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A Comparison of Piecewise-Linear Model 
Descriptions 

Tom A. M. Kevenaar and Domine M. W. Leenaerts 

Abstract-In this paper current methods to store piecewise- 
linear mappings will be discussed. These methods are well-known 
in literature but have never been thoroughly compared. To be 
able to do so, the model descriptions will all be transformed into 
a most general form. Among the aspects of comparison will be 
the ease of modeling, the class of functions that can be modeled 
using a certain model description and the suitability to use the 
models in simulators. No best model description will be found 
but it will become apparent that some models are better suited 
for certain applications than others. 

I. INTRODUCTION 
OST SYSTEMS used in present day electronics are M nonlinear. For small signal responses, these systems 

may be linearized in a chosen bias point and afterwards 
the system equations can be solved as if the system was 
linear. If, however, large signals are applied, the nonlinear 
behavior must be taken into account. Getting insight 
in nonlinear systems is not a trivial task and even for 
very small systems it is often not possible to solve the 
system equations analytically so that one has to resort to 
computers. 

Electronic systems or networks are nonlinear because 
they are built from nonlinear (and linear) components. To 
be able to simulate these networks with either a circuit- or 
a network simulator, the nonlinear behavior of the com- 
ponents must be modeled first. In this modeling phase, 
properties of the component that are not considered 
important for the behavior of the system may be omitted 
or simplified. For example, in the MOSFET model used in 
SPICE during transient analysis, the noise of the MOS- 
FET is not modeled although in the real transistor it is 
always present. Another example is found in logic simula- 
tors or switch-level simulators: although the models of the 
logic gates are rather simplified as compared to the real 
physical behavior, the results of the simulations are usu- 
ally satisfactory. 

If the model is derived, it often may still contain nonlin- 
ear effects which in general can not exactly be repre- 
sented by familiar analytical nonlinear functions which 
can only be used inside a simulator. The next phase then 
is to approximate the nonlinear effect by a known nonlin- 
ear mathematical function. 
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The most obvious method perhaps is to use polynomial 
functions. In the past, a lot of research has been done in 
the area of approximating nonlinear functions using poly- 
nomials [ l ]  as well as in the field of calculating transcen- 
dental functions. Applying such methods leads to simula- 
tors like SPICE [21. A MOSFET is modelled as a connec- 
tion of nonlinear branches that are each characterized by 
some polynomial or transcendental function. 

Another way to store a nonlinear function is by means 
of table-look-up. Several sample points of a nonlinear 
function are stored in a table. If a function value is 
needed, the entry in the table is used or interpolated. The 
main advantage of this method is the speed of function 
evaluation that is very fast. In the SPICE-like simulators, 
a large part of the simulation time is consumed by evalua- 
tion of the nonlinear functions [31. In contrast, for table- 
look-up models the memory needed to store a model is 
much larger. If technology changes, all the tables have to 
be generated again. 

A third kind of nonlinear approximation is by using 
piecewise-linear (PL) functions: in the modeling phase, 
the nonlinear function is repeatedly approximated locally 
by a linear mapping. This results in a large collection of 
linear mappings that has to be stored. However, it appears 
to be possible to store the PL-mapping in a compact 
closed form model [4], [7]-[ll]. These models can then be 
used in so called PL-simulators [51, [61, [lSI. 

An additional advantage of modelling a nonlinear sys- 
tem with PL-functions is that it is easier to get insight in 
the behavior of these systems. As a drawback it can be 
mentioned that for non-scalar functions there is not al- 
ways a direct way to find the parameters of the PL-map- 
ping algorithmically as is the case with for example poly- 
nomial functions. In practice this problem appears to be 
not very severe. 

In this paper several methods for storing PL-mappings 
in a closed form will be compared. This idea is prompted 
by the fact that recently two new models have been 
introduced in literature [71, [SI. 

One of the first models was given by Chua cum suis [91, 
[lo] and will be referred to as Chual. This description was 
followed a few years later by the model presented in [ l l ]  
of which a modified form was given in [12]. These models 
will be referred to as Bokhl and Bokh2, respectively. 

An extension to Chual was recently given in [7] and will 
be called Chua2. The last model that will be treated here 
[SI is also an extension of Chual but differs from Chua2 
and will be referred to as Giizl. 
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To be complete, the description given in [131 must also 
be mentioned. This one will not be treated here because it 
has several serious drawbacks as mentioned in [SI. 

The remaining of the paper is organized as follows. 
Section I1 starts with a short review of the fundamentals 
of PL-models and some definitions. This is followed by a 
description of the five models and some discussion. In 
Section I11 all the models will be transformed into the 
most general model description to be able to compare the 
models easily. In Section IV the comparison of the models 
will take place with respect to the ease of modelling and 
the suitability of the models to build simulators. In the 
last section, some conclusions about the models will be 
given. 

11. PIECEWISE-LINEAR MODELS 
In this section, a survey will be given of existing piece- 

wise linear models. The models of Chua [9], Giizelis [SI, 
Kahlert [7], and van Bokhoven [l l] ,  [12] will be consid- 
ered. To obtain more insight in the mathematical formu- 
las, a review of some fundamentals will be given first. 

2.1 Review of Some Fundamentals 

functions, describing the mapping: 
All the PL functions to be considered are continuous 

f :  R" + R"; x + f(x) (1) 
unless otherwise is prescribed. Further, we will use CAPI- 
TAL notation for matrices and bold notation for vectors. 

PL functions approximate the nonlinear behavior of a 
function using a collection of linear affine mappings. Each 
mapping is only valid within a certain subspace, called a 
polytope, which is a convex polyhedron in R". 

Such a polytope is bounded by a set of linear manifolds, 
called hyperplanes, with each hyperplane defined as 

aTx = 0 (2) 
where without loss of generality we assume that the 
hyperplane contains the origin. An important aspect in 
PL-modeling is the consistent variation property. To ex- 
plain this, first the change of the mapping when crossing a 
hyperplane is treated. 

Let us assume that the function f is defined in four 
regions R,, R,, R,, and R ,  with Jacobians J , ,  J , ,  J , ,  and 
J 4 ,  respectively (see Fig. 1). In the figure also the two 
hyperplanes H ,  and H ,  are depicted. Since f is continu- 
ous, the function values have to match at the boundaries 
H ,  and H,. For example, going from R ,  to R ,  crossing 
H ,  means 

{ X  E H , I J , x  = J , x } .  (3) 
The normal vector of H,, denoted by a, ,  fully defines the 
boundary. 

Since (3) holds for every x E H ,  it can be proven [7], 
[14] that the following constraint is valid 

J ,  - J ,  = cay (4) 

where c is an arbitrary vector. 

R1 y=Jlx 

y=J2x 

R4  

y=J3x / R3 

Fig. 1. A closed path r through the domain space. 

Relation (4) implies that J ,  changes with a dyadic 
vector product in J2 and that it is a valid description 
throughout the whole boundary. Relation (4) is in fact 
exactly the consistent variation property [7]. As a conse- 
quence it is clear that along a closed path r (see Fig. 1) 
the summation of the jumps, i.e., the changes in the 
Jacobians, over H ,  and H,  must add up to zero. 

Further, we will often use the term "degenerate" parti- 
tions. The definition of degeneration can be given in the 
following definition. 

Definition I :  An intersection of ( n  - 1)-dimensional 
boundaries in R" is degenerate if three or more of them 
meet in an ( n  - 2)-dimensional manifold. 

PL-models can be divided into two classes. The first 
class contains explicit models. For this class of models the 
output vector can be obtained at once (for a given input 
vector) by just substituting the input vector into the model. 

The second class contains PL-models which are implicit. 
In such models the output vector can not be obtained 
immediately. First an algorithm has to be performed by 
which the output vector is computed. 

The main goal of this paper is to compare the several 
PL-models. To be able to do this we will reformulate the 
explicit PL-models into the most general implicit PL- 
model, i.e., the model proposed by van Bokhoven [ l l ] .  To 
this purpose we define the modulus transformation, 

Definition 2: The transformation z + U ,  j defined by 
the function h(.):  

with a strictly increasing h: R++ R, and h(O) = 0, is 
called the modulus transformation. 

It is important to notice that application of the modulus 
transformation to a function j = j (u )  automatically guar- 
antees that U 2 0, j 2 0, and U . j  = 0. To our purpose 
the function h(.) will be defined as h( t )  = t. For this 
situation is U = (lzl + z )  and j = (lzl - z )  and the sign of 
z determines either U = 0 ( j  > 0) or U > 0 ( j  = 0). This 
can be stated as follows. 

Corollary I :  The modulus transform for h(t)  = t can 
also be seen as a mapping U ,  j + z satisfying IzI = ( U  + 
j ) /2  and z = ( U  -j) /2,  with z E R and u , j  E R,. 

Finally, the definition of the modulus of a vector is 
given as 

Definition 3: Let a E R", then la1 is defined as 

U = h(lzl + z ) ,  j = h(lzl - 2 )  
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2.2 Explicit PL Models 
In this section the most important explicit PL models 

will be considered. They all have a compact global analyti- 
cal form. 

2.2.1. Model Chual: The formal definition of the canon- 
ical piecewise linear function f: R" + R", proposed by 
Chua and Kang [9], [lo] is expressed by 

U 

f ( x )  = a + B x  + c,I(a, ,x)  - @,I ( 5 )  
1 = 1  

where B E R"'", a,  c, E R", a, E R", and p, E R' for 
i E {l;.., a).  This model will be named Chual. 

From ( 5 )  several aspects can be observed. 
First, the domain space is divided into a finite number 

of polyhedral regions by a hyperplanes H of dimension 
n - 1. Hyperplane H, is expressed by 

( a , , x )  - p, = a:x - p, = 0 (6) 

which is also depicted in Fig. 2. 
Crossing this hyperplane from region R ,  into R,, the 

Jacobian matrix changes with the amount - 2c, a,'. This 
variation is independent of where H, is crossed. 

One can prove 1101 that a PL function has a canonical 
representation like ( 5 )  if and only if it has linear partitions 
and satisfies the consistent variation property. For such 
functions the representation is unique for fixed-boundary 
parameters. 

Further, it is important to notice that for each input 
vector there exists a unique output vector and that this 
vector always can be obtained. This implies that only 
functions in the strict sense can be modeled. 

For one-dimensional functions (x E R') the hyper- 
planes reduce to points and hence each hyperplane only 
separates two regions in the domain space. Therefore, the 
consistent variation property is always satisfied and thus 
every one-dimensional PL-function can be represented by 
(5) .  

For multidimensional functions, some geometrical con- 
straints always exist when a > 1. The consistent variation 
property then results in a limited class of functions which 
can be described by (5).  

2.2.2. Model Guzl: To be able to deal with a larger class 
of circuits than Chual, Guzelis [8] developed a model in 
which some hyperplanes may be PL themselves. 

This model, called Guzl, is defined as a mapping f: 
R" + R" with 

U 7 

f(x) = s + J x  + b,JaTx + p,I + 
I =  1 I =  1 

c,~S, 

U 

+ Y;X + d,,IaTx + P,II ( 7 )  

where s E R", J E R m x " ,  b, ,c ,  E R", d,, E RI, a,, y, E 
R" and p,, S, E R'. 

From (7) one can observe that two kinds of boundaries 
are used. First there is a set of a hyperplanes with 

1 = 1  

Fig. 2. Polytope boundary. 

normal vectors ai, i E {l;.., a}. 
Secondly, there is a set of 7 piecewise affine (PWA) 

hyperplanes. These PWA hyperplanes are PL mappings 
themselves, i.e., PWA hyperplane j is expressed as 

s, + y,Tx + Cd,,Ia,Tx + p, = 01. (8) 
t = l  

This canonical PL mapping (8) uses the first set of bound- 
aries to define the PL-behavior of the PWA hyperplanes. 
This is visualized in Fig. 3 where H ,  and H ,  denote the 
first set of hyperplanes and C ,  and C ,  the PWA hyper- 
planes. In this way we have constructed nine regions to 
define a mapping. 

It is proved in [8] that to have a description as (7) a PL 
mapping must satisfy the consistent variation condition, 
i.e., for each hyperplane or PWA hyperplane there exists 
a unique continuous vector. 

From (7) it can be observed that when no PWA hyper- 
planes are used to compose the model, Guzl will be the 
same as Chual. Using the PWA hyperplanes the model is 
more general than the one proposed by Chua and Kang. 

2.2.3. Model Chua2: To overcome the shortcomings of 
Chual, Kahlert and Chua [7] presented an extension to 
this model, which in this paper will be referred to as 
Chua2. 

The complete canonical representation for PL-func- 
tions f: R" + R" with arbitrary region boundaries in 
two-dimensions can be given as 

u 

f(x) = b + BX + c ' ( ( ~ ' , x )  - p'I + &(x) (9) 
r = l  

with 
P 8' 

4(x) = E:~J( l ln~ , , , ( (a '~ ,X> - PJ1)I 

] = I  k = 3  

+ a i , J z ( ( a ' 2 , x )  - P/?)I 

-lak,,,((cull,X> - @ ' I )  + I a i , , z ( ( a W  - PJ2)ll) 
(10) 

where b ,  c ' ,  ?lk  E R", a' ,  all, a12 E R", p' ,  p'1, p/2, 

a i , J , ,  U!,, E R', and B E R"'". Recently in [251, a form 
with hyperplanes in higher dimensions is given that how- 
ever in essence is the same as (9) and (10). 

In order to get some insight in how this model is built, 
first assume that 4(x) = 0. The model (9) then becomes 
equal to Chual which possesses the consistent variation 
property. 

It was proven in [14] that if the partitioning of the 
domain space is nondegenerate (see Section 2.1), every 
PL-function in the strict sense can be given by this model. 
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H 1  HZ 

Fig. 3. Hyperplanes and PWA planes. 

From this it is clear that trouble can be expected if there 
is a degenerate intersection that does not possess the 
consistent variation property. 

An example, taken from [7], is given in Fig. 4(a). Clearly 
the intersection is degenerate and the consistent variation 
property is not satisfied so the function +(x) f 0 is 
needed. 

The first summation of +(x) ranges over all degenerate 
intersections of the partitioning and in this example can 
be omitted because there is only one intersection. The 
inner sum ranges, for every degenerate intersection, over 
all the planes causing the degeneracy. In the example, this 
sum contains one element because two planes do not 
cause degeneracy of that intersection. Thus the inner sum 
can be omitted too and the function +(XI gets a simple 
form. 

Because the intersection is degenerate, it is possible to 
choose a subset of independent normal vectors (in this 
case two). The other normal vector can be formed by a 
linear combination. In the example a and a are chosen 
to form the independent set and a 3  = a, a' + a2 a 2  and 
a, = a2 = 1. The combination a l a 1  - a 2 a 2  represents 
the plane x 2  = 0. By substituting a point from every 
region in +(XI it is possible to determine the value of 
+(x) which results in (Fig. 4(b)) 

R,: 2 c ? a , c ~ ~ ~ x  2 Jd R,: 2 c ? a 2 a 2 T ~  

R,: - 2 ~ a , a ' ~ x  2 J; R,: - 2 ~ a , a ' ~ x  

R , :  0 R,:O. 

These terms are added to the consistent variation part of 
the mapping and give just enough freedom to remove this 
consistent variation constraint. 

If the degeneracy is of a higher degree, several of these 
contributions have to be added, which accounts for the 
inner sum. The influences of all the degenerated intersec- 
tions must also be added which is represented by the first 
sum. With this model every two dimensional PL-function 
in the strict sense can be modeled. 

2.3. Implicit PL models 
In this section two implicit PL-models will be treated. 

These PL-models use state variables to determine for 
which part of the domain space the mapping equations 
are valid. 

L a3 I 
X 

2t, x 1  

Fig. 4. An example for model Chua2. 

2.3.1. Model Bokhl: In [ l l ]  van Bokhoven presented a 
PL model using state variables 

y = A X  + BU + f 
j = Cx + Du + g 

U 2 O , j  2 0,u'j = O 

(11) 

(12) 

(13) 

to represent the PL mapping f: R" + R", where A E 
RmX", B E R m x k ,  f E R", C E R k x n ,  D E R k x k ,  and 
g E R k .  We will refer to this model as Bokhl. 

In this model the vectors U and j are the state vectors. 
Relation (13) formulates the linear complementary condi- 
tion of the state variables U and j .  The state equation 
(12) describes the boundaries of the polytope and the 
linear mappings are collected in the system equation (11). 

Suppose U = 0 then relation (11) defines the linear 
mapping y = Ax + f valid for the polytope Cx + g 2 0. 

To obtain the output vector for a certain x,, not lying in 
this polytope, some operations have to be performed. 

Substituting x, into (12) leads to 

j = Du + q, U 2 0, j 2 0, u'j = 0, q = Cx, + g (14) 

which is known in the literature as the linear complemen- 
tary problem (LCP). 

Solving (14) means obtaining a set of U and j with some 
entries zero and other entries nonzero and satisfying 
property (13). 

In the literature, several methods are discussed to solve 
the LCP problem [ll] ,  [151-[171. 

The vector U is then substituted into (11) to obtain the 
linear mapping y = Ax + f, which is valid for x,. 

In Fig. 5 ,  a hysteresis function is depicted for which the 
PL-model can be described as 

(15) y = ( - l ) x + ( - l , l ) u + ( l )  

2.3.2. Model Bokh2: An other implicit PL-model was 
proposed by van Bokhoven in [12], where the mapping f: 
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Fig. 5. Hysteresis function. 

R" + R" is defined as 

0 = z y  + A x  + B u  + f 
j =Dy + Cx +Zu + g 

U 2 O , j  2 O,uTj = O 

(17) 

(18) 

(19) 

where A E R"'", B E R m x k ,  f E R", C E R k x n ,  D E 
R k x m  and g E R". 

In this model, further referred to as Bokh2, relation 
(17) contains the mapping equations and relation (18) the 
state equations. 

Relation (22) can be reformulated by substituting (23) and 
(24) into (22) and rewriting (24) to 

y = ( B ,  - C,A,)x + C,u + (a, + C,b,) (25) 
j = ( -2A,)x + Zu + (2b,) (26) 

which has the same form as Bokhl with A = B, - C , A , ,  
B = C,, f = ( a ,  + C,b,), C = (-2A,), D = Z and g = 

(2b1 ). 
From (25) and (26) one can observe that indeed Chual 

belongs to a subclass of the class Bokhl, because D has 
the special form D = I. Due to this unit matrix in front of 
U, the consistent variation property is always satisfied. 

Obviously, every implicit model in the form of Bokhl 
with a unity matrix in front of vector U in the state 
equation can be transformed into an explicit form. 

3.2. Guzl 
Model Guzl, defined in (7), can be rewritten into 

y = S, + J2x  + B,IA2x + b,l + C,ld, 

+ G,x + D,IA,x + bzll (27) 

The special property of this model is the fact that the 
hyperplanes are not only situated in the domain space but 
also in the co-domain space. However, because U is multi- 
plied by Z only, the consistent variation property is always 
satisfied (in the (CO)-domain space). 

This unit matrix leads to advantages when simulating 
large systems.Using this model, the function of Fig. 5 can 
be given as 

using the same technique as in reformulating (5 )  into (22). 

IA,x + b21 = $(U,  + j,) (28) 

A,x + b, = +(U, - j,) (29) 

Id, + G,x + D,IA,x + b211 = +(U, + j2) (30) 

d, + G,x + D,IA2x + b,l = +(U, - j,) (31) 

then, by substituting (28) and (30) into (27) and solving j 
from (29) and (311, (27) can be transformed into 

As before, define for this model 

0 = (1)y + (0)x + (-2,2)u + (0) (20) 

j =  ( I t ) y +  ( ~ i ) x + z u +  (!I. (21) y = ( J ,  - B,A,  - C,G2 + C,D2A,)x 

+(Bz  - CZDZIC2) 

111. RELATIONS BETWEEN THE MODELS 
In this section all the above-mentioned models will be 

considered in relation to the implicit Bokhl. To this 
purpose we will use the modulus transform. Furthermore, 
it will be sketched that Guzl and Chua2 can not always be 
transformed into Bokh2 and vice versa. 

3.1 Chual 

model using matrices leads to 
Let us start with Chual in (5).  Reformulating this 

f(x) = y = a, + B,x + C,IA,x - b,l (22) 

where the vectors ci, ai, and elements pi in (5 )  are placed 
as rows i in C,, A ,  and b, ,  respectively. 

Define z = A,x - b,, then the modulus transformation 
(see Corollary 1, Section 2.1) yields, 

IA,x - b,l = +(U + j) 
A,x  - b, = +(U - j). 

(23) 

(24) 

( i l )  = ( - 2 G ,  -2Az + 2D2A, 1. 
z o u  + (  - 2 0 ,  z ) ( U ; )  + ( - 2 d  + 2D,b2 

(33) 

which has the same form as Bokhl. Here 0 is a matrix 
with entries equal zero. This means that .there is a one-to- 
one relation between the coefficients of Guzl and Bokhl. 
This means that the statement in [SI that there exists no 
systematic method to obtain the coefficients of Bokhl is 
not true for the class of functions that can be modeled by 
Guz 1. 

Note that the total matrix D has a special form and can 
not be chosen freely. The first set of equations (i.e., with 
U, and j , )  denotes a setof hyperplanes in the strict sense. 
The second set consists of the PWA planes which indeed 
by matrix D, depends on the first set of planes. 
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+ 

Obviously, Guzl belongs to a superclass of Chual and 
belongs to the same class if the PWA hyperplanes are 
excluded, i.e., D2 equals the zero matrix. 

Model Giizl is of a smaller class than Bokhl and it is 
not possible to reformulate each Bokhl into the explicit 
Giizl. Consider for instance the hysteresis function 
(15)-(16), which has a full matrix D. 

3.3 Chua2 

purpose redefine Chua2 as 
Also, Chua2 can be reformulated into Bokhl. To this 

f(X) = y = b3 + B ~ x  + C;IA;X - d';I + C:IA:X - d:I 

+ C,ZIA:x - d:l 

+ ~;,{ I lE3(A:x - d \ ) J  + F,(A:x - d:)l 

-IE,(A:x - d;) + IF~(A:x - d:)Il} (34) 

where the vectors ci, ai, and elements p i  in (9) are 
placed as rows i in Ci, A: and d& respectively. The 
superscript 1 (2) denotes the information belonging to the 
first (second) independent normal vectors a'' (a',) as 
mentioned in Section 2.2.3.. 

Using the same technique as for reformulating Guzl 
into Bokhl, this equation can be transformed into 

y = ( B3 - C,"A'; - Cl A: - C;A: + 2k3G)x 

+ (c;,c:,c,2, -e3,e3,c3, - e J u  

+(b3 + C,"d'; + Cid; - 2c3g)  (35)  

- 
2d '; 
2d 
2d : 
2 ~ , d '  
2F3d: 

-2g 
2g 

K +  

I 
I 

I 
Z 

I 
- 2 1  I 

- 2 1  I 

U 

with G = (E3A: - F3A:), g = (E3d:  - F3di) .  
In (36) two types of hyperplanes are described. The first 

set contains hyperplanes in the strict sense. The last two 
equations in (36) describe hyperplanes whose normal vec- 
tors are dependent of equalities 4 and 5 in (36). This is to 
conform to the theory of the model that for each degener- 
ated section two independent normal vector are chosen 

(stored in 4 and 5 and the other normal vectors for the 
equality section can be formed as a linear combination of 
these vectors (and stored in the last two equations). 

It is obvious from (36) that Chua2 is of a larger class 
than Chual. Chua2 is also larger than Guzl due to the 
fact that in Giizl the PWA hyperplanes can not be 
formed without restrictions as seen in (8). In Chua2 there 
is no restriction in forming the hyperplanes. 

Also, this model is a subclass of Bokhl. The matrix in 
front of the state vector U is not a full matrix, and for 
instance, again the hysteresis function (15)-(16) can not 
be modeled using this model. 

3.3. Bokh2 
Finally the last presented model, i.e., Bokh2, will be 

transformed into Bokhl. To this purpose, only the map- 
ping equation has to be substituted into the state equation 
leading to 

y = -A,x - B,u - f 4  (37) 

j = ( C ,  - D4A4)x  + ( I  - D4B4)u + (8, - D,f , )  (38) 

which has the same structure as (11) and (12) with C = 
(C, - D,A,), D = ( I  - D4B4) and g = (g, - D4f4). 

With D4 equal to zero, the state equation will have the 
same form as Chual. Therefore, if hyperplanes are taken 
from the domain space only, Bokh2 is of the same class as 
Chual. 

However, if D4 is not equal to zero matrix, this model is 
more powerful than that of Chual. Consider for example 
again, the hysteresis function (20)-(21) which has matrix 
D f 0 and can not be modeled by Chual. In contrast it 
can be seen that Bokhl can not always be transformed 
into Bokh2: if A,, B,, and f 4  are chosen, D, must be 
chosen such that I - D, B, = D .  The degrees of freedom 
in 0, are not always sufficient to do this. 

Compared to Guzl this model is of a different class 
meaning that there are functions that be represented by 
Guzl and not by Bokh2 and vice versa. To show this let 
for Bokh2 be given that 

Then (37) and (38) can be written in the form Bokhl 

y = -A4x - (B,,IB,2)u - f 4  

(h ) = ( '41 - O41 

c4'2 - O42 

+i - O42 B41 I - O42 B42 

I - O41 B41 - O41 B42 

which under the conditions D,,B,, = D,,  D,,B,, = 0, 
D4, B,, = 0 and D42 B,, = 0 (and 0 the matrix with entries 
equal zero) can be made identical to (32) and (33) which is 
a representation of Giizl. It can be shown that the com- 
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bined matrix (D41 ID42)T does not necessarily contain 
enough degrees of freedom to fulfill the conditions just 
given. This means that it is not always possible to trans- 
form Guzl into Bokh2. Because Guzl can not describe 
nonhomeomorphic functions, the opposite is also true. 

Because Chua2 is of a larger class than Guzl but also 
can only model homeomorphic functions, the same state- 
ments hold for the transformation of Chua2 into Bokh2 
or the other way around. 

3.4. Remarks 
Let us briefly summarize the obtained results. It ap- 

pears that all mentioned PL-models can be transformed 
into the most general model, i.e. Bokhl using a modulus 
transformation. Further, it is now possible to order the 
models in context to classes in which they belong. 

Model Chual belongs to the smallest class, only func- 
tions with hyperplanes in the strict sense can be modeled. 
Besides this the function must have the consistent varia- 
tion property. A larger class of functions can be modeled 
with Guzl. In this model the class is extended by means of 
PWA hyperplanes. A further extension in Chua2, able to 
model functions which do not possess the consistent varia- 
tion property. Bokh2 differs from the other models by the 
fact that the hyperplanes are constructed in the (col-do- 
main space. 

It was shown that Chual c Guzl c Chua2 c Bokhl 
and Chual c Bokh2 c Bokhl. Furthermore, it was shown 
that Bokh2 3 Guzl, Chua2 and Bokh2 P Guzl, Chua2. 
The main difference between the explicit models Chual, 
Chua2, Guzl on one hand and Bokhl, Bokh2 on the other 
hand is that with the latter two it is possible to describe 
nonhomeomorphic functions. It can also be seen that any 
model Bokhl with a triangular D matrix can be written as 
an explicit relation that looks like a stacked or recursive 
Chual model. 

From this it is clear that of the five descriptions just 
given, Bokhl is the most general form. Therefore, applica- 
tion of this model will be of advantage in deriving theoret- 
ical results on the existence and the number of solutions 
of PL-mappings and for stating general properties of 
PL-mappings in terms of coefficients. 

A n  important property of the Bokhl description is that 
it can explicitly produce a Bokhl model of the inverse 
mapping which in general is not possible for any of the 
other models. 

IV. THE MODEL COMPARISON 
In the previous chapter, all the model descriptions were 

transformed into the most general form, i.e., Bokhl. This 
is convenient to compare the models with respect to the 
class of functions that can be modeled using a certain 
description. There are, however, other aspects by which 
models may be compared. These will be treated in subse- 
quent paragraphs. 

4.1. Finding the Model Parameters 
The first step in finding one of the model descriptions is 

to find a PL-mapping that approximates a nonlinear func- 

tion for some given error criterion. Unfortunately, very 
few practical methods are known from the literature. For 
scalar functions a Tschebychev approximations can be 
used [23] that can be mapped directly on a PL-function. 
For multidimensional functions, no algorithm is known to 
find the PL-mapping in an algorithmic way. A theorem 
given by Kolmogorov [24] states that it is possible to 
realise a multi-dimensional function using a two level 
nesting of scalar functions and addition but the proof is 
not constructive and it is not known how these scalar 
functions must be obtained. 

Strangely enough, this appears not to be a serious 
problem in practice. If 2-terminal components are used 
for circuit level simulation, the Tschebychev approxima- 
tion can be used. Several of these methods can then be 
used to find the more complex model of, e.g., a MOSFET 
or bipolar transistor. For macromodels, the nonlinearities 
are usually not given as polynomials but as some kind of 
behavioral description that tends to become “more PL” as 
the size of the system increases. Moreover, in a lot of 
applications it is sufficient to use linear macromodels. 

The problems just mentioned and outside the scoop of 
this paper. Here we will assume that the PL-mapping is 
given. 

For the models Chual, Chua2, and Guzl an algorithm 
is given in [lo], [7], and [8], respectively, to find the model 
parameters for a given PL-mapping. In chapter 3 it was 
shown that these models can be transformed into Bokhl. 
This means that it is possible for the class of functions 
that can be covered by the first three models, it is also 
possible to find the parameters for Bokhl in an algorith- 
mic way. For the remaining functions that can be modeled 
by Bokhl no algorithm is known yet. These models are 
usually found by connecting several models and eliminat- 
ing the internal variables. For example, the hysteresis 
function from Fig. 5 and the associated model (15)-(16) 
can be found by applying positive feedback on an op-amp 
as depicted in Fig. 6(a) where of course the saturating 
op-amp is modeled PL. For Bokh2 it is straightforward to 
derive the model if the mappings and the partition in the 
(col-domain are given. In Fig. 6(b), the hyperplanes and 
the mapping are given from which it is easy to find (20), 
(21). 

4.2. Building PL-Simulators 
Network- or circuit simulators that use PL-functions to 

describe the nonlinearities of the components are called 
PL-simulators. With all of the five models it is possible to 
build PL-simulators. Of the three oldest models Chual, 
Bokhl, and Bokh2 simulators have been built that were 
reported in literature [18], [5], [22], and [61, respectively. 
The remaining models Guzl and Chua2 are quite recent 
and no results of building simulators using these models 
were reported yet. 

4.2.1. A Simulator Using Chual: Chua and Ying report 
in [18] that a simulator was built using Chual. The restric- 
tion of this simulator is that it can only handle networks 
built from (non)linear controlled sources and 2-terminal 
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(4 (b) 

Fig. 6. Construction of the hysteresis function and the hyperplanes in 
the (CO)-domain space. 

resistors. In practice, this appears to be not a very serious 
limitation if networks at the circuit level are to be simu- 
lated. However, for larger systems using high-level macro- 
models this imposes a severe restriction. Furthermore, 
Chual may describe multidimensional functions. This 
means that for 2-terminal devices only a limited part of 
the potential of Chual is used. 

Using one of the conventional circuit analysis methods 
(cut set, mesh, modified nodal, etc.) the circuit equations 
are transformed into the form of Chual where the x 
contains a set of network variables. The size of x depends 
on the chosen circuit analysis method. As with normal 
network analysis, the PL-equations f ( x )  = 0 are then 
solved using a method introduced by Katzenelson. The 
global convergence properties of this method are better 
than of Newton-Raphson's method. With extensions to 
Katzenelson given in [19], this method will always find a 
solution for x. This is also mainly due to the fact that 
Chual can only model functions in the strict sense. If the 
hyperplanes of the compound model have a special struc- 
ture (i.e., lattice) a more efficient method called break- 
point-hopping can be used [20], [21]. 

4.2.2. Simulators using Bokhl: With Bokhl, two simula- 
tors were built reported in [5] and [22]. The implicit 
Bokhl is more powerful than Chual and its implicitness 
implies that it needs a powerful algorithm to find a 
solution. Although Katzenelson could be used, stronger 
methods are available such as Lemke [16] and Van de 
Panne [17] which are functionally equal. The models that 
can be used in these simulators are not restricted to two 
terminal devices and this is important if macromodels 
must be used. 

Bokhl allows to transform a number of connected 
models into a model of the same form without any of the 
internal variables of the network being present. This opens 
the possibility to derive compact models of complicated 
functions which is not possible for Chual. An other possi- 
bility is to simply concatenate several models to form 
again a model of the form Bokhl and add topological 
equations. This is the method used in PLATO [22]: the 
whole network is transformed into one large PL-model 
that is stored using sparse matrix techniques. A solution is 
then obtained using the Van de Panne algorithm. A 
different approach is followed in [5]: the hierarchy in the 
network (if present) is retained by storing a Jacobian for 
every node in the hierarchy tree. 

Both methods suffer from the fact that implicitly, the 
tableau method is used to solve the network equations. 

This means that all the voltages and currents in the 
network are calculated which is noticeable in the CPU 
times. 

4.2.3. A Simulator using Bokh2: Recently a new PL- 
simulator called PLANET was developed [61, which uses 
Bokh2. As mentioned in chapter 3, this model is slightly 
less general than Bokhl but stronger than Chual, and 
comparable to Chua2 and Giizl. Bokh2 as used in 
PLANET is not restricted to 2-terminal devices so macro 
models can be used. In general, it is not possible to 
transform several connected models into a Bokh2 without 
any of the internal variables being present. In PLANET 
the hierarchy of the network to be simulated is retained 
and the models are kept separated from the topological 
equations. The main advantages compared to the simula- 
tors of the previous paragraph is that modified nodal 
analysis is used which causes a reduction in the number of 
variables that has to be calculated. The node voltages of 
the network are solved using a hierarchical implementa- 
tion of the extended Katzenelson algorithm. 

Furthermore, due to the hierarchy and the separation 
of topological equations and models, it is easy to modify 
the network which is useful in an automatic synthesis 
environment. 

V. CONCLUSIONS 
In the previous chapters we have compared several 

PL-model descriptions. In chapter 3 an ordering was given 
in the context of the class of functions that can be 
modeled. It appeared that the most essential difference 
was that Bokhl and Bokh2 are able to model nonhomeo- 
morphic functions which is advantageous if one wants to 
use macromodels. As a consequence, it is not possible to 
rewrite these models in an explicit form. It is, however, 
possible by applying the modulus transform to rewrite 
Chual, Chua2 and Giizl into Bokhl where the latter is in 
general not canonical. 

In chapter 4 the models were compared with respect to 
finding the model parameters. It turned out that for 
functions in the strict sense it is possible to derive the 
models by means of an algorithm. 

With the models several simulators were reported in 
literature each one with its own advantages and disadvan- 
tages. One of the advantages of PL-modeling is the ease 
of performing mixed-level simulations because simplified 
macro models can be used. On the circuit level it is not 
likely that PL-simulators can ever compete with simula- 
tors like SPICE. To keep PL-simulators as fast as possi- 
ble, it is best to compute as little network variables as 
necessary. 

It is clear that no best model can be given. It depends 
heavily on the application in which the model is to be 
used. It is clear, however, that Bokhl is the most general 
form and is therefore best suited to derive theoretical 
results about PL-mappings. 

The main contribution of this paper is that we have 
tried to compare several PL-models as objective as possi- 
ble. 
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