

Experiences with the KOALA co-allocating scheduler in
multiclusters
Citation for published version (APA):
Mohamed, H. H., & Epema, D. H. J. (2005). Experiences with the KOALA co-allocating scheduler in
multiclusters. In Proceedings of the 5th International Symposium on Cluster Computing and the Grid (CCGrid
2005, Cardiff, UK, May 9-12, 2005) (pp. 784-791). Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/CCGRID.2005.1558642

DOI:
10.1109/CCGRID.2005.1558642

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/CCGRID.2005.1558642
https://doi.org/10.1109/CCGRID.2005.1558642
https://research.tue.nl/en/publications/4f9e0287-7199-4ccd-9da1-bcf4293af556

2005 IEEE International Symposium on Cluster Computing and the Grid

Experiences with the KOALA Co-Allocating Scheduler in Multiclusters

H.H. Mohamed and D.H.J. Epema
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, The Netherlands

e-mail: H.H.Mohamed, D.H.J.Epema@ewi.tudelft.nl

Abstract

In multicluster systems, and more generally, in grids, jobs
may require co-allocation, i.e., the simultaneous allocation
of resources such as processors and input files in multiple
clusters. While such jobs may have reduced runtimes be-
cause they have access to more resources, waiting for pro-
cessors in multiple clusters and for the input files to be-
come available in the right locations, may introduce inef-
ficiencies. Moreover; as single jobs now have to rely on
multiple resource managers, co-allocation introduces relia-
bility problems. In this paper; we present two additions to
the original design of our KOALA co-allocating scheduler
(different priority levels ofjobs and incrementally claiming
processors), and we report on our experiences with KOALA
in our multicluster testbed while it was unstable.

1 Introduction

Grids offer the promise of transparent access to large collec-
tions of resources for applications demanding many proces-
sors and access to huge data sets. In fact, the needs of a sin-
gle application may exceed the capacity available in each of
the subsystems making up a grid, and so co-allocation, i.e.,
the simultaneous access to resources of possibly multiple
types in multiple locations, managed by different resource
managers [5], may be required.

Even though multiclusters and grids offer very large
amounts of resources, to date most applications submitted
to such systems run in single subsystems managed by a sin-
gle scheduler. With this approach, grids are in fact used as
big load balancing devices, and the function of a grid sched-
uler amounts to choosing a suitable subsystem for every ap-
plication. The real challenge in resource management in

grids lies in co-allocation. Indeed, the feasibility of running
parallel applications in multicluster systems by employing
processor co-allocation has been demonstrated [18, 2]. Co-
allocation faces a real challenge in coping with the inherent
unreliability of grids: A single failure in any of the sites par-
ticipating in executing a job with co-allocation may cause
the whole job to fail.

In previous work, we have studied our co-allocation pol-
icy called Close-to-Files with and without replication at a
time when our testbed proved to be very stable [12]. The
contributions of this paper are the addition to our KOALA
co-allocating scheduler of job priorities, of fault-tolerance
mechanisms, and of the Incremental Claiming Policy (ICP),
which is used to claim processors in multiple clusters for
single jobs in the absence of support for processor reser-
vation by local resource managers. In addition, we report
on experiments with KOALA in our DAS testbed (see Sec-
tion 2.1), which proved to be rather unreliable at the time
of the experiments. As far as we know, this is the first
co-allocating scheduler for multiclusters that has been thor-
oughly tested.

Our results show that 1) assigning priorities to the jobs helps
to get the important jobs to finish quickly despite the unre-
liable system (as long as they are not very large), that 2)
large jobs are a problem also in multicluster systems even
when we allow them to be allocated across the system in
many different ways, 3) that many jobs use co-allocation
when given the chance, and that 4) even with high failure
rates, KOALA succeeds in getting all jobs submitted in our
experiments completed successfully.

2 A Model for Co-allocation

In this section, we present our co-allocation model in mul-
ticlusters and more generally, in grids.

0-7803-9074-1/05/$20.00 ©2005 IEEE 784

2.1 The Distributed ASCI Supercomputer

The DAS [19] is a wide-area computer system consisting of
five clusters (one at each of five universities in the Nether-
lands, amongst which Delft) of dual-processor Pentium-
based nodes, one with 72, the other four with 32 nodes
each. The clusters are interconnected by the Dutch univer-
sity backbone (100 Mbitls), while for local communications
inside the clusters Myrinet LANs are used (1200 Mbit/s).
The system was designed for research on parallel and dis-
tributed computing. On single DAS clusters the scheduler
is PBS [21]. Each DAS cluster has its own separate file
system, and therefore, in principle, files have to be moved
explicitly between users' working spaces in different clus-
ters.

2.2 System Model

We assume an environment consisting of geographically
distributed and interconnected sites (clusters) like the DAS.
Each site contains computational resources (processors), a
file server, and a local resource manager. The sites may
combine their resources to be scheduled by a grid sched-
uler for executing jobs in a grid. The sites where a job runs
are called its execution sites, and the site(s) where its input
file(s) resides are its file sites. In this paper, we assume a
single central grid scheduler, and the site where it runs is
called the submission site. Of course, we are aware of the
drawbacks of a single central submission site and currently
we are working on extending our model to multiple submis-
sion sites.

2.3 Job Model

By a job we mean a parallel application requiring files and
processors that can be split up into several job components
which can be scheduled to execute on multiple execution
sites simultaneously (co-allocation) [3, 1, 5, 12]. This al-
lows the execution of large parallel applications requiring
more processors than available on a single site [12]. Job
requests are supposed to be unordered, meaning that a job
only specifies the numbers of processors needed by its com-
ponents, but not the sites where these components should
run. It is the task of the grid scheduler to determine in
which cluster each job component should run, to move the
executables as well as the input files to those clusters before
the job starts, and to start the job components simultane-
ously. Multiple components of a job can be scheduled on
the same cluster.

We assume that the input of a whole job is a single data
file. We deal with two models of file distribution to the
job components. In the first model, job components work
on different chunks of the same data file, which has been
partitioned as requested by the components. In the second
model, the input to each of the job components is the whole
data file. The input data files have unique logical names
and are stored and possibly replicated at different sites. We
assume that there is a replica manager that maps the logical
file names specified by jobs onto their physical location(s).

2.4 Job Priorities

A job priority is used to determine the importance of a job
relative to other jobs in the system. The priority levels,
which are high and low, are assigned to the jobs by our
scheduler (see Section 2.5). The priority levels play a big
part during the placement of a job, i.e., when finding a suit-
able pairs of execution site and file site for the job compo-
nents (see Section 3.1). Moreover as we do not claim the
processors allocated to a job immediately, when a job of a
high priority is about to start executing, it is possible that
not enough processors are available anymore. Then, a job
of high priority may preempt low-priority jobs until enough
idle processors for it to execute are freed (see Section 3.3).

2.5 The KOALA Co-Allocator

We have developed a processor and data co-allocator named
KOALA for ourDAS system. It employs Grid services such
as job execution, file transfer, replica management, and se-
curity and authentication. KOALA accepts job requests and
uses a placement algorithm (see Section 2.6) to try to place
jobs. We use the Globus Resource Specification Language
(RSL) [201 as our job description language with the RSL
"+" construct to aggregate job components to form multi-
requests. On success of job placement, KOALA first initi-
ates the third-party file transfers from the selected file sites
to the execution sites of the job components, and only then
it tries to claim the processors allocated to the components
using our processor claiming policy (see Section 3.3). If the
claiming can proceed, the components are sent for execu-
tion to their respective execution sites. Synchronization of
the start of the job components is achieved through a piece
of code which delays the execution of the job components
until the job actually starts (see Section 3.3).

785

2.6 The Close-to-Files Placement Policy

Placing a job in a multicluster means finding a suitable set
of execution sites for all of its components and suitable file
sites for the input file. (Different components may get the
input file from different locations.) The most important
consideration here is of course finding execution sites with
enough processors. However, when there is a choice among
execution sites for ajob component, we choose the site such
that the (estimated) delay of transferring the input file to the
execution site is minimal. We call the placement policy do-
ing just this the Close-to-Files (CF) placement policy. A
more extensive description of this policy can be found in
[12].

2.7 Processor Reservation

When ajob is successfully placed by CF, we do no claim the
processors immediately, because its input file will in gen-
eral not be present at its execution sites. It is possible to
estimate the job's start time based on the file transfers that
have to take place, and reserve processors in the job's exe-
cution sites. However, openPBS [21], which is used in our
testbed (see Section 2.1), and many resource managers in
grids in general, do not support processor reservations. Of
course, we can add a small piece of code to the executable
of the job with the sole purpose of delaying the execution of
the job barrier and start the job rightaway, but this is waste-
ful of processor time. Therefore, to achieve co-allocation,
we postpone starting the application until a later time, run-
ning the risk that processors may not be available anymore.
This is our Incremental Claiming Policy (ICP), which is dis-
cussed in detail in Section 3.3.

adds the job to the tail of either the so-called low-priority
placement queue if the job's priority is low, or the so-called
high-priority placement queue if the job is of high priority.
These queues hold all jobs that have not yet been success-
fully placed. KOALA regularly scans the placement queues
one at a time from head to tail to see whether any job in
them can be placed. In order to give preference to the high-
priority queue, we successively scan this queue S times be-
fore scanning the low-priority queue once; S, which is an
integer greater than 1, is a parameter of KOALA. The time
between successive scans of the placement queues is a fixed
interval (which is another parameter of the KOALA).

For each job in the queues we maintain its number of place-
ment tries, and when this number exceeds a threshold, the
job submission fails. This threshold can be set to oo, i.e., no
job placement fails.

3.2 Claiming Jobs

After the successful placement of a job, we estimate its File
Transfer Time (FlTl) and its Job Start Time (JST), and add
it to the so-called claiming queue. This queue holds all jobs
which have been placed but for which we still have to claim
(part of) the processors. The job's FlTl is calculated as the
maximum of all of its components' estimated transfer times,
and the JST is estimated as the sum of its Job Placement
Time (JPT) and its FTT (see Figure 1).

A: Job Submission Time
BE: Job Placement Time (JPT)
C: Job Claiming Time (JCT)
D: Job Start Time (JST)
E: Job Finish Time

In this section, we present our job placement and claiming
mechanisms. We first describe the way we place the jobs
of the two priority levels. Then we present our Incremen-
tal Claiming Policy (ICP) for claiming processors for a job.
Here, by claiming for ajob we mean starting its components
at their respective execution sites.

TWT: Total Waiting Time
PGT: Proccesor Gained Time
PWT: Processor Wasted Time
FTT: Estimated File Transfer Time
ACT: Additonal Claiming Tries

Figure 1. The timeline of a job submission.

A job's Job Claiming Time (JCT, point C in Figure 1),
which is the time when we try to claim processors for it,
is initially set to the sum of its JPT and the product of L and
FFI:

JCTo = JPT + L * FTT,

When a job is submitted to the system, KOALA tries to
place it according to CF. If this placement try fails, KOALA

where L is a parameter assigned to each job by KOALA,
with 0 < L < 1. In the claiming queue, jobs are arranged
in increasing order of their JCTs.

786

3 Scheduling Jobs

3.1 Placing Jobs

We try to claim for a job at the current JCT by using our
incremental claiming policy (see Section 3.3). The job is
removed from the claiming queue only if this claiming try is
successful for all of its components. Otherwise, we perform
successive claiming tries. For each such try we recalculate
the JCT by adding to the current JCT the product of L and
the time remaining until the JST (time between points C and
D in Figure 1):

JCTn+1 = JCTn + L * (JST - JCTn).

If the job's JCTn+i reaches its JST and claiming for some
of its components is still not successful, the job is returned
to the placement queue (see Section 3.1). Then, its com-
ponents that were already successfully started in one of the
claiming tries are aborted. In addition, so as to increase the
chance of successful claiming, its parameter L is decreased
by a fixed fraction, unless L has reached its lower bound. If
the number of times we have performed claiming tries for
the job exceeds some threshold (which can be set to oc), the
job submission fails.

A new JST is estimated each time a job is returned to the
placement queue and re-placed with our CF policy. We de-
fine the start delay of a job to be the difference between the
last JST where the job execution succeeds and the original
JST.

3.3 The Incremental Claiming Policy

Claiming processors forjob components starts at a job's ini-
tial JCT and is repeated at subsequent claiming tries. In one
claiming try, we may only be able to claim processors for
some but not all components. Claiming for a component
will only succeed if there are still enough idle processors
to run it. Since we want jobs to start with minimal delay,
we possibly re-place their components with the CF policy
to find new pairs of execution site-file site, and we allow
high-priority jobs to preempt low-priority jobs. This is our
Incremental Claiming Policy (ICP) which is described be-
low.

When claiming for a job, ICP first calculates F, which is the
fraction of its components that have been previously started,
or that can be started immediately in the current claiming
try. IfF is lower than its lower bound T, the job is returned
to the claiming queue. Otherwise, for each component that
cannot be started, ICP tries to find a new pair of execution
site-file site with the CF policy such that it is possible to
transfer file between the new pair before the JST. On suc-
cess, the new pair replaces the component's execution site-
file site pair and the file transfer is initiated immediately.

For a job of high priority, if the re-placement of the com-
ponent failed or if the file cannot be transferred before the
JST, we consider preempting low-priority jobs. At the exe-
cution site of the job component, the policy checks whether
the number of processors the component requests does not
exceed the number of idle processors the the number of pro-
cessors currently being used by low-priority jobs. If so, the
policy preempts those low-priority jobs in descending or-
der of their JST until a sufficient number of processors has
been freed. The preempted jobs are then retumed to the
low-priority placement queue.

Finally, those components for which claiming is successful
in this claiming try are started; they will run a small piece of
code that has been added with the sole purpose of delaying
the execution of the job barrier until the job start time. Syn-
chronization is achieved by making each component wait
on the barrier until it hears from all the other components.

When T is set to 1 the claiming process becomes atomic,
i.e., claiming only proceeds if it is successful for all the job
components simultaneously.

3.4 Fault Tolerance

In the course of executing a job, a number of errors may
arise at its execution sites. These errors, which may in-
terrupt the execution, may be hardware or software related
and our scheduler is notified on their occurrence. The fail-
ure of any one of its components causes the whole job to
be aborted and to be returned to its respective placement
queue. KOALA counts the number of errors of each clus-
ter and if the number of consecutive errors reaches a cer-
tain threshold, that cluster is marked unusable. It should
be noted that our fault tolerance mechanism focuses only
on ensuring that the application is restarted. It is left for
the application to employ mechanisms like checkpointing
to ensure that it continues with the execution rather than
start from the beginning.

4 Experimental Setup

In this section we describe the experiments we have con-
ducted to assess our co-allocation service. In our experi-
ments, we did not impose limits on the numbers of place-
ment and claiming tries. We fixed the interval between suc-
cessive scans of the placement queues at 4 minutes. The
parameter L determining when to start claiming is set at
0.75. At each re-computation of job's JST, the fixed frac-
tion used to decrease L, is set to 0.125; L has 0.25 as a

787

lower bound. The parameter T of our claiming algorithm
(see Section 3.3) is set to 0, so we claim processors for any
number components we can. The parameter S which deter-
mines how often we scan the high-priority placement queue
for every scan of the low-priority placement queue is set to
2.

in principle, if the system were stable delayed until it drops
below 100 again.

4.3 The Testbed State

4.1 The Test Application

In our experiments, we use an artificial application, which
consists of a real parallel application to which, because it
uses little input data itself, we have added large input file.
The file is only being transferred, but not actually used, and
the application simply deletes it when it exits. We have pre-
viously adapted this application, which implements an iter-
ative algorithm to solve the two-dimensional Poisson equa-
tion on the unit square, to co-allocation on the DAS [2].
In the application, the unit square is split up into a two-
dimensional pattern of rectangles of equal size among the
participating processors. When we execute this application
on multiple clusters, this pattern is split up into adjacent ver-
tical strips of equal width, with each cluster using an equal
number of processors.

The experiments were done on the DAS system right after
a major upgrade of the operating system and the local re-
source manager (openPBS). The system, which is homoge-
neous and centrally managed, was still unstable and hence
unreliable during the experiments. This gave us the oppor-
tunity to evaluate our co-allocation service on a grid-like
environment where the job failure rate is high. The fact that
this rate is high in such an environment shows the strong
need for good fault tolerance.

5 Results

In this section, we present the results of our experiment with
KOALA in the DAS.

100

80

4.2 The Workload

60

In our experiments, we put a workload of jobs to be co-
allocated on the DAS that all run the application of Sec-
tion 4.1, in addition to the regular workload of the ordinary
users. In our experiments, we consider job sizes 36 and 72,
and four number ofcomponents, which are 3, 4, 6, or 8. The
components are of equal size, which is obtained by dividing
the job size by the number of components. We restrict the
component sizes to be greater than 8, so the jobs of size 72
can have any of the four sizes, while those of size 36 have
3 or 4 components. Each job component requires the same
single file of either 4 or 8 GByte. The input files, which are
randomly distributed, are replicated in two different sites.
For a single job, its priority, its number of components, its
job size, and the size of its input file are picked at random
and uniformly. The execution time of our test application
ranges between 30.0 and 192.0 seconds.

40

0

IM 400 600 800
Time (Minutes)

Figure 2. The system utilization during the ex
periment.

5.1 Utilization

1000 1200 1400

We assume the arrival process of our jobs at the submission
site to be Poisson. Based on the above description and the
total number of available processors in the DAS, we gener-
ate a workload of 500 jobs. However, at the submission site,
we limit the sum of the lengths of the placement queues to
be 100. If this number is reached, the submission ofjobs is

At the start of the experiment, a total of 310 processors in 4
out of the 5 DAS clusters were available to KOALA. Dunng
the experiment, one of the clusters reported a much higher
consecutive number of failures and was removed for selec-
tion by KOALA (Section 3.4). As a result, the number of
available processors was reduced to 250. The utilization

788

3X12 4X9 3X24 4XIS 6X12 SX9
Job Si.z (numbet of -omponens X componern sie)

Figure 3. The percentages of failures of jobs
of different sizes.

fLgh Pfir noyJbLowe Ponomy lobs_

2.0

60

40

20

4X9 3X24 4X18 6X12
Job Size (smnbee ofo.eosnt X)porrnl se)

Figure 4. The percentages of jobs that use
co allocation.

of these processors by jobs due to other DAS users and to
KOALA are shown in Figure 2. In this figure we see that up
to 80%- 90% of the system was used during the experiment,
which shows that co-allocation can drive the utilization to
quite high levels.

5.2 Failures

In this paper, by the failure of a job we mean that one
the clusters' local resource managers has reported a failure
during the execution of the corresponding job component.
Such a failure may occur when claiming has not yet suc-
ceeded for all job components, or when the system is really

executing the application. The failures of the resource man-
agers were due to bugs in them; also some of the nodes
were configured incorrectly. We think that in any realistic
grid environment many failures of these (and other) types
will occur, and that a scheduler should be able to tolerate
them. The failure of any of the components of a job causes
the whole job to fail, and as a result, to be returned to the
placement queue. Figure 3 shows the percentage of failures
for each of the job sizes. Note that in the end all jobs com-
pleted successfully, and that the same job may appear as
failing multiple times. The percentage of failures is much
higher than what we experienced when the system was sta-
ble; then it was always below 15%. From the figure, we ob-
serve more failures for high priority-jobs. This is expected
because more attempts are performed to place, to claim for,
and therefore to run these jobs. As a result, more jobs are
started simultaneously, which results in some components
to be given mis-configured nodes. The failures also increase
when the number ofcomponents increases, because then the
chances for components to be placed on different clusters
(co-allocated, see Figure 4) and hence on unreliable nodes,
increases.

5.3 Placing and Claiming

Failed jobs are returned to their respective placement
queues in KOALA, which then tries to re-place them un-
til their execution succeeds. As a result of re-placements
and of higher demands for processors, the job placement
times increase considerably with the increase of the number
of components as shown in Figure 5(a). We do emphasize
however, that all our jobs eventually ran to completion suc-
cessfully. Jobs of small total sizes do not suffer from many
re-placements or long waiting times for enough free proces-
sors to be available. Yet these jobs still require co-allocation
as shown in Figure 4, which helps to reduce their placement
times (Figure 5(a).

Figure 5(b) shows the start delays ofjobs of different sizes,
which is also affected by the number of failures. Like in
the above observations, the start delay increases with the
number of components, with high priority jobs performing
better compared to low priority jobs. From Figure 5 we find
that only for relatively small high-priority jobs the place-
ment time and the start delay are reasonable.

Overall, splitting jobs into many components does not nec-
essarily guarantee smaller placement times. On the other
hand, small jobs with small numbers of components still re-
quire co-allocation during placement to guarantee smaller
placement times and start delays. Nevertheless, we cannot
conclude that jobs of smaller sizes perform much better, but

789

Ifig4 Pnonty 14hJ==L.W Pnrrly lobs _

500

_ 400

I 0

200

100 II I

_53X12 4X9 3X24 4X18 6X12 8X9
Job, Si.r (numher od -op.-h X -.>p-n msi)

(a) Placement Times (b) Start Delays

Figure 5. The Placement Times and Start Delays of jobs.

rather we can conclude that our co-allocation service starves
jobs requesting many processors in these conditions. Fi-
nally, despite an unreliable system, still jobs of high priority
outperform jobs of low priority.

6 Related Work

In [8, 91, co-allocation (called multi-site computing there)
is studied also with simulations, with as performance met-
ric the (average weighted) response time. There, jobs only
specify a total number of processors, and are split up across
the clusters. The slow wide-area communication is ac-
counted for by a factor r by which the total execution times
are multiplied. Co-allocation is compared to keeping jobs
local and to only sharing load among the clusters, assuming
that all jobs fit in a single cluster. One of the most impor-
tant findings is that for r less than or equal to 1.25, it pays to
use co-allocation. In [15] an architecture for a grid super-
scheduler is proposed, and three job migration algorithms
are simulated. However, there is no real implementation of
this scheduler, and jobs are confined to run within a single
subsystem of a grid, reducing the problem studied to a tra-
ditional load-balancing problem.

In [13], the Condor class-ad matchmaking mechanism for
matching single jobs with single machines is extended to
"gangmatching" for co-allocation. The running example in
[131 is the inclusion of a software license in a match of ajob
and a machine, but it seems that the gangmatching mecha-
nism might be extended to the co-allocation of processors

and data.

Thain et al. [17] describe a system that links jobs and data
by binding execution and storage sites into 1/0 communi-
ties that reflect the physical reality. A job requesting par-
ticular data may be moved to a community where the data
are already staged, or data may be staged to the community
in which a job has already been placed. Other research on
data access has focused on the mechanisms for automating
the transfer of and the access to data in grids, e.g., in Globus
[20] and in Kangaroo [16], although there less emphasis is
placed on the importance of the timely arrival of data.

In [14], the scheduling of sequential jobs that need a single
input file is studied in grid environments with simulations of
synthetic workloads. Every site has a Local Scheduler, an
External Scheduler (ES) that determines where to send lo-
cally submitted jobs, and a Data Scheduler (DS) that asyn-
chronously, i.e., independently of the jobs being scheduled,
replicates the most popular files stored locally. All com-
binations of four ES and three DS algorithms are studied,
and it turns out that sending jobs to the sites where their in-
put files are already present, and actively replicating popular
files, performs best.

In [6], the creation of abstract workflows consisting of ap-
plication components, their translation into concrete work-
flows, and the mapping of the latter onto grid resources is
considered. These operations have been implemented us-
ing the Pegasus [7] planning tool and the Chimera [10] data
definition tool. The workflows are represented by DAGs,
which are actually assigned to resources using the Con-
dor DAGMan and Condor-G [11]. As DAGs are involved,

790

no simultaneous resource possession implemented by a co-
allocation mechanism is needed.

In the AppLes project [4], each grid application is scheduled
according to its own performance model. The general strat-
egy of AppLes is to take into account resource performance
estimates to generate a plan for assigning file transfers to
network links and tasks (sequential jobs) to hosts.

7 Conclusions

We have addressed the problem of scheduling jobs consist-
ing of multiple components that require both processor and
data co-allocation in the environment that exhibits many
failures. We have presented the fault tolerance additions
made to the KOALA scheduler to enable it to cope with
unstable environments. Our results show the correct and re-
liable operation of KOALA at the time where our testbed
was unreliable.

As future work, we are planning to remove the bottleneck
of a single global scheduler, and to allow flexible jobs that
only specify the total number of processors needed and al-
low KOALA to fragment jobs into components (the way of
dividing the input files across the job components is then not
obvious). In addition, more extensive performance study of
KOALA in a heterogeneous grid environment is planned.

References

[1] S. Ananad, S. Yoginath, G. von Laszewski, and B. Alunkal.
Flow-based Multistage Co-allocation Service. In B. J.
d'Auriol, editor, Proc. of the International Conference on
Communications in Computing,' pages 24-30, Las Vegas,
2003. CSREA Press.

[21 S. Banen, A. Bucur, and D. Epema. A Measurement-
Based Simulation Study of Processor Co-Allocation in Mul-
ticluster Systems. In D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, 9th Workshop on Job Schedul-
ing Strategiesfor Parallel Processing, volume 2862 ofLNCS,
pages 105-128. Springer-Verlag, 2003.

[3] A. Bucur and D. Epema. Local versus Global Queues with
Processor Co-Allocation in Multicluster Systems. In D. Fei-
telson, L. Rudolph, and U. Schwiegelshohn, editors, 8th
Workshop on Job Scheduling Strategies for Parallel Process-
ing, volume 2537 of LNCS, pages 184-204. Springer-Verlag,
2002.

[4] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middleware
for the Grid. pages 75-76, 2000.

[5] K. Czajkowski, I. T. Foster, and C. Kesselman. Resource Co-
Allocation in Computational Grids. in Proc. of the Eighth
IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-8), pages 219-228, 1999.

[6] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, and
K. Vahi. Mapping Abstract Complex Workflows onto Grid
Environments. J. ofGrid Computing, 1:25-39, 2003.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. M. K. Vahi,
S. Koranda, A. Lazzarini, and M. A. Papa. From Metadata to
Execution on the Grid Pegasus and the Pulsar Search. Tech-
nical report, 2003.

[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
R. Yahyapour, and A. Streit. On Advantages of Grid
Computing for Parallel Job Scheduling. In 2nd IEEE/ACM
Int'l Symposium on Cluster Computing and the GRID
(CCGrid2002), pages 39-46, 2002.

[9] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. En-
hanced Algorithms for Multi-Site Scheduling. In 3rd Int'l
Workshop on Grid Computing, pages 219-231, 2002.

[10] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A
Virtual Data System for Representing, Querying, and Au-
tomating Data Derivation. In 14th Int'l Conf on Scientific
and Statistical Database Management (SSDBM 2002), 2002.

[11] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A Computation Management Agent for Multi-
Institutional Grids. In Proceedings ofthe Tenth IEEE Sympo-
siunm on High Performance Distributed Computing (HPDC),
pages 7-9, San Francisco, California, August 2001.

[12] H. Mohamed and D. Epema. An Evaluation of the Close-
to-Files Processor and Data Co-Allocation Policy in Multi-
clusters. In Proc. ofCLUSTER 2004, IEEE Int'l Conference
Cluster Computing 2004, September 2004.

[13] R. Raman, M. Livny, and M. Solomon. Policy driven hetero-
geneous resource co-allocation with gangmatching. In 12th
IEEE Int'l Symp. on High Performance Distributed Comput-
ing (HPDC-12), pages 80-89. IEEE Computer Society Press,
2003.

[14] K. Ranganathan and I. Foster. Decoupling Computation and
Data Scheduling in Distributed Data-Intensive Applications.
In 11 th IEEE International Symposium on High Performance
Distributed Computing HPDC-J1 2002 Edinburgh, Scotland,
July 2002.

[15] H. Shan, L. Oliker, and R. Biswas. Job superscheduler archi-
tecture and performance in computational grid environments.
In Supercomputing '03. 2003.

[16] D. Thain, J. Basney, S. son, and M. Livny. The Kangaroo Ap-
proach to Data movement on the Grid. In proc. of the Tenth
IEEE Symposium on High Performance Distributed Comput-
ing, San Francisco, California, August 2001.

[17] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, and M. Livny. Gathering at the Well:
Creating Communities for Grid 110. In Proc. of
Supercomputing, Denver, Colorado, November 2001.
http://www.cs.wisc.edu/condor/nest/papers/community.pdf.

[18] R. van Nieuwpoort, J. Maassen, H. Bal, T. Kielmann, and
R. Veldema. Wide-Area Parallel Programming Using the Re-
mote Method Invocation Method. Concurrency: Practice
and Experience, 12(8):643-666, 2000.

[19] Web-site. The distributed asci supercomputer (das).
http://www.cs.vu.n/ldas2.

[20] Web-site. The globus toolkit.
http://www.globus.org/.

[21] Web-site. The portable batch system. www. openpbs . org.

791

