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Applications

Bearing impedance vectors are introduced for plain journal bearings which define the
bearing reaction force components as a function of the bearing motion. Impedance de-
scriptions are developed directly for the approximate Ocvirk (short) and Sommerfeld
(long) bearing solutions. The impedance vector magnitude and the mobility vector magni-
tude of Booker are shown to be reciprocals. The transformation relationships between
mobilities and impedance are derived and used to define impedance vectors for a number
of existing mobility vectors including the finite-length mobility vectors developed by
Moes. The attractiveness and utility of the impedance-vector formulation for transient
simulation work is demonstrated by numerical examples for the Ocvirk “x”, and “Ox”
bearing impedances and the cavitating finite-length-bearing impedance. The examples
presented demonstrate both bearing and squeeze-film damper application. A direct ana-
lytic method for deriving a complete set of (analytic) stiffness and damping coefficients
from impedance descriptions is developed and demonstrated for the cavitating finite-
length-bearing impedances. Analytic expressions are provided for all direct and cross-
coupled stiffness and damping coefficients, and compared to previously developed nu-
merical results. These coefficients are used for stability analysis of a rotor, supported in
finite-length cavitating bearings. Onset-speed-of-instability results are presented as a
function of the L/D ratio for a range of bearing numbers. Damping coefficients are also
presented for finite-length squeeze-film dampers.

H. Moes
H. van Leeuwen

Technological University Twente,
Department of Mechanical Engineering,
Enschede, The Netherlands

Introduction

The objective of this work is the development of analytic descrip-
tions for plain circumferentially-symmetric fluid journal bearings
which are suitable for use in rotordynamic analysis. Specifically, a
description is required which defines the bearing reaction vector as
a function of the position and velocity vectors of the rotor at the
bearing location. A nonlinear description is required for transient
rotordynamic analysis, and stiffness and damping coefficients are
required for linear synchronous-rotor-response and stability calcu-

| ' This work was supported in part by NASA contract NAS8-31233 admin-
1stered by the George C. Marshall Space Flight Center, Al. 35812.

2 Numbers in brackets designate References at end of paper.

Contributed by the Lubrication Division and presented at the Joint Lubri-
cation Conference, Boston, Mass., October 5, 1976, of THE AMERICAN SO-
CIETY OF MECHANICAL ENGINEERS. Manuscript received by the Lu-
brication Division March 3, 1976; revised manuscript received June 25, 1976.
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lations. Booker [1, 2, 3],2 Blok [4], and other investigators have con-
sidered the inverse problem of defining the velocity vector of a journal
bearing as a function of its load and position vectors, and derived
“mobility” vectors, which define the pure-squeeze-velocity vector in
terms of the load and position vectors. Mobility descriptions have
proven to be extremely useful for situations in which the dynamics
of the rotor are negligible, and the load applied to the bearing is a
known function of time, e.g., bearings of internal combustion engines.
‘The mobility viewpoint is used here to develop “impedance” vectors,
which define the bearing reaction vector in terms of the pure squeeze
velocity and bearing position vectors.

The developments of this work are based on the following premises

and results:
(a) The analytic models presently used in rotordynamic analysis

for plain journal bearings (or squeeze-film damper) are inadequate
In accuracy and either computational or analytical convenience when
compared to existing mobility solutions.

(b) The form of mobility descriptions for bearing characteristics
1s unsuitable for rotordynamic analysis.

(c) Impedance descriptions, which are suitable for rotordynamic
analysis, can be directly developed from the mobility viewpoint and
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provide a degree of accuracy and convenience which is equivalent to
existing mobility solutions.

(d) Alternatively, transformations can be developed between im-
pedance and mobility descriptions which both simplify the numerical
calculation of mobility descriptions and mean that any existing mo-
bility description can be converted into an equivalent impedance
description for rotordynamics work.

() Impedance descriptions of bearings (or squeeze-film dampers)
provide a dynamic nonlinear definition of a bearings reaction force
as a function of its motion. Hence, they are directly applicable for
transient simulation work. Further, they are particularly convenient
for small motion about an equilibrium position.

Statement (a) above is supported by a comparison of bearing
models presently used in rotordynamic analysis with existing mobility
descriptions. In rotordynamic analysis, the Ocvirk (short) and Som-
merfeld (long) bearing models continue to be the most commonly
encountered analytic bearing descriptions. For example, Kirk and
Gunter [5, 6, 7] have recently employed the short bearing model for
rotordynamic analysis, while Simandiri and Hahn [8] and T'onneson
9] have used the short-bearing model in the analysis of squeeze-film
dampers. Vance and Kirton [10] have examined the appropriateness
of the long-bearing model for “long” squeeze-film dampers with end
seals. The most commonly used analytic finite-length bearing model
is that of Warner [11].

From a numerical viewpoint, several investigators have attacked
the combined transient bearing-rotordynamic problem by solving the
Reynolds equation for the bearing reaction force, while simultaneously
integrating the rotor equations of motion. This approach is followed
by Kirk and Gunter for the short-bearing model [5, 6, 7] and by
Myrick and Rylander [12]3 for finite-length bearings. On the mobility
side, Booker [1] developed analytic mobility vectors for the three
approximate models cited above (Ocvirk, Sommerfeld, and War-
ner-Sommerfeld) for both cavitating and noncavitating conditions.
Booker accounted for cavitation by setting the pressure equal to zero
at locations where it otherwise might have been negative to obtain
so-called “x”’-bearing mobilities. Blok and his co-workers [4] solved
the Reynolds equation directly via finite differences to obtain mobility
descriptions for finite-length bearings. The numerically calculated
mobilities were based on an improved cavitation model, viz., the cir-
cumferential pressure gradient was required to be zero at the leading
and trailing edges of cavitation. A comparison of numerically calcu-
lated finite-length mobilities with the approximate analytic solutions
yielded the following conclusions:

(@) For short bearings (L/D < %), the Ocvirk model gives a rea-
sonably good definition of the bearing-reaction direction but predicts

3 Myrick and Rylander include the effect of a change in slope of the rotor at
the bearing, which is not allowed with the mobility or impedance formula-
tions.

a = magnitude of rotor imbalance, L

C = radial clearance, L

D = bearing diameter, I

F = bearing reaction force (the force applied

2uwlD

R = bearing radius, L
S = Sommerfeld number, S = Fy3(C/R)2/

Ty = applied torque to rotor, FL

an erroneously large magnitude. The error in the magnitude increases
sharply for high eccentricity ratios.

(b) The Sommerfeld and Warner-Sommerfeld impedance models
provide an improved definition of the bearing reaction magnitude for
long bearings (L/D > 1) and high eccentricity ratios, but both provide
(the same) inaccurate definition of its direction.

Moes and Herrebrugh [13] and Moes [14] subsequently developed
analytic expressions which “fitted”” the numerically calculated mo-
bility results, and were built up from asymptotic versions of the (an-
alytic) Ocvirk and Sommerfeld solutions. These finite bearing models
are quite accurate and are (surprisingly) simpler in form than either
the Ocvirk or Sommerfeld = models. Their accuracy has been verified
by an exhaustive numerical-experimental study by Campbell, et al.

[15]. In summary, the mobility models provide a more accurate and

convenient definition of the dynamic-characteristics of plain journal
bearings than the models presently employed for rotordynamic
analysis.

The impedance method is introduced (in the following section) by

directly deriving impedances for the Ocvirk and Sommerfeld bearing
models in a manner which parallels Booker’s [1] mobility derivation.
For cavitating bearings, the result demonstrates that the impedance
vector 1s a more natural definition than the mobility vector in the
sense that it can be determined more easily and directly. The mag-
mtudes of the impedance and mobility vectors are shown to be re-
ciprocals. The transformation relationships between these alternative
bearing descriptions means that (a) the numerical calculation of

mobilities can be simplified by first calculating impedance vectors
and then transforming to obtain the desired mobility vector, and (b)
impedance vectors that are suitable for rotordynamic analysis can be

obtained directly from existing mobility definitions including the

finite-length model of Moes [14].

Transient numerical results are presented for short bearing im-
pedances and a finite-length cavitating impedance based on the
mobility of reference [14]. Comparisons are made here between the
impedance formulations and the direct-integration short-bearing
approach of Kirk and Gunter [5-7]. The results of the short-bearing
impedance model coincide with the direct-integration formulation,
but require about one tenth of the computer time. At large eccentri-
cities, the predicted orbits are larger for the finite-length impedance
than the short-bearing impedance. Transient simulation results are
also presented and compared with Tonneson’s [9] experimental results
for short squeeze-film dampers.

While a nonlinear impedance description is attractive for transient
rotordynamic analysis, historically, the bulk of bearing analysis for
rotordynamics has been concerned with the calculation of linear
stiffness and damping coefficients for small motion about an equi-
librium point. Lund and Sternlicht [17] initially calculated such

coefficients by numerical differentiation of a finite difference solution
to the Reynolds equation. Orcutt and Arwas [18] used a similar

e = eccentricity-ratio vector

¢ = attitude angle of V, relative to |

f# = bearing polar cylindrical coordinates with
respect to-e

to the journal from the fluid film), F

F;, = bearing load force (the force applied
from the journal to the fluid film: F =
-Fp), F

g = gravitational constant, LT 2

h = normalized film thickness

L J, K = unit vectors in X, Y, Z system

J = rotor polar moment of inertia, FIL T2

L = bearing length, L

M = mobility vector

m = rotor mass, FT2] 1

p = film pressure, FI, —2

P = mean film pressure (axially), ¥ —2
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u., Ug = unit vectors along and normal to ¢

V = journal center velocity relative to the X,
Y, Z system, LT

Vs = pure-squeeze journal velocity relative to
the X, Y, Z system, LT~

W = impedance vector

X, Y, Z = stationary coordinate system which
1s 1nertial for rotordynamics work

X, ¥, 2 = Vg-fixed coordinate system

x’, y’, 2’ = F-fixed coordinate system

a = attitude angle of ¢ relative to V,

8 = attitude angle of e relative to |

v = attitude angle of ¢ relative to F

v = lubricant viscosity, FL =27

¢ = rotor rotation angle

Y = attitude angle of W relative to V,

ws,; = angular velocity of the sleeve (journal)
about the Z-axis, T

@ = average of w; and w;, T~

la] = matrix of stiffness coefficients, FIL —1

[b] = matrix of damping coefficients,
FTL1

Subscripts

0 = denotes equilibrium position

¢ = vector component in i, direction

5 = vector component in ug direction
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analysis approach to obtain stiffness and damping coefficients for
both laminar and turbulent conditions. Reinhoudt [18] also employed
the numerical differentiation approach for obtaining bearing coeffi-
cients, but solved the Reynolds equation with a finite-element ap-
proach. Lund [19] has developed a pertubation solution approach to
the Reynolds equation, which eliminates the requirement of numerical
differentiation.

Analytic solutions for stiffness and damping coefficients have been
defined for the short-bearing model [6], but the deficiencies of this
model have been previously noted. An attractive solution to this
problem has been provided by Moes [20], who obtained the desired
analytic coefficient definitions by (analytic) partial differentiation
of the mobility vector. A comparable derivation of (analytic) stiffness
and damping coefficients from an impedance vector definition is given
here, and results are presented for a cavitating finite-length-bearing
impedance based on [14]. The resulting coefficients are shown to
generally agree with those of Orcutt and Arwas [17], and Reinhoudt
[18], and are used for linear stability analysis of a rigid rotor, which
Is symmetrically supported by plain journal bearings. Onset-speed-
of-instability results are presented for a range of bearing numbers as
a function of the L/D ratio.

The Ocvirk (Short) and Sommerfeld (Long)
Impedances

The Reynolds equation for a constant-viscosity incompressible fluid
can be stated in polar-cylindrical coordinates as

d op d ap 12uR? .
2 (n3 --—)+R2—(h3——-—)= Cich + Ce( — @)s8) (1)
aa( Y 0z \" oz s (Cecl+ CelB = )sh)

where h is the normalized film thickness defined by

h =14 ech, (2)

sf = sin 8, ¢ = cos 0, Z is the axial position variable, and the kinematic
variables ¢, 8, § are illustrated in Fig. 1. Further, u and p are the fluid
viscosity and pressure, respectively, and C and R are the journal
clearance and radius, respectively. The variable @ is the half angular
velocity of the journal about the Z axis, relative to the stationary X,
Y, Z system.4

The physical interpretation provided by Booker and Blok for the
terms on the right hand side of equation (1) contributes significantly
to an appreciation of the development of either mobility or impedance

vectors, and goes as follows. The velocity of the journal center relative
to the stationary X, Y, Z system is

dCe
V = i —
dt | x vz

We denote the time rate of change of the vector Ce with respect to

4 If the sleeve also rotates, @ is the average of the sleeve and journal angular

velocities, i.e., @ = (w, + w;)/2.

Y
J
Uy journal center
Ce U
0’
D, i X

bearing_center

6

Fig. 1 Plain journal bearing kinematic varlables
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a coordinate system that has an angular velocity of @K relative to the
stationary X, Y, Z coordinate system by V, and observe the following
relationship

Vo=V —Ka& X Ce=ult+ ugCe(8 — @) (3)

Hence, the terms Cé¢, Ce(8 — @) of equation (1) are the velocity
components of the journal center with respect to a coordinate system
that is rotating at an angular velocity of Ka relative to the stationary
X, Y, Z system. Booker and Blok note that the journal center’s motion
from this type of rotating coordinate system would always appear to
be in a state of pure squeezing. Hence the vector V, is denoted here
as the journal’s pure-squeeze-velocity vector.

Given that the velocity and position of the journal center relative
to the stationary coordinate system are defined by

Ce=1X+JY =Ce(lc8 + JsB)
V=1X+JY = u,Cé + ugCeB, (4)

the pure squeeze-velocity vector is defined in the stationary X, Y, Z
system by

Vi =V — (Ko XCe) =l{X+aY)+ J(Y — &X) (5)
Alternatively, from fig. 2,
Vo = Viluca — ugsar) = V,(le L + Is )

Substitition from this result and equation (3) yields the following
restatement of the Reynolds equation (1)

9, 3 3/ 9 124R2V.
—(ha—"i) +R2—(h3—p) =B s (e + 6) (6)
YA az\" oz C3

Ocvirk (Short) Bearing Solution. The Ocvirk solution to
equation (6) is obtained by neglecting the first term on the left, and

solving for p(8, Z) with the boundary conditions p(8, L/2) = p(8, -
L/2) =0, to obtain

p(6,Z) = — 3uL2 (1 — (2Z/L)2)Vic(a + 0)/2C3h3 (1)

Integrating axially yields the following average pressure definition

L.

P(g) = I%— }(9, Z)dZ = — uL2V.c(a + 8)/C3h3 (8)

The pressure is seen to be positive between the angles 8, 85 defined

by

T 37
6 = — — «, by = — —~ (9)
' g T g
In words, the pressure is positive over a region of 7 radians centered
about V..
Sommerfeld (Long) Bearing Solution. The Sommerfeld solu-

tion to the Reynolds equation is obtained by dropping the second term

Y
Y
y: "
Ce Y
F.W
) X X
J i V,, M
. G
X
F

y -

Fig. 2 Kinematic variables for impedances and mobliities
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on the left in equation (6) and integrating with respect to 8 to ob-
tain

P(#) = ~ 6uR?V (cactl — bsast)(2 + ec#)/C3h2 (10)

where

b =2/(2+ &) (11)

From equation (10) the positive pressure sector lies between the angles
01, 82 defined by |

btgh = (tga) !, fo=601+ 7 (12)

This solution is taken from Booker [1], who credits it to Gross [21].
The Warner-Sommerfeld solution [11] differs from this solution by
the factor Tl{a, ¢) which accounts for end-leakage [1]. However, both
the Sommerfeld and Warner-Sommerfeld solutions yield the same
direction for the bearing reaction force. The boundary conditions used
to obtain equation (10) are (a) periodicity with respect to 4, i.e., P(6)
= P(f + 2x), and (b) the requirement that the positive pressure sector
extends over = radians, i.e., P(8,) = P(8; + =) = 0.

Impedance Definitions. The forces acting on the journal can be
obtained by integrating these pressure distributions. A complete film
“2r” bearing is obtained by integrating over [0, 27|, while a rup-
tured-film “#” bearing is obtained by integrating only the positive
portion of the film, i.e., [f1, f2]. The = bearing provides an approximate
model for cavitation, since the assumption is made that film rupture
prevents the development of negative pressures, and tends to be the
more generally applicable model.

Integration of the pressure distribution from the preceding section
yields the following definition for the force components parallel and
normal to the eccentricity vector

F.= RL { P(8)c8d0

Fg = RL {P(8)s0d# (13)
which can be stated
F.= — V2uL(R/C)3W («, €)
Fg=— V2uL(R/C)*Wj(a, ¢) (14)

The quantities W, Wy are the desired components of the imped-
ance vector W, whose vector character is emphasized by the following
restatement of equation (14)

I.IEFE + ugFﬁ - ‘—VSQ;.LL(R/C)B(UEWE + llﬁWﬁ) (15)

For computational purposes, the following definition of W in terms
of its components parallel and normal to the squeeze-velocity vectors
V, is convenient.

Fig. 3 Impedance plot for the Ocvirk (short) x and 2« bearing model

Journal of Lubrication Technology

Wy=Wea — Wgsa

W, = Wsa + Wgca (16)

Fig. 3 illustrates the impedance plot for the Ocvirk r and 27 solutions,
respectively, in terms of these components. A similar definition of the
components of W in the X, Y system is readily stated in terms of the
angle S.

The impedance descriptions for the Ocvirk (short) bearing model
are obtained by substitution from equation (8) into equations (13)
and (14) to obtain

Wf = 2(J3OZC{1‘ — J3“8ﬂ')(L/D)2

Wg = 2(J3“ca' = ng‘}sa)(L/D)Q (17)

where®

Ik = {s/6ckoh—md8 (18)

The solution for both the = and 2= bearings are defined by this rela-
tionship. They differ only in bounds of integration used, viz., [0, 27]
for the 2= bearing and [0, 8] for the = bearings. Hence, for the =
bearing the integrals are a function of both a and ¢, while for the 2=
bearing, they depend only on e. For small ¢, the = bearing impedance
reduces to

W, = 2(x/2 + deca)(L/D)?

W, = 2(2esa)(L/D)? (19)

For the Sommerfield (long) bearing, the following impedance com-
ponents are obtained by substitution from equation (10) into equa-
tions (13) and (14).

‘/V.E - 3(3116‘(1' — ngl_Sﬂf)

W4 = 3(Baica — Byssa) (20)
where
B11 = 2J59% + €J 993, Bo) = 2J511 + €Jy12
Bgs = b(2J2%° + €Jy%!) (21)

As with the short-bearing solution, both the = and 27 impedance
vectors are defined by these results, and differ only in the integration
bounds used to evaluate the integrals of equation (21). For small e,
the 7 bearing solution reduces to

W, = 3(7m + 4decar), W, = 3(2esa) (22)

which resembles the short-bearing result of equation (19).

The statement was made in the introduction that (for cavitating
conditions) the impedance vector definition is more easily obtained
than a mobility vector. The explanation of this statement goes as
follows. With cavitation, the integrals of equation (18) must be defined
In terms of the limits (6, 62) which are a function of «. In calculating
the impedance vector, V; is known which defines «, and allows one
to directly calculate W and hence the reaction force F. In calculating
a mobility vector the reaction force is assumed to be the negative of
the applied force, and is given; however, V, and hence o are unknown.
For a given F, one must accordingly iterate to find «. The relationships
between mobility and impedance vectors are discussed in the fol-
lowing section.

Relationships Between Mobility And Impedance
Vectors

As noted in the introduction, mobilities were developed to address
the following problem. Given a force F;, applied from the journal to
the fluid film and the position of the journal, determine its instanta-
neous velocity and subsequent motion. In rotordynamics we are
considering a related but distinctly different problem; viz., given the

> Booker [27] provides a convenient summary of these integrals; however,
for the present work, the following definition for J,° was employed

J100 = 2(1 — €2)—1/2 [mr +tg= (1 — g2 (1 4+ &) Vg (g) H

(2n — Da <8< @n+ )n
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position and velocity of the journal, determine the bearing reaction
force F (the force acting from the fluid film on the journal). Obviously,
F=-—F;.

The mobility approach is most readily applicable for bearings of
internal combustion engines for which the applied load F,p, is known
and dominant in comparison to the inertia effects of the rotor, and
under these circumstances Fy, =~ F,,. In rotordynamic situations,
however, the stiffness and inertia properties of the rotor must be ac-
counted for, and the desired and most easily calculated force is the
bearing reaction force F. Impedances have accordingly been derived
(here) in terms of F, not F, and readers with a historical perspective
of impedances are urged to note this distinction in reviewing the fol-
lowing material.

Booker [1] introduced the following definition for the mobility
vector

R32ulL R32ulL
M=—ly, =— 2y (23)
C3 Fy C3 F
whereas, the impedance vector is defined in equation (14) by
C3 1 C3 1
= F=— F; (24)
R32uLV, R32uLV,
From these definitions the magnitudes of M and W are related by
W=M-1 (25)

As illustrated in Fig. 2, v defines the orientation of Ce relative to W,
and is related to « by either of the following relationships

Mﬂ(f: ’Y) Wﬁ(f: ﬂ)
M. (e, v) Wle, a)

Transformation from a mobility definition into an impedance
definition (or vice versa) can be carried out via equations (25) and (26),
and Appendix A contains several impedance definitions which have
been derived from previously developed mobility descriptions. Spe-
cifically, Appendix A contains impedances which were obtained via
equations (25) and (26) for small and large eccentricity approxima-
tions to the = Ocvirk and = Sommerfeld solutions first stated by
Booker [1]. These asymptotic solutions are used in the following
section in the derivation of a finite-length impedance comparable to
the finite-length mobility of reference [14].

The transformation relationship of equations (26) is a polar rep-
resentation for the u,, ug eccentricity-vector-oriented unit vector
system, and is essential for analytic transformations. From Fig. 2, the
following cartesian transformations for the components of € are usetul
in numerical transformations between mobility and impedance vec-
tors.

tga = tgy = (26)

¢ = (e, Wy + ¢, W, )/W

¢, = (—e. W, + ey W, )/ W (27)
ex = (ex My — ey M, )/M
¢y = (ex My + ¢ M, )/M (28)

To illustrate the use of these relationships, suppose one has an im-
pedance definition in terms of the components W, (e, €,), W, (e, €y).
The magnitude of the associated mobility vector is defined by equa-
tion (25), and its position (relative to the F-oriented x’, ¥’ system) is
defined by equation (27).

Finite Bearing Impedance Descriptions

A considerable amount of information about mobilities is available
in the publications of Booker [1, 2, 3], Blok [4] and Moes [13, 14, 20],
concerning topological aspects as well as numerical and graphical data.

This information is the basis for the finite-length bearing impedances
developed here.

The following two asymptotic solutions for plain journal bearings

have proven to be useful in the mobility analysis of transient bearing
phenomena:

(a¢) the Ocvirk (short) bearing solution for small eccentricity ratios,
and
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(b) the Sommerfeld (long) bearing solution for large eccentricity
ratios. Impedance definitions are provided in Appendix A for these
asymptotic solutions. Individually, these asymptotic solutions have
a limited value which is consistent with their restricted range of ap-
plication in both L/D (length to diameter) and eccentricity ratios.
Fortunately, the fact that their ranges of application do not coincide
means that the two (vector) solutions can be combined in such a way
that an approximate solution is obtained which is valid for general
finite-length bearings at both large and small eccentricity ratios.

As noted in the introduction, this method has been used in the
development of analytic definitions for finite-length mobilities, and
i3 based on the observed fact that a vectorial sum of the Ocvirk and
Sommerfeld mobilities provides an excellent approximation for the
actual (numeric) mobility vector for all eccentricity and L/D ratios.
Hence, Moes [14] used a weighted sum of the asymptotic solutions
cited above to obtain a finite-length analytic mobility vector, which
has the same order of accuracy as the numeric mobility data on which
it is based.

This technique is used here to directly derive 2w and finite-length
impedance descriptions. The 2= impedance description is given as
solution 5 in Appendix A; however, the = impedance vector 1s used
in subsequent transient simulations and will be reviewed here. We
require a definition of the vector W and propose to obtain W and v
in terms of € and «. The variables ¢, «, 7 are related through equations
(26) by the transcendental equation

3 €S7Y | (1 + 36014)
4 (1 — ecy) (1 +2.124)
which fortunately has the excellent approximate solution

4(1 + 2.12B)(1 — #2113
3(1 + 3.60B)y’ |

tg(y — a) = A = (1 - ey L/D)7%,

y={l-¢1 -7 [ifg‘1 [

- g n'/ln| + S‘ln’] +a—s"1y (29)

B=(1-&WL/D)"?

where
£ = eca, 7’ = eSa (30)
The amplitude W can now be expressed
W = {0.150(E2 + G2)V2(1 — §)>/3~!
E=1+2.12Q, G = 3n(1 + 3.60Q)/4(1 — £) (31)
Q = (1 - £)(L/D)"
where
= ¢CY, n = €87 (32)

From Fig. 2, the impedance components parallel and perpendicular
to the squeeze-velocity V; are

W, = Wey, W, = Wsy, (33)

y=a—y

Rotordynamic Simulation Examples Using Impedance
Vectors

In this section, transient rotor simulations will be demonstrated

 which illustrate the impedance procedure for modeling a plain journal

bearing. The following simplified rigid-body horizontal-rotor model
is to be used.

mX = Fx + m(ax¢? + ayé)

(34)

where g is the acceleration of gravity, and the parameters m, J, a are
the rotor’s mass, polar moment of inertia, and imbalance-vector
magnitude, respectively. The position of the rotor 1s defined in the
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stationary coordinate system of Fig. 1 by X, Y, and the rotor’s rotation
(not precession) is defined by the angle ¢: hence, @ = ¢/2. The torque
applied to the rotor is 7'y, and the components of the external force
acting on the rotor are F'x, Fy. For our present purposes, the external
torces considered are bearing forces only.

The basic problem in modeling a bearing is the definition of the
reaction force components as a function of the position (X, Y) and

velocity vector components (X, Y), and the spin velocity ¢. The so-
lution to this problem for the short and long bearing impedances is
summarized in the following steps:

(@) From equation (4) one calculates

e = (X2 + Y)U2/C

The 27 bearing integrals can now be calculated.
(b) From equations (4) and (5) and Fig. 2

s = Y/Ce, ¢l = X/Ce
s¢=(Y+ aX)/V,, ct=(X-aY)/V,
Sa=8{(f—{) =sBc{—cPs¢
ca=cl{f—{)=cleé+sBs¢

The short and long = bearing integrals can now be evaluated in
terms of ¢, s, ca.

(¢) The short and long bearing impedances can be evaluated in
terms of the W,, W3 components definitions of equations (17) and
(20), respectively. The reaction force components F., Fg are then
defined by equation (14), and the stationary reaction components are
defined via the coordinate transformation

Fy=F586+F§Cﬁ

® = ¢/2

F;{ = FECB — Fﬁffﬁ, (35)

Alternatively, the transformation relationship of equation (16) can
be used to obtain (explicitly) the impedance definition W.(a, ¢),
W, (a, €) in the “squeeze-velocity-vector” oriented x, y system, which
yields

Fx =Fyc{— Fys¢, Fy=Fys{+ Fye¢ (36)

The small ¢ definitions of equations (19) and (22) were used in this
study for € < 0.01 to avoid numerical difficulties arising with 99,

The procedure for using the finite-length impedance description
of the preceding section involves the definition of ¢, 3, {, and « as
outlined in steps (a) and (b) above. Equation (30) is then used to de-
fine £, n’ which are in turn used to calculate v In equation (29). Sim-
llarly, £, n are calculated from equation (32), and then used to calculate
the impedance magnitude W from equation (31). Finally, the im-
pedance components of equation (33) are used to calculate the reac-
tion components F,, F,, and equation (36) yields the desired sta-
tionary-coordinate reaction definition. The finite-length impedance
of the preceding section is well behaved for small ¢ and does not re-
quire a separate “small ¢’ definition comparable to equations (19) and
(22) for the m Ocvirk and Sommerfeld impedances. |

The short-bearing formulation proposed by Kirk and Gunter for
rotordynamic applications uses the following integral force defini-
tion

F=—uRL3 ({X + @Y)ct/ + (Y — &X)s0\H %ud0’ (37

where 8" is measured from the X axis as illustrated in Fig. 1, and

F=I1Fx+ JFYy, u=lcf" + Jso’
H=C—- Xct#'— Yst/

The integration in equation (37) is to be performed numerically,
and cavitation is accounted for by setting the integrand to zero at
locations where it would otherwise be negative. |

Numerical integration here was performed with the Newton-Cotes
quadrature formula recommended by Kirk and Gunter [5] with a
stepsize of /30 radians.

It is worth noting that the components of V., appear explicitly in
equation (37),ie., Vix =X+ aY: V.y = Y - oX. Hence, an alter-
native derivation of the short-bearing impedance description is easily
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C=127x10"% R=L =254 X107,

Table 1 Physical and computational data for transient
numerical solutions; all data in SI units; NS = number of
Integration steps; AT = integration stepsize.

¢
Case m a AT NS  (rad/s)
1 816.5 0 2.x10 231 680
2 22.68 2.54 X 105 1. X 10 287 1100

M=6.897 X 102

obtained from equation (37) with the coordinate transformation of
equation (36) and the geometric relationship between a, 3, ¢, # and
¢ illustrated in Figs. 1 and 2.

Transient solutions are obtained by numerical integration of
equation (34). The two cases summarized in Table 1 were selected
from reference [7] and solved using (a) the Ocvirk impedance for-
mulation, (b) the numeric integral formulation of equation (37), and
(¢) the finite-length impedance description of the preceding section.
All cases are for constant spin velocity (T', = 0). The initial conditions
forcase larep = X = X = Y=Y =0, ¢ = 680 rad/s (6500 rpm). The
tnitial conditions for case 2 were obtained by integrating the model
for approximately ten revolutions from the initial conditions =X
=Y=X=Y=0,¢=1100rad/s (10500 rpm).
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T AXIS
I'.'ll. e 'I.'Il. 30 I.'!l. TS !.
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1.00 -ln. 15 -an 5“ "'In- 25

T T L I |
00 0,25 0.50 a. 75 1.00

"1 o0 ~0.7% -0, 50 -D. 25 0.
X RAXIS

Fig. 4(a) Transient solution to case 1 (Table 1) from (a) the Ocvirk im-
pedance and the stationary integral formulation of equation (37), and (&) the
finite-length impedance of equations (29 )=-(32)
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Fig. 4(b) Transient solution to case 2 (Table 1) from (a) the Ocvirk im-
pedance and the stationary integral formulation of equation (37), and (b) the
finite-length impedance of equations (29)-(32)

APRIL 1977 / 203




The solutions for these cases with the Ocvirk impedance and the
numerical integration formulations of equation (37) basically coincide,
but yield orbits which are too small (or clearances which are too large)
when compared to the finite-length impedance results. The solutions
are illustrated in Fig. 4 for approximately five rotor revolutions. These
results would be expected since the L/D = % ratio is near the valid
range of short-bearing model, particularly at eccentricity ratios in
excess of 0.5.

On a normalized basis, the computer time requirements for (a) the
Ocvirk impedance formulations, (b) the finite-length impedance
formulations of equations (29)—(32), and (c) the direct numerical
integration form of equation (37) are approximately 1:1.67:10.5. These
ratios are based on a number of numerical cases in addition to the
solutions presented in Fig. 5 and emphasize the advantages of the
impedance formulation for the transient solution of plain journal
bearings.

As noted previously, the applicability of the impedance formulation
is restricted to bearings which can be defined by a mobility vector.
This generally means that the bearing must have circumferential
symmetry, and many bearings fail to meet this criterion; however,
most squeeze-film dampers are circumferentially symmetric, and can
be modeled by impedances. Tonneson has recently reported [9] the
results of an experimental parametric study of squeeze-film dampers,
which compared predicted stiffness and damping coefficients with
experimentally measured impedances. He found the correlation be-
tween theory and measurement to be excellent for concentric cases,
but concluded that the motion at large eccentricity ratios was basically
a nonlinear phenomenon, which was not appropriately modeled by
linear stiffness and damping coefficients. A comparison will now be
considered between the nonlinear numerically predicted motion from
impedances with Tonneson’s experimental results.

Tonneson’s experimental arrangement causes a mass, which is
spring supported in a squeeze-film damper, to be excited by a rotating
imbalance. The spring prevents the mass from rotating, and the ap-
propriate differential equation model is

mX + kX = Fx + mq1a2¢c(Qt + no)

mY+ kY = Fy + miaQ2s(Qt + no) (38)

UNBALANCE = 68gcm Y

BRG. DATA:

LENGTH=12cm

RAD, CLEAR.=132 ym
OIL SUPP PRESS.=01 MPa

OIL VISCO=0.103 Pa-s Y
o
FREQ.=108 Hz o G5
S 2
SAVARNt
1 5 250 Al 1

Fig. 5 Tonneson’s transient experimental results [9] for a short (L/D = .17)

squeeze-film damper, nominal eccentricity ratio = 0.75, nominal symmetric
support stiffness, k = 107 N/m
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where mia is the rotating imbalance, k is the spring constant, {1 the
imbalance frequency, no is an initial phase angle, and Fx and Fy de-
fine the components of the external force. The orbits of Fig. 5 are

taken from Tonneson’s work [9].
An analysis of Tonneson’s data indicates that there is comparatively

little cavitation for the small orbits of Fig. 7, but there is considerable
cavitation for the larger orbits. Hence, a cavitating impedance is ap-
propriate for the large orbits and a noncavitating 2 model should be
employed for the small orbits. Figs. 6 and 7 illustrate transient sim-
ulation results, respectively, for the = Ocvirk and finite-length cavi-
tating impedance description of equations (29)-(32).

The finite-length impedance predicts slightly smaller minimum
clearances in the upper plates of these figures, than does the = Ocvirk
impedance, but otherwise generally yields the same results. Given the

shortness of the damper (L/D = 0.17) this agreement between the two

impedances would be expected. The impedance results differ from
the experimental results of Fig. 5 in the following two important re-
gards:

(@) They generally predict smaller orbit amplitudes than the
experimental data.

(b) As the experimental orbit radii decrease, the orbit centers
approach the nominal eccentricity condition e = 0.75. This charac-
teristic is much less evident in the impedance results.
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Fig. 6 Transient simulation results using the x Ocvirk Impedance model for
comparison with Tonneson’s experimental results (Flg. 5)
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Fig. 8 illustrates the predicted orbits for the 27 Ocvirk impedances,
and provides an explanation for point (b). We noted earlier that
Tonneson’s data show minimal cavitation associated with the smaller
orbits. Hence, the 27 model should be better for these cases, and Fig.
8 shows that without cavitation, all of the orbits are centered about
¢ = 0.75. However, the orbit magnitudes are even smaller for the 2
impedance then for the cavitating impedances of Figs. 6 and 7. At
present, the authors have no explanation for the erroneously small
orbits predicted by the simulation results (other than lubricant
starvation). | |

The point is emphasized that the applicability of the impedance
formulation is not restricted to the simple rotor models of equations
(34) or (38), and can be readily employed in more general flexible-rotor
formulations [22]-[24].

Stiffness and Damping Constants From Impedance
Solutions

From a rotordynamic viewpoint, the calculation of stiffness and
damping coefficients for bearings and squeeze-film dampers is of
comparable or greater importance than the development of nonlinear
representations for transient analysis. Stiffness and damping coef-
ficients are customarily required for both synchronous response cal-
culations and linhear stability analysis. In this section, we consider the

-00

. 0.25 0.50 0.7 1
‘ \\\\\i \ +

1.00
|
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i

G.23 0. 50
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Fig. 7 Translent simulation results using the finite-length impedance model

?; IQC]!;&)“OI‘IS (29)-(32) for comparison with Tonneson’s experimental resuits
g.
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development of linear stiffness and damping coefficients from im-
pedance vectors for small motion about an equilibrium position. The
desired coefficients yield the following customary definition for the
bearing force

[iﬂ = — larJ] [ };] — [brJ] l};’ (39)

where [a; ;] and [b;] are matrices of stiffness and damping coeffi-

cients.
The kinematic requirement that a bearing be in equilibrium is that

its velocity V relative to the stationary X, Y, Z system vanish, i.e., C¢
= Ce¢B = 0. From equation (3), this yields the squeeze velocity v, =
ugCed = Ka. X Ce which physically means that the u, squeeze velocity
component 18 zero; hence from Fig. 9(a) o = ag = #/2 at equilibrium.
For the impedance plots of Fiig. 3, & = + 7/2 is the line x = 0; 1.e., the
y axis. This statement can be better appreciated by noting that v, is
parallel to the x axis, and it is only on the vy axis that the eccentricity
and squeeze-velocity vectors are perpendicular.

To define the direction of ¢, (the equilibrium eccentricity ratio) and
Vso relative to the stationary X, Y, Z axes, we assume (without loss
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Fig. 8 Transient simulation results using the 2x Ocvirk impedance mode!
for comparison with Tonneson'’s experimental results (Fig. 5)
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of generality) that the applied static load is directed along the —Y axis.
Hence, the reaction load Fy is directed along the +Y axis, and from
Figs. 2 and 9(a) we have at equilibrium g8y = —{#x/2 — v0), where y¢ 18
defined by the last of equation (26) as

tgvo = — Wgaleo, m/2)/ W (e, m/2), (40)

Equation (40) defines the equilibrium locus of the rotor. The (fa-
miliar) form of this locus is illustrated in Fig. 10 for the finite-length
impedance of equation (29)—(32). The solution for ¢ is inherently a
nonlinear problem, whose solution is parameterized in terms of the
Sommerfeld number definition

S = 60W0/2 = FU(C/R)Q/Q;LL_GLD, @ >0 (41)
WU = W(EO: 1/2)

This result is obtained by substituting the static force and
squeeze-velocity magnitudes into the impedance definition, equation
(14). Fig. 11 illustrates the form of equation (41) for the finite-length
impedance definition of equations (29)-(32). The results of Figs. 10
and 11 coincide with previous finite-length calculations [25], and

provide a static verification of the finite-length impedance defini-
“tion.

At equilibrium, the u,, ug reference system has a fixed position
relative to the stationary coordinate system. Hence stiffness and
damping coefficients will be defined in terms of the u,, ug reference,
and the similarity transformation

Y
E: r "Wn
Up
X
¥
U, ﬂn
V&n --——-'Yu
a, Ce,
A
Y
Up
oV,
> X
OV,
Vs, S )
3
vso + BVE

(a) static position,
(b) velocity perturbation

Fig. 9 Equilibrium conditions for plain journal bearings
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Fig. 10 Bearing equilibrium locus definition of equation (40) for the finite-
length impedances of equations (29)-(32)
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0

1 /ﬁ

0.5 - |
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Fig. 11 Sommerfeld number éolutlon, S = ¢ W(eo, ¥/2)/2 from equation
(41) for the finite-length impedances of equations (29)-(32)
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lars] = [Ro] T [a.g][Rol, [b1,7] = [Ro]"[b. g][R0)]
BosBo $Y0 — €Yo
i [0 ][

—$BocBo CYo S70

will then be used to obtain their desired definition with respect to the
X, Y axes.

A Taylor series expansion of the bearing reaction force about the
equilibrium position yields

(42)

. 1 OF 1 oF
Ff! !‘! =F+E 3 1010 + ECd + — -
(¢, 8, ¢, B) = F(eo, Bo, 0, 0) Cac Ct oo

1 aF
+ ——(Cde¢ +—1—a€‘
C d¢ Ce 08

Cedf3

O¢ Ce 3

where second and higher order differential terms have been dropped.
By definition, the components of [a. 5] and [b. 4] are seen to be

1 9F, 1 odF,
Q.. = g = — 7
OT: Ce 08
1 dF; 1 oFy
Uge = — 27— Apg = —
C Oe Ce 08
1 oF, 1 aF,
bH= b{g= n— 3
C de Ce 08
1 OF 1 oF
bge=—=—L  bgg=———~ (44)
C Oe Ce 98

with the partial derivatives evaluated at the equilibrium position.

The coefficients a.,, az may be obtained directly from the following
restatement of equation (24)

R

F=—2uL (5)3 V. W (45)

The partial derivative of this relationship with respect to ¢ yields

18F__2 I 5)3{16VSW+V56W]
: (C C O

- _C_ 36_ B C Oc
As noted previously, at equilibrium V, = V.o = Cey@:; hence from
equations (44), (45), and (46)

(46)

Fo /W, oW,
A = (-—-— -+ )
CW{) €0 de
Fy Wﬁ 3Wﬁ)
E — + 47
e CW, ( €0 O¢ 47)

From equation (40), these relationships have the alternative
form

. Fo (C‘Yo a’Y_I_ 6W)
€€ — S — C o
C \ ¢ o de o Oe¢
Fg SY0o 5"}/ oW
Age = ——(—+ cvp— + svg — 48
8 C(E(] Yo =+ 570 ae) (48)

The coefficients a5, agg are obtained by considering the conse-
quences of a perturbation 63 of the equilibrium angle 8y, with ¢, o,
and the reaction force magnitude held constant. The rotation of 83,
yields

F.= F.c(680) + Fgos(660) = F.o + Fs0080

Fg= —F.s(600) + Fgoc(68g) = Fgo — F.0880
By comparison to equation (43), the desired coefficients are
—Fgo __ Fo Wgo _ Fosvyo
C e
Feo _ Fo Weo  Focyo

Qo = 5 =
Ceg CE{} W0 C €0

Qe
E Ceg Cfg WO

(49)
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Fig. 9(b) illustrates the two perturbed velocity components §V, =
Cé¢, 6V = Cedp, and assists in the derivation of damping coefficients.
The direct consequence of the change 0V, (with V3 = 0 and constant
€0, Bo) 1s the perturbation d«. From Fig. 9(b),

da _ ~1
dV. V.o
Hence, from equation (45)
oF R\3 _owd —F ow
— — = 2ul. (—) Vi = —
aV. C da dV WV, da

By comparison to equations (43) and (44),

b "'F[} an "F(} (C‘Yo aW 67)
ce = =T —sYo—
WOVS{) do CGJE[} WU da ‘Yoa{f
~Fy oW F aw d
bge = ot = 0 (TR +evo ) (50)
WoVe da Cweg \Wy da do

The perturbed velocity component & V318 seen from Fig. 9(b) to yield
directly 6V, = —8Vyg; hence dV,/dVs = —1, and from equation
(45),

OF R\ dV, R\ 3
- =9l (—-) W —= = —2,], (-—-) Wo
aV c/ " dv, C

By comparison to equations (43) and (44), the remaining damping
coefficients are

—F —F
beg = 0 W, = 0 (C‘Yﬂ)
—F F
bgs = —— Wo = — (Sw) (51)

For convenience, the following normalized coefficient definitions are
employed

a; = (C/Fo)ayj, bij = (2C&/Fy)b;; (62)

From this relationship and equation (42), the following complete set
of dimensionless stiffness and damping coefficients is obtained.

_ Cy a7
Axx = SY (——)

€ Je
%,
&XY=EI+C’}/ (—Z)
€ Je/ «
Gyx = “ST_S_T(:?.E’)
rx & W (jE 4 4
i C‘y+0‘y <6W)
Ayy = — + —
Y & W 8(- (X
28y /0%y
bxx == ()
£ 5&’ ¢
“~2cy /0vy
bxy = (57)
€ aCE ¢
2 sy /oW
5 =—lc +-—-—(—-—)}
X € 7 W (9(1’ ¢
2 cy oW
5 =-—[s - ( )I 53)
T T w e/ (

Note that these coefficients are to be evaluated at an equilibrium
position, and that they apply for any impedance definition, e.g., short,
long, finite-length etc. The spring and damping coefficients which
result from applying these relationships to the finite-length imped-
ance of equations (29)-(32) are stated in Appendix B, and illustrated
in Fig. 12. The results basically coincide with those of references [17]
and [18] except at large and small eccentricities, where the numerical
differentiation approach presumably encounters difficulties.

The derivation of stiffness and damping coefficients for bearings
is based on the assumption of small motion about an equilibrium
position. This assumption is not valid for squeeze-film dampers, since
a damper is not designed to react a static load, and has a minimal in-
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Fig. 12 (a) Stiffness and (b) damping coefficients for the finite-length im-
pedances of equations (29)—(32) with L/D = 1

fluence on a rotor’s static equilibrium position. Tonneson [9] employs
the model

Fx =—-BxX, Fy= —ByY (54)
for small motion of the form
X = Ceg + Ac(92), Y = As(Qt)

The coefficients By, By are obtained by considering (separately)
velocity perturbations in the X and Y directions, and then calculating
the average damping coefficient over the period T' = 2x/%. Tonneson’s
experimental results demonstrate that the comparatively crude model
of equation (54) is valid for short dampers at small eccentricity ratios.
The damping coefficients of equation (54) can be defined for a non-
cavitating 2w bearing by

By (27) = 2uL.(R/C)3W (¢, 0),

By(27) = 2@(%)3%((0, - -g) (55)

where W, Wy are components of the appropriate 27 impedance. The
corresponding coefficients for a cavitating bearing are simply Bx (=)
= BX (211')/2, By(ﬂ') = By(Qﬂ')/Q.

Coefficient definitions for finite-length dampers (which are com-

parable to the short-bearing coefficients developed by Tonneson) are

obtained from solution 5 of Appendix A. Note that the model of
equation (54) is only valid at small eccentricity ratios, and a nonlinear
transient analysis is appropriate at other operating conditions.

Rotor Stability Analysis

The linear stability of a symmetrical rigid rotor on plain journal
bearings is readily determined via the stiffness and damping coeffi-
cients of the preceding section. The appropriate dimensionless dif-

ferential equations for (small) motion about an equilibrium position
are
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2 () o [$fsa[£] -0

F{} Y” Y’

where the “’ 7 denotes differentiation with respect to the dimen-
sionless time variable 7 = ¢t. This equation is obtained from equations
(34), (39) and (52). The results of a Routh-Hurwitz stability analysis
of equation (56) for the stiffness and damping coefficients of Appendix
B are given in Fig. 13 for a range of “dimensionless bearing loads”
defined as

Ct mC
R4 u2DA
This figure illustrates the dimensionless onset speed of instabili-
ty

Fy

as a function of the dimensionless load, and the L/D and eccentricity
ratios. These results emphasize the (sharply) destabilizing effect of
an increase in bearing length.

Summary and Concluding Comments

The bearing impedance vector has been introduced, and defines
the bearing reaction force components as a function of the bearing
motion. Impedances are derived directly for the Ocvirk (short) and
Sommerfeld (long) bearings, and the relationships between the im-
pedance vector W and the more familiar mobility vector M are devel-
oped and used to derive analytic impedances for finite-length bear-
ings. The static correctness of the cavitating finite-length impedance
is verified by the presentation of both equilibrium loci plots and plots
of Sommerfeld number versus (equilibrium) eccentricity ratio for a
range of (L/D) ratios. Analytic stiffness and damping coefficient
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definitions are derived in terms of an impedance vector for small
motion about an equilibrium position, and demonstrated for the fi-
nite-length cavitating impedance. These coefficients are used for
stability analysis of a symmetrically supported rotor, with results
presented as a function of the L/D ratio. Damping coefficients are also
stated for finite-length squeeze-film dampers comparable to those
of Tonneson [9].

Nonlinear transient rotordynamic simulations are presented for
the short = and 27 impedances and the finite-length cavitating im-
pedance. The finite-length impedance yields more accurate results
for substantially less computer time than the short-bearing, numer-
Ical-pressure-integration approach of references [5]-[8].

The results of this study demonstrate that the Impedance vector
and its associated stiffness and damping coefficients are an attractive
and comprehensive approach for modeling plain journal bearings (and
squeeze-film dampers) in rotordynamics work. Further, the finite-
length cavitating (equations (29)-(32)) and 2 (Solution 5, Appendix
A) impedances developed here are markedly superior to presently
employed analytic bearing models, i.e., the Ocvirk, Sommerfeld, or
Warner Sommerfeld models. These impedances provide very accurate
models for all (L/D) and eccentricity ratios of general interest.

The following direct extensions of the present work are judged to
be feasible:

(@) Nonlinear impedances and stiffness and damping coefficients
can be calculated for pivoted pad bearings, subject to the restriction
that the pad’s rotational dynamics be negligible. Ten Napel, Moes,

1000
100}

-9_0

o ™

£|2
ol

10 -
LID——

Fig. 13 Dimensionless onset speed of instability for a rotor on plain journal
bearings versus the L/D ratio for a range of bearing numbers
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and Bosma [26] have demonstrated the feasibility of a mobility de-
scription for this type of bearing.

(0) Simandiri and Hahn [8] have used the short-bearing model
with a finite supply pressure to examine the effect of supply pressure
on the behavior of squeeze-film dampers. The effect of both supply
and discharge pressure can be accounted for in the numeric calcula-
tion of a finite-length bearing impedance, and calculation of stiffness
and damping coefficients from such an impedance follows from
equation (53).

The following extensions of the present work appear to be feasible,
but are less immediate:

(@) Narrow-grooved plain journal bearings appear to be amenable
to mobility-impedance approaches by a restatement of the Reynolds
equation.

(b) Lobed bearings for which all lobes are at high eccentricity ratios
also seem to be subject to a mobility-impedance analysis proce-
dure.
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———D ISCUSSION

J. F. Booker®

What follows is a rather long commentary on concepts and a very
short query on possible applications.

Successful computation methods are always compromises between
accuracy, generality, speed, and cost. Factors of formal elegance and
intuitive appeal probably also play peripheral roles. The mobility
method has proved to be a useful compromise: one hopes that the
closely-related impedance method may find its niche as well.

The impedance and mobility methods form a perfect dual. Both
provide for the efficient storage of bearing characteristics based on
any suitable film model. Because pressure distributions are not cal-
culated, both methods permit extremely efficient computation.

Though the methods are in one sense inverse, they should also be
seen as complementary in view of their natural ranges of application:
In the impedance method, instantaneous specification of eccentricity
and velocity allows direct determination of torce; in the mobility
method, instantaneous specification of eccentricity and force allows
direct determination of velocity. In appropriate applications the re-
sulting equations of motion are in explicit form, and iterative calcu-
lations can be avoided entirely by the user in system simulation
studies.

It seems productive to supplement the authors’ detailed develop-
ment with a concise user-oriented rationale of the two methods,
proceeding from the special to the general by stages.

Special Case: Without Rotation

Impedance and mobility concepts are best understood in terms of
experiments, analytical or physical, with nonrotating bearings. Such
experiments attempt to relate Instantaneously the journal center
eccentricity (displacement)-e, squeeze velocity Vs, and load force F,
or their dimensionless counterparts, eccentricity ratio ¢, mobility M,
and impedance W, defined by~

e

€= —

C
~ 2ul v
(C/R)* |FL]

3
W = (C/R)* Fp
2ul, | V|

so that
(w[[m] =1

The definitions of M and W clearly hinge on the proportionality of
|Vs| and |F.|. This necessary proportionality is the ana Iytical con-
sequence of a linear Reynolds field equation with homogeneous
boundary conditions and/or constraints. Alternatively, the propor-
tionality is the physical consequence of an incompressible lubricant,
both entering and cavitating (if at all) at near-ambient pressure.

The relation hetween eccentricity, velocity, and force can be dis-
played in “fixed” coordinates X.Y or in “moving” coordinates x,y and

x",y’ referenced, respectively, to velocity and force directions as shown
in Fig. 14.

® Associate Professor, School of Mechanical & Aerospace Engineering, Cornell
University, Ithaca, N.Y.

7 In the notation adopted by the authors, W is quite literally the inverse of M.
However, it should be noted that W is not the inverse mobility vector M—1 in-
I[:rm]:ltamed In the writer’s discussion of the closely-related impulse method of Blok
28].

8 See Additional References below.
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F W X
V., M

X

Fig. 14 Coordinate systems assoclated with dimensional/dimensionless
eccentricily, veloclty, and force vectors

Using the two “moving” frames, the same data can be displayed in
alternate maps of impedance or mobility plotted over the clearance
space of all possible eccentricity ratios. Figs. 15 and 16, kindly supplied
by the authors, allow a comparison of typical impedance and mobility
maps for the same basic data.” The two maps are oriented to velocity
and force directions respectively as shown. Separate curvilinear
families'! indicate magnitude and direction of impedance and mo-
bility vectors. Though specific to a particular length/diameter ratio,!°
such maps apply to all orientations of bearings with circumferential
symmetry.

Either map, impedance or mobility, represents the complete rela-
tionship of eccentricity, velocity, and force for a particular bearing.
Since the same basic data are displayed in both maps, each point on
one map corresponds to a (different) point on the other,!? and pos-
session of one (entire) map permits construction of the other. This

inverse relationship is immediately apparent along the midlines of
the maps; elsewhere the connection is less obvious. The interested

reader can verify that corresponding sample points are indicated in
Figs. 15 and 16. As a further exercise he can examine the corre-
sponding forms of the “equilibrium locus” whereon eccentricity and
mobility (or velocity) vectors are perpendicular.

Availability of the appropriate map data is thus tantamount to
solution of all problems involving the relation of eccentricity, velocity,
and force for a particular non-rotating bearing. That is, specification
of e and V, allows direct determination of F, via W; alternatively,
specification of e and F|_ allows direct determination of V, via M. The
numerical implementation of these procedures!? can be described

as follows:

7 Actually, two sets of basic data are illustrated in each of Figs. 15 and 16. The
left half of each map is based on the Ocvirk short bearing 2= (complete) film
model; the right is based on the corresponding # (cavitated) film model. Thus
each map may be expected to show increasing left-right symmetry in ap-
proaching the bottom center point.

'" For the Ocvirk short bearing film model illustrated in Figs. 15 and 16 the
dependence on length/diameter ratio is strong but simple: magnitudes of im-
pedance (or mobility) vary directly (or inversely) with its square.

'! The direction and magnitude families are generally not orthogonal, except
along the midlines of both maps and portions of the impedance map bound-
ary.

'2 Exceptionally, a point of vanishing mobility corresponds to a semicircle
of infinite impedance.

13 Essentially the same numerical procedures can be used to transform
nondimensional quantities as well. i.e., specification of € and M allows deter-
mination of W; alternatively, specification of € and W allows determination of
M.
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A.Impedance Method: e, Vs — Fi_
Find velocity magnitude

|Vs| = [(VsX)? + (Vg Y)2]1/2

=T lvad

}
e

e’ +c +s
[ey } ) [—S +c]
Find dimensionless force (impedance) in velocity (map) frame!4
W=x(e*, e, L/D)
IWJ’(GI, €, L/D)}

Transform impedance to original frame

ol =L el el
wY +s 4cld WY
Find dimensional force
Fp X 2ul WX
(o) = rm Ve L)
Fr (C/R)
B. Mobility Method: e, FL, — Vg
Find force magnitude

‘FLl — [(FLX)2 + (Fy. Y)2]1f2

o) =Tl
s’ IFLI FLY

Transform eccentricity to force frame

ex’ +¢' 45’ (eX
[eﬁ”] B [—s’ +c"] IeY]
Find dimensionless velocity (mobility) in force (map) framel?
Mx (&', ¥, L/D)
IMJ’I (e, e, L/D)‘

Transform mobility to original frame

MX +e’ =5 (M~
{MY} ] [+s" +c"] {M?}
Find dimensional velocity
Vs*y  (C/R)3
le Y] - 2ul

General Case: With Rotation

Extension of these impedance/mobility procedures to practical
problems involving rotation of journal and/or sleeve is trivially (and
surprisingly) simple:

Consider an observer fixed to the sleeve center but rotating at the
average angular velocity @ of journal and sleeve.16:17 The actual journal
center velocity V and the velocity Vs apparent to the observer are re-
lated to the journal center eccentricity e and the observer’s angular
velocity @ by the simple kinematic expression

and direction cosines

and direction cosines

V—V,=wXe

14 Pyblished map data is available for a variety of film models.

15 Published map data is available for a variety of film models.

16 The neglect of inertial effects in the derivation of the Reynolds equation
assures the validity of such a rotating observer’s predictions of film pressure
and averaged flow.

17 The concept of alternate observers is elaborated in the writer’s paper [3],
as well as in published discussion of the review by Campbell, et al [15], and in
the forthcoming review by Rohde [29].
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Since the average angular velocity of journal and sleeve apparent
to the observer would vanish identically, the generation of pressure
and resultant force F, would seem to be related solely to the apparent
(squeeze) velocity Vs in exactly the same way as for the non-rotating

bearings considered previously.
Thus extension of the previous numerical procedures to general
problems requires only the use of the kinematic relation above in the

e R I D

before the impedance procedure, and in the form
y& Vg4 N [0 —E] {Ex}
[VY}_[VSYI +@ 0d leY

after the mobility procedure.

A few general observations can now be made.

It is interesting to note that the simplest physical and analytical
experiments produce mobility and impedance data respectively. Thus
mobility maps (such as Fig. 16) are considerably more difficult to
obtain through analytical means than are impedance maps (such as
Fig. 15), and are therefore often determined from the latter as a sec-
ondary step. The preparation of either type of map is a task of con-
siderable consequence, not likely to be undertaken for a single po-
tential application.

In the case of the mobility map, the direction lines are in fact the
path lines followed by a nonrotating journal moving in a nonrotating
sleeve under the action of a nonrotating load. No analogous physical
interpretation seems to arise for the impedance map. The mobility
map can be used directly as the basis for a graphical determination
of journal trajectories in appropriate problems. No analogous appli-
cation seems obvious for the impedance map, which seems useful
chiefly as a graphical summary of the numerical data it represents.

The impedance and mobility methods share limitations as well as
possibilities. As noted previously, their very definitions foreclose the
study of compressible films or the effect of variation of inlet pressure.
Similarly, practical constraints on map development appear to limit
most applications to cases with circumferential symmetry.!® Thus
little can be done with either method to study alternate inlet ar-
rangements.

Since the mobility formulation is appropriate to cases in which
instantaneous force is known, it has found its widest application to
problems in reciprocating machinery (despite the severe limitations
just cited).

Since the impedance formulation is appropriate to cases in which
instantaneous force is desired, it seems most suited to problems in
rotating machinery, particularly those involving damper bearings
(thus largely evading the limitations noted). Unfortunately, however,
design changes for enhanced stability of rotating machinery generally
compromise bearing circumferential symmetry purposely and severely
(thus imposing the limitations unavoidably).

Can the authors suggest other potential applications for the im-
pedance (and/or mobility) method(s) which minimize the impact of
inherent limitations?

Additional References

28 Blok, H., “Full Journal Bearings Under Dynamic Duty: Impulse Method
of Solution and Flapping Action,” JOURNAL OF LUBRICATION TECH-
NOLOGY, TRANS. ASME, Series F, Vol. 97, No. 2, Apr 1975, pp. 168-179,

29 Rohde, S. M., “Computational Techniques in the Analysis and Design

of Fluid Film Bearings,” General Motors Research Laboratories, Warren, Mich,,
Research Publication GMR-2279, Oct. 1976.

I8 Reference [26] provides a novel exception to the rule elaborated in the
writer’s discussion of reference [28].
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P. E. Allaire®

The authors of this paper should be congratulated for an excellent
paper transforming the mobility solution of Booker into a form more
appropriate for rotor dynamics. Not only has the impedance de-
scription been developed but also it has been used for one example
or another in most of the possible application areas: bearing forces,
transient analysis, squeeze film dampers, dynamic coefficients, and
stability. The advantages of the approach are well discussed and
documented.

It appears that the major application of this type of analysis is in
transient rotor dynamics. Computer time for the method is quite low,
making it ideal for many repeated calculations. Thus some of the
limitations encountered by Myrick and Rylander [12] in the number
of nodal points at which the pressure could be evaluated can be
avolded. A large portion of the paper is devoted to linearized bearing
characteristics and stability but the number of times that these
quantities must be evaluated for a given application is not usually
large. The advantages of the more general finite differences or finite
elements are likely to justify the longer running time.

One of the disavantages of the approach described here for plain
Journal bearings is that the combination of short and long bearing
solutions has been shown to be accurate for a number of cases but
there is no method presented for estimating the error. If a set of
Journal positions and velocities were encountered where substantial
errors occured, only comparison with a different numerical or ana-
lytical finite length solution would show the error. No method anal-
ogous to adding more nodes or another term of an infinite series and
observing the change in force (for example) appears to be avail-
able.

Suggested extensions of the mobility-impedance analysis procedure
include lobed bearings for which all lobes are at high eccentricity ra-
tios. Perhaps it should be pointed out that no short bearing analysis
exists for partial arc or lobed bearings due to the boundary conditions
at the end of the lobes. Thus the present method of a weighted com-
bination of short and long bearing solutions is not possible.

An alternative approach to the methods discussed in this work is
that of Hays [30, 31]*° where a variational principle equivalent to
Reynolds’ equation is minimized with an infinite trigonometric series
for the pressure. This method can be generalized to the full dynamic
conditions for either a squeeze film damper or plain journal bearing.
Because of the relatively simple trigonometric nature of the integrals
for the force on the journal, an algebraic series solution to the finite
length journal bearing results. Running time is comparable to that
tor the short bearing. The method is also applicable to partial arc,
multilobe and other types.

Additional References

30 Hays, D. F., “Squeeze Films: A Finite Journal Bearing with A Fluctuating
Load,” Journal of Basic Engineering, TRANS. ASME, Series D, Vol. 83, Dec.,
1961, pp. 579-588.

31 Hays, D. F., “A Variational Approach to Lubrication Problems and the
Solution of the Finite Journal Bearing,” Journal of Basic Engineering, TRANS
ASME, Series D, Vol. 81, Mar., 1959, pp. 13-23.

Author’s Closure

Professor Booker’s additional clarifying comments on the rela-

19 Assistant Professor Mechanical Engineering Department, University of
Virginia, Charlottesville, Va.

20 Numbers 30-31 in brackets designate Additional References at end of dis-
cussion
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tionships of the mobility and impedance vectors and the basic limi-
tations of the methods are appreciated. In response to Professor
Booker’s question concerning the inherent limitations of the methods,
the authors suggest the following additional applications for the
methods:

(a) Squeeze-Film Damper Coefficients. In addition to the
damper coefficient formulas of Tonneson [9] given in equation {55),
for circular orbits the stiffness and damping coefficients of equations
(47) and (50) can be used to define “equivalent” linear stiffness and
damper coefficients for a damper. Specifically, appropriate stiffness
and damping coefficients are

3 . [W. (e, oW, (e,
Ka=a. =2l (_g_) fﬂ‘f"ﬂl (€0, o) N (€0 ﬂfo)}

<) O¢

R\ 3
Ca = by = 2uL (E) | Waleo, a0)]

where ag = 7/2 for clockwise rotation, and ay = —n/2 for counter-
clockwise rotation. This formula for K, differs from that employed
by Cunningham, et al. [32], who use the following “average” definition,
Kg =~ —F./Ceq = 2uL(R/C)? ¢poW (€0, )

(b) Pivoted Pad Bearings. Impedance descriptions have been
developed for the rectilinear Michell pad bearing, and will be included
in a forthcoming publication. At present, impedance descriptions can
be calculated for radial pivoted pads [26], which means that transient
simulations may be carried out for rotors supported in pivoted-pad
bearings. However, the prospects for finding accurate analytic ap-
proximations for a radial pivoted pad impedance are not encouraging,
which implies that the derivation of analytic stiffness and damping
coefficients for this type of bearing from impedances is also unlike-
ly.

Professor Allaire’s inquiries concerning the potential accuracy of
the impedances provided for finite-length bearings can best be an-
swered by a careful review of the methods employed for their deri-
vation. The impedances provided are based on previously calculated
mobilities, which were obtained by numerical solution of the Reynolds
equation for finite-length bearings over a range of L/D ratios. The
observation was made that a very accurate analytic approximation
to these mobilities could be obtained from a weighted sum of short
and long bearing solutions. At the equilibrium locus, the analytical
impedance solutions are less than .1 percent in error when compared
to impedances calculated from either finite difference or finite-ele-
ment methods. The authors regret any implication that these same
functions could be employed to approximate numerically calculated
impedances for other types of bearings.

With regard to the method of Hays [30], [31], this method has been
applied to finite length bearings for 27 and = regions of positive
pressure. The application of this method for the more accurate (p =
op/d8 = 0) cavitating boundary conditions appears to the authors to
be a very difficult undertaking. A solution based on these boundary
conditions would be required to obtain a bearing model comparable
In accuracy to the finite-length cavitating impedance of equations
(29)-(32).

The authors fail to see the advantages suggested by Professor Al-
laire for calculating stiffness and damping coefficients for a plain
journal bearing by numerical methods, when compared to simply
evaluating the formulas of equations (53) and Appendix B. In our
opinion, the formulas can be evaluated much more quickly, and
provide comparable accuracy.

Additional References

[32] Cunningham, R. E., Fleming, D. P., and Gunter E. J., “Design of a
Squeeze-Flim Damper for a Multimass Flexible Rotor,” Journal of Engineering
for Industry, TRANS. ASME, Nov. 1975, pp. 1383-1389.
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