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Abstract

The influence of external pressure on the dynamics of crystallization is examined by considering a solid–liquid two-phase system in a
cylinder closed by a piston. The dynamic equations are derived using three methods, namely, Rational Thermodynamics (Liu’s procedure),
the Matrix Model, and the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) formalism. The constitutive
relation for the multiphase pressure on the piston is identical for all three methods, whereas some aspects of the result for the phase change
dynamics differ. The rational thermodynamics treatment constrains the phase change dynamics of only those structural variables that enter into
the dissipation inequality, whereas the other two formalisms make statements about the phase change of all structural variables. Nevertheless,
all three methods show, first, that the phase change happens instantaneously at constant volume and, second, where morphological detail can
be built into the model without violating thermodynamic principles. It is discussed how an appropriate choice of the morphological variables
allows one to incorporate impingement of crystals and depletion zone effects, as well as to distinguish crystal shapes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The reasons for liquid-solid phase transitions are many.
Apart from cooling, external pressures influence the tran-
sition as well, which we concentrate on in this paper. Let
us consider two prominent examples of how external pres-
sure influences crystallization and melting, respectively.
First, carbon solidifies into graphite at pressures below
p ≈ 1010 Pa upon cooling, whereas above this pressure it
forms diamond, the latter being only metastable at ambi-
ent conditions. Another example of the pressure influence
can be found by studying the phase diagram of H2O:
at atmospheric pressure, the water-ice coexistence line
has a negative slope, i.e. dp/dT < 0. By means of the
Clausius–Clapeyron relation this translates into the ice be-
ing less dense than water, therefore ice can be melted by
applying pressure, contrary to most other materials. How-
ever, at pressures abovep ≈ 109 Pa, ice is more dense than
water and the coexistence line has a positive slope.

∗ Tel.: +1 617 253 65 45; fax:+1 617 258 05 46.
E-mail address:mhuetter@mit.edu (M. Hütter).

Whereas equilibrium thermodynamics offers means to de-
termine the stable phase and to discuss the phase diagram, it
does not describe the dynamics of the phase transition. The
latter can be described by nonequilibrium thermodynamics
approaches, which determine the thermodynamic contribu-
tions to the driving force for the phase change, but do not
restrict the form of the kinetic effects, i.e. of the time scales,
as will be shown below. In this paper, the influence of exter-
nal pressure on the dynamics of crystallization is examined
by considering a solid–liquid two-phase system similar to
[1], here in a cylinder closed by a piston. Dynamic equa-
tions are derived using three different methods, namely, Ra-
tional Thermodynamics (Liu’s procedure)[2–4], the Matrix
Model [5–7], and the general equation for the nonequilib-
rium reversible-irreversible coupling (GENERIC) formalism
[8,9]. The GENERIC formalism has been compared with the
Matrix Model[10] and with the rational nonequilibrium ther-
modynamics method[11] for the example of a single-phase
system enclosed in a piston without phase change. We here
extend these comparisons by including a phase change with
a detailed description of the morphology.

The manuscript is organized as follows. First, the level of
description used in this study is introduced and motivated
in Section 2, and the points of special interest are high-

0377-0257/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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lighted. After discussing the three thermodynamic methods
in Section 3, they are applied to study crystallization under
external pressure, and their results are compared inSection
4. Finally, the main conclusions are drawn and discussed in
Section 5.

2. Description of the system

2.1. Choice of variables

The choice of variables to describe a system which ex-
hibits a solid–liquid phase transition depends on the physics
one aims at describing. In this study, the focus is on the ef-
fect of an external pressure. Therefore, a description of the
two phases on the level of their thermodynamic states, i.e.
pressures, chemical potentials, and temperatures, is appro-
priate to capture the main effects of an externally applied
pressure. In other words, we study the coupling of external
conditions to internal variables which are on the same level
of coarse-graining.

The thermodynamic states of the individual phases can be
described by the total mass of liquid and solid,Ml andMs,
and the total volumes,Vl andVs. Furthermore, we intend
to study the system on time scales on which the two-phases
equilibrate the temperature and on which all kinetic energy
of the small crystallites and of the liquid phase is already
transferred into internal energy. Thus, to account for thermal
effects, one can either choose the system temperatureT as
a further variable or the total internal energyU.

The choice of variables to capture the morphology is
strongly inspired by integral geometry. There, closed sur-
faces in three-dimensional space are most naturally de-
scribed in terms of four so-called Minkowski functionals
(also quermass integrals, curvature integrals). For more
details, the reader is referred to[12–16]. For a given sur-
face, these functionals include the volume (length3), the
total surface of the interface (length2), the surface inte-
gral of the mean curvature (length1), and the connectivity
(number of components plus cavities, minus number of
tunnels) (length0), the latter measuring the topology. In the
solid–liquid two-phase system under consideration here, it
is intuitive to consider the solid phase as composed of over-
lapping, impinging grains (see alsoFig. 1). In the case of
overlap, the Minkowski functionals for the union of grains
differ from the sums of the single grain Minkowski func-
tionals. We here choose to use the volume,Vs, and surface,
A, of the union of overlapping grains, i.e. of the real struc-
ture, whereas the sum of the individual grain mean curvature
integral and the number of grains, denoted byL andN, are
used for the following reasons. When expressing bulk and
surface contributions to thermodynamic potentials, clearly
the properties of the union of overlapping grains rather than
of the single grains are physically relevant. However, for
calculating a configurational entropy for the arrangement
of the grains in space, the number of grains is preferable

z

Xt T U,

p

z F

l
s

A

Fig. 1. Solid (s)–liquid (l) two-phase system in a cylinder closed by a
frictionless piston. Symbols as introduced in the text.

to the complicated topological measure connectivity. As for
the characteristic length scale, we choose the mean curva-
ture integral as summed over the individual grains, rather
than as determined for the union of grains. This choice of
variables has also been applied in a previous study [1]. We
note that it is essential to include not only the volume of
the crystalline phase, Vs, but all four morphological vari-
ables. The reason is that this allows us to include surface
tension effects, impingement of crystallites, depletion zone
effects, and to distinguish crystal shapes, as will become
clear below.

Last but not least, the linear momentum of the piston (of
mass m) is denoted by P , whereas the piston position z can
be expressed in terms of the variables chosen above,

z = 1

Ā
(Vl + Vs), (1)

Ā being the cross-section of the piston. In conclusion, the
variables to describe the system are

x = (P, xth) ⊕ Xt, (2)

with the thermal variable xth either xth = T or xth = U, and

Xt = (Ml,Ms, Vl, Vs, A,L,N) (3)

Note that we have assumed that the interface is massless. The
current set of variables allows one to capture a temperature
dependent surface tension, if the variables A and xth are
supplemented with the appropriate thermodynamic potential
for the interface. Fig. 1 summarizes the setup of the system
as well as the meaning of the variables.

2.2. Dynamic equations: terms of special interest

The formulation of a dynamic model for crystallization
in terms of the variables (2) is a formidable task and it is
useful to use thermodynamic methods to do so. However,
one can formulate part of the model without thermodynamic
methods, and use the latter to determine certain constitutive
relations. In the following, we formulate the overall structure
of the dynamic equations for the variables (2), and point out
which particular ingredients therein need thermodynamic
methods for their discussion.
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The piston momentum changes only due to potential
forces, −∂zV(z), external pressures pext, and internal pres-
sure due to the two-phase system enclosed in the cylinder, p̄,
if we assume frictionless motion. As the piston moves and
changes the total volume in the cylinder, d/dt(Vl + Vs) =
ĀP/m, also the individual phases change their volumes. In
the case of different compressibilities, the phases change
volume in a complex manner, as is also the case for the other
morphological variables A, L. The number of crystals, N,
is not affected by a change in volume. In the dynamic equa-
tions for these properties, these compressibility effects due
to change in piston momentum can be captured by terms
explicitly proportional to the rate ĀP/m with rate indepen-
dent prefactors. As far as the phase change contributions are
concerned, one notes that the phase change contributions
to the two mass balances must add up to zero due to mass
conservation, and that the mass transfer is connected to the
volume transfer by means of a mass density, denoted as ρ̂

below. In summary, one finds

Ṗ = −∂zV(z) + Ā(p̄ − pext), (4a)

Ṁl = −ρ̂ϒV, (4b)

Ṁs = +ρ̂ϒV, (4c)

V̇l = (1 − κV + ε1)(ĀP/m) − (1 + ε2)ϒV, (4d)

V̇s = κV (ĀP/m) + ϒV, (4e)

Ȧ = κA(ĀP/m) + ϒA, (4f)

L̇ = κL(ĀP/m) + ϒL, (4g)

Ṅ = ϒN, (4h)

where the yet unspecified functions ϒµ(µ = V,A,L,N)
are introduced through (4e–4h) to denote the phase change
contributions of the specific variable.

The parameters (ε1, ε2) are introduced into Eq. (4d) for
later use in order to discuss the splitting of reversible and ir-
reversible contributions as required for the Matrix Model and
the GENERIC formalisms, but not for the rational thermo-
dynamics treatment. As we neglect friction of the piston, the
phase change terms, proportional to ϒµ(µ = V,A,L,N) in
the above Eq. (4), are the only irreversible terms, whereas all
others are reversible in nature. While κV relates the change
in total volume to the change in solid volume per definition,
is it not apriori known if the corresponding coefficient for
the liquid phase compression is simply 1 − κV . Thus, we
introduced the parameter ε1 to account for such a possibil-
ity. The parameter ε2 is introduced for analogous reasons to
measure the phase change contribution for the liquid phase
in terms of ϒV, while ϒV is defined as the phase change of
the solid phase.

The equation for the thermal variable xth = T or xth = U,
respectively, has not been specified because that depends on
whether one considers an isothermal or an adiabatic system,
and is different for the various thermodynamics formalisms

used. The corresponding evolution equations will be dis-
cussed below.

A practically applicable model can be obtained from the
above dynamic Eqs. (4) after, first, specifying the potential
V(z) and the external pressure pext, second, determining the
parameters ε1 and ε2, and third, choosing constitutive rela-
tions in terms of the variables x (2) for the pressure on the
piston p̄, for the “compressibilities” κµ(µ = V,A,L), and
for the phase change contributions ϒµ(µ = V,A,L,N).
These parameters and constitutive relations shall be exam-
ined using thermodynamic methods in Section 4, after in-
troducing the methods in the following section.

3. Nonequilibrium thermodynamics methods

A specific system of interest can be described by several
thermodynamic approaches. Since they all aim at describ-
ing the same physical systems, there must be interrelations
between them, although they differ in the degree of detail
with regard to the mechanics and thermodynamics of the
description. We here choose to compare three methods,
namely, Liu’ s procedure of rational nonequilibrium thermo-
dynamics, the Matrix Model, and the GENERIC formalism.
They are briefly introduced in this section, before applying
and comparing them in the following section on the specific
example of the crystallization in a cylinder.

3.1. Rational nonequilibrium thermodynamics; Liu’ s
procedure

Here, we briefly describe the procedure of Liu of rational
nonequilibrium thermodynamics. For more details the reader
is referred to [2–4]. In order to introduce Liu’ s procedure
we consider a set of global balance equations for functions
a = a(x) of the variables x,

ȧ = Σ, (5)

appropriate for this study. We emphasize however that the
method can be used also for systems of local balance equa-
tions. Substituting the constitutive equations a(x) and Σ(x)

into Eq. (5) and using the chain rule of differential calculus,
we obtain from the above balance equations the balances
on state space [3], which are linear in the higher derivatives
of the variables, ẋ. With y ≡ ẋ, the balance equations and
the dissipation inequality can be represented by the matrix
equations [4]

A · y = C, (6a)

B · y ≥ D (6b)

The domain of the matrices A(x), C(x), B(x) and D(x) is
given by the set of variables x and does not include their
higher derivatives y, whereas their range is the entire state
space. The dissipation inequality can be exploited by using
Liu’ s lemma:
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Proposition. If all solutions y of the balance equations
A · y = C satisfy the dissipation inequality B · y ≥ D,
state-space functions Λ(x) exist for which the Liu equations
and the reduced dissipation inequality are valid:

Λ · A = B, (7a)

Λ · C ≥ D (7b)

The special presupposition of this proposition that all solu-
tions of the balance equations satisfy the dissipation inequal-
ity is called the Coleman–Mizel formulation of the second
law [17], which can be proven by an amendment of the sec-
ond law [3].

3.2. Matrix Model

The Matrix Model [5–7] is different from the other two
thermodynamic formalisms presented here in that it makes
a clear distinction between a thermodynamic subsystem and
its environment. The environment is described by control-
lable external forces F e and rates ẋe, in contrast to the inter-
nal variables x and the thermodynamic conjugate forces Fx

of the subsystem. For example, in the adiabatic case one has
Fx = (∂U/∂x)S and in the isothermal case Fx = (∂F/∂x)T ,
with internal energy U, entropy S, Helmholtz free energy
F , and absolute temperature T . The dissipation rate, ∆, is
then obtained as the difference between the rate of power
supplied to the subsystem and the internal rate of change of
energy,

∆ = F e 
 ẋe − Fx�ẋ, (8)

where 
 and � denote the appropriate inner products. Based
on the assumption that the state variables x and the dissipa-
tion ∆ remain unchanged under a reversal of the sign of the
external rates ẋe, the Matrix Model is derived:(

F e
ẋ

)
=

(
η
 −ΛT�

Λ
 β�

) (
ẋe

−Fx

)
, (9)

where all matrix elements may be functions of the externally
controlled rate ẋe and the internal thermodynamic forces Fx

and are even with respect to time reversal of the external
rates ẋe. The operators η and β must both be symmetric and
positive semi-definite. The operator ΛT denotes the adjoint
of Λ.

In contrast to the rational non-equilibrium thermodynam-
ics treatment using Liu’ s procedure, the Matrix Model dis-
tinguishes conservative (i.e. reversible) from dissipative (i.e.
irreversible) dynamics. By using the Matrix Model equa-
tions, one finds that the antisymmetric contributions in the
matrix, i.e. Λ, do not contribute to the dissipation rate (8),
whereas the symmetric part (η, β) does.

3.3. GENERIC formalism

Recently, a general equation for the nonequilibrium
reversible-irreversible coupling has been developed for de-
scribing nonequilibrium systems [8,9]. In contrast to the

Matrix Model, GENERIC deals with isolated systems, i.e.
the total energy is conserved as well as entropy production
is non-negative. The set of independent variables that de-
scribe the physics of interest to sufficient detail shall here
be denoted by x, which may have discrete as well as con-
tinuous indices. The time evolution of these variables x is
then written in the form

dx

dt
= L(x) · δE

δx
+ M(x) · δS

δx
, (10)

where the two generators E and S are the total energy and
entropy functionals in terms of the state variables x, L and M

are certain matrices (operators), and · denotes the appropriate
inner product. The matrix multiplications imply not only
summations over discrete indices but also integration over
continuous variables, and δ/δx typically implies functional
rather than partial derivatives (for more details see [8,9]).
The GENERIC structure also imposes certain conditions on
the building blocks in (10). First, Eq. (10) is supplemented
by the degeneracy requirements

L(x) · δS
δx

= 0, (11a)

M(x) · δE
δx

= 0 (11b)

The requirement that the (functional) derivative of the en-
tropy lies in the null space of L represents the reversible
nature of L. On the other hand, the requirement that the
functional derivative of the energy lies in the null space
of M manifests that the total energy is not altered by the
M-contribution to the dynamics. In addition to these degen-
eracy requirements, L must be anti-symmetric and fulfill the
Jacobi identity, whereas M needs to be positive semi-definite
and Onsager–Casimir symmetric. As a result of all these
conditions one may easily show that the GENERIC Eq. (10)
implies both the conservation of total energy as well as a
nonnegative entropy production. The two contributions to
the time evolution of x generated by the total energy E and
the entropy S in (10) are called the reversible and irreversible
contributions, respectively.

4. Derivation of the dynamic equations for phase change

The dynamic equations for the crystallization model are
developed in this section using the three different thermo-
dynamic methodologies. Rather than completing the formu-
lation for each method separately, we structure this chapter
along the open questions concerning the balance Eqs. (4)
as described at the end of Section 2, namely, discussion of
the parameters (ε1, ε2) and of the constitutive relations in
terms of the variables x for the pressure on the piston p̄,
for the compressibilities κµ(µ = V,A,L), and for the phase
change contributions ϒµ(µ = V,A,L,N). For each of
these points, the three thermodynamic methodologies shall
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be developed and compared in parallel. Doing so, the dif-
ferences in the procedures and reasons for specific results is
highlighted.

4.1. Phase change at constant volume

We start with discussing the balance equations for the
liquid and solid phases as given by (4d, 4e). Since the volume
changes of the two phases must add up to the change in total
volume as controlled by the momentum of the piston, ĀP/m,
one finds the following constraint for the two parameters
(ε1, ε2):

ε1ĀP/m = ε2ϒV (12)

It was pointed out when describing the thermodynamic
methods, that the rational nonequilibrium thermodynam-
ics technique does not split dynamic contributions into
reversible and irreversible parts, whereas both the Matrix
Model as well as GENERIC do. Inserting the constraint
(12) into the balance Eq. (4d) deletes the parameters
(ε1, ε2) altogether from a rational thermodynamics view-
point, which can also be achieved by the stronger constraint
ε1 = ε2 = 0.

However, for the Matrix Model and GENERIC the argu-
ment is different as not only the sum of the contributions is
relevant, but also how they can be split into reversible and
irreversible parts. The balance Eq. (4d) is written in a sug-
gestive form such that the ε1-term is reversible, in contrast
to the irreversible ε2-term. One the one hand, considering
the constraint (12), one finds that since ϒV depends on a
crystallization rate, the variable ε1 like-wise depends on that
rate constant. On the other hand, both in the Matrix Model
and in GENERIC, the reversible dynamics is driven by the
gradient of a thermodynamic potential, multiplied by an an-
tisymmetric operator. It is important to note that neither of
these potential functions depends on any rate constants, but
rather only capture information about states in terms of state
variables. Furthermore, the reversible antisymmetric opera-
tors do not depend on any rate constants as this would violate
their reversible nature. One is therefore lead to the conclu-
sion that the parameters must satisfy ε1 = 0, and by virtue
of (12) also ε2 = 0.

In conclusion, all three thermodynamic methods find the
same constraints,

ε1 = ε2 = 0, (13)

although on different grounds. Physically, this result stands
for the fact that compressing the two-phase system instanta-
neously affects the phases through compression effects only,
or vice versa, that phase change happens at constant volume,
at least instantaneously. It is an experimental fact that crys-
tallization or melting between two phases of different mass
densities will eventually move the piston. However, the re-
sult (13) tells us that phase transformation only indirectly
moves the piston, by changing the pressures in the phases
and thereby also altering the pressure p̄ (see Fig. 1) on the

piston. We therefore proceed to examine how the pressure
p̄ relates to the pressures of the single phases.

4.2. Internal pressure on the piston

The determination of the constitutive relation for multi-
phase pressure p̄ on the piston is the main goal of this sec-
tion. This can only be done by carefully defining the set of
independent variables and the appropriate thermodynamic
potentials for each of the three thermodynamic methods ex-
amined here. As a reference for the further discussion, the
reader is referred to the Table 1 for a short comparison of
the methods’ levels of description.

Using rational nonequilibrium thermodynamics to de-
scribe the system, one starts with identifying the building
blocks in (6a, 6b) with the dynamic Eq. (4). Assuming
that the cylinder is thermally insulated, i.e. that the heat
flux through the cylinder walls and across the piston is al-
ways strictly zero, the dissipation inequality (6b) represents
non-negative entropy production, Ṡ ≥ 0. Since the entropy
is the potential of interest, the corresponding thermal vari-
able is the internal energy, xth = U. Thus, the entire system
is described by

xRTD = (P,U) ⊕ Xt, (14)

where Xt is defined by (3). In the absence of heat fluxes
through the cylinder surface, the total energy E = P2/2m+
V(z) + U changes only due to the external pressure, Ė =
−pextĀP/m, which by virtue of (4) results in the internal
energy balance

U̇ = − p̄ĀP

m
(15)

Comparing the dynamic Eqs. (4) and (15) with the form
(6a, 6b) one finds A = 1,C equals the right hand side of
Eqs. (4) and (15), B = ∂S/∂xRTD, and D = 0. According
Liu’ s Eq. (7a) we therefore find Λ = ∂S/∂xRTD, and the
reduced dissipation inequality (7b) becomes

ĀP/m

(
−p̄

∂S

∂U
+(1−κV )

∂S

∂Vl
+ κV

∂S

∂Vs
+ κA

∂S

∂A
+ κL

∂S

∂L

)

+ ∂S

∂P
(−∂zV + Ā(p̄ − pext))

+ϒV

(
∂S

∂Vs
− ∂S

∂Vl
+ ρ̂

∂S

∂Ms
− ρ̂

∂S

∂Ml

)

+ϒA
∂S

∂A
+ ϒL

∂S

∂L
+ ϒN

∂S

∂N
≥ 0 (16)

This reduced dissipation inequality has to be valid also in the
absence of phase transformations, i.e. ϒV = ϒA = ϒL =
ϒN = 0, and for arbitrary external pressure. Therefore, one
finds that the entropy can not depend on the momentum
of the piston, ∂S/∂P = 0. Because the inequality has to
be satisfied also for arbitrary sign of the momentum of the
piston, one concludes that the expression in the braces of
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Table 1
Variables and potentials for the different thermodynamic methods as used in this study

Method Variables Potentials

Internal External

Rational Nonequilibrium Thermodynamics. xRTD = (P,U) ⊕ Xt – S = S(xRTD)

Matrix Model xMM = Xt ż, T F = F([T ]; xMM)

GENERIC xGEN = (P, T) ⊕ Xt – E = E(xGEN)

S = S(xGEN \ P)

Variables that are externally controlled are separated from internal variables, for which the corresponding method models dynamic equations.

the first term must be zero, which amounts to the following
constitutive relation for the multiphase pressure:

p̄ =
(

∂S

∂U

)−1 (
(1 − κV )

∂S

∂Vl
+ κV

∂S

∂Vs
+ κA

∂S

∂A
+ κL

∂S

∂L

)
(17)

for an arbitrary entropy function S(U,Xt).
As seen in the above discussion for rational nonequilib-

rium thermodynamics, the constitutive expression for the
multiphase pressure p̄ resulted from studying the terms pro-
portional to ĀP/m. In the language of the Matrix Model
and GENERIC, these are the reversible contributions. In or-
der to apply the Matrix Model, one notices that the external
rate ẋe in the present case is the velocity of the piston, and
the choice of variables to describe the subsystem are given
by (3),

ẋe = ż, (18a)

xMM = Xt (18b)

Since the Matrix Model does not take into account thermal
effects, one can either assume isothermal or adiabatic condi-
tions. In the former case, the Helmholtz free energy F is the
appropriate potential to calculate the thermodynamic forces
Fx; in the latter case it is the internal energy U. For simplic-
ity, we choose here to look at the crystallization model as
being isothermal. The thermodynamic forces are therefore

Fx =
(

∂F

∂xMM

)
T

(19)

Considering the reversible terms in the evolution Eqs. (4b–4h)
proportional to the piston speed P/m = ż = ẋe, one finds
for the matrix in Eq. (9)

ΛT = Ā(0, 0, 1 − κV , κV , κA, κL, 0) (20)

Due to the antisymmetry of the reversible contributions in
the Matrix Model, the expression for the multiphase pressure

can be recovered,

− 1

Ā
Fe = p̄ = − 1

Ā
ΛT�

(
∂F

∂xMM

)
T

= −
(
(1 − κV )

∂F

∂Vl
+ κV

∂F

∂Vs
+ κA

∂F

∂A
+ κL

∂F

∂L

)
(21)

The GENERIC formulation, contrary to the Matrix Model,
includes also the dynamics of the piston similar to the ratio-
nal thermodynamics treatment. On the other hand, contrary
to the latter and similar to the former, GENERIC splits re-
versible from irreversible contributions in the dynamic equa-
tions. The entire system is described by the set of variables

xGEN = (P, T) ⊕ Xt, (22)

where Xt is again defined by (3). It is important to note that
this choice for the thermal variable, xth = T , is not the only
possibility. One could also have chosen the internal energy
xth = U, which is, however, less convenient as a measur-
able quantity when it comes to applications. In the rational
thermodynamics treatment, the choice xth = U is dictated
by it being the appropriate variable for the entropy function,
which on its turn is the appropriate potential in situations
without heat exchange. In the GENERIC treatment, the sys-
tem is thermally isolated as well. However, due to the use of
two generators, namely total energy E and entropy S, one
has significantly more freedom in choosing the set of vari-
ables. The consequences of this possibility and the relation
to the other two descriptions will be discussed below. As far
as the temperature equation is concerned, we write it in the
general form

Ṫ = κT ĀP/m + (ϑVϒV + ϑAϒA + ϑLϒL + ϑNϒN),

(23)

in resemblance to (4b–4h), where κT mimics reversible com-
pressibility effects and the terms ϑµϒµ(µ = V,A,L,N)
represent phase change contributions. It will be shown
below that the degeneracy requirement (11a) determines
κT , whereas (11b) will impose constraints on ϑµ(µ =
V,A,L,N).
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Given the choice of variables (22), the next step is to
specify the generators. We write

E = P2

2m
+ V(z) + U(xGEN \ P) = P2

2m
+ V(z)+U(T,Xt),

(24a)

S = S(xGEN \ P) = S(T,Xt), (24b)

where we have assumed that neither the internal energy nor
the entropy depend on the momentum of the piston. Accord-
ing to the GENERIC form (10), the reversible dynamics is
driven by the energy gradient, of which the only velocity
dependent component is ∂E/∂P = P/m = ż. In order to
capture the reversible terms in Eqs. (4b)–(4h) and (23), we
propose that only the P-row and -column be non-zero, with

LP,∗ = −Ā(0, κT , 0, 0, 1 − κV , κV , κA, κL, 0)

≡ (LP,P , LP,T ,LP,Xt) (25)

The other elements can be completed by the anti-symmetry
requirement for the entire matrix L. This operator fulfills
the Jacobi identity irrespective of the form of the unspeci-
fied entries if the latter are all independent of the momentum
of the piston, P . The result of the Jacobi identity not con-
straining the compressibilities is in agreement with a detailed
study of convection in a continuum multiphase field model
[18].

For the evolution equation for the piston momentum ac-
cording to (10), we may write by virtue of the degeneracy
requirement (11a)

Ṗ = LP,∗ · ∂E

∂xGEN
− TLP,∗ · ∂S

∂xGEN

= LP,Xt ·
(

∂E

∂Xt
− T

∂S

∂Xt

)
= −∂zV(z) + LP,Xt · ∂F

∂Xt
,

(26)

where we have used the relation ∂E/∂T = T∂S/∂T from the
first to the second line and the definition of the Helmholtz
free energy, F ≡ U − TS. If one identifies the last term in
Eq. (26) with the force Āp̄ according to (4a), one recovers
exactly the same expression for the multiphase pressure p̄ as
found for the Matrix Model in (21) when using the explicit
form for the reversible operator (25).

The above derivation highlights the importance of the de-
generacy requirement (11a) in this particular example. One
started with choosing the temperature as the thermal vari-
able, whereas none of the two generators is the appropriate
thermodynamic potential to that variable, i.e. the individ-
ual generators do not contain the full thermodynamic in-
formation. Only through their combination by way of the
degeneracy requirement for the reversible operator they are
combined into the Helmholtz free energy, which on its turn
indeed is the appropriate thermodynamic potential to these
variables.

Last but not least, the degeneracy requirement (11a) for
the entropy imposed on this system,

κT
∂S

∂T
+ (1 − κV )

∂S

∂Vl
+ κV

∂S

∂Vs
+ κA

∂S

∂A
+ κL

∂S

∂L
= 0

(27)

allows one to determine the function κT appearing in the
temperature Eq. (23), if the entropy S = S(T,Xt) and the
other functions κV , κA, κL are known. This completes the
formulation of all nondissipative contributions to the dy-
namic equations.

Finally, the relation between the pressure expression (17)
obtained from the rational thermodynamics treatment and
the result (21) for the Matrix Model and GENERIC formu-
lations is discussed. It is straightforward to show that both
results are identical for(
∂S(U,Xt)

∂U

)−1
∂S(U,Xt)

∂Xt
= −∂F(T,Xt)

∂Xt
, (28)

which is fulfilled due to the very definition of the Helmholtz
free energy with 1/T ≡ ∂S/∂U. In conclusion, all three
thermodynamic methods lead to the same constitutive ex-
pression for the multiphase pressure p̄, although along
different routes. The result emphasizes the close relation
between the compressibilities for the structural variables,
(1−κV , κV , κA, κL), and the way they appear in the expres-
sion for p̄ in combination with their conjugate variables.
It is noteworthy, however, that none of the three thermo-
dynamic methods constrains the functional form of the
compressibilities in terms of the variables (xth,Xt). Thus,
it is only one’ s physical understanding of the system which
determines these functions, e.g. κV = κA = κL = 0 for a
completely incompressible solid phase.

In order to complete the discussion of the nondissipative
dynamics we focus again on the momentum balance Eq. (4a),
and on the forces and pressures appearing therein. Although
the introduction of a potential force is sufficient to drive
the piston against the internal multiphase pressure and to
describe the physics of interest here, the external pressure
pext was used in addition for the rational thermodynamics
treatment in order to conclude that the entropy does not
depend on the momentum of the piston, i.e. ∂S/∂P = 0.
Since the GENERIC formalism is valid for isolated systems,
external pressures cannot be captured. On the other hand, the
Matrix Model does not model the momentum balance at all
since this method explicitly deals with driven systems. So,
the way in which the piston speed, ż = P/m, is generated is
of no interest there, but it rather describes how the internal
system reacts to a given piston speed, namely it gives a
relation for the force on the piston.

A summary of the reversible effects is given in Fig. 2.
A non-zero piston velocity changes the morphological
variables, which in their turn, through the thermodynamic
potential, are related to changes in the corresponding in-
tensive variables. These, in particular the altered pressures,
also change the multiphase pressure on the piston, which
closes the loop of reversible events.
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Fig. 2. Overview of reversible and irreversible effects and their mutual
coupling upon changing the position of the piston. Symbols as introduced
in the text.

4.3. Driving forces for phase change

The thermodynamic driving forces for phase change are
examined in this section, and the results for the three ther-
modynamic approaches are compared. In order to simplify
the notation, it is useful to rewrite the phase change contri-
butions. Irrespective of whether one considers the rational
thermodynamics (4a–4h, 15), Matrix Model (4b–4h), or the
GENERIC treatment (4a–4h, 23), the phase change contri-
butions to these equations can always be written in the form
[1]

ẋ|pc = aVϒV + aAϒA + aLϒL + aNϒN, (29)

if x denotes the set dynamic variables required for a particu-
lar thermodynamic method, as listed in Table 1. By virtue of
the dynamic equations for the structural variables (4e–4h),
one finds with Eq. (29) for the last four components of the
vectors aµ(µ = V,A,L,N)

aV,Vs = 1 aA,Vs = 0 aL,Vs = 0 aN,Vs = 0

aV,A = 0 aA,A = 1 aL,A = 0 aN,A = 0

aV,L = 0 aA,L = 0 aL,L = 1 aN,L = 0

aV,N = 0 aA,N = 0 aL,N = 0 aN,N = 1

(30)

It important to note that these four vectors are linearly in-
dependent, as is apparent above. The set of four vectors
aµ(µ = V,A,L,N) differ between the three thermody-
namic formulations in that not all of them include P in the
set of variables, and different choices for the thermal vari-
able xth are made. With these vectors, e.g. the expression
aVϒV captures the phase change contributions due to vol-
ume change in all dynamic equations. The formulation of the
phase change contributions can thus concentrate on finding
constitutive relations for the “fl uxes” ϒµ(µ = V,A,L,N).

The rational nonequilibrium thermodynamics treatment
of the phase change contributions is inherently linked to the
determination of the reversible contributions. Starting form
the reduced dissipation inequality (16), one uses the results

that the entropy does not depend on the momentum of the
piston as well as the relation (17) for the multiphase pressure,
leading to

∑
µ=V,A,L,N

ϒµΠ
(RTD)
µ ≡

∑
µ=V,A,L,N

ϒµ

(
a(MM)
µ · ∂S(U,Xt)

∂Xt

)

≥ 0, (31)

where we have used the fact that the P- and U-components
of all vectors a

(RTD)
µ (µ = V,A,L,N) are zero by virtue of

the dynamic Eqs. (4a) and (15), i.e. one can use a
(RTD)
µ =

(0, 0, a(MM)
µ )(µ = V,A,L,N). This inequality (31) has the

form of a relationship between fluxes, ϒµ, and thermody-

namic forces, Π(RTD)
µ . For the comparison of this result with

the results for the other two thermodynamic procedures it
is essential that this criterion (31) is a scalar equation, i.e. a
single constraint on the phase change dynamics.

The Matrix Model and GENERIC enforce the dissipation
inequality by imposing certain requirements on operators,
which is a much stronger constraint than the reduced dissi-
pation inequality (7b). The consequences of this difference
will become clear in the following.

Considering frictionless motion of the piston amounts in
the Matrix Model to setting η = 0, because then Fe|diss =
ηż = 0. The remaining irreversible contributions are due to
phase change; these effects are captured by the matrix β in
the Matrix Model (9),

ẋMM|pc =
∑

µ=V,A,L,N

a(MM)
µ ϒµ = β�

(
− ∂F

∂xMM

)
T
, (32)

where we have used the expression (19) for the thermody-
namic force. It can be shown rigorously that due to the pos-
itive semi-definiteness and symmetry of the operator β, it
must be of the form

β =
∑

ν=V,A,L,N
µ=V,A,L,N

Rµνa
(MM)
µ a(MM)T

ν , (33)

with

RT = R, R ≥ 0 (34)

This result is based on the fact that the four vectors
(aV , aA, aL, aN) are linearly independent, as the compo-
nents displayed in Eq. (30) show.

A very similar result is obtained from the GENERIC
method. There, the irreversible contributions are captured by
the second term on the right side of Eq. (10), i.e. a positive
semi-definite and symmetric matrix M has to be determined
to model the phase change contributions

ẋGEN|pc =
∑

µ=V,A,L,N

a(GEN)
µ ϒµ

= M ·
(

∂S

∂xGEN
− 1

T

∂E

∂xGEN

)
, (35)
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where we have used the degeneracy requirement M ·
∂E/∂xGEN = 0. Similarly to the Matrix Model, it can be
shown that the irreversible operator must be of the form

M =
∑

ν=V,A,L,N

µ=V,A,L,N

Rµνa
(GEN)
µ a(GEN)T

ν , (36)

with

RT = R, R ≥ 0 (37)

The last of the GENERIC requirements on M given in (36),
in addition to the symmetry and positive semi-definiteness,
is the degeneracy requirement (11b). Multiplication of (36)
with the energy gradient leads to a complicated, general
relation. If R is strictly positive, one can show that the full
degeneracy requirement is mathematically equivalent to

a(GEN)
µ · ∂E(T,Xt)

∂Xt
= 0, µ = V,A,L,N (38)

In the following, this result will be used even if R is positive
semi-definite only, although it is not mathematically rigorous
in that case. Furthermore, it has been shown for spherulitic
growth that the elements of a positive semi-definite matrix
R take peculiar, unphysical values if Eqs. (38) are not en-
forced [1]. The conditions (38) can be used to determine the
functions ϑµ(µ = V,A,L,N), which appear in the phase
change contributions of the temperature Eq. (23). To finally
get the phase change contributions of the GENERIC for-
mulation, one evaluates the expression (35) using ∂E/∂T =
T∂S/∂T and F = U − TS. One finds that the GENERIC
phase change contributions are identical to the result ob-
tained with the Matrix Model, which for both methods can
be expressed as

ϒµ =
∑

ν=V,A,L,N

Rµν

(
− 1

T
a(MM)
ν · ∂F(T,Xt)

∂Xt

)

≡
∑

ν=V,A,L,N

RµνΠ
(MM,GEN)
ν , µ = V,A,L,N (39)

This relation again relates the fluxes, ϒµ, to the thermody-

namic forces, Π(MM,GEN)
µ .

Let us now discuss the relation between the results ob-
tained from the rational thermodynamics treatment (31) and
the main conclusion from the Matrix Model and GENERIC
formulation (39). Due to the definition of the Helmholtz free
energy F = U − TS with 1/T ≡ ∂S/∂U, one finds that the
thermodynamic driving forces for phase change are identi-
cal, i.e. Π(RTD)

µ = Π
(MM,GEN)
µ ≡ Πµ∀µ. The difference be-

tween the two results (31) and (39) concerns to what extent
the dynamics is constrained by thermodynamic principles.
Whereas Eq. (31) can be recovered from Eq. (39), the in-
verse construction does not hold. Therefore, the form (39)
contains more structure which is not inherent to the result
(31). As a specific example of this difference one may con-
sider the case in which the thermodynamic potential does not
depend on the variable L, as is often the case in simplified

models, which results in ΠL = 0. In rational thermodynam-
ics, this deletes the flux ϒL from the dissipation inequal-
ity (31), which leaves it completely unconstrained by ther-
modynamic principles. In the Matrix Model and GENERIC
treatment, setting one of the driving forces does not allow
for a free choice of the flux ϒL. This point will be illus-
trated further in the following section, in which the above
general results are applied to a specific choice for the ther-
modynamic potential.

4.4. A specific example

All of the above results, in particular for the multiphase
pressure p̄ and for the phase change contributions, ϒµ, and
their driving forces, Πµ (µ = V,A,L,N), have been dis-
cussed for an arbitrary thermodynamic potential. It has been
shown that the results (21, 31, 39) can be expressed in terms
of the Helmholtz free energy, irrespective of the thermody-
namic formalism used. To illustrate the meaning of these
results further, we make a specific choice for the Helmholtz
free energy, namely,

F(T,Xt) = Fl(T,Ml, Vl) + Fs(T,Ms, Vs) + Fi(T,A)

− TScfg(N, Vl, Vs), (40)

which is the sum of the Helmholtz free energies of the liq-
uid, solid, and interface, and also includes a configurational
entropy for the crystals, Scfg, e.g. of the Van der Waals type.
For the partial derivatives with respect to Xt one obtains

(
∂F

∂Xt

)
T

=
(
µl, µs,−pl − T

∂Scfg

∂Vl
,−ps − T

∂Scfg

∂Vs
,

σ, 0, T
∂Scfg

∂N

)
, (41)

with chemical potentials µl, µs, bulk pressures pl, ps, and
where σ denotes the surface tension given by σ = −pi =
∂Fi/∂A. This gives the following expression for the multi-
phase pressure (21) on the piston:

p̄ = (1 − κV )

(
pl + T

∂Scfg

∂Vl

)
+ κV

(
ps + T

∂Scfg

∂Vs

)
− κAσ, (42)

highlighting again the relation between the reversible effects
in Eqs. (4d–4h) and the conjugate variables. In the absence of
excluded volume the configurational entropy depends only
on the total volume, Vtotal = Vl +Vs, rather than on the vol-
umes individually. Then, the configurational contributions
in the multiphase pressure sum up to T(∂S/∂Vtotal)|N , which
includes also the case on an ideal gas of crystallites.

The driving forces for phase change, Πµ (31,39), for the
specific Helmholtz free energy (40) become
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


ΠV

ΠA

ΠL

ΠN


= 1

T




ρ̂(µl−µs)+ps−pl+T

(
∂Scfg

∂Vs
− ∂Scfg

∂Vl

)
−σ

0

T
∂Scfg

∂N




(43)

Apart from the surface tension and the configurational en-
tropy contributions, the driving force ΠV is equal to the
Helmholtz free energy transfer as a unit volume changes
phase. Note that this is not equal to the difference in
Helmholtz free energies per unit volume since in general
ρ̂ �= ρs and ρ̂ �= ρl(ρk := Mk/Vk, k = l, s). The relevance
of the Helmholtz free energy for this process rather than an-
other thermodynamic potential originates from the fact that
the phases have been assumed to be at equal temperatures.

Let us now discuss different choices for the mass transfer
coefficient ρ̂, which is still undetermined. For equal mass
densities, i.e. ρl = ρs, ρ̂ is most naturally chosen equal
to this mass density. However, for ρl �= ρs the expres-
sion of ρ̂ is more complicated. One might choose ρ̂−1 =
1/2(ρ−1

l + ρ−1
s ), or also ρ̂−1 = φsρ

−1
l + φlρ

−1
s with the

volume fractions φk ≡ Vk/(Vl + Vs) (see [19] for more de-
tails). A further choice is the following. In the system stud-
ied here the phases have different pressures, pl and ps. If
the pressure difference is relatively small, one might expand
the chemical potentials to get

ρ̂[µl(T, pl) − µs(T, ps)] − pl + ps

� ρ̂[µl(T, p
∗) − µs(T, p

∗)]

+ (ps − pl)

[
1 − ρ̂

(
1/2 + ε

ρl
+ 1/2 − ε

ρs

)]
, (44)

where the chemical potentials are evaluated at equal pressure
p∗ ≡ (pl + ps)/2 + ε. One can then choose ρ̂ such that
the terms on the third line vanish, which can be considered
a physically reasonable choice as long as ρ̂ is between the
mass densities of the single phases. As far as the parameter
ε is concerned, it is desirable to evaluate the driving force
for phase change at the experimentally measurable pressure
p̄, i.e. one would then set ε such that p∗ = p̄.

On the one hand, the appearance of chemical potential
differences and pressure difference in the driving forces (43)
can be appreciated physically already at this stage. On the
other hand, however, the significance of the surface tension
and the configurational entropy contributions will become
clear only after discussing the possible choices for the matrix
R in Eq. (39) in the following section, which is needed
for relating the phase change fluxes to the thermodynamic
forces.

4.5. Discussion of morphological details

The importance of making a good choice for the morpho-
logical variables has been emphasized in Section 2.1. We

are now in the position to elaborate on that point in more
detail. It is discussed in this section how physically impor-
tant effects such as impingement of crystals, depletion zones
around crystals, and shape recognition is possible within
the model developed here, without violating thermodynamic
principles. All these effects will be discussed in terms of
appropriate choices for the matrix R in the force-flux rela-
tion (39) obtained from the Matrix Model and GENERIC
treatment. To what extent the results can also be used within
the rational thermodynamic treatment will be discussed be-
low. It is important to notice that this entire section deals
with the thermodynamic contributions to the phase change
dynamics, i.e. the proper combination of the driving forces
Πµ(µ = V,A,L,N). It does not discuss the kinetic prefac-
tors of the process, namely, time scales entering as prefac-
tors are not constrained by this discussion.

4.5.1. Impingement
As discussed in Section 2.1, the Minkowski function-

als for the union of grains differ from the sums of the
single-grain Minkowski functionals if grains do over-
lap. Consider the solid phase as a sum of overlapping
convex crystals as shown in Fig. 1. Then, the sum of the
single-grain Minkowski functionals are the sum of the vol-
umes, V+, the sum of the surfaces, A+, the sum of the
average mean curvatures, L+, and the sum of the connectiv-
ities, N+, the last simply reducing to the number of crystals.
These variables are desirable for studying nucleation and
growth processes, where the nucleation rate changes N+

and the change in V+ finally describes the growing crystals.
However, these variables need to be related to the variables
(Vs, A,L,N) included in Eqs. (2) and (3). While we have
already chosen L = L+ and N = N+ from the beginning in
Section 2.1, the relationships between the volumes, Vs and
V+, and the surfaces, A and A+, are not straightforward. It
again proves fruitful to resort to integral geometry, where
the study of randomly positioned and randomly oriented
overlapping convex grains is ubiquitous [12–16]: it is called
the Boolean Grain Model. One finds the following relations,
also derived by Avrami [20], between the physical volume
and surface, Vs and A, on the one hand and the quantities
V+ and A+ on the other hand:

Vs = Vtotal

(
1 − exp

(
− V+

Vtotal

))
, (45a)

A = A+exp

(
− V+

Vtotal

)
, (45b)

where Vtotal denotes the total volume under consideration.
As far as phase change dynamics is concerned, this total
volume is constant as shown in Section 4.1.

What is the consequence of the two relations (45a and b)
on the phase change dynamics? For a given nucleation rate
per unit volume, α(t)[m−3s−1], one can express

V+(t) = Vtotal

(∫ t

−∞
α(t′)vs(t

′, t)dt′
)
, (46)
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where vs(t
′, t) denotes the volume at time t of a single crys-

tallite which began to grow from a nucleus at time t′. If
the growth of a spherical crystallite is described by a radial
growth rate G(t), its volume is related to its radius,

R(t′, t) =
∫ t

t′
G(s)ds, (47)

by vs(t
′, t) = 4π/3R3(t′, t). Using the relations (45a,45b,46),

one finds after successive differentiation of the integral
the following coupled so-called differential Schneider rate
equations [21],

V̇s(t) = G(t)A(t), (48a)

Ȧ(t) = G(t)L(t), (48b)

L̇(t) = 8πG(t)N(t) (48c)

Ṅ(t) = αeff(t)Vtotal (48d)

with (see [1] for more details)

L ≡ (Vtotal − Vs)

[
L −

(
A

Vtotal − Vs

)2
]
, (49a)

L(t) ≡ Vtotal

(∫ t

−∞
α(t′)8πR(t′, t)dt′

)
, (49b)

and with αeff = α for overlapping crystals.
The fact that the model studied here combines properties

that do consider crystal overlap (Vs and A) with other prop-
erties that dot not account for overlap (L and N) brings about
the complicated function L. If one would study a system of
non-overlapping crystals, the proper choice of variables is
given by Vs = V+ and A = A+ and one would find L = L.

A further distinction between overlapping and non-over-
lapping crystals is how to account for the generation of
so-called phantom nuclei, i.e. nuclei that are generated in
an area already covered by the crystalline phase. It has been
shown that for the Boolean Grain Model of overlapping crys-
tals, the crystalline volume and surface as computed from
Eqs. (48) include this effect correctly [20], i.e. one does not
need to correct for phantom nuclei if impingement is ac-
counted for. However, it must be realized that N as deter-
mined from Eq. (48d) indeed does include phantom nuclei.
For non-overlapping crystals one has to replace the nucle-
ation rate αeff = α in Eq. (48d) by αeff = α(1 − Vs/Vtotal)

in order to exclude the counting of phantom nuclei in N as
well as their effect on Vs, A, L. Thus, the distinction be-
tween overlapping and non-overlapping crystals reduces to
choosing the functions L in the evolution Eq. (48b) and the
effective nucleation rate αeff in Eq. (48d).

The effects of impingement as discussed above are now
incorporated into the thermodynamic model developed here.
One notes that the right hand side of the Schneider rate
Eq. (48) must be of the form (39) according to the Matrix
Model and the GENERIC procedure. Since the same radial
growth rate appears in the Eqs. (48a)–(48c), the first three

rows in the matrix R are proportional to each other, with
their third column entries undetermined because ΠL = 0 in
(43). As a consequence of the symmetry requirement one
finds that the matrix R can be written in the form

Rsphere =




AX LX 8πNX AZ

LX
L2

A
X 8π

NL

A
X LZ

8πNX 8π
NL

A
X

(8πN)2

A
X 8πNZ

AZ LZ 8πNZ Y




(50)

The matrix contains three parameters, (X, Y, Z), which are
constrained by the requirement R ≥ 0. Due to A ≥ 0 for
physical reasons, one finds that the positivity requires X ≥ 0
and Y ≥ 0. Whereas the diagonal blocks with the parameters
X and Y affect only the growth or nucleation, respectively,
the off-diagonal blocks with the parameter Z lead to a cou-
pling of nucleation and growth. The nucleation and growth
rate are physically different phenomena, which is reflected
in the rank of the matrix expression (50) being equal to two.
One should note, however, that for the choice XY = AZ

2,
the rank drops to one, and the nucleation and growth rate
are proportional [1], which is exactly the isokinetic assump-
tion inherent to the Nakamura equation [22]. In the general
case, one concludes from Eq. (50) that in the Matrix Model
and the GENERIC treatment, the flux ϒL is determined in
the same way as ϒV and ϒA, with the radial growth rate

Gsphere = X

(
ΠV + L

A
ΠA

)
+ ZΠN (51)

To examine the application of this result to the rational
thermodynamics treatment, one can rewrite the dissipation
inequality (31) into a form similar to (39) with a positive
matrix and all L-components deleted due to ΠL = 0. If one
additionally assumes the matrix to be symmetric and uses
the same procedure as described just above, one finds the
matrix (50) with all L-components deleted. Therefore, the
radial growth rate for the rational thermodynamic treatment
with the additional symmetry requirement is also given by
Eq. (51), whereas no constraints are imposed on the flux
ϒL, in contrast to the result for the Matrix Model and for
GENERIC. Whereas the term ΠV in Eq. (51) includes
bulk contributions similarily found elsewhere [1,19,23],
the surface tension term, ΠA = −σ/T , nicely shows the
size-dependence of the growth rate in terms of the inverse
length scale L/A. The expression (50) also highlights again
where impingement effects are introduced: First, in the
choice of the function L as appearing in Eq. (50) either
of the form (49a) or simply as L = L, and second, in the
expression for the effective nucleation rate αeff as discussed
above, where αeffVtotal = ∑

ν RNνΠν according to Eq. (39).

4.5.2. Depletion zones
Depending on the physical system under consideration,

a depletion zone might develop around the crystal which
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makes it impossible for new nucleation to occur in that
region. In multicomponent diffusion-controlled systems, a
certain element critical for the nucleation might not be suf-
ficiently available in the vicinity of the growth front of other
crystals. In the following, we denote the thickness of the de-
pletion zone by d, which may be an arbitrary function of the
system variables x. We do not consider impingement for the
simplicity of the argument, i.e. Vs = V+ and A = A+. The
depletion zone affects only the nucleation rate. The volume
available for nucleation is the total volume minus the vol-
ume of the crystals including their d-surrounding (see also
[24]). For spherulitic growth, the latter is given by Eqs. (46)
and (47) with

V+,d = Vtotal

(∫ t

−∞
α(t′)

4π

3
(R(t′, t) + d)3dt

)

= V+ + dA+ + 1

2
d2L+ + 4π

3
d3N+ (52)

by expanding the polynomial. Thus, all four structural vari-
ables, (V+, A+, L+, N+), are needed to express the effective
nucleation rate, which is given by αeff = α(1−V+,d/Vtotal).
The incorporation of the depletion zone effect into the ther-
modynamic model discussed here enters into the evaluation
of the nucleation rate expression αeffVtotal = ∑

ν RNνΠν

according to Eq. (39).

4.5.3. Shape recognition
Instead of spherulites, let us finally also consider the

growth of disks of thickness h, also called lamellae in poly-
mer crystallization, without consideration of impingement.
It is assumed that h is constant with respect to the phase
change dynamics. In other words, we attempt to study two-
dimensional growth, in contrast to the three-dimensional
growth for spherulites. With the volume of a single disk,

v(d)s (t′, t) = πhR2(t′, t), (53)

one finds, after successive differentiation of the total crystal
volume (46), the four dynamic equations

V̇
(d)
+ (t) = G(t)A

(d)
+ (t), (54a)

Ȧ
(d)
+ (t) = G(t)L

(d)
+ (t), (54b)

L̇
(d)
+ (t) = 2πhαeff(t)Vtotal (54c)

Ṅ+(t) = αeff(t)Vtotal, (54d)

with V
(d)
+ the total crystalline volume. According to Eq. (46),

the surface of the growth faces is

A
(d)
+ (t) := Vtotal

(∫ t

−∞
α(t′)2πhR(t′, t)dt

)
, (55)

N+ the number of disks, and L
(d)
+ := 2πhN+. Although

L
(d)
+ is statically related to the number of disks in the phase

change dynamics, this quantity still is to be kept in the set of
variables since the thickness h does not necessarily have to

be constant in the reversible dynamics, i.e. under compres-
sion and expansion. To express the thickness of the disk in
terms of the system variables, we replace 2πh in Eq. (54c)
by L

(d)
+ /N+. It is crucial to realize that A

(d)
+ includes only

the surface area of the growth faces, whereas the areas of the
remaining two, non-growing surfaces can be expressed as

A
(n)
+ = Vtotal

(∫ t

−∞
α(t′)2πR2(t′, t)dt

)
= 2

V
(d)
+

h

= 4π
N+

L
(d)
+

V
(d)
+ (56)

As a consequence, one might assign different surface ten-
sions, σ, to the different areas, leading to a Helmholtz free
energy expression for the surface contributions in Eq. (40)
of the form

Fi(T, V
(d)
+ , A

(d)
+ , L

(d)
+ ,N+) = σ(d)(T)A

(d)
+ + σ(n)(T)A

(n)
+ ,

(57)

which by virtue of Eq. (56) depends on all four structural
variables (V(d)

+ , A(d)
+ , L(d)

+ , N+). We therefore conclude that
the thermodynamic driving forces defined through Eq. (39)
are all non-zero, i.e. Πµ �= 0 for µ = V,A,L,N.

In order to formulate the planar growth mode of crystals
described above by the thermodynamics model developed
here, one notes again that the right hand side of the Schnei-
der rate Eq. (54) must be of the form (39) according to the
Matrix Model and the GENERIC procedure. Because the
radial growth rate appears in both Eqs. (54a) and (54b), and
the nucleation rate in Eqs. (54c) and (54d), respectively, the
first and second row in the matrix R must be proportional,
and the third and forth row must be proportional, respec-
tively. Exploiting the symmetry property, one finally finds
that the matrix must be of the form

Rdisk =




AX LX
AL

N
Z AZ

LX
L2

A
X

L2

N
Z LZ

AL

N
Z

L2

N
Z

L2

N2
Y

L

N
Y

AZ LZ
L

N
Y Y




, (58)

where we have omitted the superscript (d) and the sub-
script + to simplify the notation. The matrix contains three
parameters, (X, Y, Z), which again are constrained by the
requirement R ≥ 0. Exactly as in the case for spherulites
discussed above, one finds, first, X ≥ 0 and Y ≥ 0, second,
that the diagonal blocks with the parameters X and Y affect
only the growth and nucleation, respectively, whereas the
off-diagonal blocks with the parameter Z lead to a coupling
of nucleation and growth. Third, the rank of the matrix
equal to two represents the separation of nucleation and
growth. And fourth, for the choice XY = AZ

2 the rank
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drops to one, and the nucleation and growth rate are pro-
portional [1], satisfying the isokinetic assumption inherent
to the Nakamura equation [22]. The specific choice of these
three parameters (X,Y,Z) depends on the specific system
under consideration and on the physics that shall be built
into the dynamic model for phase transition. From the form
(58) and the force-flux relation (39) one finds for the radial
growth rate of the disk

Gdisk = X

(
ΠV + L

A
ΠA

)
+ Z

(
L

N
ΠL + ΠN

)
(59)

This expression (59) looks formally similar to the radial
growth rate of the sphere, Gsphere in Eq. (51), apart from the
additional term in the non-constant thickness 2πh = L/N.
It is essential to realize, however, that the thermodynamic
driving forces Πµ(µ = V,A,L,N) are different due to
the surface contribution (57) in the Helmholtz free energy.
Thus, spherulitic and disk-like growth differ, first, in the
connection of the thermodynamic driving forces, Πµ(µ =
V,A,L,N), to the single-phase properties through the ther-
modynamic potential, and second, in the form of the matrix
R. In other words, in general the different form of the Schnei-
der rate Eqs. (48) and (54) also enters, by way of the sym-
metry property of the matrix, into how the thermodynamic
forces are combined to give the fluxes. As far as the rational
thermodynamic treatment is concerned, one gets the same re-
sult as above for the Matrix Model and the GENERIC formu-
lation only after making additional assumptions. If the dissi-
pation inequality (31) is rewritten in the form of a force-flux
relation (39) with a positive matrix, one needs to require ad-
ditionally that this matrix is symmetric, which is not ensured
from within the rational thermodynamic treatment.

Fig. 2 offers an overview of the effects of phase change,
irrespective of impingement, depletion zones, and crystal
shape. As the single-phase pressures are changed due to a
non-zero piston speed, they initiate the irreversible cycle by
changing the driving forces for phase change as defined in
Eq. (39). The driving forces then change the masses and mor-
phological variables, i.e. the extensive variables, at constant
total volume, thereby altering also the conjugate variables,
i.e. the intensive properties, which closes the irreversible
loop. This cycle can also be initiated by starting with a zero
piston speed but non-zero driving forces for phase change.
In that way, the irreversible loop is initiated, and through the
changing multiphase pressure also the piston is finally put
in motion.

5. Conclusions and discussion

Crystallization of a two-phase system enclosed in a
piston has been studied by means of three thermody-
namic formalisms, namely, Lui’ s procedure of rational
nonequilibrium thermodynamics, the Matrix Model, and the
GENERIC formalism. These methods differ substantially in
structure, e.g. reversible-irreversible splitting, degeneracy

requirements, open versus closed systems. Concerning the
last difference, the Matrix Model discussed the dynamics
for Eqs. (4b) and (4h) under isothermal conditions and for
externally-controlled piston speed, whereas rational ther-
modynamics as well as GENERIC include thermal effects
and the dynamics of the piston, i.e. they describe the entire
system (4a-4h) with an additional thermal variable with
the corresponding Eq. (15) and (23), respectively. It was
discussed that the two-generator nature of the GENERIC
formalism allowed for a flexible choice of the thermal vari-
able due to the degeneracy requirements, which ensure that
the full thermodynamic information is finally contained in
the dynamic equations.

All three methods found the same expression for the mul-
tiphase pressure on the piston, p̄, given by (17) and (21).
All three methods also agreed in that the phase change hap-
pens at constant volume, at least instantaneously. As far as
the phase change dynamics is concerned, the difference be-
tween rational thermodynamics on the one hand and the
Matrix Model and GENERIC on the other hand became ap-
parent. In short, the rational thermodynamics treatment con-
strains only those phase change contributions that appear in
the entropy production rate, whereas the other two methods
allow to make a statement about all phase change contribu-
tions. The results are not in contradiction, but merely show
the consequences of implementing the dissipation inequality
differently. While the latter is a single inequality and enters
as such into the rational thermodynamics treatment, the Ma-
trix Model and GENERIC formalisms impose substantially
more conditions in terms of the positivity of a matrix and
its Onsager–Casimir symmetry. The consequences of these
supplementary constraints have surfaced clearly in the dis-
cussion of the phase change dynamics. This constitutes a
major result of this study. The detailed discussion of phase
change contributions in the dynamic equations in Section
4.5 has also revealed where physical effects such as im-
pingement of crystallites, depletion zones, and crystal shape
recognition are to be incorporated in a thermodynamically
consistent manner.

Fig. 2, discussed previously, serves as a summary of the
coupling and the sequence of events as described by the
dynamic equations. In particular one notices that, e.g. for
given compression due to the piston, the system is not di-
rectly driven into the phase with higher density. It is rather
an indirect effect via a change in morphology, followed by a
change in intensive variables such as pressures and chemical
potentials, which in their turn then alter the thermodynamic
driving force for phase change. Roughly speaking, increas-
ing pressure in the system changes the volume contribution
ΠV to the driving forces (43) in such a way that it favors
the phase with lower specific volume, i.e. higher density.
This shows that the dynamic model for phase transition de-
veloped here follows the same basic concepts as expected
from equilibrium thermodynamic thinking, but additionally
provides the latter with the dynamic picture, including mor-
phological details about the intermediate stages between the
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equilibrium states. It is obvious that the thermodynamic de-
scription of a specific system of interest, e.g. carbon and wa-
ter as discussed in the introduction, most prominently enter
in the reversible loop in Fig. 2, where the changes in mor-
phological variables needs to be translated into changes in
the intensive variables.

Finally, we would like to comment on the force-flux rela-
tionship for phase change, (39). It is a well-known problem
in irreversible thermodynamics to identify the basic dissi-
pative processes in a physically meaningful way. For the
specific system studied here, a natural choice for the fluxes
seems to be the phase change contributions to the mor-
phological variables, which is the strategy followed above.
This led to a 4 × 4-matrix R, which relates the forces and
fluxes. However, this matrix has only rank two since it de-
scribes two phenomena, namely nucleation and growth. One
might wonder whether rewritting the matrix in the form R =
QT ·R′ ·Q, where R′ is a 2×2-, and Q a 2×4-matrix, results
in a physically more meaningful interpretation of forces and
fluxes. In particular, one would then have only two forces
and only two fluxes, corresponding to nucleation and volu-
metric growth. However, such a route will not be taken since
it would distract from the fact that, for a general system, the
growth rates as appearing in the Schneider rate equations do
not necessarily have to be equal. They rather offer means
to implement more detailed physics as far as morphology
formation is concerned.
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