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Spectral Analysis of Block Structured

Nonlinear Systems ⋆
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K430, Pleinlaan 2, 1050 Brussels, Belgium

Abstract: It is a challenge to investigate if frequency domain methods can be used for the
analysis or even synthesis of nonlinear dynamical systems. However, the effects of nonlinearities
in the frequency domain are non-trivial. In this paper analytical tools and results to analyze
nonlinear systems in the frequency domain are presented. First, an analytical relationship
between the parameters defining the nonlinearity, the LTI dynamics and the output spectrum is
derived. These results allow analytic derivation of the corresponding higher order sinusoidal
input describing functions (HOSIDF). This in turn allows to develop novel identification
algorithms for the HOSIDFs using identification experiments that apply broadband excitation
signals, which significantly reduces the experimental burden previously associated with obtaining
the HOSIDFs. Finally, two numerical examples are presented. These examples illustrate the use
and efficiency of the theoretical results in the analysis of the effects of nonlinearities in the
frequency domain and broadband identification of the HOSIDFs.

Keywords: nonlinear systems, spectral analysis, frequency response methods, describing
functions, identification algorithms, system identification

1. INTRODUCTION

The frequency response function (FRF) is frequently used
to model dynamical systems in the frequency domain.
In the presence of nonlinearities, however, this type of
frequency domain model fails to model the complete
dynamics, which may lead to unexpected and undesired
results. In order to use frequency domain data to analyze
nonlinear systems, the effects of nonlinearities in the
frequency domain need to be taken into account.

The effects of nonlinearities in the frequency domain have
been analyzed in literature in various ways. First, in
Billings and Tsang (1989), the authors use a generalized
FRF, related to the Volterra kernel, to describe nonlinear
systems in the frequency domain. This work is continued
over the years and recent results are published in Jing
et al. (2009); Li and Billings (2010). Second, a different
approach is used in Pavlov et al. (2007a). Here, a FRF
for nonlinear systems is introduced that fully models the
input-output behavior of uniformly convergent nonlinear

⋆ This work is carried out as part of the Condor project, a project
under the supervision of the Embedded Systems Institute (ESI)
and with FEI company as the industrial partner. This project is
partially supported by the Dutch Ministry of Economic Affairs un-
der the BSIK program. This work was supported in part by the
Fund for Scientific Research (FWO-Vlaanderen), by the Flemish
Government (Methusalem), and by the Belgian Government through
the Interuniversity Poles of Attraction (IAP VI/4) Program. Cor-
responding author D.J. Rijlaarsdam, david@davidrijlaarsdam.nl,
Tel. +31645410004, Fax +31402461418.

systems subject to harmonic inputs. Moreover, a non-
linear bodeplot is defined and extended to closed loop
nonlinear systems in Pavlov et al. (2007b) by defining a
nonlinear (complementary) sensitivity function. Third, in
Pintelon and Schoukens (2001), an extensive discussion
of frequency domain identification methods is provided.
The authors use specially designed multisine excitation
signals to obtain quantitative measures for the level and
type of nonlinearities present. Recent results concerning
the robustness of the obtained models are presented in
Schoukens et al. (2009). Fourth, in Nuij et al. (2006)
the Higher Order Sinusoidal Input Describing Functions
(HOSIDFs) are defined. The HOSIDFs are an extension
of the sinusoidal input describing function and describe
the response (gain and phase) at harmonics of the base
frequency of a sinusoidal input signal. Identification of
the HOSIDFs in a closed loop setting is discussed in Nuij
et al. (2008a) while HOSIDFs are used to identify friction
parameters in Nuij et al. (2008b). In Rijlaarsdam et al.
(2010a,c,d) the HOSIDFs are compared to the FRF and
used to tune nonlinear controllers. Finally, in Rijlaarsdam
et al. (2010b) analytical expressions for the HOSIDFs are
derived for a class of nonlinear systems. This allows for
frequency domain analysis of the effects of the parameters
defining the nonlinear and LTI dynamics and identification
of the HOSIDFs using broadband excitation signals.

In this paper, part of the results in Rijlaarsdam et al.
(2010b) are used and applied to analyze and identify
nonlinear systems in the frequency domain. In Section 3
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an analysis of the effects of nonlinearities on the output
spectrum of a class of nonlinear systems is provided. Fur-
thermore, the corresponding HOSIDFs are analyzed. In
Section 4, two numerical examples are provided. The first
example illustrates the use of the theoretical results to the
spectral analysis of nonlinear systems. Finally, the second
example applies the theoretical results in an identification
setting to measure the HOSIDFs using broadband excita-
tion signals. Matlab tools to apply the theory presented in
this paper are available online 1 .

2. NOMENCLATURE

In the following analysis, continuous spectra and vectors
containing only specific spectral components are used.
Time signals x(t) ∈ R are denoted by non-capitalized
roman letters, while the corresponding single sided spectra
X (ω) ∈ C are denoted in capitalized, calligraphic font.
Next, X ∈ C, denoted in capitalized roman letters, denotes
a vector such that X [ℓ] = X

(

(ℓ − 1)ω0

)

. Hence, the

ℓth element of the vector X , X [ℓ], contains the spectral
components X (kω0), k = 0, 1, 2, 3, . . . at the k = (ℓ−1)th

harmonic of the excitation frequency ω0 ∈ R>0. Finally,
the results presented in this paper concern a class of LPL

nonlinear systems, which is defined below.

+

+
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Fig. 1. LPL block structured system.

Definition 1. (LPL: block structures).
Consider a N-branch, block structured configuration as
depicted in Figure 1. Each branch consists of a series
connection of a LTI block G−

n (ω), a static nonlinear
mapping ρn and another LTI block G+

n (ω). The system has
one input u(t), one output y(t) and intermediate signals
qn(t), rn(t) and sn(t). The nonlinearity ρn : R 7→ R is a
static, polynomial mapping of degree Pn:

ρn : rn(t) =

Pn
∑

p=1

α[n]
p qp

n(t) (1)

with α
[n]
p ∈ R. Finally, note that if G−

n (ω) = 1 ∀ ω ∈ R, n ∈
N1 the remaining PL system equals a parallel Hammerstein
configuration with polynomial nonlinearities.

3. SPECTRAL ANALYSIS OF NONLINEAR
SYSTEMS

3.1 Output Spectra of LPL Systems

A detailed analysis of the spectral properties of nonlinear
systems is provided in Rijlaarsdam et al. (2010b). Rele-
vant results in this reference are reviewed briefly in this
1 www.davidrijlaarsdam.nl

section. After analyzing the effects of a static polynomial
nonlinearity in the frequency domain, results are general-
ized to the spectral analysis of LPL systems. Finally, the
analytical expressions for the output spectra of LPL sys-
tems are used to analytically describe the corresponding
(Fundamental) Higher Order Sinusoidal Input Describing
Functions.

Consider the following static polynomial mapping:

y(t) =

P
∑

p=1

αpu
p(t), (2)

with u(t), y(t) ∈ R the input and output of the system
and αp ∈ R the polynomial coefficients. Next, consider the
analysis of the output spectrum Y (ω) when system (2) is
subject to a one-tone input:

u(t) = γ cos(ω0t + ϕ0), (3)

with γ, ϕ0 ∈ R the gain and phase and ω0 ∈ R>0 the
frequency of the input signal.

The output spectrum Y (ω) of (2) subject to (3) depends
only on the polynomial coefficients αp and the properties
of the input signal which is formalized in Theorem 1.

Theorem 1. (nonlinear coef. and output spectra).
Consider a static polynomial mapping (2), subject to an
input (3). Then the single sided spectrum of the output
y(t) is given by the following mapping RP 7→ CP+1,
from the polynomial coefficients α to the output spectrum
Y (ω):

Y = Φ(ϕ0) Ω Γ(γ)α, (4)

where the different components are defined below.

• output spectrum (vector) Y ∈ CP+1: where Y =
[Y (0) Y (ω0) Y (2ω0) . . . Y (P ω0)]

T is a vector
containing the nonzero spectral lines in the output
spectrum, at harmonics of the input frequency.

• input phase matrix Φ(ϕ0) ∈ C(P+1)×(P+1): describ-
ing the influence of the input phase on the output
spectrum: Φk+1,k+1(ϕ0) = eikϕ0 , k = 0, 1, 2, . . . and
0 otherwise.

• input gain matrix Γ(γ) ∈ RP×P : describing the influ-
ence of the input amplitude on the output spectrum:
Γp,p(γ) =

(

γ
2

)p
and 0 otherwise.

• inter-harmonic gain matrix Ω ∈ R(P+1)×P : describ-
ing the relation between the input and the harmonic
components in the output spectrum:

Ω1p = (1 − σp)

(

p
p

2

)

p

2

Ω(k+1)p = 2

(

p
p − k

2

)

σpk ∀ k ≤ p, k ∈ N1

and 0 otherwise. With σp = p mod 2, σk = k mod 2
and σpk = σpσk + (1 − σp)(1 − σk).

• polynomial coefficients α ∈ RP :
where α = [α1 α2 . . . αp]

T is a vector containing the
coefficients of the polynomial nonlinearity.

(Proof: Rijlaarsdam et al. (2010b))

Theorem 1 allows to express the output spectra of LPL

systems in terms of the polynomial coefficients α
[n] and

the LTI dynamics G±
n (ω) (Matlab tool available 1 ). These
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expressions are formulated in terms of the input gain
and phase matrices Γ(γ), Φ(ϕ0) and the inter-harmonic
gain matrix Ω and yield expressions for the higher order
sinusoidal input describing functions of LPL systems.

3.2 Higher Order Sinusoidal Input Describing Functions

In Nuij et al. (2006), the output of a uniformly convergent,
time invariant nonlinear system (Pavlov et al. (2004)),
subject to (3) is considered. This output is composed of
harmonics of the input frequency and equals:

y(t) =

K
∑

k=0

|Hk(ω0, γ)|γkcos
(

k(ω0t + ϕ0) + ∠Hk(ω0, γ)
)

,

where Hk(ω0, γ) ∈ C is the kth order Higher Order Si-
nusoidal Input Describing Function (HOSIDF), describing
the response (gain and phase) at harmonics of the base
frequency of a sinusoidal input signal.

Definition 2. (Hk(ω, γ): HOSIDF).
Consider a uniformly convergent, time invariant nonlin-
ear system (Pavlov et al. (2004)) subject to (3). Define
the systems output y(t) and corresponding single sided
spectra of the input and output U (ω), Y (ω) ∈ C. Then,
the kth higher order sinusoidal input describing function
Hk(ω0, γ) ∈ C, k = 0, 1, 2, . . . is defined as:

Hk(ω0, γ) =
Y (kω0)

U k(ω0)
, (5)

(adopted from Rijlaarsdam et al. (2010b))

Theorem 1 yields analytic expressions for the output
spectra and hence the HOSIDFs of LPL systems.

Lemma 1. (HOSIDFs of LPL systems).
The HOSIDFs of a LPL system are given by:

H(ω0, γ, G±

n ) = (6)

Υ−1
N
∑

n=1

∆(ω0)G+
n (ω)

[

Φ(∠G−

n (ω0))ΩΓ(|G−

n (ω0)|γ)α[n]
]

,

with ∆(ω0) = diag([δ(ω−0) δ(ω−ω0) δ(ω−2ω0) . . . δ(ω−
Pnω0)]) ∈ R(Pn+1)×(Pn+1) is a diagonal matrix of δ-
functions, H = [H0(ω0) H1(ω0) H2(ω0) . . . Hmax

n

Pn
(ω0)]

T

and the gain compensation matrix Υk+1,k+1(γ) = γk and
0 otherwise. (Proof: Rijlaarsdam et al. (2010b))

Finally, for PL systems, Lemma 1 yields the following,
amplitude independent basis functions for the HOSIDFs.

Definition 3. (fHOSIDFs of PL systems).
The Fundamental Higher Order Sinusoidal Input Describ-
ing functions (fHOSIDF) Fp(ω) of a PL system equal a
weighted sum of the LTI dynamics G+

n (ω) when the system
is re-formulated with respect to the set of polynomial
mappings ρn : rn(t) = qn

n . Hence,

Fp(ω) =

N
∑

n=1

G+
n (ω)α[n]

p (7)

The fHOSIDFs are amplitude independent basis functions
for the HOSIDFs which provide a decoupling of the am-
plitude and frequency effects in the HOSIDFs, since:

H(ω0, γ, G+
n ) =

[

Υ−1(γ)∆(ω0)Ω Γ(γ)
]

F (ω),

with F (ω) = [F1(ω) F2(ω) . . . Fmax
n

Pn
(ω)]T . (Proof:

Rijlaarsdam et al. (2010b))

Next, these theoretical results are applied (Matlab tool
available 1 ) to analyze and identify two nonlinear systems
in the frequency domain.

4. NUMERICAL RESULTS

+

u(t) y(t)
1

1

G+
1 (ω)

G+
2 (ω)

q1+ξq2
1+q3

1

q2+q2
2+ξq3

2

q1

q2

r1

r2

s1

s2

Fig. 2. Two-branch PL system.

Consider the PL system depicted in Figure 2, which is a
LPL system with N = 2, α

[1] = [1 ξ 1]T , α
[2] = [1 1 ξ]T

and G−
n (ω) = 1. Definition 3 yields analytic expressions

for the fHOSIDFs of the system depicted in Figure 2:

F (ω) =

[

F1(ω)
F2(ω)
F3(ω)

]

=





G+
1 (ω) + G+

2 (ω)
ξG+

1 (ω) + G+
2 (ω)

G+
1 (ω) + ξG+

2 (ω)



 (8)

The corresponding HOSIDFs follow from Lemma 1 and
Definition 3 and equal:

H(ω, γ) = (9)
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(
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+
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(
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(
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2 (3ω)
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In the next sections, two numerical examples are pre-
sented. The first example focusses on the analysis and
interpretation of the HOSIDFs while the second example
illustrates the application of the theoretical results to
broadband identification of the HOSIDFs in practice.

4.1 Example 1: Spectral Analysis of a PL System

Consider the system depicted in Figure 2, with ξ = 0 and
define G+

1 (ω) as a bandpass filter, such that |G+
1 (ω)| =

1 ∀ ω ∈ ̟1 and 0 otherwise. Furthermore, define G+
2 (ω)

as a bandstop filter, such that |G+
2 (ω)| = 0 ∀ ω ∈ ̟2 and

1 otherwise. Finally, define the sets ̟1 = [ω−

1 ω+
1 ], ̟2 =

[ω−

2 ω+
2 ] and assume that the bandstop and bandpass

filters overlap, i.e. ̟1 ∩ ̟2 6= ∅.

First, consider the relation between the second and third
(f)HOSIDFs, the LTI dynamics and the polynomial non-
linearities. Equation (8) and (9) provide analytical expres-
sions for the (f)HOSIDFs for the system depicted in Figure
2. Substituting ξ = 0 yields the second and third fHOSIDF
F2(ω), F3(ω) to equal the LTI dynamics G+

2 (ω) and G+
1 (ω)

respectively. The corresponding HOSIDFs H2(ω), H3(ω)
equal the same LTI dynamics, scaled in magnitude by
appropriate constant (1

4 = −12 dB) and contracted in
ω, following Theorem 1. This is illustrated in Figure 3
where both the LTI dynamics G+

1 (ω), G+
2 (ω) and the

second and third HOSIDF are depicted. Considering the
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second and third HOSIDF.
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third HOSIDF F3(ω) for example, yields a bandpass filter
just as G+

1 (ω). However, F3(ω) acts on ω ∈ 1
3̟1 and

|F3(ω)| = 1
4 |G

+
1 (3ω)|.

Second, consider the effect of the nonlinearities on the first
(f)HOSIDF. The first fHOSIDF is a linear combination of
the LTI dynamics and is depicted in Figure 4 along with
the second and third fHOSIDFs. The ripples in |F1(ω)|
originate in the numerical realization of the bandpass and
bandstop filters. The fHOSIDFs are all amplitude indepen-
dent by definition. Moreover, in this example the second
and third HOSIDF H2(ω), H3(ω) are independent of the
excitation level as well. However, (9) yields that H1(ω) is
amplitude dependent. This amplitude dependency is only
present if G+

1 (ω) 6= 0, i.e. for all ω ∈ ̟1. This is illustrated
in Figure 5 where the amplitude dependency is present
only for ω ∈ ̟1. Furthermore, note that the amplitude

−20
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Fig. 4. fHOSIDF (Example 1): Fundamental higher
order sinusoidal input describing functions.
− (black) F1(ω), (grey) F2(ω), −− (black) F3(ω)

dependency |H1(ω)| ∝ γ2, γ >> 1 predicted by (9) can be
observed from Figure 5 as well by an approximate 20 dB
drop in magnitude over one decade change in excitation
level in the appropriate frequency band.

Hence, the third order term in ρ1 has two distinct effects
on the systems dynamics, when analyzed in the frequency
domain. First of all, harmonics are generated according
to a scaled bandpass filter that analytically relates to
the corresponding LTI dynamics. Second, an amplitude
dependent response is observed at the base frequency
within the frequency range on which the original bandpass
filter acts. Finally, similar effects can be observed for the
bandstop filter G+

2 (ω) and the related HOSIDFs H0(ω),
H2(ω).

4.2 Example 2: Broadband Identification of HOSIDFs

In this section a numerical example is presented that illus-
trates the application of the theory presented in Section 3
to the identification of the HOSDIDFs of a system from
broadband simulation data. Consider the system depicted
in figure 2, with ξ = 1

10 and the LTI dynamics G+
n (ω) se-

lected as different Chebyshev filters of order three. Figure
6 depicts the LTI dynamics in continuous black G+

1 (ω) and
grey G+

2 (ω) lines. In the following, simulations have been
performed using Matlab and all data is collected with a
sampling frequency of 2560 Hz. and processed in blocks of
8192 points.

To illustrate the application of the presented theory in ex-
perimental identification techniques, the system in Figure
2 is considered as a black box model of which the structure
is known but only the input u(t) and output y(t) can
be measured. A complete discussion of the identification
techniques used to obtain estimates for G+

n (ω) and α
[n]

can be found in Schoukens et al. (2010). In short, the
system is excited with a series of multisine input signal
which differ in excitation level. For each level of excitation
the best linear approximation of the systems dynamics
is computed. Using a singular value decomposition based
technique, the number of relevant branches can be selected

|H
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B
]

∠
H

1
×

1
8
0
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ω
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2

Fig. 5. First HOSIDF (Example 1): Visualization of

the first HOSIDF Ĥ1(ω, γ).

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

4419



and the linear dynamics Ĝ+
n (ω) are estimated. Finally,

the parameters of the polynomial nonlinearities α̂
[n] are

estimated using a least square fitting procedure on the
time domain data.

During simulations, the system was excited with multisine
signals with rms values ranging from 1 to 10. Therefore,
the identification procedure provides a model that is valid
only for this type and range of excitation. This model
will generally not equal the true system dynamics and
validation experiments are required to assess the quality
of the estimated model. The estimated LTI models Ĝ+

n (ω)
are depicted in Figure 6 by dashed lines and are indeed dif-
ferent from the true LTI dynamics G+

n (ω). Moreover, the
identified nonlinear parameters α̂

[1] = [1 0.4768 0.5498]T ,
α̂

[2] = [1 1.126 − 0.0742]T differ from their true values
as well. However, validation experiments within the range
of excitation levels used in the experiments yield that
the output predicted by the model matches the output
of the true system closely. Therefore, the identified model
is regarded a sufficiently accurate, local approximation of
the nonlinear dynamics for the type and range of excitation
used in the identification experiment.

Using the estimated LTI dynamics Ĝ+
n (ω) and nonlinear

parameters α̂
[n], the results in Lemma 1 and Definition

3 allow to compute estimates of the fHOSIDFs F̂p(ω)

and HOSIDFs Ĥk(ω, γ), using broadband identification
techniques. The advantage of this procedure is threefold.
First of all, time consuming experiments are avoided
where possible. Second, the HOSIDFs can be computed
over a much denser grid than they can be measured
in a reasonable amount of time. Finally, the HOSIDFs
and possible validation experiments can be computed /
measured densely in relevant or high gradient regions
which are unknown a priori.

This broadband identification procedure for HOSIDFs is
implemented numerically. Using a standard Matlab im-
plementation, the first 4 HOSIDFs are computed for 2729
frequency points and 10 excitation levels, i.e. for 109160
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Fig. 6. LTI dynamics (Example 2): Dynamics in both
branches of the true and identified system.
− True system G+

n (ω), −− identified dynamics

Ĝ+
n (ω). (black) First branch, (grey) second branch.

points in 16.6 s. The first three fHOSIDFs are computed
for the same number of frequency points in less than 3
ms. The total procedure, including the parametric iden-
tification of the frequency domain models and validation
procedures, requires approximately 90 s.

The results of the numerical computations are shown in
Figure 7 - 9. Figure 7 shows the fHOSIDFs computed
by applying Definition 3 using both the identified and
true LTI dynamics and the corresponding true and identi-
fied polynomial coefficients. The fHOSIDFs are amplitude
independent LTI basis functions for the corresponding
HOSIDFs. These HOSIDFs are computed using Lemma
1 and depicted in Figure 8. Moreover, the HOSIDFs com-
puted using the algorithms introduced in this paper, are
compared to the traditionally identified / true HOSIDFs.
The difference between both is approximately -40 dB.
(1%), indicating that HOSIDFs computed using broad-
band measurements approximate the true HOSIDFs well.

Finally, Figure 9 depicts Ĥ1(ω, γ), illustrating the depen-
dence of the HOSIDFs on both excitation amplitude and
frequency.

5. CONCLUSION

The analytical results and numerical tools presented in this
paper allow for novel analytical and numerically effective
analysis of the output spectrum of nonlinear systems and
the corresponding Higher Order Sinusoidal Input Describ-
ing Functions (HOSIDF). An analytic mapping from the
parameters defining the nonlinear and LTI dynamics, to
the output spectrum of a nonlinear system is provided.
Using these results, the input-output behavior of class of
nonlinear systems, is described using analytic expressions
for the corresponding HOSIDFs. Moreover, although cur-
rently applicable to LPL systems only, broadband identifi-
cation techniques for HOSIDFs heavily reduce the exper-
imental burden required to obtain the HOSIDFs.

The examples illustrate the application of the theoreti-
cal results to the frequency domain analysis of nonlinear
systems. This indicates that the algorithms for broadband
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Fig. 7. fHOSIDF. Fundamental higher order sinusoidal
input describing functions computed using the identi-
fied PL system 〈black〉 and the true dynamics 〈grey〉.
〈−〉 F1(ω), 〈−−〉 F2(ω), 〈−·〉 F3(ω).
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Fig. 8. HOSIDF (Example 2): Higher order sinusoidal
input describing functions identified using traditional
techniques based on one-tone excitation signals and
using broadband identification techniques for γ =
14.14.
− (black) Ĥi(ω, γ): HOSIDFs identified using broad-
band identification techniques.
◦, △, � (black) Hi(ω, γ): HOSIDFs of the true sys-
tem, identified using one-tone excitation signals. (◦
H1, △ H2, � H3).

−◦, −△, −� (grey) |Hi − Ĥi|: Difference between
broadband and one-tone identification techniques.

identification of the HOSIDFs are applicable to experimen-
tal data as well, which is subject to current research as is
further analysis of the HOSIDFs. Finally, the application
of HOSIDFs to nonlinear controller design is promising
and future research will focus on design and synthesis
methods for nonlinear systems based on HOSIDFs.
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