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Abstract

We propose an online algorithm for tracking a multivariate time-varying parameter
of a time series. The algorithm is driven by a gain function. Under assumptions on
the gain function, we derive uniform error bounds on the tracking algorithm in terms
of chosen step size for the algorithm and on the variation of the parameter of interest.
We give examples of a number of different variational setups for the parameter where
our result can be applied, and we also outline how appropriate gain functions can be
constructed. We treat in some detail the tracking of time varying parameters of an
AR(d) model as a particular application of our method.

Keywords: on-line tracking; recursive algorithm; stochastic approximation proce-
dure; time series; time-varying parameter.

1 Introduction

When one analyzes data that arrive sequentially over time, it is important to detect secular
changes in the underlying model which can then be adjusted accordingly. Estimation or
tracking of time-varying parameters in stochastic systems is therefore of fundamental
interest in sequential analysis. Furthermore, it arises in many engineering, econometric
and biomedical applications and has an extensive literature widely scattered in these fields.
Motivated by many applications in signal processing, speech recognition, communication
systems, neural physiology, environmental and economic modeling, we consider recursive
(online) estimation a the multivariate time-varying parameter of a time series.

Consider then an X -valued time series {Xk, k ∈ N0}, N0 = N ∪ {0}, X ⊆ R
l, such

that at time moment t = 0 the first observation X0 ∼ Pθ0 and subsequently at each time
moment k ∈ N a new datum Xk arrives according to the model Xk|Xk−1 ∼ Pθk(·|Xk−1)
with transition law depending on some multivariate parameter θk ∈ Θ ⊆ R

d and where
Xk−1 = (X0,X1, . . . ,Xk−1). Thus, the growing statistical model is, at time t = n,
P(n) = P(n)(Θn+1) = {∏n

k=0 Pθk(xk|xk−1) : (θ0, . . . , θn) ∈ Θn+1, xn ∈ X n+1} with the
convention that Pθ0(y0|x−1) = Pθ0(y0). This time series formulation represents the most
general sequential setting, sequences of independent observations and Markov chains of
arbitrary order are typical examples of models that fit into this framework.
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The multivariate parameter θk ∈ Θ ⊆ R
d, k ∈ N, is time-varying and the goal is to

estimate (or to track) its value based on the data Xk (and prior information) available by
that time moment. Since the data arrives in a successive manner, conventional methods
based on samples of fixed size are not easy to use. A more appropriate approach is
based on sequential methods, stochastic recursive algorithms, which allow fast updating
of parameter or state estimates at each instant as new data arrive and therefore can be used
to produce an “online” inference, that is, during the operation of the system. Stochastic
recursive algorithms, also known as stochastic approximation, take many forms and have
numerous applications in the biomedical, socio-economic and engineering sciences, which
highlights the interdisciplinary nature of the subject.

There is a vast literature on stochastic approximation beginning with the seminal
papers of Robbins and Monro [1951] and Kiefer and Wolfowitz [1952]. There is a big
variety of techniques in the area of stochastic approximation which have been devel-
oped and inspired by the applications from other fields. We mention here the books
of Wasan [1969], Tsypkin [1971], Nevelson and Khasminskii [1976], Kushner and Clark
[1978], Ljung and Söderström [1983], Benveniste et al. [1990] and Kushner and Yin [2003].

A classical topic in adaptive control concerns the problem of tracking drifting param-
eters of a linear regression model, or somewhat equivalently, tracking the best linear fit
when the parameters change slowly. This problem also occurs in communication theory
for adaptive equalizers and noise cancellation, etc., where the signal, noise, and chan-
nel properties change with time. Successful stochastic approximation schemes for track-
ing in the time-varying case were given by Brossier [1992], Delyon and Juditsky [1995],
Kushner and Yang [1995], Kushner and Yin [2003] (see further references therein).

In Kushner and Yang [1995] (see also Benveniste et al. [1990] and Brossier [1992]) dis-
cuss the very important problem of the choice of the step sizes in the tracking algorithm.
In general, the step size of the tracking algorithm is not necessarily decreasing to zero
because of considerations concerning robustness of the actual physical model in practical
online applications and to allow some tracking of the desired parameter as the system
changes over time. In signal processing applications, it is usual to keep the step size
bounded away from zero.

Coming back to our model P(n) with time-varying parameter {θk ∈ Θ, k ∈ N0}, the
problem of tracking a signal θk is clearly unfeasible, especially in such general formulation,
without some conditions on the model P(n). In general, some knowledge about the struc-
ture of underlying time seres and some control over the variability of the parameter θk
over time are needed. Interestingly, in this seemingly very general time series framework,
we actually do not require the knowledge of the model P(n). Instead, all we do need is to
be able to compute a so called gain vector at each time moment k ∈ N, which is a certain
(vector) function of the previous estimate of the parameter θk, new observation Xk and
prehistory Xk−1. The essential property of such gain vector is that it, roughly speaking,
“pushes” in the right direction of the current value of true parameter to track. Although
the assumption about the existence of that gain vector seems to be rather strong, we
demonstrate on a number of interesting examples when such an assumption indeed holds.
Basically, in case of Markov chain observations, if the form of transition density is known
as function of the underlying parameter and it satisfies certain regularity assumptions,
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then the gain vector can always be constructed, for example, as a score function corre-
sponding to the conditional maximum likelihood method. Under appropriate regularity
conditions (the existence of the conditional Fisher information and L2-differentiability of
the conditional log likelihood), such a score function has always the property of gain vector
at least locally.

A gain function, together with a step sequence and new observations from the model,
can be used to adjust the current approximation of the drifting parameter, resulting in a
tracking algorithm. To ease the verification of our assumptions on the gain function, we
formulate them in two equivalent forms. Under some assumptions on the gain vectors, we
establish a uniform non-asymptotic bound the L1 error of the resulting tracking algorithm,
in terms of the variation of the drifting parameter. Under the extra assumption that the
gain function is bounded, we can strengthen this result to a uniform bound on the Lp

error (and then an almost sure bound). These error bounds constitute our main result
and they also guide us in the choice of the step size for the algorithm. Some extensions
are also presented where we allow for approximation terms and approximate gains.

Based on our main result, we specify the appropriate choice for the step sequence in
three different variational setups for the drifting parameter. We treat first the simple case
of a constant parameter. Although we are mainly concerned with tracking time-varying
parameters, our algorithm is still of interest in the constant parameter case since it should
result in an algorithm which is both recursive and robust. We also consider a setup where
the parameter is stabilizing. This covers both the case where the parameter is converging
and where we sample the signal with increasing frequency. The third variational setup
covers the important case of tracking smooth signals. This setup is somewhat different in
that we make observations with a certain frequency from an underlying continuous time
process which is indexed by a parameter changing like a Lipschitz function. Our result can
then either be interpreted as a uniform, non-asymptotical result for each fixed sampling
frequency or as an asymptotic statement in the observation frequency.

Examples are also given for different possible gain functions. These fall into two cat-
egories: general, score based gain functions for tracking multidimensional parameters in
regular models and specialized gains for tracking more specific quantities. The latter in-
clude gains to track level sets or maxima of drifting functions (extending the classical
Robbins-Monro and Kiefer-Wolfowitz algorithms) and gains to track drifting conditional
quantiles. We also propose modifications for a given gain function (rescaling, truncation,
projection) which can be used to design gains tailored specifically to verify our assump-
tions.

We illustrate our method by treating some concrete applications of the proposed algo-
rithm but we focus mostly on the problem of tracking drifting parameters in autoregressive
models. Results on tracking algorithms for these models already exist in the literature
(cf. Belitser [2000], Moulines et al. [2005]) and we can derive similar results by choosing
an appropriate gain function. Using our approach, obtaining error bounds on the resulting
tracking algorithm reduces to verifying our assumptions for the chosen gain function which
considerably simplifies the derivation of results.

This paper is structured as follows. In Section 2 we summarize the notation that will
be used thought the paper, as well as our model and two equivalent formulations for our
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assumptions. Section 3 contains our main result and respective proof as well as some
straightforward extensions of the main result. The construction and modification of gain
functions for different models and different parameters of interest is explained in Section 4.
Section 5 contains three examples of variational setups for the time-varying parameter for
which we specify the tracking error implied by our main result. We collect in Section 6
some examples of applications. Section 7 contains the proofs for our lemmas.

2 Preliminaries

First we introduce some notation that we are going to use throughout the paper. All
vectors are always column vectors. We use bold uppercase letters to represent sets of
vectors. For vectors x, y ∈ R

d, denote by ‖x‖2 and 〈x, y〉 = xT y the usual Euclidean
norm and the inner product in R

d, respectively, and by ‖x‖p the lp norm on vectors in
R
d. For an event A we will represent the indicator of the event A as 1A. For a symmetric

d × d matrix M , let λ(1)(M) and λ(d)(M) be the smallest and the largest eigenvalues of
M respectively. Denote N0 = N ∪ {0}. Let also O denote the zero matrix, I the identity
matrix and J the exchange matrix whose dimensions will be determined by the context.
We will use the convention that

∑

i∈∅Ai = O and
∏

i∈∅Bi = I for matrices Ai and
Bi with such dimensions that these matrix operations (summation and product) are well
defined. When applied to matrices, the symbol ‖ · ‖p will represent the operator norm
induced by the lp vector norm, which is a matrix norm defined as

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

= max
x=1

‖Ax‖p = max
x≤1

‖Ax‖p.

Assume that by time n ∈ N, we have observed Xn = (X0,X1, . . . ,Xn) according to
the following model:

X0 ∼ Pθ0 , Xk|Xk−1 ∼ Pθk(·|Xk−1), k ∈ N. (1)

Here the time series {Xk, k ∈ N0} takes value in some set X ⊆ R
l, i.e., P (Xk ∈ X ) = 1,

k ∈ N0. Let Fk = σ(Xk) denote the σ-algebra generated by Xk = (X0,X1, . . . ,Xk). The
time-varying parameter θk = θk(Xk−1), k ∈ N0, is allowed to depend on the past of the
time series, i.e., it is assumed to be predictable with respect to the filtration (Fk)k∈N.
Further, θk is assumed to take values in some convex compact subset Θ of R

d, to be
precise, P (θk(Xk−1) ∈ Θ) = 1 for all k ∈ N0. We are interested in tracking the drifting
parameter θk(Xk−1) which we will often abbreviate as simply θk. Denote from now on

CΘ = sup
θ∈Θ

‖θ‖2. (2)

At time n ∈ N, the underlying (growing) statistical model is P(n) = P(n)(Θn+1), which
we can write as

P(n)(Θn+1) =
{

n
∏

k=0

Pθk(xk|xk−1) : (θ0, . . . , θn) ∈ Θn+1, xn ∈ X n+1
}

,
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where Pθ0(y0|x−1) should be understood as Pθ0(y0). For k = 0, . . . , n, each conditional
measure belongs to

Pk = Pk(Θ) =
{

Pθ(·|xk−1) : θ ∈ Θ, xk−1 ∈ X k
}

.

At time k, given Xk, the model Pk+1 contains all the relevant information about the next
observation but we do not consider it to be (completely) known. Instead, we assume that
our prior knowledge about the model is formalized as follows: for each k ∈ N we have
certain R

d-valued functions Gk(x, θ|xk−1) at our disposal (which we will call gain vectors),
x ∈ X , xk−1 ∈ X k ⊂ R

lk, θ ∈ R
d, i.e., Gk : X k+1 × R

d → R
d, and these gain vectors

satisfy conditions (A1) and (A2) below.

(A1) For all k ∈ N and all θ, ϑ ∈ Θ the following statements hold almost surely:

gk(θ, ϑ|Xk−1) =

∫

Gk(x, θ|Xk−1) dPϑ(x|Xk−1) (3)

is well defined, there exists a symmetric positive definite matrix Mk = Mk(Xk−1)
with (random) eigenvalues 0 < Λ(1)(Mk) ≤ · · · ≤ Λ(d)(Mk) and constants 0 < λ1 ≤
λ2 < ∞ such that

gk(θ, ϑ|Xk−1) = −Mk(Xk−1)(θ − ϑ), (4)

with 0 < λ1 ≤ E[Λ(1)(Mk)|Xk−2] ≤ Λ(d)(Mk) ≤ λ2 < ∞.

(A2) There exists a constant C > 0 such that for all k ∈ N and all θ, ϑ ∈ Θ,

E‖Gk(Xk, θ|Xk−1)− gk(θ, ϑ|Xk−1)‖22 ≤ C. (5)

Note that assumption (A2) is redundant if, for example, the gain vectors Gk(x, θ|Xk−1)
are almost surely bounded. Condition (A1) means, in a way, that, on average, the gain
vector Gk(Xk, θ̂k|Xk−1) shifts θ̂k towards the “true” value θk = θk(Xk−1):

E
[

Gk(Xk, θ̂k|Xk−1)|Fk−1

]

= gk(θ̂k, θk|Xk−1) = −Mk(Xk−1)
(

θ̂k − θk
)

,

for some symmetric, almost surely positive definite matrix Mk(Xk−1) such that 0 < λ1 ≤
E[λ(1)(Mk)|Fk−2] ≤ λ(d)(Mk) ≤ λ2 < ∞.

Condition (A1) can be reformulated as (Ã1), which gives some intuition as to the role
of the function gk and which may, in certain situations, be simpler to verify.

(Ã1) The quantity gk(θ, ϑ|Xk−1) defined by (3) satisfies, almost surely, the following
conditions: there exist random variables Λ1(Xk−1) and Λ2(Xk−1) and constants
0 < λ1 ≤ λ2 < ∞, 0 < L < ∞ such that for all θ, ϑ ∈ Θ,

Λ1(Xk−1)‖θ − ϑ‖22 ≤ −(θ − ϑ)T gk(θ, ϑ|Xk−1) ≤ Λ2(Xk−1)‖θ − ϑ‖22
‖gk(θ, ϑ|Xk−1)‖2 ≤ L‖θ − ϑ‖2

(6)

with 0 < λ1 ≤ E[Λ1(Xk−1

)

|Xk−2] ≤ Λ2

(

Xk−1

)

≤ λ2 < ∞.
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In view of the lemma below, if (A1) holds, then (Ã1) will also hold (and vice versa); the
values of the constants λ1 and λ2 appearing in the assumptions are different, though. The
proof of this lemma is deferred to Section 7.

Lemma 1. Let x, y ∈ R
d. If there exists a symmetric positive definite matrix M such

that y = Mx and 0 < λ1 ≤ λ(1)(M) ≤ λ(d)(M) ≤ λ2 < ∞ for some λ1, λ2 ∈ R, then
0 < λ′

1‖x‖2 ≤ 〈x, y〉 ≤ λ′
2‖x‖2 < ∞ and ‖y‖ ≤ C‖x‖ for some λ′

1, λ
′
2, C ∈ R (depending

only on λ1, λ2) such that 0 < λ′
1 ≤ λ′

2 < ∞ and C > 0.
Conversely, if 0 < λ′

1‖x‖2 ≤ 〈x, y〉 ≤ λ′
2‖x‖2 < ∞ and ‖y‖ ≤ C‖x‖ for some

λ′
1, λ

′
2, C ∈ R such that 0 < λ′

1 ≤ λ′
2 < ∞ and C > 0, then there exists a symmetric

positive definite matrix M such that y = Mx and 0 < λ1 ≤ λ(1)(M) ≤ λ(d)(M) ≤ λ2 < ∞
for some constants λ1, λ2 ∈ R depending only on λ′

1, λ
′
2 and C.

At each time k ∈ N, the observer should be able to calculate the gain vector at
(Xk,Xk−1) and an estimator θ̂k, Gk(Xk, θ̂k|Xk−1), in order use it to update the estimate
θ̂k. In Section 4 we will show how gain functions can be constructed, but before that we
present in the next section our tracking algorithm based on the gain function and our
main result describing the quality of the algorithm.

3 Main result

Introduce a recursive algorithm for tracking the sequence θk = θk(Xk−1) ∈ Θ ⊂ R
d from

the observations (1):

θ̂k+1 = θ̂k + γkGk(Xk, θ̂k|Xk−1), k ∈ N, (7)

for some positive sequence of step sizes γk ≤ Γ and some (arbitrary) initial value θ̂0 ∈ Θ ⊂
R
d.
Heuristically, since the gain vector Gk(Xk, θ̂k|Xk−1) moves, on average, θ̂k towards

θk and the sequence θk ∈ Θ (since Θ is compact) is bounded, the resulting estimating
sequence θ̂k should also be well-behaved. The following lemma states that the second
moment of θ̂k is uniformly bounded in k ∈ N.

Lemma 2. For sufficiently small γk there exists a constant C̄Θ such that

E‖θ̂k‖22 ≤ C̄2
Θ, k ∈ N.

The proof of this lemma is given in the Section 7. In fact, it is enough to assume that
γk is sufficiently small for all k ≥ N for some fixed N ∈ N. This lemma will be used in
the proof of the main theorem below.

Theorem 1. Let Assumptions (A1) and (A2) hold and p ≥ 1. Let the tracking sequence
θ̂k be defined by (7) with the sequence γk satisfying the conditions of Lemma 2, δk =
δk(Xk−1) = θ̂k − θk and ∆k = ∆k(Xk) = θk − θk+1, k ∈ N. Then for any k0, k ∈ N such
that k0 ≤ k and γiλ2 < 1 for all k0 ≤ i ≤ k, the following relation holds:

E‖δk+1‖p ≤ C1 exp

(

−λ1

2

k
∑

i=k0

γi

)

+ C2

( k−1
∑

i=k0

γ2i

)1/2

+ C3 max
i=k0,...,k

E‖θi+1 − θk0‖2, (8)
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where C1 = (2d)1/2
(

C̄Θ+CΘ

)

, C2 = d1/2C1/2
(

1+λ2/λ1

)

, C3 = d1/2
(

1+λ2/λ1

)

and C is
from Assumption (A2).

If, in addition, Λ(1)(Mk) ≥ λ1 (in Assumption (A1)) and |Gk(Xk, θ̂k|Xk−1)| ≤ C
almost surely, then for any k0, k ∈ N such that k0 ≤ k and γiλ2 < 1 for all k0 ≤ i ≤ k,

E‖δk+1‖pp ≤ C1 exp

(

−pλ1

k
∑

i=k0

γi

)

+C2

( k−1
∑

i=k0

γ2i

)p/2

+ C3 max
i=k0,...,k

E‖θi+1−θk0‖pp, (9)

where C1 = 2p−1Kp
pE‖δk0‖pp, C2 = d 22p−1BpC

p
(

1 + K2
pλ2/λ1

)p
and C3 = 2p−1

(

1 +

K2
pλ2/λ1

)p
.

Proof. For the sake of brevity, denote θk = θk(Xk−1), Gk = G(Xk, θ̂k|Xk−1) and gk =
g(θ̂k, θk|Xk−1), k ∈ N. Recall that Fk = σ(Xk) is the σ-field generated by Xk =
(X0,X2, . . . ,Xk).

We have
E[Gk|Fk−1] = gk(θ̂k, θk|Xk−1) = gk, k ∈ N.

It follows that Dk = Gk − gk, k ∈ N, is a (vector) martingale difference sequence with
respect to the filtration {Fk, k ∈ N0}.

Rewrite the algorithm equation (7) as

δk+1 = δk +∆θk + γkDk + γkgk, k ∈ N.

In view of Assumption (A1), we have the decomposition gk = −Mkδk, with a symmetric
positive definite matrix Mk = M(θ̂k, θk|Xk−1) so that

δk+1 = ∆θk + γkDk + (I − γkMk)δk, k ∈ N. (10)

By iterating the above relation, we obtain that for any k0 = 0, . . . , k

δk+1 = (1− γkMk)(I − γk−1Mk−1)δk−1 +∆θk + γkDk

+ (1− γkMk)(∆θk−1 + γk−1Dk−1)

=
[

k
∏

i=k0

(I − γiMi)
]

δk0 +
k

∑

i=k0

[

k
∏

j=i+1

(I − γjMj)
]

(∆θi + γiDi).

(11)

Denote Ai =
∑i

j=k0
γjDj , Bi =

∑i
j=k0

∆θj and Ci = Ai+Bi. Applying the vector version
of the Abel transformation (Lemma 4) to the second term of the right hand side of (11)
yields

k
∑

i=k0

[

k
∏

j=i+1

(I − γjMj)
]

(∆θi + γiDi) = Ck −
k−1
∑

i=k0

γi+1Mi+1

[

k
∏

j=i+2

(I − γjMj)
]

Ci. (12)

Note in particular that, if we take Mj = λ1 for j = k0, . . . , k, ∆θj = 0, for j = k0, . . . , k,
Dk0 = 1 and Dj = 0 for j = k0+1, . . . , k, we derive that (if 0 ≤ γjλ1 ≤ 1 for j = k0, . . . , k)

k−1
∑

i=k0

λ1γi+1

k
∏

j=i+2

(1− γjλ1) = 1−
k
∏

j=k0+1

(1− γjλ1) ≤ 1, (13)
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which we will use later.
Using (12), we can rewrite our expansion of δk+1 in (11) as

δk+1 =
[

k
∏

i=k0

(I − γiMi)
]

δk0 + Ck −
k−1
∑

i=k0

γi+1Mi+1

[

k
∏

j=i+2

(I − γjMj)
]

Ci.

Take p ∈ N. The previous display, the triangle inequality and the sub-multiplicative
property of the operator norm (‖MN‖p ≤ ‖M‖p‖N‖p) imply that

‖δk+1‖p ≤ ‖δk0‖p
k
∏

i=k0

‖I − γiMi‖p + ‖Ck‖p

+
k−1
∑

i=k0

γi+1‖Mi+1‖p‖Ci‖p
k
∏

j=i+2

‖I − γjMj‖p.
(14)

Due to Assumption (A1), the matrix Mi has smallest and largest eigenvalues Λ(1),i

and Λ(d),i, respectively, such that almost surely γiΛ(d),i ≤ γiλ2 < 1, k0 ≤ i ≤ k, and
E[Λ(1),i|Fi−2] ≥ λ1 > 0. By using Lemma 3 and the fact that γiΛ

2
(1),i ≤ γiΛ(d),iΛ(1),i ≤

Λ(1),i almost surely, we evaluate:

E

[

(1− γkΛ(1),k)
2
∣

∣

∣
Fk−2

]

= E

[

1− 2γkΛ(1),k + γ2kΛ
2
(1),k

∣

∣

∣
Fk−2

]

= 1− 2γkE
[

Λ(1),k

∣

∣Fk−2

]

+ E
[

γ2kΛ
2
(1),k

∣

∣Fk−2

]

≤ 1− γkE
[

Λ(1),k

∣

∣Fk−2

]

≤ 1− γkλ1,

almost surely. Similarly, E
[

1 − γkΛ(1),k

∣

∣Fk−2

]

≤ 1 − γkλ1 almost surely. It then follows
that

E

k
∏

i=k0

‖1− γiMi‖22 = E

k
∏

i=k0

(1− γiΛ(1),i)
2 = EE

[ k
∏

i=k0

(1− γiΛ(1),i)
2
∣

∣

∣Fk−2

]

= EE

[

(1− γkΛ(1),k)
2
∣

∣

∣
Fk−2

]

k−2
∏

i=k0

(I − γiΛ(1),i)
2

≤ (1− γkλ1)E

k−1
∏

i=k0

(I − γiΛ(1),i)
2 ≤

k
∏

i=k0

(1− γiλ1),

(15)

by iterating the recursion.
Let Dkl denote the l-th coordinate of the vector Dk. Clearly, for each l = 1, . . . , d,

{Dkl, k ∈ N} is a martingale difference with respect to the filtration {Fk, k ∈ N0}. Using
the fact that martingale increments are uncorrelated, we derive that for all i = k0, . . . , k

E‖Ai‖22 = E

d
∑

l=1

(

i
∑

j=k0

γjDjl

)2
=

d
∑

l=1

i
∑

j=k0

γ2jED
2
jl =

i
∑

j=k0

γ2jE‖Dj‖22 ≤ C

k
∑

j=k0

γ2j .
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Since Bi is a telescopic sum, we also have, for all p ∈ N and i = k0, . . . , k,

E‖Bi‖p = E

∥

∥

∥

i
∑

j=k0

∆θj

∥

∥

∥

p
= E‖θi+1 − θk0‖p ≤ max

i=k0,...,k
E‖θi+1 − θk0‖p.

Since ‖Ci‖2 is Fj-measurable for all j ≥ i, it follows that

E

[

‖Ci‖2
k
∏

j=i+2

‖I − γjMj‖2
]

= EE

[

‖Ci‖2
k
∏

j=i+2

‖I − γjMj‖2
∣

∣

∣Fk−2

]

= E

[

E
[

1− γkΛ(1),j

∣

∣Fk−2

]

‖Ci‖2
k−1
∏

j=i+2

(1− γjΛ(1),j)
]

≤ (1− γkλ1)E
[

‖Ci‖2
k−1
∏

j=i+2

(1− γjΛ(1),j)
]

≤ E‖Ci‖2
k
∏

j=i+2

(1− γjλ1).

Combining the last three displays, relations (13), (14) and (15), Lemma 3, the Hölder
and triangle inequalities and the elementary inequality 1− x ≤ e−x, we finally get that

E‖δk+1‖2

≤
(

E‖δk0‖22 E
k
∏

i=k0

‖I − γiMi‖22
)1/2

+E‖Ck‖2+E

[

k−1
∑

i=k0

γi+1‖Mi+1‖2‖Ci‖2
k
∏

j=i+2

‖I − γjMj‖2
]

≤
(

E‖δk0‖22
k
∏

i=k0

(1− γiλ1)
)1/2

+E‖Ck‖2 +
k−1
∑

i=k0

γi+1λ2E

[

‖Ci‖2
k
∏

j=i+2

‖I − γjMj‖22
]

≤
(

E‖δk0‖22
)1/2

exp
(

− λ1

2

k
∑

i=k0

γj

)

+ max
i=k0,...,k

E‖Ci‖2
(

1+
k−1
∑

i=k0

γi+1λ2

k
∏

j=i+2

(1− γjλ1)

)

≤
√
2
(

C̄Θ+CΘ

)

exp
(

−λ1

2

k
∑

i=k0

γi

)

+
(

1+
λ2

λ1

)

(

(

C
k

∑

i=k0

γ2i

)1/2
+ max

i=k0,...,k
E‖θi+1 − θk0‖2

)

,

since E‖δk0‖22 ≤ 2E‖θ̂k0‖22 + 2E‖θk0‖22 ≤ 2(C̄2
Θ + C2

Θ), by (2) and Lemma 2. Note that
‖δk0‖2 ≥ ‖δk0‖p for p ≥ 2, d1/2‖δk0‖2 ≥ ‖δk0‖p for 1 ≤ p < 2. We have established the
first statement of the theorem.

Let now the components of the gain Gk be almost surely bounded, in absolute value,
by a certain constant C. Using Lemma 3 and the elementary inequality 1 − x ≤ e−x,
we have that, for each p ∈ N, and then some constant Kp, we can derive the following
alternative expression to (14).

‖δk+1‖p ≤ Kp‖δk0‖p
k
∏

i=k0

(1− γiλ1) + max
i=k0,...,k

‖Ci‖p
(

1 +K2
p

k−1
∑

i=k0

γi+1λ2

k
∏

j=i+2

(1− γiλ1)
)

≤ Kp‖δk0‖p exp
(

− λ1

k
∑

i=k0

γj

)

+

(

1 +K2
p

λ2

λ1

)

max
i=k0,...,k

‖Ci‖p,
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where we again use (13). Take now the p-th power (p ≥ 1) of both sides of the inequality
and apply the Hölder inequality (

∑m
i=1 ai)

p ≤ mp−1
∑m

i=1 |ai|p for m = 2 to get

‖δk+1‖pp ≤ 2p−1Kp
p‖δk0‖pp exp

(

− pλ1

k
∑

i=k0

γj

)

+ 2p−1

(

1 +K2
p

λ2

λ1

)p

max
i=k0,...,k−1

‖Ci‖pp,

Remember that the sequence
{
∑i

j=k0
γjDj(Xj , θ̂j, θj), i ≥ k0

}

is a martingale with
respect to the filtration {Fi, i ∈ N} and that the entries of Dj verify |Djl| ≤ 2C, almost
surely. Applying the maximal Burkholder-Davis-Gundy inequality (cf. Chow and Teicher
[1988, Theorem 1, p.407]) we conclude that for any p ≥ 1, with Bp = ((18p5/2)/(p−1)3/2)p,

E max
i=k0,...,k−1

‖Ai‖pp = E max
i=k0,...,k−1

d
∑

l=1

∣

∣

∣

∣

i
∑

j=k0

γjDjl

∣

∣

∣

∣

p

≤
d

∑

l=1

E max
i=k0,...,k−1

∣

∣

∣

∣

i
∑

j=k0

γjDjl

∣

∣

∣

∣

p

≤ Bp

d
∑

l=1

E

∣

∣

∣

∣

k−1
∑

j=k0

γ2jD
2
jl

∣

∣

∣

∣

p/2

≤ dBp2
pCp

∣

∣

∣

∣

k−1
∑

j=k0

γ2j

∣

∣

∣

∣

p/2

,

The second inequality of the theorem now follows by taking expectations on both sides of
the bound on ‖δk+1‖pp above, by using the last inequality, (13) and the fact that ‖Ci‖pp ≤
2p−1‖Ai‖pp + 2p−1‖Bi‖pp.

Remark 1. Sometimes we will not be interested in tracking the, say, natural parameter θk
of the model but some other parameter ϑk which is, on average, close to θk. The difference
‖θk − ϑk‖p can be seen as an approximation term in that the parameter θk driving the

time series is actually an approximation for our parameter of interest ϑk. Denoting θ̂k−ϑk

as δ∗k, the following expansion can be derived,

δ∗k+1 = δ∗k +∆ϑk + γkDk − γkMk(θ̂k − θk)

= ∆ϑk + γkMk(θk − ϑk) + γkDk + (I − γkMk)δ
∗
k

=
[

k
∏

i=k0

(I − γiMi)
]

δ∗k0 +

k
∑

i=k0

[

k
∏

j=i+1

(I − γjMj)
]

(∆ϑk + γkMk(θk − ϑk) + γiDi).

The same note could be made for situations where gk = −Mk(θ̂k − θk − ηk) where ηk is a
remainder term which may be random so long as it is measurable with respect to σ(Xk−1);
it would then follow that

δk+1 =
[

k
∏

i=k0

(I − γiMi)
]

δk0 +

k
∑

i=k0

[

k
∏

j=i+1

(I − γjMj)
]

(∆θi − ηi + γiDi).

Noting that ‖γkMk (θk − ϑk)‖p < λ2γkKp‖θk − ϑk‖p we conclude, for the same constants
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C1, C2, C3 as before and all p ∈ N, that the following also hold

E‖δk+1‖p ≤C1 exp

(

− λ1

2

k
∑

i=k0

γj

)

+ C2

( k−1
∑

i=k0

γ2i

)1/2

+ C3E max
i=k0,...,k

‖ϑi+1 − ϑk0‖2 + λ2K2E

k
∑

i=k0

γi‖ηi‖2,
(16)

E‖δk+1‖pp ≤C1 exp

(

− pλ1

k
∑

i=k0

γj

)

+ C2

( k−1
∑

i=k0

γ2i

)p/2

+C3E

(

max
i=k0,...,k

‖ϑi+1 − ϑk0‖p + λ2Kp

k
∑

i=k0

γi‖ηi‖p
)p

,

(17)

where either a) δk = θ̂k − ϑk and ηk = θk − ϑk, b) δk = θ̂k − θk, ϑk = θk and ηk such that
gk = −Mk(δk − ηk); (16) and (17) generalize then the bounds in (8) and (9) where we had
c) δk = θ̂k − θk, ϑk = θk and ηk = 0.

Remark 2. If we are interested in tracking ϑk = ϕ(θk), a smooth functional of the
parameter θk, then by using Taylor’s Theorem, our Theorem 1 above straightforwardly
delivers a bound on the expectation of ‖ϑ̂k − ϑk‖p = ‖ϕ(θ̂k)− ϕ(θk)‖p and its powers.

4 Construction of gain functions

In this section we address the construction, or choice, of appropriate gain functions to be
used with the algorithm (7). Any gain function for which conditions (A1) and (A2) hold
may be used with our algorithm, and whether a particular gain function is suitable or not
depends exclusively on the the model under study. Namely, this will depend on the way in
which the distributions in the model depend on the parameter which we are interested in
tracking. For certain types of models, there might be natural choices for the gain function.
As before we abbreviate θk = θk(Xk−1).

A situation, which essentially extends the original setup in which Robbins and Monro
[1951] developed their classical algorithm, is when the data, Xk = (X1, . . . ,Xk), is such
that

Xk = ϑk(Xk−1) + ξk(Xk−1),

where the ϑk(·) are functions of Xk−1, and ξk(Xk−1) are martingale difference noise terms
which may also depend on Xk−1. In this case, given Xk−1 we may simply take

Gk(x, θ|Xk−1) = x− θ (18)

since for each θ,

gk(θ, ϑk(Xk−1)|Xk−1) = Eϑ[Gk(Xk, θ|Xk−1)|Xk−1] = −(θ − ϑk(Xk−1)).

11



Non-parametric regression is an example of a model which fits into this situation and for
which our results may be used.

It could also be that Eθ[Xk|Xk−1], the conditional expectation of the data, given the
past, is not θ but instead ϕ(θ) for some some smooth function ϕ. In this case, given Xk−1,
one should consider instead,

Gk(x, θ|Xk−1) = x− ϕ(θ) (19)

and then, for each θ,

gk(θ, ϑk|Xk−1) = Eϑ[Gk(Xk, θ|Xk−1)|Xk−1] = −
(

ϕ(θ)− ϕ(ϑk)
)

.

The term on the far right should then be comparable to −(θ−ϑk). Autoregressive models,
for example, fall into this category (cf. 6.4).

One may also consider more dynamical situations where the observations themselves
depend on our tracking sequence. An example of such a setup is the Kiefer and Wolfowitz
[1952] algorithm where we would like to track the sequence of (unique) maxima of a
sequence of functions ϑk : Θ ⊂ R

d 7→ R, k ∈ N, which we may observe at any point,
corrupted with white noise. One possibility (cf. Kushner and Yin [2003]) is to use gain
functions defined using random directions. Let then Dk, k ∈ N, denote a random sequence
of independent unit vectors. We would consider, for a positive sequence ek, k ∈ N, the
gain function

Gk(X
−
k ,X+

k , θ̂k|X−
k−1,X

+
k−1,Dk−1) = Dk

X−
k (θ̂k)−X+

k (θ̂k)

2ek
, (20)

where, with some abuse of notation, the observations X±
k+1(θk), are given by

X±
k+1(θ̂k) = ϑk

(

θ̂k ± ekDk

)

+ ξ±k ,

for θ̂k the tracking sequence defined by the gain (20) and ξ±k independent, zero mean
noise. Let θk be the unique maxima of ϑk(·). In this case we would have, for the filtration
Fk = σ

(

X±
k ,Dk

)

,

gk(θ̂k, θk|Fk−1) = E

[

−DkD
T
k ∇ϑk(θ̂k) +Hk(θ̂k) +Dk

ξ−k − ξ+k
2ek

∣

∣

∣Fk−1

]

= −E
[

DkD
T
k

]

∇ϑk(θ̂k) + E
[

Hk(θ̂k)
∣

∣Fk−1

]

+
E
[

Dk(ξ
−
k − ξ+k )

]

2ek

= −E
[

DkD
T
k

]

∇2ϑk(θ
∗
k)(θ̂k − θk) + ηk,

where ∇2ϑk(·) is the Hessian of ϑk(·), θ∗k ∈ Θ and, for θ ∈ Θ,

Hk(θ) = DkD
T
k ∇ϑk(θ)−Dk

ϑk(θ + ekDk)− ϑk(θ − ekDk)

2ek
.

Conditions (A1) and (A2) will hold if, for example, we assume that the random directions
where chosen such that E

[

DkD
T
k

]

are positive definite matrices, that the Hessian ∇2ϑk(·)
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is positive definite over Θ and that for appropriately small ek the expectation E[‖ηk‖p] is
appropriately small, uniformly over θ ∈ Θ. These conditions are comparable to the ones
in the original formulation of the Kiefer-Wolfowitz algorithm, and can be significantly re-
laxed by, for example, considering different types of expansions for gk depending on how
large the norm of δk = θ̂k − θk is.

Consider now a different example. Say X ⊂ R and, given the past of the process, Xk−1,
we would like to track a conditional quantile of a certain distribution, i.e., we would like
to track ϑk = ϑk(Xk−1) such that ϑk = inf

{

x ∈ X : Fk(x|Xk−1) ≥ αk

}

, where αk is a
sequence in (0, 1)N of our choice and Fk(·|Xk−1) the cumulative distribution function of
Xk|Xk−1. In this case it makes sense to use

Gk(x, θ|Xk−1) = αk − I{x− θ ≤ 0} (21)

since we see that

gk(θ, ϑk|Xk−1) = E[Gk(Xk, θ|Xk−1)|Xk−1] = −
(

Fk(θ − ϑk|Xk−1)− αk

)

,

where we assume w.l.g. that the distribution is centred at the quantile ϑk. The quan-
tity in the last display clearly has the same sign as ϑk − θ. Note also that the algo-
rithm based on this gain function only requires knowledge of the values of the indicators
1{Xk−θ ≤ 0} which means that we may still track the required quantiles without explicitly
observing Xk. This problem is treated in detail for the case of independent observations
in Belitser and Serra [2013].

For certain models it might, however, not be obvious how gain functions can be con-
structed, especially when tracking multi-dimensional parameters. It is therefore important
to have a general procedure that can be used to construct candidate gain functions that
can either be used directly or, if needed, modified to verify (A1) and (A2).

Assume that for each k ∈ N, each distribution from the family of conditional distribu-
tions Pk = {Pθ(x|Xk−1), θ ∈ Θ} has a density with respect to some σ-finite dominating
measure µ and denote this conditional density by pθ(x|Xk−1), θ = (θ1, . . . , θd) ∈ Θ. As-
sume also that there is a common support X for these densities, and that for any x ∈ X
and θ ∈ Θ ⊂ R

d, the partial derivatives ∂pθ(x|Xk−1)/∂θi, i = 1, . . . , d, exist and are finite,
almost surely. Under these assumptions, the conditional gradient vector

∇θ log pθ(x|Xk−1) =
(

∂ log pθ(x|Xk−1)/∂θ1, . . . , ∂ log pθ(x|Xk−1)/∂θd

)

(22)

and the square, random matrices Ik(θ|Xk−1) with entries

Ik,i,j(θ|Xk−1) = Eθ

[

∂

∂θi
pθ(x|Xk−1) ·

∂

∂θj
pθ(x|Xk−1)

]

(23)

for i, j = 1, . . . , d, can be defined, almost surely. A possible gain function is simply the
conditional score of the model, i.e. the gradient vector

Gk(x, θ|Xk−1) = ∇θ log pθ(x|Xk−1). (24)
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If (23) is almost surely non-singular then one might also consider

Gk(x, θ|Xk−1) = I−1
k (θ|Xk−1)∇θ log pθ(x|Xk−1). (25)

We justify now why these choices are reasonable. Take ϑ = (ϑ1, . . . , ϑd) ∈ Θ. It is
not uncommon for the Kullback-Leibler divergence K

(

Pϑ(x|Xk−1), Pθ(x|Xk−1)
)

to be a
quadratic form in the distance between the parameters θ and ϑ, i.e., equal to a multiple
of (θ− ϑ)TM(θ− ϑ) for some (eventually random) positive semi-definite matrix M . If so,
under the assumption that we can interchange integration and differentiation and that M
does not depend on θ, gk(θ, ϑ|Xk−1) will almost surely reduce to

∫

∇θ log pθ(x|Xk−1)dPϑ(x|Xk−1) = ∇θ

∫

log pθ(x|Xk−1)dPϑ(x|Xk−1)

=∇θ

(

∫

log
pθ(x|Xk−1)

pϑ(x|Xk−1)
dPϑ(x|Xk−1) +

∫

log pϑ(x|Xk−1)dPϑ(x|yk−1)
)

=∇θ

∫

log
pθ(x|Xk−1)

pϑ(x|Xk−1)
dPϑ(x|Xk−1) = −∇θK

(

Pϑ(x|Xk−1), Pθ(x|Xk−1)
)

=−∇θ(θ − ϑ)TM(θ − ϑ) = −2M(θ − ϑ).

The score will in principle depend on the past of the chain Xk−1 and the previous
argument might only be valid for a certain subset of valuesXk−1 in X k−1. This dependence
could prevent (A1) from holding. In these cases, using the form (25) might be a good
alternative since the matrix I−1

k (θ|Xk−1) will act as an appropriate scaling factor.
The dependence of the gain function on the past of the time series is in fact one of the

main issues one has to deal with when checking (A1) and (A2). On one hand, to ensure
that the gain function has, on average, the right direction, as required by (3), the gain
will often need to depend on previous observations. This might, however, affect either the
range or the variance of the gain. Gain function, such as (24) and (25), can be modified,
or rescaled, to ensure that the respective conditional expectation gk(θ, ϑ|Xk−1) verifies
the assumptions of Theorem 1. One can for example truncate certain entries or factors in
both Gk(x, θ|Xk−1) and Ik(θ|Xk−1) to ensure that the resulting gk(θ, ϑ|Xk−1) follows the
required assumptions. Another possibility is to rescale, or directly truncate, the length of
a given gain vector and consider, for example, one of the following gains

G̃k(x, θ|Xk−1) =
Gk(x, θ|Xk−1)

1 + ‖Gk(x, θ|Xk−1)‖2
,

G̊k(x, θ|Xk−1) = Gk(x, θ|Xk−1)
(

1 +
κ− ‖Gk(x, θ|Xk−1)‖2
‖Gk(x, θ|Xk−1)‖2

1{‖Gk(x,θ|Xk−1)‖2≥κ}

)

,

Ḡk(x, θ|Xk−1) = Gk(x, θ|Xk−1)
min

(

s(Xk−1), κ
)

s(Xk−1)
,

for Gk an arbitrary gain function, κ > 0 and some function s : X k 7→ R
+. Note that G̃k,

G̊k and Ḡk all preserve the direction of Gk and have norm bounded by respectively 1, κ,
and the norm of Gk, almost surely.
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The gain Ḡk is specifically rescaled for situations where we have a conditional gain gk
almost surely of the form gk = −s(Xk−1)Mk(θ−ϑ), whereMk has eigenvalues as prescribed
by (A1). Consequently we will have that ḡk = −min

(

s(Xk−1), κ
)

Mk(θ−ϑ) from where it
follows that the largest eigenvalue of the matrix min

(

s(Xk−1), κ
)

Mk will then be almost
surely upper-bounded; in certain situations it will be possible to use the fact that almost
surely E[Λ(1)(Mk)|Xk−2] ≥ λ1, to show that E[min

(

s(Xk−1), κ
)

Λ(1)(Mk)|Xk−2] ≥ cλ1 for
some 0 < c ≤ 1 and sufficiently large κ. Using the fact that the function min(x, κ)/x ≤ 1
we have, again abbreviating Ḡk(Xk, θ|Xk−1) and ḡk(θ, ϑ|Xk−1)

EEϑ

[∥

∥Ḡk − ḡk
∥

∥

2

2

∣

∣Xk−1

]

=

E

[(min
(

s(Xk−1), κ
)

s(Xk−1)

)2
Eϑ

[∥

∥Gk − gk
∥

∥

2

2

∣

∣Xk−1

]

]

≤ E
∥

∥Gk − gk
∥

∥

2

2
,

(26)

such that if Gk verifies (A2) then so will Ḡk.

Another possible modification one might consider, is to truncate the iterates of the
our algorithm (7). This might be motivated by practical considerations in the case where
the parameter being tracked has some sort of physical meaning and is therefore bounded;
it stands to reason then that the algorithm itself should be restricted as well. We would
then, for a parameter set Θ, consider the sequence

θ̂k+1 = ΠΘ̄

(

θ̂k + γkGk(Xk, θ̂k|Xk−1)
)

, k ∈ N, (27)

where ΠΘ̄(·) acts as a projection on a convex set Θ̄ ⊃ Θ in that ΠΘ̄(·) is an identity on Θ̄
and maps points in Θ̄c to Θ̄.

We will provide concrete examples of gain functions later in Section 6. Before this, we
present in Section 5 some examples of different types of variation that the parameter of
the model may have such that our algorithm is capable of adequately tracking it.

5 Variational setups for the drifting parameter

It is clear – and in fact explicit in (8) and (9) – that the changes in the parameter have a
non-negligible contribution to the accuracy of our tracking algorithm. This is reasonable
since, if the parameter changes arbitrarily in-between observations, we should not expect
it to the “trackable”. We must then specify how the parameter is allowed to vary and,
based on that assumption, pick an appropriate sequence γk which minimizes the general
bounds in (8) or (9). We will specify in this section what these bounds reduce to for
concrete examples for the variation of the parameter being tracked. These examples refer
only to how the parameter is assumed to change and are unrelated to the actual model in
question; examples of specific models can be found in Section 6.

5.1 Static parameter

We assume in this section that θj(Xj−1) = θ0, almost surely, ∀j ∈ N for some unknown
θ0 ∈ Θ such that in fact ∆θj = 0, almost surely, and we are actually in a parametric
setup. Note that, in this case, the second terms in both (8) and (9) obviously vanish.
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Take then γj = Cγj
−1 log j and for q ∈ (0, 1), n0 = [qn], where [a] is the whole part of

a ∈ R. Let n ≥ 2/q = Nq such that n0 ≥ 2. For large enough Cγ and all n ≥ Nq we have,

n
∑

j=n0

γj ≥ cγ log n0

n
∑

j=n0

1

k
≥ log n

2λ1
,

from where for all p ∈ N,

exp
(

− pλ1

n
∑

j=n0

γj

)

≤ n−p/2.

Note that in the case where we have E‖δn0
‖pp ≤ C0n

p
0 we can take the constant Cγ to be

larger (say take rCγ , r > 2) in which case

C1 exp
(

− pλ1

n
∑

j=n0

γj

)

≤ c1n
pn−rp/2 ≤ C1n

−p/2.

Using now the fact that
∑n

j=n0
γ2j ≤ c(log n)2n−1 for some constant c > 0 we have





n
∑

j=n0

γ2j





p/2

≤ (n−1/2 log n)p.

We conclude that we can rewrite (8) and (9) as respectively,

max
n≥Nq

E

√
n

log n
‖δn‖p ≤ C and max

n≥Nq

E

(

√
n

log n
‖δn‖p

)p
≤ C,

for all p ∈ N. The log term in the rate cannot be avoided and is a consequence of the
recursiveness of the algorithm.

Note that by taking p > ǫ−1 and, by using Markov’s inequality and the second bound
in the previous display, we conclude that

∞
∑

n=1

P
(

n1/2−ǫ‖θ̂n − θ0‖1 > c
)

≤
∞
∑

n=1

P
(

d
p−1

p n1/2−ǫ‖θ̂n − θ0‖p > c
)

≤
∞
∑

n=0

dp−1np/2−pǫ
E‖δn‖pp

cp
≤ C

∞
∑

n=1

(d log n)p

n−1/2−ǫ
< ∞.

(28)

By application of the Borel-Cantelli Lemma, we conclude that ‖θ̂n − θ0‖1 → 0 as n → 0
takes place with probability 1 at a rate n1/2−ǫ for all ǫ > 0.

The particular setup presented in this section, where the parameter is fixed, might
seem out of place since we are mainly concerned with tracking time-changing parameters.
We would like to point out, however, that our algorithm is recursive and, as such, always
produces estimates in a fast, straightforward fashion. This is an advantage especially over
“offline” estimators obtained, say, as solutions to a certain system, which require iterative
likelihood or least squares optimization or are obtained via other indirect methods, a
situation which is common when dealing with Markov models (cf. Section 6.4.)
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5.2 Stabilizing parameter

Suppose now that the parameter we want to track is stabilizing. This situation might arise
if the expectation of the sequence of values that the parameter takes is converging to some
limiting value. It could also be the case that the data is being sampled, with increasing
frequency, from an underlying, continuous time process which depends on a parameter
varying continuously; in this case, the parameter varies less and less since it is allowed less
time to change. Regardless, we assume that ∆θi = θi(Xi−1)− θi+1(Xi) verifies

E‖∆θi‖pp ≤ ρpi , i ∈ N

for p ≥ 1 and some decreasing sequence ρi. Assume then that we have ρi = cρi
−β for some

constant cρ > 0 and β ≥ 0.
Consider first the case β ≥ 3/2. In this case, the variation of the parameter vanishes

so quickly that we are essentially in the setup of the previous section. Indeed, take γi and
n0 as in the previous section. The first and third term in both (8) and (9) can be bounded
in the same way as in the previous section. As for the second term, by using the Hölder
inequality

E

(

n
∑

i=n0

‖∆θi‖p
)p

≤ (n− n0)
p−1

n
∑

i=n0

E‖∆θi‖pp ≤ C(n− n0)
pρpn0

≤ c
(

(n− n0)n
−β
0

)p ≤ Cn−(β−1)p ≤ Cn−p/2,

(29)

leading to the same bounds as in the previous section
Consider now the case where 0 < β < 3/2. Let γi = Cγ(log i)

1/3i−2β/3, n0 = n −
n2β/3(log n)2/3. By using the elementary inequality (1 + x)α ≤ 1 + αx for 0 < α < 1 and
x ≥ −1, we obtain that for sufficiently large n (i.e., n ≥ N1 = N1(β)) and sufficiently
large constant Cγ

n
∑

i=n0

γi ≥ Cγ(log n0)
1/3

n
∑

i=n0

1

i2β/3
≥ Cγ(log n0)

1/3

∫ n

n0

dx

x2β/3

=
Cγ(log n0)

1/3

1− 2β/3

[

n1−2β/3 − n1−2β/3
(

1− n2β/3−1(log n)2/3
)1−2β/3

]

≥ Cγ(log n0)
1/3

1− 2β/3

[

n1−2β/3 − n1−2β/3
(

1− n2β/3−1(log n)2/3(1− 2β/3)
)

]

= Cγ(log n0)
1/3(log n)2/3 ≥ log n

2h
.

This yields the same bound for the first term in (8) and (9): for n ≥ N1, sufficiently large
constant Cγ and all p ∈ N,

C1 exp
(

− ph
n
∑

i=n0

γi

)

≤ C1n
−p/2.
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Let us bound now the last term in (8) and (9): for n ≥ N2 = N2(β) and all p ∈ N

(

n
∑

i=n0

γ2i

)p/2
≤ C

(

(log n)2/3n
−4β/3
0 (n− n0)

)p/2 ≤ c
(

(log n)2/3n−β/3
)p
.

For sufficiently large n (i.e., n ≥ N3 = N3(β)) the second term in (8) and (9) are bounded
similarly to (29) by

E

(

n
∑

i=n0

‖∆θi‖p
)p

≤ c
(

(n − n0)n
−β
0

)p ≤ C
(

(log n)2/3n−β/3
)p
.

Finally we obtain that for 0 < β < 3/2 and sufficiently large constant Cγ in the algorithm
step γi = Cγ(log i)

1/3i−2β/3, (8) and (9) can be rewritten as respectively

max
n≥Nβ

E
nβ/3

(log n)2/3
‖δn‖2 and max

n≥Nβ

E

(

nβ/3

(log n)2/3
‖δn‖p

)p

≤ c,

where Nβ = max(N1, N2, N3) is the burn-in period of the algorithm.

Remark 3. If we choose γi = Cγ(log i)
α1 i−α and n0 = n − nα(log n)α2 , 0 < α < 1,

α1, α2 ≥ 0, α1 + α2 ≥ 1 in case 0 < β < 3/2, then we get the following bound of the
convergence rate: for sufficiently large n and sufficiently large constant Cγ

E‖δn‖pp ≤ C
(

n−min{β−α,α/2}(log n)max{α2,α1+α2/2}
)p

.

Thus , the choice α = 2β/3, α1 = 1/3, α2 = 2/3 is optimal in the sense of the minimum
of the right-hand side of the above inequality.

Remark 4. Much in the same way as for (28), we can establish that for any ǫ > 0,
limn→∞ nβ/3−ǫ‖δn‖1 = 0 with probability 1.

Finally, consider the case β = 0, i.e., we assume the following weak requirement:
E‖∆θi‖pp ≤ c, i ∈ N, for some uniform constant c. Take n − n0 = N , γi = γ for some
N ∈ N, γ > 0. Then Theorem 1 implies that

max
n≥N

E‖δn‖pp ≤ C1e
−phNγ + C2N

p/2γp +C3N
pc = D.

We thus have that the algorithm will track down the parameter in the proximity of size
D, which we can try to minimize by choosing appropriate constants N and γ.

5.3 Lipschitz signal with asymptotics in the sampling frequency

We consider now a slightly different setup where we assume that the parameter is changing,
on average, like a Lipschitz function. In this setup we let the time series (1) be sampled
from a continuous time process Xt, t ∈ [0, 1] which we observe with frequency n. This
means that for each n ∈ N we have a different model, namely,

Xn
0 ∼ Pθn

0
, Xn

k |Xn
k−1 ∼ Pθn

k
(·|Xn

k−1), k ≤ n ∈ N, (30)
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where the parameter θnk = θnk (X
n
k−1) verifies, for some p ∈ N, κd,p < ∞

E‖θnk (Xn
k−1)− θnk0(X

n
k )‖pp ≤ κpd,p

(k − k0
n

)βp
.

We could have for example that θnk (X
n
k−1) = ϑ(k/n), almost surely, where ϑ(·) ∈ L(L, β) =

{g(·) : ‖g(t1)− g(t2)‖1 ≤ L|t1 − t2|β, t1, t2 ∈ [0, 1]} for some 0 < β ≤ 1 and L > 0, a space
of vector valued Lipschitz functions.

Let γk ≡ Cγ(log n)
(2β−1)/(2β+1)n−2β/(2β+1) , (constant in k) for k = 1, . . . , n, and

k0 = k0(n) = k − (log n)2/(2β+1)n2β/(2β+1),

for k ≥ Kn = (log n)2/(2β+1)n2β/(2β+1). Note that for Kn/n → 0 as n → ∞ for any
0 < β ≤ 1.

For sufficiently large Cγ

k
∑

i=k0

γi = Cγ(log n)
(2β−1)/(2β+1)n2β/(2β+1)(k − k0) ≥ Cγ log n ≥ log n

3λ1
,

leading to

exp

(

− pλ1

k
∑

i=k0

γi

)

≤ cn−p/3.

In much the same way, we have

( k
∑

i=k0

γ2i

)p/2

≤ C

(

(log n)
2β−1

2β+1n
− 2β

2β+1 (k − k0)
1/2

)p

= C

(

(log n)
2β

2β+1n
− β

2β+1

)p

.

¿From our assumption on the variation of the parameter, we have

max
i=k0,...,k

E‖θni+1 − θnk0‖
p
p ≤ c

(k − k0
n

)−pβ
≤ C

(

(log n)
2β

2β+1n− β

2β+1

)p

.

Combining the three bounds, we get that (8) and (9) imply

sup
ϑ∈L(L,β)

max
i≥Kn

E‖δi‖2 ≤ C(log n)
2β

2β+1n− β

2β+1 , (31)

sup
ϑ∈L(L,β)

max
i≥Kn

E‖δi‖pp ≤ C

(

(log n)
2β

2β+1n− β

2β+1

)p

. (32)

6 Some applications of the main result

In this section we present some examples of particular models to which our algorithm may
be applied. We start with two toy examples and present thereafter some more involved
examples. The toy examples illustrate the type of results that can be obtained from our
main result and its extensions, how a gain function can be picked and modified, and how
conditions (A1) and (A2) checked.
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6.1 Tracking the intensity function of a Poisson process

Lets say that we are monitoring n independent Poisson processes on [0, 1] with unknown
intensity function λ(·), for fixed n ∈ N. This is equivalent to observing N(t) = N(t, n),
a Poisson process with intensity nλ(t), 0 ≤ t ≤ 1. We would like to track the intensity
function λ(·) which we will assume is uniformly upper-bounded by L.

Lets say that we observe the process with frequency n, in that our observations are
Xn

k = N(k/n), such that for each n ∈ N we have the model

Xn
0 = 0, Xn

k+1|Xn
k ∼ Pθn

k
(·|Xn

k ) = Pθn
k
(· −Xn

k ), k = 1, . . . , n,

where Pθ(·) represents a Poisson law with parameter θ ∈ R
+. We will work then with

pθ(·|y) a conditional, shifted Poisson mass function given by

pθ(x|y) = exp(−θ)
θx−y

(x− y)!
,

for x ∈ N, x ≥ y. The moving parameter θnk is given, for k = 1, . . . , n, by

θnk =

∫ k
n

k−1

n

nλ(t) dt.

Consider now the gain function Gk of the type (25) and its conditional expectation gk,
respectively given by

Gk(x, θ|Xn
k−1) = x−Xn

k−1 − θ,

gk(θ, ϑ|Xn
k−1) = Eϑ[X

n
k −Xn

k−1 − θ|Xn
k−1] = −(θ − ϑ).

(33)

with Eϑ[ · |Xn
k−1] the expectation with respect to pϑ(·|Xn

k−1). Its also simple to see that,

E|G(Xn
k , θ|Xn

k−1)− g(θ, ϑ|Xn
k−1)|2 = EEϑ[|Xn

k −Xn
k−1 − ϑ|2|Xn

k−1] = ϑ ≤ L.

We conclude then that the gain function displayed in (33) satisfies both (A1) and (A2).
This gain function can now be used for the three setups outlined in Section 5 and

attains the rates indicated there. For a constant intensity function λ(·) ≡ ϑ, 0 < ϑ ≤ L,
the parameter of the model θnk reduces to the constant ϑ and we simply track the rate of
the process. Note that this happens since we matched the sampling frequency 1/n with
the sample size n. If we were to have sampled the process with frequency 2/n, say, then
θnk = 2ϑ in which case the algorithm would track 2ϑ and not ϑ. The tracking sequence
would then have to be recalled by a factor 1/2 to obtain a tracking sequence for ϑ itself.

In the setup where we assume that the parameter is stabilizing, take n = 1 and call
ϑk = θ1n =

∫ k
k−1 λ(t) dt the mean number of events per time unit. Note that

∣

∣∆ϑk

∣

∣ =
∣

∣

∣

∫ k

k−1
λ(t) dt−

∫ k+1

k
λ(t) dt

∣

∣

∣ =
∣

∣θ1k − θ1k+1

∣

∣.
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We then assume that the average number of events is stabilizing in such a way that the
previous display is upper bounded by say cβk

−β, for β ≥ 0 and cβ > 0. The algorithm
will then track the mean number of events per time unit.

We can also assume that the intensity function λ(·) belongs to L(L, β) = {g(·) :
|g(t1)− g(t2)| ≤ L|t1 − t2|β, t1, t2 ≥ 0} for some 0 < β ≤ 1 and L > 0. Call ϑn

k = λ(k/n),
k, n ∈ N. It follows that

∣

∣∆ϑn
k

∣

∣ =
∣

∣λ
(

k/n
)

− λ
(

(k + 1)/n
)∣

∣ ≤ Ln−β,

∣

∣θnk − ϑn
k

∣

∣ =
∣

∣

∣

∫ k/n

(k−1)/n
nλ(t) dt− λ(k/n)

∣

∣

∣
≤ n

∫ k/n

(k−1)/n

∣

∣λ(t)− λ(k/n)
∣

∣ dt ≤ Ln−β.

The tracking sequence based on the gain (33) will then track the sequence ϑn
k = λ(k/n),

k, n ∈ N (as well as θnk ) with the asymptotics seen in Section 5 (cf. Remark 1.)

6.2 Tracking the mean function of a conditionally Gaussian process

Assume that we observe, with fixed frequency n ∈ N, a process Xt, t ∈ [0, 1], taking
values on X ⊂ R

d, d ∈ N. In this way, for k = 1, . . . , n, the observations available to

us at time k/n will be a random vector X
(n)
k =

(

X0,X1/n, . . . ,Xk/n

)

. The increments
Xk/n −X(k−1)/n will be assumed to be conditionally Gaussian in the sense that given the
past of the process, each increment has a multivariate normal distribution, and so,

Xn
0 ∼ N

(

θn0 , Σ
n
0

)

, X(k+1)/n|Xn
k ∼ N

(

θnk
(

Xn
k−1

)

, Σn
k

(

Xn
k−1

)

)

, k = 1, . . . , n.

The dependence on the past in the model comes from the fact that both the mean and the
covariance of the process are allowed to depend on the past of the process. Here, for each
n ∈ N, θnk is an arbitrary sequence in k depending eventually on Xn

k−1 and Σn
k a sequences

in k ∈ N of (positive-definite) covariance matrices or order d which, as already mentioned,
may also depend on Xn

k−1.
In the case where the covariance structure of the process is known, we can use the gain

(24) which it is straightforward to check verifies, given Xn
k−1, for x, θ, ϑ ∈ R

d, k = 1, . . . , n,

Gk

(

x, θ|Xn
k−1

)

=
(

Σn
k(X

n
k−1)

)−1(
x− θ

)

,

gk
(

θ, ϑ(Xn
k−1)|Xn

k−1

)

= −
(

Σn
k(X

n
k−1)

)−1(
θ − ϑ(Xn

k−1)
)

.
(34)

If this gain is used, we assume that, almost surely, for k = 1, . . . , n, the eigenvalues of the
covariance matrices Σn

k(X
n
k−1) are 0 < Λn

(1),k(X
n
k−1) ≤ · · · < Λn

(d),k(X
n
k−1) < ∞, such that

for constants λn
1 , λ

n
2 we have,

0 < λn
1 ≤ Λn

(1),k(X
n
k−1) ≤ Λn

(d),k(X
n
k−1) ≤ λn

2 < ∞,

almost surely. We then have for all θ, ϑ ∈ R
d,

E‖G(Xn
k , θ|Xn

k−1)− g(θ, ϑ(Xn
k−1)|Xn

k−1)‖22 =

= E
(

(Σn
k(X

n
k−1))

−1
(

Xn
k − ϑ(Xn

k−1)
))T

(Σn
k(X

n
k−1))

−1
(

Xn
k − ϑ(Xn

k−1)
)

≤ (λn
1 )

−2
EEϑ

[

‖Xn
k − ϑ(Xn

k−1)‖22
∣

∣Xn
k

]

= (λn
1 )

−2
E tr

(

Σn
k(X

n
k−1)

)

≤ dλn
2 (λ

n
1 )

−2.
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Assumptions (A1) and (A2) are then met for the gain in (34).

Let us now assume that the covariance matrix of the process is unknown, difficult to
invert or that assumption on the eigenvalues of the covariance matrix does not hold. In
this case we can use the gain (25) which gives us, for x, θ, ϑ ∈ R

d, k = 1, . . . , n,

G(x, θ|Xn
k−1) = x− θ,

g(θ, ϑ(Xn
k−1)|Xn

k−1) = −
(

θ − ϑ(Xn
k−1)

)

.
(35)

If we now assume that, almost surely, for k = 1, . . . , n, the largest eigenvalue of the
covariance matrices Σn

k(X
n
k−1) is upper bounded by some constant λn

2 < ∞, then, for all

θ, ϑ ∈ R
d,

Eϑ‖G(Xn
k , θ|Xn

k−1)− g(θ, ϑ(Xn
k−1)|Xn

k−1)‖22 =

= EEϑ

[

‖Xn
k − ϑ(Xn

k−1)‖22
∣

∣Xn
k−1

]

= E tr
(

Σn
k(X

n
k−1)

)

≤ dλn
2 ,

and so assumptions (A1) and (A2) are met for the gain in (35).
The results of Section 5 can be applied to the algorithm based on the gain functions

presented above. If, for each n ∈ N, the mean of the process is constant, θnk (X
n
k−1) ≡ ϑn

then the algorithm will track the (fixed) mean of the process. Alternatively we may assume
that the parameter isn’t constant but it stabilizing. We take then n = 1, and assume that
the changes in the mean vector of the process are such that, for k ∈ N,

E‖∆θnk‖22 = E‖θnk (Xn
k−1)− θnk+1(X

n
k )‖22 ≤ cβk

−β ,

for some β ≥ 0, and a constant cβ > 0. The other possibility is to assume that for
n ∈ N, the mean of the process is obtained from a function θ(·,Xn

k−1) which is, on
average, Lipschitz in the sense that it belongs to L

(

L, β,Xn
k−1

)

= {g : E‖g(t1,Xn
k−1) −

g(t2,X
n
k−1)‖1 ≤ L|t1 − t2|β, t1, t2 ≥ 0} for some 0 < β ≤ 1 and L > 0. Call ϑn

k =
θ(k/n,Xn

k−1), k, n ∈ N. It follows that

E
∥

∥∆ϑn
k

∥

∥

1
= E

∥

∥θ
(

k/n,Xn
k−1

)

− θ
(

(k + 1)/n,Xn
k

)∥

∥

1
≤ Ln−β.

In this case the algorithm tracks the mean function θ(k/n,Xn
k−1) at times k/n, with k ∈ N.

6.3 Tracking an ARCH(1) parameter

Consider the following ARCH(1) model with drifting parameter

Xk =
(

1 + θkX
2
k−1

)1/2
ξk, X0 = 0 (a.s.), (36)

where ξk, k ∈ N, form a martingale difference sequence with variance σ2 > 0. The drifting
parameter θk belongs to some interval [0, ρ] for some ρ such that ρ2Eǫ4k ≤ 1 for all k ∈ N.

Consider the gain function

G(Xk, θ|Xk−1) =
min(X2

k−1, cσ
2)

X2
k−1

(X2
k − 1− θX2

k−1) (37)
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such that, since EϑXk = 0 and Eϑ[X
2
k |Xk−1] = 1 + ϑX2

k−1,

g(θ, ϑ|Xk−1) = Eϑ

[min(X2
k−1, cσ

2)

X2
k−1

(X2
k−1−θX2

k−1)
∣

∣

∣
Xk−1

]

= −min(X2
k−1, cσ

2)(θ − ϑ),

For some constant c > 0. We then have that Λ(1) ≤ cσ2, almost surely. Note that

E

[

min(X2
k−1, cσ

2)
∣

∣

∣
Xk−2

]

=E

[

min
(

(1 + θk−1X
2
k−2)ǫ

2
k−1, cσ

2
)

∣

∣

∣
Xk−2

]

≥E

[

min
(

ǫ2k−1, cσ
2
)

]

.

By using the fact that min(a, b) = (a + b)/2 − |a − b| and the Hölder inequality, it is
straightforward to check that

2E
[

min
(

ǫ2k−1, cσ
2
)

]

= (c+ 1)σ2 − E|ǫ2k−1−cσ2| ≥ (c+1)σ2 −
(

E
[

(ǫ2k−1 − cσ2
)2])1/2 ≥ σ2,

as long as for every k ∈ N, 2c σ2 ≥ Eǫ4k. We conclude (A1) holds for the gain (37).
To check (A2) note first that

E[X2
k |X2

k−1] = σ2(1 + θkX
2
k−1)

and then
EX2

k ≤ σ2(1 + ρEX2
k−1).

Since ρ2Eǫ4k ≤ 1 then ρσ2 ≤ 1 by Jensen’s inequality. Using this recursion we get that

EX2
k ≤ σ2 + σ2ρEX2

k−1 ≤ σ2 + σ4ρ+ σ4ρ2EX2
k−2 ≤ σ2

k
∑

i=1

(ρσ2)i−1 ≤ σ2

1− σ2ρ
.

In the same way,
E[X4

k |Xk−1] = (1 + 2θkX
2
k−1 + θ2kX

4
k−1)Eǫ

4
k,

and then, since ρ2Eǫ4k ≤ 1,

EX4
k ≤ (1 + 2

σ2ρ

1− σ2ρ
+ ρ2EX4

k−1)Eǫ
4
k ≤ Eǫ4k(1 + 2

σ2ρ

1− σ2ρ
)

k
∑

i=1

(ρ2EX4
k−1)

i−1 < ∞.

Using the same argument as for (26) we see that (A2) holds since by the Hölder inequality

EG2(Xk, θ|Xk−1) ≤ 3(EX2
k + ρ2EX2

k−1 + 1),

which is bounded, uniformly over k ∈ N.
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6.4 Tracking an AR(d) parameter

We consider now an autoregressive model with d time-varying auto-regressive parameters:

Xk =

d
∑

i=1

θk,iXk−i + ξk, k ∈ N, k ≥ d, (38)

where X0,X1, . . . ,Xd−1 have p bounded moments (cf. the end of this section). We would
like to track the vector θk = (θk,1, θk,2, . . . , θk,d), which may be random but must be
measurable with respect to the σ algebra generated by Xk−2d−1. In this section we will
use the notation Xk,d =

(

Xk,Xk−1, . . . ,Xk−(d−1)

)

for the vector of the d observations
leading up to Xk.

In analogy with the non-drifting AR(d) model, we can associate with the model its
(drifting) autoregressive polynomial z 7→ 1−

∑d
i=1 θk,iz

i; write then

t(z, θ) = 1−
d

∑

i=1

θiz
i, z ∈ C. (39)

It is well know that an AR(p) model with autoregressive parameters θ is stationary if,
and only if, the (complex) zeros of the polynomial t(z, θ) are outside the unit circle. This
motivates the definition of the parameter sets Θ(ρ), (cf. Moulines et al. [2005]) which we
define as the closure of [is it already closed???]

{

θ ∈ R
d : for all |z| < ρ−1, t(z, θ) 6= 0

}

, (40)

for any 0 < ρ < 1. One can show that if B(r) is a uniform ball in R
d with radius r > 0,

then the following embeddings hold:

B
(

(ρ−2 + · · ·+ ρ−2d)−1/2
)

⊆ Θ(ρ) ⊆ B
(

(1 + ρ)d − 1
)

,

which gives us some feeling as to the size of the parameter set. This implies in particular
that for all ρ ∈ (0, 1), the set Θ(ρ) is non-empty and bounded.

The AR(d) model (38) can also be described by the following inhomogeneous difference
equation

Xk,d = C(θk)Xk−1,d + Ie1ξk, (41)

where e1 = (1, 0, . . . , 0) ∈ R
d and, for any θ ∈ R

d, C(θ) is the square matrix of order d

C(θ) =















θ1 θ2 · · · θd−1 θd
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















. (42)

This matrix is usually called the companion matrix to the autoregressive polynomial t(z, θ);
it is also sometimes called the state transition matrix . One can show that the eigenvalues of
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C(θ) are exactly the reciprocals of the zeros of t(z, θ). This means that all the eigenvalues
of C(θ) for θ ∈ Θ(ρ) are at most ρ < 1. This in turn implies that for any sequence of
vectors θd, θd+1, · · · ∈ Θ(ρ), the pair of sequences

(

(

C(θd), C(θd+1), · · ·
)

,
(

Id, Id, · · ·
)

)

forms a so called exponentially stable pair. Among other things, this gives us that so
long as the p-th moments of both the initial Xd−1,d and the noise terms ξk are bounded,
then the p-th moments of all Xk, k ≥ d will be bounded as well (cf. Proposition 10
of Moulines et al. [2005]).

A particular gain function which can be used to track the parameters of an autore-
gressive model can be found in Moulines et al. [2005]. The gain function considered there
is an appropriately rescaled version of the gain (19), namely,

G(Xk, θ|Xk−1,d) = (Xk − θTXk−1,d)
Xk−1,d

1 + µXT
k−1,dXk−1,d

,

for an appropriately chosen µ > 0. Its straightforward to check that the conditions in
(Ã1) on the corresponding conditional gain g hold in this case; the lower bound in (6) is
established in Lemma 17 of Moulines et al. [2005] and the upper bounds are straightfor-
ward to check; assumption (A2) can be reduced to moment conditions on the observations
of the autoregressive process which are verified if the signal θ lives in Θ(ρ) as mentioned
above. In a sense, conditions (A1) and (A2) capture the essential properties that a gain
function must have such that resulting tracking algorithm behaves properly and, in fact,
these conditions will hold even if the noise terms are not Gaussian; we discuss this issue
again at the end of this section. In the following we propose an alternative gain function.
We will first treat the one dimensional case where we can obtain a stronger result.

Consider then d = 1 and assume that the sequence θk(Xk−1) ∈ Θ(ρ) such that it is
almost surely bounded, in absolute value, by ρ < 1. Assume also that EX2

0 and EX4
0 are

bounded and that for all k ∈ N, Eξk = Eǫ3k = 0, Eξ2k = σ2 > 0 and Eξk = c σ4, for some
constant 0 ≤ c < 5. (We can take c = 3 if the noise is Gaussian, for example.) Lets say
we would like to use the following gradient type gain function

Gk

(

Xk, θ|Xk−1

)

= X2
k−1(Xk/Xk−1 − θ),

gk
(

θ, ϑ|Xk−1

)

= −X2
k−1(θ − ϑ),

(43)

almost surely. The random eigenvalues in (A1) reduce, in this case, to just Λ(1)(Xk−1) =
X2

k−1. Note that if for all k ∈ N Xk−2 were integrable, we have

E
[

X2
k−1

∣

∣Xk−2

]

= E
[

(Xk−2θk−2 + ξk−1)
2
∣

∣Xk−2

]

= X2
k−2θ

2
k−2 + Eξ2k−1 ≥ σ2, (44)

but still X2
k−1 would not be almost surely upper-bounded by a constant. To remedy this

we will truncate X2
k−1 and consider

Gk

(

Xk, θ|Xk−1

)

= min
(

X2
k−1,

9− c

4
σ2

)

(Xk/Xk−1 − θ),

gk
(

θ, ϑ|Xk−1

)

= −min
(

X2
k−1,

9− c

4
σ2

)

(θ − ϑ).

(45)
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(Note that this is a rescaled gain function of the same type as Ḡ at the end of Section 4.)
We now have an almost sure upper-bound for Λ(1)(Xk−1) = min

(

X2
k−1, (9 − c)σ2/4

)

; we
truncate X2

k−1 at this specific value since one can prove (cf. Lemma 5) that

E

[

min
(

X2
k−1,

9− c

4
σ2

)∣

∣

∣
Xk−2

]

≥ 5− c

4
σ2 > 0,

such that (A1) holds. Assumption (A2) also holds since

E
∣

∣Gk

(

Xk, θ|Xk−1

)

− gk
(

θ, ϑ|Xk−1

)∣

∣

2
= E

min
(

X2
k−1,

5−c
4 σ2

)2

X2
k−1

Eϑ

[

|Xk − ϑXk−1|2
∣

∣Xk−1

]

≤
(5− c

4

)2
σ4

Eξ2k =
(5− c

4

)2
σ6.

The previous truncation argument is still valid if we truncate X2
k−1 at a higher value.

In that case, we also still have that (A1) and (A2) hold, with a larger constant λ2 in (A1)
and larger C in (A2). This means that in order to use the previous gain function we don’t
need to know the exact value of σ2 but only an upper bound for it. Also, in practice, for
a truncation at a high enough value, the effect of the truncation will be innocuous and
trajectories of (43) and (45) will coincide, with high probability; the truncation is simply
an artifice to enforce the fulfillment of (A1) and should be of little practical importance.
Up to the requirement that the distribution of the noise be symmetrical about 0, the
previous result generalizes that of Belitser [2000] where the noise terms are assumed to be
almost surely bounded.

We turn our attention now to the general AR(d) model. As we will see in what
follows, assumptions (A1) and (A2) can be easily checked. In the d dimensional case
we assume that the noise terms ξk in (38) form a Gaussian white noise sequence with
mean zero and variance σ2 > 0. Assume first that the autoregressive parameters do
not depend on k, i.e. θk ≡ θ = (θ1, . . . , θd) ∈ Θ(ρ) ⊂ R

d. Given the vector of past
observations Xk−d,d =

(

Xk−d,Xk−d−1, . . . ,Xk−2d+1

)

, we can see Xk,d as a system of
d equations in Xk,Xk−1, . . . ,Xk−(d−1), depending on Xk−d,Xk−d−1, . . . ,Xk−2d+1 and θ,
which, for ξk,d =

(

ξk, ξk−1, . . . , ξk−(d−1)

)

, can be written as

A(θ)Xk,d = B(θ)Xk−d,d + ξk,d; (46)

the matrices A(θ) and B(θ) are Toeplitz matrices created respectively from the vectors
a(θ) = (0, . . . , 0, 1,−θ1, . . . ,−θd−1) and b(θ) = (θ1, . . . , θd−1, θd, 0, . . . , 0). (We remind
that for a vector m = (m−(d−1),m−(d−2), . . . ,m−1,m0,m1, . . . ,md−2,md−1), the Toeplitz
matrix of order d associated with that vector is the square matrix M of order d with entries
mi,j = mi−j , such that the entries of the matrix are constant over descending diagonals.)
The matrix A(θ) is upper triangular with a diagonal consisting of ones whence invertible.
We conclude, then, that given the full past of the process, Xk−d,

Xk,d|Xk−d ∼ N
(

A−1(θ)B(θ)Xk−d,d, σ
2A−1(θ)A−T (θ)

)

. (47)
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Alternatively, we could have derived the (46) by applying the recursion in (41) d times.
In this case we will consider a gain of the type (24) such that

Gdk

(

x, θ|Xd(k−1),d

)

= ∇θ log pθ
(

x|Xd(k−1)

)

, (48)

where pθ(·|Xd(k−1)) is the conditional density of (47). At the end of this section we
explicitly compute (48); see (50).

For us, each data point will be a vector Xdk,d, k ∈ N such that the tracking sequence
is updated with batches of d observations from the autoregressive process. (Below, to ease
the notation, we will mostly write x and y instead of Xn

dk,d and Xn
d(k−1),d, respectively.)

This is necessary to make sure the representation (47) is valid even if the parameter θ
is allowed to change among different batches of observations; otherwise the system (46)
would be under-determined. We must now establish that this gain function verifies (A1).

As explained in Section 4, the expectation gdk can be seen as minus the gradient of
the Kullback-Leibler divergence between the transition kernel with two different parame-
ters. This observation is particularly useful if we are able to write this Kullback-Leibler
divergence as an appropriate quadratic form. The Kullback-Leibler divergence between
two d-dimensional multivariate normal distributions P0 = N(µ0,Σ0) and P1 = N(µ1,Σ1)
is given (cf. ?) by,

K(P0, P1) =
1

2

(

log
detΣ1

detΣ0
+ tr(Σ−1

1 Σ0)− d+ (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)

)

. (49)

Write, for y ∈ R
d, µ(θ,y) = A−1(θ)B(θ)y and Σ(θ) = σ2A−1(θ)A−T (θ). Let also S = Sd

be the Toeplitz matrix associated with the vector s = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
2d−1 where

the 1 occupies the (d + 1)-th position; these are sometimes called shift matrices. For
i = 2, . . . , d − 1, the powers Si are the Toeplitz matrices associated with the vectors
(0, . . . , 0, 1, 0, . . . , 0) ∈ R

2d−1 where the 1 occupies the (d + i)-th position; Sd is O = Od,
the null matrix of order d, and S0 should be read as I = Id, the identity matrix of order
d. It follows from the definition of the matrix A(·) that for θ, ϑ ∈ Θd,

A(θ)−A(ϑ) = S(ϑ1 − θ1) + S2(ϑ2 − θ2) + · · ·+ Sd(ϑd − θd),

from where we conclude

A(θ)A−1(ϑ) = I + SA−1(ϑ)(ϑ1 − θ1) + S2A−1(ϑ)(ϑ2 − θ2) + · · · + SdA−1(ϑ)(ϑd − θd).

We will compute now K
(

N(µ(ϑ,y),Σ(ϑ)), N(µ(θ,y),Σ(θ))
)

. For all θ, the matrices
A(θ) have all eigenvalues equal to one (so then also their inverses) whence detΣ(θ) ≡ σ2d;
we conclude that the logarithm in (49) is null. Also, using basic properties properties of
the trace and the representation for A(θ)A−1(ϑ) derived above,

tr
(

Σ−1(θ)Σ(ϑ)
)

− d = tr
(

(

A−1(θ)A−T (θ)
)−1(

A−1(ϑ)A−T (ϑ)
)

)

− d

= tr
(

AT (θ)A(θ)A−1(ϑ)A−T (ϑ)
)

− d = tr
(

(

A(θ)A−1(ϑ)
)T

A(θ)A−1(ϑ)
)

− d

= 2

d
∑

i=1

tr
(

SiA−1(ϑ)
)

(ϑi − θi) +

d
∑

i=1

d
∑

j=1

tr
(

A−T (ϑ)(Si)TSjA−1(ϑ)
)

(ϑi − θi)(ϑj − θj).

27



The inverse of an upper-triangular matrix is upper-triangular and so, for all i = 1, . . . , d
and all ϑ, the matrices SiA−1(ϑ) have null trace. Denote now for any n by m matrix M ,
vect(M) as the column vector containing the nm entries of M in any (fixed) order. Write
then for i = 1, . . . , d, vi(ϑ) = vect

(

SiA−1(ϑ)
)

; vd(ϑ) is always a null vector. Note that
the i, j-the element of the double sum in the previous display is given by vTi (ϑ)vj(ϑ), for
i, j = 1, . . . , d. We conclude that the previous display can be written as

(ϑ− θ)T
[

v1(ϑ)v2(ϑ) . . . vd(ϑ)
]T [

v1(ϑ)v2(ϑ) . . . vd(ϑ)
]

(ϑ− θ),

where the matrices are written by columns.
The quadratic form in the Kullback-Leibler divergence (49) can be written, for any

θ, ϑ ∈ Θd and y ∈ R
d, as

(

µ(θ,y)− µ(ϑ,y)
)T

Σ−1(θ)
(

µ(θ,y)− µ(ϑ,y)
)

=

= σ−2yT
(

B(θ)−A(θ)A−1(ϑ)B(ϑ)
)T (

B(θ)−A(θ)A−1(ϑ)B(ϑ)
)

y.

Note that the matrix B(·) is linear in its argument and so se can write the expansion

B(θ)−B(ϑ) = B(θ − ϑ) =
(

Sd−1
)T

(ϑ1 − θ1) + · · · + ST (ϑd−1 − θd−1) + I(ϑd − θd),

from where, using the representation for A(θ)A−1(ϑ) derived above, we have

B(θ)−A(θ)A−1(ϑ)B(ϑ) = C1(ϑ)(ϑ1 − θ1) + C2(ϑ)(ϑ2 − θ2) + · · ·+ Cd(ϑ)(ϑd − θd),

where Ci(ϑ) =
(

Sd−i
)T−SiA−1(ϑ)B(ϑ) for i = 1, . . . , d. We can then write, for θ, ϑ ∈ Θ(ρ)

and y ∈ R
d,

(

B(θ)−A(θ)A−1(ϑ)B(ϑ)
)

y =
[

C1(ϑ)y · · ·Cd(ϑ)y
](

θ − ϑ
)

.

We conclude that the following representation holds

gdk
(

θ, ϑ|Xd(k−1),d

)

= −σ−2
(

σ2
[

v1(ϑ)v2(ϑ) . . . vd(ϑ)
]T [

v1(ϑ)v2(ϑ) . . . vd(ϑ)
]

+

+
[

C1(ϑ)Xd(k−1),d · · ·Cd(ϑ)Xd(k−1),d

]T [
C1(ϑ)Xd(k−1),d · · ·Cd(ϑ)Xd(k−1),d

]

)

(

θ − ϑ
)

.

Note that the matrix that precedes the vector (θ− ϑ) does not depend on θ and is clearly
positive semi-definite. We bound now the eigenvalues of this sum of matrices.

The first matrix in the sum above is positive semi-definite but has at least one null
eigenvalue. It is also clear that the entries of this matrix are polynomials in ϑ1, . . . , ϑd−1,
such that, since Θ(ρ) is a bounded set, we have that the largest eigenvalue of this matrix
is upper bounded, uniformly over Θd, by some constant, say, K1, depending only on d and
the diameter of Θ(ρ); we remind that this diameter is at most (1 + ρ)d − 1 < 2d − 1.

We have that

tr
(

[

C1(ϑ)y · · · Cd(ϑ)y
]T [

C1(ϑ)y · · · Cd(ϑ)y
]

)

=

yTCT
1 (ϑ)C1(ϑ)y + · · ·+ yTCT

d (ϑ)Cd(ϑ)y.
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For each i = 1, . . . , d − 1, the entries of the matrices CT
i (ϑ)Ci(ϑ), are polynomials in

ϑ1, . . . , ϑd; the previous display is then also upper-bounded uniformly over Θ(ρ) by, say,
K2y

Ty, where K2 is a constant which like K1 above, depends only on d and the diameter
of Θ(ρ).

To derive a lower bound on the smallest eigenvalue of the matrix in the representation
for gdk note that this matrix can be rewritten in the form,











v1,1(ϑ) · · · v1,d−1(ϑ) 0
...

. . .
...

...
vd−1,1(ϑ) · · · vd−1,d−1(ϑ) 0

cd,1(ϑ) · · · cd,d−1(ϑ) yTy











+











c1,1(ϑ) · · · c1,d−1(ϑ) c1,d(ϑ)
...

. . .
...

...
cd−1,1(ϑ) · · · cd−1,d−1(ϑ) cd−1,d(ϑ)

0 · · · 0 0











for vi,j(ϑ) = σ2vTi (ϑ)vj(ϑ) and ci,j(ϑ) = yTCT
d−i+1(ϑ)Cd−j+1(ϑ)y, where we swapped

the last rows of the matrices. (Note that Cd(ϑ) ≡ I such that cd,d(ϑ) = yTy and also
vd(ϑ) = 0T .)

Note that the top left matrices in the block matrices above are Gram matrices and
therefore positive semi-definite; the full block matrices are triangular by blocks. The ma-
trix [vi,j(ϑ)]i,j=1,...,d−1 is the Gram matrix associated with the vectors v1(ϑ), . . . , vd−1(ϑ).
Its simple to see that these vectors are linearly independent (this follows from the fact
that A−1(ϑ) is a triangular matrix with 1’s in its main diagonal) whence the associated
Gramian is actually positive definite for each ϑ. Note also that the determinant of this
Gramian is a polynomial in the entries of the matrix which in turn are a polynomial in
ϑ1, . . . , ϑd. Since ϑ ∈ Θ(ρ), which is a compact set, we conclude that the infimum of the
determinant of this matrix over ϑ ∈ Θ(ρ) is lower bounded by some positive constant say,
K3. Using the same reasoning we can see that its determinant is upper bounded by some
constant K4. A lower bound on the smallest eigenvalue can then be obtained by noting
that for any positive definite matrix M of order d,

λ(1)(M) ≥ det(M)

λd−1
(d) (M)

≥ K3

Kd−1
4

≥ ν > 0,

for some constant ν depending only on d and say, the diameter of the parameter set Θ(ρ).
We conclude that the smallest eigenvalue of the block matrix on the left is at least

min(ν,yTy). The block matrix on the right is clearly positive semi-definite. We conclude
that the smallest eigenvalue of the matrix in the representation for gdk above is lower
bounded by min(ν,yTy) by using Weyl’s Monotonicity Theorem; cf. Bathia [1997].

Condition (A2) is simpler to check. Let D(Xdk,d,Xd(k−1),d) = D(Xdk,2d) be the
Toeplitz matrix associated with the vector d(Xdk,2d) = (Xd(k−2)+1, . . . ,Xdk−2,Xdk−1)
which is simply the vector Xdk−1,2d−1 written backwards. Based on this, the gain (48)
can be written, up to a constant depending only on σ2 and with x = Xdk,d, y = Xd(k−1),d,
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in the following form

Gdk

(

x, θ|y
)

= −∇θ

(

A(θ)x−B(θ)y
)T (

A(θ)x−B(θ)y
)

= −2
(

A(θ)x−B(θ)y
)T ∂

(

A(θ)x−B(θ)y
)

∂θ

= 2
(

A(θ)x−B(θ)y
)T

D(x,y)J,

(50)

where ∂/∂θ represents the Jacobian operator. To verify (A2) it suffices to check that
the expectation of the norm of Gdk is bounded. We omit the details but it is clear from
the expression derived above that the norm of the gain function squared is a polynomial
of degree 4 in the elements of Xdk−1,2d−1. We’ve already mentioned that so long as the
initial values for the autoregressive process and the noise terms have uniformly bounded
p-th moments, then this transfers to the each observation Xk, so long as the sequence of
parameters of the model, θk, lives in the parameter set Θ(ρ), for some ρ < 1.

As we saw above, the eigenvalues of the matrix appearing in the conditional gain
vector gdk are upper and lower bounded by multiples of ‖Xd(k−1),d‖22. We can easily get
rid of this dependence by using the scaled gain Ḡdk defined at the end of Section 4, for
s(x) = ‖x‖22 and large enough κ. The derivation in (26) shows that (A2) still holds for this
rescaled gain. The largest eigenvalue of the matrix in ḡdk corresponding to Ḡdk is going
to be almost surely bounded by construction. We need then to verify that the smallest
eigenvalue of the matrix in ḡdk has conditional expectation bounded away from zero such
that (A1) holds. Note that

E
[

‖Xd(k−1),d‖22
∣

∣Xd(k−2),d

]

≥ E
[

X2
d(k−1)

∣

∣Xd(k−2),d

]

=

E
[(

θdk,1Xd(k−1)−1 + · · ·+ θdk,dXd(k−2) + ξd(k−1)

)2∣
∣Xd(k−2),d

]

.

There are three different types of terms in the sum above: a) error terms which are
independent of the filtration, b) observations which are measurable with respect to the
filtration, and c) observations which can be written as an error term which is independent
of the filtration and a linear combination of previous observations of the process. The
sum can therefore be written as the sum of two terms, namely: a) a linear combination
of terms which are measurable with respect to the filtration, and b) a linear combination
of error terms which are independent of the filtration. This can then be bounded in the
same way as (43). We conclude that the previous display is lower bounded by σ2.

One can then proceed as in Lemma 5 to show that for an appropriately large κ,
E
[

min(X2
d(k−1), κ)

∣

∣Xd(k−2),d

]

is positive; we omit this derivation.

For the most part, the requirement that the errors be Gaussian is not used extensively
so we expect the same results hold simply under appropriate moment assumptions: one
could still use the gain (50) and bound its conditional expectation directly instead of using
the Kullback-Leibler representation in (49) and assure the validity of (A1) and (A2) based
on moment assumptions on the error terms and on the initial conditions for the model as
we did in the one dimensional case.
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7 Proofs of the lemmas

Proof of Lemma 1. First suppose that y = Mx for some symmetric positive definite ma-
trix M such that 0 < λ1 ≤ λ(1)(M) ≤ λ(d)(M) ≤ λ2 < ∞. Then 〈x, y〉 = xTMx and
therefore

0 < λ1‖x‖22 ≤ λ(1)(M)‖x‖22 ≤ 〈x, y〉 ≤ λ(d)(M)‖x‖22 ≤ λ2‖x‖22
and

‖y‖22 = 〈y, y〉 = xTMTMx = xTM2x ≤ λ2
2‖x‖22.

Now we prove the converse assertion. Suppose x, y ∈ R
d and 0 < λ′

1‖x‖22 ≤ 〈x, y〉 ≤
λ′
2‖x‖22 < ∞ for some λ′

1, λ
′
2 ∈ R such that 0 < λ′

1 ≤ λ′
2 < ∞ and that ‖y‖2 ≤ C‖x‖2.

Let V = {v = ax + by : a, b ∈ R} be the linear space spanned by x and y. First
consider the case dim(V ) = 1, i.e., y = αx for some α ∈ R. Then 〈y, x〉 = α‖x‖22 so that
0 < λ′

1 ≤ α ≤ λ′
2 < ∞. Thus y = αx = Mx with symmetric and positive M = αI so that

0 < λ′
1 ≤ α = λ(1)(M) = λ(d)(M) ≤ λ′

2 < ∞.
Now consider the case dim(V ) = 2. Let e1 = x/‖x‖2 and {e1, e2} be an orthonormal

basis of V . Then

x = ‖x‖2e1
y = αe1 + βe2.

The conditions λ′
1‖x‖22 ≤ 〈x, y〉 = α‖x‖2 ≤ λ′

2‖x‖22 and ‖y‖2 =
√

α2 + β2 ≤ C‖x‖2 imply
that

λ′
1‖x‖2 ≤ α ≤ min{λ′

2, C}‖x‖2, |β| ≤ C‖x‖2.
Let e2 be chosen in such a way that β > 0 (which is always possible.) Now, we change

the basis of V as follows:

e′1 = cos(θ)e1 − sin(θ)e2,

e′2 = sin(θ)e1 + cos(θ)e2.

We thus rotate the basis {e1, e2} by the angle θ. In these new basis we have

x = ‖x‖2 cos(θ)e′1 + ‖x‖2 sin(θ)e′2 = αxe
′
1 + βxe

′
2,

y = (α cos(θ)− β sin(θ))e′1 + (α sin(θ) + β cos(θ))e′2 = αye
′
1 + βye

′
2.

Recall that α, β > 0. Take θ ∈ (0, π/2) such that α cos(θ)− β sin(θ) = 1
2α cos(θ) (i.e.,

tan(θ) = α
2β ). Then we have that

λ′
1

2
≤ α

2‖x‖2
=

αy

αx
≤ min{λ′

2, C}
2

, λ′
1 ≤

α

‖x‖2
≤ βy

βx
≤ α

‖x‖2
+

2β2

α‖x‖2
≤ min{λ′

2, C}+2C2

λ′
1

.

Take then λ1 = λ′
1/2 and λ2 = min{λ′

2, C}+ 2C2/λ′
1.

Let {e3, . . . , ed} be the orthonormal basis of V ⊥, so that b = {e′1, e′2, e3, . . . , ed} is an
orthonormal basis of Rd. Take

M ′ =

[

D 0

0 Id−2

]

with D =

[

αy/αx 0
0 βy/βx

]
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where the 0’s indicate null matrices of the appropriate orders. We then have that y = M ′x
in the basis b and λ1 ≤ λ(1)(M

′) ≤ λ(d)(M
′) ≤ λ2. We can finally obtain M by using

the (orthogonal) change of basis matrix E from basis b to the canonical basis of Rd as
M = E−1M ′E = ETM ′E. Note that M has the same eigenvalues as M ′ (which are all
positive and finite) and is symmetric.

Proof of Lemma 2. For the sake of brevity, we use the notations θk = θk(Xk−1), Gk =
G(Xk, θ̂k|Xk−1) and gk = g(θ̂k, θk|Xk−1), k ∈ N, Fk = σ(Xk) is the σ-field generated by
Xk = (X0,X2, . . . ,Xk).

Recall that Θ is compact so that supθ∈Θ ‖θ‖2 ≤ CΘ. First assume E‖θ̂k‖22 ≤ KC2
Θ. By

(5) and (6), we obtain

E‖Gk‖22 = E‖Gk − gk + gk)‖22 ≤ 2C + 4L(E‖θk‖22 + E‖θ̂k‖22) ≤ 2C + 4L(K + 1)C2
Θ = C1,

which implies, in view of (7) and γk ≤ Γ,

E‖θ̂k+1‖22 ≤ 2E‖θ̂k‖22 + 2γ2kE‖Gk‖22 ≤ 2KC2
Θ + 2Γ2C1 = C2.

Next, consider the case E‖θ̂k‖22 > KC2
Θ which of course implies E‖θ̂k‖22 > KE‖θk‖22.

As Mk is a symmetric positive definite matrix such that 0 < A ≤ λ(1)(Mk) ≤ λ(d)(Mk) ≤
B < ∞, by the Cauchy-Schwarz inequality, we have that

θ̂Tk Mkθk ≤ |θ̂Tk Mkθk| ≤
(

θ̂Tk Mkθ̂k
)1/2(

θTk Mkθk
)1/2 ≤ B‖θ̂k‖2‖θk‖2.

By using the last relation, (2), (5), (6) and (7), we evaluate E‖θ̂k+1‖22:

E‖θ̂k+1‖22 ≤E‖θ̂k‖22 + 2γkE
[

θ̂Tk E(Gk|Fk−1)
]

+ γ2kE‖Gk‖22
≤E‖θ̂k‖22 − 2γkE

(

θ̂Tk Mk(θ̂k − θk)
)

+ γ2k
[

2C + 4L(E‖θk‖22 + E‖θ̂k‖22)
]

≤E‖θ̂k‖22 − 2γk
[

AE‖θ̂k‖22 − E
(

θ̂Tk Mkθk)
]

+ γ2k
[

2C + 4LC2
Θ + 4LE‖θ̂k‖22)

]

≤E‖θ̂k‖22 − 2γk
[

AE‖θ̂k‖22 −BE
(

‖θ̂k‖2‖θk‖2
)]

+ γ2k
[

2C + 4LC2
Θ + 4LE‖θ̂k‖22)

]

.

From E‖θ̂k‖22 > KE‖θk‖22 and the Cauchy-Schwarz inequality, it follows that E‖θ̂k‖2‖θk‖2 ≤
(

E‖θ̂k‖22E‖θk‖22
)1/2 ≤ E‖θ̂k‖22/

√
K. Using this, we proceed by bounding the previous dis-

play as follows:

≤E‖θ̂k‖22 − 2γk
(

AE‖θ̂k‖22 −B(E‖θk‖22E‖θ̂k‖22)1/2
)

+ γ2k
[

2C + 4LC2
Θ + 4LE‖θ̂k‖22)

]

≤E‖θ̂k‖22 − γkE‖θ̂k‖22
(

2A− 2B√
K

− γk4L
)

+ γ2k(2C + 4LC2
Θ)

≤E‖θ̂k‖22 − γkE‖θ̂k‖22
(

2A− 2B√
K

− γk4L
)

+ γ2k(2C + 4LC2
Θ)

E‖θ̂k‖22
KC2

Θ

=E‖θ̂k‖22 − γkE‖θ̂k‖22
(

2A− 2B√
K

− γk
4LC2

Θ(K + 1) + 2C

KC2
Θ

)

≤ E‖θ̂k‖22,

for sufficiently large K and sufficiently small γk. Thus, for sufficiently large K and suffi-
ciently small γk, E‖θ̂k+1‖22 ≤ C2.
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Lemma 3. Let M be a symmetrical positive-definite matrix of order d with (increasing)
eigenvalues λ(i)(M), the smallest and largest of which we denote as λ(1)(M) and λ(d)(M)
respectively. Then, for γ > 0 such that γλ(d)(M) < 1, and constants Kp > 0, p ∈ N,

‖M‖p ≤ Kp‖M‖2 = Kpλ(d)(M),

0 < λ(1)(I − γM) ≤ λ(d)(I − γM) = 1− γλ(1)(M) < 1,

where for p ∈ N, ‖M‖p is the operator norm induced by lp.

Proof. Note that for x ∈ R
d, if

Rp
2 = max

x 6=0

‖x‖p
‖x‖2

, R2
p = max

x 6=0

‖x‖2
‖x‖p

,

then it follows (cf. Horn and Johnson [1988, Theorem 5.6.18])

max
M 6=0

‖M‖p
‖M‖2

= Rp
2R

2
p = Kp.

We then have (c.f. Horn and Johnson [1988, Section 5.6.6]) that for M a real, symmetrical,
positive definite matrix, where λ(i)(M) is the i-th largest eigenvalue of a matrix M ,

‖M‖2 = max
i

√

λi(MTM) = max
i

√

λ(i)(M2) = λ(d)(M).

The first statement then follows. Note that by application of the Hölder inequality, we
have ‖x‖p ≤ d(q−p)/(qp)‖x‖q for p ≤ q and so we can take Kp = d(p−1)/(2p) if p ≥ 2 and
Kp = d1/2 if p = 1.

Its straightforward to check that the matrix I − γM has eigenvalues 1 − γλi. Now,
if γλ(d)(M) < 1 then for all i = 1, . . . , d, 0 < γλ(1)(M) ≤ γλi ≤ γλ(d)(M) < 1 implying
1 > 1−γλ(1)(M) ≥ 1−γλi ≥ 1−γλ(d)(M) > 0 and so maxi=1,...,d |1−γλi| = 1−γλ(1)(M) <
1.

Lemma 4 (Abel Tranformation). For k0, k ∈ N such that k0 ≤ k, let ai ∈ R
d, i =

k0, . . . , k, Bi, i = k0, . . . , k, be square d × d matrices and Ai =
∑i

j=k0
aj, i = k0, . . . , k.

Then
k

∑

i=k0

Biai =

k−1
∑

i=k0

(Bi −Bi+1)Ai +BkAk.

Proof. We shall prove this by induction on k. For k = k0 we simply have Bk0ak0 =
Bk0Ak0 = Bk0ak0 and the assertion holds. Let us assume then that the equality holds for
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k = n and let us prove the result for k = n+ 1. We have

n+1
∑

i=k0

Biai =

n
∑

i=k0

Biai +Bn+1an+1 =

n−1
∑

i=k0

(Bi −Bi+1)Ai +BnAn +Bn+1an+1

=

n
∑

i=k0

(Bi −Bi+1)Ai − (Bn −Bn+1)An +BnAn +Bn+1an+1

=

n
∑

i=k0

(Bi −Bi+1)Ai +Bn+1An+1.

Lemma 5. Consider an AR(1) model with a random, drifting parameter θk,

Xk = Xk−1θk + ξk, k ∈ N,

where the random variables ξk are independent of σ(X0, . . . ,Xk−1), the σ algebra generated
by Xk−1 and for all k ∈ N, Eξk = Eξ3k = 0, Eξ2k = σ2 > 0 and, for some constant 0 ≤ c < 5,
Eξ4k = c σ4. Let also X0 be such that EX2

0 and EX4
0 are bounded. We assume that the

drifting parameter θk is measurable with respect to σ(Xk−1), and verifies |θk| ≤ q < 1,
almost surely, for every k ∈ N. Then, for any s such that 4s ≥ (9− c)σ2,

E
[

min
(

X2
t , s

)∣

∣Xt−1

]

≥ 5− c

4
σ2.

Proof. Note first that since σ2 > 0, if EX2
0 and EX4

0 are bounded then we can write
EX2

0 ≤ c1σ
2 and EX4

0 ≤ c2σ
4 for some c1, c2 ≥ 0. Using the independence of the noise

and the bound on the norm of the autoregressive parameters we have that

EX2
k = E(Xk−1θk + ξk)

2 = E[X2
k−1θ

2
k] + 2E[Xk−1θk]Eξk + Eξ2k ≤ q2EX2

k−1 + σ2,

and by using this recursion we conclude that

EX2
k ≤ q2kEX2

0 + σ2
k−1
∑

i=1

q2i ≤ σ2

(

c1 +
1

1− q2

)

< ∞.

Using the previous display and proceeding in the same way,

EX4
k = E(Xk−1θk + ξk)

4 ≤ q4EX4
k−1 + 6q2σ2

EX2
k−1 + c σ4 ≤ q4EX4

k−1 + σ4κ,

with κ = c+ 6q2c1 + 6q2/(1− q2). Using this recursion we have that

EX4
k ≤ q4kEX4

0 + σ4κ

k−1
∑

i=1

q4i ≤ σ4

(

c2 +
κ

1− q4

)

< ∞.
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We can now use basic properties of the conditional expectation to see that,

E
[

X2
k

∣

∣Xt−1

]

= X2
k−1θ

2
k + 2Xk−1θkEξk + Eξ2k = X2

k−1θ
2
k + σ2,

E
[

X4
k

∣

∣Xt−1

]

= X4
k−1θ

4
k − 4X3

k−1θ
3
kEξk + 6X2

k−1θ
2
kEξ

2
k − 4Xk−1θkEξ

3
k + Eξ4k =

= X4
k−1θ

4
k + 6X2

k−1θ
2
kσ

2 + c σ4.

For a, b ∈ R we have min(a, b) = (a + b)/2 − |a − b|/2 and so, by the Cauchy-Schwarz
inequality and the last display,

E

[

min
(

X2
t , ρ σ

2
)∣

∣

∣Xt−1

]

= E

[1

2
X2

k +
ρ

2
σ2 − 1

2

∣

∣X2
k − ρσ2

∣

∣

∣

∣

∣Xt−1

]

≥ 1

2
X2

k−1θ
2
k +

ρ+ 1

2
σ2 − 1

2

(

E

[

(

X2
k − ρσ2

)2
∣

∣

∣
Xt−1

])1/2
,

for ρ > 0. We now have, by plugging in the expressions derived above and simplifying,

E

[

(

X2
k − ρσ2

)2
∣

∣

∣
Xt−1

]

= E
[

X4
k

∣

∣Xt−1

]

− 2ρσ2
E
[

X2
k

∣

∣Xt−1

]

+ ρ2σ4 =

= X4
k−1θ

4
k + 2(3 − ρ)X2

k−1θ
2
kσ

2 + (c− 2ρ+ ρ2)σ4 =
(

X2
k−1θ

2
k +

c+ 3

4
σ2

)2
,

if we pick ρ = (9− c)/4 > 1. Combining the previous two displays we conclude that

E

[

min
(

X2
t ,

9− c

4
σ2

)∣

∣

∣
Xt−1

]

≥ 5− c

4
σ2,

and the statement of the lemma follows a fortiori.
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