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ABSTRACT: In this paper we present a method to automatically fit the temperature of a rotational
spectrum. It is shown that this fitting method yields similar results as the traditional Boltzmann plot,
but is applicable in situations where lines of the spectrum overlap. The method is demonstrated
on rotational spectra of nitric oxide from an atmospheric pressure microwave plasma jet operated
with a flow of helium and air, obtained with two different methods: laser induced fluorescence and
optical emission spectroscopy. Axial profiles of the rotational temperatures are presented for the
ground NO X state and the excited NO A state.
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1 Introduction

The rotational spectrum of a species is a valuable data source for determining gas temperatures
inside a plasma. The most common method is a Boltzmann plot, where the peak intensities of the
rotational lines are plotted logarithmically against the energy of the rotational transition. Since the
line intensities follow a Boltzmann distribution, the slope of the points is equal to 1/kBT , where
kB is Boltzmann’s constant, and T the temperature [1]. Several methods exist based on Boltzmann
plots to determine temperatures with the intensities of one, two of more rotational lines [2–4].

A Boltzmann plot is insightful, because deviations from the Boltzmann distribution are easily
observed if points deviate from the linear fit [5]. Furthermore the method does not require a lot of
computational power. The difficulty arises in the determination of the peak intensities. Since this
is usually done by hand, or by taking the local maxima of a spectrum. This requires that the width
of the instrumental profile of the measurement device is much smaller than the spectral distance
between the rotational lines. Furthermore, when the number of data points per peak is small, a
fitting procedure needs to be applied to obtain the peak maxima. This can also induce additional
uncertainties.

Overlapping spectra can lead to inaccuracies in Boltzmann plots. Especially for molecules
with relative high mass such as NO and N2 the rotational lines are close together — typically in the
order of a few pm — as the energy difference between the levels increases with decreasing reduced
mass of the rotator. This puts high demands on the used spectrometer. Partially overlapping spectra
can even occur in LIF measurements as the FWHM of dye lasers is typically of the order of 2 pm.

In cases where Boltzmann plots are not applicable, temperature determination is often done
using software packages that calculate rotational spectra. Examples of such software are Lifbase
from Luque et al. [6], Specair from Laux [7], and Lifsim from Bessler et al. [8]. These programs
perform calculations of spectra similar as shown in this paper. However, the temperature is al-
ways an input parameter, and these programs do not yield automatically the best fit to a measured
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spectrum. In literature several examples exist of temperatures that are determined by fitting. For
example for NO a method is derived from Lifsim by Bessler et al. [9]), for N+

2 a fitting method is
presented by Linss et al. [10], and for N2, O2, OH and NO by Andre et al. [11]. However find-
ing a temperature is still often done manually by fitting the spectrum by eye. This is a subjective
method, and leads to serious inconsistencies often found in scientific papers on the accuracy of the
gas temperature, which is often overestimated.

In the next section we propose a method to determine the rotational temperature automati-
cally by fitting a spectrum directly to the measured spectrum with a least-square method. The
instrumental profile is incorporated into the fitting method, making it possible to fit spectra with
overlapping lines, lines from different rotational branches, and implement a background correction.
In section 4 we apply our method to rotational spectra of nitric oxide (NO), obtained with Optical
Emission Spectroscopy (OES) and Laser Induced Fluorescence (LIF).

2 Fitting method

Temperature determination is most often made by rotational spectra obtained from OES and LIF.
We describe briefly the procedure below:

2.1 OES

For OES the light emitted by the plasma is measured with a spectrometer. For temperature de-
termination we only need the relative intensities, and we consider rotational states from a single
vibrational band. This means that we only have to consider factors which depend on the rotational
state. The intensity Ii of a line of transition i is reduced to,

Ii ∝ Ai · (2Ji +1)e−
Ei

kBT (OES) (2.1)

where Ai is the Einstein emission coefficient for transition i. Ji and Ei represent the rotational
number and energy of the emitting (upper) state of the transition i. The 2Ji +1 factor is to account
for the degeneracy of the rotational states, where Ji is the rotational quantum number of emitting
(upper) state of the transition i. The temperature dependence is included in a Boltzmann exponent,
which means that this method is physically equivalent to a Boltzmann plot. Ei is the energy of the
rotational state, given by,

Ei = Bv · Ji(Ji +1) (2.2)

where Bv is the rotational constant. Higher order terms represent a fraction less then 1% for Ji < 40
for most species [12], and can thus be neglected in many cases.

2.2 LIF

In the case of LIF the spectrum is measured by scanning a dye laser along rotational transitions. The
fluorescence signal is often a broadband signal as a spectrometer with open slit or a interference
filter (typically passing 10 nm) is used, such that all rotational transitions from one vibrational band
are detected.

– 2 –



2
0
1
2
 
J
I
N
S
T
 
7
 
C
0
2
0
5
4

LIF is a two-step process: first a photon is absorbed, followed by emission of the populated
level. After Uddi et al. [13] the intensity Ii of a line of transition i can be written as,

Ii ∝
Av′′

v′

Q+∑v′′ Av′′
v′
·Bi · (2Ji +1)e−

Ei
kBT (2.3)

where Bi is the Einstein absorption coefficient for transition i, induced by the laser. Av′′
v′ is the

Einstein emission coefficient for the detected vibrational transition, divided by the sum over all
vibrational states, plus the quenching coefficient Q. Since this A coefficient is independent of the
transition i, equation (2.3) can be reduced to,

Ii ∝ Bi · (2Ji +1)e−
Ei

kBT (LIF) (2.4)

This equation is valid if: 1. The laser intensity is low and there is no saturation, i.e. stimulated
emission can be neglected; 2. Vibrational energy transfer is negligible, or at least independent of
the rotational state; 3. Rotational energy transfer is faster than the lifetime of the excited state, such
that there is a redistribution of the rotational levels of the excited state; 4. Quenching is independent
of the rotational state; 5. The plasma is optically thin, i.e. the absorbed laser energy is negligible
compared to the total laser energy.

To calculate the total spectrum S(λ ), the line intensities have to be multiplied with a line profile
g(λ ) and summarized. We also add a constant background C,

S(λ ) = C +∑
i

Ii ·g(λ −λi) (2.5)

The line profile is an arbitrary function, composed of the spectral distribution function of the tran-
sition, and the laser profile (in case of LIF) or the instrumental profile of the spectrometer (in case
of OES). In most cases the line profile can be a adequately approximated by a Voigt profile,

g(λ ) = G(λ ,∆G)⊗L(λ ,∆L) (2.6)

where G is a Gaussian curve with width ∆G and L is a Lorentzian curve with width ∆L.
Of the above quantities Ai, Bi, λi, Ji and Bv are species properties, which are published

for many species. Assuming these quantities are known, the resulting spectrum function is
S(λ ; I0,T,C,∆G,∆L). This function can be programmed into a computer and fitted to a measured
spectrum, with λ as independent parameter and I0, T , C, ∆G and ∆L as fitting parameters. We used
MATLAB to perform the fitting, in particular the function FIT, which is part of the CURVE FITTING

TOOLBOX. This function performs a least-square fit, and has the ability to calculate confidence
intervals on the fitting parameters. It is possible to determine C, ∆G and ∆L with other experimental
methods, which reduces the number of fitting parameters to two.

3 Experimental setup

The fitting method described in the previous section is applied rotational spectra of nitric oxide
(NO), obtained with OES and LIF.

– 3 –
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Figure 1. Picture of the atmospheric pressure microwave helium jet, with the collecting fiber for OES on
the foreground, and the LIF detection system on the background.

The NO source is an atmospheric pressure microwave plasma jet, as described by Hrycak et
al. [14] (see figure 1). The input microwave power is 30 W. The plasma is operated with a flow of
a 6.0 slm helium mixed with 0.2 slm of air, resulting in a flow speed of approximately 1 m/s. The
tube ends in ambient air.

The OES measurements are performed using a 1 m Jobin Yvon spectrometer with a SBIG
CCD camera, with an instrumental profile width of approximately 25 pm, and a spectral distance
between pixels of 6 pm. The light is collected using a lens and a fiber, which provides a spot size
in the plasma of 2 mm diameter. The measured spectrum is around 247 nm, which corresponds to
the transition NO A2Σ+−X2Π (v = 0−2).

The LIF measurements are performed with a Sirah dye laser, pumped with an Edgewave
Nd:YAG laser at 355 nm and a repetition rate of 4 kHz. The dye laser beam is frequency dou-
bled, resulting in a UV beam around 226 nm, and 10 µJ per pulse, with a line width of 1.4 pm.
The laser excites the NO X2Π−A2Σ+ (v = 0− 0) transition. The detection system consists of a
McPherson EUV monochromator and a Hamamatsu R8486 photomultiplier connected to a count-
ing system. The monochromator is set at 247 nm with a wide exit slit of 1 mm and a FWHM of
10 nm, such that all rotational transitions from the NO A2Σ+−X2Π (v = 0−2) vibrational transi-
tion are detected. The laserbeam is not focussed, in order to avoid saturation. The size of the laser
beam and the optics that focus the LIF signal onto the entrance slit of the monochromator make
that the measurements have a detection volume of approximately 1 mm3.

4 Applying the fitting method

Figure 2 shows an example of a LIF spectrum of NO. To determine the rotational temperature we
applied the fitting method described in section 2. The rotational energy transfer rate for the NO A
state is in the order 1010 cm3s−1 for helium [15] and air [16]. For atmospheric pressure RET is in
the order of 1 ns, while the measured decay time of the excited state is 48 ns, thus the assumption
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Figure 2. Rotational spectrum of NO, obtained with LIF inside the plasma jet at 3 mm above the tube
end. The theoretical spectrum is plotted, with a fitted values Trot = 860± 43 K, ∆G = 2.2± 0.3 pm and
∆L = 1.0±0.2 pm.
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Figure 3. Boltzmann plot of a LIF measurement of NO inside the plasma jet at 3 mm above the tube end.
The used lines are indicated with × in figure 2. The linear fit gives a temperature of Trot = 846±106 K.

that the rotational states are redistributed in the excited state is justified. Vibrational transfer is
much slower [17], and can be neglected.

From Lifbase [6, 18] we obtained the parameters Bi (for the NO X − A (v = 0− 0) tran-
sitions), λi and Ji (for the NO X (v = 0) state) for each line in the spectrum. Furthermore
Bv = 1.6961 cm−1 [12]. The fitted spectrum is shown in figure 2, with a fitted temperature of
Trot = 860±43 K. The error margin is a 95% confidence interval as provided by the MATLAB FIT

function.
From the same LIF measurement lines from the P2 branch and the overlapping Q12 branch are

used to make a Boltzmann plot (see figure 3). The corresponding temperature is calculated to be
Trot = 846±106 K (95% confidence interval).

Results from the OES measurement are shown in figure 4. In this case the resolution of
the spectrum is insufficient to completely resolve the rotational lines. Consequently, making
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Figure 4. Rotational spectrum of NO, obtained with OES from inside the plasma jet at 3 mm above the tube
end. The theoretical spectrum is plotted, with a fitted values Trot = 1829± 11 K, ∆G = 24.6± 0.8 pm and
∆L = 8.1±0.5 pm.
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Figure 5. Axial temperature profiles obtained with different methods.

a Boltzmann plot is not possible. The temperature fitting, however, is still applicable. The
parameters Ai (for the NO A−X (v=0-2) transitions), λi and Ji (NO A (v = 0)) are obtained from
Lifbase [6, 18], and Bv = 1.9862 cm−1 [12]. The resulting temperature is Trot = 1829±11 K (95%
confidence interval).

Similar OES and LIF measurements are performed at different axial positions in and above
the plasma. The axial temperature profiles are shown in figure 5. The temperatures from the
Boltzmann plot and the fitting method correspond within the margin of error, where the fitting
method has the smallest error margins. While the LIF signal from the NO X ground state is still
measurable in the afterglow of the plasma, the emission from the NO A excited state can only be
measured inside the plasma.

The OES temperatures from the NO A excited state are higher then the LIF temperatures
from the NO X ground state. Larger rotational temperatures than the gas temperature for NO A
is common, see for example Staack et al. [19]. This can be explained by the formation process
(most probably the association process) causing specific large rotational excitation, while due to
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the limited rotational life time of the excited state equilibration with the gas temperature is not
possible. In the case of ground state NO, the lifetime is much larger and thus the NO X rotational
temperature is a better estimate of the gas temperature.

5 Conclusions

We present a method to automatically fit a rotational temperature to a measured spectrum. Because
the line positions and Einstein coefficients are taken from literature, the method is relatively simple.
The temperature fitting works well in situations where a Boltzmann plot is not applicable due to
overlapping lines. We applied the method to rotational spectra of NO in an atmospheric pressure
plasma jet. The fitted temperatures are Trot = 860±43 K for NO in the X2Π ground state (measured
with LIF), and Trot = 1829±11 K for NO in the A2Σ+ excited state.

To obtain MATLAB scripts that implement the described fitting method, please contact the
authors.
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