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Braunstein and Caves showed how quantum information 
can be used to define a metric for quantum states, relying on 
attainability of a quantum information bound. We show that 
the bound is not generally attainable, but that a two-stage 
procedure of repeated measurements achieves the bound in 
the limit. We connect to the question of 'non-locality with­
out entanglement': can a joint measurement on n indepen­
dent copies of a quantum system yield more information than 
separate measurements. Though for small n generalized mea­
surements are more informative, the gain is asymptotically 
negligible in the pure state, spin-half, examples studied. 

PACS numbers: 03.65.Bz, 03.67.-a 

1 Introduction 
Braunstein and Caves [IJ have clarified the relation be­
tween classical expected information i(O), in the sense 
of Fisher, and the analogous concept of expected quan­
tum information J(O), by showing that J(O) is an upper 
bound of i(O; M) with respect to all (dominated) general­
ized measurements M of the state p = p(O) where 0 is an 
unknown parameter and i( 0; M) is the Fisher expected 
information for 0 in the distribution of the outcome of 
the measurement of M. They indicate moreover that a 
measurement exists achieving the bound. In the present 
paper we show by an example, for an elementary spin-~ 
situation, that in general there does not exist a single 
measurement M such that i(O; M) = J(O) for all 0 simul­
taneously. 

The example is presented in section 3, after a brief re­
capitulation in section 2 of expected classical and quan­
tum information. Section 4 discusses the implications 
of the result. In the one parameter case, we show that 
the bound is generally asymptotically achievable, so that 
Braunstein and Cave's motivation for J(O) in the defi­
nition of a statistical distinguishability metric for quan­
tum states can be maintained. However for the multi­
parameter case the situation is considerably more compli­
cated. For one special case-a completely unknown spin 
half pure state-it turns out again that separate mea­
surements can asymptotically achieve anything achiev­
able by a generalised measurement. In general, the prob­
lem remains open to characterise the classes of locally 
and globally achievable information matrices, both when 
all measurements are considered and when only separate 
measurements on separate particles are allowed. 
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2 Expected classical and quantum information 
Consider a general quantum state p = p(O) that depends 
on an unknown scalar parameter O. Consider also a gen­
eralised measurement M on a measure space (X,A) of 
the form 

M(A) = i m(x)JL(dx) 

where the operator m(x) is nonnegative and selfadjoint 
and JL is a real <T-finite measure on (X, A). The probabil­
ity density with respect to JL of the observation X arising 
from a single measurement by M is 

p(x;O) = trace{p(O)m(x)}. 

The expected Fisher information from this measure­
ment on 0 is defined by 

where 

1= 1(0) = logp(x; 0) 

is the log likelihood function of 0 and io = (8j80)1(O). 
For this quantity to be statistically meaningful, it is nec­
essary that {x: p(x; 0) > O} does not depend on O. 

Now, let Il»p denote the symmetric logarithmic deriva­
tive or quantum score of p with respect to 0, that is, the 
self-adjoint operator Il»p given implicitly by 

. 1 
Po = 2(PIl»P + J[])pp). (1) 

The expected quantum information on 0 is defined by 

J(O) = trace{p(ll»p)2}. 

Note that this quantity does not depend on M. It is 
possible to express the information i(O; M) in terms of 
the quantum score for p, namely as 

i(O;M) = ip(X;O)-l [Retrace{pJ[])pm(x)}J 2 JL(dx) . 

This follows on noting that 

io(x) = p(x; O)-ltrace{pom(x)} 
1 

= p(x; O)-12trace{(pll»p + J[])pp)m(x)} 

= p(x; 0)-1 Re trace{pJ[])pm(x)}. 



As shown by Braunstein and Caves [1], it follows from 
the Cauchy-Schwarz inequality for traces of operators on 
the underlying Hilbert space 1t, that 

i(B; M) ::; I(B). (2) 

Necessary and sufficient conditions for equality in (2) are 
that for (JL almost) all x we have 

1m trace{pJl))pm(x)} = 0 (3) 

and 

m(x)I/2{II:(X; B)I/21 - Jl))p }pl/2 = 0 (4) 

where lI:(x; B) = trace{pJ[])pm(x )Jl))p} /trace{pm(x)} . 

3 Spin- ~ example 
For a single spin-~ particle the pure states have density 
matrices of the form p = 1'1/1) ('1/11 where 

_ _ [e- i ¢/2 COS(TJ/2)] 
1'1/1) - 1"p(TJ, 4») - ei¢/2 sin(TJ/2) 

and hence p = p(TJ, 4» is given by 

= [. COS2(~TJ) e- i
¢ cos(lTJ) sin(h) ] 

P el¢cos(~TJ)sin(~TJ) sin:t(h) . 

In the following we consider TJ E (0,7r) as known and 
4> E [0,27r) as the unknown parameter. (For TJ = 0 and 
TJ = 7r the parameter 4> is meaningless). 

Our first step is to determine the quantum score for p. 
The derivative of p itself with respect to 4> is 

. _ [ 0 -ie-i
¢ cos( 1TJ) sine 1TJ) ] 

p¢ - iei¢cos(~TJ)sin01/) 0
2 

2 • 

Since p is pure, p2 = P and hence pp¢ + p¢p = p¢. 
Comparing with the defining relation (1) shows us that 
J[])p = 2p¢ and hence 

. [ 0 e- i{¢+7r/2) ] . 
J[])p = smTJ ei{¢+7r/2) 0 = smTJa7r /2,¢+7r/2 

where ary,¢ = sinTJcos4>ax + sinTJsin4>ay + cosTJaz de­
notes the Pauli spin matrix (with eigenvalues ±1) for the 
direction, in polar cordinates, (TJ,4». 

Since a~,¢ = 1 and trace(p) = 1 it follows that the 
expected quantum information on 4> is 

1(4)) = sin2 TJ· 

In terms of the basis 11) = 1'I/1(TJ, 4») and 11) = 1'I/1(7r­
TJ,4> + 7r», we find 

p = 11}(T I, Jl))p = sinTJ(1 nUl + 11)(11)· 

Conditions (3) and (4) for equality of 1(4)) and i(4)) there­
fore take the form 

Immll = 0 

2 

and 

1/2 . 
I), m IT = sm TJ m 11. 

The first and second of these three equalities tell us 
mlT = mll = (1),1/2/ sin 1/)mTT (real), and together with 
the third we find mll = (11: 1

/
2

/ sin TJ?mTT. Define the 

real numbers a = m~~2, (3 = (lI:l/2/sinTJ)m~~2, so that 

mn = a 2
, mu = mu = a(3, and mll = (32. Then 

m = I~)(~I with I~) = al l} + (31 1) with a and (3 real. 
As 4> varies, a and (3 may vary too but m must remain 
constant. In the original coordinate system 

[ 
(acos(lTJ) -i(3sin(!.TJ»e- i ¢/2] 

~ = (asinth) +i(3cost~TJ»ei¢/2 . 

This vector must be constant as 4> varies, up to an arbi­
trarily varying phase. Therefore 11~112 = 1612 + 1612 = 
a 2 + (32 is constant, and 1612 = a 2 cos2

( ~TJ) +,82 sin2( ~TJ) 
is constant. This implies, as long as TJ i- 7r /2 so that these 
two equations are linearly independent, that a 2 and (32 
are constant. Since a and (3 are real, this implies that a 
and ,8 are constant as 4> takes on at least several different 
values. Thus ~ varies (by more than a phase change) as 
4> varies. Consequently, for TJ i- 7r /2, no measurement M 
exists with Fisher information i(4); M) equal to the quan­
tum information I (4)) whatever the value of the unknown 
parameter 4>. 

In the exceptional case TJ = 7r /2 it is possible to achieve 
the bound uniformly in 4>. Any measurement with all 
components proportional to projector matrices for spin 
directions in the x-y plane will do the job. 

4 Discussion 
We have shown, for the case of a one-dimensional param­
eter as considered by Braunstein and Caves, that there 
need not exist a measurement M such that i(B; M) = 
I( B) for all parameter values () simultaneously. It is on the 
other hand possible to find a measurement M such that 
at a given parameter-value, i«(); M) = I(B), as Braun­
stein and Caves indicate. They do not remark on the 
possible dependence of M on (). As we explain below it 
is vital for their arguments to come up with a measure­
ment which achieves the bound independently of B. A 
similar lack of distinction between measurements optimal 
at a single point in the parameter space and global op­
timality occurs elsewhere in the literature; see Fujiwara 
and N agaoka [2] (section 4, formula (17» for another in­
stance. 

The construction of M at a specified value of () is as 
follows. Supposing for simplicity that Jl))p has discrete 
spectrum, let m(x) be the projector onto the eigenspace 
of Jl))p with eigenvalue x, and let JL be counting measure 
on the eigenvalues so that J m(x )JL( dx) = 1. Then for 
each x, Jl))p and m(x) commute and their product equals 
xm(x). We find that (2.3) and (2.4) are satisfied with 
lI:(x, () = x 2

• However the eigenspace decomposition of 
Jl))p(B) generally depends on B so this does not define a 
measurent M which achieves the bound uniformly in B. 



Braunstein and Caves' aim was to define a statistical 
distinguishability metric between quantum states. The 
reason that i(O; M) is relevant in this context is (as those 
authors explain) that based on n independent measure­
ments M of identical copies of the given quantum sys­
tem, there typically exists an asymptotically unbiased 
estimator of 0 with asymptotic variance (ni(O; M»-1 and 
moreover no estimator based on the same measurements 
can do better. That estimator-the maximum likelihood 
estimator-works for all values of O. On the other hand it 
is only for special types of models (so-called exponential 
families), and particular parameters (the so-called mean 
parameter) in those models, for which the Cramer-Rao 
lower bound (ni(O; M»-l for the variance of an unbiased 
estimator can be achieved exactly (for fixed n, in particu­
lar, n = 1), uniformly in e. In fact a similar result can be 
proved for quantum models; see Barndorff-Nielsen, Gill 
and Jupp (in preparation) . 

Note that the classical information based on n inde­
pendent and identically distributed realisations from a 
given density p(x, 0) is equal to n times the information 
for one realisation. Similarly, the quantum information 
in the state p(o)®n corresponding to n identical parti­
cles each in state p( 0) is easily found to be n times the 
quantum information for one particle. 

In view of these facts the question is therefore: does 
there exist a measurement procedure (not depending on 
0) on the state p®n, on the basis of which an estima­
tor of 0 can be constructed having asymptotic variance 
(nI(O»-l? If the answer is 'yes', then I(O) is not just 
an upper bound on i(O; M) but in an asymptotic sense 
the least upper bound, hence Braunstein and Caves' pro­
posed role for the quantum information I(O) in defining 
a statistical distinguishability metric is well motivated. 

It seems rather natural to try the two-stage procedure: 
first estimate the parameter using a perhaps inefficient 
procedure on a vanishing proportion of the particles, say 
logn or nO< (0 < a < 1) out of the total of n; now carry 
out the 'estimated optimal measurement' on the remain­
ing ones. In both stages only simple measurements (i.e., 
measurements of classical observables) on separate par­
ticles are needed. 

In our example this would reduce to the following. 
Measure the spin u x on k = ~ log n of the copies. 
The number of '+1' observed is binomially distributed 
with parameters k and p = ~(sin 7] cos I/> + 1). Sim­
ilarly for another k measurements of the spin u y we 
get a binomial number of '+1' with parameters k and 
p = HSin 7] sin I/> + 1). This allows us consistent estima­
tion of both sin I/> and cos I/> and hence of I/> E [0, 27r). 
Denote such an estimator by ¢. We saw that IDlp in this 
example was proportional to the spin in the direction 
7r /2, I/> + 7r /2. Let us use the remaining n::: log n pa!:.ticles 
to measure this spin with I/> replaced by 1/>. Given 1/>, this 
results in a binomial number X of '+ l' with parameters 

3 

n' == n -logn and p = ~(l - sin 7] sin (I/> - ¢». Let 

¢ = ¢ + arcsin«n' - 2X)/(n' sin 7]». 

Analysis of this 'final' estimator shows that I/> has asymp­
totically the N( 1/>, (n sin2

(7]) )-1) distribution (the normal 
distribution with indicated mean and variance), whatever 
1/>, so that the quantum information bound is asymptot­
ically achievable by our two stage procedure. 

This approach will work in wide generality in problems 
with a one-dimension!"l parameter O. Suppose one has a 
consistent estimator 0 based on measurements on a van­
ishing proportion of the particles, which will typically be 
possible. Compute the quantum score at this point, and 
measure it on each of the remaining particles. Compute 
the maximum likelihood estimator 0' of e based on the 
new data, whose probability jistribution depen~s on the 
unknown 0 and the known O. We argue that 0 has ap­
proximately the N(O, (nI(O»-l) distribution, thus this 
estimator asymptotically achieves the quantum informa­
tion bound. Let i(O; e) denote the Fisher information for 
o in a measurement on one particle of the quantum score 
at '0; thus iCe; e) == I(e) for all valu~ of '0, but gener­
ally i(O; 8) < 1(0). Now for n large, 0 is close to O. By 
the classical results for maximum likelihood estimators, . 
given 8, o has approximately the N(O, (ni(O; 8»-1) dist~­
bution. So if p depends on (} smoothly enough that i(O; 0) 
is close to i(O; 0) = I(O) fore close to 0, we have that un­
conditionally 0' has approximately the N(O, (nI(O»-l) 
distribution, hence asymptotically achieves the bound. 

The situation is rather unclear when there are several 
unknown parameters. However in the spin-~ situation 
with both 7] and I/> unknown, the same appears to hold: 
asymptotically, a two-stage procedure of measurements 
of classical observables on separate particles can achieve 
maximum information. 

The quantum scores for the two parameters 7] and I/> are 
u 1)+1< /2,1/> and sin 7]U7r /2,I/>+7r /2 respectively. After a small 
proportion of measurements we know roughly the loca­
tion of the parameter, and it is sufficient to investigate 
optimal measurement at a 'known' parameter value. 

More specifically, consider (essentially without loss of 
generality) the special point 7] = 7r /2, I/> = O. At this 
point the quantum scores are uy and -uz , and the quan­
tum information matrix is the identity 1. The arguments 
of Braunstein and Caves do not appear to extend to 
the multi-parameter case, but the quantum Cramer-Rao 
bound does hold also for the multi-parameter case, [3], 
[4], with the inverse of the quantum information matrix 
being a lower bound to the variance-covariance matrix of 
an unbiased estimator of (7],1/» based on the outcome of 
a single measurement M . However there is not a single 
measurement whose probability distribution has Fisher 
information matrix for (7],1/» equal to the quantum infor­
mation matrix, since by our results it would have to be of 
the form m(x) = I~)(~I with I~), up to a phase, equal to 



al T) + ,811) with a and /3 real and a non-zero for attain­
ability of the ¢ component of the information, while by 
a similar calculation for 7J (for which the quantum score 
is il T)(l I - il l)(i !) m should again be rank-one but 
now with I~), up to a phase, of the form a'i i) + i,t3'll) 
with a' and ,8' real and 0:' non-zero, which is only pos­
sible if ,8 = ,8' = o. Though m(x) can have this form 
for some x it is impossible for it to be true for all, since 
J m(x)JL(dx) = 1. 

Since no measurement attains simultaneously full 
quantum information for 1} and ¢, at a given parame­
ter point, but separately this is possible, we see that the 
class of Fisher information matrices for an arbitrary mea­
surement on the spin-~ system does not include its least 
upper bound (the identity matrix 1). This means that for 
different loss functions, different repeated measurements 
will be optimal. An appealing loss function is one minus 
the squared inner-product between the true state vector 
and its estimate. This equals one minus the squared co­
sine of half the angle between the points on the Poincare 
sphere representing the two states. At the special point 
under consideration therefore, the loss function is asymp­
totically equivalent to one quarter times the sum of the 
squares of the errors in 1} and ¢. 

Massar and Popescu [5], in response to a problem 
posed by Peres and Wootters [6], exhibited a measure­
ment, optimal in the Bayes sense, with respect to this 
loss function and a uniform prior distribution. It had 
an asymptotic mean square error 4/n. This was a gen­
uine generalised measurement of the composite system 
p®n. They showed that for the case of n = 2 there were 
no measurement methods of the two particles separately 
which were as good as the optimal method. 

However, consider taking with probability half mea­
surements of 0" y and 0" z, independently on each particle. 
We find that the Fisher information matrix for 1}, ¢ at 
1} = 7r/2, r/> = 0 is ~1. Therefore (~I)-I/n = 21/n is 
an asymptotically achievable lower bound, at the point 
under consideration, for the covariance matrix of (asymp­
totically unbiased) estimators of 1}, ¢ based on n of such 
measurements. The maximum likelihood method would 
provide estimators asymptotically achieving this bound. 
The sum of the variances is 4/n. This strongly suggests 
that a two-stage procedure similar to what we proposed 
in the one-parameter case can asymptotically achieve 
Massar and Popescu's mean square error of 4/n, using 
simple measurements of single particles only. More ex­
plicitly, first carry out measurements of each of O"x, O"y 

and (J" z on a small proportion of separate particles. Com­
pute from the results a consistent estimate of 1}, r/>. Now 
rotate the coordinate system so that the estimated value 
is at 1} = 7r /2, r/> = 0, and measure alternately O"y and 
o"z on the remaining particles. Estimate 1}, r/> (new co­
ordinate system) by the method of maximum likelihood 
using the second stage observations, and finally trans­
form back to the original coordinate system using the 
first estimates. 

The quantum information matrix was in this case equal 

4 

to 1 itself. This implies a lower bound to the covariance 
matrix of unbiased estimators of 1}, r/> of 1-1 /n = l/n 
(at the special point under consideration before). This 
bound applies to estimators based on arbitrary measure­
ments of the n particles as a single system. The sum 
of the mean square errors cannot be less than the trace 
of this matrix, 2/n. By analogy with classical statis­
tical theory one should expect the same bound to ap­
ply to the wider class of asymptotically unbiased estima­
tors . However the Massar and Popescu results suggest 
that the actual asymptotic bound is 4/n, asymptotically 
achieved by their optimal Bayes procedure based on a 
generalised measurement of the n particles as a single 
system, but also by our two-stage procedure of separate 
measurements of classical observables. Recent work of 
Gill and Massar has confirmed this bound, and extended 
the results to arbitrary loss functions and, to some ex­
tent, more general estimation problems. 

To conclude, in the multiparameter case, the bound 
implied by the quantum information matrix is not even 
asymptotically achievable. Hence the role of the quan­
tum information matrix in multiparameter problems is 
rather less fundamental than in the one-parameter case. 
The derivation in more general examples of an asymptot­
ically attainable lower bound for any given loss function 
is a challenging open problem. 
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