-network symbols 

voltage souree (with respect to earth) 

current souree 

resistance 

capacitance 

earth 
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STELLINGEN 

behorend bij het proefschrift van J. Brasz, 11-3-1977 

I. Zonder warmtebalans is een mathematisch model ten behoeve van de 

regeling van een sinterbandproces niet zinvol. 

C.E.Carter, E.Rose, "Controî investigations on a non-îinear lumped
parameter model of a sintering proaess", 4th Int •. Conf. on DigitaZ 
·n",,,.,,,.r"''" AppZioations to Proaess Control, Zuriah, Marah, 1974 

2, De nuldoorgangen die Bender +) tekent in het Bode diagram van de 

responsie van een gas-vloeistof kruisstroom warmtewisselaar voor de 

uittredende gas temperatuur op veranderingen in de intredende vloei

stof temperatuur berusten op een foutieve interpolatie van een aantal 

berekende punten. 

+) E.Bender, response arossfîow heat exahangers for 
Variatiens in temperature arzd mass flow", Preprint 5th IFAC-aongress, 
Paris (1972) 

3. In tegenstelling tot hetgeen Van der Grinten +) vermeldt, is de dynamica 

van de vloeistof- en de damp-stroom bij schoteldestillatiekolommen 

principieel verschillend, De vloeistofstroom moet beschreven worden 

met behulp van de gesegmenteerde versie van de advectieve transport

vergelijking, en de dampstroom door de gesegmenteerde versie van de 

diffusievergelijking. 

+) P.M.E.M. van der Grinten, ProaesregeZingen, Prisma Technica 40, Het 

Spectrum, 1970, pag. 72 

4. Door de introductie van kleine, goedkope IC-versterkers is analoge simulatie 

van processen met behulp van Re-netwerken weer een aantrekkelijk 

simulatie-alternatief geworden. 

5. Indien het bijvoeglijk naamwoord "optimaal" letterlijk wordt genomen, 

wekt de term "optimale regeltheorie" (Engels: optimal control) ten 

onrechte hoge verwachtingen van de kwaliteit van de met behulp van 

deze theorie afgeleide regelingen. 

6. De gewoonte in de procesdynamica om de massa- en energie-balansen direkt 

op te schrijven voor eindige volumina (segmenten, laagjes, etc.) zonder 

gebruik te maken van de limietovergang naar de bijbehorende partiële 

differentiaal vergelijkingen, kan het vinden van een efficiënte 

numerieke oplossingsmethode in de weg staan, 



7. Bij het onderwijs in en in de toepassing van de regeltechniek 

dient uitgebreid apart aandacht te worden geschonken aan het statisch 

effekt van ragelakties ("statisch regelen") alvorens wordt overgegaan 

tot een beschouwing over het dynamisch effekt van ragelakties 

("dynamisch regelen"). 

8. Voor het berekenen van de oplossingen van partiële differentiaal 

vergelijkingen met digitale rekenmachines is het gebruik van een 

specifieke oplossing gebaseerd op een eindige differentie methode 

vaak sneller en nauwkeuriger dan de numerieke evaluatie van klassieke 

analytische oplossingen. 

9. Het is onjuist om, zoals Groenewold +) doet, een onderscheid te maken 

tussen mikro-, meso-en makro-risiko's op grond van de grootte van de 

schade van een ongeval ongeacht de bijbehorende kans van optreden. 

+)H.J. GPoenewo~d, "We moeten mag dat wel?", 

Wetenschap en samenleving 74/8 (1974) 

10. Plaatsing van commerciële advertenties voor boeken in wetenschappelijke 

tijdschriften dient onder verantwoordelijkheid van de tijdschrift

redaktie plaats te vinden of achterwege te blijven. 

11. Een belangrijk en eenvoudig quantificeerbaar kriterium voor de 

maatschappelijke relevantie van universitair onderzoek is de plaats

baarbeid in de maatschappij van afgestudeerden. 

12. Het feit dat de zwaarte van sommige betrekkingen gecorreleerd is 

met het genus van de functie - zoals bijv. bij bibliothecaris/ 

bibliothecaresse, secretaris/secretaresse - is discriminerend en 

verwarrend. 
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