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Abstract: This paper presents solution procedures for determining close-to-optimal stocking
policies in a multi-item two-echelon spare parts inventory system. The system we consider
consists of a central warehouse and a number of local warehouses, and there is a target for the
aggregate mean waiting time per local warehouse. We develop four different heuristics and
derive a lower bound on the optimal total cost. The effectiveness of each heuristic is assessed by
measuring the relative gap between the heuristic’s total cost and the lower bound. The results of
the computational experiments show that a greedy procedure performs most satisfactorily. It is
accurate as indicated by relatively small gaps, easy to implement, and furthermore, the
computational requirements are limited. The computational efficiency can be increased by using
Graves’ approximate evaluation method instead of an exact evaluation method, while the results
remain accurate.

Keywords: inventory; spare parts; multi-item; multi-echelon; target aggregate mean waiting

times, heuristics

1. Introduction

We consider a multi-item, two-echelon inventory system for spare parts that consists of a

central warehouse and a number of local warehouses. Such a setting is commonly used by

many manufacturers of “high-tech” products (airplanes, complex machinery, medical

equipment, mainframes, etc.) to support their after-sales services. In this paper, we

specifically consider environments in which the aggregate mean waiting time is used as the

measure of service quality. This measure is defined as the average time required to fulfill an

arbitrary request at a local warehouse, and is a weighted average over average delays for

individual items. This measure is directly related to availability. The expected time that a

technical system is not available per year is equal to the average number of failures per year

multiplied by the aggregate mean waiting time. The problem to be dealt with by the

manufacturer is determining optimal stocking levels of spare parts at the central and local
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warehouses so that target aggregate mean waiting times are met against minimal system-wide

inventory holding costs.

An appropriate model to study the spare parts problem sketched above is the METRIC (Multi-

Echelon Technique for Recoverable Item Control) model developed by Sherbrooke [12].

METRIC is widely adopted as the basis for many other models dealing with multi-echelon

spare parts inventory systems. This model considers multi-item inventory systems with which

repair and distribution processes are controlled in a two-echelon system, consisting of a

central warehouse and a number of local warehouses. It assumes (S-1,S) continuous review

policies and ample repair capacity for each local warehouse, and provides an approximate

distribution for inventory on-hand and backorders at each warehouse. We can in fact

distinguish two types of problems when analyzing the METRIC model: evaluation and

optimization problems. A lot of work has been done to develop evaluation methods.

Muckstadt [9] developed MOD-METRIC, an extension to METRIC, which allows for

multiple levels of indenture, i.e., spares requirements for an end item and its components.

Another variant of METRIC is VARI-METRIC developed by Slay [14]. In METRIC it is

assumed that the mean number of items in repair equals the variance of the number of items

in repair. Slay developed an approximation to obtain an expression for the variance. Next he

fitted a negative binomial distribution on the first two moments. Graves [5] independently

explored the negative binomial distribution for the approximation method while he also

developed an exact method. He reported the improvement of the negative binomial

approximation over the METRIC approximation. Graves' exact and approximate method has

been extended to multi-echelon, multi-indenture systems by Rustenburg et al. [11]. Muckstadt

and Thomas [10] extended the METRIC model by allowing emergency replenishments in

case of stock-out situations at the central or local warehouses. They also show that managing

multi-echelon systems by using adaptations of single-location methods can be dramatically

inferior to methods designed for taking advantage of a system’s structure. Hausman and Erkip

[6] extended the work of Muckstadt and Thomas by presenting an improved single-echelon

model to approximate multi-echelon model performance. Axsäter [1] developed an

alternative, exact evaluation procedure, and in addition developed an exact optimization

procedure for the single-item problem.

There are a few results available for multi-item optimization problems. Sherbrooke [12, 13],

for example,  looked at the minimization of the total expected backorders across all local

warehouses subject to a budget constraint. He proposes the use of exchange curves of system

availability versus inventory investment, rather than offering a single “optimal value”.

Different from Sherbrooke, a few researchers explicitly consider service constraints in their
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optimization problems. Cohen et al. [4] developed a model called Optimizer to determine

optimal inventory policies of IBM. They use fill rate as the service measure and solve the

problem by decomposing the model into three stages. The decomposition starts with the

lowest echelon where demand occurs and passes up to the next level. Hopp et al. [7] and

Caglar et al. [3] consider a system similar to the one that we are analyzing. In both papers,

heuristics are developed to minimize inventory holding costs subject to aggregate mean

waiting time constraints. In Caglar et al. [3], (S-1,S) policies are assumed at both the central

warehouse and the local warehouses, just like in our model. Hopp et al. [7] are somewhat

more general as they assume the more general (r, Q) inventory policy for the central

warehouse (together with a constraint for the total order frequency). Caglar et al. [3] show

that their heuristic is more accurate than the one of Hopp et al. [7].

In this paper, we consider a multi-item, two-echelon model, controlled by (S-1,S) policies at

both the central and local warehouses and we will develop heuristics for the minimization of

system-wide inventory holding costs. As stated above, we explicitly consider an aggregate

mean waiting time constraint at each local warehouse. The consideration of aggregate mean

waiting time per local warehouse instead of the average over all local warehouses (such as in

Sherbrooke [12, 13]) is motivated by practice. E.g., for commercial technical systems such as

large-scale computers and medical equipment, spare parts are often only kept on stock in a

network managed and centrally controlled by the Original Equipment Manufacturer who sets

targets in terms of availability or related measures per service region (or per sales area). The

targets are agreed with sales departments or directly with customers, and different regions

may have different targets. The main difference between our work and the work of Hopp et al.

[7] and Caglar et al. [3] is that we use exact evaluation (cf. Graves [5]) within our heuristics,

while Hopp et al. [7] and Caglar et al. [3] use relatively inaccurate approximate evaluations.

Hopp et al. develop a own approximate evaluation and the heuristic of Caglar et al. is based

on the METRIC approximation of Sherbrooke [12]. The use of the METRIC approximation in

an optimization method may result in a generated solution that is not feasible, and in many

cases even far from feasible, as we shall show in Section 5.

In this paper, our focus is on developing efficient heuristics to determine close-to-optimal

stocking policies. Motivated by the results presented in Wong et al. [15] that indicate a quite

satisfactory performance of the greedy approach for solving similar problems allowing lateral

transshipments, we are interested to see how this approach performs in solving the problem

analyzed in this paper. This approach is quite easy to implement and hence, attractive from a

practical point of view. In addition, we also present a local search method that can be used to

improve the solution obtained by the greedy approach. To obtain lower bounds on the optimal
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total costs, we develop a procedure based on a decomposition and column generation

approach similar to the Dantzig-Wolfe decomposition. By the same method, we also obtain an

alternative heuristic, which also may me combined with local search. Our main contribution

is that we show that the greedy procedure (without local search) performs very satisfactorily.

In addition, we show that it is safe to use Graves' approximate evaluation within the greedy

procedure. That results in a heuristic method that is accurate and sufficiently simple and

computationally efficient for implementation in practice.

The rest of our paper is organized as follows. In Section 2, we present the model formulation.

We introduce the basic assumptions and notation used in the model, and present the

mathematical formulation of our problem. In Section 3, we describe all the basic techniques

used in the development of all heuristic and lower bounding procedures. Section 4 presents

our computational experiments for the evaluation of heuristics. Further study investigating the

accuracy of the approximate evaluation methods is presented in Section 5. Finally, some

concluding remarks are presented in Section 6.

2. The model

2.1 Model description

We have a non-empty set locN  of local warehouses. These local warehouses are numbered  n

= 1, 2, …, | |locN . Each local warehouse serves a number of technical systems of the same or

at least similar type. A technical system consists of several critical components, each of which

may fail incidentally, and a failure of a component implies that the full system (or at least a

significant part) fails. The components are at such levels in the material breakdown structure

of the machine that they can be replaced as a whole by spare parts. They are also called

assemblies, and we also refer to them as stock-keeping units (SKU-s). Let I denote the non-

empty set of all SKU-s that may occur in the configurations of the technical systems, and the

SKU-s are numbered i = 1, 2, …, | |I . We assume that the total stream of failures of SKU i as

observed by local warehouse n constitutes a Poisson process with a constant rate inλ  (≥ 0).

This assumption is standard in METRIC type models (and a key factor for obtaining a

tractable model). For many real-life systems, lifetimes of components are (close-to)

exponential, or lifetimes are not precisely exponential but the total stream of failures is a

composition of sub-processes coming from relatively many technical systems that are

supported by a local warehouse. In those cases it is reasonable to assume a Poisson failure

process. Further, in practice, one does not allow long down times of technical systems, and
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thus, it is reasonable to assume constant failure rates. Apart from the local warehouses, there

exists a central warehouse, denoted by index 0. Let N denote the set of all warehouses; i.e., N

= {0} ∪ locN .

Suppose a component of SKU i of a technical system at some local warehouse n fails. Then

the technical system goes down. The malfunctioning component is replaced by a spare part

stocked at the local warehouse, if the local warehouse has stock on-hand. Otherwise, the

component is backordered and the technical system remains down until a ready-for-use

component becomes available at the local warehouse. The malfunctioning component is

shipped to the central warehouse, where all failed components are repaired. At the same time,

a request for a ready-for-use component is placed at the central warehouse. The order and ship

time for a component i from the central warehouse to local warehouse n is denoted by inT .

This order and ship time is excluding a possible waiting time at the central warehouse in case

a ready-for-use component is not immediately available there, and is assumed to be

deterministic. For returned malfunctioning components at the central warehouse, it takes a

random repair lead-time with mean 0iT  until the component is returned to the spare parts

stock at the central warehouse. Notice that implicitly a one-for-one replenishment policy has

been assumed for all SKU-s at all local warehouses including the central warehouse. I.e., each

SKU i at each warehouse n is controlled according to a base stock policy. The corresponding

base stock level is denoted by inS . As we deal with critical components at the assembly level

and the items are expensive in general, the assumption of one-for-one replenishments is

reasonable. Further, we assume that backordered demands for each SKU i I∈  at each

warehouse n N∈  are treated in FCFS order. A holding cost ih  is counted for each unit of

spare part of SKU i.

At local warehouse j, there is a maximum level max
nW given for the aggregate mean waiting

time per request for a ready-for-use component. Our goal is to determine a system’s stocking

policy S  to minimize the total holding cost subject to the aggregate mean waiting time

constraint per local warehouse, where S  is represented as a | | | |I N×  matrix.

2.2 Overview of assumptions

The main assumptions of the model are as follows:
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(i) At each of the local warehouses, the failures for the different components occur

according to independent Poisson processes with a constant rate.

(ii) All components are repairable and there is no condemnation.

(iii) For each SKU, the repair lead times of all items of that SKU are independent and

identically distributed random variables.

(iv) For each SKU, the order and ship times are assumed to be deterministic.

(v) A one-for-one replenishment policy is applied for all SKU-s at all warehouses.

(vi) Replenishment orders at the central warehouse are fulfilled in FCFS order.

(vii) There is no lateral supply in the distribution network.

2.3 Evaluation

For a given base stock policy S , evaluation of the steady-state behavior can be done exactly,

as described in Graves [5]. In this subsection, we summarize this method for our system (we

follow the formulae of Rustenburg et al. [11], in which Graves’ exact recursion has been

generalized to general multi-echelon, multi-indenture systems).

Define ∑ ∈
=

locNn ini λλ 0 , i I∈ , as the total demand for SKU i at the central warehouse. Let

inY , i I∈ , n N∈ , denote total demand during a time interval of length inT . This inY  is

Poisson distributed with parameter ininTλ , i.e., { } ( ) !yeTyYP ininTy
ininin

λλ −== , 0≥y . For

locn N∈ , this follows directly from the Poisson distribution of inλ . For 0=n , this follows

from Palm’s theorem and the property that the total demand process at the central warehouse

is Poisson. Define 0iX  as the total amount on order at the central warehouse in steady state,

i.e., the total amount in the pipeline from the supplier to the central warehouse. It holds

that 00 ii YX = . From the distribution of 0iX , we can derive the distribution of ( )00 ii SI , the

physical stock for SKU i at the central warehouse, and ( )00 ii SB , the backorder position at the

central warehouse, as a function of the base stock level 0iS :
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From this, we can easily determine ( )00 ii SI , the expected inventory on hand of SKU i at the

central warehouse at base stock level 0iS , and ( )00 ii SB , the expected backorder level of

SKU i at the central warehouse at base stock level 0iS .

Define ( )0
)(

0 i
n

i SB , i I∈ , locn N∈ , as the number of backorders of local warehouse n in the

backorder queue at the central warehouse. As each backordered demand at the central

warehouse stems from local warehouse n with probability 0iin λλ , the probability

distribution of ( )0
)(

0 i
n

i SB  is obtained by

( ){ } ( ){ }∑
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.  (3)

Define ( )0iin SX  as the total amount on order at local warehouse n, i.e., the total amount in

the pipeline from the central warehouse to the local warehouse n, under a given base stock

level 0iS . It holds that ( ) ( )( )
0 0 0

n
in i i i inX S B S Y= + . From the distribution of ( )0iin SX , we can

derive the distribution of ( )iniin SSI ,0 , the physical stock for SKU i at local warehouse n, and

( )iniin SSB ,0 , the backorder position at local warehouse n, as a function of the base stock

levels 0iS  and inS , like in the central warehouse. Further, we can determine ( )iniin SSI ,0 , the

expected inventory on hand of SKU i at local warehouse n, and ( )iniin SSB ,0 , the expected

backorder level of SKU i at local warehouse n, as a function of the base stock levels 0iS  and

inS .

The mean waiting time for getting a ready-for-use component of SKU i I∈  at local

warehouse locn N∈  when the base stock level of SKU i is 0iS  at the central warehouse and

inS  at the local warehouse, 0( , )in i inW S S , can be determined by Little’s formula:

0( , )in i inW S S = 0( , )in i inB S S / inλ . Taking all SKU-s together, the aggregate mean waiting time

( )nW S  at local warehouse locn N∈  is:
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     ( )nW S = Prob {an arbitrary component demand at local warehouse  is of SKU }  
i I

n i
∈

×∑
         (mean waiting time for a component of SKU i at local warehouse n)

     = 0( , )inin i in

kn ini I k I

B S Sλ
λ λ∈ ∈

×∑∑
 = 0( , )in i in

kni I k I

B S S
λ∈ ∈

∑ ∑
. (4)

2.4 Problem formulation

Our optimization problem can be formulated as:

S
Min ( )Z S = 0 0( ) ( , )

loc

i ini i i i in
i I i I n N

h I S h I S S
∈ ∈ ∈

+∑ ∑ ∑  (5)

subject to ( ) max
n nW S W≤ , locn N∈ , (6)

inS  integer, i I∈ , n N∈ . (7)

An optimal policy is denoted by *S and the optimal costs by *( )Z S . Note that in the above

formulation, the pipeline stock is excluded in the calculation of the inventory holding costs.

Note also that in comparison to the formulation of Caglar et al. [3], our formulation is slightly

different as no upper bound is assumed for inS .

3. Basic procedures

In this section, we describe the basic procedures that are used as building blocks in our

heuristic methods and for the computation of the lower bound on the optimal total cost. In

Section 4, we will discuss how these basic procedures are combined in the different methods.

The basic procedures include the exact and approximate evaluation (subsection 3.1), the

decomposition and column generation method (subsection 3.2), the greedy approach

(subsection 3.3), and the local search improvement (subsection 3.4).
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3.1 Exact and approximate evaluation

Exact evaluation can be done following the method developed by Graves [5], which has been

summarized in Subsection 2.3. A computational issue occurs, since { }yYP in = , i I∈ ,

n N∈ , should be calculated for all values 0≥y . In practice, however, for each i I∈ ,

n N∈ , we limit ourselves to { }max,...,0 inyy ∈ , with { }{ }ε−≥≤= 1|minmax yYPyy inin  and

610 −∈= , and allocate the remaining probability mass { }max1 inin yYP ≤−  to { }max
inin yYP = .

Furthermore, this computation must be done for every value of 0iS  that is investigated.

To reduce the computational burden, we can use an approximate evaluation method like

METRIC or Graves’ approximation. The METRIC approximation assumes that successive

replenishments at the local warehouses are independent processes, which leads to a Poisson

distribution. Graves [5] proposed a different approximation that uses the two-parameter

negative binomial distribution to fit the distribution of the backorders at the local warehouses.

This two-parameter approximation is, in general, more accurate than the METRIC

approximation.  In Section 5 we present the results of experiments evaluating the accuracy of

both approximate methods when used for executing the greedy procedure.

3.2 A decomposition and column generation method

A lower bound on ( )SZ  can be obtained by a decomposition and column generation (DCG)

method which reveals close similarity to Dantzig-Wolfe decomposition for linear

programming problems. In Kranenburg and Van Houtum [8], this method is described in

detail for another multi-item spare parts problem. A decomposition and column generation

method is appropriate for problems that have a complicated aggregation constraint (like

constraints (6) in our problem), but by decomposition of the problem can be reduced to

relatively simple sub-problems (in the problem under consideration: per SKU i). In this

subsection, we limit ourselves to a general description of the method for our problem.

Like in the Dantzig-Wolfe decomposition, a linear programming problem, the Master

Problem, is introduced in which the variables of our original problem (base stock levels) are

expressed as convex combination of columns that contain possible values for the decision

variables in the original problem. Besides the Master Problem, a Restricted Master Problem is

defined that only considers a subset of all possible columns. The method starts with some



10

initial columns which constitute a feasible solution for the Restricted Master Problem, and

solves the Restricted Master Problem with the simplex method. Next, the method iteratively

solves a Sub-Problem for each SKU i I∈ , to determine if there exists a column for that SKU

that would improve the solution, adds this column to the Restricted Master Problem, and

solves the Restricted Master Problem.

The Sub-Problem for one SKU i is

S
Min ( ) ( ) ( )

i
Nn Ii in

iniin
n

Nn
iniiniiii v

SSB
uSSIhSIh

locloc

−−+ ∑ ∑∑
∈ ∈∈ λ

,
, 0

00 (8)

subject to inS  integer, i I∈ , n N∈ , (9)

where nu  is the shadow price of the waiting time constraint for local warehouse locNn ∈  in

the Restricted Master Problem, and iv  is the shadow price for a constraint in the Restricted

Master Problem that assures that for SKU i a convex combination of policies is chosen.

Shadow price 0≤nu  by definition for all locNn ∈ . This Sub-Problem comes down to

solving a single-item cost minimization problem with linear inventory and backordering costs

(but without service level constraints). This optimization problem is precisely the problem

studied by Axsäter [1] and we solve this problem by his method. If the resulting policy for a

SKU i has a negative reduced cost (i.e. a negative value of the objective function (8)), this

policy is added as a column to the Restricted Master Problem. The method ends if for none of

the SKU-s a policy with a negative reduced cost is found.

The method results in a lower bound on *( )Z S . The corresponding policy, however, in

general will not be a base stock policy, but a convex combination of base stock policies

(columns in the Restricted Master Problem), which in fact constitutes a randomized policy.

The costs of this randomized policy are a lower bound on *( )Z S .

In the heuristic methods described later, the DCG may be followed by a greedy approach to

obtain a feasible solution for our problem formulated in (5)-(7). For that approach we need a

policy S  as starting policy. We use the following starting policy. For each i I∈  and  n N∈ ,

we select the smallest value for inS  that is found among the base stock levels of the convex

combination.
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3.3 A greedy approach

A feasible solution may be obtained in an efficient way via a greedy procedure similar to the

procedure described in Wong et al. [14] for a multi-item, multi-location problem with lateral

transshipments. The basic idea of this procedure is to add units of stock in an iterative way. At

each iteration, we add one unit of stock for an SKU i I∈  at a warehouse n N∈  such that we

gain the largest decrease in distance to the set of feasible solutions per extra unit of additional

cost. The procedure is terminated when a feasible solution is obtained.

Let abU  be a | | | |I N×  matrix containing zero values at all cells except for the cell ( ,a b ) that

has a value of one. The procedure starts by setting zero stock for all SKU-s and warehouses,

i.e. S = 0 . We define for each solution S  the distance to the set of feasible solutions as

( ( ) )
loc

max
n n

n N
W S W +

∈
−∑  where ( ) max(0, )x x+ = . In each iteration, for each combination of

i I∈  and n N∈ , we calculate the ratio in
in

in

W
r

Z
∆

=
∆

 where:

inW∆  = ( )( ( ) ) ( ( ) )
loc

max max
n n n in n

n N
W S W W S U W+ +

∈

− − + −∑ , (10)

and

inZ∆  = ( ) ( )inZ S U Z S+ − . (11)

One unit of stock is then added for the combination with the largest ratio. Notice that the

formulae for inW∆  and inZ∆  are easily simplified based on the structure in the functions ( )nW S

and ( )Z S . This is exploited in the computations. A formal description of the greedy procedure is

as follows:

A greedy procedure

Step 1: Set the initial solution S = 0 ; Calculate ( )nW 0  for all local warehouses locn N∈ .

Step 2: For all combinations i I∈  and n N∈ : Calculate inW∆ , inZ∆ , and inr .

Step 3: Let i* and n* be the combination with the highest ratio inr . Set * *i nS S U= + .

If ( ) max
n nW S W≤  for all locn N∈  go to END; Otherwise go to Step 2 .

END
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3.4 Local search

Once a feasible solution has been obtained, one may apply a local search method to obtain a

further improved solution. We apply a greedy (steepest descent) local search method that

allows us to explore the entire neighborhood at each iteration. At each iteration, all possible

neighbors of the current solution are evaluated, and the one with the minimum total cost is

selected. If the new total cost is less than the current total cost, the selected solution becomes

the current solution. Otherwise, no local improvement is possible and we take the current

solution as the heuristic’s solution.

For each solution S , we define the neighborhood of S  as follows:

1 2 3 4( ) ( ) ( ) ( ) ( )NE S NE S NE S NE S NE S= ∪ ∪ ∪  where

{ }' '
1( ) all | , ,inNE S S S S U i I n N= ∈ = − ∈ ∈S|  ;

{ }' '
2 ( ) all | , ,inNE S S S S U i I n N= ∈ = + ∈ ∈S|  ;

{ }' '
3 ' '( ) all | ,  ,  ' ,  ' ,  ,  'in i nNE S S S S U U i I i I i i n N n N= ∈ = + − ∈ ∈ ≠ ∈ ∈S|  ;

{ }' '
4 '( ) all | ,  ,  ,  ' ,  'in inNE S S S S U U i I n N n N n n= ∈ = + − ∈ ∈ ∈ ≠S|  ;

where S  is the set consisting of all feasible solutions.

The neighborhood of a solution can be seen as an integration of four sub-neighborhoods. The

first sub-neighborhood is formed by reducing one unit of stock in the system. Obviously,

since the total cost for our problem is a function of the expected inventory on hand, any

possible move to the first sub-neighborhood would always give better solutions. In contrast,

exploring the second sub-neighborhood, which is formed by adding one unit of stock, would

always lead to more expensive policies. Hence, any move to the second sub-neighborhood

would never be accepted. However, to give a general structure of the entire neighborhood of a

solution, the second sub-neighborhood is included in the definition as described above. The

third sub-neighborhood is formed by removing one unit of an SKU and putting another SKU

as a replacement. A cost reduction may be obtained here as an expensive component is

removed and replaced with a less expensive component. Lastly, exploring the fourth sub-

neighborhood may be useful to obtain the best stock allocation across all warehouses.

It can be shown that the upper bound on the neighborhood size of a solution is equal to

| || | (1 | || |)I N I N+ . At the first iteration, we need to evaluate at most 2 | || |I N  neighboring

solutions for the first and second sub-neighborhoods, and | || |(| | 1)I N N −  solutions for the

fourth sub-neighborhood. To evaluate a solution lying in the third sub-neighborhood, we can
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use the results obtained from the first and second sub-neighborhood. At the subsequent

iterations, we only need to evaluate one or a few new neighbors since any changes of the

stock levels for a given SKU do not affect the results for the other SKU-s.

4. Computational Experiments

In this section, we describe different heuristic methods to solve our optimization problem

(subsection 4.1) and present the set up and results of the computational experiments for the

evaluation of these heuristic methods (subsections 4.2 and 4.3).

4.1 Description of heuristics

We now describe how the basic procedures described in the previous section are combined to

form heuristic methods. There are four different heuristic methods that we would like to test,

namely:

• Heuristic 1: Greedy approach

• Heuristic 2: Greedy approach + Local search

• Heuristic 3: DCG (+ Greedy approach)

• Heuristic 4: DCG (+ Greedy approach) + Local search

In Heuristic 1 we only apply the greedy approach. This means that the procedure is terminated

when a feasible base stock policy is obtained.  In Heuristic 2, we continue the procedure of

Heuristic 1 by applying a local search method that may lead to base stock policies with lower

total costs. Comparisons between these two heuristic methods would give us information on

how far solutions obtained by the greedy approach are from local optima.  The next two

heuristic methods, Heuristic 3 and Heuristic 4, are based on the lower bounding procedure

(decomposition and column generation). As previously explained, the resulting policy of this

procedure in general will not be a base stock policy, but a convex combination of base stock

policies. A starting base stock policy S  is obtained by selecting the smallest value of  inS  (for

each i I∈  and  n N∈ ) that is found among the base stock levels of the convex combination.

Two possibilities exist with regard to the resulting base stock policy S . First, S  is a feasible

policy. In that case S  becomes the solution of Heuristic 3 or the initial solution for the local

search procedure applied in Heuristic 4. Second, S  is not a feasible policy, and in that case a

greedy approach is applied to obtain a feasible policy.
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In our experiments, we do not include the method presented in Caglar et al. [3] as a

benchmark because they developed their algorithm based on the METRIC approximation. We

show in the next section that the use of METRIC approximation results in infeasible solutions

in many cases. As we would like to have an objective evaluation of all the heuristics in the

sense that comparisons between heuristics are made based on the resulting feasible solutions,

it is therefore not possible to compare the heuristic methods listed above to the heuristic

method of Caglar et al [3].

4.2 Experimental test beds

Four test beds are considered in our experiments. In the first test bed, we consider

symmetrical cases in which the demand rates across all the local warehouses are identical, but

they are varied for different SKU-s. In the second test bed, we consider asymmetrical cases in

which the demand rates for different local warehouses are different. For those two test beds,

the target aggregate mean waiting times of all local warehouses are identical. To see how the

heuristic methods perform when the local warehouses have different targets, we did

experiments based on the third and fourth test beds.

Test bed 1

We consider inventory systems with two different numbers of local warehouses ( | |locN  = 5

and 20) and two different numbers of SKU-s ( | |I  = 20 and 100). With regard to the demand

rates inλ  for i I∈  and locn N∈ , a uniform distribution U(0.002, 0.08) is used to generate the

demand rates for all SKU i I∈ . Values for the inventory holding costs were generated from

two uniform distributions U(100, 1000) and U(100, 10000), representing two different

variability levels of the inventory holding costs of all SKU-s. The order and ship time from

the central warehouse to local warehouse is fixed at one day and assumed to be identical for

all local warehouses and all SKU-s. For the repair lead time at the central warehouse, we

tested two values ( 0 1iT = day and 0 10iT =  days) for all SKU-s. Further, two values were used

for the target aggregate mean waiting time ( max 0.1nW =  day and max
nW = 0.3 day) and we

consider symmetrical cases in which all local warehouses have the same targets. In our

experiments, we generated five data samples of the demand rates for each combination of all

other parameters (the same holding cost parameters are used for each set of these five data

samples). These parameter settings result into 160 instances. Table 1 summarizes the

parameter settings used in the first test bed.
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Table 1. Parameter values for test bed 1

Name of the parameter Unit
Number
of values Values

Number of local warehouses | |locN 2 5 and  20

Number of SKU-s | |I 2 20 and 100

Demand rate inλ unit/day 1 U(0.002, 0.08)

Inventory holding cost ih $/unit/day 2 U(100,1000) and U(100, 10000)

Order and ship time from
the central warehouse  inT days 1 1

Repair lead time 0iT days 2 1 and 10

Maximum waiting time max
jW days 2 0.1 and 0.3

Test bed 2

In the second test bed, we consider cases with asymmetrical demand rates. The same uniform

distribution U(0.002, 0.08) is used to generate demand rates for all SKU-s i I∈ . Next, for

each SKU, the demand rate at each local warehouse is determined by multiplying the

generated demand rate of this SKU with a factor generated from the second uniform

distribution U(0.2, 2). The other parameters are set in the same way as for the first test bed.

There are 160 instances experimented for the second test bed.

Test bed 3

In the third test bed, we consider cases with five local warehouses in which the demand rates

are identical across the local warehouses. The target aggregate mean waiting times for the five

local warehouses are set at 0.1, 0.15, 0.2, 0.25 and 0.3, respectively. For the other parameters,

we used the same data as in the instances of the first test bed with | |locN  = 5. Hence, 40

instances are obtained.

Test bed 4

This test bed is similar to the third test bed except that now asymmetrical demand rates for the

five local warehouses are taken. For this test bed, we used all the demand rates of the

instances of the second test bed with | |locN  = 5. Hence, again 40 instances are obtained.

For the evaluation of heuristic methods, we measured the relative difference between the total

cost obtained by the heuristic and the corresponding lower bound (%GAP). That is,

%GAP = 
heuristic's total cost - lower bound

 x 100
lower bound
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4.3 Computational results

The results of our experiments for the four test beds are summarized in Tables 2-5. In each

table, we present the performance of each heuristic method in terms of the average and

maximum value of %GAP, where we first distinguish subsets of instances with the same

value for a specific input parameter and in the bottom line the results for all instances together

are presented. For example, in test bed 1, the average and maximum %GAP obtained by the

greedy approach for all instances with | |locN  = 5 are equal to 7.46% and 15.35%, respectively

(see the results in the first line of Table 2). For the same test bed, the average and maximum

%GAP obtained by the greedy approach for all 160 instances together are equal to 7.11% and

23.29%, respectively (see the last line in Table 2). The performance of each heuristic in terms

of computation time is presented in Table 6 (programs for executing all heuristics are written

in MATLAB and all the experiments were run on a PC with a Pentium4 2.8 GHz processor

and 3.37 GB RAM).

Table 2. Experiment results for test bed 1 (symmetric demand rates, symmetric target

aggregate mean waiting times)

Heuristic
Parameter 1: Greedy 2: Greedy + LS 3: DCG 4: DCG + LS

Avg Max Avg Max Avg Max Avg Max

5 7.46 15.35 5.43 14.62 1.14 7.78 0.61 7.46
| Nloc | 20 6.75 23.29 4.68 14.94 1.00 8.82 0.76 4.68

20 8.28 23.29 5.93 14.94 2.01 8.82 1.29 7.46
| I |

100 5.93 9.65 4.18 8.21 0.13 0.64 0.07 0.35

U(100,1000) 6.98 14.37 5.13 14.12 0.90 7.23 0.65 7.23
hi U(100,10000) 7.24 23.29 4.98 14.94 1.23 8.82 0.72 7.46

1 7.31 15.35 5.21 14.62 1.30 8.82 0.91 7.46
t0 10 6.91 23.29 4.90 14.94 0.84 4.51 0.45 3.76

0.1 6.31 15.04 4.41 11.35 0.92 8.82 0.56 7.46
Wmax

0.3 7.91 23.29 5.70 14.94 1.22 7.23 0.80 7.23

All 7.11 23.29 5.06 14.94 1.07 8.82 0.69 7.46
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Table 3. Experiment results for test bed 2 (asymmetric demand rates, symmetric target

aggregate mean waiting times)

Heuristic
Parameter 1: Greedy 2: Greedy + LS 3: DCG 4: DCG + LS

Avg Max Avg Max Avg Max Avg Max

5 3.36 12.19 2.86 10.39 1.34 5.03 1.12 4.77
| Nloc | 20 2.55 6.61 2.34 6.35 1.68 5.35 1.50 5.05

20 4.42 12.20 3.86 10.39 2.76 5.35 2.39 5.05
| I |

100 1.49 3.37 1.34 2.89 0.27 0.71 0.23 0.43

U(100,1000) 2.79 7.93 2.46 7.91 1.45 5.25 1.33 5.05
hi U(100,10000) 3.12 12.20 2.74 10.39 1.58 5.35 1.29 4.61

1 3.70 12.20 3.26 10.39 1.88 5.35 1.62 5.05
t0 10 2.21 5.39 1.94 5.15 1.15 4.10 1.00 3.42

0.1 2.60 7.60 2.24 6.57 1.28 4.29 1.07 3.74
Wmax

0.3 3.31 12.20 2.96 10.39 1.75 5.35 1.55 5.05

All 2.96 12.20 2.60 10.39 1.51 5.35 1.31 5.05

Table 4. Experiment results for test bed 3 (symmetric demand rates, asymmetric target

aggregate mean waiting times)

Heuristic
Parameter 1: Greedy 2: Greedy + LS 3: DCG 4: DCG + LS

Avg Max Avg Max Avg Max Avg Max

20 7.81 10.98 6.55 10.04 2.82 5.09 2.36 4.30
| I |

100 4.56 5.97 3.21 4.80 0.32 0.48 0.27 0.43

U(100,1000) 6.06 9.94 5.09 9.94 1.41 4.78 1.24 4.30
hi U(100,10000) 6.31 10.98 4.68 10.04 1.73 5.09 1.39 3.97

1 6.93 10.98 5.78 10.04 1.95 5.09 1.76 4.30
t0 10 5.44 10.57 3.98 7.71 1.19 3.24 0.87 3.97

All 6.19 10.98 4.88 10.04 1.57 5.09 1.32 4.30
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Table 5. Experiment results for test bed 4 (asymmetric demand rates, asymmetric target

aggregate mean waiting times)

Heuristic
Parameter 1: Greedy 2: Greedy + LS 3: DCG 4: DCG + LS

Avg Max Avg Max Avg Max Avg Max

20 4.28 6.78 3.61 6.62 2.68 5.05 2.20 4.87
| I |

100 1.94 2.92 1.61 2.89 0.28 0.40 0.24 0.40

U(100,1000) 2.99 5.57 2.55 5.02 1.09 3.65 0.99 3.58
hi U(100,10000) 3.23 6.78 2.66 6.62 1.87 5.05 1.46 4.87

1 3.79 6.78 3.14 6.62 1.94 5.05 1.60 4.87
t0 10 2.43 4.20 2.07 3.61 1.01 3.27 0.85 2.44

All 3.11 6.78 2.61 6.62 1.48 5.05 1.22 4.87

Table 6. Average computation time for each heuristic (seconds)

Heuristic
Parameter 1: Greedy 2: Greedy + LS 3: DCG 4: DCG + LS

| Nloc | = 5 4.80 7.24 90.35 92.79
| I | = 20

| Nloc | = 20 66.37 119.48 1132.50 1185.60

| Nloc | = 5 23.92 38.40 437.05 490.16
| I | = 100

| Nloc | = 20 321.50 1015.12 6728.24 7421.95

The main observations drawn from these tables can be summarized as follows:

• The DCG heuristics (heuristics 3 and 4) perform very well. In all four test beds the average

%GAP is below 2% and the maximum below 10%.

• The greedy heuristics (heuristics 1 and 2) perform also very well in the test beds 2 and 4

with asymmetrical demand rates. The average %GAP is around or below 3% in these test

beds, and the maximum below 12%. When limiting ourselves to the instances with 100

items in these test beds, we see that the average %GAP is even below 2% and the

maximum below 4%. The performance of the greedy heuristics in the test beds 1 and 3 with

symmetrical demand rates is less good: the average %GAP is around or somewhat below

7%. We think that this phenomenon is due to how the greedy heuristic works. With

symmetrical demand rates, we get the property that if in a given iteration an item of a

specific SKU is stocked at one local warehouse, then also an item of the same SKU is
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stocked at all other local warehouses in the succeeding iterations. This behavior strengthens

the discrete character of our optimization problem. Once there is some asymmetry in the

demand rates, as one will always have in practical applications, the phenomenon will

disappear.

• The improvements obtained by local search are quite limited for both the greedy procedure

(compare the results of the heuristics 1 and 2) and the DCG method (compare the results of

the heuristics 3 and 4).

• The average values of %GAP tend to decrease as the problem size (in terms of number of

items and local warehouses) or the required stock levels get larger. The latter occurs when

the average repair lead time is higher (10 as opposed to 1) or when the target average

waiting time is lower (0.1 as opposed to 0.3). This observation is in line with the findings

in Wong et al. [15] for a single-echelon, multi-location system with lateral transshipments.

• It is shown in Table 6 that the greedy method is the most efficient heuristic in terms of

computation time. Significant additional computation times are required when the local

search method is applied to improve the solution obtained from the greedy heuristic

(compare e.g. 321.50 and 1015.12 seconds for the biggest problem size in our

experiments). As expected, the computation time of the DCG method is considerably high.

The results of our computational experiments indicate that the greedy procedure (heuristic 1)

is a very appropriate approach for solving the optimization problem in a multi-item two-

echelon spare parts system as analyzed in this paper. This approach has been proven to be

quite effective particularly for solving large-sized problems, which are indeed the type of

problems typically faced in practice, and furthermore, this approach is easy to implement. To

reduce the computational burden of the procedure, it would be worthwhile to use approximate

evaluations instead of the exact method. We analyze this issue in the following section.

5. Applying approximate evaluation methods

As the computational requirements of the exact evaluation method are rather extensive, using

an approximate instead of exact evaluation method is one way to increase  the speed of the

greedy procedure. An accurate approximate method will lead us to walk through about the

same solutions (as with the exact method) while executing the greedy heuristic, and the

generated solution will approximately satisfy the aggregate mean waiting time constraints.

We know already that Graves’ approximation based on two-moments fits is quite accurate.

This has been tested in Graves [5]. We therefore are particularly interested in evaluating the

accuracy of the greedy heuristic when executed using this evaluation method. For this
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purpose, we conducted experiments using the 320 instances of test bed 1 and test bed 2

presented in the previous section. For each instance, the greedy heuristic was executed using

Graves’ approximate evaluation method. At the termination of the procedure, the solution

obtained was then evaluated using the exact method. We recorded the result with regard to

whether or not the generated solution is feasible. If the solution is not feasible, we are also

interested in measuring the distance to the set of feasible solutions. Such a measure is

calculated by a similar expression to the one used in the greedy procedure. For a solution S ,

we calculate the relative distance as: ( ( ) )
loc loc

max max
n n n

n N n N
W S W W+

∈ ∈
−∑ ∑  where

( ) max(0, )x x+ = .

The METRIC approximation is another approximate evaluation method that is less accurate

(see Graves [5]) but widely used in practice. In our experiments, we also applied the METRIC

method as an alternative for Graves’ method so that the effect of using that method is also

evaluated.

The results of our computational experiments are reported in Table 7. Information on the

average computation time under the use of the two approximate evaluation methods and

under exact evaluation (as a function of the number of SKU-s and local warehouses) is

presented in Table 8.

Table 7. Performance of approximate evaluation methods

Parameter METRIC GRAVES
number of
feasible
solutions

distance to
feasible
region (avg)

distance to
feasible
region (max)

number of
feasible
solutions

distance to
feasible
region (avg)

distance to
feasible
region (max)

5 13 / 160 4.56 % 23.60 % 53 / 160 0.11 % 0.75 %
| Nloc | 20 13 / 160 1.82 % 10.03 % 62 / 160 0.02 % 0.16 %

20 26 / 160 2.71 % 23.60 % 82 / 160 0.04 % 0.49 %
| I |

100 0 / 160 3.67 % 21.11 % 33 / 160 0.09 % 0.75 %

symmetric 23 / 160 3.65 % 23.60 % 71 / 160 0.09 % 0.75 %
Demand

asymmetric 3 / 160 2.74 % 10.03 % 44 / 160 0.04 % 0.16 %

All 26 / 320 3.19 % 23.60 % 115 / 320 0.07 % 0.75 %
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Table 8. Average computation times for executing the greedy procedure (seconds)

METRIC Graves Exact

| I | = 20 | Nloc | = 5 0.93 2.39 4.80

| I | = 100 | Nloc | = 5 6.39 13.33 23.92

| I | = 20 | Nloc | = 20 9.49 13.07 66.37

| I | = 100 | Nloc | = 20 68.04 84.57 321.50

The results show us several important observations:

• As expected, METRIC is inferior to the Graves method with respect to the number of

feasible solutions and the distance to the set of feasible solutions. METRIC is only able to

provide feasible solutions in 26 out of 320 data sets.  The worst case is observed for data

sets with 100 items in which METRIC never gives a feasible solution. The average and

maximum relative distances to the set of feasible solutions for METRIC are 3.19% and

23.6%. Graves’ method performs much better by giving 115 feasible solutions with 0.07%

and 0.75% for the average and maximum relative distances.

• We observe too that both methods are more accurate when more local warehouses are

involved. For Graves’ method, we can see that all the measures suggest that higher

accuracy is obtained in problems with 20 local warehouses than in problems with 5 local

warehouses. For METRIC, we observe a reduction in relative distances although the

number of feasible solutions remains unchanged. This is in line with what was pointed out

by Axsäter [2]: the METRIC approximation will be more accurate as long as the demand

at each local warehouse is low relative to the total demand.

• The results for both methods deteriorate when dealing with a larger number of items. The

distribution of demand across local warehouses also seems to be an influencing factor.

Both methods are more likely to generate a feasible solution when used for problems with

identical demands across local warehouses. In terms of the average relative distance,

however, both methods are more accurate when used for problems with non identical

demands.

The results of our experiments show that Graves’ approximate evaluation method is very

appropriate to be used within the greedy approach. This method gives highly accurate results

and requires much less computational efforts than exact evaluations. We do not recommend to

use the METRIC approximation as it may lead to solutions that are far from the feasible

region.
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6. Conclusions

In this paper, we have developed solution procedures for the optimization of base-stock levels

of a multi-item, two-echelon spare parts system. The problem being dealt with is determining

a close-to-optimal stocking policy that minimizes the system wide inventory holding cost

while satisfying aggregate mean waiting time constraints per local warehouse. Four different

heuristic methods have been developed and evaluated based on the relative distance between

the heuristic’s total cost and its corresponding lower bound. Exact evaluation has been used

instead of approximate evaluation to compare the performance of these heuristic methods. To

calculate the lower bounds, we have developed a decomposition and column generation

method which reveals close similarity to the Dantzig-Wolfe decomposition for linear

programming problems. In particular, our computational results show that the greedy

procedure, which is quite simple to implement, is a very appropriate heuristic. It performs

extremely well  when used for solving large-sized problems with non-identical demand rates

across local warehouses. An average distance to the lower bound of less than 2% was

observed in our experiments for the problem instances with 100 SKU-s and non identical

demand rates across the local warehouses. Further, additional experiments have been

conducted to test the accuracy of approximate evaluation methods (METRIC and Graves’

method) when used within the greedy heuristic. The results of these experiments suggest that

Graves’ method can be safely used instead of the exact method when there is a need to reduce

the computational burden, e.g., when dealing with large-sized problems encountered in

practice. Graves’ method has proven to give accurate results while the computational efforts

can be reduced significantly. The use of METRIC is not recommended as it may lead to

solutions that are far from the feasible area.
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